Sample records for millimeter bolometer array

  1. Integrated focal plane arrays for millimeter-wave astronomy

    NASA Astrophysics Data System (ADS)

    Bock, James J.; Goldin, Alexey; Hunt, Cynthia; Lange, Andrew E.; Leduc, Henry G.; Day, Peter K.; Vayonakis, Anastasios; Zmuidzinas, Jonas

    2002-02-01

    We are developing focal plane arrays of bolometric detectors for sub-millimeter and millimeter-wave astrophysics. We propose a flexible array architecture using arrays of slot antennae coupled via low-loss superconducting Nb transmission line to microstrip filters and antenna-coupled bolometers. By combining imaging and filtering functions with transmission line, we are able to realize unique structures such as a multi-band polarimeter and a planar, dispersive spectrometer. Micro-strip bolometers have significantly smaller active volume than standard detectors with extended absorbers, and can realize higher sensitivity and speed of response. The integrated array has natural immunity to stray radiation or spectral leaks, and minimizes the suspended mass operating at 0.1-0.3 K. We also discuss future space-borne spectroscopy and polarimetry applications. .

  2. Antenna-Coupled Bolometer Arrays for Astrophysics

    NASA Astrophysics Data System (ADS)

    Bock, James

    Bolometers offer the best sensitivity in the far-infrared to millimeter-wave region of the electromagnetic spectrum. We are developing arrays of feedhorn-coupled bolometers for the ESA/NASA Planck Surveyor and Herschel Space Observatory. Advances in the format and sensitivity of bolometric focal plane array enables future astrophysics mission opportunities, such as CMB polarimetry and far-infrared/submillimeter spectral line surveys. Compared to bolometers with extended area radiation absorbers, antenna-coupled bolometers offer active volumes that are orders of magnitude smaller. Coupled to lithographed micro-strip filters and antennas, antenna-coupled bolometer arrays allow flexible focal plane architectures specialized for imaging, polarimetry, and spectroscopy. These architectures greatly reduce the mass of sub-Kelvin bolometer focal planes that drive the design of bolometric instrumentation.

  3. Antenna-coupled Superconducting Bolometers for Observations of the Cosmic Microwave Background Polarization

    NASA Astrophysics Data System (ADS)

    Myers, Michael James

    We describe the development of a novel millimeter-wave cryogenic detector. The device integrates a planar antenna, superconducting transmission line, bandpass filter, and bolometer onto a single silicon wafer. The bolometer uses a superconducting Transition-Edge Sensor (TES) thermistor, which provides substantial advantages over conventional semiconductor bolometers. The detector chip is fabricated using standard micro-fabrication techniques. This highly-integrated detector architecture is particularly well-suited for use in the de- velopment of polarization-sensitive cryogenic receivers with thousands of pixels. Such receivers are needed to meet the sensitivity requirements of next-generation cosmic microwave background polarization experiments. The design, fabrication, and testing of prototype array pixels are described. Preliminary considerations for a full array design are also discussed. A set of on-chip millimeter-wave test structures were developed to help understand the performance of our millimeter-wave microstrip circuits. These test structures produce a calibrated transmission measurement for an arbitrary two-port circuit using optical techniques, rather than a network analyzer. Some results of fabricated test structures are presented.

  4. A 65 nm CMOS LNA for Bolometer Application

    NASA Astrophysics Data System (ADS)

    Huang, Tom Nan; Boon, Chirn Chye; Zhu, Forest Xi; Yi, Xiang; He, Xiaofeng; Feng, Guangyin; Lim, Wei Meng; Liu, Bei

    2016-04-01

    Modern bolometers generally consist of large-scale arrays of detectors. Implemented in conventional technologies, such bolometer arrays suffer from integrability and productivity issues. Recently, the development of CMOS technologies has presented an opportunity for the massive production of high-performance and highly integrated bolometers. This paper presents a 65-nm CMOS LNA designed for a millimeter-wave bolometer's pre-amplification stage. By properly applying some positive feedback, the noise figure of the proposed LNA is minimized at under 6 dB and the bandwidth is extended to 30 GHz.

  5. New technologies for the detection of millimeter and submillimeter waves

    NASA Technical Reports Server (NTRS)

    Richards, P. L.; Clarke, J.; Gildemeister, J. M.; Lanting, T.; Lee, A. T.

    2001-01-01

    Voltage-biased superconducting bolometers have many operational advantages over conventional bolometer technology including sensitivity, linearity, speed, and immunity from environmental disturbance. A review is given of the Berkeley program for developing this new technology. Developments include fully lithographed individual bolometers in the spiderweb configuration, arrays of 1024 close-packed absorber-coupled bolometers, antenna-coupled bolometers, and a frequency-domain SQUID (superconducting quantum interference device) readout multiplexer.

  6. Bolometers for millimeter-wave Cosmology

    NASA Astrophysics Data System (ADS)

    Bock, James J.

    2002-05-01

    Bolometers offer high sensitivity for observations of the cosmic microwave background, Sunyaev-Zel'Dovich effect in clusters, and far-infrared galaxies. Near background-limited performance may be realized even under the low background conditions available from a space-borne platform. We discuss the achieved performance of silicon nitride micromesh (`spider web') bolometers readout by NTD Ge thermistors. We are developing arrays of such bolometers coupled to single-mode feedhorns. CMB polarization may be studies using a new absorber geometry allowing simultaneous detection of both linear polarizations in a single feedhorn with two individual detectors. Finally we discuss a new bolometer architecture consisting of an array of slot antennae coupled to filters and bolometers via superconducting microstrip. .

  7. Far infrared through millimeter backshort-under-grid arrays

    NASA Astrophysics Data System (ADS)

    Allen, Christine A.; Abrahams, John; Benford, Dominic J.; Chervenak, James A.; Chuss, David T.; Staguhn, Johannes G.; Miller, Timothy M.; Moseley, S. Harvey; Wollack, Edward J.

    2006-06-01

    We are developing a large-format, versatile, bolometer array for a wide range of infrared through millimeter astronomical applications. The array design consists of three key components - superconducting transition edge sensor bolometer arrays, quarter-wave reflective backshort grids, and Superconducting Quantum Interference Device (SQUID) multiplexer readouts. The detector array is a filled, square grid of bolometers with superconducting sensors. The backshort arrays are fabricated separately and are positioned in the etch cavities behind the detector grid. The grids have unique three-dimensional interlocking features micromachined into the walls for positioning and mechanical stability. The ultimate goal of the program is to produce large-format arrays with background-limited sensitivity, suitable for a wide range of wavelengths and applications. Large-format (kilopixel) arrays will be directly indium bump bonded to a SQUID multiplexer circuit. We have produced and tested 8×8 arrays of 1 mm detectors to demonstrate proof of concept. 8×16 arrays of 2 mm detectors are being produced for a new Goddard Space Flight Center instrument. We have also produced models of a kilopixel detector grid and dummy multiplexer chip for bump bonding development. We present detector design overview, several unique fabrication highlights, and assembly technologies.

  8. Integrated Electron-tunneling Refrigerator and TES Bolometer for Millimeter Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Benford, D. J.; Chen, T. C.; Chervenak, J.; Finkbeiner, F.; Moseley, S. H.; Duncan, W.; Miller, N.; Schmidt, D.; Ullom, J.

    2005-01-01

    We describe progress in the development of a close-packed array of bolometers intended for use in photometric applications at millimeter wavelengths from ground- based telescopes. Each bolometer in the may uses a proximity-effect Transition Edge Sensor (TES) sensing element and each will have integrated Normal-Insulator-Superconductor (NIS) refrigerators to cool the bolometer below the ambient bath temperature. The NIS refrigerators and acoustic-phonon-mode-isolated bolometers are fabricated on silicon. The radiation-absorbing element is mechanically suspended by four legs, whose dimensions are used to control and optimize the thermal conductance of the bolometer. Using the technology developed at NIST, we fabricate NIS refrigerators at the base of each of the suspension legs. The NIS refrigerators remove hot electrons by quantum-mechanical tunneling and are expected to cool the biased (approx.10 pW) bolometers to <170 mK while the bolometers are inside a pumped 3He-cooled cryostat operating at approx.280 mK. This significantly lower temperature at the bolometer allows the detectors to approach background-limited performance despite the simple cryogenic system.

  9. Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements.

    PubMed

    Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R

    2012-07-01

    A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.

  10. Functional Description of Read-out Electronics for Time-Domain Multiplexed Bolometers for Millimeter and Sub-millimeter Astronomy

    NASA Astrophysics Data System (ADS)

    Battistelli, E. S.; Amiri, M.; Burger, B.; Halpern, M.; Knotek, S.; Ellis, M.; Gao, X.; Kelly, D.; Macintosh, M.; Irwin, K.; Reintsema, C.

    2008-05-01

    We have developed multi-channel electronics (MCE) which work in concert with time-domain multiplexors developed at NIST, to control and read signals from large format bolometer arrays of superconducting transition edge sensors (TESs). These electronics were developed as part of the Submillimeter Common-User Bolometer Array-2 (SCUBA2 ) camera, but are now used in several other instruments. The main advantages of these electronics compared to earlier versions is that they are multi-channel, fully programmable, suited for remote operations and provide a clean geometry, with no electrical cabling outside of the Faraday cage formed by the cryostat and the electronics chassis. The MCE is used to determine the optimal operating points for the TES and the superconducting quantum interference device (SQUID) amplifiers autonomously. During observation, the MCE execute a running PID-servo and apply to each first stage SQUID a feedback signal necessary to keep the system in a linear regime at optimal gain. The feedback and error signals from a ˜1000-pixel array can be written to hard drive at up to 2 kHz.

  11. Overview of the Atacama Cosmology Telescope: Receiver, Instrumentation, and Telescope Systems

    NASA Astrophysics Data System (ADS)

    Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Battistelli, E. S.; Burger, B.; Chervenak, J.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dünner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Hincks, A. D.; Irwin, K. D.; Jarosik, N.; Kaul, M.; Klein, J.; Lau, J. M.; Limon, M.; Marriage, T. A.; Marsden, D.; Martocci, K.; Mauskopf, P.; Moseley, H.; Netterfield, C. B.; Niemack, M. D.; Nolta, M. R.; Page, L. A.; Parker, L.; Staggs, S. T.; Stryzak, O.; Switzer, E. R.; Thornton, R.; Tucker, C.; Wollack, E.; Zhao, Y.

    2011-06-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' × 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  12. Infrared-Bolometer Arrays with Reflective Backshorts

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Abrahams, John; Allen, Christine A.

    2011-01-01

    Integrated circuits that incorporate square arrays of superconducting-transition- edge bolometers with optically reflective backshorts are being developed for use in image sensors in the spectral range from far infrared to millimeter wavelengths. To maximize the optical efficiency (and, thus, sensitivity) of such a sensor at a specific wavelength, resonant optical structures are created by placing the backshorts at a quarter wavelength behind the bolometer plane. The bolometer and backshort arrays are fabricated separately, then integrated to form a single unit denoted a backshort-under-grid (BUG) bolometer array. In a subsequent fabrication step, the BUG bolometer array is connected, by use of single-sided indium bump bonding, to a readout device that comprises mostly a superconducting quantum interference device (SQUID) multiplexer circuit. The resulting sensor unit comprising the BUG bolometer array and the readout device is operated at a temperature below 1 K. The concept of increasing optical efficiency by use of backshorts at a quarter wavelength behind the bolometers is not new. Instead, the novelty of the present development lies mainly in several features of the design of the BUG bolometer array and the fabrication sequence used to implement the design. Prior to joining with the backshort array, the bolometer array comprises, more specifically, a square grid of free-standing molybdenum/gold superconducting-transition-edge bolometer elements on a 1.4- m-thick top layer of silicon that is part of a silicon support frame made from a silicon-on-insulator wafer. The backshort array is fabricated separately as a frame structure that includes support beams and contains a correspond - ing grid of optically reflective patches on a single-crystal silicon substrate. The process used to fabricate the bolometer array includes standard patterning and etching steps that result in the formation of deep notches in the silicon support frame. These notches are designed to interlock with the support beams on the backshort-array structure to provide structural support and precise relative positioning. The backshort-array structure is inserted in the silicon support frame behind the bolometer array, and the notches in the frame serve to receive the support beams of the backshort-array structure and thus determine the distance between the backshort and bolometer planes. The depth of the notches and, thus, the distance between the backshort and bolometer planes, can be tailored to a value between 25 to 300 m adjusting only a few process steps. The backshort array is designed so as not to interfere with the placement of indium bumps for subsequent indium bump-bonding to the multiplexing readout circuitry

  13. Kilopixel Pop-Up Bolometer Arrays for the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Wollack, E.; Henry, R.; Moseley, S. H.; Niemack, M.; Staggs, S.; Page, L.; Doriese, R.; Hilton, G. c.; Irwin, K. D.

    2007-01-01

    The recently deployed Atacama Cosmology Telescope (ACT) anticipates first light on its kilopixel array of close-packed transition-edge-sensor bolometers in November of 2007. The instrument will represent a full implementation of the next-generation, large format arrays for millimeter wave astronomy that use superconducting electronics and detectors. Achieving the practical construction of such an array is a significant step toward producing advanced detector arrays for future SOFIA instruments. We review the design considerations for the detector array produced for the ACT instrument. The first light imager consists of 32 separately instrumented 32-channel pop-up bolometer arrays (to create a 32x32 filled array of mm-wave sensors). Each array is instrumented with a 32-channel bias resistor array, Nyquist filter array, and time-division SQUID multiplexer. Each component needed to be produced in relatively large quantities with suitable uniformity to meet tolerances for array operation. An optical design was chosen to maximize absorption at the focal plane while mitigating reflections and stray light. The pop-up geometry (previously implemented with semiconducting detectors and readout on the SHARC II and HAWC instruments) enabled straightforward interface of the superconducting bias and readout circuit with the 2D array of superconducting bolometers. The array construction program balanced fabrication challenges with assembly challenges to deliver the instrument in a timely fashion. We present some of the results of the array build and characterization of its performance.

  14. Instrument Performance of GISMO, a 2 Millimeter TES Bolometer Camera used at the IRAM 30 m Telescope

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes

    2008-01-01

    In November of 2007 we demonstrated a monolithic Backshort-Under-Grid (BUG) 8x16 array in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda/D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here1 will we present early results from our observing run with the first fielded BUG bolometer array. We have developed key technologies to enable highly versatile, kilopixel, infrared through millimeter wavelength bolometer arrays. The Backshort-Under-Grid (BUG) array consists of three components: 1) a transition-edge-sensor (TES) based bolometer array with background-limited sensitivity and high filling factor, 2) a quarter-wave reflective backshort grid providing high optical efficiency, and 3) a superconducting bump-bonded large format Superconducting Quantum Interference Device (SQUID) multiplexer readout. The array is described in more detail elsewhere (Allen et al., this conference). In November of 2007 we demonstrated a monolithic 8x 16 array with 2 mm-pitch detectors in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda1D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here I will we present early results from our observing run with the first fielded BUG bolometer array.

  15. Submillimeter video imaging with a superconducting bolometer array

    NASA Astrophysics Data System (ADS)

    Becker, Daniel Thomas

    Millimeter wavelength radiation holds promise for detection of security threats at a distance, including suicide bombers and maritime threats in poor weather. The high sensitivity of superconducting Transition Edge Sensor (TES) bolometers makes them ideal for passive imaging of thermal signals at millimeter and submillimeter wavelengths. I have built a 350 GHz video-rate imaging system using an array of feedhorn-coupled TES bolometers. The system operates at standoff distances of 16 m to 28 m with a measured spatial resolution of 1.4 cm (at 17 m). It currently contains one 251-detector sub-array, and can be expanded to contain four sub-arrays for a total of 1004 detectors. The system has been used to take video images that reveal the presence of weapons concealed beneath a shirt in an indoor setting. This dissertation describes the design, implementation and characterization of this system. It presents an overview of the challenges associated with standoff passive imaging and how these problems can be overcome through the use of large-format TES bolometer arrays. I describe the design of the system and cover the results of detector and optical characterization. I explain the procedure used to generate video images using the system, and present a noise analysis of those images. This analysis indicates that the Noise Equivalent Temperature Difference (NETD) of the video images is currently limited by artifacts of the scanning process. More sophisticated image processing algorithms can eliminate these artifacts and reduce the NETD to 100 mK, which is the target value for the most demanding passive imaging scenarios. I finish with an overview of future directions for this system.

  16. CCAM: A novel millimeter-wave instrument using a close-packed TES bolometer array

    NASA Astrophysics Data System (ADS)

    Lau, Judy M.

    This thesis describes CCAM, an instrument designed to map the Cosmic Microwave Background (CMB), and also presents some of the initial measurements made with CCAM on the Atacama Cosmology Telescope (ACT). CCAM uses a CCD-like camera of millimeter-wave TES bolometers. It employs new detector technology, read-out electronics, cold re-imaging optics, and cryogenics to obtain high sensitivity CMB anisotropy measurements. The free-standing 8×32 close-packed array of pop- up TES detectors is the first of its kind to observe the sky at 145 GHz. We present the design of the receiver including the antireflection coated silicon lens re-imaging system, construction and optimization of the pulse tube/ sorption refrigerator cryogenic system, as well as the technology developed to integrate eight 1×32 TES columns and accompanying read-out electronics in to an array of 256 millimeter-wave detectors into a focal plane area of 3.5 cm 2. The performance of the detectors and optics prior to deployment at the ACT site in Chile are reported as well as preliminary performance results of the instrument when optically paired with the ACT telescope in the summer of 2007. Here, we also report on the feasibility of the TES detector array to measure polarization when coupled to a rotating birefringent sapphire half wave plate and wire-grid polarizer.

  17. Design and Fabrication Highlights Enabling a 2 mm, 128 Element Bolometer Array for GISMO

    NASA Technical Reports Server (NTRS)

    Allen, Christine; Benford, Dominic; Miller, Timothy; Staguhn, Johannes; Wollack, Edward; Moseley, Harvey

    2007-01-01

    The Backshort-Under-Grid (BUG) superconducting bolometer array architecture is intended to be highly versatile, operating in a large range of wavelengths and background conditions. We have undertaken a three-year program to develop key technologies and processes required to build kilopixel arrays. To validate the basic array design and to demonstrate its applicability for future kilopixel arrays, we have chosen to demonstrate a 128 element bolometer array optimized for 2 mm wavelength using a newly built Goddard instrument, GISMO (Goddard /RAM Superconducting 2-millimeter Observer). The arrays are fabricated using batch wafer processing developed and optimized for high pixel yield, low noise, and high uniformity. The molybdenum-gold superconducting transition edge sensors are fabricated using batch sputter deposition and are patterned using dry etch techniques developed at Goddard. With a detector pitch of 2 mm 8x16 array for GISMO occupies nearly one half of the processing area of a 100 mm silicon-on-insulator starting wafer. Two such arrays are produced from a single wafer along with witness samples for process characterization. To provide thermal isolation for the detector elements, at the end of the process over 90% of the silicon must be removed using deep reactive ion etching techniques. The electrical connections for each bolometer element are patterned on the top edge of the square grid supporting the array. The design considerations unique to GISMO, key fabrication challenges, and laboratory experimental results will be presented.

  18. Design and Expected Performance of GISMO-2, a Two Color Millimeter Camera for the IRAM 30 m Telescope

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes G.; Benford, Dominic J.; Dwek, Eli; Hilton, Gene; Fixsen, Dale J.; Irwin, Kent; Jhabvala, Christine; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; hide

    2014-01-01

    We present the main design features for the GISMO-2 bolometer camera, which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISMO-2 will operate simultaneously in the 1 and 2 mm atmospherical windows. The 1 mm channel uses a 32 × 40 TES-based backshort under grid (BUG) bolometer array, the 2 mm channel operates with a 16 × 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISMO-2 was strongly influenced by our experience with the GISMO 2mm bolometer camera, which is successfully operating at the 30 m telescope. GISMO is accessible to the astronomical community through the regularIRAMcall for proposals.

  19. Submillimeter Bolometer Array for the CSO

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Hunter, T. R.; Benford, D. J.; Phillips, T. G.

    We are building a bolometer array for use as a submillimeter continuum camera for the Caltech Submillimeter Observatory (CSO) located on Mauna Kea. This effort is a collaboration with Moseley et al. at Goddard Space Flight Center, who have developed the technique for fabricating monolithic bolometer arrays on Si wafers, as well as a sophisticated data taking system to use with these arrays (Moseley et al. 1984). Our primary goal is to construct a camera with 1x24 bolometer pixels operating at 350 and 450 microns using a 3He refrigerator. The monolithic bolometer arrays are fabricated using the techniques of photolithography and micromachining. Each pixel of the array is suspended by four thin Si legs 2 mm long and 12x14 square microns in cross section. These thin legs, obtained by wet Si etching, provide the weak thermal link between the bolometer pixel and the heat sink. A thermistor is formed on each bolometer pixel by P implantation compensated with 50% B. The bolometer array to be used for the camera will have a pixel size of 1x2 square millimeters, which is about half of the CSO beam size at a wavelength of 400 microns. We plan to use mirrors to focus the beam onto the pixels intead of Winston cones. In order to eliminate background radiation from warm surroundings reaching the bolometers, cold baffles will be inserted along the beam passages. To increase the bolometer absorption to radiation, a thin metal film will be deposited on the back of each bolometer pixel. It has been demonstrated that a proper impedance match of the bolometer element can increase the bolometer absorption efficiency to about 50% (Clarke et al., 1978). The use of baffle approach to illumination will make it easier for us to expand to more pixels in the future. The first stage amplification will be performed with cold FETs, connected to each bolometer pixel. Signals from each bolometer will be digitized using a 16 bit A/D with differential inputs. The digitizing frequency will be up to 40 kHz, though 1 kHz should be sufficient for our application. The output from the A/D will be fed to a digital signal processing (DSP) board via fiber optic cables, which will minimize the RF interference to the bolometers. To date, we have assembled a 1x24 bolometer array, and we are in the process of testing it. We are also designing and bulding cryogenic optics. The data acquisition hardware is nearly completed, as well as the electronics. Our goal is to get the instrument working after a new chopping secondary mirror in installed at the CSO in the summer of 1994. References: Moseley, S.H. et al. 1984, J. Appl. Phys.,56,1257; Clarke et al. 1977, J. Appl. Phys., 48, 4865.

  20. The Atacama Cosmology Telescope: Instrument

    NASA Astrophysics Data System (ADS)

    Thornton, Robert J.; Atacama Cosmology Telescope Team

    2010-01-01

    The 6-meter Atacama Cosmology Telescope (ACT) is making detailed maps of the Cosmic Microwave Background at Cerro Toco in northern Chile. In this talk, I focus on the design and operation of the telescope and its commissioning instrument, the Millimeter Bolometer Array Camera. The camera contains three independent sets of optics that operate at 148 GHz, 217 GHz, and 277 GHz with arcminute resolution, each of which couples to a 1024-element array of Transition Edge Sensor (TES) bolometers. I will report on the camera performance, including the beam patterns, optical efficiencies, and detector sensitivities. Under development for ACT is a new polarimeter based on feedhorn-coupled TES devices that have improved sensitivity and are planned to operate at 0.1 K.

  1. The Atacama Cosmology Telescope: The Receiver and Instrumentation

    NASA Technical Reports Server (NTRS)

    Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Burger, B.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Essinger-Hileman, T.; Fisher, R. P.; hide

    2010-01-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  2. Fabrication of large dual-polarized multichroic TES bolometer arrays for CMB measurements with the SPT-3G camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posada, C. M.; Ade, P. A. R.; Ahmed, Z.

    2015-08-11

    This work presents the procedures used by Argonne National Laboratory to fabricate large arrays of multichroic transition-edge sensor (TES) bolometers for cosmic microwave background (CMB) measurements. These detectors will be assembled into the focal plane for the SPT-3G camera, the third generation CMB camera to be installed in the South Pole Telescope. The complete SPT-3G camera will have approximately 2690 pixels, for a total of 16,140 TES bolometric detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a Nb microstrip line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed tomore » the respective Ti/Au TES bolometers. There are six TES bolometer detectors per pixel, which allow for measurements of three band-passes (95 GHz, 150 GHz and 220 GHz) and two polarizations. The steps involved in the monolithic fabrication of these detector arrays are presented here in detail. Patterns are defined using a combination of stepper and contact lithography. The misalignment between layers is kept below 200 nm. The overall fabrication involves a total of 16 processes, including reactive and magnetron sputtering, reactive ion etching, inductively coupled plasma etching and chemical etching.« less

  3. A dual-polarized broadband planar antenna and channelizing filter bank for millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    O'Brient, Roger; Ade, Peter; Arnold, Kam; Edwards, Jennifer; Engargiola, Greg; Holzapfel, William L.; Lee, Adrian T.; Myers, Michael J.; Quealy, Erin; Rebeiz, Gabriel; Richards, Paul; Suzuki, Aritoki

    2013-02-01

    We describe the design, fabrication, and testing of a broadband log-periodic antenna coupled to multiple cryogenic bolometers. This detector architecture, optimized here for astrophysical observations, simultaneously receives two linear polarizations with two octaves of bandwidth at millimeter wavelengths. The broad bandwidth signal received by the antenna is divided into sub-bands with integrated in-line frequency-selective filters. We demonstrate two such filter banks: a diplexer with two sub-bands and a log-periodic channelizer with seven contiguous sub-bands. These detectors have receiver efficiencies of 20%-40% and percent level polarization isolation. Superconducting transition-edge sensor bolometers detect the power in each sub-band and polarization. We demonstrate circularly symmetric beam patterns, high polarization isolation, accurately positioned bands, and high optical efficiency. The pixel design is applicable to astronomical observations of intensity and polarization at millimeter through sub-millimeter wavelengths. As compared with an imaging array of pixels measuring only one band, simultaneous measurements of multiple bands in each pixel has the potential to result in a higher signal-to-noise measurement while also providing spectral information. This development facilitates compact systems with high mapping speeds for observations that require information in multiple frequency bands.

  4. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    The advance of new detector technologies combined with enhanced fabrication methods has resulted in an increase in development of large format arrays. The next generation of scientific instruments will utilize detectors containing hundreds to thousands of elements providing a more efficient means to conduct large area sky surveys. Some notable detectors include a 32x32 x-ray microcalorimeter for Constellation-X, an infrared bolometer called SAFIRE to fly on the airborne observatory SOFIA, and the sub-millimeter bolometer SCUBA-2 to be deployed at the JCMT which will use more than 10,000 elements for two colors, each color using four 32x40 arrays. Of these detectors, SCUBA-2 is farthest along in development and uses indium hybridization to multiplexers for readout of the large number of elements, a technology that will be required to enable the next generation of large format arrays. Our current efforts in working toward large format arrays have produced GISMO, the Goddard IRAM Superconducting 2-Millimeter observer. GISMO is a far infrared instrument to be field tested later this year at the IRAM 30 meter telescope in Spain. GISMO utilizes transition edge sensor (TES) technology in an 8x16 filled array format that allows for typical fan-out wiring and wire-bonding to four 1x32 NIST multiplexers. GISMO'S electrical wiring is routed along the tops of 30 micron walls which also serve as the mechanical framework for the array. This architecture works well for the 128 element array, but is approaching the limit for routing the necessary wires along the surface while maintaining a high fill factor. Larger format arrays will benefit greatly from making electrical connections through the wafer to the backside, where they can be hybridized to a read-out substrate tailored to handling the wiring scheme. The next generation array we are developing is a 32x40 element array on a pitch of 1135 microns that conforms to the NIST multiplexer, already developed for the SCUBA-2 instrument This architecture will utilize electrical connections that route from the TES to the support frame and through the wafer. The detector chip will then be hybridized to the NIST multiplexer via indium bump bonding. In our development scheme we are using substrates that allow for diagnostic testing of electrical continuity across the entire array and we are testing our process to minimize or eliminate any contact resistance at metal interfaces. Our goal is hybridizing a fully functional 32x40 array of TES bolometers to a NIST multiplexer. The following work presents our current progress toward enabling this technology.

  5. Large Format Arrays for Far Infrared and Millimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2004-01-01

    Some of the most compelling questions in modem astronomy are best addressed with submillimeter and millimeter observations. The question of the role of inflation in the early evolution of the universe is best addressed with large sensitive arrays of millimeter polarimeters. The study of the first generations of galaxies requires sensitive submillimeter imaging, which can help us to understand the history of energy release and nucleosynthesis in the universe. Our ability to address these questions is dramatically increasing, driven by dramatic steps in the sensitivity and size of available detector arrays. While the MIPS instrument on the SIRTF mission will revolutionize far infrared astronomy with its 1024 element array of photoconductors, thermal detectors remain the dominant technology for submillimeter and millimeter imaging and polarimetry. The last decade has seen the deployment of increasingly large arrays of bolometers, ranging from the 48 element arrays deployed on the KAO in the late 198Os, to the SHARC and SCUBA arrays in the 1990s. The past years have seen the deployment of a new generation of larger detector arrays in SHARC II (384 channels) and Bolocam (144 channels). These detectors are in operation and are beginning to make significant impacts on the field. Arrays of sensitive submillimeter bolometers on the SPIRE instrument on Herschel will allow the first large areas surveys of the sky, providing important insight into the evolution of galaxies. The next generation of detectors, led by SCUBA II, will increase the focal scale of these instruments by an order of magnitude. Two major missions are being planned by NASA for which further development of long wavelength detectors is essential, The SAFlR mission, a 10-m class telescope with large arrays of background limited detectors, will extend our reach into the epoch of initial galaxy formation. A major goal of modem cosmology is to test the inflationary paradigm in the early evolution of the universe. To this end, a mission is planned to detect the imprint of inflation on the CMB by precision measurement of its polarization. This work requires very large arrays of sensitive detectors which can provide unprecedented control of a wide range of systematic errors, given the small amplitude of the signal of interest. We will describe the current state of large format detector arrays, the performance requirements set by the new missions, and the different approaches being developed in the community to meet these requirements. We are confident that within a decade, these developments will lead to dramatic advances in our understanding of the evolution of the universe.

  6. Electromagnetic Considerations for Planar Bolometer Arrays in the Single Mode Limit

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.; Chuss, David T.; Moseley, Samuel

    2006-01-01

    Filled arrays of planar bolometers are finding astronomical applications at wavelengths as long as several millimeters. In an effort to keep focal planes to a reasonable size while maintaining large numbers of detectors, a common strategy is to push these arrays to operate close to or at the single mode limit. Doing so introduces several new challenges that are not experienced in the multi-mode case of far-infrared detectors having similar pixel sizes. First, diffractive effects of the pixels themselves are no longer insignificant and will ultimately contribute to the resolution limit of the optical system in which they reside. We use the method of Withlngton et al. (2003) to model the polarized diffraction in this limit. Second, it is necessary to re-examine the coupling between the radiation and the absorbing element that is thermally connected to the bolometers. The small f-numbers that are often employed to make use of large focal planes makes backshort construction problematic. We introduce a new strategy to increase detector efficiency that uses an antireflective layer on the front side of the detector array. In addition, typical methods for stray light control that rely on multiple reflections in a lossy medium fail due to physical size constraints. For this application, we find that resonant absorbers are a more effective strategy that can be implemented in the space available.

  7. Bolometric Array Detectors for Space-Borne Astronomy

    NASA Technical Reports Server (NTRS)

    Lange, Andrew E.

    2000-01-01

    Funding from the NASA Innovative Research Grant was used to develop bolometric detectors. As described in the proposal, silicon nitride micromesh ('spider-web') absorbers had been demonstrated at U.C. Berkeley but not developed to be flight-worthy devices. We proceeded to first fabricate bolometers with Neutron Transmutation Doped (NTD) Ge thermistors that demonstrated high optical coupling (Church et al. 1996) and were developed for a ground-based millimeter-wave receiver (Mauskopf et al. 1997). The next generation of devices used In bump-bonded thermistors to achieve devices with performance product NEP*sqrt(tau) = 3e - 18 j at 300 mK, demonstrating a full order of magnitude improvement over pervious devices. These devices achieved an NEP = 1e-18 W/rtHz (Murray et al. 1996) as promised in the proposal. Sensitivities as good as 1e - 19 W/rtHz appear achievable with the silicon nitride architecture (Bock et al. 1997). Finally, arrays of micromesh bolometers were shown to be feasible in the last year of the program by etching a large number of devices on a single silicon wafer (75 mm). Full arrays were subsequently demonstrated for selection on the ESA/NASA Far-Infrared Space Telescope (FIRST) in competition with detectors provided by CEA in France and GSFC in the US Micromesh bolometer arrays are now baselined for both the ESA/NASA Planck and FIRST missions.

  8. Wide-field Imaging Survey of Dust Continuum Emissions at lambda = 1.1 mm toward the Chamaeleon and Lupus Regions with AzTEC on ASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momose, Munetake; Hiramatsu, Masaaki; Tsukagoshi, Takashi

    2009-08-05

    We carried out an imaging survey of dust continuum emissions toward the Chamaeleon and Lupus regions. Observations were made with the 144-element bolometer array camera AzTEC mounted on the 10-meter sub-millimeter telescope ASTE during 2007-2008. The preliminary results of disk search and the cloud structure of Lupus III are presented.

  9. Hierarchical sinuous-antenna phased array for millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin

    2018-03-01

    We present the design, fabrication, and measured performance of a hierarchical sinuous-antenna phased array coupled to superconducting transition-edge-sensor (TES) bolometers for millimeter wavelengths. The architecture allows for dual-polarization wideband sensitivity with a beam width that is approximately frequency-independent. We report on measurements of a prototype device, which uses three levels of triangular phased arrays to synthesize beams that are approximately constant in width across three frequency bands covering a 3:1 bandwidth. The array element is a lens-coupled sinuous antenna. The device consists of an array of hemispherical lenses coupled to a lithographed wafer, which integrates TESs, planar sinuous antennas, and microwave circuitry including band-defining filters. The approximately frequency-independent beam widths improve coupling to telescope optics and keep the sensitivity of an experiment close to optimal across a broad frequency range. The design can be straightforwardly modified for use with non-TES lithographed cryogenic detectors such as kinetic inductance detectors. Additionally, we report on the design and measurements of a broadband 180° hybrid that can simplify the design of future multichroic focal planes including but not limited to hierarchical phased arrays.

  10. Millimeter and submillimeter observations from the Atacama plateau and high altitude balloons

    NASA Astrophysics Data System (ADS)

    Devlin, Mark

    2002-05-01

    A new generation of ground-based and sub-orbital platforms will be operational in the next few years. These telescopes will operate from high sites in Chile and Antarctica, and airborne platforms where the atmosphere is transparent enough to allow sensitive measurements in the millimeter and submillimeter bands. The telescopes will employ state-of-the-art instrumentation including large format bolometer arrays and spectrometers. I will discuss the results of our observations in the Atacama region of Chile (MAT/TOCO), our future observations on the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) now under construction, and our proposed Atacama Cosmology Telescope (ACT). .

  11. Sub-millimeter science with the Heinrich-Hertz-Telescope

    NASA Astrophysics Data System (ADS)

    Dumke, Michael

    The Heinrich-Hertz-Telescope on Mt. Graham, Arizona, is a state-of-the-art single-dish radio telescope for observations in the sub-millimeter wavelength range. It is operated by the Sub-Millimeter Telescope Observatory (SMTO), which is a collaboration between the University of Arizona, Tucson, and the Max-Planck-Institut für Radioastronomie, Bonn. In this talk I give an overview over the telescope and its instrumentation, and show some examples of forefront research performed by astronomers from both the U.S. and Europe using this instrument. The telescope is located on Mt. Graham, Arizona, at an altitude of 3178 m, which ensures sub-mm weather conditions during a significant amount of available observing time. It has a primary reflector of 10 m diameter, mounted on a carbon fiber backup structure, and is equipped with a corotating enclosure. The surface accuracy of the primary reflector is 12 microns rms, what makes the HHT the most accurate radio telescope ever built. For spectral line observations, SIS receivers covering the frequency range from 200 to 500 GHz are available. Furthermore, a Hot-Electron-Bolometer, developed at the CfA, can be used for spectral line observations above 800 GHz. The continuum receivers are a 4-color bolometer, observing at 1300, 870, 450, and 350 microns, and a 19-channel bolometer array, developed at the MPIfR, which is sensitive around 850 microns. In the last few years, the HHT has been used by several groups to perform astronomical research. The most notable result was the measurement of the CO(9--8) line in Orion at 1.037 THz with the Hot-Electron Bolometer -- the first radioastronomical observation above 1 THz from a ground-based telescope. Several galactic molecular line sources have been mapped in the CO(7--6) line at 806 GHz, and in two fine-structure lines of atomic carbon. A continuum map of the galactic center at 850 microns could be produced using the new 19-channel bolometer array. Even external galaxies, where molecular line emission can be observed at much smaller brightness temperatures, could be mapped in the higher CO transitions. While CO(7--6) studies have been restricted to starburst galaxies like M 82 in the past, the CO(4--3) and especially the CO(3--2) line could be mapped also in fairly normal galaxies, showing that the warmer and denser gas is distributed throughout the galactic disks. Recently several nearby galaxies of different types could be mapped also in the continuum emission at 850 microns, allowing the determination of dust properties in various environments. Some interesting results following from observations with the Heinrich-Hertz-Telescope will be shown in this talk, with some emphasis on extragalactic astronomy.

  12. Superconducting bolometers for millimeter and sub-millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Jethava, N.; Kreysa, E.; Siringo, G.; Esch, W.; Gemünd, H.-P.; Menten, K. M.; May, T.; Anders, S.; Fritzsch, L.; Boucher, R.; Zakosarenko, V.; Meyer, H.-G.

    2008-07-01

    We present the experimental results and a bolometer model of the voltage-biased superconducting bolometer on the low stress silicon nitride (Si3N4) membrane, developed in collaboration between the Max-Planck-Institut fur Radioastronomie (MPIfR), Bonn and the Institute for Photonic Technology (IPHT), Jena, Germany. The superconducting thermistor, deposited on the low stress silicon nitride membrane, is a bilayer of gold-palladium and molybdenum and is designed for a transition temperature of 450 mK. Bolometers for the 1.2 mm atmospheric window were designed, built and tested. The thermal conductance of the bolometer is tuned by structuring the silicon nitride membrane into spider-like geometries. The incident radiation is absorbed by crossed dipoles made from gold-palladium alloy with a surface resistance of 10 Ω/. Using the COSMOS finite element analysis package, the thermal conductance is obtained for the bolometers of different geometries. FEA simulations showed that the deposition of a gold ring around the absorbing area could increase the sensitivity of the bolometer. Therefore, a gold ring is deposited around the center absorbing patch of the silicon nitride membrane. For the bolometer with a gold ring, the measured NEP is 1.7 × 10-16W/√ Hz and the time constant is in the range between 1.4 and 2 ms.

  13. Transition-Edge Hot-Electron Microbolometers for Millimeter and Submillimeter Astrophysics

    NASA Technical Reports Server (NTRS)

    Hsieh, Wen-Ting; Stevenson, Thomas; U-yen, Kongpop; Wollack, Edward; Barrentine, Emily

    2014-01-01

    The millimeter and the submillimeter wavelengths of the electromagnetic spectrum hold a wealth of information about the evolution of the universe. In particular, cosmic microwave background (CMB) radiation and its polarization carry the oldest information in the universe, and provide the best test of the inflationary paradigm available to astronomy today. Detecting gravity waves through their imprint on the CMB polarization would have extraordinary repercussions for cosmology and physics. A transition-edge hot-electron micro - bolometer (THM) consists of a superconducting bilayer transition-edge sensor (TES) with a thin-film absorber. Unlike traditional monolithic bolometers that make use of micromachined structures, the THM em ploys the decoupling between electrons and phonons at millikelvin temperatures to provide thermal isolation. The devices are fabricated photolithographically and are easily integrated with antennas via microstrip transmission lines, and with SQUID (superconducting quantum interference device) readouts. The small volume of the absorber and TES produces a short thermal time constant that facilitates rapid sky scanning. The THM consists of a thin-film metal absorber overlapping a superconducting TES. The absorber forms the termination of a superconducting microstripline that carries RF power from an antenna. The purpose of forming a separate absorber and TES is to allow flexibility in the optimization of the two components. In particular, the absorbing film's impedance can be chosen to match the antenna, while the TES impedance can be chosen to match to the readout SQUID amplifier. This scheme combines the advantages of the TES with the advantages of planar millimeter-wave transmission line circuits. Antenna-coupling to the detectors via planar transmission lines allows the detector dimensions to be much smaller than a wavelength, so the technique can be extended across the entire microwave, millimeter, and submillimeter wavelength ranges. The circuits are fabricated using standard microlithographic techniques and are compatible with uniform, large array formats. Unlike traditional monolithic bolometers that make use of micromachined structures, the THM employs the decoupling between electrons and phonons at millikelvin temperatures to provide thermal isolation. There is no fragile membrane in the structure for thermal isolation, which improves the fabrication yield.

  14. Scalable Background-Limited Polarization-Sensitive Detectors for mm-wave Applications

    NASA Technical Reports Server (NTRS)

    Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Chuss, David T.; Colazo, Felipe A.; Crowe, Erik; Denis, Kevin L.; Essinger-Hileman, Tom; Marriage, Tobias A.; hide

    2014-01-01

    We report on the status and development of polarization-sensitive detectors for millimeter-wave applications. The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments that require large arrays of efficient background-limited cryogenic detectors.

  15. Ultralow-Background Large-Format Bolometer Arrays

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Oegerle, William (Technical Monitor)

    2002-01-01

    In the coming decade, work will commence in earnest on large cryogenic far-infrared telescopes and interferometers. All such observatories - for example, SAFIR, SPIRIT, and SPECS - require large format, two dimensional arrays of close-packed detectors capable of reaching the fundamental limits imposed by the very low photon backgrounds present in deep space. In the near term, bolometer array architectures which permit 1000 pixels - perhaps sufficient for the next generation of space-based instruments - can be arrayed efficiently. Demonstrating the necessary performance, with Noise Equivalent Powers (NEPs) of order 10-20 W/square root of Hz, will be a hurdle in the coming years. Superconducting bolometer arrays are a promising technology for providing both the performance and the array size necessary. We discuss the requirements for future detector arrays in the far-infrared and submillimeter, describe the parameters of superconducting bolometer arrays able to meet these requirements, and detail the present and near future technology of superconducting bolometer arrays. Of particular note is the coming development of large format planar arrays with absorber-coupled and antenna-coupled bolometers.

  16. Silicon-based antenna-coupled polarization-sensitive millimeter-wave bolometer arrays for cosmic microwave background instruments

    NASA Astrophysics Data System (ADS)

    Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Brown, Ari; Chang, Meng-Ping; Chuss, David T.; Colazo, Felipe A.; Costen, Nick; Denis, Kevin L.; Essinger-Hileman, Tom; Hu, Ron; Marriage, Tobias A.; Moseley, Samuel H.; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Xu, Zhilei

    2016-07-01

    We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define the backshort for the waveguide probes. This micro-machined structure is also used to mitigate the coupling of out-of-band radiation to the microwave circuit. At 40 GHz, the detectors have a measured efficiency of ˜90%. In this paper, we describe the development of the 90 GHz detector arrays that will be demonstrated using the Cosmology Large Angular Scale Surveyor (CLASS) ground-based telescope.

  17. A progress report on bolometers operating at 0.1 K using adiabatic demagnetization refrigeration

    NASA Technical Reports Server (NTRS)

    Roellig, T.; Lesyna, L.; Werner, M.; Kittel, P.

    1986-01-01

    Bolometers are still the detectors of choice for low background infrared observations at wavelengths longer than 200 microns. In the low background limit, bolometers become more sensitive as their operating temperature decreases, due to fundamental thermodynamic laws. The adiabatic demagnetization technique was evaluated by building a bolometer detection system operating at a wavelength of 1 millimeter for use at a ground based telescope. The system was fit checked at the telescope and is expected to take its first data in November, 1985.

  18. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  19. A Hot-electron Direct Detector for Radioastronomy

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.

    2000-01-01

    A new approach is proposed to improve the sensitivity of direct-detection bolometers. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or superconductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as 7(exp 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10 - 100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant approx. 10(exp -3) to 10(exp -5) S at T approx. = 0.1 - 0.3 K will exhibit photon-noise limited performance in millimeter and subn-millimeter range. The bolometer will have a figure-of-merit NEk square root of tau approx. = 10(exp -22) 10(exp -21) W/Hz at 100 mK which is 10(exp 3) times smaller than that of a state-of-the-art bolometer. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity This research was performed by the Center for Space Microelectronics Technology, JPL, California Institute of Technology, under the contract for NASA.

  20. Silicon nitride Micromesh Bolometer Array for Submillimeter Astrophysics.

    PubMed

    Turner, A D; Bock, J J; Beeman, J W; Glenn, J; Hargrave, P C; Hristov, V V; Nguyen, H T; Rahman, F; Sethuraman, S; Woodcraft, A L

    2001-10-01

    We present the design and performance of a feedhorn-coupled bolometer array intended for a sensitive 350-mum photometer camera. Silicon nitride micromesh absorbers minimize the suspended mass and heat capacity of the bolometers. The temperature transducers, neutron-transmutation-doped Ge thermistors, are attached to the absorber with In bump bonds. Vapor-deposited electrical leads address the thermistors and determine the thermal conductance of the bolometers. The bolometer array demonstrates a dark noise-equivalent power of 2.9 x 10(-17) W/ radicalHz and a mean heat capacity of 1.3 pJ/K at 390 mK. We measure the optical efficiency of the bolometer and feedhorn to be 0.45-0.65 by comparing the response to blackbody calibration sources. The bolometer array demonstrates theoretical noise performance arising from the photon and the phonon and Johnson noise, with photon noise dominant under the design background conditions. We measure the ratio of total noise to photon noise to be 1.21 under an absorbed optical power of 2.4 pW. Excess noise is negligible for audio frequencies as low as 30 mHz. We summarize the trade-offs between bare and feedhorn-coupled detectors and discuss the estimated performance limits of micromesh bolometers. The bolometer array demonstrates the sensitivity required for photon noise-limited performance from a spaceborne, passively cooled telescope.

  1. Stray light suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    NASA Astrophysics Data System (ADS)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-09-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8x16 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimétrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  2. Stray Light Suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    NASA Technical Reports Server (NTRS)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-01-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8xl6 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimetrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  3. Antenna-coupled TES bolometer arrays for CMB polarimetry

    NASA Astrophysics Data System (ADS)

    Kuo, C. L.; Bock, J. J.; Bonetti, J. A.; Brevik, J.; Chattopadhyay, G.; Day, P. K.; Golwala, S.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.; Nguyen, H.; Ogburn, R. W.; Orlando, A.; Transgrud, A.; Turner, A.; Wang, G.; Zmuidzinas, J.

    2008-07-01

    We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize planar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL.

  4. Two-dimensional array of cold-electron bolometers for high-sensitivity polarization measurements

    NASA Astrophysics Data System (ADS)

    Kuzmin, L. S.

    2012-01-01

    A new concept of a two-dimensional array of cold-electron bolometers with distributed dipole antennas in the focal plane for high-sensitivity polarization measurements is proposed. The concept gives a unique combination of high polarization resolution due to a large uniforms array of cold-electron bolometers and optimal matching with junction field effect transistor (JFET) amplifiers because of flexibility in direct-current connections. The noise characteristics are improved due to arriving-signal power distribution among numerous cold-electron bolometers and an increase in their response. This should lead to a significant increase in the sensitivity and dynamic range compared with competing alternative bolometer technologies. The reliability of the twodimensional array significantly increases due to a series-parallel connection of a large number of cold-electron bolometers. High polarization resolution should be ensured due to uniform covering of a substrate by a two-dimensional array over a large area and the absence of the beam compression to small lumped elements. The fundamental sensitivity limit of the cold-electron bolometer array is smaller than photon noise which is considered to be the ultimate level restricted by the background radiation. Estimates of noise of bolometers with the JFET reading system show the possibility of realizing the ultimate sensitivity below the photon-noise level 5 ・10-17 W/Hz1/2 at a frequency of 350 GHz for an optical load with a power of 5 pW. These parameters correspond to the requirements to the receiving system of a BOOMERanG balloon telescope.

  5. Design and construction of high-sensitivity, infrared bolometers for operation at 300 mK

    NASA Technical Reports Server (NTRS)

    Alsop, D. C.; Inman, C.; Lange, A. E.; Wibanks, T.

    1992-01-01

    The design and construction of 300-mK composite bolometers developed for millimeter-wave astronomical observations are described. Graphite fibers are used as the electrical leads for the thermistor to reduce the thermal conductance and heat capacity associated with the leads. A mechanical suspension made of Nylon fibers provides the required thermal conductance. Electrical noise equivalent powers below 1 x 10 exp -16 W/sq rt Hz have been achieved for detectors with thermal time constants of 11 ms. The detectors were installed in a millimeter-wave photometer and used to perform observations of the cosmic microwave background from a balloonborne platform. The flight performance was consistent with the measured laboratory properties.

  6. Enhancing the spectral response of filled bolometer arrays for submillimeter astronomy.

    PubMed

    Revéret, Vincent; Rodriguez, Louis; Agnèse, Patrick

    2010-12-10

    Future missions for astrophysical studies in the submillimeter region will need detectors with very high sensitivity and large fields of view. Bolometer arrays can fulfill these requirements over a very broad band. We describe a technique that enables bolometer arrays that use quarter-wave cavities to have a high spectral response over most of the submillimeter band. This technique is based on the addition on the front of the array of an antireflecting dielectric layer. The optimum parameters (layer thickness and distance to the array) are determined by a 2D analytic code. This general principle is applied to the case of Herschel PACS bolometers (optimized for the 60 to 210 μm band). As an example, we demonstrate experimentally that a PACS array covered by a 138 μm thick silicon layer can improve the spectral response by a factor of 1.7 in the 450 μm band.

  7. A Hot-Electron Far-Infrared Direct Detector

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.

    2000-01-01

    A new approach is proposed to improve the sensitivity of direct-detection bolometers at millimeter, submillimeter and far-infrared wavelengths. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or super-conductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature (Nb, Pb etc.) then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as T(sup 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10-100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant about 10(exp -3) to 10(exp -5) s at T approximately equals 0.1-0.3 K will exhibit photon-noise limited performance in millimeter and submillimeter range. The choice of the bolometer material is a tradeoff between a low electron heat capacity and fabrication. A state-of-the-art bolometer currently offers NEP = 10(exp -17) W(Square root of (Hz)) at 100 mK along with a approximately equals 2 msec time constant. The bolometer we propose will have a figure-of-merit, NEP(square root (r)), which is 10(exp 3) times smaller. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity. This device can significantly increase a science return and reduce the cost for future observational missions. This research was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by NASA, Office of Space Science.

  8. Design and fabrication of two-dimensional semiconducting bolometer arrays for HAWC and SHARC-II

    NASA Astrophysics Data System (ADS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. D.; Harper, D. A.; Jhabvala, Murzy D.; Moseley, S. H.; Rennick, Timothy; Shirron, Peter J.; Smith, W. W.; Staguhn, Johannes G.

    2003-02-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 × 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 × 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.

  9. ORAC-DR: One Pipeline for Multiple Telescopes

    NASA Astrophysics Data System (ADS)

    Cavanagh, B.; Hirst, P.; Jenness, T.; Economou, F.; Currie, M. J.; Todd, S.; Ryder, S. D.

    ORAC-DR, a flexible and extensible data reduction pipeline, has been successfully used for real-time data reduction from UFTI and IRCAM (infrared cameras), CGS4 (near-infrared spectrometer), Michelle (mid-infrared imager and echelle spectrometer), at UKIRT; and SCUBA (sub-millimeter bolometer array) at JCMT. We have now added the infrared imaging spectrometers IRIS2 at the Anglo-Australian Telescope and UIST at UKIRT to the list of officially supported instruments. We also present initial integral field unit support for UIST, along with unofficial support for the imager and multi-object spectrograph GMOS at Gemini. This paper briefly describes features of the pipeline along with details of adopting ORAC-DR for other instruments on telescopes around the world.

  10. Comparison of the Effects of Magnetic Field on Low Noise MoAu and TiAu TES Bolometers

    NASA Astrophysics Data System (ADS)

    Hijmering, R. A.; Khosropanah, P.; Ridder, M.; Gao, J. R.; Hoevers, H.; Jackson, B.; Goldie, D.; Withington, S.; Kozorezov, A. G.

    2014-08-01

    Recently we have reported on the effects of magnetic field on our low noise (NEP = 4 W/Hz) [1] TiAu TES bolometers that are being developed at SRON for the SAFARI FIR Imaging Spectrometer on SPICA telescope that will be operated in three different wavelength bands: S-band for 30-60 , M-band for 60-110 and L-band for 110-210 . The arrays for the S- and M- band will be based on TiAu TES bolometer arrays, developed by SRON. The L-band array will be based on a MoAu TES bolometer developed by University of Cambridge. We have investigated the effect of the magnetic field on the current, responsivity, speed and critical current for both the TiAu and MoAu TES bolometers in our high accuracy magnetic field set-up. A clear difference in weak link behavior is observed between the two types of TES bolometers in both strength of the effect and period of the oscillations.

  11. Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindeman, M. A., E-mail: mark.a.lindeman@jpl.nasa.gov; Bonetti, J. A.; Bumble, B.

    We are developing of arrays of membrane isolated resonator-bolometers, each with a kinetic inductance device (KID) to measure the temperature of the membrane. The KIDs are fabricated out of the high temperature superconductor YBCO to allow operation at relatively high temperatures. The bolometers are designed to offer higher sensitivity than sensors operating at 300 K, but they require less expensive and lighter weight cooling than even more sensitive conventional superconducting detectors operating at lower temperatures. The bolometer arrays are applicable as focal planes in infrared imaging spectrometers, such as for planetary science missions or earth observing satellites. We describe the devicesmore » and present measurements of their sensitivity.« less

  12. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.; hide

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC 11) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(Registered Trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the CalTech Submillimeter Observatory (CSO) are presented.

  13. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC 'Pop-up' Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.

  14. A Planar Two-Dimensional Superconducting Bolometer Array for the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Staguhn, Johannes G.; Chervenak, James A.; Chen, Tina C.; Moseley, S. Harvey; Wollack, Edward J.; Devlin, Mark J.; Dicker, Simon R.; Supanich, Mark

    2004-01-01

    In order to provide high sensitivity rapid imaging at 3.3mm (90GHz) for the Green Bank Telescope - the world's largest steerable aperture - a camera is being built by the University of Pennsylvania, NASA/GSFC, and NRAO. The heart of this camera is an 8x8 close-packed, Nyquist-sampled detector array. We have designed and are fabricating a functional superconducting bolometer array system using a monolithic planar architecture. Read out by SQUID multiplexers, the superconducting transition edge sensors will provide fast, linear, sensitive response for high performance imaging. This will provide the first ever superconducting bolometer array on a facility instrument.

  15. Hierarchical Phased Array Antenna Focal Plane for Cosmic Microwave Background Polarization and Sub-mm Observations

    NASA Astrophysics Data System (ADS)

    Lee, Adrian

    We propose to develop planar-antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization, log-periodic antenna with a 5:1 bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. We propose to develop an hierarchical phased array of our basic pixel type that gives optimal mapping speed (sensitivity) over a much broader range of frequencies. The advantage of this combination of an intrinsically broadband pixel with hierarchical phase arraying include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands compared to focal-plane designs using conventional single-color pixels. These advantages have the potential to greatly reduce cost and/or increase performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization, a wide frequency range of about 30 to 400 GHz is required to subtract galactic foregrounds. As an example, the multichroic architecture we propose could reduce the focal plane mass of the EPIC-IM CMB polarization mission study concept by a factor of 4, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR groundbased CMB polarization experiment which is now operating in Chile. That experiment uses a single-band planar antenna that gives excellent beam properties and optical efficiency. POLARBEAR recently succeeded in detecting gravitational lensing B-modes in the CMB polarization. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Pixels of this type are slated to be deployed on the ground in POLARBEAR and SPT-3G and proposed to be used on a balloon by EBEX-IDS and in space on the LiteBIRD CMB polarization mission. The deliverables for the proposed work include: *Fabrication and test of a sinuous-antenna-based pixel with a 5:1 total bandwidth. Separate pixels will be built that are sensitive down to 30 GHz and others that are sensitive up to 400 GHz to cover the full range required for CMB measurements and to push into the sub-mm wavelength range. The efficiency of these pixels will be maximized by introducing a low loss silicon nitride insulator layer in all of the transmission lines. *Hierarchical phased arrays that use up to five levels of arraying will be fabricated and tested. The hierarchical phased array approaches the optimal mapping speed (sensitivity) at all frequencies by adjusting the beam size of the array with frequency. *We will develop 3 and 5 layer anti-reflection coatings using a new ``thermal spray" technique that we have developed which heats ceramics and plastics to melting temperature an then sprays them on optical surfaces with excellent uniformity and thickness control. The dielectric constant of each layer can be adjusted by choosing mixing ratios of high and low dielectric constant materials. Prioritization committees including the Astro2010 decadal, Quarks to Cosmos, and Weiss Committee have strongly advocated for prioritizing Cosmic Microwave Background polarization measurements and other science goals in the mm and sub-mm wavelength regime. The technology we propose to develop has the potential to greatly increase the cost effectiveness of potential missions in this frequency range. We have assembled an experienced team that includes expertise in antenna design, RF superconducting circuits, microfabrication, and CMB observations. Our team includes detector and/or CMB observation experts Bill Holzapfel, Adrian Lee, Akito Kusaka, and Aritoki Suzuki.

  16. Infrared technology for satellite power conversion. [antenna arrays and bolometers

    NASA Technical Reports Server (NTRS)

    Campbell, D. P.; Gouker, M. A.; Gallagher, J. J.

    1984-01-01

    Successful fabrication of bismuth bolometers led to the observation of antenna action rom array elements. Fabrication of the best antennas arrays was made more facile with finding that increased argon flow during the dc sputtering produced more uniform bismuth films and bonding to antennas must be done with the substrate temperaure below 100 C. Higher temperatures damaged the bolometers. During the testing of the antennas, it was found that the use of a quasi-optical system provided a uniform radiation field. Groups of antennas were bonded in series and in parallel with the parallel configuration showing the greater response.

  17. Array of Bolometers for Submillimeter- Wavelength Operation

    NASA Technical Reports Server (NTRS)

    Bock, James; Turner, Anthony

    2007-01-01

    A feed-horn-coupled monolithic array of micromesh bolometers is undergoing development for use in a photometric camera. The array is designed for conducting astrophysical observations in a wavelength band centered at 350 m. The bolometers are improved versions of previously developed bolometers comprising metalized Si3N4 micromesh radiation absorbers coupled with neutron- transmutation-doped Ge thermistors. Incident radiation heats the absorbers above a base temperature, changing the electrical resistance of each thermistor. In the present array of improved bolometers (see figure), the thermistors are attached to the micromesh absorbers by indium bump bonds and are addressed by use of lithographed, vapor-deposited electrical leads. This architecture reduces the heat capacity and minimizes the thermal conductivity to 1/20 and 1/300, respectively, of earlier versions of these detectors, with consequent improvement in sensitivity and speed of response. The micromesh bolometers, intended to operate under an optical background set by thermal emission from an ambient-temperature space-borne telescope, are designed such that the random arrival of photons ("photon noise") dominates the noise sources arising from the detector and readout electronics. The micromesh is designed to be a highly thermally and optically efficient absorber with a limiting response time of about 100 s. The absorber and thermistor heat capacity are minimized in order to give rapid speed of response. Due to the minimization of the absorber volume, the dominant source of heat capacity arises from the thermistor.

  18. BIG MAC: A bolometer array for mid-infrared astronomy, Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Telesco, C. M.; Decher, R.; Baugher, C.

    1985-01-01

    The infrared array referred to as Big Mac (for Marshall Array Camera), was designed for ground based astronomical observations in the wavelength range 5 to 35 microns. It contains 20 discrete gallium-doped germanium bolometer detectors at a temperature of 1.4K. Each bolometer is irradiated by a square field mirror constituting a single pixel of the array. The mirrors are arranged contiguously in four columns and five rows, thus defining the array configuration. Big Mac utilized cold reimaging optics and an up looking dewar. The total Big Mac system also contains a telescope interface tube for mounting the dewar and a computer for data acquisition and processing. Initial astronomical observations at a major infrared observatory indicate that Big Mac performance is excellent, having achieved the design specifications and making this instrument an outstanding tool for astrophysics.

  19. Multichroic Antenna-Coupled Bolometers for CMB Polarization and Sub-mm Observations

    NASA Astrophysics Data System (ADS)

    Lee, Adrian

    We propose to develop planar antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization log-periodic antenna with a 4:1-bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. The advantages of this approach, compared with those using conventional single-color pixels, include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands. These advantages have the potential to greatly reduce the cost and/or increase the performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization measurements, a wide frequency range of roughly 30 to 300 GHz is required to subtract galactic foregrounds. The multichroic architecture we propose enables a relatively low-cost 30-cm aperture space mission to have sufficient sensitivity to probe below the tensor-to-scalar ratio r = 0.01. For a larger aperture mission, such as the EPIC-IM concept, the proposed technology could reduce the focal-plane mass by a factor of 2-3, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR ground-based CMB polarization experiment now operating in Chile. That experiment uses a single-band planar antenna and produces excellent beam properties and optical efficiency. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Building on these accomplishments, the deliverables for the proposed work include: *Two pixel types that together cover the range from 30 to 300 GHz. The low-frequency pixel will have bands centered at 35, 50, and 80 GHz and the high frequency pixel will have bands centered at 120, 180, and 270 GHz. Both pixels will be built with filter banks that separate the incident radiation to three photometric (~ 30% fractional bandwidth) bands. *Improved efficiency at the high frequency range. Current pixels have high optical efficiency up to 150 GHz, but the efficiency drops with frequency. We will increase efficiency at the higher frequencies by improving our understanding of transmission-line, filter, and antenna losses. The antenna bandwidth will be extended at the high-frequency end by continuing the log-periodic antenna structure towards the center of the antenna. *A wide bandwidth anti-reflection coating for the dielectric lenses that can be mass produced at low or moderate cost. The multilayer coatings will be based on either molding the loaded epoxies that we have developed or by micromachining the surface of the silicon to obtain the required changes in index. This technology will be tested in the ground-based POLARBEAR experiment and is an excellent candidate for a balloon-borne experiment. We have assembled an experienced team that includes expertise in antenna design, RF superconducting circuits, microfabrication, and CMB observations. We will continue our collaboration with Gabriel Rebeiz at UCSD, an electromagnetics expert who did much of the foundational work on lens-coupled planar antennas. The rest of the team includes detector and CMB observation experts Bill Holzapfel, Adrian Lee, and Paul Richards.

  20. A Hot-electron Direct Detector for Radioastronomy

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; McGrath, William R.; LeDuc, Henry G.; Gershenson, Michael E.

    1999-01-01

    A hot-electron transition-edge superconducting bolometer with adjustable thermal relaxation speed is proposed. The bolometer contacts are made from a superconductor with high critical temperature which blocks the thermal diffusion of hot carriers into the contacts. Thus electron-phonon interaction is the only mechanism for heat removal. The speed of thermal relaxation for hot electrons in a nanometer-size superconducting bolometer with T(sub c) = 100-300 mK is controlled by the elastic electron mean free path l. The relaxation rate behaves as T(sup 4)l at subkelvin temperatures and can be reduced by a factor of 10-100 by decreasing 1. Then an antenna- or wave guide-coupled bolometer with a time constant approx. = 10(exp -3) to 10(exp -4) s will exhibit photon-noise limited performance at millimeter and submillimeter wavelengths. The bolometer will have a figure-of-merit NEPtau = 10(exp -22) - 10(exp -21) W/Hz at 100 mK which is 10(exp 3) to 10(exp 4) times better (ie: smaller) than that of a state-of-the-art bolometer. A tremendous increase in speed and sensitivity will have a significant impact for observational mapping applications.

  1. Bolometric detector systems for IR and mm-wave space astronomy

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Lange, A. E.; Mauskopf, P. D.; Hristov, V.; Bock, J. J.; DelCastillo, H. M.; Beeman, J.; Ade, P. A. R.; Griffin, M. J.

    1996-01-01

    Recent developments in bolometric detector systems for millimeter and submillimeter wave space astronomy are described. Current technologies meet all the requirements for the high frequency instrument onboard the cosmic background radiation anisotropy satellite/satellite for the measurement of background anisotropies (COBRAS/SAMBA) platform. It is considered that the technologies that are currently being developed will significantly reduce the effective time constant and/or the cooling requirements of bolometric detectors. These technologies lend themselves to the fabrication of the large format arrays required for the Far Infrared and Submillimeter Space Telescope (FIRST). The scientific goals and detector requirements of the COBRAS/SAMBA platform that will use infrared bolometers are reviewed and the baseline detector system is described, including the feed optics, the infrared filters, the cold amplifiers and the warm readout electronics.

  2. Infrared receivers for low background astronomy: Incoherent detectors and coherent devices from one micrometer to one millimeter

    NASA Technical Reports Server (NTRS)

    Boggess, N. W.; Greenberg, L. T.; Hauser, M. G.; Houck, J. R.; Low, F. J.; Mccreight, C. R.; Rank, D. M.; Richards, P. L.; Weiss, R.

    1979-01-01

    The status of incoherent detectors and coherent receivers over the infrared wavelength range from one micrometer to one millimeter is described. General principles of infrared receivers are included, and photon detectors, bolometers, coherent receivers, and important supporting technologies are discussed, with emphasis on their suitability for low background astronomical applications. Broad recommendations are presented and specific opportunities are identified for development of improved devices.

  3. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Moseley, S. Harvey; Rostem, Karwan; hide

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization of the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 145 mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device multiplexer readout. We describe the design, development, and performance of PIPER bolometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  4. The GISMO-2 Bolometer Camera

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; hide

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  5. ICE: A Scalable, Low-Cost FPGA-Based Telescope Signal Processing and Networking System

    NASA Astrophysics Data System (ADS)

    Bandura, K.; Bender, A. N.; Cliche, J. F.; de Haan, T.; Dobbs, M. A.; Gilbert, A. J.; Griffin, S.; Hsyu, G.; Ittah, D.; Parra, J. Mena; Montgomery, J.; Pinsonneault-Marotte, T.; Siegel, S.; Smecher, G.; Tang, Q. Y.; Vanderlinde, K.; Whitehorn, N.

    2016-03-01

    We present an overview of the ‘ICE’ hardware and software framework that implements large arrays of interconnected field-programmable gate array (FPGA)-based data acquisition, signal processing and networking nodes economically. The system was conceived for application to radio, millimeter and sub-millimeter telescope readout systems that have requirements beyond typical off-the-shelf processing systems, such as careful control of interference signals produced by the digital electronics, and clocking of all elements in the system from a single precise observatory-derived oscillator. A new generation of telescopes operating at these frequency bands and designed with a vastly increased emphasis on digital signal processing to support their detector multiplexing technology or high-bandwidth correlators — data rates exceeding a terabyte per second — are becoming common. The ICE system is built around a custom FPGA motherboard that makes use of an Xilinx Kintex-7 FPGA and ARM-based co-processor. The system is specialized for specific applications through software, firmware and custom mezzanine daughter boards that interface to the FPGA through the industry-standard FPGA mezzanine card (FMC) specifications. For high density applications, the motherboards are packaged in 16-slot crates with ICE backplanes that implement a low-cost passive full-mesh network between the motherboards in a crate, allow high bandwidth interconnection between crates and enable data offload to a computer cluster. A Python-based control software library automatically detects and operates the hardware in the array. Examples of specific telescope applications of the ICE framework are presented, namely the frequency-multiplexed bolometer readout systems used for the South Pole Telescope (SPT) and Simons Array and the digitizer, F-engine, and networking engine for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) radio interferometers.

  6. GISMO, a 2 mm Bolometer Camera Optimized for the Study of High Redshift Galaxies

    NASA Technical Reports Server (NTRS)

    Staguhn, J.

    2007-01-01

    The 2mm spectral range provides a unique terrestrial window enabling ground based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. We present a progress report for our bolometer camera GISMO (the Goddard-IRAM Superconducting 2-Millimeter Observer), which will obtain large and sensitive sky maps at this wavelength. The instrument will be used at the IRAM 30 m telescope and we expect to install it at the telescope in 2007. The camera uses an 8 x 16 planar array of multiplexed TES bolometers, which incorporates our recently designed Backshort Under Grid (BUG) architecture. GISMO will be very efficient at detecting sources serendipitously in large sky surveys. With the background limited performance of the detectors, the camera provides significantly greater imaging sensitivity and mapping speed at this wavelength than has previously been possible. The major scientific driver for the instrument is to provide the IRAM 30 m telescope with the capability to rapidly observe galactic and extragalactic dust emission, in particular from high-zeta ULI RGs and quasar s, even in the summer season. The instrument will fill in the SEDs of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Our source count models predict that GISMO will serendipitously detect one galaxy every four hours on the blank sky, and that one quarter of these galaxies will be at a redshift of zeta 6.5.

  7. Backshort-Under-Grid arrays for infrared astronomy

    NASA Astrophysics Data System (ADS)

    Allen, C. A.; Benford, D. J.; Chervenak, J. A.; Chuss, D. T.; Miller, T. M.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2006-04-01

    We are developing a kilopixel, filled bolometer array for space infrared astronomy. The array consists of three individual components, to be merged into a single, working unit; (1) a transition edge sensor bolometer array, operating in the milliKelvin regime, (2) a quarter-wave backshort grid, and (3) superconducting quantum interference device multiplexer readout. The detector array is designed as a filled, square grid of suspended, silicon bolometers with superconducting sensors. The backshort arrays are fabricated separately and will be positioned in the cavities created behind each detector during fabrication. The grids have a unique interlocking feature machined into the walls for positioning and mechanical stability. The spacing of the backshort beneath the detector grid can be set from ˜30 300 μm, by independently adjusting two process parameters during fabrication. The ultimate goal is to develop a large-format array architecture with background-limited sensitivity, suitable for a wide range of wavelengths and applications, to be directly bump bonded to a multiplexer circuit. We have produced prototype two-dimensional arrays having 8×8 detector elements. We present detector design, fabrication overview, and assembly technologies.

  8. Wideband response of a terahertz-millimeter imager based on a 384x288 pixel uncooled bolometric detector

    NASA Astrophysics Data System (ADS)

    Terroux, Marc; Marchese, Linda; Bolduc, Martin; Mercier, Luc; Chevalier, Claude; Gagnon, Lucie; Tremblay, Bruno; Généreux, Francis; Paultre, Jacques-Edmond; Provençal, Francis; Beaupré, Patrick; Desroches, Yan; Châteauneuf, François; Bergeron, Alain

    2017-11-01

    In the past, bolometer-based imagers have been used for earth observation. Uncooled-bolometer based imagers are especially well suited for this due to their low power consumption. NIRST (New Infra-Red Sensor Technology), an example of an imager based on uncooled bolometers, monitors high temperature events on the ground related to fires and volcanic events, and will measure their physical parameters and takes measurements of sea surface temperatures mainly off the coast of South America as well as other targeted opportunities. NIRST has one band in the mid-wave infrared centered at 3.8 um with a bandwidth of 0.8 um, and two bands in the thermal infrared, centered respectively at 10.85 and 11.85 um with a bandwidth of 0.9 um.

  9. Gold absorbing film for a composite bolometer

    NASA Technical Reports Server (NTRS)

    Dragovan, M.; Moseley, S. H.

    1984-01-01

    The principles governing the design of metal films are reviewed, with attention also given to the choice of metals. A description is then given of the characteristics of a bolometer with a gold absorbing film. It is demonstrated that gold is effective as an absorbing film for a millimeter bolometer operated at 1.5 K. At 1.5 K, gold is significantly better than bismuth since gold has a lower heat capacity for the absorbing film. At 0.3 K, gold and bismuth are both suitable. It is pointed out that at temperatures below 0.3 K, a superconducting absorbing film can have a heat capacity low enough not to dominate the heat capacity of the detector; for this reason, it may give better performance than a nonsuperconducting absorbing film.

  10. The detector calibration system for the CUORE cryogenic bolometer array

    DOE PAGES

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; ...

    2016-11-14

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO 2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires themore » placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. In conclusion, this paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.« less

  11. Feedhorn-Coupled Transition-Edge Superconducting Bolometer Arrays for Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.; hide

    2015-01-01

    NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver

  12. Fabricating interlocking support walls, with an adjustable backshort, in a TES bolometer array for far-infrared astronomy

    NASA Astrophysics Data System (ADS)

    Miller, Timothy M.; Abrahams, John H.; Allen, Christine A.

    2006-04-01

    We report a fabrication process for deep etching silicon to different depths with a single masking layer, using standard masking and exposure techniques. Using this technique, we have incorporated a deep notch in the support walls of a transition-edge-sensor (TES) bolometer array during the detector back-etch, while simultaneously creating a cavity behind the detector. The notches serve to receive the support beams of a separate component, the Backshort-Under-Grid (BUG), an array of adjustable height quarter-wave backshorts that fill the cavities behind each pixel in the detector array. The backshort spacing, set prior to securing to the detector array, can be controlled from 25 to 300 μm by adjusting only a few process steps. In addition to backshort spacing, the interlocking beams and notches provide positioning and structural support for the ˜1 mm pitch, 8×8 array. This process is being incorporated into developing a TES bolometer array with an adjustable backshort for use in far-infrared astronomy. The masking technique and machining process used to fabricate the interlocking walls will be discussed.

  13. Terahertz Real-Time Imaging Uncooled Arrays Based on Antenna-Coupled Bolometers or FET Developed at CEA-Leti

    NASA Astrophysics Data System (ADS)

    Simoens, François; Meilhan, Jérôme; Nicolas, Jean-Alain

    2015-10-01

    Sensitive and large-format terahertz focal plane arrays (FPAs) integrated in compact and hand-held cameras that deliver real-time terahertz (THz) imaging are required for many application fields, such as non-destructive testing (NDT), security, quality control of food, and agricultural products industry. Two technologies of uncooled THz arrays that are being studied at CEA-Leti, i.e., bolometer and complementary metal oxide semiconductor (CMOS) field effect transistors (FET), are able to meet these requirements. This paper reminds the followed technological approaches and focuses on the latest modeling and performance analysis. The capabilities of application of these arrays to NDT and security are then demonstrated with experimental tests. In particular, high technological maturity of the THz bolometer camera is illustrated with fast scanning of large field of view of opaque scenes achieved in a complete body scanner prototype.

  14. Standoff passive video imaging at 350 GHz with 251 superconducting detectors

    NASA Astrophysics Data System (ADS)

    Becker, Daniel; Gentry, Cale; Smirnov, Ilya; Ade, Peter; Beall, James; Cho, Hsiao-Mei; Dicker, Simon; Duncan, William; Halpern, Mark; Hilton, Gene; Irwin, Kent; Li, Dale; Paulter, Nicholas; Reintsema, Carl; Schwall, Robert; Tucker, Carole

    2014-06-01

    Millimeter wavelength radiation holds promise for detection of security threats at a distance, including suicide bomb belts and maritime threats in poor weather. The high sensitivity of superconducting Transition Edge Sensor (TES) detectors makes them ideal for passive imaging of thermal signals at these wavelengths. We have built a 350 GHz video-rate imaging system using a large-format array of feedhorn-coupled TES bolometers. The system operates at a standoff distance of 16m to 28m with a spatial resolution of 1:4 cm (at 17m). It currently contains one 251-detector subarray, and will be expanded to contain four subarrays for a total of 1004 detectors. The system has been used to take video images which reveal the presence of weapons concealed beneath a shirt in an indoor setting. We present a summary of this work.

  15. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    This conference poster reviews the Indium hybridization of the large format TES bolometer arrays. We are developing a key technology to enable the next generation of detectors. That is the Hybridization of Large Format Arrays using Indium bonded detector arrays containing 32x40 elements which conforms to the NIST multiplexer readout architecture of 1135 micron pitch. We have fabricated and hybridized mechanical models with the detector chips bonded after being fully back-etched. The mechanical support consists of 30 micron walls between elements Demonstrated electrical continuity for each element. The goal is to hybridize fully functional array of TES detectors to NIST readout.

  16. Transition-edge superconducting antenna-coupled bolometer

    NASA Astrophysics Data System (ADS)

    Hunt, Cynthia L.

    2004-10-01

    The temperature anisotropy of the cosmic microwave background (CMB) is now being probed with unprecedented accuracy and sky coverage by the Wilkinson Microwave Anisotropy Probe (WMAP), and will be definitively mapped by the Planck Surveyor after its launch in 2007. However, the polarization of the CMB will not be mapped with sufficient accuracy. In particular, the measurement of the curl-polarization, which may be used to probe the energy scale of the inflationary epoch, requires a large advance in the format of millimeter-wave bolometer arrays. SAMBA (Superconducting Antenna-coupled Multi-frequency Bolometric Array) is being developed to address these needs for the next generation of submillimeter astronomical detectors. SAMBA consists of a focal plane populated with microstrip-coupled slot antennas, whose signals are coherently added and sent to transition-edge superconducting (TES) bolometers via microstrip lines. SAMBA eliminates the need for the feedhorns and optical filters currently used on CMB observational instruments, such as Planck and Boomerang. The SAMBA architecture allows for a high density of pixels in the focal plane with minimal sub-Kelvin mass. As a precursor to a full monolithic high-density antenna array, we are developing a single-band antenna-coupled Bolometric detector. In this thesis, I report test results for a single-pixel antenna-coupled Bolometric detector. Our device consists of a dual slot microstrip-coupled slot antenna coupled to an Al/Ti/Au voltage-biased TES. The coupling architecture involves propagating the signal along super conducting microstrip lines and terminating the lines at a normal metal resistor collocated with a TES on a thermally isolated island. The device, which is inherently polarization sensitive, is optimized for 140 GHz measurements. In the thermal bandwidth of the TES, we measure a noise equivalent power (NEP) of 2.0 x 10 -17 W/[Special characters omitted.] in dark tests which agrees with the calculated NEP including only contributions from phonon; Johnson and amplifier noise. We do not measure any excess noise above this expectation at frequencies between 1 and 200 Hz. We measure a thermal conductance G = 55 pW/K. We measure a thermal time constant as low as 437 ms at 3 mV bias when stimulating the TES directly using a light emitting diode.

  17. First Tests of Prototype SCUBA-2 Superconducting Bolometer Array

    NASA Astrophysics Data System (ADS)

    Woodcraft, Adam L.; Ade, Peter A. R.; Bintley, Dan; Hunt, Cynthia L.; Sudiwala, Rashmi V.; Hilton, Gene C.; Irwin, Kent D.; Reintsema, Carl D.; Audley, Michael D.; Holland, Wayne S.; MacIntosh, Mike

    2006-09-01

    We present results of the first tests on a 1280 pixel superconducting bolometer array, a prototype for SCUBA-2, a sub-mm camera being built for the James Clerk Maxwell Telescope in Hawaii. The bolometers are TES (transition edge sensor) detectors; these take advantage of the large variation of resistance with temperature through the superconducting transition. To keep the number of wires reasonable, a multiplexed read-out is used. Each pixel is read out through an individual DC SQUID; room temperature electronics switch between rows in the array by biasing the appropriate SQUIDs in turn. Arrays of 100 SQUIDs in series for each column then amplify the output. Unlike previous TES arrays, the multiplexing elements are located beneath each pixel, making large arrays possible, but construction more challenging. The detectors are constructed from Mo/Cu bi-layers; this technique enables the transition temperature to be tuned using the proximity effect by choosing the thickness of the normal and superconducting materials. To achieve the required performance, the detectors are operated at a temperature of approximately 120 mK. We describe the results of a basic characterisation of the array, demonstrating that it is fully operational, and give the results of signal to noise measurements.

  18. High-Tc superconducting microbolometer for terahertz applications

    NASA Astrophysics Data System (ADS)

    Ulysse, C.; Gaugue, A.; Adam, A.; Kreisler, A. J.; Villégier, J.-C.; Thomassin, J.-L.

    2002-05-01

    Superconducting hot electron bolometer mixers are now a competitive alternative to Schottky diode mixers in the terahertz frequency range because of their ultra wideband (from millimeter waves to visible light), high conversion gain, and low intrinsic noise level. High Tc superconductor materials can be used to make hot electron bolometers and present some advantage in term of operating temperature and cooling. In this paper, we present first a model for the study of superconducting hot electron bolometers responsivity in direct detection mode, in order to establish a firm basis for the design of future THz mixers. Secondly, an original process to realize YBaCuO hot electron bolometer mixers will be described. Submicron YBaCuO superconducting structures are expitaxially sputter deposited on MgO substrates and patterned by using electron beam lithography in combination with optical lithography. Metal masks achieved by electron beam lithography are insuring a good bridge definition and protection during ion etching. Finally, detection experiments are being performed with a laser at 850 nm wavelength, in homodyne mode in order to prove the feasibility and potential performances of these devices.

  19. A report on the laboratory performance of the spectroscopic detector arrays for SPIRE/HSO

    NASA Astrophysics Data System (ADS)

    Nguyen, Hien T.; Bock, James J.; Ringold, Peter; Battle, John; Elliott, Steven C.; Turner, Anthony D.; Weilert, Mark; Hristov, Viktor V.; Schulz, Bernhard; Ganga, Ken; Zhang, L.; Beeman, Jeffrey W.; Ade, Peter A. R.; Hargrave, Peter C.

    2004-10-01

    We report the performance of the flight bolometer arrays for the Spectral and Photometric Imaging REceiver (SPIRE) instrument to be on board of the Herschel Space Observatory (HSO). We describe the test setup for the flight Bolometric Detector Assembly (BDA) that allows the characterization of its performance, both dark and optical, in one instrument's cool down. We summarize the laboratory procedure to measure the basic bolometer parameters, optical response time, optical efficiency of bolometer and feedhorn, dark and optical noise, and the overall thermal conductance of the BDA unit. Finally, we present the test results obtained from the two flight units, Spectroscopic Long Wavelength (SLW) and Spectroscopic Short Wavelength (SSW).

  20. Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank

    2013-09-01

    Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.

  1. A 90GHz Bolometer Camera Detector System for the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest D.; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3mm) for the 100 m Green Bank Telescope (GBT) This system will provide high sensitivity (<1mjy in 1s rapid imaging (15'x15' to 250 microJy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close packed, Nyquist-sampled array of superconducting transition edge sensor bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approx. 2.10(exp 17) W/square root Hz, the TES bolometers will provide fast linear sensitive response for high performance imaging. The detectors are read out by and 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  2. A 90GHz Bolometer Camera Detector System for the Green

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  3. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; hide

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  4. Infrared bolometers with silicon nitride micromesh absorbers

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; Turner, A. D.; DelCastillo, H. M.; Beeman, J. W.; Lange, A. E.; Mauskopf, P. D.

    1996-01-01

    Sensitive far infrared and millimeter wave bolometers fabricated from a freestanding membrane of low stress silicon nitride are reported. The absorber, consisting of a metallized silicon nitride micromesh thermally isolated by radial legs of silicon nitride, is placed in an integrating cavity to efficiently couple to single mode or multiple mode infrared radiation. This structure provides low heat capacity, low thermal conduction and minimal cross section to energetic particles. A neutron transmutation doped Ge thermister is bump bonded to the center of the device and read out with evaporated Cr-Au leads. The limiting performance of the micromesh absorber is discussed and the recent results obtained from a 300 mK cold stage are summarized.

  5. High-performance ferroelectric and magnetoresistive materials for next-generation thermal detector arrays

    NASA Astrophysics Data System (ADS)

    Todd, Michael A.; Donohue, Paul P.; Watton, Rex; Williams, Dennis J.; Anthony, Carl J.; Blamire, Mark G.

    2002-12-01

    This paper discusses the potential thermal imaging performance achievable from thermal detector arrays and concludes that the current generation of thin-film ferroelectric and resistance bolometer based detector arrays are limited by the detector materials used. It is proposed that the next generation of large uncooled focal plane arrays will need to look towards higher performance detector materials - particularly if they aim to approach the fundamental performance limits and compete with cooled photon detector arrays. Two examples of bolometer thin-film materials are described that achieve high performance from operating around phase transitions. The material Lead Scandium Tantalate (PST) has a paraelectric-to-ferroelectric phase transition around room temperature and is used with an applied field in the dielectric bolometer mode for thermal imaging. PST films grown by sputtering and liquid-source CVD have shown merit figures for thermal imaging a factor of 2 to 3 times higher than PZT-based pyroelectric thin films. The material Lanthanum Calcium Manganite (LCMO) has a paramagnetic to ferromagnetic phase transition around -20oC. This paper describes recent measurements of TCR and 1/f noise in pulsed laser-deposited LCMO films on Neodymium Gallate substrates. These results show that LCMO not only has high TCR's - up to 30%/K - but also low 1/f excess noise, with bolometer merit figures at least an order of magnitude higher than Vanadium Oxide, making it ideal for the next generation of microbolometer arrays. These high performance properties come at the expense of processing complexities and novel device designs will need to be introduced to realize the potential of these materials in the next generation of thermal detectors.

  6. The Atacama Cosmology Telescope: Development and preliminary results of point source observations

    NASA Astrophysics Data System (ADS)

    Fisher, Ryan P.

    2009-06-01

    The Atacama Cosmology Telescope (ACT) is a six meter diameter telescope designed to measure the millimeter sky with arcminute angular resolution. The instrument is currently conducting its third season of observations from Cerro Toco in the Chilean Andes. The primary science goal of the experiment is to expand our understanding of cosmology by mapping the temperature fluctuations of the Cosmic Microwave Background (CMB) at angular scales corresponding to multipoles up to [cursive l] ~ 10000. The primary receiver for current ACT observations is the Millimeter Bolometer Array Camera (MBAC). The instrument is specially designed to observe simultaneously at 148 GHz, 218 GHz and 277 GHz. To accomplish this, the camera has three separate detector arrays, each containing approximately 1000 detectors. After discussing the ACT experiment in detail, a discussion of the development and testing of the cold readout electronics for the MBAC is presented. Currently, the ACT collaboration is in the process of generating maps of the microwave sky using our first and second season observations. The analysis used to generate these maps requires careful data calibration to produce maps of the arcminute scale CMB temperature fluctuations. Tests and applications of several elements of the ACT calibrations are presented in the context of the second season observations. Scientific exploration has already begun on preliminary maps made using these calibrations. The final portion of this thesis is dedicated to discussing the point sources observed by the ACT. A discussion of the techniques used for point source detection and photometry is followed by a presentation of our current measurements of point source spectral indices.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, K.; Akiba, Y.; Arnold, K.

    The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2, having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors formore » LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. As a result, we have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).« less

  8. Neutron transmutation doped Ge bolometers

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  9. The 160 TES bolometer read-out using FDM for SAFARI

    NASA Astrophysics Data System (ADS)

    Hijmering, R. A.; den Hartog, R. H.; van der Linden, A. J.; Ridder, M.; Bruijn, M. P.; van der Kuur, J.; van Leeuwen, B. J.; van Winden, P.; Jackson, B.

    2014-07-01

    For the read out of the Transition Edge Sensors (TES) bolometer arrays of the SAFARI instrument on the Japanese background-limited far-IR SPICA mission SRON is developing a Frequency Domain Multiplexing (FDM) read-out system. The next step after the successful demonstration of the read out of 38 TES bolometers using FDM was to demonstrate the FDM readout of the required 160 TES bolometers. Of the 160 LC filter and TES bolometer chains 151 have been connected and after cooldown 148 of the resonances could be identified. Although initial operation and locking of the pixels went smoothly the experiment revealed several complications. In this paper we describe the 160 pixel FDM set-up, show the results and discuss the issues faced during operation of the 160 pixel FDM experiment.

  10. Focal plane optics in far-infrared and submillimeter astronomy

    NASA Astrophysics Data System (ADS)

    Hildebrand, R. H.

    1985-10-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  11. Focal plane optics in far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.

    1986-01-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  12. Focal plane optics in far-infrared and submillimeter astronomy

    NASA Astrophysics Data System (ADS)

    Hildebrand, R. H.

    1986-02-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  13. Focal plane optics in far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.

    1985-01-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  14. A Low-Noise NbTiN Hot Electron Bolometer Mixer

    NASA Technical Reports Server (NTRS)

    Tong, C. Edward; Stern, Jeffrey; Megerian, Krikor; LeDuc, Henry; Sridharan, T. K.; Gibson, Hugh; Blundell, Raymond

    2001-01-01

    Hot electron bolometer (HEB) mixer elements, based on niobium titanium nitride (NbTiN) thin film technology, have been fabricated on crystalline quartz substrates over a 20 nm thick AlN buffer layer. The film was patterned by optical lithography, yielding bolometer elements that measure about 1 micrometer long and between 2 and 12 micrometers wide. These mixer chips were mounted in a fixed-tuned waveguide mixer block, and tested in the 600 and 800 GHz frequency range. The 3-dB output bandwidth of these mixers was determined to be about 2.5 GHz and we measured a receiver noise temperature of 270 K at 630 GHz using an intermediate frequency of 1.5 GHz. The receiver has excellent amplitude stability and the noise temperature measurements are highly repeatable. An 800 GHz receiver incorporating one of these mixer chips has recently been installed at the Sub-Millimeter Telescope in Arizona for field test and for astronomical observations.

  15. [Contrast of Z-Pinch X-Ray Yield Measure Technique].

    PubMed

    Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi

    2015-03-01

    Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.

  16. Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER

    NASA Astrophysics Data System (ADS)

    Hubmayr, Johannes; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Benton, Steven J.; Bergman, A. Stevie; Bond, J. Richard; Bryan, Sean; Duff, Shannon M.; Duivenvoorden, Adri J.; Eriksen, H. K.; Filippini, Jeffrey P.; Fraisse, A.; Galloway, Mathew; Gambrel, Anne E.; Ganga, K.; Grigorian, Arpi L.; Gualtieri, Riccardo; Gudmundsson, Jon E.; Hartley, John W.; Halpern, M.; Hilton, Gene C.; Jones, William C.; McMahon, Jeffrey J.; Moncelsi, Lorenzo; Nagy, Johanna M.; Netterfield, C. B.; Osherson, Benjamin; Padilla, Ivan; Rahlin, Alexandra S.; Racine, B.; Ruhl, John; Rudd, T. M.; Shariff, J. A.; Soler, J. D.; Song, Xue; Ullom, Joel N.; Van Lanen, Jeff; Vissers, Michael R.; Wehus, I. K.; Wen, Shyang; Wiebe, D. V.; Young, Edward

    2016-07-01

    We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter spider. A primary science goal of spider is to measure the large-scale B-mode polarization of the cosmic microwave background (cmb) in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16x16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The spider receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7° FHWM Gaussian-shaped beams with <1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 x 10-17 W/√Hz, consistent with the phonon noise prediction.

  17. Fabrication of Feedhorn-Coupled Transition Edge Sensor Arrays for Measurement of the Cosmic Microwave Background Polarization

    NASA Technical Reports Server (NTRS)

    Denis, K. L.; Ali, A.; Appel, J.; Bennett, C. L.; Chang, M. P.; Chuss, D. T.; Colazo, F. A.; Costen, N.; Essinger-Hileman, T.; Hu, R.; hide

    2015-01-01

    Characterization of the minute cosmic microwave background (CMB) polarization signature requires multi-frequency high-throughput precision instrument systems. We have previously described the detector fabrication of a 40 gigahertz focal plane and now describe the fabrication of a 37-element dual-polarization detector module for measurement of the CMB at 90 gigahertz. The 72-TES (Transition Edge Sensor)-based bolometers in each module are coupled to a niobium-based planar orthomode transducer with integrated band defining filters implemented in microstrip transmission line. A single crystal silicon dielectric substrate serves as microstrip dielectric and as a thermal link between the membrane isolated MoAu TES operating at 150 millikelvins and the heat bath. A short silicon leg between the heat bath and the TES bolometer is designed for ballistic phonon transport and provides improved process control and uniformity of thermal conductance in the presence of phonon scattering on roughened surfaces. Micro-machined structures are used to realize the orthomode transducer backshort, provide out of band signal rejection, and a silicon photonic choke for feedhorn coupling are described. The backshort, choke wafer, and detector wafer are indium bump-bonded to create a single 37-element dual-polarization detector module. Fourteen such hexagonally shaped modules each 80 millimeters in size comprise two focal planes. These, along with the recently delivered 40 gigahertz focal plane, will survey a large fraction of the sky as part of the Johns Hopkins University-led ground-based CLASS (Cosmology Large Angular Scale Surveyor) telescope.

  18. Development of readout electronics for POLARBEAR-2 cosmic microwave background experiment

    DOE PAGES

    Hattori, K.; Akiba, Y.; Arnold, K.; ...

    2016-01-06

    The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2, having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors formore » LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. As a result, we have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).« less

  19. Advanced ACTPol Low-Frequency Array: Readout and Characterization of Prototype 27 and 39 GHz Transition Edge Sensors

    NASA Astrophysics Data System (ADS)

    Koopman, B. J.; Cothard, N. F.; Choi, S. K.; Crowley, K. T.; Duff, S. M.; Henderson, S. W.; Ho, S. P.; Hubmayr, J.; Gallardo, P. A.; Nati, F.; Niemack, M. D.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Wollack, E. J.

    2018-05-01

    Advanced ACTPol (AdvACT) is a third-generation polarization upgrade to the Atacama Cosmology Telescope, designed to observe the cosmic microwave background (CMB). AdvACT expands on the 90 and 150 GHz transition edge sensor (TES) bolometer arrays of the ACT Polarimeter (ACTPol), adding both high-frequency (HF, 150/230 GHz) and low-frequency (LF, 27/39 GHz) multichroic arrays. The addition of the high- and low-frequency detectors allows for the characterization of synchrotron and spinning dust emission at the low frequencies and foreground emission from galactic dust and dusty star-forming galaxies at the high frequencies. The increased spectral coverage of AdvACT will enable a wide range of CMB science, such as improving constraints on dark energy, the sum of the neutrino masses, and the existence of primordial gravitational waves. The LF array will be the final AdvACT array, replacing one of the MF arrays for a single season. Prior to the fabrication of the final LF detector array, we designed and characterized prototype TES bolometers. Detector geometries in these prototypes are varied in order to inform and optimize the bolometer designs for the LF array, which requires significantly lower noise levels and saturation powers (as low as {˜ } 1 pW) than the higher-frequency detectors. Here we present results from tests of the first LF prototype TES detectors for AdvACT, including measurements of the saturation power, critical temperature, thermal conductance, and time constants. We also describe the modifications to the time-division SQUID readout architecture compared to the MF and HF arrays.

  20. Micromachined poly-SiGe bolometer arrays for infrared imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Leonov, Vladimir N.; Perova, Natalia A.; De Moor, Piet; Du Bois, Bert; Goessens, Claus; Grietens, Bob; Verbist, Agnes; Van Hoof, Chris A.; Vermeiren, Jan P.

    2003-03-01

    The state-of-the-art characteristics of micromachined polycrystalline SiGe microbolometer arrays are reported. An average NETD of 85 mK at a time constant of 14 ms is already achievable on typical self-supported 50 μm pixels in a linear 64-element array. In order to reach these values, the design optimization was performed based on the performance characteristics of linear 32-, 64- and 128-element arrays of 50-, 60- and 75-μm-pixel bolometers on several detector lots. The infrared and thermal modeling accounting for the read-out properties and self-heating effect in bolometers resulted in improved designs and competitive NETD values of 80 mK on 50 μm pixels in a 160x128 format at standard frame rates and f-number of 1. In parallel, the TCR-to-1/f noise ratio and the mechanical design of the pixels were improved making poly-SiGe a good candidate for a low-cost uncooled thermal array. The technological CMOS-based process possesses an attractive balance between characteristics and price, and allows the micromachining of thin structures, less than 0.2 μm. The resistance and TCR non-uniformity with σ/μ better than 0.2% combined with 99.93% yield are demonstrated. The first lots of fully processed linear arrays have already come from the IMEC process line and the results of characterization are presented. Next year, the first linear and small 2D arrays will be introduced on the market.

  1. VizieR Online Data Catalog: Selecting IRAC counterparts to SMGs (Alberts+, 2013)

    NASA Astrophysics Data System (ADS)

    Alberts, S.; Wilson, G. W.; Lu, Y.; Johnson, S.; Yun, M. S.; Scott, K. S.; Pope, A.; Aretxaga, I.; Ezawa, H.; Hughes, D. H.; Kawabe, R.; Kim, S.; Kohno, K.; Oshima, T.

    2014-05-01

    We present a new submm/mm galaxy counterpart identification technique which builds on the use of Spitzer Infrared Array Camera (IRAC) colours as discriminators between likely counterparts and the general IRAC galaxy population. Using 102 radio- and Submillimeter Array-confirmed counterparts to AzTEC sources across three fields [Great Observatories Origins Deep Survey-North, -South and Cosmic Evolution Survey (COSMOS)], we develop a non-parametric IRAC colour-colour characteristic density distribution, which, when combined with positional uncertainty information via likelihood ratios, allows us to rank all potential IRAC counterparts around submillimetre galaxies (SMGs) and calculate the significance of each ranking via the reliability factor. We report all robust and tentative radio counterparts to SMGs, the first such list available for AzTEC/COSMOS, as well as the highest ranked IRAC counterparts for all AzTEC SMGs in these fields as determined by our technique. We demonstrate that the technique is free of radio bias and thus applicable regardless of radio detections. For observations made with a moderate beam size (~18"), this technique identifies ~85% of SMG counterparts. For much larger beam sizes (>~30"), we report identification rates of 33-49%. Using simulations, we demonstrate that this technique is an improvement over using positional information alone for observations with facilities such as AzTEC on the Large Millimeter Telescope and Submillimeter Common User Bolometer Array 2 on the James Clerk Maxwell Telescope. (3 data files).

  2. Enhanced performance of VOx-based bolometer using patterned gold black absorber

    NASA Astrophysics Data System (ADS)

    Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.

    2015-06-01

    Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.

  3. A reinterpretation of millimeter observations of nearby IRAS excess stars

    NASA Technical Reports Server (NTRS)

    Weintraub, David A.; Stern, S. Alan

    1994-01-01

    We analyze new and previously published 1300, 870, and 800 micrometers, single-element bolometer observations of Vega (alpha Lyr), Formalhaut (alpha PsA), epsilon Eri, tau(sup1) Eri, and Beta Leo. We show that these data are consistent with models in which the dust disks around these stars are larger than the radio telescope beams with which they were observed; thus, these disks may be many hundreds of AU in radius or larger. Our interpretation of submillimeter/millimeter measurements of these stars also indicates that for some Infrared Astronomy Satellite (IRAS) IR excess stars the assumption that there is no astrophysical flux in the OFF beams, when using the standard ON-minus-OFF chopping technique and the chop distance is less than 1000AU, may be incorrect. Therefore, for IRAS IR excess stars within approximately 20 pc, virtually all submillimeter/millimeter chopping observations with chop throws less than 100" may have subtracted away some or most of the flux associated with their circumstellar disks. Finally, we present new 1300 micrometers continuum observations of Vega made with chop throws of 500 and 1000 AU. These data are consistent with an interpretation in which Vega has a disk that is at least 1000AU in radius; this disk could have a region with much less material per beam area near 500 AU than at both 100 AU and 1000 AU, corresponding to a gap at the orbital distance of alpha Lyr B. The observations of Vega are also consistent with the assumption that the circumVega dust structure is unresolved. Thus, these new data very effectively illustrate that the 'standard' model of small, unresolved, dust structures around main-sequence IRAS IR excess stars is not unique. Maps of IRAS IR excess stars, which soon will be available from submillimeter/millimeter array detectors, will determine whether the paradigm shift we propose will occur.

  4. Novel Multiplexing Technique for Detector and Mixer Arrays

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; McGrath, William R.

    2001-01-01

    Future submillimeter and far-infrared space telescopes will require large-format (many 1000's of elements) imaging detector arrays to perform state-of-the-art astronomical observations. A crucial issue related to a focal plane array is a readout scheme which is compatible with large numbers of cryogenically-cooled (typically < 1 K) detectors elements. When the number of elements becomes of the order of thousands, the physical layout for individual readout amplifiers becomes nearly impossible to realize for practical systems. Another important concern is the large number of wires leading to a 0.1-0.3 K platform. In the case of superconducting transition edge sensors (TES), a scheme for time-division multiplexing of SQUID read-out amplifiers has been recently demonstrated. In this scheme the number of SQUIDs is equal to the number (N) of the detectors, but only one SQUID is turned on at a time. The SQUIDs are connected in series in each column of the array, so the number of wires leading to the amplifiers can be reduced, but it is still of the order of N. Another approach uses a frequency domain multiplexing scheme of the bolometer array. The bolometers are biased with ac currents whose frequencies are individual for each element and are much higher than the bolometer bandwidth. The output signals are connected in series in a summing loop which is coupled to a single SQUID amplifier. The total number of channels depends on the ratio between the SQUID bandwidth and the bolometer bandwidth and can be at least 100 according to the authors. An important concern about this technique is a contribution of the out-of-band Johnson noise which multiplies by factor N(exp 1/2) for each frequency channel. We propose a novel solution for large format arrays based on the Hadamard transform coding technique which requires only one amplifier to read out the entire array of potentially many 1000's of elements and uses approximately 10 wires between the cold stage and room temperature electronics. This can significantly reduce the complexity of the readout circuits.

  5. First Astronomical Use of Multiplexed Transition Edge Sensor Bolometers

    NASA Technical Reports Server (NTRS)

    Staguhn, J. G.; Ames, T. A.; Benford, D. J.; Chervenak, J. A.; Grossman, E. N.; Irwin, K. D.; Khan, S. A.; Maffei, B.; Moseley, S. H.; Pajot, F.

    2004-01-01

    We present performance results based on the first astronomical use of multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that achieved first light in June 2001 at the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering Delta lambda/lambda = 1/7 at a resolution of delta lambda/lambda approx. 1/1200 can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE operates in the 350 m and 450 m bands. These bands cover line emission from the important star formation tracers neutral carbon (CI) and carbon monoxide (CO). We have verified that the multiplexed bolometers are photon noise limited even with the low power present in moderate resolution spectrometry.

  6. First Astronomical Use Of Multiplexed Transition Edge Bolometers

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Chervenak, J. A.; Grossman, E. N.; Irwin, K. D.; DeKotwara, S. A.; Maffei, B.; Moseley, S. H.; Pajot, F.; Phillips, T. G.; Reintsema, C. D.

    2001-01-01

    We present performance results based on the first astronomical use of multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that achieved first light in June 2001 at the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing five orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering delta-lamda/lamda = 1/7 at a resolution of delta-lamda/lamda = 1/1200 can be acquired. This spectral resolution is sufficient to resolve doppler broadened line emission from external galaxies. FIBRE operates in the 350 micrometer and 450 micrometer bands. These bands cover line emission from the important PDR tracers neutral carbon [CI] and carbon monoxide (CO). We have verified that the multiplexed bolometers are photon noise limited even with the low power present in moderate resolution spectrometry.

  7. Broadband Direct Detection Submillimeter Spectrometer with Multiplexed Superconducting Transition Edge Thermometer Bolometers

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Ames, T. A.; Chervenak, J. A.; Moseley, S. H.; Shafer, R. A.; Staguhn, J. G.; Voellmer, G. M.; Pajot, F.; Rioux, C.; Phillips, T. G.; hide

    2002-01-01

    We present performance results based on the first astronomical use of multiplexed superconducting bolometers as direct detectors (i.e., with cold electrons) for spectroscopy. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer for the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering Delta lambda/lambda = 1/7 at a resolution of delta lambda/lambda = 1/1200 can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE has been operated in the 350 Am (850 GHz) band. These bands cover line emission from the important star formation tracers neutral carbon [CI] and carbon monoxide (CO).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO 2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires themore » placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. In conclusion, this paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.« less

  9. Development of Radiated Power Diagnostics for NSTX-U

    NASA Astrophysics Data System (ADS)

    Reinke, Matthew; van Eden, G. G.; Lovell, Jack; Peterson, Byron; Gray, Travis; Chandra, Rian; Stratton, Brent; Ellis, Robert; NSTX-U Team

    2016-10-01

    New tools to measure radiated power in NSTX-U are under development to support a range of core and boundary physics research. Multiple resistive bolometer pinhole cameras are being built and calibrated to support FY17 operations, all utilizing standard Au-foil sensors from IPT-Albrecht. The radiation in the lower divertor will be measured using two, 8 channel arrays viewing both vertically and radially to enable estimates of the 2D radiation structure. The core radiation will be measured using a 24 channel array viewing tangentially near the midplane, observing the full cross-section from the inner to outer limiter. This enables characterization of the centrifugally-driven in/out radiation asymmetry expected from mid-Z and high-Z impurities in highly rotating NSTX-U plasmas. All sensors utilize novel FPGA-based BOLO8BLF analyzers from D-tAcq Solutions. Resistive bolometer measurements are complemented by an InfraRed Video Bolometer (IRVB) which measures the temperature change of radiation absorber using an IR camera. A prototype IRVB system viewing the lower divertor was installed on NSTX-U for FY16 operations. Initial results from the plasma and benchtop testing are used to demonstrate the relative advantages between IRVB and resistive bolometers. Supported in Part by DE-AC05-00OR22725 & DE-AC02-09CH11466.

  10. An Ultra-Wideband Millimeter-Wave Phased Array

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  11. Superconducting noise bolometer with microwave bias and readout for array applications

    NASA Astrophysics Data System (ADS)

    Kuzmin, A. A.; Semenov, A. D.; Shitov, S. V.; Merker, M.; Wuensch, S. H.; Ustinov, A. V.; Siegel, M.

    2017-07-01

    We present a superconducting noise bolometer for terahertz radiation, which is suitable for large-format arrays. It is based on an antenna-coupled superconducting micro-bridge embedded in a high-quality factor superconducting resonator for a microwave bias and readout with frequency-division multiplexing in the GHz range. The micro-bridge is kept below its critical temperature and biased with a microwave current of slightly lower amplitude than the critical current of the micro-bridge. The response of the detector is the rate of superconducting fluctuations, which depends exponentially on the concentration of quasiparticles in the micro-bridge. Excess quasiparticles are generated by an incident THz signal. Since the quasiparticle lifetime increases exponentially at lower operation temperature, the noise equivalent power rapidly decreases. This approach allows for large arrays of noise bolometers operating above 1 K with sensitivity, limited by 300-K background noise. Moreover, the response of the bolometer always dominates the noise of the readout due to relatively large amplitude of the bias current. We performed a feasibility study on a proof-of-concept device with a 1.0 × 0.5 μm2 micro-bridge from a 9-nm thin Nb film on a sapphire substrate. Having a critical temperature of 5.8 K, it operates at 4.2 K and is biased at the frequency 5.6 GHz. For the quasioptical input at 0.65 THz, we measured the noise equivalent power ≈3 × 10-12 W/Hz1/2, which is close to expectations for this particular device in the noise-response regime.

  12. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    PubMed Central

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P.; Zolliker, Peter

    2016-01-01

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341

  13. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    PubMed

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  14. Submm/mm galaxy counterpart identification using a characteristic density distribution

    NASA Astrophysics Data System (ADS)

    Alberts, Stacey; Wilson, Grant W.; Lu, Yu; Johnson, Seth; Yun, Min S.; Scott, Kimberly S.; Pope, Alexandra; Aretxaga, Itziar; Ezawa, Hajime; Hughes, David H.; Kawabe, Ryohei; Kim, Sungeun; Kohno, Kotaro; Oshima, Tai

    2013-05-01

    We present a new submm/mm galaxy counterpart identification technique which builds on the use of Spitzer Infrared Array Camera (IRAC) colours as discriminators between likely counterparts and the general IRAC galaxy population. Using 102 radio- and Submillimeter Array-confirmed counterparts to AzTEC sources across three fields [Great Observatories Origins Deep Survey-North, -South and Cosmic Evolution Survey (COSMOS)], we develop a non-parametric IRAC colour-colour characteristic density distribution, which, when combined with positional uncertainty information via likelihood ratios, allows us to rank all potential IRAC counterparts around submillimetre galaxies (SMGs) and calculate the significance of each ranking via the reliability factor. We report all robust and tentative radio counterparts to SMGs, the first such list available for AzTEC/COSMOS, as well as the highest ranked IRAC counterparts for all AzTEC SMGs in these fields as determined by our technique. We demonstrate that the technique is free of radio bias and thus applicable regardless of radio detections. For observations made with a moderate beam size (˜18 arcsec), this technique identifies ˜85 per cent of SMG counterparts. For much larger beam sizes (≳30 arcsec), we report identification rates of 33-49 per cent. Using simulations, we demonstrate that this technique is an improvement over using positional information alone for observations with facilities such as AzTEC on the Large Millimeter Telescope and Submillimeter Common User Bolometer Array 2 on the James Clerk Maxwell Telescope.

  15. Next generation sub-millimeter wave focal plane array coupling concepts: an ESA TRP project to develop multichroic focal plane pixels for future CMB polarization experiments

    NASA Astrophysics Data System (ADS)

    Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.

    2016-07-01

    The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.

  16. Strong Electron Self-Cooling in the Cold-Electron Bolometers Designed for CMB Measurements

    NASA Astrophysics Data System (ADS)

    Kuzmin, L. S.; Pankratov, A. L.; Gordeeva, A. V.; Zbrozhek, V. O.; Revin, L. S.; Shamporov, V. A.; Masi, S.; de Bernardis, P.

    2018-03-01

    We have realized cold-electron bolometers (CEB) with direct electron self-cooling of the nanoabsorber by SIN (Superconductor-Insulator-Normal metal) tunnel junctions. This electron self-cooling acts as a strong negative electrothermal feedback, improving noise and dynamic properties. Due to this cooling the photon-noise-limited operation of CEBs was realized in array of bolometers developed for the 345 GHz channel of the OLIMPO Balloon Telescope in the power range from 10 pW to 20 pW at phonon temperature Tph =310 mK. The negative electrothermal feedback in CEB is analogous to TES but instead of artificial heating we use cooling of the absorber. The high efficiency of the electron self-cooling to Te =100 mK without power load and to Te=160 mK under power load is achieved by: - a very small volume of the nanoabsorber (0.02 μm3) and a large area of the SIN tunnel junctions, - effective removal of hot quasiparticles by arranging double stock at both sides of the junctions and close position of the normal metal traps, - self-protection of the 2D array of CEBs against interferences by dividing them between N series CEBs (for voltage interferences) and M parallel CEBs (for current interferences), - suppression of Andreev reflection by a thin layer of Fe in the AlFe absorber. As a result even under high power load the CEBs are working at electron temperature Te less than Tph . To our knowledge, there is no analogue in the bolometers technology in the world for bolometers working at electron temperature colder than phonon temperature.

  17. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  18. Mechanical designs and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.

    2016-07-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  19. Three-meter balloon-borne telescope

    NASA Technical Reports Server (NTRS)

    Hoffmann, William F.; Fazio, G. G.; Harper, D. A.

    1988-01-01

    The Three-Meter Balloon-Borne Telescope is planned as a general purpose facility for making far-infrared and submillimeter astronomical observations from the stratosphere. It will operate throughout the spectral range 30 microns to 1 millimeter which is largely obscurred from the ground. The design is an f/13.5 Cassegrain telescope with an f/1.33 3-meter primary mirror supported with a 3-axis gimbal and stabilization system. The overall structure is 8.0 m high by 5.5 m in width by 4.0 m in depth and weighs 2000 kg. This low weight is achieved through the use of an ultra lightweight primary mirror of composite construction. Pointing and stabilization are achieved with television monitoring of the star field, flex-pivot bearing supports, gyroscopes, and magnetically levitated reaction wheels. Two instruments will be carried on each flight; generally a photometric camera and a spectrometer. A 64-element bolometer array photometric camera operating from 30 to 300 microns is planned as part of the facility. Additional instruments will be derived from KAO and other development programs.

  20. Investigation of the Neutral Gas Pressure Effect on the Metal Resistive Bolometer

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Giannone, L.; Grulke, O.; Piechotka, M.; Windisch, T.; Stark, A.; Klinger, T.

    2008-03-01

    The bolometer system planned for W7-X consists mainly of metal (Au) resistive detector arrays. All the detectors are exposed to neutral gas environment. The thin bolometer foil used for detecting the radiated power loss may be sensitive to the neutral gas pressure due to the strain gauge effect. Recently, a prototype of this kind of bolometer camera consisting of 12 channels has been installed on the cylindrical plasma device VINETA in order to investigate the influences of the neutral gas pressure on the bolometer signals. Experiments are carried out for Ar-discharges under different gas pressure conditions. It is found that the pressure effect of the neutral gas can make considerable contributions, thus inducing non-negligible errors of the results in most of the investigated cases. Using the VINETA plasmas (Ar, Te<10 eV, ne<10-19 m-3) as examples, the paper demonstrates and discusses how to minimize the neutral gas effects, especially in the data analysis process. The radiated power and the radiation intensity profile obtained in helicon discharges are presented.

  1. Large-format 17μm high-end VOx μ-bolometer infrared detector

    NASA Astrophysics Data System (ADS)

    Mizrahi, U.; Argaman, N.; Elkind, S.; Giladi, A.; Hirsh, Y.; Labilov, M.; Pivnik, I.; Shiloah, N.; Singer, M.; Tuito, A.; Ben-Ezra, M.; Shtrichman, I.

    2013-06-01

    Long range sights and targeting systems require a combination of high spatial resolution, low temporal NETD, and wide field of view. For practical electro-optical systems it is hard to support these constraints simultaneously. Moreover, achieving these needs with the relatively low-cost Uncooled μ-Bolometer technology is a major challenge in the design and implementation of both the bolometer pixel and the Readout Integrated Circuit (ROIC). In this work we present measured results from a new, large format (1024×768) detector array, with 17μm pitch. This detector meets the demands of a typical armored vehicle sight with its high resolution and large format, together with low NETD of better than 35mK (at F/1, 30Hz). We estimate a Recognition Range for a NATO target of better than 4 km at all relevant atmospheric conditions, which is better than standard 2nd generation scanning array cooled detector. A new design of the detector package enables improved stability of the Non-Uniformity Correction (NUC) to environmental temperature drifts.

  2. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Next generation 5G mobile architectures will take advantage of the millimeter-wave spectrum to deliver unprecedented bandwidth. Concurrently, there is a need to consolidate numerous disparate allocations into a single, multi-functional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter-wave array to operate across the six 5G and ISM bands spanning 24-71 GHz. Critically, the array is realized using low-cost PCB. The design concept and optimized layout are presented, and fabrication and measurement considerations are discussed.

  3. Proceedings of the Second Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R. (Compiler)

    1986-01-01

    The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.

  4. Status and Integrated Focal Plane Characterization of Simons Array - Cosmic Microwave Background Polarimetry Experiment

    NASA Astrophysics Data System (ADS)

    Roberts, Hayley; POLARBEAR

    2018-06-01

    Simons Array is a cosmic microwave background (CMB) polarization experiment located at 5,200 meter altitude site in the Atacama desert in Chile. The science goals of the Simons Array are to characterize the CMB B-mode signal from gravitational lensing, and search for B-mode polarization generated from inflationary gravitational waves.In 2012, POLARBEAR-1 (PB-1) began observations and the POLARBEAR team has published the first measurements of non-zero polarization B-mode polarization angular power spectrum where gravitational lensing of CMB is the dominant signal.POLARBEAR-2A (PB-2A), the first of three receivers of Simons Array, will have 7,588 polarization sensitive Transition Edge Sensor (TES) bolometers with frequencies 90 GHz and 150 GHz. This represents a factor of 6 increase in detector count compared to PB-1. Once Simons Array is fully deployed, the focal plane array will consist 22,764 TES bolometers across 90 GHz, 150 GHz, 220 GHz, and 270 GHz with a projected instantaneous sensitivity of 2.5 µK√s. Here we present the status of PB-2A and characterization of the integrated focal plane to be deployed summer of 2018.

  5. Antenna-coupled TES bolometers used in BICEP2, Keck Array, and SPIDER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aikin, R. W.; Amiri, M.

    We have developed antenna-coupled transition-edge sensor bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including Bicep2, Keck Array, and the balloon borne Spider. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%–30% bandwidth at 95, 150, or 230 GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typicallymore » $$\\sim 0.5\\%$$, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET ~ 300 $$\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of $$\\sim 9\\;\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$, as measured directly from CMB maps in the 2013 season. Furthermore, similar arrays have recently flown in the Spider instrument, and development of this technology is ongoing.« less

  6. Antenna-coupled TES bolometers used in BICEP2, Keck Array, and SPIDER

    DOE PAGES

    Ade, P. A. R.; Aikin, R. W.; Amiri, M.; ...

    2015-10-20

    We have developed antenna-coupled transition-edge sensor bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including Bicep2, Keck Array, and the balloon borne Spider. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%–30% bandwidth at 95, 150, or 230 GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typicallymore » $$\\sim 0.5\\%$$, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET ~ 300 $$\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of $$\\sim 9\\;\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$, as measured directly from CMB maps in the 2013 season. Furthermore, similar arrays have recently flown in the Spider instrument, and development of this technology is ongoing.« less

  7. Progress on the FDM Development at SRON: Toward 160 Pixels

    NASA Astrophysics Data System (ADS)

    den Hartog, R. H.; Bruijn, M. P.; Clenet, A.; Gottardi, L.; Hijmering, R.; Jackson, B. D.; van der Kuur, J.; van Leeuwen, B. J.; van der Linden, A. J.; van Loon, D.; Nieuwenhuizen, A.; Ridder, M.; van Winden, P.

    2014-08-01

    SRON is developing the electronic read-out for arrays of transition edge sensors using frequency domain multiplexing in combination with base-band feedback. The astronomical applications of this system are the read-out of soft X-ray micro-calorimeters in a potential instrument on the European X-ray mission-under-study Athena+ and far-IR bolometers for the Safari instrument on the Japanese mission SPICA. In this paper we demonstrate the simultaneous read-out of 38 bolometer pixels at a 12 aW/Hz dark NEP level. The stability of the read-out is assessed over 400 s. time spans. Although some 1/f noise is present, there are several bolometers for which 1/f-free read-out can be demonstrated.

  8. Polarization measurements made on LFRA and OASIS emitter arrays

    NASA Astrophysics Data System (ADS)

    Geske, Jon; Sparkman, Kevin; Oleson, Jim; Laveigne, Joe; Sieglinger, Breck; Marlow, Steve; Lowry, Heard; Burns, James

    2008-04-01

    Polarization is increasingly being considered as a method of discrimination in passive sensing applications. In this paper the degree of polarization of the thermal emission from the emitter arrays of two new Santa Barbara Infrared (SBIR) micro-bolometer resistor array scene projectors was characterized at ambient temperature and at 77 K. The emitter arrays characterized were from the Large Format Resistive Array (LFRA) and the Optimized Arrays for Space-Background Infrared Simulation (OASIS) scene projectors. This paper reports the results of this testing.

  9. Overview of APEX Capabilities

    NASA Astrophysics Data System (ADS)

    De Breuck, Carlos

    2018-03-01

    The APEX telescope has a range instruments that are highly complementary to ALMA. The single pixel heterodyne receivers cover virtually all atmospheric windows from 157 GHz to above 1 THz, augmented by 7-pixel heterodyne arrays covering 280 to 950 GHz, while the bolometer arrays cover the 870, 450 and 350µm bands.

  10. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    NASA Astrophysics Data System (ADS)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB polarization measurements.

  11. Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Itoh, K. M.; Beeman, J. W.

    1996-01-01

    Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.

  12. Bloch oscillating transistor as the readout element for hot electron bolometers

    NASA Astrophysics Data System (ADS)

    Hassel, Juha; Seppä, Heikki; Lindell, Rene; Hakonen, Pertti

    2004-10-01

    In this paper we analyse the properties of the Bloch oscillating transistor as a preamplifier in cryogenic devices. We consider here especially the readout of hot electron bolometers (HEBs) based on Normal-Superconductor-Insulator tunnel junctions, but the results also apply more generally. We show that one can get an equivalent noise voltage below 1 nV/√Hz with a single BOT. By using N BOTs in a parallel array configuration, a further reduction by factor √N may be achieved.

  13. The E and B EXperiment: Implementation and Analysis of the 2009 Engineering Flight

    NASA Astrophysics Data System (ADS)

    Milligan, Michael Bryce

    The E and B EXperiment (EBEX) is a balloon-borne telescope designed to map the polarization of the cosmic microwave background (CMB) and emission from galactic dust at millimeter wavelengths from 150 to 410 GHz. The primary science objectives of EBEX are to: detect or constrain the primordial B-mode polarization of the CMB predicted by inflationary cosmology; measure the CMB B-mode signal induced by gravitational lensing; and characterize the polarized thermal emission from interstellar dust. EBEX will observe a 420 square degree patch of the sky at high galactic latitude with a telescope and camera that provide an 8 arcminute beam at three observing bands (150, 250, and 410 GHz) and a 6.2 degree diffraction limited field of view to two large-format bolometer array focal planes. Polarimetry is achieved via a continuously rotating half-wave plate (HWP), and the optical system is designed from the ground up for control of sidelobe response and polarization systematic errors. EBEX is intended to execute fly or more Antarctic long duration balloon campaigns. In June 2009 EBEX completed a North American engineering flight launched from NASA's Columbia Scientific Ballooning Facility (CSBF) in Ft. Sumner, NM and operated in the stratosphere above 30 km altitude for ˜10 hours. During flight EBEX must be largely autonomous as it conducts pointed, scheduled observations; tunes and operates 1432 TES bolometers via 28 embedded Digital frequency-domain multiplexing (DfMux) computers; logs over 3 GiB/hour of science and housekeeping data to onboard redundant disk storage arrays; manages and dispatches jobs over a fault-tolerant onboard Ethernet network; and feeds a complex real-time data processing infrastructure on the ground via satellite and line-of-sight (LOS) downlinks. In this thesis we review the EBEX instrument, present the optical design and the computational architecture for in-flight control and data handling, and the quick-look software stack. Finally we describe the 2009 North American test flight and present analysis of data collected at the end of that flight that characterizes scan-synchronous signals and the expected response to emission from thermal dust in our galaxy.

  14. Experimental study of a SINIS detector response time at 350 GHz signal frequency

    NASA Astrophysics Data System (ADS)

    Lemzyakov, S.; Tarasov, M.; Mahashabde, S.; Yusupov, R.; Kuzmin, L.; Edelman, V.

    2018-03-01

    Response time constant of a SINIS bolometer integrated in an annular ring antenna was measured at a bath temperature of 100 mK. Samples comprising superconducting aluminium electrodes and normal-metal Al/Fe strip connected to electrodes via tunnel junctions were fabricated on oxidized Si substrate using shadow evaporation. The bolometer was illuminated by a fast black-body radiation source through a band-pass filter centered at 350 GHz with a passband of 7 GHz. Radiation source is a thin NiCr film on sapphire substrate. For rectangular 10÷100 μs current pulse the radiation front edge was rather sharp due to low thermal capacitance of NiCr film and low thermal conductivity of substrate at temperatures in the range 1-4 K. The rise time of the response was ~1-10 μs. This time presumably is limited by technical reasons: high dynamic resistance of series array of bolometers and capacitance of a long twisted pair wiring from SINIS bolometer to a room-temperature amplifier.

  15. Auxiliary Components for Kilopixel Transition Edge Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Chervenak, James A.; Chuss, David; Hilton Gene C.; Mikula, Vilem; Henry, ROss; Wollack, Edward; Zhao, Yue

    2007-01-01

    We have fabricated transition edge sensor bolometer focal plane arrays sensitive to mm-submillimeter (0.1-3 THz) radiation for the Atacama Cosmology Telescope (ACT), which will probe the cosmic microwave background at 0.147,0.215, and 0.279 GHz. Central to the performance of these bolometers is a set of auxiliary resistive components. Here we discuss shunt resistors, which allow for tight optimization of bolometer time constant and sensitivity. Our shunt resistors consist of AuPd strips grown atop of interdigitated superconducting MoN, wires. We can tailor the shunt resistance by altering the dimensions of the AuPd strips and the pitch and width of the MoN, wires and can fabricate over 1000 shunts on a single 4" wafer. By modeling the resistance dependence of these parameters, a variety of different 0.77 +I-0.13 mOhm shunt resistors have been fabricated. This variety includes different shunts possessing MoN, wires with wire width equal to 1.5 and 10 microns and pitch equal to 4.5 and 26 microns, respectively. Our ability to set the resistance of the shunts hints at the scalability of our design. We have also integrated a Si02 capping layer into our shunt resistor fabrication scheme, which inhibits metal corrosion and eventual degradation of the shunt. Consequently, their robustness coupled with their high packing density makes these resistive components attractive for future kilopixel detector arrays.

  16. Improved Grid-Array Millimeter-Wave Amplifier

    NASA Technical Reports Server (NTRS)

    Rosenberg, James J.; Rutledge, David B.; Smith, R. Peter; Weikle, Robert

    1993-01-01

    Improved grid-array amplifiers operating at millimeter and submillimeter wavelengths developed for use in communications and radar. Feedback suppressed by making input polarizations orthogonal to output polarizations. Amplifier made to oscillate by introducing some feedback. Several grid-array amplifiers concatenated to form high-gain beam-amplifying unit.

  17. Imaging antenna array at 119 microns. [for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Neikirk, N. P.; Tong, P. P.; Putledge, D. B.; Park, H.; Young, P. E.

    1982-01-01

    A focal-plane imaging antenna array has been demonstrated at 119 microns. The array is a line of evaporated silver bow-tie antennas with bismuth microbolometer detectors on a silicon substrate. Radiation is coupled into the array by a lens placed on the back of the substrate. The bolometers are thermally isolated from the silicon substrate with a half-micron layer of polyimide. The array performance is demonstrated by coherent imaging of a series of holes at half the diffraction-limited cut-off frequency.

  18. Dual band sensitivity enhancements of a VO(x) microbolometer array using a patterned gold black absorber.

    PubMed

    Smith, Evan M; Panjwani, Deep; Ginn, James; Warren, Andrew P; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Nath, Janardan; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E; Shelton, David

    2016-03-10

    Infrared-absorbing gold black has been selectively patterned onto the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves much of gold black's high absorptance. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. For our fabricated devices, infrared responsivity is improved 22% in the long-wave IR and 70% in the mid-wave IR by the gold black coating, with no significant change in detector noise, using a 300°C blackbody and 80 Hz chopping rate. The increase in the time constant caused by the additional mass of gold black is ∼15%.

  19. First array of enriched Zn$$^{82}$$Se bolometers to search for double beta decay

    DOE PAGES

    Artusa, D. R.; Balzoni, A.; Beeman, J. W.; ...

    2016-07-01

    The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in 82Se, the Zn 82Se crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three Zn 82Se crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution,more » background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-o.« less

  20. Millimeter wavelength observations of solar flares for Max 1991

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Gopalswamy, N.; Nitta, N.; Schmahl, E. J.; White, S. M.; Welch, W. J.

    1988-01-01

    The Hat Creek millimeter-wave interferometer (to be known as the Berkeley-Illinois-Maryland Array, BIMA) is being upgraded. The improved array will become available during the coming solar maximum, and will have guaranteed time for solar observing. The Hat Creek millimeter-wave interferometer is described along with the improvements. The scientific objectives are briefly discussed.

  1. The proposed NRAO millimeter array and its use for solar studies

    NASA Technical Reports Server (NTRS)

    Kundu, Mukul R.

    1986-01-01

    A brief summary is given of the proposed National Radio Astronomy Observatory (NRAO) Millimeter Array discussed at a workshop held in Green Bank, W. Va., September 30 to October 2, 1985. A brief description of the solar studies that can be made with such an array is provided.

  2. Dual Transition Edge Sensor Bolometer for Enhanced Dynamic Range

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Benford, D. J.; Moseley, S. H.; Irwin, K. D.

    2004-01-01

    Broadband surveys at the millimeter and submillimeter wavelengths will require bolometers that can reach new limits of sensitivity and also operate under high background conditions. To address this need, we present results on a dual transition edge sensor (TES) device with two operating modes: one for low background, ultrasensitive detection and one for high background, enhanced dynamic range detection. The device consists of a detector element with two transition temperatures (T(sub c)) of 0.25 and 0.51 K located on the same micromachined, thermally isolated membrane structure. It can be biased on either transition, and features phonon-limited noise performance at the lower T(sub c). We measure noise performance on the lower transition 7 x 10(exp -18) W/rt(Hz) and the bias power on the upper transition of 12.5 pW, giving a factor of 10 enhancement of the dynamic range for the device. We discuss the biasable range of this type of device and present a design concept to optimize utility of the device.

  3. Carbon Nanotube Array for Infrared Detection

    DTIC Science & Technology

    2011-09-28

    Scientific Progress Technology Transfer 1    Carbon Nanotube Array for Infrared Detection Final Report Jimmy Xu...devices. In contrast to photocarrier generation across a band gap, nature’s bolometers convert infrared radiation into heating of tissues thereby...been investigated. [5, 6] High TCR is, however, not the only important parameter for bolometric sensing. Heat capacity, thermal conductivity

  4. An FPGA-based bolometer for the MAST-U Super-X divertor.

    PubMed

    Lovell, Jack; Naylor, Graham; Field, Anthony; Drewelow, Peter; Sharples, Ray

    2016-11-01

    A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of the JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.

  5. Modeling multimode feed-horn coupled bolometers for millimeter-wave and terahertz astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Kalinauskaite, Eimante; Murphy, Anthony; McAuley, Ian; Trappe, Neil A.; Bracken, Colm P.; McCarthy, Darragh N.; Doherty, Stephen; Gradziel, Marcin L.; O'Sullivan, Creidhe; Maffei, Bruno; Lamarre, Jean-Michel A.; Ade, Peter A. R.; Savini, Giorgio

    2016-07-01

    Multimode horn antennas can be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of beam pattern characteristics. Multimode horns were employed in the highest frequency channels of the European Space Agency Planck Telescope, and have been proposed for future terahertz instrumentation, such as SAFARI for SPICA. The radiation pattern of a multimode horn is affected by the details of the coupling of the higher order waveguide modes to the bolometer making the modeling more complicated than in the case of a single mode system. A typical cavity coupled bolometer system can be most efficiently simulated using mode matching, typically with smooth walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system that includes the power absorption by the absorber. In this paper we present how to include a cavity coupled bolometer, modelled as a thin absorbing film with particular interest in investigating the cavity configuration for optimizing power absorption. As an example, the possible improvements from offsetting the axis of a cylindrically symmetric absorbing cavity from that of a circular waveguide feeding it (thus trapping more power in the cavity) are discussed. Another issue is the effect on the optical efficiency of the detectors of the presence of any gaps, through which power can escape. To model these effects required that existing in-house mode matching software, which calculates the scattering matrices for axially symmetric waveguide structures, be extended to be able to handle offset junctions and free space gaps. As part of this process the complete software code 'PySCATTER' was developed in Python. The approach can be applied to proposed terahertz systems, such as SPICASAFARI.

  6. Research on infrared astrophysics and X ray and XUV astronomy

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The infrared research was divided into two related subjects, observations at wavelengths less than 34 microns and millimeter wavelength observations. A new complex of infrared sources in the Orion Nebula observed along with a broad range of galactic and extragalactic objects. The Comet Kohoutek was measured in the 1-20 micron wavelength region and its thermal properties agreed closely with those of Comet Ikeya-Seki. Combined infrared and photoelectric studies of the Makarian galaxies showed them to have a composite spectrum with a large emission feature in the far infrared. The development of one millimeter photometry and composited bolometers is described. A technique of reconstructing two dimensional surface brightness distributions with appropriate errors from individual strip scans was developed. Model parameters were determined by fitting data in non-linear systems. Results show spectral parameter uncertainties are underestimated or incorrectly evaluated in most studies.

  7. 24-71 GHz PCB Array for 5G ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Millimeter-wave 5G mobile architectures need to consolidate disparate frequency bands into a single, multifunctional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter wave array to operate across six 5G and ISM bands spanning 24-71 GHz. Importantly, the array is realized using low-cost PCB. The paper presents the design and optimized layout, and discusses fabrication and measurements.

  8. The Second-generation z (Redshift) and Early Universe Spectrometer. I. First-light Observation of a Highly Lensed Local-ulirg Analog at High-z

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl; Brisbin, Drew; Parshley, Stephen; Nikola, Thomas; Stacey, Gordon J.; Schoenwald, Justin; Higdon, James L.; Higdon, Sarah J. U.; Verma, Aprajita; Riechers, Dominik; Hailey-Dunsheath, Steven; Menten, Karl M.; Güsten, Rolf; Weiß, Axel; Irwin, Kent; Cho, Hsiao M.; Niemack, Michael; Halpern, Mark; Amiri, Mandana; Hasselfield, Matthew; Wiebe, D. V.; Ade, Peter A. R.; Tucker, Carol E.

    2014-01-01

    We recently commissioned our new spectrometer, the second-generation z(Redshift) and Early Universe Spectrometer (ZEUS-2) on the Atacama Pathfinder Experiment telescope. ZEUS-2 is a submillimeter grating spectrometer optimized for detecting the faint and broad lines from distant galaxies that are redshifted into the telluric windows from 200 to 850 μm. It uses a focal plane array of transition-edge sensed bolometers, the first use of these arrays for astrophysical spectroscopy. ZEUS-2 promises to be an important tool for studying galaxies in the years to come because of its synergy with Atacama Large Millimeter Array and its capabilities in the short submillimeter windows that are unique in the post-Herschel era. Here, we report on our first detection of the [C II] 158 μm line with ZEUS-2. We detect the line at z ~ 1.8 from H-ATLAS J091043.1-000322 with a line flux of (6.44 ± 0.42) × 10-18 W m-2. Combined with its far-IR luminosity and a new Herschel-PACS detection of the [O I] 63 μm line, we model the line emission as coming from a photo-dissociation region with far-ultraviolet radiation field, G ~ 2 × 104 G 0, gas density, n ~ 1 × 103 cm-3 and size between ~0.4 and 1 kpc. On the basis of this model, we conclude that H-ATLAS J091043.1-000322 is a high-redshift analog of a local ultra-luminous IR galaxy; i.e., it is likely the site of a compact starburst caused by a major merger. Further identification of these merging systems is important for constraining galaxy formation and evolution models.

  9. Measurements of the Optical Performance of Prototype TES Bolometers for SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, M. D.; de Lange, G.; Ranjan, M.; Gao, J.-R.; Khosropanah, P.; Ridder, M. L.; Mauskopf, P. D.; Morozov, D.; Doherty, S.; Trappe, N.; Withington, S.

    2014-09-01

    We have measured the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays, coupled with a Fourier transform spectrometer, will provide images of a 2'×2' field of view with spectral information over the wavelength range 34-210 μm. Each horn-coupled bolometer consists of a transition edge sensor (TES), with a transition temperature close to 100 mK, and a thin-film Ta absorber on a thermally-isolated silicon nitride membrane. SAFARI requires extremely sensitive detectors ( NEP˜2×10-19 W/), with correspondingly low saturation powers (˜5 fW), to take advantage of SPICA's cooled optics. To meet the challenge of testing such sensitive detectors we have constructed an ultra-low background test facility based on a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion, shielding, and vibration isolation. For optical measurements the system contains internal cold (3-30 K) and hot (˜300 K) black-body calibration sources, as well as a light pipe for external illumination. We discuss our measurements of high optical efficiency in prototype SAFARI detectors and describe recent improvements to the test facility that will enable us to test the full SAFARI focal-plane arrays.

  10. MgB2-Based Bolometer Array for Far Infra-Red Thermal Imaging and Fourier Transform Spectroscopy Applications

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Aslam, S.; Brasunas, J.

    2012-01-01

    The mid-superconducting critical temperature (T(sub c) approximately 39 K) of the simple binary, intermetallic MgB, [1] makes it a very good candidate for the development of the next generation of electrooptical devices (e.g. [2]). In particular, recent advances in thin film deposition teclmiques to attain higb quality polycrystalline thin film MgB, deposited on SiN-Si substrates, with T(sub c) approximately 38K [3] coupled with the low voltage noise performance of the film [4] makes it higbly desirable for the development of moderately cooled bolometer arrays for integration into future space-bourne far infra-red (FIR) spectrometers and thermal mappers for studying the outer planets, their icy moons and other moons of interest in the 17-250 micrometer spectral wavelength range. Presently, commercially available pyroelectric detectors operating at 300 K have specific detectivity, D(*), around 7 x 10(exp 8) to 2 x 10(exp 9) centimeters square root of Hz/W. However, a MgB2 thin film based bolometer using a low-stress (less than 140 MPa) SiN membrane isolated from the substrate by a small thermal conductive link, operating at 38 K, promises to have two orders of magnitude higher specific detectivity [5][6].

  11. Bolometeric detector arrays for CMB polarimetry

    NASA Technical Reports Server (NTRS)

    Kuo, C. L.; Bock, J. J.; Day, P.; Goldin, A.; Golwala, S.; Holmes, W.; Irwin, K.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.; hide

    2005-01-01

    We describe the development of antenna coupled bolometers for CMB polarization experiments. The necessary components of a bolometric CMB polarimeter - a beam forming element, a band defining filter, and detectors - are all fabricated on a silicon chip with photolithography.

  12. The LUCIFER/CUPID-0 demonstrator: searching for the neutrinoless double-beta decay with Zn82Se scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Artusa, D. R.; Balzoni, A.; Beeman, J. W.; Bellini, F.; Biassoni, M.; Brofferio, C.; Camacho, A.; Capelli, S.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Cruciani, A.; D'Addabbo, A.; Dafinei, I.; Di Domizio, S.; di Vacri, M. L.; Ferroni, F.; Gironi, L.; Giuliani, A.; Gotti, C.; Keppel, G.; Maino, M.; Mancuso, M.; Martinez, M.; Morganti, S.; Nagorny, S. S.; Nastasi, M.; Nisi, S.; Nones, C.; Orlandi, D.; Pagnanini, L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Pirro, S.; Pozzi, S.; Previtali, E.; Puiu, A.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.; Zolotarova, A.

    2017-09-01

    Future experiments on neutrinoless double beta-decay with the aim of exploring the inverted hierarchy region have to employ detectors with excellent energy resolution and zero background in the energy region of interest. Cryogenic scintillating bolometers turn out to be a suitable candidate since they offer particle discrimination: the dual channel detection of the heat and the scintillation light signal allows for particle identification. In particular such detectors permit for a suppression of α-induced backgrounds, a key-issue for next-generation tonne-scale bolometric experiments. We report on the progress and current status of the LUCIFER/CUPID-0 demonstrator, the first array of scintillating bolometers based on enriched Zn82Se crystals which is expected to start data taking in 2016 and the potential of this detection technique for a future tonne-scale bolometric experiment after CUORE.

  13. Angular and Polarization Response of Multimode Sensors with Resistive-Grid Absorbers

    NASA Technical Reports Server (NTRS)

    Kusaka, Akito; Wollack, Edward J.; Stevenson, Thomas R.

    2014-01-01

    High sensitivity receiver systems with near ideal polarization sensitivity are highly desirable for development of millimeter and sub-millimeter radio astronomy. Multimoded bolometers provide a unique solution to achieve such sensitivity, for which hundreds of single-mode sensors would otherwise be required. The primary concern in employing such multimoded sensors for polarimetery is the control of the polarization systematics. In this paper, we examine the angular- and polarization- dependent absorption pattern of a thin resistive grid or membrane, which models an absorber used for a multimoded bolometer. The result shows that a freestanding thin resistive absorber with a surface resistivity of eta/2, where eta is the impedance of free space, attains a beam pattern with equal E- and H-plane responses, leading to zero cross polarization. For a resistive-grid absorber, the condition is met when a pair of grids is positioned orthogonal to each other and both have a resistivity of eta/2. When a reflective backshort termination is employed to improve absorption efficiency, the cross-polar level can be suppressed below -30 dB if acceptance angle of the sensor is limited to < or approx. 60deg. The small cross-polar systematics have even-parity patterns and do not contaminate the measurements of odd-parity polarization patterns, for which many of recent instruments for cosmic microwave background are designed. Underlying symmetry that suppresses these cross-polar systematics is discussed in detail. The estimates and formalism provided in this paper offer key tools in the design consideration of the instruments using the multimoded polarimeters.

  14. Monitoring millimeter wave stray radiation during ECRH operation at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Honecker, F.; Monaco, F.; Schmid-Lorch, D.; Schütz, H.; Stober, J.; Wagner, D.

    2012-09-01

    Due to imperfection of the single path absorption, ECRH at ASDEX Upgrade (AUG) is always accompanied by stray radiation in the vacuum vessel. New ECRH scenarios with O2 and X3 heating schemes extend the operational space, but they have also the potential to increase the level of stray radiation. There are hazards for invessel components. Damage on electric cables has already been encountered. It is therefore necessary to monitor and control the ECRH with respect to the stray radiation level. At AUG a system of Sniffer antennas equipped with microwave detection diodes is installed. The system is part of the ECRH interlock circuit. We notice, however, that during plasma operation the variations of the Sniffer antenna signal are very large. In laboratory measurements we see variations of up to 20 dB in the directional sensitivity and we conclude that an interference pattern is formed inside the copper sphere of the antenna. When ECRH is in plasma operation at AUG, the plasma is acting as a phase and mode mixer for the millimeter waves and thus the interference pattern inside the sphere changes with the characteristic time of the plasma dynamics. In order to overcome the difficulty of a calibrated measurement of the average stray radiation level, we installed bolometer and pyroelectric detectors, which intrinsically average over interference structures due to their large active area. The bolometer provides a robust calibration but with moderate temporal resolution. The pyroelectric detector provides high sensitivity and a good temporal resolution, but it raises issues of possible signal drifts in long pulses.

  15. Millimeter-wave Spectroscopy of NGC1068 With Z-Spec

    NASA Astrophysics Data System (ADS)

    Kamenetzky, Julia; Aguirre, J. E.; Bock, J. J.; Bradford, M.; Earle, L.; Glenn, J.; Maloney, P.; Matsuhara, H.; Naylor, B.; Nguyen, H. T.; Zmuidzinas, J.

    2009-05-01

    NGC1068 is commonly cited as the prototypical Seyfert 2 galaxy. Both the central and extended regions have been studied extensively across the electromagnetic spectrum, revealing many different astrophysical phenomena, such as a bright central region, radio jet knots, and a conical narrow-line region. Significantly, evidence has been found that the active galactic nucleus is shrouded by a dusty molecular disk, which could support the theory that viewing angle will unify Seyfert 1 and 2 galaxies. We observed NGC1068 with Z-Spec, a broadband (185-305 GHz) millimeter-wave grating spectrometer, at the Caltech Submillimeter Observatory. Its large bandwidth allows us to simultaneously observe multiple molecular rotational transitions along with the underlying continuum. The detector array is composed of 160 silicon-nitride micromesh bolometers cooled to 60 mK by an adiabatic demagnetization refrigerator (ADR) and a closed-cycle 3He refrigerator. Z-Spec's compact design is achieved via a WaFIRS (Waveguide Far IR Spectrometer) design utilizing a parallel-plate waveguide and curved diffraction grating. Z-Spec's spectral resolution is approximately 900 MHz at the band center. We obtained a high signal-to-noise ratio spectrum of NGC1068 in late January 2007. Key observable transitions in Z-Spec's bandpass include CO , 13CO, and C18O (J = 2 - 1), HCN, HNC, and HCO+ (J = 3 - 2), and multiple CS transitions. We are modeling the NGC1068 spectrum using these data and other transitions of these molecules from the literature to probe the physical characteristics of its interstellar medium, such as temperature, density, dense gas fraction, and the extent of the AGN's contribution to the molecular gas excitation. We will present preliminary results of the analysis.

  16. Optical Characterization of the SPT-3G Camera

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Carter, F. W.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pearson, J.; Posada, C. M.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.

    2018-05-01

    The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (centered at 95, 150 and 220 GHz) with ˜ 16,000 transition-edge sensor (TES) bolometers. Each multichroic array element on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarizations, via lumped element filters. Ten detector wafers populate the detector array, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the detector array. The detectors have frequency bands consistent with our simulations and have high average optical efficiency which is 86, 77 and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers.

  17. Z-Spec: A broadband spectrometer for millimeter-wave astrophysics---Instrument development and results of a molecular line survey of nearby star-forming galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Earle, Lieko

    We have built Z-Spec, a broadband spectrometer for millimeter-wave astrophysics. The instrument's instantaneous bandwidth of 185-305 GHz covers the entire 1 millimeter atmospheric transmission window with a moderate resolving power ( R = n/Dn) of 250-350. The spectrometer employs a novel architecture called WaFIRS (Waveguide Far-Infrared Spectrometer) which confines the light propagation for a curved diffraction grating within a parallel-plate waveguide, resulting in a minimum mechanical envelope. An array of 160 silicon- nitride micromesh bolometers is cooled to 60 mK via an adiabatic demagnetization refrigerator (ADR) backed by a closed-cycle 3 He- 4 He sorption pump refrigerator. Z-Spec's compact design serves as a concept demonstration for a future far-infrared spectrometer aboard a cold telescope in space. Routine observations with Z-Spec from the Caltech Submillimeter Observatory on Mauna Kea have been conducted since April 2006, and the instrument currently achieves good sensitivities that are within a factor of two of the photon background limit set by the atmosphere and telescope. Z-Spec's primary science objectives are to determine the redshifts of faint submillimeter galaxies using the 12 CO rotational ladder, and to conduct systematic line surveys of local galaxies. The millimeter waveband hosts low- to mid- J rotational transitions for several molecular species which trace the dense interstellar gas associated with active star formation. Z-Spec's bandwidth offers a unique advantage over the traditional single-dish heterodyne approach: the spectral lines and the corresponding continua are all observed simultaneously, greatly reducing relative uncertainties in flux calibration and line-to-continuum ratios. The starburst galaxy NGC 253 was observed with Z-Spec in November 2006, for a total integration of 3.49 hours over two nights. NGC 253 is one of the brightest neighbors outside the Local Group of galaxies and its compact nuclear region is a site of prodigious star-formation. Twenty-one transitions in 13 species were detected at greater than 3s, including the well-known density tracers HCO + , HCN, HNC, and three transitions of CS. The results are compared with large-velocity-gradient (LVG) radiative-transfer simulations and the implications for the physical conditions of the gas in the starburst core are discussed.

  18. Mirror Illumination and Spillover Measurements of the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Gallardo, Patricio; Dunner, Rolando; Wollack, Ed; Jerez-Hanckes, Carlos

    2012-01-01

    The Atacama Cosmology Telescope (ACT) is a 6 m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145 GHz, 220GHz and 280GHz, The receiver in ACT, the Millimeter Bolometer Array Camera, features 1000 TES bolometers in each band, The detector performance depends critically on the total optical loading, requiring the spmover contributions from the optics to be minimal. This inspired the use of a cold Lyot stop to limit the illumination of the primary and the use of guard rings surrounding the primary and secondary reflectors. Here, we present a direct measurement of the illumination aperture for both reflectors and of the attenuation level outside the main optical path. We used a 145 GHz, 1 m W source and a chopper wheel to produce a time-varying signal with a broad heam proflle, We sampled the response of the camera for different locations of the source, placed in front and beside the primary and secondary mirrors. The aperture of the primary was measured to be 5,72 plus or minus 0,17m in diameter (95 plus or minus 3% of its geometrical size), while the aperture of the secondary yielded 2 plus or minus 0.12m in diameter. Both apertures are consistent with the optical design. Comparing to previous measurements of the beam solid angle from planet observations, we estimate an optical efficiency of 72.3 plus or minus 4,8%. We found that the attenuation outside the primary aperture was -16 plus or minus 2dB, which is below the theoretical expectations, and -22 plus or minus 1 dB outside the secondary aperture, which is consistent with simulations. These results motivated the extension of the baffles surrounding the secondary mirror, with the following reduction in detector optical loading from 2,24 pW to 188pW.

  19. Thermal response of large area high temperature superconducting YBaCuO infrared bolometers

    NASA Technical Reports Server (NTRS)

    Khalil, Ali E.

    1991-01-01

    Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.

  20. The Atacama Large Millimeter/Submillimeter Array (ALMA) - A Successful Three-Way International Partnership Without a Majority Stakeholder

    NASA Astrophysics Data System (ADS)

    Vanden Bout, Paul A.

    2013-04-01

    The Atacama Millimeter/Submillimeter Array (ALMA) is the largest ground-based astronomical facility built to date. It's size and challenging site required an international effort. This talk presents the partnership structure, management challenges, current status, and examples of early scientific successes.

  1. TES development for a frequency selective bolometer camera.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datesman, A. M.; Downes, T. P.; Perera, T. A.

    2009-06-01

    We discuss the development, at Argonne National Laboratory (ANL), of a four-pixel camera with four spectral channels centered at 150, 220, 270, and 360 GHz. The scientific motivation involves photometry of distant dusty galaxies located by Spitzer and SCUBA, as well as the study of other millimeter-wave sources such as ultra-luminous infrared galaxies, the Sunyaev-Zeldovich effect in clusters, and galactic dust. The camera incorporates Frequency Selective Bolometer (FSB) and superconducting Transition-Edge Sensor (TES) technology. The current generation of TES devices we examine utilizes proximity effect superconducting bilayers of Mo/Au, Ti, or Ti/Au as TESs, located along with frequency selective absorbingmore » structures on silicon nitride membranes. The detector incorporates lithographically patterned structures designed to address both TES device stability and detector thermal transport concerns. The membrane is not perforated, resulting in a detector which is comparatively robust mechanically. In this paper, we report on the development of the superconducting bilayer TES technology, the design and testing of the detector thermal transport and device stability control structures, optical and thermal test results, and the use of new materials.« less

  2. Mechanical Design of a 4-Stage ADR for the PIPER mission

    NASA Technical Reports Server (NTRS)

    James, Bryan L.; Kimball, Mark O.; Shirron, Peter J.; Sampson, Michael A.; Letmate, Richard V.; Jackson, Michael L.

    2017-01-01

    The four 1,280 bolometer detector arrays that will fly on the balloon borne PIPER mission will be cooled by a 4-stage adiabatic demagnetization refrigerator (ADR). Two of the three mechanically independent ADR assemblies provide thermal isolation to their salt pills through Kevlar suspensions while the other provides thermal isolation to its salt pill through the use of bellows and Vespel material. The ADR integrates with the detector arrays and it sits in a large bucket Dewar containing superfluid liquid helium. This paper will describe the complex mechanical design of the PIPER ADR, and summarize the mechanical analysis done to validate the design.The four 1,280 bolometer detector arrays that will fly on the balloon borne PIPER mission will be cooled by a 4-stage adiabatic demagnetization refrigerator (ADR). Two of the three mechanically independent ADR assemblies provide thermal isolation to their salt pills through Kevlar suspensions while the other provides thermal isolation to its salt pill through the use of bellows and Vespel material. The ADR integrates with the detector arrays and it sits in a large bucket Dewar containing superfluid liquid helium. This paper will describe the complex mechanical design of the PIPER ADR, and summarize the mechanical analysis done to validate the design.

  3. ORAC-DR -- SCUBA Pipeline Data Reduction

    NASA Astrophysics Data System (ADS)

    Jenness, Tim; Economou, Frossie

    ORAC-DR is a flexible data reduction pipeline designed to reduce data from many different instruments. This document describes how to use the ORAC-DR pipeline to reduce data taken with the Submillimetre Common-User Bolometer Array (SCUBA) obtained from the James Clerk Maxwell Telescope.

  4. Optical performance of prototype horn-coupled TES bolometer arrays for SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel L.

    2016-07-01

    The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains internal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.

  5. Submillimeter Laboratory Investigations: Spectroscopy and Collisions

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; DeLucia, Frank C.

    2002-01-01

    Currently, millimeter-wave and submillimeter-wave spectroscopy is conducted in our laboratory on several different types of spectrometers. Our standard spectrometer utilizes the output of a phase-locked klystron operating in the 40-60 GHz region, which is sent into a crossed-waveguide harmonic generator, or "multiplier". The high frequency millimeter-and submillimeter-wave radiation is transmitted via quasi-optical techniques through an absorption cell and then onto a detector, which is either an InSb hot electron bolometer cooled to 1.4 K or a Si bolometer cooled to 0.3 K. The detector response is sent to a computer for measurement and analysis. The frequency range produced and detected in this manner goes from 80 GHz to upwards of 1 THz. Spectra are normally taken with source modulation, with line frequencies typically measured to an accuracy of 50-100 kHz. Higher accuracy is available when needed. Recently, we developed a new, broad-band spectrometer in our laboratory based on a free-running backward wave oscillator (BWO) of Russian manufacture as the primary source of radiation. The so-called FASSST (fast-scan submillimeter spectroscopic technique) system uses fast-scan and optical calibration methods rather than the traditional locking techniques. The output power from the BWO is split such that 90% goes into the absorption cell while 10% is coupled to a 40-meter Fabry-Perot cavity, which yields fringe? for frequency measurement. Results from this spectrometer on the spectrum of nitric acid (HNO3) show that 100 GHz of spectral data can be obtained in 5 seconds with a measurement accuracy of 50 kHz. Currently, the frequency range of the FASSST system in our laboratory is roughly 100-700 GHz.

  6. The Polarization-Sensitive Bolometers for SPICA and their Potential Use for Ground-Based Application

    NASA Astrophysics Data System (ADS)

    Reveret, Vincent

    2018-01-01

    CEA is leading the development of Safari-POL, an imaging-polarimeter aboard the SPICA space observatory (ESA M5). SPICA will be able to reach unprecedented sensitivities thanks to its cooled telescope and its ultra-sensitive detectors. The detector assembly of Safari-POL holds three arrays that are cooled down to 50 mK and correspond to three spectral bands : 100, 200 and 350 microns. The detectors (silicon bolometers), benefit from the Herschel/PACS legacy and are also a big step forward in term of sensitivity (improved by two orders of magnitude compared to PACS bolometers) and for polarimetry capabilities. Indeed, each pixel is intrinsically sensitive to two polarization components (Horizontal and Vertical). We will present the Safari-POL concept, the first results of measurements made on the detectors, and future plans for possible ground-based instruments using this technology. We will also present the example of the ArTéMiS camera, installed at APEX, that was developped as a ground-based conterpart of the PACS photometer.

  7. Wide-field-of-view millimeter-wave telescope design with ultra-low cross-polarization

    NASA Astrophysics Data System (ADS)

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David; Hatchell, Brian; Valdez, Patrick; Tedeschi, Jonathan; Hall, Thomas; McMakin, Douglas

    2012-06-01

    As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degrees of freedom that offer larger fields of view than possible with single-reflector designs. Dragone's graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone's geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone's design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low cross-polarization and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.

  8. Technology Advances at the NRAO Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Lockman, Felix James

    2015-08-01

    The 100 meter diameter Green Bank Telescope, with its large frequency coverage, great sensitivity, all-sky tracking, and location at a protected, radio-quiet site, offers a unique platform for technological advances in astronomical instrumentation that can yield an immediate scientific payoff.MUSTANG-1.5 is a feedhorn-coupled bolometer array for 3mm that has recently been installed on the telescope. It has 64 pixels (expandable to 223) and offers sensitivity to angular scales from 9" to more than 3' over a band from 75 GHz to 105 GHz. Its capabilities for science at 3mm are complimentary to, and in some cases superior to, those offered by ALMA. MUSTANG-1.5 is a collaboration between UPenn., NIST, NRAO, and other institutions.ARGUS is a 16-pixel focal plane array for millimeter spectroscopy that will be in use on the GBT in 2015. The array architecture is designed as a scalable technology pathfinder for larger arrays, but by itself it will provide major capabilities for spectroscopy from 75-107 GHz with 8" angular resolution over a wide field-of-view. It is a collaboration between Stanford Univ., Caltech, JPL, Univ. Maryland, Univ. Miami, and NRAO.FLAG is a prototype phased array receiver operating at 21cm wavelength that is under development for the GBT. It will produce multiple beams over a wide field of view with a sensitivity competitive with that of single-pixel receivers, allowing rapid astronomical surveys. FLAG is a collaboration between BYU, WVU, and NRAO.Also under development is a mm-wave phased array receiver for the GBT, designed to operate near 90 GHz as a prototype for very large format phased array receivers in the 3mm band. It is a collaboration between UMass and BYU.VEGAS is the new spectrometer for the GBT, offering multiple configurations well matched to GBT receivers from 1 to 100 GHz and suitable for use with focal plane arrays. It is a collaboration between UCal (Berkeley) and NRAO.The new receivers and spectrometers create extremely big data sets during both observation and later processing. Studies are under way at the GBT of data-streaming methodologies and pipeline processing techniques to meet the challenges posed by this new generation of instrumentation.

  9. Study of Rare Nuclear Processes with CUORE

    DOE PAGES

    Alduino, C; Alfonso, K; III, FTA; ...

    2018-03-30

    TeO 2 bolometers have been used for many years to search for neutrinoless double beta decay in 130-Te. CUORE, a tonne-scale TeO 2 detector array, recently published the most sensitive limit on the half-life,more » $$T_{1/2}^{0\

  10. Study of Rare Nuclear Processes with CUORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alduino, C; Alfonso, K; III, FTA

    TeO 2 bolometers have been used for many years to search for neutrinoless double beta decay in 130-Te. CUORE, a tonne-scale TeO 2 detector array, recently published the most sensitive limit on the half-life,more » $$T_{1/2}^{0\

  11. Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation

    NASA Astrophysics Data System (ADS)

    Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Chabot, M.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L. D.; Sudiwala, R.

    2014-09-01

    The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent (from 11 to 40 aW Hz-1), but the rate of cosmic-ray impacts on the HFI detectors was unexpectedly higher than in other instruments. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics and a rate of about one glitch per second. A study of cosmic-ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper evaluates the physical origins of glitches observed by the HFI detectors. To better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact energies. The bolometer modules were exposed to 23 MeV protons from the Orsay IPN Tandem accelerator, and to 241Am and 244Cm α-particle and 55Fe radioactive X-ray sources. The calibration data from the HFI ground-based preflight tests were used to further characterize the glitches and compare glitch rates with statistical expectations under laboratory conditions. Test results provide strong evidence that the dominant family of glitches observed in flight are due to cosmic-ray absorption by the silicon die substrate on which the HFI detectors reside. Glitch energy is propagated to the thermistor by ballistic phonons, while thermal diffusion also contributes. The average ratio between the energy absorbed, per glitch, in the silicon die and thatabsorbed in the bolometer is equal to 650. We discuss the implications of these results for future satellite missions, especially those in the far-infrared to submillimeter and millimeter regions of the electromagnetic spectrum.

  12. Commercialization of Micro-fabrication of Antenna-Coupled Transition Edge Sensor Bolometer Detectors for Studies of the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Suzuki, Aritoki; Bebek, Chris; Garcia-Sciveres, Maurice; Holland, Stephen; Kusaka, Akito; Lee, Adrian T.; Palaio, Nicholas; Roe, Natalie; Steinmetz, Leo

    2018-04-01

    We report on the development of commercially fabricated multichroic antenna-coupled transition edge sensor (TES) bolometer arrays for cosmic microwave background (CMB) polarimetry experiments. CMB polarimetry experiments have deployed instruments in stages. Stage II experiments deployed with O(1000) detectors and reported successful detection of B-mode (divergence-free) polarization pattern in the CMB. Stage III experiments have recently started observing with O(10,000) detectors with wider frequency coverage. A concept for a stage IV experiment, CMB-S4, is emerging to make a definitive measurement of CMB polarization from the ground with O(400,000) detectors. The orders of magnitude increase in detector count for CMB-S4 require a new approach in detector fabrication to increase fabrication throughput and reduce the cost. We report on collaborative efforts with two commercial micro-fabrication foundries to fabricate antenna-coupled TES bolometer detectors. The detector design is based on the sinuous antenna-coupled dichroic detector from the POLARBEAR-2 experiment. The TES bolometers showed the expected I-V response, and the RF performance agrees with the simulation. We will discuss the motivation, design consideration, fabrication processes, test results, and how industrial detector fabrication could be a path to fabricate hundreds of detector wafers for future CMB polarimetry experiments.

  13. Highly Uniform 150 mm Diameter Multichroic Polarimeter Array Deployed for CMB Detection

    NASA Technical Reports Server (NTRS)

    Ho, Shuay-Pwu Patty; Austermann, Jason; Beall, James A.; Choi, Steve K.; Cothard, Nicholas F.; Crowley, Kevin; Datta, Rahul; Devlin, Mark J.; Duff, Shannon M.; Wollack, Edward J.

    2016-01-01

    The Advanced Atacama Cosmology Telescope Polarimeter is an upgraded receiver for the Atacama Cosmology Telescope, which has begun making measurements of the small angular scale polarization anisotropies in the Cosmic Microwave Background using the first of four new multichroic superconducting detector arrays. Here, we review all details of the optimization and characterization of this first array, which features 2012 AlMn transition edge sensor bolometers operating at 150 and 230 GHz. We present critical temperatures, thermal conductivities,saturation powers, time constants, and sensitivities for the array. The results show high uniformity across the 150 mm wafer and good performance in the field.

  14. Thermopile Detector Arrays for Space Science Applications

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Kenyon, M.; Krueger, T. R.; McCann, T. A.; Chacon, R.; Jones, E. W.; Dickie, M. R.; Schofield, J. T.; McCleese, D. J.; Gaalema, S.

    2004-01-01

    Thermopile detectors are widely used in uncooled applications where small numbers of detectors are required, particularly in low-cost commercial applications or applications requiring accurate radiometry. Arrays of thermopile detectors, however, have not been developed to the extent of uncooled bolometer and pyroelectric/ferroelectric arrays. Efforts at JPL seek to remedy this deficiency by developing high performance thin-film thermopile detectors in both linear and two-dimensional formats. The linear thermopile arrays are produced by bulk micromachining and wire bonded to separate CMOS readout electronic chips. Such arrays are currently being fabricated for the Mars Climate Sounder instrument, scheduled for launch in 2005. Progress is also described towards realizing a two-dimensional thermopile array built over CMOS readout circuitry in the substrate.

  15. Wide-Field-of-View Millimeter-Wave Telescope Design with Ultra-Low Cross-Polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.

    2012-05-01

    As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since most millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degreesmore » of freedom that offer larger fields of view than possible with single-reflector designs. Dragone’s graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone’s geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone’s design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low polarization crosstalk and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.« less

  16. VizieR Online Data Catalog: ALMA survey of protoplanetary disks in sigma Ori (Ansdell+, 2017)

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Williams, J. P.; Manara, C. F.; Miotello, A.; Facchini, S.; van der Marel, N.; Testi, L.; van Dishoeck, E. F.

    2017-08-01

    Our sample consists of the 92 Young Stellar Objects (YSOs) in σ Orionis with infrared excesses consistent with the presence of a protoplanetary disk. hese sources are identified by cross-matching the Class II and transition disk (TD) candidates from the Spitzer survey of Hernandez et al. 2007 (Cat. J/ApJ/662/1067) with the Mayrit catalog (Caballero 2008, Cat. J/A+A/478/667). Both catalogs are expected to be complete down to the brown dwarf limit. Disk classifications are based on the Spitzer/Infrared Array Camera (IRAC) Spectral Energy Distribution (SED) slope, as described in Hernandez et al. 2007 (Cat. J/ApJ/662/1067). We also include in our sample a Class I disk (source 1153), as it is located near the Spitzer/IRAC color cutoff for Class II disks. Our Band 6 Atacama Large Millimeter/sub-millimeter Array (ALMA) observations were obtained on 2016 July 30 and 31 during Cycle 3 (Project ID: 2015.1.00089.S; PI: Williams). The array configuration used 36 and 37 12m antennas on July 30 and 31, respectively, with baselines of 15-1124m on both runs. The correlator setup included two broadband continuum windows centered on 234.293 and 216.484GHz with bandwidths of 2.000 and 1.875GHz and channel widths of 15.625 and 0.976MHz, respectively. The bandwidth-weighted mean continuum frequency was 225.676GHz (1.33mm). The spectral windows covered the 12CO (230.538GHz), 13CO (220.399GHz), and C18O (219.560GHz) J=2-1 transitions at velocity resolutions of 0.16-0.17km/s. These spectral windows were centered on 230.531, 220.392, and 219.554GHz with bandwidths of 11.719MHz and channel widths of 0.122MHz. On-source integration times were 1.2 minutes per object for an average continuum rms of 0.15mJy/beam (Table1). This sensitivity was based on the James Clerk Maxwell Telescope (JCMT)/Submillimeter Common User Bolometer Array (SCUBA)-2 survey of σ Orionis disks by Williams et al. 2013 (Cat. J/MNRAS/435/1671), who found that stacking their individual non-detections revealed a mean 850μm continuum signal of 1.3mJy at 4σ significance. The sensitivity of our ALMA survey was therefore chosen to provide ~3-4σ detections of such disks at 1.3mm, based on an extrapolation of the 850μm mean signal using a spectral slope of α=2-3. Table1 presents the 1.33mm continuum flux densities and associated uncertainties (F1.33mm). Table2 gives our integrated line fluxes or upper limits. (2 data files).

  17. Multichroic Bolometric Detector Architecture for Cosmic Microwave Background Polarimetry Experiments

    NASA Astrophysics Data System (ADS)

    Suzuki, Aritoki

    Characterization of the Cosmic Microwave Background (CMB) B-mode polarization signal will test models of inflationary cosmology, as well as constrain the sum of the neutrino masses and other cosmological parameters. The low intensity of the B-mode signal combined with the need to remove polarized galactic foregrounds requires a sensitive millimeter receiver and effective methods of foreground removal. Current bolometric detector technology is reaching the sensitivity limit set by the CMB photon noise. Thus, we need to increase the optical throughput to increase an experiment's sensitivity. To increase the throughput without increasing the focal plane size, we can increase the frequency coverage of each pixel. Increased frequency coverage per pixel has additional advantage that we can split the signal into frequency bands to obtain spectral information. The detection of multiple frequency bands allows for removal of the polarized foreground emission from synchrotron radiation and thermal dust emission, by utilizing its spectral dependence. Traditionally, spectral information has been captured with a multi-chroic focal plane consisting of a heterogeneous mix of single-color pixels. To maximize the efficiency of the focal plane area, we developed a multi-chroic pixel. This increases the number of pixels per frequency with same focal plane area. We developed multi-chroic antenna-coupled transition edge sensor (TES) detector array for the CMB polarimetry. In each pixel, a silicon lens-coupled dual polarized sinuous antenna collects light over a two-octave frequency band. The antenna couples the broadband millimeter wave signal into microstrip transmission lines, and on-chip filter banks split the broadband signal into several frequency bands. Separate TES bolometers detect the power in each frequency band and linear polarization. We will describe the design and performance of these devices and present optical data taken with prototype pixels and detector arrays. Our measurements show beams with percent level ellipticity, percent level cross-polarization leakage, and partitioned bands using banks of two and three filters. We will also describe the development of broadband anti-reflection coatings for the high dielectric constant lens. The broadband anti-reflection coating has approximately 100% bandwidth and no detectable loss at cryogenic temperature. We will describe a next generation CMB polarimetry experiment, the POLARBEAR-2, in detail. The POLARBEAR-2 would have focal planes with kilo-pixel of these detectors to achieve high sensitivity. We'll also introduce proposed experiments that would use multi-chroic detector array we developed in this work. We'll conclude by listing out suggestions for future multichroic detector development.

  18. Large mass bolometers for neutrinoless double beta decay detection: model and last results

    NASA Astrophysics Data System (ADS)

    Pedretti, Marisa; Barucci, Marco; Giuliani, Andrea; Pasca, Edoardo; Risegari, Lara; Olivieri, Emiliano; Ventura, Guglielmo

    2004-01-01

    Milano collaboration has been developing for many years large mass bolometers for particle detection, and in particular for the study of neutrinoless double beta decay of 130Te. The active components of the detectors are large mass (340 g and 790 g) TeO2 crystals, while Neutron Transmutation Doped Ge thermistors are used as phonon sensors. These devices work at low temperatures, about 5-10 mK. The mechanical and thermal connections of the detector to the thermal bath are made with PTFE pieces that hold the crystal on copper frames. Gold wires are used as electric connections. We have developed a complete thermal model for the bolometers and "ad hoc" measurements of the thermal parameters involved were performed in the Florence cryogenic laboratory. These studies have permitted to simulate the static and dynamic behaviours of the detectors. A satisfactory agreement between simulated and the experimental response has been obtained as far as the static behaviour is concerned, while the dynamic behaviour is not yet fully understood. These preliminary results however will enable us to design new detector structures in order to improve the signal-to-noise ratio and the reproducibility. Given the good performances of these devices (excellent energy resolutions were obtained, of the order of 2 keV at 911 keV and of 5 keV at 2615 keV), this technique is particularly suitable to detectors for gamma ray spectroscopy. Encouraged by this results, the Milano-Como group has joined a large international collaboration for the realization of CUORE (Cryogenic Underground Observatory for Rare Events), seraching for Dark Matter and neutrinoless Double Beta Decay, a crucial phenomenon for neutrino physics. The Cuoricino detector, a small scale test of CUORE detector, is an array of 62 large mass bolometers like those already described, and it is now in operation in the Gran Sasso undergrand laboratory, Italy). It is the largest array of bolometric detectors ever constructed.

  19. The Inauguration of the Atacama Large Millimeter/submillimeter Array

    NASA Astrophysics Data System (ADS)

    Testi, L.; Walsh, J.

    2013-06-01

    On 13 March 2013 the official inauguration of the Atacama Large Millimeter/submillimeter Array (ALMA) took place at the Operations Support Facility in northern Chile. A report of the event and the preceding press conference is presented and the texts of the speeches by the President of Chile, Sebastián Piñera, and the Director General of ESO, Tim de Zeeuw, are included.

  20. Noninvasive Spatially Offset and Transmission Raman Mapping of Breast Tissue: A Multimodal Approach Towards the In Vivo assessment of Tissue Pathology

    DTIC Science & Technology

    2013-04-01

    liquid nitrogen cooled mercury cadmium telluride ( MCT ) detector and compare their performance to a commercial FT-IR imaging instrument. We examine the...telluride ( MCT ) detector (InfraRed Associates, Stuart, FL), and in a second widefield imaging configuration, we employed a cooled focal plane array (FPA...experiment, a cooled focal plane array (FPA) was substituted for the bolometer. (b) A cooled single-element MCT detector is utilized with an adjustable

  1. Hafnium Films and Magnetic Shielding for TIME, A mm-Wavelength Spectrometer Array

    NASA Astrophysics Data System (ADS)

    Hunacek, J.; Bock, J.; Bradford, C. M.; Butler, V.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A.; Crites, A.; Frez, C.; Hailey-Dunsheath, S.; Hoscheit, B.; Kim, D. W.; Li, C.-T.; Marrone, D.; Moncelsi, L.; Shirokoff, E.; Steinbach, B.; Sun, G.; Trumper, I.; Turner, A.; Uzgil, B.; Weber, A.; Zemcov, M.

    2018-04-01

    TIME is a mm-wavelength grating spectrometer array that will map fluctuations of the 157.7-μm emission line of singly ionized carbon ([CII]) during the epoch of reionization (redshift z ˜ 5-9). Sixty transition-edge sensor (TES) bolometers populate the output arc of each of the 32 spectrometers, for a total of 1920 detectors. Each bolometer consists of gold absorber on a ˜ 3 × 3 mm silicon nitride micro-mesh suspended near the corners by 1 × 1 × 500 μm silicon nitride legs targeting a photon-noise-dominated NEP ˜ 1 × 10^{-17} W/√{Hz} . Hafnium films are explored as a lower-T_c alternative to Ti (500 mK) for TIME TESs, allowing thicker support legs for improved yield. Hf T_c is shown to vary between 250 and 450 mK when varying the resident Ar pressure during deposition. Magnetic shielding designs and simulations are presented for the TIME first-stage SQUIDs. Total axial field suppression is predicted to be 5 × 10^7.

  2. Complete event-by-event α /γ (β ) separation in a full-size TeO2 CUORE bolometer by Neganov-Luke-magnified light detection

    NASA Astrophysics Data System (ADS)

    Bergé, L.; Chapellier, M.; de Combarieu, M.; Dumoulin, L.; Giuliani, A.; Gros, M.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Paul, B.; Poda, D. V.; Redon, T.; Siebenborn, B.; Zolotarova, A. S.; Armengaud, E.; Augier, C.; Benoît, A.; Billard, J.; Broniatowski, A.; Camus, P.; Cazes, A.; Charlieux, F.; De Jesus, M.; Eitel, K.; Foerster, N.; Gascon, J.; Jin, Y.; Juillard, A.; Kleifges, M.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le Sueur, H.; Maisonobe, R.; Navick, X.-F.; Pari, P.; Queguiner, E.; Rozov, S.; Sanglard, V.; Vagneron, L.; Weber, M.; Yakushev, E.

    2018-03-01

    In the present work, we describe the results obtained with a large (≈133 cm3 ) TeO2 bolometer, with a view to a search for neutrinoless double-β decay (0 ν β β ) of 130Te. We demonstrate an efficient α -particle discrimination (99.9%) with a high acceptance of the 0 ν β β signal (about 96%), expected at ≈2.5 MeV. This unprecedented result was possible thanks to the superior performance (10-eV rms baseline noise) of a Neganov-Luke-assisted germanium bolometer used to detect a tiny (70-eV) light signal from the TeO2 detector, dominated by γ (β )-induced Cherenkov radiation but exhibiting also a clear scintillation component. The obtained results represent a major breakthrough toward the TeO2-based version of the CUORE Upgrade with Particle IDentification (CUPID), a ton-scale cryogenic 0 ν β β experiment proposed as a followup to the Cryogenic Underground Observatory for Rare Events (CUORE) project with particle identification. The CUORE experiment recently began a search for neutrinoless double-β decay of 130Te with an array of 988 125-cm3TeO2 bolometers. The lack of α discrimination in CUORE makes α decays at the detector surface the dominant background component, at the level of ≈0.01 counts/(keV kg y) in the region of interest. We show here, for the first time with a CUORE-size bolometer and using the same technology as CUORE for the readout of both heat and light signals, that surface α background can be fully rejected.

  3. Early Science with the Large Millimeter Telescope: observations of dust continuum and CO emission lines of cluster-lensed submillimetre galaxies at z=2.0-4.7

    NASA Astrophysics Data System (ADS)

    Zavala, J. A.; Yun, M. S.; Aretxaga, I.; Hughes, D. H.; Wilson, G. W.; Geach, J. E.; Egami, E.; Gurwell, M. A.; Wilner, D. J.; Smail, Ian; Blain, A. W.; Chapman, S. C.; Coppin, K. E. K.; Dessauges-Zavadsky, M.; Edge, A. C.; Montaña, A.; Nakajima, K.; Rawle, T. D.; Sánchez-Argüelles, D.; Swinbank, A. M.; Webb, T. M. A.; Zeballos, M.

    2015-09-01

    We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1 mm continuum images and wide bandwidth spectra (73-111 GHz) acquired with the Redshift Search Receiver, towards four bright lensed submillimetre galaxies identified through the Herschel Lensing Survey-snapshot and the Submillimetre Common-User Bolometer Array-2 Cluster Snapshot Survey. This pilot project studies the star formation history and the physical properties of the molecular gas and dust content of the highest redshift galaxies identified through the benefits of gravitational magnification. We robustly detect dust continuum emission for the full sample and CO emission lines for three of the targets. We find that one source shows spectroscopic multiplicity and is a blend of three galaxies at different redshifts (z = 2.040, 3.252, and 4.680), reminiscent of previous high-resolution imaging follow-up of unlensed submillimetre galaxies, but with a completely different search method, that confirm recent theoretical predictions of physically unassociated blended galaxies. Identifying the detected lines as 12CO (Jup = 2-5) we derive spectroscopic redshifts, molecular gas masses, and dust masses from the continuum emission. The mean H2 gas mass of the full sample is (2.0 ± 0.2) × 1011 M⊙/μ, and the mean dust mass is (2.0 ± 0.2) × 109 M⊙/μ, where μ ≈ 2-5 is the expected lens amplification. Using these independent estimations we infer a gas-to-dust ratio of δGDR ≈ 55-75, in agreement with other measurements of submillimetre galaxies. Our magnified high-luminosity galaxies fall on the same locus as other high-redshift submillimetre galaxies, extending the L^' }_CO-LFIR correlation observed for local luminous and ultraluminous infrared galaxies to higher far-infrared and CO luminosities.

  4. Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver

    DOE PAGES

    Holland, Wayne S.; Zmuidzinas, Jonas; Posada, Chrystian M.; ...

    2016-07-19

    Now, detectors for cosmic microwave background (CMB) experiments are background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. We present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonalmore » polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's T-c is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Our results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from these research and development wafers have been incorporated into the fabrication process to get the baseline fabrication process presented here. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016.« less

  5. Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Wayne S.; Zmuidzinas, Jonas; Posada, Chrystian M.

    Now, detectors for cosmic microwave background (CMB) experiments are background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. We present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonalmore » polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's T-c is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Our results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from these research and development wafers have been incorporated into the fabrication process to get the baseline fabrication process presented here. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016.« less

  6. Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver

    NASA Astrophysics Data System (ADS)

    Posada, Chrystian M.; Ade, Peter A. R.; Anderson, Adam J.; Avva, Jessica; Ahmed, Zeeshan; Arnold, Kam S.; Austermann, Jason; Bender, Amy N.; Benson, Bradford A.; Bleem, Lindsey; Byrum, Karen; Carlstrom, John E.; Carter, Faustin W.; Chang, Clarence; Cho, Hsiao-Mei; Cukierman, Ari; Czaplewski, David A.; Ding, Junjia; Divan, Ralu N. S.; de Haan, Tijmen; Dobbs, Matt; Dutcher, Daniel; Everett, Wenderline; Gannon, Renae N.; Guyser, Robert J.; Halverson, Nils W.; Harrington, Nicholas L.; Hattori, Kaori; Henning, Jason W.; Hilton, Gene C.; Holzapfel, William L.; Huang, Nicholas; Irwin, Kent D.; Jeong, Oliver; Khaire, Trupti; Korman, Milo; Kubik, Donna L.; Kuo, Chao-Lin; Lee, Adrian T.; Leitch, Erik M.; Lendinez Escudero, Sergi; Meyer, Stephan S.; Miller, Christina S.; Montgomery, Joshua; Nadolski, Andrew; Natoli, Tyler J.; Nguyen, Hogan; Novosad, Valentyn; Padin, Stephen; Pan, Zhaodi; Pearson, John E.; Rahlin, Alexandra; Reichardt, Christian L.; Ruhl, John E.; Saliwanchik, Benjamin; Shirley, Ian; Sayre, James T.; Shariff, Jamil A.; Shirokoff, Erik D.; Stan, Liliana; Stark, Antony A.; Sobrin, Joshua; Story, Kyle; Suzuki, Aritoki; Tang, Qing Yang; Thakur, Ritoban B.; Thompson, Keith L.; Tucker, Carole E.; Vanderlinde, Keith; Vieira, Joaquin D.; Wang, Gensheng; Whitehorn, Nathan; Yefremenko, Volodymyr; Yoon, Ki Won

    2016-07-01

    Detectors for cosmic microwave background (CMB) experiments are now essentially background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. Here, we present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonal polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's Tc is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from these research and development wafers have been incorporated into the fabrication process to get the baseline fabrication process presented here. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016.

  7. BLAST: The Balloon-Borne Large Aperture Submillimeter Telescope

    NASA Technical Reports Server (NTRS)

    Devlin, Mark; Ade, Peter; Bock, Jamie; Dicker, Simon; Griffin, Matt; Gunderson, Josh; Halpern, Mark; Hargrave, Peter; Hughes, David; Klein, Jeff

    2004-01-01

    BLAST is the Balloon-borne Large-Aperture Sub-millimeter Telescope. It will fly from a Long Duration Balloon (LDB) platform from Antarctica. The telescope design incorporates a 2 m primary mirror with large-format bolometer arrays operating at 250, 350 and 500 microns. By providing the first sensitive large-area (10 sq. deg.) sub-mm surveys at these wavelengths, BLAST will address some of the most important galactic and cosmological questions regarding the formation and evolution of stars, galaxies and clusters. Galactic and extragalactic BLAST surveys will: (1) identify large numbers of high-redshift galaxies; (2) measure photometric redshifts, rest-frame FIR luminosities and star formation rates thereby constraining the evolutionary history of the galaxies that produce the FIR and sub-mm background; (3) measure cold pre-stellar sources associated with the earliest stages of star and planet formation; (4) make high-resolution maps of diffuse galactic emission over a wide range of galactic latitudes. In addition to achieving the above scientific goals, the exciting legacy of the BLAST LDB experiment will be a catalogue of 3000-5000 extragalactic sub-mm sources and a 100 sq. deg. sub-mm galactic plane survey. Multi-frequency follow-up observations from SIRTF, ASTRO-F, and Herschel, together with spectroscopic observations and sub-arcsecond imaging from ALMA are essential to understand the physical nature of the BLAST sources.

  8. High Resolution Imaging with MUSTANG-2 on the GBT

    NASA Astrophysics Data System (ADS)

    Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander

    2018-01-01

    We present early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instruments such as the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID multiplexer-based readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeter wave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2’s first season 7 separate proposals were awarded a total of 230 hours of telescope time.

  9. Tunable Heterodyne Receiver from 100 Micron to 1,000 Micron for Airborne Observations

    NASA Technical Reports Server (NTRS)

    Roeser, H. P.; Wattenbach, R.; Vanderwal, P.

    1984-01-01

    Interest in high resolution spectrometers for the submillimeter wavelength range from 100 micron to 1,000 micron is mostly stimulated by molecular spectroscopy in radioastronomy and atmospheric physics, and by plasma diagnostic experiments. Schottky diodes in waveguide mixer technology and InSb-hot electron bolometers are successfully used in the 0.5 to a few millimeter range whereas tandem Fabry-Perot spectrometers combined with photoconductive detectors (Ge:Sb and Ge:Ga) are used for the 100 micron range. Recent research on heterodyne spectrometers, with Schottky diodes in an open structure mixer and a molecular laser as local oscillators, which can be used over the whole wavelength range is summarized.

  10. Cryogenic bolometric systems

    NASA Astrophysics Data System (ADS)

    Kangas, Miikka Matias

    The big bang, early galaxy formation, the interstellar medium, and high z galaxy cluster evolution are all science objectives that are studied in the far infrared (FIR). The cosmological parameters that describe the universe are encoded in anisotropies in the Cosmic Microwave Background (CMB), and can be extracted from precision subdegree angular resolution FIR maps. Cryogenic bolometers are well suited for these science objectives, and are evolving rapidly today. A cryogenic bolometric system is made up of a few building blocks, which can be modularized or integrated depending on the maturity of the scientific field they are used for. Integration of systems increases with the maturity of the technology. The basic building blocks are the bolometer, the cryogenics, the dewar, the optics, the filters, and electronics. The electronics can be further subdivided into room temperature back-end and cryogenic front-end electronics. The electronics are often partly integrated into the dewar. The dewar is part of the support structure, and only the subkelvin portion the dewar is referred to as cryogenics here. Each of these can be a sophisticated engineering feat on their own, and this dissertation revolves around the development of several of these elements. The microfabrication sequence for a free standing micromesh detector was developed. Polarization preserving photometer optics and filters were constructed and tested. A test dewar mechanical and optical structure was created to test single pixel photometers prior to mounting in the flight dewar. A modular flight dewar capable of holding an array of photometers and adaptable to a number of different cryogenics schemes and detector arrays was engineered and constructed. A zero gravity dilution refrigerator coil was constructed and tested. A corrugated platelet array concept was designed and tested. Metal mesh filter design and fabrication techniques were developed. Kevlar isolator structures were improved to work in subkelvin dewars, and detector modules that mounted the bolometer chips to the photometer tubes were created. These subsystems underwent testing to compare the predicted behavior and actual performance.

  11. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin, E-mail: caephxb2003@aliyun.com

    2015-11-15

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter tomore » yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.« less

  12. Dexterous ultrasonic levitation of millimeter-sized objects in air.

    PubMed

    Seah, Sue Ann; Drinkwater, Bruce W; Carter, Tom; Malkin, Rob; Subramanian, Sriram

    2014-07-01

    Acoustic levitation in air has applications in contactless handling and processing. Here a first-order Bessel function-shaped acoustic field, generated using an 8-element circular array operating at 40 kHz, traps millimeter-sized objects against gravity. The device can manipulate objects in a vertical plane over a few millimeters with an accuracy of ± 0.09 mm.

  13. Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes

    NASA Astrophysics Data System (ADS)

    Bender, Amy N.; Cliche, Jean-François; de Haan, Tijmen; Dobbs, Matt A.; Gilbert, Adam J.; Montgomery, Joshua; Rowlands, Neil; Smecher, Graeme M.; Smith, Ken; Wilson, Andrew

    2014-07-01

    Frequency domain multiplexing (fMux) is an established technique for the readout of transition-edge sensor (TES) bolometers in millimeter-wavelength astrophysical instrumentation. In fMux, the signals from multiple detectors are read out on a single pair of wires reducing the total cryogenic thermal loading as well as the cold component complexity and cost of a system. The current digital fMux system, in use by POLARBEAR, EBEX, and the South Pole Telescope, is limited to a multiplexing factor of 16 by the dynamic range of the Superconducting Quantum Interference Device pre-amplifier and the total system bandwidth. Increased multiplexing is key for the next generation of large format TES cameras, such as SPT-3G and POLARBEAR2, which plan to have on the of order 15,000 detectors. Here, we present the next generation fMux readout, focusing on the warm electronics. In this system, the multiplexing factor increases to 64 channels per module (2 wires) while maintaining low noise levels and detector stability. This is achieved by increasing the system bandwidth, reducing the dynamic range requirements though active feedback, and digital synthesis of voltage biases with a novel polyphase filter algorithm. In addition, a version of the new fMux readout includes features such as low power consumption and radiation-hard components making it viable for future space-based millimeter telescopes such as the LiteBIRD satellite.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovell, Jack, E-mail: jack.lovell@durham.ac.uk; Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB; Naylor, Graham

    A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of themore » JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.« less

  15. Fabrication of Low-Noise TES Arrays for the SAFARI Instrument on SPICA

    NASA Astrophysics Data System (ADS)

    Ridder, M. L.; Khosropanah, P.; Hijmering, R. A.; Suzuki, T.; Bruijn, M. P.; Hoevers, H. F. C.; Gao, J. R.; Zuiddam, M. R.

    2016-07-01

    Ultra-low-noise transition edge sensors (TES) with noise equivalent power lower than 2 × 10^{-19} W/Hz^{1/2 } have been fabricated by SRON, which meet the sensitivity requirements for the far-infrared SAFARI instrument on space infrared telescope for cosmology and astrophysics. Our TES detector is based on a titanium/gold (Ti/Au) thermistor on a silicon nitride (SiN) island. The island is thermally linked with SiN legs to a silicon support structure at the bath temperature. The SiN legs are very thin (250 nm), narrow (500 nm), and long (above 300 {\\upmu } m); these dimensions are needed in leg-isolated bolometers to achieve the required level of sensitivity. In this paper, we describe the latest fabrication process for our TES bolometers with improved sensitivity.

  16. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, Amy; Hughes, A. Meredith; Carpenter, John

    The presence of debris disks around young main-sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The Formation and Evolution of Planetary Systems Spitzer Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy at ∼2″ resolution that spatially resolve the debris disks around these nearby (d ∼ 50 pc) stars. Two of the five disks (HDmore » 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array data to enable a uniform analysis of the full five-object sample. We simultaneously model the broadband photometric data and resolved millimeter visibilities to constrain the dust temperatures and disk morphologies, and perform a Markov Chain Monte Carlo analysis to fit for basic structural parameters. We find that the radii and widths of the cold outer belts exhibit properties consistent with scaled-up versions of the Solar System's Kuiper Belt. All the disks exhibit characteristic grain sizes comparable to the blowout size, and all the resolved observations of emission from large dust grains are consistent with an axisymmetric dust distribution to within the uncertainties. These results are consistent with comparable studies carried out at infrared wavelengths.« less

  18. Multilevel photonic modules for millimeter-wave phased-array antennas

    NASA Astrophysics Data System (ADS)

    Paolella, Arthur C.; Bauerle, Athena; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.

    2000-09-01

    Millimeter wave phased array systems have antenna element sizes and spacings similar to MMIC chip dimensions by virtue of the operating wavelength. Designing modules in traditional planar packaing techniques are therefore difficult to implement. An advantageous way to maintain a small module footprint compatible with Ka-Band and high frequency systems is to take advantage of two leading edge technologies, opto- electronic integrated circuits (OEICs) and multilevel packaging technology. Under a Phase II SBIR these technologies are combined to form photonic modules for optically controlled millimeter wave phased array antennas. The proposed module, consisting of an OEIC integrated with a planar antenna array will operate on the 40GHz region. The OEIC consists of an InP based dual-depletion PIN photodetector and distributed amplifier. The multi-level module will be fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated, using standard commercial processes, it has the potential to be low cost while maintaining high performance, impacting both military and commercial communications systems.

  19. MESAS: Measuring the Emission of Stellar Atmospheres at Submillimeter/millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    White, Jacob Aaron; Aufdenberg, Jason; Boley, A. C.; Hauschildt, Peter; Hughes, Meredith; Matthews, Brenda; Wilner, David

    2018-06-01

    In the early stages of planet formation, small dust grains grow to become millimeter-sized particles in debris disks around stars. These disks can in principle be characterized by their emission at submillimeter and millimeter wavelengths. Determining both the occurrence and abundance of debris in unresolved circumstellar disks of A-type main-sequence stars requires that the stellar photospheric emission be accurately modeled. To better constrain the photospheric emission for such systems, we present observations of Sirius A, an A-type star with no known debris, from the James Clerk Maxwell Telescope, Submillimeter Array, and Jansky Very Large Array at 0.45, 0.85, 0.88, 1.3, 6.7, and 9.0 mm. We use these observations to inform a PHOENIX model of Sirius A’s atmosphere. We find the model provides a good match to these data and can be used as a template for the submillimeter/millimeter emission of other early A-type stars where unresolved debris may be present. The observations are part of an ongoing observational campaign entitled Measuring the Emission of Stellar Atmospheres at Submillimeter/millimeter wavelengths.

  20. The LiteBIRD Satellite Mission: Sub-Kelvin Instrument

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Ade, P. A. R.; Akiba, Y.; Alonso, D.; Arnold, K.; Aumont, J.; Baccigalupi, C.; Barron, D.; Basak, S.; Beckman, S.; Borrill, J.; Boulanger, F.; Bucher, M.; Calabrese, E.; Chinone, Y.; Cho, S.; Crill, B.; Cukierman, A.; Curtis, D. W.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Duband, L.; Ducout, A.; Dunkley, J.; Duval, J. M.; Elleflot, T.; Eriksen, H. K.; Errard, J.; Fischer, J.; Fujino, T.; Funaki, T.; Fuskeland, U.; Ganga, K.; Goeckner-Wald, N.; Grain, J.; Halverson, N. W.; Hamada, T.; Hasebe, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hayes, L.; Hazumi, M.; Hidehira, N.; Hill, C. A.; Hilton, G.; Hubmayr, J.; Ichiki, K.; Iida, T.; Imada, H.; Inoue, M.; Inoue, Y.; Irwin, K. D.; Ishino, H.; Jeong, O.; Kanai, H.; Kaneko, D.; Kashima, S.; Katayama, N.; Kawasaki, T.; Kernasovskiy, S. A.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C. L.; Kurinsky, N. A.; Kusaka, A.; Lazarian, A.; Lee, A. T.; Li, D.; Linder, E.; Maffei, B.; Mangilli, A.; Maki, M.; Matsumura, T.; Matsuura, S.; Meilhan, D.; Mima, S.; Minami, Y.; Mitsuda, K.; Montier, L.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishino, H.; Nitta, T.; Noguchi, T.; Ogawa, H.; Oguri, S.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Patanchon, G.; Pisano, G.; Rebeiz, G.; Remazeilles, M.; Richards, P. L.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Sawada, M.; Segawa, Y.; Sekimoto, Y.; Seljak, U.; Sherwin, B. D.; Shimizu, T.; Shinozaki, K.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, J.; Tajima, O.; Takada, S.; Takaku, R.; Takakura, S.; Takatori, S.; Tanabe, D.; Taylor, E.; Thompson, K. L.; Thorne, B.; Tomaru, T.; Tomida, T.; Tomita, N.; Tristram, M.; Tucker, C.; Turin, P.; Tsujimoto, M.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Vansyngel, F.; Wehus, I. K.; Westbrook, B.; Willer, M.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, M.

    2018-05-01

    Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through "B-mode" (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40-235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280-402 GHz) with three types of single frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.

  1. Low-cost far infrared bolometer camera for automotive use

    NASA Astrophysics Data System (ADS)

    Vieider, Christian; Wissmar, Stanley; Ericsson, Per; Halldin, Urban; Niklaus, Frank; Stemme, Göran; Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Jakobsen, Henrik; Kvisterøy, Terje; Franks, John; VanNylen, Jan; Vercammen, Hans; VanHulsel, Annick

    2007-04-01

    A new low-cost long-wavelength infrared bolometer camera system is under development. It is designed for use with an automatic vision algorithm system as a sensor to detect vulnerable road users in traffic. Looking 15 m in front of the vehicle it can in case of an unavoidable impact activate a brake assist system or other deployable protection system. To achieve our cost target below €100 for the sensor system we evaluate the required performance and can reduce the sensitivity to 150 mK and pixel resolution to 80 x 30. We address all the main cost drivers as sensor size and production yield along with vacuum packaging, optical components and large volume manufacturing technologies. The detector array is based on a new type of high performance thermistor material. Very thin Si/SiGe single crystal multi-layers are grown epitaxially. Due to the resulting valence barriers a high temperature coefficient of resistance is achieved (3.3%/K). Simultaneously, the high quality crystalline material provides very low 1/f-noise characteristics and uniform material properties. The thermistor material is transferred from the original substrate wafer to the read-out circuit using adhesive wafer bonding and subsequent thinning. Bolometer arrays can then be fabricated using industry standard MEMS process and materials. The inherently good detector performance allows us to reduce the vacuum requirement and we can implement wafer level vacuum packaging technology used in established automotive sensor fabrication. The optical design is reduced to a single lens camera. We develop a low cost molding process using a novel chalcogenide glass (GASIR®3) and integrate anti-reflective and anti-erosion properties using diamond like carbon coating.

  2. A Dry-Etch Process for Low Temperature Superconducting Transition Edge Sensors for Far Infrared Bolometer Arrays

    NASA Technical Reports Server (NTRS)

    Allen, Christine A.; Chervenak, James A.; Hsieh, Wen-Ting; McClanahan, Richard A.; Miller, Timothy M.; Mitchell, Robert; Moseley, S. Harvey; Staguhn, Johannes; Stevenson, Thomas R.

    2003-01-01

    The next generation of ultra-low power bolometer arrays, with applications in far infrared imaging, spectroscopy and polarimetry, utilizes a superconducting bilayer as the sensing element to enable SQUID multiplexed readout. Superconducting transition edge sensors (TES s) are being produced with dual metal systems of superconductinghormal bilayers. The transition temperature (Tc) is tuned by altering the relative thickness of the superconductor with respect to the normal layer. We are currently investigating MoAu and MoCu bilayers. We have developed a dry-etching process for MoAu TES s with integrated molybdenum leads, and are working on adapting the process to MoCu. Dry etching has the advantage over wet etching in the MoAu system in that one can achieve a high degree of selectivity, greater than 10, using argon ME, or argon ion milling, for patterning gold on molybdenum. Molybdenum leads are subsequently patterned using fluorine plasma.. The dry-etch technique results in a smooth, featureless TES with sharp sidewalls, no undercutting of the Mo beneath the normal metal, and Mo leads with high critical current. The effects of individual processing parameters on the characteristics of the transition will be reported.

  3. Studies of Impurities in the Pegasus Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanchez, C.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Weberski, J. D.

    2017-10-01

    Local Helicity Injection (LHI) is used to initiate ST plasmas without a solenoid. Testing predictive models for the evolution of Ip(t) during LHI requires measurement of the plasma resistivity to quantify the dissipation of helicity. To that end, three diagnostic systems are coupled with an impurity transport model to quantify plasma contaminants. These are: visible bremsstrahlung (VB) spectroscopy; bolometry; and VUV spectroscopy. A spectral survey has been performed to identify line-free regions for VB measurements in the visible. Initial VB measurements are obtained with a single sightline through the plasma, and will be expanded to an imaging array to provide spatial resolution. A SPRED multichannel VUV spectrometer is being upgraded to provide high-speed ( 0.2 ms) spectral surveys for ion species identification, with a high-resolution grating installed for metallic line identification. A 16-channel thinistor bolometer array is planned. Absolutely calibrated VB, bolometer measurements, and qualitative ion species identification from SPRED are used as constraints in an impurity transport code to estimate absolute impurity content. Earlier work using this general approach indicated Zeff < 3 , before the edge current sources were shielded to reduce plasma-injector interactions. Work supported by US DOE Grant DE-FG02-96ER54375.

  4. Uncooled Terahertz real-time imaging 2D arrays developed at LETI: present status and perspectives

    NASA Astrophysics Data System (ADS)

    Simoens, François; Meilhan, Jérôme; Dussopt, Laurent; Nicolas, Jean-Alain; Monnier, Nicolas; Sicard, Gilles; Siligaris, Alexandre; Hiberty, Bruno

    2017-05-01

    As for other imaging sensor markets, whatever is the technology, the commercial spread of terahertz (THz) cameras has to fulfil simultaneously the criteria of high sensitivity and low cost and SWAP (size, weight and power). Monolithic silicon-based 2D sensors integrated in uncooled THz real-time cameras are good candidates to meet these requirements. Over the past decade, LETI has been studying and developing such arrays with two complimentary technological approaches, i.e. antenna-coupled silicon bolometers and CMOS Field Effect Transistors (FET), both being compatible to standard silicon microelectronics processes. LETI has leveraged its know-how in thermal infrared bolometer sensors in developing a proprietary architecture for THz sensing. High technological maturity has been achieved as illustrated by the demonstration of fast scanning of large field of view and the recent birth of a commercial camera. In the FET-based THz field, recent works have been focused on innovative CMOS read-out-integrated circuit designs. The studied architectures take advantage of the large pixel pitch to enhance the flexibility and the sensitivity: an embedded in-pixel configurable signal processing chain dramatically reduces the noise. Video sequences at 100 frames per second using our 31x31 pixels 2D Focal Plane Arrays (FPA) have been achieved. The authors describe the present status of these developments and perspectives of performance evolutions are discussed. Several experimental imaging tests are also presented in order to illustrate the capabilities of these arrays to address industrial applications such as non-destructive testing (NDT), security or quality control of food.

  5. Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments

    DOE PAGES

    Sisti, M.; Artusa, D. R.; Avignone, F. T.; ...

    2016-05-31

    CUORE is a 741 kg array of TeO 2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/(keV·kg·y) will be reached, in five years of data taking CUORE will have a 1σ half life sensitivity of 10 26y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013.more » The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.« less

  6. Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Sisti, M.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; Dafinei, I.; Dally, A.; Datskov, V.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; di Vacri, M. L.; Drobizhev, A.; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nastasi, M.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zucchelli, S.

    2016-04-01

    CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts / (keV ṡkg ṡy) will be reached, in five years of data taking CUORE will have a 1σ half life sensitivity of 1026 y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.

  7. Assembly and Integration Process of the First High Density Detector Array for the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Li, Yaqiong; Choi, Steve; Ho, Shuay-Pwu; Crowley, Kevin T.; Salatino, Maria; Simon, Sara M.; Staggs, Suzanne T.; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The Advanced ACTPol (AdvACT) upgrade on the Atacama Cosmology Telescope (ACT) consists of multichroicTransition Edge Sensor (TES) detector arrays to measure the Cosmic Microwave Background (CMB) polarization anisotropies in multiple frequency bands. The first AdvACT detector array, sensitive to both 150 and 230 GHz, is fabricated on a 150 mm diameter wafer and read out with a completely different scheme compared to ACTPol. Approximately 2000 TES bolometers are packed into the wafer leading to both a much denser detector density and readout circuitry. The demonstration of the assembly and integration of the AdvACT arrays is important for the next generation CMB experiments, which will continue to increase the pixel number and density. We present the detailed assembly process of the first AdvACT detector array.

  8. National Academy of Sciences Recommends Continued Support of ALMA Project

    NASA Astrophysics Data System (ADS)

    2000-05-01

    A distinguished panel of scientists today announced their support for the continued funding of the Atacama Large Millimeter Array (ALMA) Project at a press conference given by the National Academy of Sciences. The ALMA Project is an international partnership between U.S. and European astronomy organizations to build a complete imaging telescope that will produce astronomical images at millimeter and submillimeter wavelengths. The U.S. partner is the National Science Foundation, through Associated Universities, Inc., (AUI), led by Dr. Riccardo Giacconi, and the National Radio Astronomy Observatory (NRAO). "We are delighted at this show of continued support from our peers in the scientific community," said Dr. Robert Brown, ALMA U.S. Project Director and Deputy Director of NRAO. "The endorsement adds momentum to the recent strides we've made toward the building of this important telescope." In 1998, the National Research Council, the working arm of the National Academy of Sciences, charged the Astronomy and Astrophysics Survey Committee to "survey the field of space- and ground-based astronomy and astrophysics" and to "recommend priorities for the most important new initiatives of the decade 2000-2010." In a report released today, the committee wrote that it "re-affirms the recommendations of the 1991 Astronomy and Astrophysics Survey Committee by endorsing the completion of . . . the Millimeter Array (MMA, now part of the Atacama Large Millimeter Array)." In the 1991 report "The Decade of Discovery," a previous committee chose the Millimeter Array as one of the most important projects of the decade 1990-2000. Early last year, the National Science Foundation signed a Memorandum of Understanding with a consortium of European organizations that effectively merged the MMA Project with the European Large Southern Array project. The combined project was christened the Atacama Large Millimeter Array. ALMA, expected to consist of 64 antennas with 12-meter diameter dishes, will be built at a high-altitude, extremely dry mountain site in Chile's Atacama desert. The array is scheduled to be completed sometime in this decade. Millimeter-wave astronomy studies the universe in the spectral region where most of its energy lies, between the long-wavelength radio waves and the shorter-wavelength infrared waves. In this realm, ALMA will study the structure of the early universe and the evolution of galaxies; gather crucial data on the formation of stars, protoplanetary disks, and planets; and provide new insights on the familiar objects of our own solar system. "Most of the photons in the Universe lie in the millimeter wavelength regime; among existing or planned instruments only ALMA can image the sources of these photons with the crispness required to understand the events of galaxy, star and planet formation which launched them into space," said NRAO's Dr. Alwyn Wootten, U.S. ALMA Project Scientist. ALMA is an international partnership between the United States (National Science Foundation) and Europe. European participants include the European Southern Observatory, the Centre National de la Recherche Scientifique (France), the Max-Planck Gesellschaft (Germany), the Netherlands Foundation for Research in Astronomy, the United Kingdom Particle Physics and Astronomy Research Council, the Oficina de Ciencia Y Tecnologia/Instituto Geografico Nacional (Spain), and the Swedish Natural Science Research Council. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  9. Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond

    NASA Astrophysics Data System (ADS)

    Austermann, J. E.; Beall, J. A.; Bryan, S. A.; Dober, B.; Gao, J.; Hilton, G.; Hubmayr, J.; Mauskopf, P.; McKenney, C. M.; Simon, S. M.; Ullom, J. N.; Vissers, M. R.; Wilson, G. W.

    2018-05-01

    Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-m Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise ˜ 7000 polarization-sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers—a critical step toward future large-scale experiments with over 10^5 detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.

  10. Extreme Millimeter/Sub-millimeter and Radio Flares from V404 Cyg (GS 2023+338)

    NASA Astrophysics Data System (ADS)

    Tetarenko, A.; Sivakoff, G. R.; Young, Ken; Wouterloot, J. G. A.; Miller-Jones, J. C.

    2015-06-01

    We report follow up radio and mm/sub-mm observations (ATel #7671) of the current outburst of the black hole X-ray binary, V404 Cyg, with the VLA, Submillimeter Array (SMA), and James Clerk Maxwell Telescope SCUBA-2 (JCMT).

  11. Heterodyne Detection in MM & Sub-mm Waves Developed at Paris Observatory

    NASA Astrophysics Data System (ADS)

    Beaudin, G.; Encrenaz, P.

    Millimeter and submillimeter-wave observations provide important informations for the studies of atmospheric chemistry and of astrochemistry (molecular clouds, stars formation, galactic study, comets and cosmology). But, these observations depend strongly on instrumentation techniques and on the site quality. New techniques or higher detector performances result in unprecedented observations and sometimes, the observational needs drive developments of new detector technologies, for example, superconducting junctions (SIS mixers) because of its high sensitivity in heterodyne detection in the millimeter and submillimeter wave range (100 GHz - 700 GHz), HEB (Hot Electron Bolometer) mixers which are being developed by several groups for application in THz observations. For the submillimetre wavelengths heterodyne receivers, the local oscillator (LO) is still a critical element. So far, solid state sources are often not powerful enough for most of the applications at millimetre or sub-millimetre wavelengths: large efforts using new planar components and integrated circuits on membrane substrate or new techniques (photomixing, QCL) are now in progress in few groups. The new large projects as SOFIA, Herschel, ALMA and the post-Herschel missions for astronomy, the other projects for aeronomy, meteorology (Megha-tropiques-Saphir) and for planetary science (ROSETTA, Mars exploration, ...), will benefit from the new developments to hunt more molecules.

  12. Nobeyama Radio Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nobeyama Radio Observatory has telescopes at millimeter and submillimeter wavelengths. It was established in 1982 as an observatory of Tokyo Astronomical Observatory (NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN since 1987), and operates the 45 m telescope, Nobeyama Millimeter Array, and Radioheliograph. High-resolution images of star forming regions and molecular clouds have revealed many aspects of...

  13. Optical characterization of ultra-sensitive TES bolometers for SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, Michael D.; de Lange, Gerhard; Gao, Jian-Rong; Khosropanah, Pourya; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.; Doherty, Stephen; Withington, Stafford

    2014-07-01

    We have characterized the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays will image a 2'×2' field of view with spectral information over the wavelength range 34—210 μm. SAFARI requires extremely sensitive detectors (goal NEP ~ 0.2 aW/√Hz), with correspondingly low saturation powers (~5 fW), to take advantage of SPICA's cooled optics. We have constructed an ultra-low background optical test facility containing an internal cold black-body illuminator and have recently added an internal hot black-body source and a light-pipe for external illumination. We illustrate the performance of the test facility with results including spectral-response measurements. Based on an improved understanding of the optical throughput of the test facility we find an optical efficiency of 60% for prototype SAFARI detectors.

  14. High T(sub c) Superconducting Bolometer on Chemically Etched 7 Micrometer Thick Sapphire

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Brasunas, J. C.; Pique, A.; Fettig, R.; Mott, B.; Babu, S.; Cushman, G. M.

    1997-01-01

    A transition-edge IR detector, using a YBa2Cu3O(7-x) (YBCO) thin film deposited on a chemically etched, 7 micrometer thick sapphire substrate has been built. To our knowledge it is the first such high T(sub c) superconducting (HTS) bolometer on chemically thinned sapphire. The peak optical detectivity obtained is l.2 x 10(exp 10) cmHz(sup 1/2)/W near 4Hz. Result shows that it is possible to obtain high detectivity with thin films on etched sapphire with no processing after the deposition of the YBCO film. We discuss the etching process and its potential for micro-machining sapphire and fabricating 2-dimensional detector arrays with suspended sapphire membranes. A 30 micrometer thick layer of gold black provided IR absorption. Comparison is made with the current state of the art on silicon substrates.

  15. Three-dimensional tomographic imaging for dynamic radiation behavior study using infrared imaging video bolometers in large helical device plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sano, Ryuichi; Iwama, Naofumi; Peterson, Byron J.

    A three-dimensional (3D) tomography system using four InfraRed imaging Video Bolometers (IRVBs) has been designed with a helical periodicity assumption for the purpose of plasma radiation measurement in the large helical device. For the spatial inversion of large sized arrays, the system has been numerically and experimentally examined using the Tikhonov regularization with the criterion of minimum generalized cross validation, which is the standard solver of inverse problems. The 3D transport code EMC3-EIRENE for impurity behavior and related radiation has been used to produce phantoms for numerical tests, and the relative calibration of the IRVB images has been carried outmore » with a simple function model of the decaying plasma in a radiation collapse. The tomography system can respond to temporal changes in the plasma profile and identify the 3D dynamic behavior of radiation, such as the radiation enhancement that starts from the inboard side of the torus, during the radiation collapse. The reconstruction results are also consistent with the output signals of a resistive bolometer. These results indicate that the designed 3D tomography system is available for the 3D imaging of radiation. The first 3D direct tomographic measurement of a magnetically confined plasma has been achieved.« less

  16. High-temperature superconductor antenna investigations

    NASA Technical Reports Server (NTRS)

    Karasack, Vincent G.

    1990-01-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  17. The ALMA Phasing System: A Beamforming Capability for Ultra-high-resolution Science at (Sub)Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Crew, G. B.; Doeleman, S. S.; Lacasse, R.; Saez, A. F.; Alef, W.; Akiyama, K.; Amestica, R.; Anderson, J. M.; Barkats, D. A.; Baudry, A.; Broguière, D.; Escoffier, R.; Fish, V. L.; Greenberg, J.; Hecht, M. H.; Hiriart, R.; Hirota, A.; Honma, M.; Ho, P. T. P.; Impellizzeri, C. M. V.; Inoue, M.; Kohno, Y.; Lopez, B.; Martí-Vidal, I.; Messias, H.; Meyer-Zhao, Z.; Mora-Klein, M.; Nagar, N. M.; Nishioka, H.; Oyama, T.; Pankratius, V.; Perez, J.; Phillips, N.; Pradel, N.; Rottmann, H.; Roy, A. L.; Ruszczyk, C. A.; Shillue, B.; Suzuki, S.; Treacy, R.

    2018-01-01

    The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) has developed and deployed the hardware and software necessary to coherently sum the signals of individual ALMA antennas and record the aggregate sum in Very Long Baseline Interferometry (VLBI) Data Exchange Format. These beamforming capabilities allow the ALMA array to collectively function as the equivalent of a single large aperture and participate in global VLBI arrays. The inclusion of phased ALMA in current VLBI networks operating at (sub)millimeter wavelengths provides an order of magnitude improvement in sensitivity, as well as enhancements in u–v coverage and north–south angular resolution. The availability of a phased ALMA enables a wide range of new ultra-high angular resolution science applications, including the resolution of supermassive black holes on event horizon scales and studies of the launch and collimation of astrophysical jets. It also provides a high-sensitivity aperture that may be used for investigations such as pulsar searches at high frequencies. This paper provides an overview of the ALMA Phasing System design, implementation, and performance characteristics.

  18. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  19. ALMA, APEX and beyond

    NASA Astrophysics Data System (ADS)

    Zwaan, M.; Testi, L.

    The Atacama Large Millimeter/submillimeter Array (ALMA) is currently being constructed at the 5000m Chajnantor plateau in the Chilean Andes. ALMA has been designed and is being built to deliver transformational science in the millimeter and submillimeter regime for many years to come. We briefly describe the project status and timeline. The Atacama Pathfinder Experiment (APEX), built at the same site, is already operational and proves to be an effective survey instrument. We discuss which niches in millimeter/submillimeter astronomy will remain open for a possible facility in Antarctica.

  20. Radio and Millimeter Monitoring of Sgr A*: Spectrum, Variability, and Constraints on the G2 Encounter

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Markoff, Sera; Dexter, Jason; Gurwell, Mark A.; Moran, James M.; Brunthaler, Andreas; Falcke, Heino; Fragile, P. Chris; Maitra, Dipankar; Marrone, Dan; Peck, Alison; Rushton, Anthony; Wright, Melvyn C. H.

    2015-03-01

    We report new observations with the Very Large Array, Atacama Large Millimeter Array, and Submillimeter Array at frequencies from 1.0 to 355 GHz of the Galactic Center black hole, Sagittarius A*. These observations were conducted between 2012 October and 2014 November. While we see variability over the whole spectrum with an amplitude as large as a factor of 2 at millimeter wavelengths, we find no evidence for a change in the mean flux density or spectrum of Sgr A* that can be attributed to interaction with the G2 source. The absence of a bow shock at low frequencies is consistent with a cross-sectional area for G2 that is less than 2× {10}29 cm2. This result fits with several model predictions including a magnetically arrested cloud, a pressure-confined stellar wind, and a stellar photosphere of a binary merger. There is no evidence for enhanced accretion onto the black hole driving greater jet and/or accretion flow emission. Finally, we measure the millimeter wavelength spectral index of Sgr A* to be flat; combined with previous measurements, this suggests that there is no spectral break between 230 and 690 GHz. The emission region is thus likely in a transition between optically thick and thin at these frequencies and requires a mix of lepton distributions with varying temperatures consistent with stratification.

  1. The Herschel Space Observatory, Opening the Far Infrared

    NASA Astrophysics Data System (ADS)

    Pearson, John C.

    2009-06-01

    The Herschel Space Observatory (Herschel) is a multi user observatory operated by the European Space Agency with a significant NASA contribution. Herschel features a passively cooled 3.5 meter telescope expected to operate near 78 Kelvin and three cryogenic instruments covering the 670 to 57 μm spectral region. The mission life time, determined by the consumption of 2500 liters of liquid helium, is expected to be at least 3.5 years with at least 3 years of operational lifetime in an L2 orbit. The three payload instruments are the Spectral and Photometric Imaging Receiver (SPIRE), Photodetector Array Camera and Spectrometer (PACS), and the Heterodyne Instrument for Far Infrared (HIFI). SPIRE covers 200-670 μm and is a three band bolometer based photometer and a two band imaging Martin-Puplett FTS with a spectral resolution of up to 600. PACS covers 57-200 μm and is a three band bolometer based photometer and a grating slit spectrometer illuminating photoconductor arrays in two bands with a resolution of up to 5000. HIFI covers 480-1272 GHz and 1440-1910 GHz and is a series of seven dual polarization heterodyne receivers with a spectral resolution up to 5×10^6. The observatory performance, selected science program and upcoming opportunities will be discussed.

  2. Advanced Millimeter-Wave Imaging Enhances Security Screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-01-12

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  3. Advanced Millimeter-Wave Security Portal Imaging Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-04-01

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  4. Fabrication of an Absorber-Coupled MKID Detector and Readout for Sub-Millimeter and Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.

    2010-01-01

    We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and far-infrared astronomy. Each detector array is comprised of lambda/2 stepped impedance resonators, a 1.5 micrometer thick silicon membrane, and 380 micrometer thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.

  5. Fabrication of an Absorber-Coupled MKID Detector and Readout for Sub-Millimeter and Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.

    2010-01-01

    We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and farinfrared astronomy. Each detector array is comprised of lambda/2 stepped impedance resonators, a 1.5µm thick silicon membrane, and 380µm thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.

  6. Unidirectional waveguide grating antennas with uniform emission for optical phased arrays.

    PubMed

    Raval, Manan; Poulton, Christopher V; Watts, Michael R

    2017-07-01

    We demonstrate millimeter-scale optical waveguide grating antennas with unidirectional emission for integrated optical phased arrays. Unidirectional emission eliminates the fundamental problem of blind spots in the element factor of a phased array caused by reflections of antenna radiation within the substrate. Over 90% directionality is demonstrated using a design consisting of two silicon nitride layers. Furthermore, the perturbation strength along the antenna is apodized to achieve uniform emission for the first time, to the best of our knowledge, on a millimeter scale. This allows for a high effective aperture and receiving efficiency. The emission profile of the measured 3 mm long antenna has a standard deviation of 8.65% of the mean. These antennas are state of the art and will allow for integrated optical phased arrays with blind-spot-free high transmission output power and high receiving efficiency for LIDAR and free-space communication systems.

  7. Millimeter-Sized Suspended Plasmonic Nanohole Arrays for Surface-Tension-Driven Flow-Through SERS

    PubMed Central

    2015-01-01

    We present metallic nanohole arrays fabricated on suspended membranes as an optofluidic substrate. Millimeter-sized suspended nanohole arrays were fabricated using nanoimprint lithography. We demonstrate refractive-index-based tuning of the optical spectra using a sucrose solution for the optimization of SERS signal intensity, leading to a Raman enhancement factor of 107. Furthermore, compared to dead-ended nanohole arrays, suspended nanohole arrays capable of flow-through detection increased the measured SERS signal intensity by 50 times. For directed transport of analytes, we present a novel methodology utilizing surface tension to generate spontaneous flow through the nanoholes with flow rates of 1 μL/min, obviating the need for external pumps or microfluidic interconnects. Using this method for SERS, we obtained a 50 times higher signal as compared to diffusion-limited transport and could detect 100 pM 4-mercaptopyridine. The suspended nanohole substrates presented herein possess a uniform and reproducible geometry and show the potential for improved analyte transport and SERS detection. PMID:25678744

  8. Ultrasensitive Superconducting Transition Edge Sensors Based On Electron-Phonon Decoupling

    NASA Technical Reports Server (NTRS)

    Jethava, Nikhil; Chervenak, James; Brown, Ari-David; Benford, Dominic; Kletetschka, Gunther; Mikula, Vilem; U-yen, Kongpop

    2011-01-01

    We have successfully fabricated the superconducting transition edge sensor (TES), bolometer technology that centers on the use of electron-phonon decoupling (EPD) to thermally isolate the bolometer. Along with material characterization for large format antenna coupled bolometer arrays, we present the initial test results of bolometer based on EPD designed for THz detection. We have selected a design approach that separates the two functions of photon absorption and temperature measurement, allowing separate optimization of the performance of each element. We have integrated Molybdenum/Gold (Mo/Au) bilayer TES and ion assisted thermally evaporated (IAE) Bismuth (Bi) films as radiation absorber coupled to a low-loss microstripline from Niobium (Nb) ground plane to a twin-slot antenna structure. The thermal conductance and the time constant of these devices have been measured, and are consistent with our calculations. The device exhibits a single time constant at 0.1 K of approx.160 IlS, which is compatible with readout by a high-bandwidth single SQUID or a time domain SQUID multiplexer. The effects of thermal conductance and electrothermal feedback are major determinants of the time constant, but the electronic heat capacity also plays a major role. The NEP achieved in the device described above is 2.5x10(exp -17)W(gamma)Hz. Our plan is to demonstrate a reduction of the volume in the superconducting element to 5 microns x 5 microns in films of half the thickness at Tc = 60mK. By calculation, this new geometry corresponds to an NEP reduction of two orders of magnitude to 2.5x10(exp -19)W/(gamma)Hz, with a time constant of 130/ls.

  9. On-orbit solar calibrations using the Aqua Clouds and Earth's Radiant Energy System (CERES) in-flight calibration system

    NASA Astrophysics Data System (ADS)

    Wilson, Robert S.; Priestley, Kory J.; Thomas, Susan; Hess, Phillip

    2009-08-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers were used to measure earth-reflected solar and earth-emitted longwave radiances, at satellite altitude. The bolometers measured the earth radiances in the broadband shortwave solar (0.3 - 5.0 micrometers) and total (0.3->100 micrometers) spectral bands as well as in the (8 - 12 micrometers) water vapor window spectral band over geographical footprints as small as 10 kilometers at nadir. In May 2002, the fourth and fifth sets of CERES bolometers were launched aboard the Aqua spacecraft. Ground vacuum calibrations defined the initial count conversion coefficients that were used to convert the bolometer output voltages into filtered earth radiances. The mirror attenuator mosaic (MAM), a solar diffuser plate, was built into the CERES instrument package calibration system in order to define in-orbit shifts or drifts in the sensor responses. The shortwave and total sensors are calibrated using the solar radiances reflected from the MAM's. Each MAM consists of baffle-solar diffuser plate systems, which guide incoming solar radiances into the instrument fields-of-view of the shortwave and total wave sensor units. The MAM diffuser reflecting type surface consists of an array of spherical aluminum mirror segments, which are separated by a Merck Black A absorbing surface, overcoated with silicon dioxide. Temperature sensors are located in each MAM plate and baffle. The CERES MAM wass designed to yield calibration precisions approaching .5 percent for the total and shortwave detectors. In this paper, the MAM solar calibration procedures are presented along with on-orbit results. Comparisons are also made between the Aqua,Terra and the Tropical Rainfall Measurement Mission (TRMM) CERES MAM solar calibrations.

  10. The LABOCA/ACT Survey of Clusters at All Redshifts: Multiwavelength Analysis of Background Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Aguirre, Paula; Lindner, Robert R.; Baker, Andrew J.; Bond, J. Richard; Dünner, Rolando; Galaz, Gaspar; Gallardo, Patricio; Hilton, Matt; Hughes, John P.; Infante, Leopoldo; Lima, Marcos; Menten, Karl M.; Sievers, Jonathan; Weiss, Axel; Wollack, Edward J.

    2018-03-01

    We present a multiwavelength analysis of 48 submillimeter galaxies (SMGs) detected in the Large APEX Bolometer Camera/Atacama Cosmology Telescope (ACT) Survey of Clusters at All Redshifts, LASCAR, which acquired new 870 μm and Australia Telescope Compact Array 2.1 GHz observations of 10 galaxy clusters detected through their Sunyaev–Zel’dovich effect (SZE) signal by the ACT. Far-infrared observations were also conducted with the Photodetector Array Camera and Spectrometer (100/160 μm) and SPIRE (250/350/500 μm) instruments on Herschel for sample subsets of five and six clusters. LASCAR 870 μm maps were reduced using a multiscale iterative pipeline that removes the SZE increment signal, yielding point-source sensitivities of σ ∼ 2 mJy beam‑1. We detect in total 49 sources at the 4σ level and conduct a detailed multiwavelength analysis considering our new radio and far-IR observations plus existing near-IR and optical data. One source is identified as a foreground galaxy, 28 SMGs are matched to single radio sources, four have double radio counterparts, and 16 are undetected at 2.1 GHz but tentatively associated in some cases to near-IR/optical sources. We estimate photometric redshifts for 34 sources with secure (25) and tentative (9) matches at different wavelengths, obtaining a median z={2.8}-1.7+2.1. Compared to previous results for single-dish surveys, our redshift distribution has a comparatively larger fraction of sources at z > 3, and the high-redshift tail is more extended. This is consistent with millimeter spectroscopic confirmation of a growing number of high-z SMGs and relevant for testing of cosmological models. Analytical lens modeling is applied to estimate magnification factors for 42 SMGs at clustercentric radii >1.‧2 with the demagnified flux densities and source-plane areas, we obtain integral number counts that agree with previous submillimeter surveys.

  11. Design and performance of dual-polarization lumped-element kinetic inductance detectors for millimeter-wave polarimetry

    NASA Astrophysics Data System (ADS)

    McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P. A. R.; Bryan, S.; Day, P.; Essinger-Hileman, T.; Flanigan, D.; Leduc, H. G.; Limon, M.; Mauskopf, P.; Miller, A.; Tucker, C.

    2018-02-01

    Aims: Lumped-element kinetic inductance detectors (LEKIDs) are an attractive technology for millimeter-wave observations that require large arrays of extremely low-noise detectors. We designed, fabricated and characterized 64-element (128 LEKID) arrays of horn-coupled, dual-polarization LEKIDs optimized for ground-based CMB polarimetry. Our devices are sensitive to two orthogonal polarizations in a single spectral band centered on 150 GHz with Δν/ν = 0.2. The 65 × 65 mm square arrays are designed to be tiled into the focal plane of an optical system. We demonstrate the viability of these dual-polarization LEKIDs with laboratory measurements. Methods: The LEKID modules are tested with an FPGA-based readout system in a sub-kelvin cryostat that uses a two-stage adiabatic demagnetization refrigerator. The devices are characterized using a blackbody and a millimeter-wave source. The polarization properties are measured with a cryogenic stepped half-wave plate. We measure the resonator parameters and the detector sensitivity, noise spectrum, dynamic range, and polarization response. Results: The resonators have internal quality factors approaching 1 × 106. The detectors have uniform response between orthogonal polarizations and a large dynamic range. The detectors are photon-noise limited above 1 pW of absorbed power. The noise-equivalent temperatures under a 3.4 K blackbody load are <100 μK √s. The polarization fractions of detectors sensitive to orthogonal polarizations are >80%. The entire array is multiplexed on a single readout line, demonstrating a multiplexing factor of 128. The array and readout meet the requirements for 4 arrays to be read out simultaneously for a multiplexing factor of 512. Conclusions: This laboratory study demonstrates the first dual-polarization LEKID array optimized specifically for CMB polarimetry and shows the readiness of the detectors for on-sky observations.

  12. International Conference on Antennas and Propagation (ICAP 89), 6th, University of Warwick, Coventry, England, Apr. 4-7, 1989, Proceedings. Part 1 - Antennas. Part 2 - Propagation

    NASA Astrophysics Data System (ADS)

    Various papers on antennas and propagation are presented. The general topics addressed include: phased arrays; reflector antennas; slant path propagation; propagation data for HF radio systems performance; satellite and earth station antennas; radio propagation in the troposphere; propagation data for HF radio systems performance; microstrip antennas; rain radio meteorology; conformal antennas; horns and feed antennas; low elevation slant path propagation; radio millimeter wave propagation; array antennas; propagation effects on satellite mobile, satellite broadcast, and aeronautical systems; ionospheric irregularities and motions; adaptive antennas; transient response; measurement techniques; clear air radio meteorology; ionospheric and propagation modeling; millimeter wave and lens antennas; electromagnetic theory and numerical techniques; VHF propagation modeling, system planning methods; radio propagation theoretical techniques; scattering and diffraction; transhorizon rain scatter effects; ELF-VHF and broadcast antennas; clear air millimeter propagation; scattering and frequency-selective surfaces; antenna technology; clear air transhorizon propagation.

  13. Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2016-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: fifth generation mobile architecture (5G): 28, 38, 39, 64-71 GHz, as well as Industrial, Scientific, and Medical bands (ISM): 24 and 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 24-72 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication.

  14. Method and apparatus for reducing the drag of flows over surfaces

    NASA Technical Reports Server (NTRS)

    Keefe, Laurence R. (Inventor)

    1998-01-01

    An apparatus, and its accompanying method, for reducing the drag of flows over a surface includes arrays of small disks and sensors. The arrays are embedded in the surface and may extend above, or be depressed below, the surface, provided they remain hydraulically smooth either when operating or when inactive. The disks are arranged in arrays of various shapes, and spaced according to the cruising speed of the vehicle on which the arrays are installed. For drag reduction at speeds of the order of 30 meters/second, preferred embodiments include disks that are 0.2 millimeter in diameter and spaced 0.4 millimeter apart. For drag reduction at speeds of the order of 300 meters/second, preferred embodiments include disks that are 0.045 millimeter in diameter and spaced 0.09 millimeter apart. Smaller and larger dimensions for diameter and spacing are also possible. The disks rotate in the plane of the surface, with their rotation axis substantially perpendicular to the surface. The rotating disks produce velocity perturbations parallel to the surface in the overlying boundary layer. The sensors sense the flow at the surface and connect to control circuitry that adjusts the rotation rates and duty cycles of the disks accordingly. Suction and blowing holes can be interspersed among, or made coaxial with, the disks for creating general three-component velocity perturbations in the near-surface region. The surface can be a flat, planar surface or a nonplanar surface, such as a triangular riblet surface. The present apparatus and method have potential applications in the field of aeronautics for improving performance and efficiency of commercial and military aircraft, and in other industries where drag is an obstacle, including gas and oil delivery through long-haul pipelines.

  15. Uncooled infrared focal plane array imaging in China

    NASA Astrophysics Data System (ADS)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  16. A novel carbon coating technique for foil bolometers

    NASA Astrophysics Data System (ADS)

    Sheikh, U. A.; Duval, B. P.; Labit, B.; Nespoli, F.

    2016-11-01

    Naked foil bolometers can reflect a significant fraction of incident energy and therefore cannot be used for absolute measurements. This paper outlines a novel coating approach to address this problem by blackening the surface of gold foil bolometers using physical vapour deposition. An experimental bolometer was built containing four standard gold foil bolometers, of which two were coated with 100+ nm of carbon. All bolometers were collimated and observed the same relatively high temperature, ohmically heated plasma. Preliminary results showed 13%-15% more incident power was measured by the coated bolometers and this is expected to be much higher in future TCV detached divertor experiments.

  17. Synthesis and Investigation of Millimeter-Scale Vertically Aligned Boron Nitride Nanotube Arrays

    NASA Astrophysics Data System (ADS)

    Tay, Roland; Li, Hongling; Tsang, Siu Hon; Jing, Lin; Tan, Dunlin; Teo, Edwin Hang Tong

    Boron nitride nanotubes (BNNTs) have shown potential in a wide range of applications due to their superior properties such as exceptionally high mechanical strength, excellent chemical and thermal stabilities. However, previously reported methods to date only produced BNNTs with limited length/density and insufficient yield at high temperatures. Here we present a facile and effective two-step synthesis route involving template-assisted chemical vapor deposition at a relatively low temperature of 900 degree C and subsequent annealing process to fabricate vertically aligned (VA) BN coated carbon nanotube (VA-BN/CNT) and VA-BNNT arrays. By using this method, we achieve the longest VA-BN/CNTs and VA-BNNTs to date with lengths of over millimeters (exceeding two orders of magnitude longer than the previously reported length of VA-BNNTs). In addition, the morphology, chemical composition and microstructure of the resulting products, as well as the mechanism of coating process are systematically investigated. This versatile BN coating technique and the synthesis of millimeter-scale BN/CNT and BNNT arrays pave a way for new applications especially where the aligned geometry of the NTs is essential such as for field-emission, interconnects and thermal management.

  18. Physical studies of Centaurs and Trans-Neptunian Objects with the Atacama Large Millimeter Array

    NASA Astrophysics Data System (ADS)

    Moullet, Arielle; Lellouch, Emmanuel; Moreno, Raphael; Gurwell, Mark

    2011-05-01

    Once completed, the Atacama Large Millimeter Array (ALMA) will be the most powerful (sub)millimeter interferometer in terms of sensitivity, spatial resolution and imaging. This paper presents the capabilities of ALMA applied to the observation of Centaurs and Trans-Neptunian Objects, and their possible output in terms of physical properties. Realistic simulations were performed to explore the performances of the different frequency bands and array configurations, and several projects are detailed along with their feasibility, their limitations and their possible targets. Determination of diameters and albedos via the radiometric method appears to be possible on ˜500 objects, while sampling of the thermal lightcurve to derive the bodies' ellipticity could be performed at least 30 bodies that display a significant optical lightcurve. On a limited number of objects, the spatial resolution allows for direct measurement of the size or even surface mapping with a resolution down to 13 milliarcsec. Finally, ALMA could separate members of multiple systems with a separation power comparable to that of the HST. The overall performance of ALMA will make it an invaluable instrument to explore the outer Solar System, complementary to space-based telescopes and spacecrafts.

  19. Centralized operations and maintenance planning at the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Lopez, Bernhard; Whyborn, Nicholas D.; Guniat, Serge; Hernandez, Octavio; Gairing, Stefan

    2016-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a joint project between astronomical organizations in Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA consists of 54 twelve-meter antennas and 12 seven-meter antennas operating as an aperture synthesis array in the (sub)millimeter wavelength range. Since the inauguration of the observatory back in March 2013 there has been a continuous effort to establish solid operations processes for effective and efficient management of technical and administrative tasks on site. Here a key aspect had been the centralized maintenance and operations planning: input is collected from science stakeholders, the computerized maintenance management system (CMMS) and from the technical teams spread around the world, then this information is analyzed and consolidated based on the established maintenance strategy, the observatory long-term plan and the short-term priorities definitions. This paper presents the high-level process that has been developed for the planning and scheduling of planned- and unplanned maintenance tasks, and for site operations like the telescope array reconfiguration campaigns. We focus on the centralized planning approach by presenting its genesis, its current implementation for the observatory operations including related planning products, and we explore the necessary next steps in order to fully achieve a comprehensive centralized planning approach for ALMA in steady-state operations.

  20. Instrumentation for single-dish observations with The Greenland Telescope

    NASA Astrophysics Data System (ADS)

    Grimes, Paul K.; Asada, K.; Blundell, R.; Burgos, R.; Chang, H.-H.; Chen, M. T.; Goldie, D.; Groppi, C.; Han, C. C.; Ho, P. T. P.; Huang, Y. D.; Inoue, M.; Kubo, D.; Koch, P.; Leech, J.; de Lera Acedo, E.; Martin-Cocher, P.; Nishioka, H.; Nakamura, M.; Matsushita, S.; Paine, S. N.; Patel, N.; Raffin, P.; Snow, W.; Sridharan, T. K.; Srinivasan, R.; Thomas, C. N.; Tong, E.; Wang, M.-J.; Wheeler, C.; Withington, S.; Yassin, G.; Zeng, L.-Z.

    2014-07-01

    The Greenland Telescope project will deploy and operate a 12m sub-millimeter telescope at the highest point of the Greenland i e sheet. The Greenland Telescope project is a joint venture between the Smithsonian As- trophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA). In this paper we discuss the concepts, specifications, and science goals of the instruments being developed for single-dish observations with the Greenland Telescope, and the coupling optics required to couple both them and the mm-VLBI receivers to antenna. The project will outfit the ALMA North America prototype antenna for Arctic operations and deploy it to Summit Station,1 a NSF operated Arctic station at 3,100m above MSL on the Greenland I e Sheet. This site is exceptionally dry, and promises to be an excellent site for sub-millimeter astronomical observations. The main science goal of the Greenland Telescope is to carry out millimeter VLBI observations alongside other telescopes in Europe and the Americas, with the aim of resolving the event horizon of the super-massive black hole at the enter of M87. The Greenland Telescope will also be outfitted for single-dish observations from the millimeter-wave to Tera-hertz bands. In this paper we will discuss the proposed instruments that are currently in development for the Greenland Telescope - 350 GHz and 650 GHz heterodyne array receivers; 1.4 THz HEB array receivers and a W-band bolometric spectrometer. SAO is leading the development of two heterodyne array instruments for the Greenland Telescope, a 48- pixel, 325-375 GHz SIS array receiver, and a 4 pixel, 1.4 THz HEB array receiver. A key science goal for these instruments is the mapping of ortho and para H2D+ in old protostellar ores, as well as general mapping of CO and other transitions in molecular louds. An 8-pixel prototype module for the 350 GHz array is currently being built for laboratory and operational testing on the Greenland Telescope. Arizona State University are developing a 650 GHz 256 pixel SIS array receiver based on the KAPPa SIS mixer array technology and ASIAA are developing 1.4 THz HEB single pixel and array receivers. The University of Cambridge and SAO are collaborating on the development of the CAMbridge Emission Line Surveyor (CAMELS), a W-band `on- hip' spectrometer instrument with a spectral resolution of R ~ 3000. CAMELS will consist of two pairs of horn antennas, feeding super conducting niobium nitride filter banks read by tantalum based Kinetic Inductance Detectors.

  1. INTERFEROMETRIC UPPER LIMITS ON MILLIMETER POLARIZATION OF THE DISKS AROUND DG Tau, GM Aur, AND MWC 480

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, A. Meredith; Hull, Charles L. H.; Plambeck, Richard L.

    2013-04-15

    Millimeter-wavelength polarization measurements offer a promising method for probing the geometry of magnetic fields in circumstellar disks. Single dish observations and theoretical work have hinted that magnetic field geometries might be predominantly toroidal, and that disks should exhibit millimeter polarization fractions of 2%-3%. While subsequent work has not confirmed these high polarization fractions, either the wavelength of observation or the target sources differed from the original observations. Here we present new polarimetric observations of three nearby circumstellar disks at 2'' resolution with the Submillimeter Array and the Combined Array for Research in Millimeter Astronomy. We reobserve GM Aur and DGmore » Tau, the systems in which millimeter polarization detections have been claimed. Despite higher resolution and sensitivity at wavelengths similar to the previous observations, the new observations do not show significant polarization. We also add observations of a new HAeBe system, MWC 480. These observations demonstrate that a very low ({approx}<0.5%) polarization fraction is probably common at large ({approx}>100 AU) scales in bright circumstellar disks. We suggest that high-resolution observations may be worthwhile to probe magnetic field structure on linear distances smaller than the disk scale height, as well as in regions closer to the star that may have larger MRI-induced magnetic field strengths.« less

  2. Session Overview and AzTEC Instrument Performance

    NASA Astrophysics Data System (ADS)

    Wilson, Grant; Ade, P. A.; Aretxaga, I.; Austermann, J.; Bock, J. J.; Hughes, D.; Kang, Y.; Kim, S.; Lowenthal, J.; Mauskopf, P.; Scott, K.; Yun, M.

    2006-12-01

    AzTEC is a new 144 element bolometer receiver destined as a first-generation instrument for the Large Millimeter Telescope. >From November 2005 and through January 2006, AzTEC made science observations at the 15m James Clerk Maxwell Telescope (JCMT). Approximately 1/2 of the available time was spent mapping the submillimeter galaxy population in blank and biased fields. Overall, over 1 square degree of sky was mapped with uniform coverage in each of five primary fields making this the largest set of surveys of the submillimeter galaxy population ever performed. Hundreds of new submillimeter galaxies have been detected. Here we discuss the instrument, our mapping technique, and a brief summary of the data reduction process. We conclude with a brief summary of the overall impact of these surveys on our understanding of the submillimeter galaxy population.

  3. The SOFIA/SAFIRE Far-Infrared Spectrometer: Highlighting Submillimeter Astrophysics and Technology

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2009-01-01

    The Submillimeter and Far-InfraRed Experiment (SAFIRE) on the SOFIA airborne observatory is an imaging spectrometer for wavelengths between 28 microns and 440 microns. Our design is a dual-band long-slit grating spectrometer, which provides broadband (approx. 4000 km/s) observations in two lines simultaneously over a field of view roughly 10" wide by 320" long. The low backgrounds in spectroscopy require very sensitive detectors with noise equivalent powers of order 10(exp -18) W/square root of Hz. We are developing a kilopixel, filled detector array for SAFIRE in a 32 x 40 format. The detector consists of a transition edge sensor (TES) bolometer array, a per-pixel broadband absorbing backshort array, and a NIST SQUID multiplexer readout array. This general type of array has been used successfully in the GISMO instrument, so we extrapolate to the sensitivity needed for airborne spectroscopy. Much of the cryogenic, electronics, and software infrastructure for SAFIRE have been developed. I provide here an overview of the progress on SAFIRE.

  4. Nonimaging applications for microbolometer arrays

    NASA Astrophysics Data System (ADS)

    Picard, Francis; Jerominek, Hubert; Pope, Timothy D.; Zhang, Rose; Ngo, Linh P.; Tremblay, Bruno; Tasker, Nick; Grenier, Carol; Bilodeau, Ghislain; Cayer, Felix; Lehoux, Mario; Alain, Christine; Larouche, Carl; Savard, Simon

    2001-10-01

    In an effort to leverage uncooled microbolometer technology, testing of bolometer performance in various nonimaging applications has been performed. One of these applications makes use of an uncooled microbolometer array as the sensing element for a laser beam analyzer. Results of the characterization of cw CO2 laser beams with this analyzer are given. A comparison with the results obtained with a commercial laser beam analyzer is made. Various advantages specific to microbolometer arrays for this application are identified. A second application makes use of microbolometers for absolute temperature measurements. The experimental method and results are described. The technique's limitations and possible implementations are discussed. Finally, the third application evaluated is related to the rapidly expanding field of biometry. It consists of using a modified microbolometer array for fingerprint sensing. The basic approach allowing the use of microbolometers for such an application is discussed. The results of a proof-of-principle experiment are described. Globally, the described work illustrates the fact that microbolometer array fabrication technology can be exploited for many important applications other than IR imaging.

  5. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: Fifth generation mobile architecture (5G): 28, 38, 39, 6471 GHz; Industrial, Scientific, and Medical bands (ISM): 24, 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 2472 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication. The results of this work are presented in this poster.

  6. Monolithic millimeter-wave diode array beam controllers: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Sjogren, L. B.; Liu, H.-X. L.; Wang, F.; Liu, T.; Wu, W.; Qin, X.-H.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.; Maserjian, J.

    1992-01-01

    In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively.

  7. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    DOE PAGES

    Artusa, D. R.; Azzolini, O.; Balata, M.; ...

    2014-10-15

    Neutrinoless double beta decay (0νββ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0νββ decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric0νββ experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capablemore » of reaching the sensitivity to the effective Majorana neutrino mass (|m ee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. In conclusion, we highlight the main challenges and identify priorities for an R&D program addressing them.« less

  8. Polarimetry with the JCMT

    NASA Astrophysics Data System (ADS)

    Moriarty-Schieven, Gerald H.; Greaves, Jane S.

    1999-10-01

    Polarization of dust or synchrotron emission in the sub-millimetre-wave regime directly traces magnetic field directions. The magnetic field energy is similar to that of gravity and turbulence in interstellar gas, and so plays a major role in the dynamics and evolution of the interstellar medium. We present some early results from the aperture polarimeter on the SCUBA sub-mm bolometer array on the JCMT from a wide variety of sources, and briefly discuss the importance of a polarimetric capability for ALMA.

  9. Double-beta decay investigation with highly pure enriched $$^{82}$$Se for the LUCIFER experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beeman, J. W.; Bellini, F.; Benetti, P.

    2015-12-13

    The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of 82Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched 82Se is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3 % enriched 82Se metal, measured with a high-purity germanium detector at themore » Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of 232Th, 238U and 235U are respectively: <61, <110 and <74 μBq/kg at 90 % C.L. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the 82Se allowed us to establish the most stringent lower limits on the half-lives of the double-beta decay of 82Se to 0+1, 2+2 and 2+1 excited states of 82Kr of 3.4•10 22, 1.3•10 22 and 1.0•10 22 y, respectively, with a 90 % C.L.« less

  10. Lateral terahertz hot-electron bolometer based on an array of Sn nanothreads in GaAs

    NASA Astrophysics Data System (ADS)

    Ponomarev, D. S.; Lavrukhin, D. V.; Yachmenev, A. E.; Khabibullin, R. A.; Semenikhin, I. E.; Vyurkov, V. V.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.

    2018-04-01

    We report on the proposal and the theoretical and experimental studies of the terahertz hot-electron bolometer (THz HEB) based on a gated GaAs structure like the field-effect transistor with the array of parallel Sn nanothreads (Sn-NTs). The operation of the HEB is associated with an increase in the density of the delocalized electrons due to their heating by the incoming THz radiation. The quantum and the classical device models were developed, the quantum one was based on the self-consistent solution of the Poisson and Schrödinger equations, the classical model involved the Poisson equation and density of states omitting quantization. We calculated the electron energy distributions in the channels formed around the Sn-NTs for different gate voltages and found the fraction of the delocalized electrons propagating across the energy barriers between the NTs. Since the fraction of the delocalized electrons strongly depends on the average electron energy (effective temperature), the proposed THz HEB can exhibit an elevated responsivity compared with the HEBs based on more standard heterostructures. Due to a substantial anisotropy of the device structure, the THz HEB may demonstrate a noticeable polarization selectivity of the response to the in-plane polarized THz radiation. The features of the THz HEB might be useful in their practical applications in biology, medicine and material science.

  11. Phased Arrays 1985 Symposium - Proceedings

    DTIC Science & Technology

    1985-08-01

    have served the logic industry well, and appropriate versions can do the same for micruwdve drid millimeter * wave technology, An aspect of phased...continuing revolutions of the logic industry and the microwave monolithic integrated circuit community are bringing relevant technology closer to the array...monolithic phased array antennas, and discuss their relative advantages and disadvantages . Considerations such as bandwidth, maxianiru scan range, feed

  12. A progress report on using bolometers cooled by adiabatic demagnetization refrigeration

    NASA Technical Reports Server (NTRS)

    Lesyna, L.; Roellig, T.; Savage, M.; Werner, Michael W.

    1989-01-01

    For sensitive detection of astronomical continuum radiation in the 200 micron to 3 mm wavelength range, bolometers are presently the detectors of choice. In order to approach the limits imposed by photon noise in a cryogenically cooled telescope in space, bolometers must be operated at temperatures near 0.1 K. Researchers report progress in building and using bolometers that operate at these temperatures. The most sensitive bolometer had an estimated noise equivalent power (NEP) of 7 x 10(exp 017) W Hz(exp -1/2). Researchers also briefly discuss the durability of paramagnetic salts used to cool the bolometers.

  13. The ASTRI mini-array software system (MASS) implementation: a proposal for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Tanci, Claudio; Tosti, Gino; Conforti, Vito; Schwarz, Joseph; Antolini, Elisa; Antonelli, L. A.; Bulgarelli, Andrea; Bigongiari, Ciro; Bruno, Pietro; Canestrari, Rodolfo; Capalbi, Milvia; Cascone, Enrico; Catalano, Osvaldo; Di Paola, Andrea; Di Pierro, Federico; Fioretti, Valentina; Gallozzi, Stefano; Gardiol, Daniele; Gianotti, Fulvio; Giro, Enrico; Grillo, Alessandro; La Palombara, Nicola; Leto, Giuseppe; Lombardi, Saverio; Maccarone, Maria C.; Pareschi, Giovanni; Russo, Federico; Sangiorgi, Pierluca; Scuderi, Salvo; Stringhetti, Luca; Testa, Vincenzo; Trifoglio, Massimo; Vercellone, Stefano; Zoli, Andrea

    2016-08-01

    The ASTRI mini-array, composed of nine small-size dual mirror (SST-2M) telescopes, has been proposed to be installed at the southern site of the Cherenkov Telescope Array (CTA), as a set of preproduction units of the CTA observatory. The ASTRI mini-array is a collaborative and international effort carried out by Italy, Brazil and South Africa and led by the Italian National Institute of Astrophysics, INAF. We present the main features of the current implementation of the Mini-Array Software System (MASS) now in use for the activities of the ASTRI SST-2M telescope prototype located at the INAF observing station on Mt. Etna, Italy and the characteristics that make it a prototype for the CTA control software system. CTA Data Management (CTADATA) and CTA Array Control and Data Acquisition (CTA-ACTL) requirements and guidelines as well as the ASTRI use cases were considered in the MASS design, most of its features are derived from the Atacama Large Millimeter/sub-millimeter Array Control software. The MASS will provide a set of tools to manage all onsite operations of the ASTRI mini-array in order to perform the observations specified in the short term schedule (including monitoring and controlling all the hardware components of each telescope and calibration device), to analyze the acquired data online and to store/retrieve all the data products to/from the onsite repository.

  14. Microwave/millimeter wave technology

    NASA Astrophysics Data System (ADS)

    Abita, Joseph L.

    1988-09-01

    The microwave/millimeter-wave monolithic integrated-circuit (MIMIC) technology and systems are discussed along with the application of MIMICs in electronic warfare. The components of a MIMIC are described, with particular attention given to the active-array antenna transmit/receive module, which is at the focus of the MIMIC, and to the features of a typical MIMIC chip. The typical performance characteristics of MIMIC components are presented in tabular form.

  15. Spatially Resolved Sub-millimeter Continuum Imaging of Neptune with ALMA

    NASA Astrophysics Data System (ADS)

    Iino, Takahiro; Yamada, Takayoshi

    2018-02-01

    This paper reports the result of spatially resolved 646 GHz sub-millimeter imaging observation of Neptune obtained by the Atacama Large Millimeter and sub-millimeter Array. The observation was performed in 2012 August as the flux calibration and synthesized beam size were small enough to resolve Neptune’s disk at this time. This analysis aims to constrain the vertical structure of deep and upper-tropospheric South polar hot spot detected previously with mid-IR, millimeter, and centimeter wavelength. The probed atmospheric pressure region estimated by the radiative-transfer method was between 1.0 and 0.6 bar for the nadir and South pole views, respectively. The South polar hot spot was not detected clearly with an uncertainty of 2.1 K. The apparent discontinuity of tropospheric and stratospheric hot spot may be caused by the vertical wind shear of South polar zonal jet.

  16. The Atacama Large Millimeter/submillimeter Array - from Early Science to Full Operations.

    NASA Astrophysics Data System (ADS)

    Remijan, Anthony

    2017-06-01

    The Atacama Large Millimeter/Submillimeter Array (ALMA) is now entering its 6th cycle of scientific observations. Starting with Cycle 3, science observations were no longer considered "Early Science" or "best efforts". Cycle 5 is now the third cycle of "steady state" observations and Cycle 7 is advertised to begin ALMA "full science" operations. ALMA Full Science Operations will include all the capabilities that were agreed upon by the international consortium after the ALMA re-baselining effort. In this talk, I will detail the upcoming ALMA Cycle 5 observing capabilities, describe the process of selecting new observing modes for upcoming cycles and provide an update on the status of the ALMA Full Science capabilities.

  17. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  18. Multilevel photonic modules for millimeter-wave phased-array antennas

    NASA Astrophysics Data System (ADS)

    Paolella, Arthur C.; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.

    1998-11-01

    Optical signal distribution for phased array antennas in communication system is advantageous to designers. By distributing the microwave and millimeter wave signal through optical fiber there is the potential for improved performance and lower weight. In addition when applied to communication satellites this weight saving translates into substantially reduced launch costs. The goal of the Phase I Small Business Innovation Research (SBIR) Program is the development of multi-level photonic modules for phased array antennas. The proposed module with ultimately comprise of a monolithic, InGaAs/InP p-i-n photodetector-p-HEMT power amplifier, opto-electronic integrated circuit, that has 44 GHz bandwidth and output power of 50 mW integrated with a planar antenna. The photodetector will have a high quantum efficiency and will be front-illuminated, thereby improved optical performance. Under Phase I a module was developed using standard MIC technology with a high frequency coaxial feed interconnect.

  19. HFI Bolometer Detectors Programmatic CDR

    NASA Technical Reports Server (NTRS)

    Lange, Andrew E.

    2002-01-01

    Programmatic Critical Design Review (CDR) of the High Frequency Instrument (HFI) Bolometer Detector on the Planck Surveyor is presented. The topics include: 1) Scientific Requirements and Goals; 2) Silicon Nitride Micromesh 'Spider-Web' Bolometers; 3) Sub-Orbital Heritage: BOOMERANG; 4) Noise stability demonstrated in BOOMERANG; 5) Instrument Partners; 6) Bolometer Environment on Planck/HFI; 7) Bolometer Modules; and 8) Mechanical Interface. Also included are the status of the receivables and delivery plans with Europe. This paper is presented in viewgraph form.

  20. Cryogenic system for the ArTeMiS large sub millimeter camera

    NASA Astrophysics Data System (ADS)

    Ercolani, E.; Relland, J.; Clerc, L.; Duband, L.; Jourdan, T.; Talvard, M.; Le Pennec, J.; Martignac, J.; Visticot, F.

    2014-07-01

    A new photonic camera has been developed in the framework of the ArTéMis project (Bolometers architecture for large field of view ground based telescopes in the sub-millimeter). This camera scans the sky in the sub-millimeter range at simultaneously three different wavelengths, namely 200 μm, 350 μm, 450 μm, and is installed inside the APEX telescope located at 5100m above sea level in Chile. Bolometric detectors cooled to 300 mK are used in the camera, which is integrated in an original cryostat developed at the low temperature laboratory (SBT) of the INAC institut. This cryostat contains filters, optics, mirrors and detectors which have to be implemented according to mass, size and stiffness requirements. As a result the cryostat exhibits an unusual geometry. The inner structure of the cryostat is a 40 K plate which acts as an optical bench and is bound to the external vessel through two hexapods, one fixed and the other one mobile thanks to a ball bearing. Once the cryostat is cold, this characteristic enabled all the different elements to be aligned with the optical axis. The cryogenic chain is built around a pulse tube cooler (40 K and 4 K) coupled to a double stage helium sorption cooler (300 mK). The cryogenic and vacuum processes are managed by a Siemens PLC and all the data are showed and stored on a CEA SCADA system. This paper describes the mechanical and thermal design of the cryostat, its command control, and the first thermal laboratory tests. This work was carried out in collaboration with the Astrophysics laboratory SAp of the IRFU institut. SAp and SBT have installed the camera in July 2013 inside the Cassegrain cabin of APEX.

  1. Passive front-ends for wideband millimeter wave electronic warfare

    NASA Astrophysics Data System (ADS)

    Jastram, Nathan Joseph

    This thesis presents the analysis, design and measurements of novel passive front ends of interest to millimeter wave electronic warfare systems. However, emerging threats in the millimeter waves (18 GHz and above) has led to a push for new systems capable of addressing these threats. At these frequencies, traditional techniques of design and fabrication are challenging due to small size, limited bandwidth and losses. The use of surface micromachining technology for wideband direction finding with multiple element antenna arrays for electronic support is demonstrated. A wideband tapered slot antenna is first designed and measured as an array element for the subsequent arrays. Both 18--36 GHz and 75--110 GHz amplitude only and amplitude/phase two element direction finding front ends are designed and measured. The design of arrays using Butler matrix and Rotman lens beamformers for greater than two element direction finding over W band and beyond using is also presented. The design of a dual polarized high power capable front end for electronic attack over an 18--45 GHz band is presented. To combine two polarizations into the same radiating aperture, an orthomode transducer (OMT) based upon a new double ridge waveguide cross section is developed. To provide greater flexibility in needed performance characteristics, several different turnstile junction matching sections are tested. A modular horn section is proposed to address flexible and ever changing operational requirements, and is designed for performance criteria such as constant gain, beamwidth, etc. A multi-section branch guide coupler and low loss Rotman lens based upon the proposed cross section are also developed. Prototyping methods for the herein designed millimeter wave electronic warfare front ends are investigated. Specifically, both printed circuit board (PCB) prototyping of micromachined systems and 3D printing of conventionally machined horns are presented. A 4--8 GHz two element array with integrated beamformer fabricated using the stacking of PCB boards is shown, and measured results compare favorably with the micromachined front ends. A 3D printed small aperture horn is compared with a conventionally machined horn, and measured results show similar performance with a ten-fold reduction in cost and weight.

  2. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2010-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne polarimeter that will measure the polarization of the cosmic microwave background to search for evidence for inflation. PIPER will observe more than half of the sky in four frequency bands from 200 to 600 GHz with a beam size of 21 arcminutes at the lowest frequency. PIPER simultaneously measures all four Stokes parameters using four co-aligned 32 by 40 element planar bolometer arrays. We give an instrument overview and report on the current status of the instrument.

  3. The ORAC-DR data reduction pipeline

    NASA Astrophysics Data System (ADS)

    Cavanagh, B.; Jenness, T.; Economou, F.; Currie, M. J.

    2008-03-01

    The ORAC-DR data reduction pipeline has been used by the Joint Astronomy Centre since 1998. Originally developed for an infrared spectrometer and a submillimetre bolometer array, it has since expanded to support twenty instruments from nine different telescopes. By using shared code and a common infrastructure, rapid development of an automated data reduction pipeline for nearly any astronomical data is possible. This paper discusses the infrastructure available to developers and estimates the development timescales expected to reduce data for new instruments using ORAC-DR.

  4. Woven ribbon cable for cryogenic instruments

    NASA Astrophysics Data System (ADS)

    Cunningham, C. R.; Hastings, P. R.; Strachan, J. M. D.

    Robust woven ribbon cables are described for connecting sensors at low temperatures to higher temperature systems. Woven cables have several advantages over conventional wiring or flat ribbon cables in cryostats: heat sinking is easier; twisted pairs may be used; and miniature multi-way connectors are easily incorporated. Their use is demonstrated in making connections from 131 bolometers in two arrays mounted in a dilution refrigerator at 100 mK. Thermal and electrical properties are discussed, as are other possible applications in cryogenic instruments.

  5. Efficient Broadband Terahertz Radiation Detectors Based on Bolometers with a Thin Metal Absorber

    NASA Astrophysics Data System (ADS)

    Dem'yanenko, M. A.

    2018-01-01

    The matrix method has been used to calculate the coefficients of absorption of terahertz radiation in conventional (with radiation incident from vacuum adjacent to the bolometer) and inverted (with radiation incident from the substrate on which the bolometer was fabricated) bolometric structures. Near-unity absorption coefficients were obtained when an additional cavity in the form of a gap between the bolometer and the input or output window was introduced. Conventional bolometers then became narrowband, while inverted-type devices remained broadband.

  6. Multicolor Detectors for Ultrasensitive Long-Wave Imaging Cameras

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Benford, Dominic; Chervenak, James; Wollack, Edward

    2012-01-01

    A document describes a zeptobolometer for ultrasensitive, long-wavelength sensors. GSFC is developing pixels based on the zeptobolometer design that sense three THz wavelengths simultaneously. Two innovations are described in the document: (1) a quasiparticle (QO) filter arrangement that enables a compact multicolor spectrum at the focal plane, and (2) a THz antenna readout by up to three bolometers. The innovations enable high efficiency by greatly reducing high, frequency-dependent microstrip losses, and pixel compactness by eliminating the need for bulky filters in the focal plane. The zeptobolometer is a small TES bolometer, on the scale of a few microns, which can be readily coupled through an impedance-matching resistor to a metal or dielectric antenna. The bolometer is voltage-biased in its superconducting transition, allowing the use of superconducting RF multiplexers to read out large arrays. The antenna is geometrically tapped at three locations so as to efficiently couple radiation of three distinct wavelengths to the individual TESs. The transition edge hot electrons in metals offer a simple, compact arrangement for antenna readout, which can be crucial in the THz where line losses at high frequencies can be substantial. A metallic grill filter acts as a high-pass filter and directs the low-frequency components to a location where they will be absorbed. The absorption spectrum shows that three well-separated THz bands are feasible. The filters can be made from high-purity dielectrics such as float zone silicon or sapphire.

  7. Concept Doped-Silicon Thermopile Detectors for Future Planetary Thermal Imaging Instruments

    NASA Astrophysics Data System (ADS)

    Lakew, Brook; Barrentine, Emily M.; Aslam, Shahid; Brown, Ari D.

    2016-10-01

    Presently, uncooled thermopiles are the detectors of choice for thermal mapping in the 4.6-100 μm spectral range. Although cooled detectors like Ge or Si thermistor bolometers, and MgB2 or YBCO superconducting bolometers, have much higher sensitivity, the required active or passive cooling mechanisms add prohibitive cost and mass for long duration missions. Other uncooled detectors, likepyroelectrics, require a motor mechanism to chop against a known reference temperature, which adds unnecessary mission risk. Uncooled vanadium oxide or amorphous Si microbolometer arrays with integrated CMOS readout circuits, not only have lower sensitivity, but also have not been proven to be radiation hard >100 krad (Si) total ionizing dose, and barring additional materials and readout development, their performance has reached a plateau.Uncooled and radiation hard thermopiles with D* ~1x109 cm√Hz/W and time constant τ ~100 ms have been integrated into thermal imaging instruments on several past missions and have extensive flight heritage (Mariner, Voyager, Cassini, LRO, MRO). Thermopile arrays are also on the MERTIS instrument payload on-board the soon to be launched BepiColombo Mission.To date, thermopiles used for spaceflight instrumentation have consisted of either hand assembled "one-off" single thermopile pixels or COTS thermopile pixel arrays both using Bi-Sb or Bi-Te thermoelectric materials. For future high performance imagers, thermal detector arrays with higher D*, lower τ, and high efficiency delineated absorbers are desirable. Existing COTS and other flight thermopile designs require highly specialized and nonstandard processing techniques to fabricate both the Bi-Sb or Bi-Te thermocouples and the gold or silver black absorbers, which put limitations on further development.Our detector arrays will have a D* ≥ 3x109 cm√Hz/W and a thermal time constant ≤ 30 ms at 170 K. They will be produced using proven, standard semiconductor and MEMS fabrication techniques, which will enable the future integration of other ancillary structures like high efficiency broadband absorbers, which will result in D* ≥ 5x109 cm√Hz/W.

  8. Facility Instrumentation for SOFIA: Technical Specifications and Scientific Goals

    NASA Astrophysics Data System (ADS)

    Stacey, G. J.

    2000-05-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne observatory consisting of a 2.5 m telescope in a modified Boeing 747 SP. First light is expected in late 2002. Three "Facility Class" instruments were among the first generation of instruments selected to fly on SOFIA. These instruments, currently under development are (1) a 5 to 38 um imaging photometer based on twin As:Si and Sb:Sb BIB arrays (FORCAST), (2) a 40 to 300 um photometer based on three arrays of bolometers, and (3) a 17 to 210 um eschelle grating spectrometer based on an Sb:Sb BIB array and a Ge:Sb and stressed Ge:Ga array of photoconductors. I will discuss both the technical aspects of these facility instruments, and some of the exciting new science that is possible with these ground breaking instruments on an airborne 2.5 meter telescope. Science topics include circumstellar debris disks, star formation, the Galactic Center, and distant galaxies.

  9. SCD's uncooled detectors and video engines for a wide-range of applications

    NASA Astrophysics Data System (ADS)

    Fraenkel, A.; Mizrahi, U.; Bikov, L.; Giladi, A.; Shiloah, N.; Elkind, S.; Kogan, I.; Maayani, S.; Amsterdam, A.; Vaserman, I.; Duman, O.; Hirsh, Y.; Schapiro, F.; Tuito, A.; Ben-Ezra, M.

    2011-06-01

    Over the last decade SCD has established a state of the art VOx μ-Bolometer product line. Due to its overall advantages this technology is penetrating a large range of systems. In addition to a large variety of detectors, SCD has also recently introduced modular video engines with an open architecture. In this paper we will describe the versatile applications supported by the products based on 17μm pitch: Low SWaP short range systems, mid range systems based on VGA arrays and high-end systems that will utilize the XGA format. These latter systems have the potential to compete with cooled 2nd Gen scanning LWIR arrays, as will be demonstrated by TRM3 system level calculations.

  10. Infrared Luminosities and Dust Properties of z ≈ 2 Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Dey, Arjun; Borys, C.; Desai, V.; Jannuzi, B. T.; Le Floc'h, E.; Melbourne, J.; Sheth, K.; Soifer, B. T.

    2009-11-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24 μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Boötes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ≈3 × 108 M sun. In comparison to other dusty z ~ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 × 1013 L sun versus 6 × 1012 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ~30 K) and lower inferred dust masses (3 × 108 M sun versus 3 × 109 M sun). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ~ 2 involves a submillimeter bright, cold-dust, and star-formation-dominated phase followed by a 24 μm bright, warm-dust and AGN-dominated phase.

  11. The ArTéMiS wide-field sub-millimeter camera: preliminary on-sky performance at 350 microns

    NASA Astrophysics Data System (ADS)

    Revéret, Vincent; André, Philippe; Le Pennec, Jean; Talvard, Michel; Agnèse, Patrick; Arnaud, Agnès.; Clerc, Laurent; de Breuck, Carlos; Cigna, Jean-Charles; Delisle, Cyrille; Doumayrou, Eric; Duband, Lionel; Dubreuil, Didier; Dumaye, Luc; Ercolani, Eric; Gallais, Pascal; Groult, Elodie; Jourdan, Thierry; Leriche, Bernadette; Maffei, Bruno; Lortholary, Michel; Martignac, Jérôme; Rabaud, Wilfried; Relland, Johan; Rodriguez, Louis; Vandeneynde, Aurélie; Visticot, François

    2014-07-01

    ArTeMiS is a wide-field submillimeter camera operating at three wavelengths simultaneously (200, 350 and 450 μm). A preliminary version of the instrument equipped with the 350 μm focal plane, has been successfully installed and tested on APEX telescope in Chile during the 2013 and 2014 austral winters. This instrument is developed by CEA (Saclay and Grenoble, France), IAS (France) and University of Manchester (UK) in collaboration with ESO. We introduce the mechanical and optical design, as well as the cryogenics and electronics of the ArTéMiS camera. ArTeMiS detectors consist in Si:P:B bolometers arranged in 16×18 sub-arrays operating at 300 mK. These detectors are similar to the ones developed for the Herschel PACS photometer but they are adapted to the high optical load encountered at APEX site. Ultimately, ArTeMiS will contain 4 sub-arrays at 200 μm and 2×8 sub-arrays at 350 and 450 μm. We show preliminary lab measurements like the responsivity of the instrument to hot and cold loads illumination and NEP calculation. Details on the on-sky commissioning runs made in 2013 and 2014 at APEX are shown. We used planets (Mars, Saturn, Uranus) to determine the flat-field and to get the flux calibration. A pointing model was established in the first days of the runs. The average relative pointing accuracy is 3 arcsec. The beam at 350 μm has been estimated to be 8.5 arcsec, which is in good agreement with the beam of the 12 m APEX dish. Several observing modes have been tested, like "On- The-Fly" for beam-maps or large maps, spirals or raster of spirals for compact sources. With this preliminary version of ArTeMiS, we concluded that the mapping speed is already more than 5 times better than the previous 350 μm instrument at APEX. The median NEFD at 350 μm is 600 mJy.s1/2, with best values at 300 mJy.s1/2. The complete instrument with 5760 pixels and optimized settings will be installed during the first half of 2015.

  12. Testing of 100 mK bolometers for space applications

    NASA Technical Reports Server (NTRS)

    Murray, A. G.; Ade, P. A. R.; Bhatia, R. S.; Griffin, M. J.; Maffei, B.; Nartallo, R.; Beeman, J. W.; Bock, J.; Lange, A.; DelCastillo, H.

    1996-01-01

    Electrical and optical performance data are presented for a prototype 100 mK spider-web bolometer operating under very low photon backgrounds. These data are compared with the bolometer theory and are used to estimate the expected sensitivity of such a detector used for low background space astronomy. The results demonstrate that the sensitivity and speed of response requirements of the bolometer instruments proposed for these missions can be met by 100 mK spider-web bolometers using neutron transmutation doped germanium as the temperature sensitive element.

  13. A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout

    NASA Astrophysics Data System (ADS)

    Miao, W.; Gao, H.; Wang, Z.; Zhang, W.; Ren, Y.; Zhou, K. M.; Shi, S. C.; Yu, C.; He, Z. Z.; Liu, Q. B.; Feng, Z. H.

    2018-05-01

    In this paper, we present the development of a graphene-based hot electron bolometer with Johnson noise readout. The bolometer is a graphene microbridge connected to a log spiral antenna by Au contact pads. The Fourier transform spectrometer measurement shows the bolometer has high coupling efficiency in the frequency range from 0.3 to 1.6 THz. Using 300/77 K blackbody loads, we measure an optical noise equivalent power of 5.6 × 10-12 W/Hz0.5 at 3.0 K. To understand the thermal transport inside the graphene microbridge, we measure the bolometers with different microbridge lengths at different bath temperatures. We find that the thermal conductance due to electron diffusion is significant in the bolometers.

  14. The First Multichroic Polarimeter Array on the Atacama Cosmology Telescope: Characterization and Performance

    NASA Technical Reports Server (NTRS)

    Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.; hide

    2016-01-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-meter Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 gigahertz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 gigahertz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 meter Kelvins. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 percent, a total array sensitivity of less than 10 microns Kelvin root mean square speed, and detector time constants and saturation powers suitable for ACT CMB observations.

  15. The First Multichroic Polarimeter Array on the Atacama Cosmology Telescope: Characterization and Performance

    NASA Astrophysics Data System (ADS)

    Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Hubmayr, J.; Koopman, B. J.; Lanen, J. V.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Ward, J. T.; Wollack, E. J.; Vavagiakis, E. M.

    2016-08-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-m Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 GHz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 GHz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 mK. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 %, a total array sensitivity of less than 10 \\upmu K√{ {s}}, and detector time constants and saturation powers suitable for ACT CMB observations.

  16. Readout of a 176 pixel FDM system for SAFARI TES arrays

    NASA Astrophysics Data System (ADS)

    Hijmering, R. A.; den Hartog, R.; Ridder, M.; van der Linden, A. J.; van der Kuur, J.; Gao, J. R.; Jackson, B.

    2016-07-01

    In this paper we present the results of our 176-pixel prototype of the FDM readout system for SAFARI, a TES-based focal-plane instrument for the far-IR SPICA mission. We have implemented the knowledge obtained from the detailed study on electrical crosstalk reported previously. The effect of carrier leakage is reduced by a factor two, mutual impedance is reduced to below 1 nH and mutual inductance is removed. The pixels are connected in stages, one quarter of the array half of the array and the full array, to resolve intermediate technical issues. A semi-automated procedure was incorporated to find all optimal settings for all pixels. And as a final step the complete array has been connected and 132 pixels have been read out simultaneously within the frequency range of 1-3.8MHz with an average frequency separation of 16kHz. The noise was found to be detector limited and was not affected by reading out all pixels in a FDM mode. With this result the concept of using FDM for multiplexed bolometer read out for the SAFARI instrument has been demonstrated.

  17. Medium power amplifiers covering 90 - 130 GHz for telescope local oscillators

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Bryerton, Eric; Pukala, David; Peralta, Alejandro; Hu, Ming; Schmitz, Adele

    2005-01-01

    This paper describes a set of power amplifier (PA) modules containing InP High Electron Mobility Transistor (HEMT) Monolithic Millimeter-wave Integrated Circuit (MMIC) chips. The chips were designed and optimized for local oscillator sources in the 90-130 GHz band for the Atacama Large Millimeter Array telescope. The modules feature 20-45 mW of output power, to date the highest power from solid state HEMT MMIC modules above 110 GHz.

  18. Arrays of Nano Tunnel Junctions as Infrared Image Sensors

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong S.; Prokopuk, Nicholas

    2006-01-01

    Infrared image sensors based on high density rectangular planar arrays of nano tunnel junctions have been proposed. These sensors would differ fundamentally from prior infrared sensors based, variously, on bolometry or conventional semiconductor photodetection. Infrared image sensors based on conventional semiconductor photodetection must typically be cooled to cryogenic temperatures to reduce noise to acceptably low levels. Some bolometer-type infrared sensors can be operated at room temperature, but they exhibit low detectivities and long response times, which limit their utility. The proposed infrared image sensors could be operated at room temperature without incurring excessive noise, and would exhibit high detectivities and short response times. Other advantages would include low power demand, high resolution, and tailorability of spectral response. Neither bolometers nor conventional semiconductor photodetectors, the basic detector units as proposed would partly resemble rectennas. Nanometer-scale tunnel junctions would be created by crossing of nanowires with quantum-mechanical-barrier layers in the form of thin layers of electrically insulating material between them (see figure). A microscopic dipole antenna sized and shaped to respond maximally in the infrared wavelength range that one seeks to detect would be formed integrally with the nanowires at each junction. An incident signal in that wavelength range would become coupled into the antenna and, through the antenna, to the junction. At the junction, the flow of electrons between the crossing wires would be dominated by quantum-mechanical tunneling rather than thermionic emission. Relative to thermionic emission, quantum mechanical tunneling is a fast process.

  19. Multiplexing of Hot-Electron Nanobolometers Using Microwave SQUIDs

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Day, Peter K.; Kawamura, Jonathan H.; Bumble, Bruce; LeDuc, Henry G.

    2009-01-01

    We have obtained the first data on the multiplexed operation of titanium hot-electron bolometers (HEB). Because of their low thermal conductance and small electron heat capacity nanobolometers are particularly interesting as sensors for far-infrared spectroscopy and mid- and near-IR calorimetry. However, the short time constant of these devices (approximately microseconds at 300-400 mK) makes time domain or audio-frequency domain multiplexing impractical. The Microwave SQUID (MSQUID) approach pursued in this work uses dc SQUIDs coupled to X-band microresonators which are, in turn, coupled to a transmission line. We used a 4-element array of Ti HEBs operated at 415 mK in a He3 dewar with an optical fiber access. The microwave signal exhibited 10-MHz wide resonances at individual MSQUD frequencies between 9 GHz and 10 GHz. The resonance depth is modulated by the current through the bolometer via a change of the SQUID flux state. The transmitted signal was amplified by a cryogenic amplifier and downconverted to baseband using an IQ mixer. A 1-dB per ??/2 responsivity was sufficient for keeping the system noise at the level of 2 pA/Hz1/2. This is more than an order of magnitude smaller than phonon noise in the HEB. The devices were able to detect single near- IR photons (1550 nm) with a time constant of 3.5 ?s. Follow-on work will scale the array to larger size and will address the microwave frequency signal generation and processing using a digital transceiver.

  20. Improved fabrication techniques for infrared bolometers

    NASA Technical Reports Server (NTRS)

    Lange, A. E.; Mcbride, S. E.; Richards, P. L.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Ion implantation and sputter metallization are used to produce ohmic electrical contacts to Ge:Ga chips. The method is shown to give a high yield of small monolithic bolometers with very little low-frequency noise. It is noted that when one of the chips is used as the thermometric element of a composite bolometer it must be bonded to a dielectric substrate. The thermal resistance of the conventional epoxy bond is measured and found to be undesirably large. A procedure for soldering the chip to a metallized portion of the substrate in such a way as to reduce this resistance is outlined. An evaluation is made of the contribution of the metal film absorber to the heat capacity of a composite bolometer. It is found that the heat capacity of a NiCr absorber at 1.3 K can dominate the bolometer performance. A Bi absorber possesses significantly lower heat capacity. A low-temperature blackbody calibrator is built to measure the optical responsivity of bolometers. A composite bolometer system with a throughput of approximately 0.1 sr sq cm is constructed using the new techniques. The noise in this bolometer is white above 2.5 Hz and is slightly below the value predicted by thermodynamic equilibrium theory.

  1. Taiwanese antennas for the Sub-Millimeter Array: a progress report

    NASA Astrophysics Data System (ADS)

    Raffin, Phillippe A.; Liu, Ching-Tang; Cervera, Mathieu; Chang, Chi-Ling; Chen, Ming-Tang; Lee, Cheng-Ching; Lee, Typhoon; Lo, Kwok-Yung; Ma, Rwei-Ping; Martin, Robert N.; Martin-Cocher, Pierre; Ong, Ching-Long; Park, Yong-Sun; Tsai, Rong-Den; Wu, Enboa; Yang, Shun-Cheng; Yang, Tien-Szu

    2000-07-01

    The Academia Sinica, Institute for Astronomy and Astrophysics (ASIAA) is building two antennas to be added to the six antennas of the Sub-Millimeter Array (SMA) of the Smithsonian Astrophysical Observatory (SAO). The antennas have been designed at SAO and are currently under construction at Mauna Kea. ASIAA's two antennas are made in Taiwan from parts manufactured locally and imported from Europe and from the USA. This report will focus on the manufacturing and testing of 2 major components: the alidade and the reflector. We will emphasize the work done on the composite parts used in the 6- meter reflectors, namely the carbon fiber tubes for the backup structure, the carbon fiber legs of the quadrupod and the composite central hub. We will discuss the modal testing and pointing tests of the antennas. Finally this report will show how the Taiwanese industry was able to respond to the high manufacturing standards required to build sub-millimeter antennas. The design and manufacturing capabilities of the Aeronautical Research Laboratories and China Shipbuilding Corporation have made possible the construction of the telescopes in Taiwan.

  2. QUEST FOR COSMOS SUBMILLIMETER GALAXY COUNTERPARTS USING CARMA AND VLA: IDENTIFYING THREE HIGH-REDSHIFT STARBURST GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolcic, V.; Navarrete, F.; Bertoldi, F.

    2012-05-01

    We report on interferometric observations at 1.3 mm at 2''-3'' resolution using the Combined Array for Research in Millimeter-wave Astronomy. We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F{sub 1m} > 5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, {approx}10''-30'', resolution. All three sources-AzTEC/C1, Cosbo-3, and Cosbo-8-are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but with that farther away from it. This illustrates the need for intermediate-resolution ({approx}2'') mm-observations to identify themore » correct counterparts of single-dish-detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z {approx}> 2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric redshifts of 5.6 {+-} 1.2, 1.9{sup +0.9}{sub -0.5}, and {approx}4 for AzTEC/C1, Cosbo-3, and Cosbo-8, respectively. Using these we infer that these galaxies have radio-based star formation rates of {approx}> 1000 M{sub Sun} yr{sup -1}and IR luminosities of {approx}10{sup 13} L{sub Sun} consistent with properties of high-redshift SMGs. In summary, our sources reflect a variety of SMG properties in terms of redshift and clustering, consistent with the framework that SMGs are progenitors of z {approx} 2 and today's passive galaxies.« less

  3. SCUBA and HIRES Results for Protostellar Cores in the MON OB1 Dark Cloud

    NASA Astrophysics Data System (ADS)

    Wolf-Chase, G.; Moriarty-Schieven, G.; Fich, M.; Barsony, M.

    1999-05-01

    We have used HIRES-processing of IRAS data and point-source modelling techniques (Hurt & Barsony 1996; O'Linger 1997; Barsony et al. 1998), together with submillimeter continuum imaging using the Submillimeter Common-User Bolometer Array (SCUBA) on the 15-meter James Clerk Maxwell Telescope (JCMT), to search CS cores in the Mon OB1 dark cloud (Wolf-Chase, Walker, & Lada 1995; Wolf-Chase & Walker 1995) for deeply embedded sources. These observations, as well as follow-up millimeter photometry at the National Radio Astronomy Observatory (NRAO) 12-meter telescope on Kitt Peak, have lead to the identification of two Class 0 protostellar candidates, which were previously unresolved from two brighter IRAS point sources (IRAS 06382+0939 & IRAS 06381+1039) in this cloud. Until now, only one Class 0 object had been confirmed in Mon OB1; the driving source of the highly-collimated outflow NGC 2264 G (Ward-Thompson, Eiroa, & Casali 1995; Margulis et al. 1990; Lada & Fich 1996), which lies well outside the extended CS cores. One of the new Class 0 candidates may be an intermediate-mass source associated with an H_2O maser, and the other object is a low-mass source which may be associated with a near-infrared jet, and possibly with a molecular outflow. We report accurate positions for the new Class 0 candidates, based on the SCUBA images, and present new SEDs for these sources, as well as for the brighter IRAS point sources. A portion of this work was performed while GWC held a President's Fellowship from the University of California. MB and GWC gratefully acknowledge financial support from MB's NSF CAREER Grant, AST97-9753229.

  4. Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Wollack, Edward

    2012-01-01

    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.

  5. High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor.

    PubMed

    Ren, Ximing; Connolly, Peter W R; Halimi, Abderrahim; Altmann, Yoann; McLaughlin, Stephen; Gyongy, Istvan; Henderson, Robert K; Buller, Gerald S

    2018-03-05

    A CMOS single-photon avalanche diode (SPAD) quanta image sensor is used to reconstruct depth and intensity profiles when operating in a range-gated mode used in conjunction with pulsed laser illumination. By designing the CMOS SPAD array to acquire photons within a pre-determined temporal gate, the need for timing circuitry was avoided and it was therefore possible to have an enhanced fill factor (61% in this case) and a frame rate (100,000 frames per second) that is more difficult to achieve in a SPAD array which uses time-correlated single-photon counting. When coupled with appropriate image reconstruction algorithms, millimeter resolution depth profiles were achieved by iterating through a sequence of temporal delay steps in synchronization with laser illumination pulses. For photon data with high signal-to-noise ratios, depth images with millimeter scale depth uncertainty can be estimated using a standard cross-correlation approach. To enhance the estimation of depth and intensity images in the sparse photon regime, we used a bespoke clustering-based image restoration strategy, taking into account the binomial statistics of the photon data and non-local spatial correlations within the scene. For sparse photon data with total exposure times of 75 ms or less, the bespoke algorithm can reconstruct depth images with millimeter scale depth uncertainty at a stand-off distance of approximately 2 meters. We demonstrate a new approach to single-photon depth and intensity profiling using different target scenes, taking full advantage of the high fill-factor, high frame rate and large array format of this range-gated CMOS SPAD array.

  6. Facilities for US Radioastronomy.

    ERIC Educational Resources Information Center

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  7. Dynamic Electrothermal Model of a Sputtered Thermopile Thermal Radiation Detector for Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Weckmann, Stephanie

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) is a program sponsored by the National Aeronautics and Space Administration (NASA) aimed at evaluating the global energy balance. Current scanning radiometers used for CERES consist of thin-film thermistor bolometers viewing the Earth through a Cassegrain telescope. The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently studying a new sensor concept to replace the current bolometer: a thermopile thermal radiation detector. This next-generation detector would consist of a thermal sensor array made of thermocouple junction pairs, or thermopiles. The objective of the current research is to perform a thermal analysis of the thermopile. Numerical thermal models are particularly suited to solve problems for which temperature is the dominant mechanism of the operation of the device (through the thermoelectric effect), as well as for complex geometries composed of numerous different materials. Feasibility and design specifications are studied by developing a dynamic electrothermal model of the thermopile using the finite element method. A commercial finite element-modeling package, ALGOR, is used.

  8. Status of LUMINEU program to search for neutrinoless double beta decay of 100Mo with cryogenic ZnMoO4 scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Bergé, L.; Boiko, R. S.; Chapellier, M.; Chernyak, D. M.; Coron, N.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Giuliani, A.; Gray, D.; Gros, M.; Hervé, S.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kobychev, V. V.; Koskas, F.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Navick, X.-F.; Nones, C.; Olivieri, E.; Paul, B.; Penichot, Y.; Pessina, G.; Plantevin, O.; Poda, D. V.; Redon, T.; Rodrigues, M.; Shlegel, V. N.; Strazzer, O.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vasiliev, Ya. V.; Velazquez, M.; Viraphong, O.

    2015-10-01

    The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of 100Mo using radiopure ZnMoO4 crystals enriched in 100Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO4 crystal scintillators (˜ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in 100Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ˜ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.

  9. TeO$$_2$$ bolometers with Cherenkov signal tagging: towards next-generation neutrinoless double-beta decay experiments

    DOE PAGES

    Casali, N.; Vignati, Marco; Beeman, J. W.; ...

    2015-01-14

    CUORE, an array of 988 TeOmore » $$_2$$ bolometers, is about to be one of the most sensitive experiments searching for neutrinoless double-beta decay. Its sensitivity could be further improved by removing the background from α radioactivity. A few years ago it was pointed out that the signal from βs can be tagged by detecting the emitted Cherenkov light, which is not produced by αs. In this paper we confirm this possibility. For the first time we measured the Cherenkov light emitted by a CUORE crystal, and found it to be 100 eV at the Q-value of the decay. To completely reject the α background, we compute that one needs light detectors with baseline noise below 20 eV RMS, a value which is 3–4 times smaller than the average noise of the bolometric light detectors we are using. We point out that an improved light detector technology must be developed to obtain TeO$$_2$$ bolometric experiments able to probe the inverted hierarchy of neutrino masses.« less

  10. Characterization and Performance of a Kilo-TES Sub-Array for ACTPol

    NASA Technical Reports Server (NTRS)

    Grace, E. A.; Beall, J.; Cho, H. M.; Devlin, M. J.; Fox, A.; Hilton, G.; Hubmayr, J.; Irwin, K.; Klein, J.; Li, D.; hide

    2014-01-01

    ACTPol is a polarization-sensitive receiver upgrade to the Atacama CosmologyTelescope (ACT) which will make millimeterwavelength measurements of the small-scale polarization anisotropies of the cosmic microwave background to investigate the properties of inflation, dark energy, dark matter, and neutrinos in the early Universe. ACTPol will employ three arrays of transition edge sensor (TES) bolometer detectors. The detectors, with a target transition temperature of 150 mK, will be operated at a bath temperature of 100 mK provided by a dilution refrigerator. One array operating at a central frequency of 150 GHz and consisting of 1024 TESes achieved first light at the ACT site in July 2013. We anticipate fielding the remainder of the focal plane, consisting of a second 150 GHz array and a multi-chroic array sensitive to 90 and 150 GHz, at the end of the 2013 observing season. In these proceedings, we present characterization of key detector parameters from measurements performed on the first array both in the lab and during initial field testing. We comment on the design goals, measurements, and uniformity of the detector transition temperatures, saturation powers, and thermal conductivities while detailing measurement methods and results for the detector optical efficiencies and time constants.

  11. Studies of Millimeter-Wave Diffraction Devices and Materials

    DTIC Science & Technology

    1984-12-28

    7.0 REFERENCES 1. Andrenko, S . d., Devyatkov, Acad. N. D., and Shestopalov, V. P., "Millimeter Field Band Antenna Arrays", Dokl. Akad. 4auk SSSR, Vol... S UNCLASSTFIED I* .RIT.Y CL.ASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE :kFPOO- SEURITY CLASSIFICATION 1-b. RESTRICTIVE MARKINGS .EM...State and ZIP Code) 10. SOURCE OF FUNDIN.G NOS. ______ C)c \\~ S PROGRAM PROJECT TASK WORK UNIT 2~~V \\~ ~(~ELEMENT NO. NO. No. NO. ATEinciude Security

  12. Imaging of Stellar Surfacess Using Radio Facilities Including ALMA

    NASA Astrophysics Data System (ADS)

    O'Gorman, Eamon

    2018-04-01

    Until very recently, studies focusing on imaging stars at continuum radio wavelengths (here defined as submillimeter, millimeter, and centimeter wavelengths) has been scarce. These studies have mainly been carried out with the Very Large Array on a handful of evolved stars (i.e., Asymptotic Giant Branch and Red Supergiant stars) whereby their stellar disks have just about been spatially resolved. Some of these results however, have challenged our historical views on the nature of evolved star atmospheres. Now, the very long baselines of the Atacama Large Millimeter/submillimeter Array and the newly upgraded Karl G. Jansky Very Large Array provide a new opportunity to image these atmospheres at unprecedented spatial resolution and sensitivity across a much wider portion of the radio spectrum. In this talk I will first provide a history of stellar radio imaging and then discuss some recent exciting ALMA results. Finally I will present some brand new multi-wavelength ALMA and VLA results for the famous red supergiant Antares.

  13. Considerations on thermal effects in doped scintillators for dark matter and other rare events searches

    NASA Astrophysics Data System (ADS)

    Chapellier, M.

    2009-08-01

    The scintillation properties of luminescent crystals are well known at room temperature. It is only recently, for the sake of dark matter and rare events searches that the studies have been extended to very low temperatures in the millikelvin range. Some little-known facts on the behaviour of bolometers , and more specifically on scintillating ones, are recalled in a simple manner. A few experiments to better understand them are proposed. The term bolometer is used here for calorimeter. Normally a bolometer will measure a flux of energy whereas a calorimeter measures a deposited energy. The tendency is to use bolometer for both types of measurement. A germanium bolometer does not measure the total energy received, part of it is transformed in ionization energy. The same is true for scintillating bolometer.

  14. Improved fabrication techniques for infrared bolometers

    NASA Technical Reports Server (NTRS)

    Lange, A. E.; Kreysa, E.; Mcbride, S. E.; Richards, P. L.; Haller, E. E.

    1983-01-01

    Techniques are described for producing improved infrared bolometers from doped germanium. Ion implantation and sputter metalization have been used to make ohmic electrical contacts to Ge:Ga chips. This method results in a high yield of small monolithic bolometers with very little low-frequency noise. When one of these chips is used as the thermometric element of a composite bolometer, it must be bonded to a dielectric substrate. The thermal resistance of the conventional epoxy bond has been measured and found to be undesirably large. A procedure for soldering the chip to a metalized portion of the substrate is described which reduced this resistance. The contribution of the metal film absorber to the heat capacity of a composite bolometer has been measured. The heat capacity of a NiCr absorber at 1.3 K can dominate the bolometer performance. A Bi absorber has significantly lower heat capacity. A low temperature blackbody calibrator has been built to measure the optical responsivity of bolometers. A composite bolometer system with a throughput of approx. 0.1 sr sq cm was constructed using the new techniques. In negligible background it has an optical NEP of 3.6 10((exp -15) W/sq root of Hz at 1.0 K with a time constant of 20 ms. The noise in this bolometer is white above 2.5 Hz and is somewhat below the value predicted by thermodynamic equilibrium theory. It is in agreement with calculations based on a recent nonequilibrium theory.

  15. Kinetic inductance detectors for millimeter and submillimeter astronomy

    NASA Astrophysics Data System (ADS)

    Boudou, Nicolas; Benoit, Alain; Bourrion, Olivier; Calvo, Martino; Désert, François-Xavier; Macias-Perez, Juan; Monfardini, Alessandro; Roesch, Markus

    2012-01-01

    We present recent developments in Kinetic Inductance Detectors (KID) for large arrays of detectors. The main application is ground-based millimeter wave astronomy. We focus in particular, as a case study, on our own experiment: NIKA (Néel IRAM KID Arrays). NIKA is today the best in-the-field experiment using KID-based instruments, and consists of a dual-band imaging system designed for the IRAM 30 meter telescope at Pico Veleta. We describe in this article, after a general context introduction, the KID working principle and the readout electronics, crucial to take advantage of the intrinsic KID multiplexability. We conclude with a small subset of the astronomical sources observed simultaneously at 2 mm and 1.4 mm by NIKA during the last run, held in October 2010.

  16. Ground Calibrations of the Clouds and the Earth's Radiant Energy System (CERES) Tropical Rainfall Measuring Mission Spacecraft Thermistor Bolometers

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Smith, G. Lou; Barkstrom, Bruce R.; Priestley, Kory J.; Thomas, Susan; Paden, Jack; Pandey, Direndra K.; Thornhill, K. Lee; Bolden, William C.; Wilson, Robert S.

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers will measure earth-reflected solar and earth-emmitted,longwave radiances, at the top-of-the-atmosphere. The measurements are performed in the broadband shortwave (0.3-5.0 micron) and longwave (5.0 - >100 micron) spectral regions as well as in the 8 -12 micron water vapor window over geographical footprints as small as 10 kilometers at the nadir. The CERES measurements are designed to improve our knowledge of the earth's natural climate processes, in particular those related to clouds, and man's impact upon climate as indicated by atmospheric temperature. November 1997, the first set of CERES bolometers is scheduled for launch on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft. The CERES bolometers were calibrated radiometrically in a vacuum ground facility using absolute reference sources, tied to the International Temperature Scale of 1990. Accurate bolometer calibrations are dependent upon the derivations of the radiances from the spectral properties [reflectance, transmittance, emittance, etc.] of both the sources and bolometers. In this paper, the overall calibration approaches are discussed for the longwave and shortwave calibrations. The spectral responses for the TRMM bolometer units are presented and applied to the bolometer ground calibrations in order to determine pre-launch calibration gains.

  17. Coherent Detector Arrays for Continuum and Spectral Line Applications

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.

    2006-01-01

    This viewgraph presentation reviews the requirements for improved coherent detector arrays for use in continuum and spectral line applications. With detectors approaching fundamental limits, large arrays offer the only path to sensitivity improvement. Monolithic Microwave Integrated Circuit (MMIC) technology offers a straightforward path to massive focal plane millimeter wave arrays: The technology will readily support continuum imagers, polarimeters and spectral line receivers from 30-110 GHz. Science programs, particularly large field blind surveys will benefit from simultaneous observations of hundreds or thousands of pixels 1000 element array is competitive with a cost less than $2M.

  18. Results from the CUORE-0 experiment

    DOE PAGES

    Canonica, L.; Alduino, C.; Alfonso, K.; ...

    2016-06-09

    The CUORE-0 experiment searched for neutrinoless double beta decay in 130 Te using an array of 52 tellurium dioxide crystals, operated as bolometers at a temperature of 10 mK. It took data in the Gran Sasso National Laboratory (Italy) since March 2013 to March 2015. We present the results of a search for neutrinoless double beta decay in 9.8 kg-years 130 Te exposure that allowed us to set the most stringent limit to date on this half-life. The performance of the detector in terms of background and energy resolution is also reported.

  19. Patch antenna terahertz photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaferri, D.; Todorov, Y., E-mail: yanko.todorov@univ-paris-diderot.fr; Chen, Y. N.

    2015-04-20

    We report on the implementation of 5 THz quantum well photodetector exploiting a patch antenna cavity array. The benefit of our plasmonic architecture on the detector performance is assessed by comparing it with detectors made using the same quantum well absorbing region, but processed into a standard 45° polished facet mesa. Our results demonstrate a clear improvement in responsivity, polarization insensitivity, and background limited performance. Peak detectivities in excess of 5 × 10{sup 12} cmHz{sup 1/2}/W have been obtained, a value comparable with that of the best cryogenic cooled bolometers.

  20. Automated Reduction and Calibration of SCUBA Archive Data Using ORAC-DR

    NASA Astrophysics Data System (ADS)

    Jenness, T.; Stevens, J. A.; Archibald, E. N.; Economou, F.; Jessop, N.; Robson, E. I.; Tilanus, R. P. J.; Holland, W. S.

    The Submillimetre Common User Bolometer Array (SCUBA) instrument has been operating on the James Clerk Maxwell Telescope (JCMT) since 1997. The data archive is now sufficiently large that it can be used for investigating instrumental properties and the variability of astronomical sources. This paper describes the automated calibration and reduction scheme used to process the archive data with particular emphasis on the pointing observations. This is made possible by using the ORAC-DR data reduction pipeline, a flexible and extensible data reduction pipeline that is used on UKIRT and the JCMT.

  1. Commissioning of the FTS-2 Data Reduction Pipeline

    NASA Astrophysics Data System (ADS)

    Sherwood, M.; Naylor, D.; Gom, B.; Bell, G.; Friberg, P.; Bintley, D.

    2015-09-01

    FTS-2 is the intermediate resolution Fourier Transform Spectrometer coupled to the SCUBA-2 facility bolometer camera at the James Clerk Maxwell Telescope in Hawaii. Although in principle FTS instruments have the advantage of relatively simple optics compared to other spectrometers, they require more sophisticated data processing to compute spectra from the recorded interferogram signal. In the case of FTS-2, the complicated optical design required to interface with the existing telescope optics introduces performance compromises that complicate spectral and spatial calibration, and the response of the SCUBA-2 arrays introduce interferogram distortions that are a challenge for data reduction algorithms. We present an overview of the pipeline and discuss new algorithms that have been written to correct the noise introduced by unexpected behavior of the SCUBA-2 arrays.

  2. Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

    NASA Astrophysics Data System (ADS)

    Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN_x) materials and microwave structures, and the resulting performance improvements.

  3. Fabrication of Antenna-Coupled KID Array for Cosmic Microwave Background Detection

    NASA Astrophysics Data System (ADS)

    Tang, Q. Y.; Barry, P. S.; Basu Thakur, R.; Kofman, A.; Nadolski, A.; Vieira, J.; Shirokoff, E.

    2018-05-01

    Kinetic inductance detectors (KIDs) have become an attractive alternative to traditional bolometers in the sub-mm and mm observing community due to their innate frequency multiplexing capabilities and simple lithographic processes. These advantages make KIDs a viable option for the O(500,000) detectors needed for the upcoming Cosmic Microwave Background-Stage 4 experiment. We have fabricated an antenna-coupled MKID array in the 150 GHz band optimized for CMB detection. Our design uses a twin-slot antenna coupled to an inverted microstrip made from a superconducting Nb/Al bilayer as the strip, a Nb ground plane and a SiN_x dielectric layer in between, which is then coupled to an Al KID grown on high-resistivity Si. We present the fabrication process and measurements of SiN_x microstrip resonators.

  4. Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

    NASA Technical Reports Server (NTRS)

    Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; hide

    2016-01-01

    Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN(sub x)) materials and microwave structures, and the resulting performance improvements.

  5. Large-scale transmission-type multifunctional anisotropic coding metasurfaces in millimeter-wave frequencies

    NASA Astrophysics Data System (ADS)

    Cui, Tie Jun; Wu, Rui Yuan; Wu, Wei; Shi, Chuan Bo; Li, Yun Bo

    2017-10-01

    We propose fast and accurate designs to large-scale and low-profile transmission-type anisotropic coding metasurfaces with multiple functions in the millimeter-wave frequencies based on the antenna-array method. The numerical simulation of an anisotropic coding metasurface with the size of 30λ × 30λ by the proposed method takes only 20 min, which however cannot be realized by commercial software due to huge memory usage in personal computers. To inspect the performance of coding metasurfaces in the millimeter-wave band, the working frequency is chosen as 60 GHz. Based on the convolution operations and holographic theory, the proposed multifunctional anisotropic coding metasurface exhibits different effects excited by y-polarized and x-polarized incidences. This study extends the frequency range of coding metasurfaces, filling the gap between microwave and terahertz bands, and implying promising applications in millimeter-wave communication and imaging.

  6. Nova Oph 2017 (TCP J17394608-2457555) detected at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Kaminski, T.; Gehrz, R.

    2017-06-01

    Millimeter-wave continuum emission was detected in Nova Oph 2017 (ATel #10366, #10367) with the Submillimeter Array in Hawaii. The object was observed on July 20, 2017 in four spectral ranges: 224.3-232.3, 240.6-248.6, 336-344, and 352-360 GHz. The combined continuum flux in the two lower ranges (i.e., at a wavelength of 1.3 mm) is of 4.8 mJy, well above the noise with an rms of 0.6 mJy per beam.

  7. Protoplanetary Disks in Multiple Star Systems

    NASA Astrophysics Data System (ADS)

    Harris, Robert J.

    Most stars are born in multiple systems, so the presence of a stellar companion may commonly influence planet formation. Theory indicates that companions may inhibit planet formation in two ways. First, dynamical interactions can tidally truncate circumstellar disks. Truncation reduces disk lifetimes and masses, leaving less time and material for planet formation. Second, these interactions might reduce grain-coagulation efficiency, slowing planet formation in its earliest stages. I present three observational studies investigating these issues. First is a spatially resolved Submillimeter Array (SMA) census of disks in young multiple systems in the Taurus-Auriga star-forming region to study their bulk properties. With this survey, I confirmed that disk lifetimes are preferentially decreased in multiples: single stars have detectable millimeter-wave continuum emission twice as often as components of multiples. I also verified that millimeter luminosity (proportional to disk mass) declines with decreasing stellar separation. Furthermore, by measuring resolved-disk radii, I quantitatively tested tidal-truncation theories: results were mixed, with a few disks much larger than expected. I then switch focus to the grain-growth properties of disks in multiple star systems. By combining SMA, Combined Array for Research in Millimeter Astronomy (CARMA), and Jansky Very Large Array (VLA) observations of the circumbinary disk in the UZ Tau quadruple system, I detected radial variations in the grain-size distribution: large particles preferentially inhabit the inner disk. Detections of these theoretically predicted variations have been rare. I related this to models of grain coagulation in gas disks and find that our results are consistent with growth limited by radial drift. I then present a study of grain growth in the disks of the AS 205 and UX Tau multiple systems. By combining SMA, Atacama Large Millimeter/submillimeter Array (ALMA), and VLA observations, I detected radial variations of the grain-size distribution in the AS 205 A disk, but not in the UX Tau A disk. I find that some combination of radial drift and fragmentation limits growth in the AS 205 A disk. In the final chapter, I summarize my findings that, while multiplicity clearly influences bulk disk properties, it does not obviously inhibit grain growth. Other investigations are suggested.

  8. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes were developed that provide low-loss, hermetic enclosure for advanced monolithic microwave and millimeter-wave integrated circuits (MMICs). The package designs are based on a fused quartz substrate material that offers improved radio frequency (RF) performance through 44 gigahertz (GHz). The small size and weight of the packages make them appropriate for a variety of applications, including phased array antenna systems. Packages were designed in two forms; one for housing a single MMIC chip, the second in the form of a multi-chip phased array module. The single chip array module was developed in three separate sizes, for chips of different geometry and frequency requirements. The phased array module was developed to address packaging directly for antenna applications, and includes transmission line and interconnect structures to support multi-element operation. All packages are fabricated using fused quartz substrate materials. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices. The package and test fixture designs were both developed in a generic sense, optimizing performance for a wide range of possible applications and devices.

  9. Advanced millimeter-wave security portal imaging techniques

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-03-01

    Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.

  10. Ghostly Boomerang

    NASA Image and Video Library

    2013-10-25

    The Boomerang nebula, called the coldest place in the universe, reveals its true shape to the Atacama Large Millimeter/submillimeter Array ALMA telescope. The background blue structure, is seen in visible light by NASA Hubble Space Telescope.

  11. Amplifier arrays for CMB polarization

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Lawrence, Charles R.; Seiffert, Michael D.; Wells, Mary M.; Kangaslahti, Pekka; Dawson, Douglas

    2003-01-01

    Cryogenic low noise amplifier technology has been successfully used in the study of the cosmic microwave background (CMB). MMIC (Monolithic Millimeter wave Integrated Circuit) technology makes the mass production of coherent detection receivers feasible.

  12. Characterization of AlMn TES Impedance, Noise, and Optical Efficiency in the First 150 mm Multichroic Array for Advanced ACTPol

    NASA Technical Reports Server (NTRS)

    Crowley, Kevin T.; Choi, Steve K.; Kuan, Jeffrey; Austermann, Jason E.; Beall, James A.; Datta, Rahul; Duff, Shannon M.; Gallardo, Patricia A.; Hasselfield, Matthew; Henderson, Shawn W.; hide

    2016-01-01

    The Advanced ACTPol (AdvACT) upgrade to the Atacama Cosmology Telescope features large arrays of multichroic pixels consisting of two orthogonal-polarization pairs of superconducting bolometers at two observing frequency bands. We present measurements of the detector properties and noise data in a subset of a fielded multichroic array of AlMn transition-edge sensor (TES) detectors. In this array, the distribution of critical temperature T(sub c) across detectors appears uniform at the percent level. The measured noise-equivalent power (NEP) distributions over approximately 1200 detectors are consistent with expectations. We find median NEPs of 4.0×10(exp -17) W/ v Hz for low-band detectors and 6.2×10(exp -17) W/ v Hz for high-band detectors under covered-window telescope test conditions with optical loading comparable to observing with precipitable water vapor approximately 0.5 mm. Lastly, we show the estimated detector optical efficiency, and demonstrate the ability to perform optical characterization over hundreds of detectors at once using a cryogenic blackbody source.

  13. Millimeter and hard x ray/gamma ray observations of solar flares during the June 1991 GRO campaign

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; White, S. M.; Gopalswamy, N.; Lim, J.

    1992-01-01

    We have carried out high-spatial-resolution millimeter observations of solar flares using the Berkeley-Illinois-Maryland Array (BIMA). At the present time, BIMA consists of only three elements, which is not adequate for mapping highly variable solar phenomena, but is excellent for studies of the temporal structure of flares at millimeter wavelengths at several different spatial scales. We present BIMA observations made during the Gamma Ray Observatories (GRO)/Solar Max 1991 campaign in Jun. 1991 when solar activity was unusually high. Our observations covered the period 8-9 Jun. 1991; this period overlapped the period 4-15 Jun. when the Compton Telescope made the Sun a target of opportunity because of the high level of solar activity.

  14. VLA Imaging of Protoplanetary Environments

    NASA Technical Reports Server (NTRS)

    Wilner, David J.

    2004-01-01

    We summarize the major accomplishments of our program to use high angular resolution observations at millimeter wavelengths to probe the structure of protoplanetary disks in nearby regions of star formation. The primary facilities used in this work were the Very Large Array (VLA) of the National Radio Astronomy Observatories (NRAO) located in New Mexico, and the recently upgraded Australia Telescope Compact Array (ATCA), located in Australia (to access sources in the far southern sky). We used these facilities to image thermal emission from dust particles in disks at long millimeter wavelengths, where the emission is optically thin and probes the full disk volume, including the inner regions of planet formation that remain opaque at shorter wavelengths. The best resolution obtained with the VLA is comparable to the size scales of the orbits of giant planets in our Solar System (< 10 AU).

  15. Millimeter accuracy satellites for two color ranging

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1993-01-01

    The principal technical challenge in designing a millimeter accuracy satellite to support two color observations at high altitudes is to provide high optical cross-section simultaneously with minimal pulse spreading. In order to address this issue, we provide, a brief review of some fundamental properties of optical retroreflectors when used in spacecraft target arrays, develop a simple model for a spherical geodetic satellite, and use the model to determine some basic design criteria for a new generation of geodetic satellites capable of supporting millimeter accuracy two color laser ranging. We find that increasing the satellite diameter provides: a larger surface area for additional cube mounting thereby leading to higher cross-sections; and makes the satellite surface a better match for the incoming planar phasefront of the laser beam. Restricting the retroreflector field of view (e.g. by recessing it in its holder) limits the target response to the fraction of the satellite surface which best matches the optical phasefront thereby controlling the amount of pulse spreading. In surveying the arrays carried by existing satellites, we find that European STARLETTE and ERS-1 satellites appear to be the best candidates for supporting near term two color experiments in space.

  16. Electronically Tuned Local Oscillators for the NOEMA Interferometer

    NASA Astrophysics Data System (ADS)

    Mattiocco, Francois; Garnier, Olivier; Maier, Doris; Navarrini, Alessandro; Serres, Patrice

    2016-03-01

    We present an overview of the electronically tuned local oscillator (LO) system developed at the Institut de RadioAstronomie millimetrique (IRAM) for the superconductor-insulator-superconductor (SIS) receivers of the NOrthern Extended Millimeter Array interferometer (NOEMA). We modified the frequency bands and extended the bandwidths of the LO designs developed by the National Radio Astronomy Observatory (NRAO) for the Atacama Large Millimeter Array (ALMA) project to cover the four NOEMA LO frequency ranges 82-108.3 GHz (Band 1), 138.6-171.3 GHz (Band 2), 207.7-264.4 GHz (Band 3), and 283-365 GHz (Band 4). The NOEMA LO system employs commercially available MMICs and GaAs millimeter MMICs from NRAO which are micro-assembled into active multiplied chain (AMC) and power amplifier (PA) modules. We discuss the problem of the LO spurious harmonics and of the LO signal directly multiplied by the SIS mixers that add extra noise and lead to detections of unwanted spectral lines from higher order sidebands. A waveguide filter in the LO path is used to reduce the higher order harmonics level of the LO at the output of the final frequency multiplier, thus mitigating the undesired effects and improving the system noise temperature.

  17. Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures

    PubMed Central

    Vanleer, Ann C; Blanco, Justin A; Wagenaar, Joost B; Viventi, Jonathan; Contreras, Diego; Litt, Brian

    2016-01-01

    Objective Current mapping of epileptic networks in patients prior to epilepsy surgery utilizes electrode arrays with sparse spatial sampling (∼1.0 cm inter-electrode spacing). Recent research demonstrates that sub-millimeter, cortical-column-scale domains have a role in seizure generation that may be clinically significant. We use high-resolution, active, flexible surface electrode arrays with 500 μm inter-electrode spacing to explore epileptiform local field potential spike propagation patterns in two dimensions recorded from subdural micro-electrocorticographic signals in vivo in cat. In this study, we aimed to develop methods to quantitatively characterize the spatiotemporal dynamics of epileptiform activity at high-resolution. Approach We topically administered a GABA-antagonist, picrotoxin, to induce acute neocortical epileptiform activity leading up to discrete electrographic seizures. We extracted features from local field potential spikes to characterize spatiotemporal patterns in these events. We then tested the hypothesis that two dimensional spike patterns during seizures were different from those between seizures. Main results We showed that spatially correlated events can be used to distinguish ictal versus interictal spikes. Significance We conclude that sub-millimeter-scale spatiotemporal spike patterns reveal network dynamics that are invisible to standard clinical recordings and contain information related to seizure-state. PMID:26859260

  18. Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures

    NASA Astrophysics Data System (ADS)

    Vanleer, Ann C.; Blanco, Justin A.; Wagenaar, Joost B.; Viventi, Jonathan; Contreras, Diego; Litt, Brian

    2016-04-01

    Objective. Current mapping of epileptic networks in patients prior to epilepsy surgery utilizes electrode arrays with sparse spatial sampling (∼1.0 cm inter-electrode spacing). Recent research demonstrates that sub-millimeter, cortical-column-scale domains have a role in seizure generation that may be clinically significant. We use high-resolution, active, flexible surface electrode arrays with 500 μm inter-electrode spacing to explore epileptiform local field potential (LFP) spike propagation patterns in two dimensions recorded from subdural micro-electrocorticographic signals in vivo in cat. In this study, we aimed to develop methods to quantitatively characterize the spatiotemporal dynamics of epileptiform activity at high-resolution. Approach. We topically administered a GABA-antagonist, picrotoxin, to induce acute neocortical epileptiform activity leading up to discrete electrographic seizures. We extracted features from LFP spikes to characterize spatiotemporal patterns in these events. We then tested the hypothesis that two-dimensional spike patterns during seizures were different from those between seizures. Main results. We showed that spatially correlated events can be used to distinguish ictal versus interictal spikes. Significance. We conclude that sub-millimeter-scale spatiotemporal spike patterns reveal network dynamics that are invisible to standard clinical recordings and contain information related to seizure-state.

  19. A front-end electronic system for large arrays of bolometers

    NASA Astrophysics Data System (ADS)

    Arnaboldi, C.; Carniti, P.; Cassina, L.; Gotti, C.; Liu, X.; Maino, M.; Pessina, G.; Rosenfeld, C.; Zhu, B. X.

    2018-02-01

    CUORE is an array of thermal calorimeters composed of 988 crystals held at about 10 mK, whose absorbed energy is read out with semiconductor thermistors. The composition of the crystal is TeO2, and the aim is the study of the double beta decay of 130Te on very long and stable runs. CUPID-0 is an array of 26 Zn82Se crystals with double thermistor readout to study the double beta decay of 82Se. In the present paper, we present an overview of the entire front-end electronic readout chain, from the preamplifier to the anti-aliasing filter. This overview includes motivations, design strategies, circuit implementation and performance results of the electronic system, including other auxiliary yet important elements like power supplies and the slow control communication system. The stringent requirements of stability on the very long experimental runs that are foreseen during CUORE and CUPID-0 operation, are achieved thanks to novel solutions of the front-end preamplifier and of the detector bias circuit setup.

  20. Enhancements to a Superconducting Quantum Interference Device (SQUID) Multiplexer Readout and Control System

    NASA Technical Reports Server (NTRS)

    Forgione, J.; Benford, D. J.; Buchanan, E. D.; Moseley, S. H.; Rebar, J.; Shafer, R. A.

    2004-01-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA s Goddard Space Flight Center acquired a Mark 111 system and subsequently designed upgrades to suit our and our collaborators purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided hooks in the Mark III system to allow readout of signals from outside the Mark 111 system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  1. Enhancements to a superconducting quantum interference device (SQUID) multiplexer readout and control system

    NASA Astrophysics Data System (ADS)

    Forgione, Joshua B.; Benford, Dominic J.; Buchanan, Ernest D.; Moseley, S. H., Jr.; Rebar, Joyce; Shafer, Richard A.

    2004-10-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA's Goddard Space Flight Center acquired a Mark III system and subsequently designed upgrades to suit our and our collaborators' purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided 'hooks' in the Mark III system to allow readout of signals from outside the Mark III system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  2. Sub-mm CO Measurements of the Orion Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Wilson, T. L.; Muders, D.; Kramer, C.; Henkel, C.

    2000-05-01

    Images of a >3' region around the Orion KL source have been made in the J=4-3 (461 GHz) and J=7-6 (806 GHz) lines of CO with angular resolutions of 18'' and 13'', using the 10-meter Heinrich Hertz Telescope (HHT) of the Sub-Millimeter Telescope Observatory (SMTO). This region contains a variety of objects: (1) the Hot Core (a region containing complex molecules) and Orion KL outflow (NE of the center of the 10'' diameter Hot Core, and very likely associated with the continuum source `I' (Menten & Reid 1995 ApJ 445, L157)), (2) another outflow source, Orion-S ( ~100'' south of the Hot Core (Rodriguez-Franco et al. 1999 A&A 344, L57)), (3) the ionized-neutral interface at the rear of the Orion HII region, and (4) the Orion Bar feature (an ionized-neutral interface to the SW of the HII region). Regions (3) and (4) are examples of `Photon Dominated Regions' or `PDR's'. The sub-mm CO lines are emitted from warm gas; the J=7-6 line is emitted from an energy level 156 Kelvin above the ground state. The excellent pointing and low sidelobes of the HHT allow accurate comparisons with high r! esolution CO images in lower J lines and images of other species. Our J=7-6 CO image was made with the Harvard-Smithsonian Center for Astrophysics Hot Electron Bolometer (Kawamura et al. 1999 IEEE Trans. on Appl. Superconductivity 9, 3753. The HHT is operated by the Submillimeter Telescope Observatory on behalf of the Max-Planck-Institut f. Radioastronomie and Steward Observatory of The University of Arizona. We thank the CfA receiver group for providing the Hot Electron Bolometer used to take the J=7-6 CO line data.

  3. Characterization of Kilopixel TES detector arrays for PIPER

    NASA Astrophysics Data System (ADS)

    Datta, Rahul; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Costen, Nicholas; Coughlin, Kevin; Dotson, Jessie; Eimer, Joseph; Fixsen, Dale; Gandilo, Natalie; Halpern, Mark; Essinger-Hileman, Thomas; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lazear, Justin; Lowe, Luke; Manos, George; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Walts, Alexander; Wollack, Edward

    2018-01-01

    The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument optimized to measure the polarization of the Cosmic Microwave Background (CMB) at large angular scales. It will map 85% of the sky in four frequency bands centered at 200, 270, 350, and 600 GHz to characterize dust foregrounds and constrain the tensor-to-scalar ratio, r. The sky is imaged on to 32x40 pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers operating at a bath temperature of 100 mK to achieve background-limited sensitivity. Each kilopixel array is indium-bump-bonded to a 2D superconducting quantum interference device (SQUID) time-domain multiplexer (MUX) chip and read out by warm electronics. Each pixel measures total incident power over a frequency band defined by bandpass filters in front of the array, while polarization sensitivity is provided by the upstream Variable-delay Polarization Modulators (VPMs) and analyzer grids. We present measurements of the detector parameters from the laboratory characterization of the first kilopixel science array for PIPER including transition temperature, saturation power, thermal conductivity, time constant, and noise performance. We also describe the testing of the 2D MUX chips, optimization of the integrated readout parameters, and the overall pixel yield of the array. The first PIPER science flight is planned for June 2018 from Palestine, Texas.

  4. bicep2/KECK ARRAY. IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aikin, R. W.; Bock, J. J.

    2015-06-20

    bicep2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array sharemore » a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.« less

  5. Fabrication of Detector Arrays for the SPT-3G Receiver

    NASA Astrophysics Data System (ADS)

    Posada, C. M.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Carter, F. W.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Divan, R.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stan, L.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.

    2018-05-01

    The South Pole Telescope third-generation (SPT-3G) receiver was installed during the austral summer of 2016-2017. It is designed to measure the cosmic microwave background across three frequency bands centered at 95, 150, and 220 GHz. The SPT-3G receiver has ten focal plane modules, each with 269 pixels. Each pixel features a broadband sinuous antenna coupled to a niobium microstrip transmission line. In-line filters define the desired band-passes before the signal is coupled to six bolometers with Ti/Au/Ti/Au transition edge sensors (three bands × two polarizations). In total, the SPT-3G receiver is composed of 16,000 detectors, which are read out using a 68× frequency-domain multiplexing scheme. In this paper, we present the process employed in fabricating the detector arrays.

  6. THz holography in reflection using a high resolution microbolometer array.

    PubMed

    Zolliker, Peter; Hack, Erwin

    2015-05-04

    We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane. In addition we implement synthetic aperture methods for resolution enhancement and compare Fourier transform phase retrieval to phase stepping methods. A lateral resolution of 200 μm and a relative phase sensitivity of about 0.4 rad corresponding to a depth resolution of 6 μm are estimated from reconstructed images of two specially prepared test targets, respectively. We highlight the use of digital THz holography for surface profilometry as well as its potential for video-rate imaging.

  7. U.S. and European ALMA Partners Sign Agreement Green Light for World's Most Powerful Radio Observatory

    NASA Astrophysics Data System (ADS)

    2003-02-01

    Dr. Rita Colwell, director of the U.S. National Science Foundation (NSF), and Dr. Catherine Cesarsky, director general of the European Southern Observatory (ESO), today signed a historic agreement jointly to construct and operate ALMA, the Atacama Large Millimeter Array, the world's largest and most powerful radio telescope operating at millimeter and sub-millimeter wavelengths. "With this agreement, we usher in a new age of research in astronomy," said Dr. Colwell. "By working together in this truly global partnership, the international astronomy community will be able to ensure the research capabilities needed to meet the long-term demands of our scientific enterprise, and we will be able to study and understand our Universe in ways that have previously been beyond our vision." ALMA Array Artist's Conception of ALMA Array in Compact Configuration (Click on Image for Larger Version) Other Images Available: Artist's conception of the antennas for the Atacama Large Millimeter Array Moonrise over ALMA test equipment near Cerro Chajnantor, Chile VertexRSI antenna at the VLA test site Dr. Cesarsky also commented, "This agreement signifies the start of a great project of contemporary astronomy and astrophysics. Representing Europe, and in collaboration with many laboratories and institutes on this continent, we together look forward toward wonderful research projects. With ALMA, we may learn how the earliest galaxies in the Universe really looked like, to mention but one of the many eagerly awaited opportunities with this marvelous facility." When complete in 2011, ALMA will be an array of 64, 12-meter radio antennas that will work together as one telescope to study millimeter and sub-millimeter wavelength light from space. These wavelengths of the electromagnetic spectrum, which cross the critical boundary between infrared and microwave radiation, hold the key to understanding such processes as planet and star formation, the formation of early galaxies and galaxy clusters, and the detection of organic and other molecules in space. The ALMA partners will construct the telescope at an altitude of 16,500 feet in the Atacama Desert in the Chilean Andes. This unique site is perhaps the best location on Earth to study millimeter and sub-millimeter light because these wavelengths are absorbed by moisture in the atmosphere. "Astronomers will have a pristine view of that portion of the electromagnetic spectrum from the ALMA site," said Colwell. ALMA is a joint project between Europe and North America. In Europe, ESO is leading on behalf of its ten member countries and Spain. In North America, the NSF executes the project through the National Radio Astronomy Observatory (NRAO), which is operated under cooperative agreement by Associated Universities, Inc. (AUI). The National Research Council of Canada will partner with the NSF in the North American endeavor. "The NRAO is very pleased to have the leading role in this project on behalf of the North American partners," said Dr. Fred K.Y. Lo, director of the NRAO in Charlottesville, Virginia. "ALMA will be one of astronomy's premier tools for studying the Universe," said Nobel Laureate Riccardo Giacconi, president of AUI. "The entire astronomical community is anxious to have the unprecedented power and resolution that ALMA will provide." The President of the ESO Council, Professor Piet van der Kruit, agrees: "ALMA heralds a breakthrough in sub-millimeter and millimeter astronomy, allowing some of the most penetrating studies of the Universe ever made. It is safe to predict that there will be exciting scientific surprises when ALMA enters into operation." By signing this agreement, ESO and the NSF give the green light for the joint construction of the ALMA telescope, which will cost approximately $552 million U.S. (in FY 2000 dollars). To oversee the construction and management of ALMA, a joint ALMA Board has been established by the partners. This board met for the first time on February 24-25, 2003, and witnessed the signing at the NSF headquarters in Arlington, Virginia. Dr. Joseph Bordogna, deputy director of the NSF, represented Dr. Colwell at the actual ceremony. Chile, the host country for ALMA, has shown its support for the telescope by issuing a Presidential decree granting AUI permission to work on the ALMA project, and by signing an agreement between ESO and the government of the Republic of Chile. These actions by the government of Chile were necessary formal steps to secure the telescope site in that country. ESO is an intergovernmental, European organization for astronomical research. It has ten member countries. ESO operates astronomical observatories in Chile and has its headquarters in Garching, near Munich, Germany. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  8. Study of multi-kilowatt solar arrays for Earth orbit applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1983-01-01

    A miniaturized Cassegrainian concentrator (MCC) solar array concept is being developed with the objective of significantly reducing the recurring cost of multikilowatt solar arrays. The desired cost reduction is obtained as a result of using very small high efficiency solar cells in conjuction with low cost optics. The MCC single element concept incident slar radiation is reflected rom a primary parabolic reflector to a secondary hyperbolic reflector and finally to a 4 millimeter diameter solar cell. A light catcher cone is used to improve off axis performance. The solar cell is mounted to a heat fin. An element is approximately 13 millimeters thick which permits efficient launch stowage of the concentrator system panels without complex optical component deployments or retractions. The MCC elements are packed in bays within graphite epoxy frames and are electrically connected into appropriate series-parallel circuits. A MCC sngle element with a 21 sq cm entrance aperture and a 20 efficient, 0.25 sq cm gallium arsenide solar cell has the same power output as 30 sq cm of 11-percent efficiency (at 68 C) silicon solar cells.

  9. Selenium immersed thermistor bolometer study

    NASA Technical Reports Server (NTRS)

    Rolls, W. H.

    1979-01-01

    The noise characteristics of thermistor bolometers immersed in layers of arsenic/selenium glass uniform in composition were examined. Using a controlled deposition technique, layers of glass were deposited, thermistor bolometers immersed, and their electrical characteristics measured after various thermal treatments. Markedly improved stability of the detector noise was observed using this new technique.

  10. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes are developed that provide low-loss, hermetic enclosure for enhanced monolithic microwave and millimeter-wave integrated circuits. These package schemes are based on a fused quartz substrate material offering improved RF performance through 44 GHz. The small size and weight of the packages make them useful for a number of applications, including phased array antenna systems. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices.

  11. An Optical and Sunyaev-Zeldovich Blind Cluster Survey

    NASA Astrophysics Data System (ADS)

    Gomez, Percy; Romer, A. Kathy; Holzapfel, William; Peterson, Jeffrey; Ruhl, John; Goldstein, Jon; Daub, Mike

    2005-08-01

    We propose to perform multicolor observations of two deep fields that were observed with the ACBAR bolometer array located at the South Pole. These fields were observed down to a sensitivity of 8 microK/5 arcmin beam at 150 GHz. These observations will be used as control fields for our blind cluster survey which has identified some 30 cluster candidates to date. The goal of the observations is to quantify the number of clusters missed by our SZE survey. This information is important in order to derive constraints on sigma-8 from our SZE blind cluster survey.

  12. Detection of Shock-Heated Gas Using the Sz Effect in Rxj 1347-1145

    NASA Technical Reports Server (NTRS)

    Mason, Brian S.; Dicker, S.; Korngut, P.; Devlin, M.; Cotton, W.; Koch, P.; Molnar, S.; Aguirre, J.; Benford, D.; Staguhn, J.; hide

    2010-01-01

    Using the MUSTANG 3.3 mm bolometer array on the GBT we have measured the Sunyaev-Zel'dovich Effect (SZE) in the most x-ray luminous cluster known, RXJ 1 347-1145 (z=0.45) at a resolution of 10" (fwhm). This is the highest resolution image of the SZE to date and confirms previous indications of a localized departure from pressure equilibrium in the form of a small, very hot (>0 keV) parcel of gas, presumably resulting from a merger shock. We discuss the measurements, their interpretation, and future work.

  13. Terahertz holography for imaging amplitude and phase objects.

    PubMed

    Hack, Erwin; Zolliker, Peter

    2014-06-30

    A non-monochromatic THz Quantum Cascade Laser and an uncooled micro-bolometer array detector with VGA resolution are used in a beam-splitter free holographic set-up to measure amplitude and phase objects in transmission. Phase maps of the diffraction pattern are retrieved using the Fourier transform carrier fringe method; while a Fresnel-Kirchhoff back propagation algorithm is used to reconstruct the complex object image. A lateral resolution of 280 µm and a relative phase sensitivity of about 0.5 rad are estimated from reconstructed images of a metallic Siemens star and a polypropylene test structure, respectively. Simulations corroborate the experimental results.

  14. Infrared Spectroscopy Data Reduction with ORAC-DR

    NASA Astrophysics Data System (ADS)

    Economou, F.; Jenness, T.; Cavanagh, B.; Wright, G. S.; Bridger, A. B.; Kerr, T. H.; Hirst, P.; Adamson, A. J.

    ORAC-DR is a flexible and extensible data reduction pipeline suitable for both on-line and off-line use. Since its development it has been in use on-line at UKIRT for data from the infrared cameras UFTI and IRCAM and at JCMT for data from the sub-millimetre bolometer array SCUBA. We have now added a suite of on-line reduction recipes that produces publication quality (or nearly so) data from the CGS4 near-infrared spectrometer and the MICHELLE mid-infrared Echelle spectrometer. As an example, this paper briefly describes some pipeline features for one of the more commonly used observing modes.

  15. CUORE-0 detector: design, construction and operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alduino, C.; Alfonso, K.; Artusa, D. R.

    The CUORE experiment will search for neutrinoless double-beta decay of 130Te with an array of 988 TeO 2 bolometers arranged in 19 towers. CUORE-0, the first tower assembled according to the CUORE procedures, was built and commissioned at Laboratori Nazionali del Gran Sasso, and took data from March 2013 to March 2015. In this study we describe the design, construction and operation of the CUORE-0 experiment, with an emphasis on the improvements made over a predecessor experiment, Cuoricino. Finally, in particular, we demonstrate with CUORE-0 data that the design goals of CUORE are within reach.

  16. CUORE-0 detector: design, construction and operation

    DOE PAGES

    Alduino, C.; Alfonso, K.; Artusa, D. R.; ...

    2016-07-12

    The CUORE experiment will search for neutrinoless double-beta decay of 130Te with an array of 988 TeO 2 bolometers arranged in 19 towers. CUORE-0, the first tower assembled according to the CUORE procedures, was built and commissioned at Laboratori Nazionali del Gran Sasso, and took data from March 2013 to March 2015. In this study we describe the design, construction and operation of the CUORE-0 experiment, with an emphasis on the improvements made over a predecessor experiment, Cuoricino. Finally, in particular, we demonstrate with CUORE-0 data that the design goals of CUORE are within reach.

  17. Implanted Silicon Resistor Layers for Efficient Terahertz Absorption

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Abrahams, J.; Allen, C. A.; Benford, D. J.; Henry, R.; Stevenson, T.; Wollack, E.; Moseley, S. H.

    2005-01-01

    Broadband absorption structures are an essential component of large format bolometer arrays for imaging GHz and THz radiation. We have measured electrical and optical properties of implanted silicon resistor layers designed to be suitable for these absorbers. Implanted resistors offer a low-film-stress, buried absorber that is robust to longterm aging, temperature, and subsequent metals processing. Such an absorber layer is readily integrated with superconducting integrated circuits and standard micromachining as demonstrated by the SCUBA II array built by ROE/NIST (1). We present a complete characterization of these layers, demonstrating frequency regimes in which different recipes will be suitable for absorbers. Single layer thin film coatings have been demonstrated as effective absorbers at certain wavelengths including semimetal (2,3), thin metal (4), and patterned metal films (5,6). Astronomical instrument examples include the SHARC II instrument is imaging the submillimeter band using passivated Bi semimetal films and the HAWC instrument for SOFIA, which employs ultrathin metal films to span 1-3 THz. Patterned metal films on spiderweb bolometers have also been proposed for broadband detection. In each case, the absorber structure matches the impedance of free space for optimal absorption in the detector configuration (typically 157 Ohms per square for high absorption with a single or 377 Ohms per square in a resonant cavity or quarter wave backshort). Resonant structures with -20% bandwidth coupled to bolometers are also under development; stacks of such structures may take advantage of instruments imaging over a wide band. Each technique may enable effective absorbers in imagers. However, thin films tend to age, degrade or change during further processing, can be difficult to reproduce, and often exhibit an intrinsic granularity that creates complicated frequency dependence at THz frequencies. Thick metal films are more robust but the requirement for patterning can limit their absorption at THz frequencies and their heat capacity can be high. patterned absorber structures that offer low heat capacity, absence of aging, and uniform, predictable behavior at THz frequencies. We have correlated DC electrical and THz optical measurements of a series of implanted layers and studied their frequency dependence of optical absorption from .3 to 10 THz at cryogenic temperatures. We have modeled the optical response to determine the suitability of the implanted silicon resistor as a function of resistance in the range 10 Ohms/sq to 300 Ohms/sq.

  18. Method and apparatus for millimeter-wave detection of thermal waves for materials evaluation

    DOEpatents

    Gopalsami, Nachappa; Raptis, Apostolos C.

    1991-01-01

    A method and apparatus for generating thermal waves in a sample and for measuring thermal inhomogeneities at subsurface levels using millimeter-wave radiometry. An intensity modulated heating source is oriented toward a narrow spot on the surface of a material sample and thermal radiation in a narrow volume of material around the spot is monitored using a millimeter-wave radiometer; the radiometer scans the sample point-by-point and a computer stores and displays in-phase and quadrature phase components of thermal radiations for each point on the scan. Alternatively, an intensity modulated heating source is oriented toward a relatively large surface area in a material sample and variations in thermal radiation within the full field of an antenna array are obtained using an aperture synthesis radiometer technique.

  19. Millimeter and submillimeter wave spectroscopy of propanal

    NASA Astrophysics Data System (ADS)

    Zingsheim, Oliver; Müller, Holger S. P.; Lewen, Frank; Jørgensen, Jes K.; Schlemmer, Stephan

    2017-12-01

    The rotational spectra of the two stable conformers syn- and gauche-propanal (CH3CH2CHO) were studied in the millimeter and submillimeter wave regions from 75 to 500 GHz with the Cologne (Sub-)Millimeter wave Spectrometer. Furthermore, the first excited states associated with the aldehyde torsion and with the methyl torsion, respectively, of the syn-conformer were analyzed. The newly obtained spectroscopic parameters yield better predictions, thus fulfill sensitivity and resolution requirements in new astronomical observations in order to unambiguously assign pure rotational transitions of propanal. This is demonstrated on a radio astronomical spectrum from the Atacama Large Millimeter/submillimeter Array Protostellar Interferometric Line Survey (ALMA-PILS). In particular, an accurate description of observed splittings, caused by internal rotation of the methyl group in the syn-conformer and by tunneling rotation interaction from two stable degenerate gauche-conformers, is reported. The rotational spectrum of propanal is of additional interest because of its two large amplitude motions pertaining to the methyl and the aldehyde group, respectively.

  20. Performance quantification of a millimeter-wavelength imaging system based on inexpensive glow-discharge-detector focal-plane array.

    PubMed

    Shilemay, Moshe; Rozban, Daniel; Levanon, Assaf; Yitzhaky, Yitzhak; Kopeika, Natan S; Yadid-Pecht, Orly; Abramovich, Amir

    2013-03-01

    Inexpensive millimeter-wavelength (MMW) optical digital imaging raises a challenge of evaluating the imaging performance and image quality because of the large electromagnetic wavelengths and pixel sensor sizes, which are 2 to 3 orders of magnitude larger than those of ordinary thermal or visual imaging systems, and also because of the noisiness of the inexpensive glow discharge detectors that compose the focal-plane array. This study quantifies the performances of this MMW imaging system. Its point-spread function and modulation transfer function were investigated. The experimental results and the analysis indicate that the image quality of this MMW imaging system is limited mostly by the noise, and the blur is dominated by the pixel sensor size. Therefore, the MMW image might be improved by oversampling, given that noise reduction is achieved. Demonstration of MMW image improvement through oversampling is presented.

  1. Millimeter-wave pseudomorphic HEMT MMIC phased array components for space communications

    NASA Technical Reports Server (NTRS)

    Lan, G. L.; Pao, C. K.; Wu, C. S.; Mandolia, G.; Hu, M.; Yuan, S.; Leonard, Regis

    1991-01-01

    Recent advances in pseudomorphic HEMT MMIC (PMHEMT/MMIC) technology have made it the preferred candidate for high performance millimeter-wave components for phased array applications. This paper describes the development of PMHEMT/MMIC components at Ka-band and V-band. Specifically, the following PMHEMT/MMIC components will be described: power amplifiers at Ka-band; power amplifiers at V-band; and four-bit phase shifters at V-band. For the Ka-band amplifier, 125 mW output power with 5.5 dB gain and 21 percent power added efficiency at 2 dB compression point has been achieved. For the V-band amplifier, 112 mW output power with 6 dB gain and 26 percent power added efficiency has been achieved. And, for the V-band phase shifter, four-bit (45 deg steps) phase shifters with less than 8 dB insertion loss from 61 GHz to 63 GHz will be described.

  2. Predicting the response of a submillimeter bolometer to cosmic rays.

    PubMed

    Woodcraft, Adam L; Sudiwala, Rashmi V; Ade, Peter A R; Griffin, Matthew J; Wakui, Elley; Bhatia, Ravinder S; Lange, Andrew E; Bock, James J; Turner, Anthony D; Yun, Minhee H; Beeman, Jeffrey W

    2003-09-01

    Bolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model.

  3. Predicting the response of a submillimeter bolometer to cosmic rays

    NASA Astrophysics Data System (ADS)

    Woodcraft, Adam L.; Sudiwala, Rashmi V.; Ade, Peter A. R.; Griffin, Matthew J.; Wakui, Elley; Bhatia, Ravinder S.; Lange, Andrew E.; Bock, James J.; Turner, Anthony D.; Yun, Minhee H.; Beeman, Jeffrey W.

    2003-09-01

    Bolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model.

  4. Proceedings of the Antenna Applications Symposium (1993). Volume 1

    DTIC Science & Technology

    1994-02-01

    Technology - Past and Future," by J. K. Schindler 2. * " Integrated Circuit Active Phased Array Antennas for Millimeter Wave Communications Applications...High Gain Antenna System has become the market leader in commercial aircraft installations. Two side-mounted phased arrays are employed on a single...production cost to be competitive in commercial markets . Antenna pattern and system performance are presented in this paper. 23 1.0 INTRODUCTION As

  5. Development of plasma bolometers using fiber-optic temperature sensors

    NASA Astrophysics Data System (ADS)

    Reinke, M. L.; Han, M.; Liu, G.; van Eden, G. G.; Evenblij, R.; Haverdings, M.; Stratton, B. C.

    2016-11-01

    Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry-Pérot cavity when broadband light, λo ˜ 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ˜150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m2 when compared to those of the resistive bolometer which can achieve <0.5 W/m2 in the laboratory, but this can degrade to 1-2 W/m2 or worse when installed on a tokamak. Concepts are discussed to improve the signal to noise ratio of this new fiber-optic bolometer by reducing the pillar height and adding thin metallic coatings, along with improving the spectral resolution of the interrogator.

  6. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z approx 2 DUST-OBSCURED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.

    We present SHARC-II 350 mum imaging of twelve 24 mum bright (F{sub 24m}u{sub m} > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 mum imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 mum flux density. The 350 mum upper limits for the 8 non-detected DOGsmore » are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T{sub dust} > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of approx3 x 10{sup 8} M{sub sun}. In comparison to other dusty z approx 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10{sup 13} L{sub sun} versus 6 x 10{sup 12} L{sub sun} for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus approx30 K) and lower inferred dust masses (3 x 10{sup 8} M{sub sun} versus 3 x 10{sup 9} M{sub sun}). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 mum bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z approx 2 involves a submillimeter bright, cold-dust, and star-formation-dominated phase followed by a 24 mum bright, warm-dust and AGN-dominated phase.« less

  7. VizieR Online Data Catalog: 8 Fermi GRB afterglows follow-up (Singer+, 2015)

    NASA Astrophysics Data System (ADS)

    Singer, L. P.; Kasliwal, M. M.; Cenko, S. B.; Perley, D. A.; Anderson, G. E.; Anupama, G. C.; Arcavi, I.; Bhalerao, V.; Bue, B. D.; Cao, Y.; Connaughton, V.; Corsi, A.; Cucchiara, A.; Fender, R. P.; Fox, D. B.; Gehrels, N.; Goldstein, A.; Gorosabel, J.; Horesh, A.; Hurley, K.; Johansson, J.; Kann, D. A.; Kouveliotou, C.; Huang, K.; Kulkarni, S. R.; Masci, F.; Nugent, P.; Rau, A.; Rebbapragada, U. D.; Staley, T. D.; Svinkin, D.; Thone, C. C.; de Ugarte Postigo, A.; Urata, Y.; Weinstein, A.

    2015-10-01

    In this work, we present the GBM-iPTF (intermediate Palomar Transient Factory) afterglows from the first 13 months of this project. Follow-up observations include R-band photometry from the P48, multicolor photometry from the P60, spectroscopy (acquired with the P200, Keck, Gemini, APO, Magellan, Very Large Telescope (VLT), and GTC), and radio observations with the Very Large Array (VLA), the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Australia Telescope Compact Array (ATCA), and the Arcminute Microkelvin Imager (AMI). (3 data files).

  8. Investigation of electrical noise in selenium-immersed thermistor bolometers

    NASA Technical Reports Server (NTRS)

    Tarpley, J. L.; Sarmiento, P. D.

    1980-01-01

    The selenium immersed, thermistor bolometer, IR detector failed due to spurious and escalating electrical noise outburst as a function of time at elevated temperatures during routine ground based testing in a space simulated environment. Spectrographic analysis of failed bolometers revealed selenium pure zones in the insulating selenium arsenic (Se-As) glass film which surrounds the active sintered Mn, Ni, Co oxide flake. The selenium pure film was identified as a potentially serious failure mechanism. Significant changes were instituted in the manufacturing techniques along with more stringent process controls which eliminated the selenium pure film and successfully produced 22study bolometers.

  9. Millimeter and Sub-millimeter High Resolution Spectroscopy: New Frontiers with ALMA

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.

    2016-06-01

    It is becoming increasingly clear that new laboratory data will be critical for the next decade of observations with the Atacama Large Millimeter Array (ALMA). The high spatial resolution offered by ALMA will probe new regions of molecular complexity, including the inner envelopes of evolved stars, regions dominated by UV radiation, and the densest cores of molecular clouds. New molecular lines will be discovered in the wide wavelength range covered by the ALMA bands, and high resolution, gas-phase spectroscopy are needed to provide crucial “rest frequencies.” In particular, highly accurate methods that measure millimeter and sub-millimeter rotational transitions, such as direct absorption and Fourier transform mm-wave techniques, are important, especially when coupled to exotic molecular production schemes. Recent ALMA studies of SH+ and larger organic species have already demonstrated the need for laboratory measurements. New laboratory work will likely be required for circumstellar refractory molecules, radicals and ions generated near photon-dominated regions (PDRs), and large, organic-type species. This talk will give an overview of current contributions of laboratory spectroscopy to ALMA observations, summarize relevant spectroscopic techniques, and provide input into future prospects and directions.

  10. Bolometer Simulation Using SPICE

    NASA Technical Reports Server (NTRS)

    Jones, Hollis H.; Aslam, Shahid; Lakew, Brook

    2004-01-01

    A general model is presented that assimilates the thermal and electrical properties of the bolometer - this block model demonstrates the Electro-Thermal Feedback (ETF) effect on the bolometers performance. This methodology is used to construct a SPICE model that by way of analogy combines the thermal and electrical phenomena into one simulation session. The resulting circuit diagram is presented and discussed.

  11. Optimization of Advanced ACTPol Transition Edge Sensor Bolometer Operation Using R(T,I) Transition Measurements

    NASA Astrophysics Data System (ADS)

    Salatino, Maria

    2017-06-01

    In the current submm and mm cosmology experiments the focal planes are populated by kilopixel transition edge sensors (TESes). Varying incoming power load requires frequent rebiasing of the TESes through standard current-voltage (IV) acquisition. The time required to perform IVs on such large arrays and the resulting transient heating of the bath reduces the sky observation time. We explore a bias step method that significantly reduces the time required for the rebiasing process. This exploits the detectors' responses to the injection of a small square wave signal on top of the dc bias current and knowledge of the shape of the detector transition R(T,I). This method has been tested on two detector arrays of the Atacama Cosmology Telescope (ACT). In this paper, we focus on the first step of the method, the estimate of the TES %Rn.

  12. A Virtual Sky with Extragalactic H I and CO Lines for the Square Kilometre Array and the Atacama Large Millimeter/Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Obreschkow, D.; Klöckner, H.-R.; Heywood, I.; Levrier, F.; Rawlings, S.

    2009-10-01

    We present a sky simulation of the atomic H I-emission line and the first 10 12C16O rotational emission lines of molecular gas in galaxies beyond the Milky Way. The simulated sky field has a comoving diameter of 500 h -1 Mpc; hence, the actual field of view depends on the (user-defined) maximal redshift z max; e.g., for z max = 10, the field of view yields ~4 × 4 deg2. For all galaxies, we estimate the line fluxes, line profiles, and angular sizes of the H I and CO-emission lines. The galaxy sample is complete for galaxies with cold hydrogen masses above 108 M sun. This sky simulation builds on a semi-analytic model of the cosmic evolution of galaxies in a Λ cold dark matter (ΛCDM) cosmology. The evolving CDM distribution was adopted from the Millennium Simulation, an N-body CDM simulation in a cubic box with a side length of 500 h -1 Mpc. This side length limits the coherence scale of our sky simulation: it is long enough to allow the extraction of the baryon acoustic oscillations in the galaxy power spectrum, yet the position and amplitude of the first acoustic peak will be imperfectly defined. This sky simulation is a tangible aid to the design and operation of future telescopes, such as the Square Kilometre Array, Large Millimeter Telescope, and Atacama Large Millimeter/Submillimeter Array. The results presented in this paper have been restricted to a graphical representation of the simulated sky and fundamental dN/dz analyses for peak flux density limited and total flux limited surveys of H I and CO. A key prediction is that H I will be harder to detect at redshifts z gsim 2 than predicted by a no-evolution model. The future verification or falsification of this prediction will allow us to qualify the semi-analytic models. -SAX-Sky"

  13. Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena x-ray observatory

    NASA Astrophysics Data System (ADS)

    van der Kuur, J.; Gottardi, L. G.; Akamatsu, H.; van Leeuwen, B. J.; den Hartog, R.; Haas, D.; Kiviranta, M.; Jackson, B. J.

    2016-07-01

    Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed.

  14. Broad-bandwidth Metamaterial Antireflection Coatings for Sub-Millimeter Astronomy and CMB Foreground Removal

    NASA Astrophysics Data System (ADS)

    McMahon, Jeff

    Sub-millimeter observations are crucial for answering questions about star and galaxy formation; understanding galactic dust foregrounds; and for removing these foregrounds to detect the faint signature of inflationary gravitational waves in the polarization of the Cosmic Microwave Background (CMB). Achieving these goals requires improved, broad-band antireflection coated lenses and half-wave plates (HWPs). These optical elements will significantly boost the sensitivity and capability of future sub-millimeter and CMB missions. We propose to develop wide-bandwidth metamaterial antireflection coatings for silicon lenses and sapphire HWPs with 3:1 ratio bandwidth that are scalable across the sub-millimeter band from 300 GHz to 3 THz. This is an extension of our successful work on saw cut metamaterial AR coatings for silicon optics at millimeter wave lengths. These, and the proposed coatings consist of arrays of sub-wavelength scale features cut into optical surfaces that behave like simple dielectrics. We have demonstrated saw cut 3:1 bandwidth coatings on silicon lenses, but these coatings are limited to the millimeter wave band by the limitations of dicing saw machining. The crucial advance needed to extend these broad band coatings throughout the sub-millimeter band is the development of laser cut graded index metamaterial coatings. The proposed work includes developing the capability to fabricate these coatings, optimizing the design of these metamaterials, fabricating and testing prototype lenses and HWPs, and working with the PIPER collaboration to achieve a sub-orbital demonstration of this technology. The proposed work will develop potentially revolutionary new high performance coatings for the sub-millimeter bands, and cary this technology to TRL 7 paving the way for its use in space. We anticipate that there will be a wide range of applications for these coatings on future NASA balloons and satellites.

  15. Silicon Hot-Electron Bolometers

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Hsieh, Wen-Ting; Mitchell, Robert R.; Isenberg, Hal D.; Stahle, Carl M.; Cao, Nga T.; Schneider, Gideon; Travers, Douglas E.; Moseley, S. Harvey; Wollack, Edward J.

    2004-01-01

    We discuss a new type of direct detector, a silicon hot-electron bolometer, for measurements in the far-infrared and submillimeter spectral ranges. High performance bolometers can be made using the electron-phonon conductance in heavily doped silicon to provide thermal isolation from the cryogenic bath. Noise performance is expected to be near thermodynamic limits, allowing background limited performance for many far infrared and submillimeter photometric and spectroscopic applications.

  16. The Intricate Role of Cold Gas and Dust in Galaxy Evolution at Early Cosmic Epochs

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.

    Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the component of the interstellar medium (ISM) that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We here present results that demonstrate the capability of the Atacama Large (sub-)Millimeter Array (ALMA) to detect the cold ISM and dust in ``normal'' galaxies at redshifts z=5-6. We also show detailed studies of the ISM in massive, dust-obscured starburst galaxies out to z>6 with ALMA, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Plateau de Bure Interferometer (PdBI), and the Karl G. Jansky Very Large Array (VLA). These observations place some of the most direct constraints on the dust-obscured fraction of the star formation history of the universe at z>5 to date, showing that ``typical'' galaxies at these epochs have low dust content, but also that highly-enriched, dusty starbursts already exist within the first billion years after the Big Bang.

  17. Limits on Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    NASA Technical Reports Server (NTRS)

    Holzapfel, W. L.; Carlstrom, J. E.; Grego, L.; Holder, G. P.; Joy, M. K.; Reese, E. D.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have used the Berkeley-Illinois-Maryland-Association (BIMA) millimeter array outfitted with sensitive cm-wave receivers to search for Cosmic Microwave Background (CMB) anisotropies on arcminute scales. The interferometer was placed in a compact configuration which produces high brightness sensitivity, while providing discrimination against point sources. Operating at a frequency of 28.5 GHz, the FWHM primary beam of the instrument is 6.6 arcminutes. We have made sensitive images of seven fields, five of which where chosen specifically to have low IR dust contrast and be free of bright radio sources. Additional observations with the Owens Valley Radio Observatory (OVRO) millimeter array were used to assist in the location and removal of radio point sources. Applying a Bayesian analysis to the raw visibility data, we place limits on CMB anisotropy flat-band power Q_flat = 5.6 (+3.0, -5.6) uK and Q_flat < 14.1 uK at 68% and 95% confidence. The sensitivity of this experiment to flat band power peaks at a multipole of l = 5470, which corresponds to an angular scale of approximately 2 arcminutes The most likely value of Q_flat is similar to the level of the expected secondary anisotropies.

  18. Development of plasma bolometers using fiber-optic temperature sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinke, M. L., E-mail: reinkeml@ornl.gov; Han, M.; Liu, G.

    Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry–Pérot cavity when broadband light, λ{sub o} ∼ 1550 nm, is transmitted along the fiber.more » Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ∼150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m{sup 2} when compared to those of the resistive bolometer which can achieve <0.5 W/m{sup 2} in the laboratory, but this can degrade to 1-2 W/m{sup 2} or worse when installed on a tokamak. Concepts are discussed to improve the signal to noise ratio of this new fiber-optic bolometer by reducing the pillar height and adding thin metallic coatings, along with improving the spectral resolution of the interrogator.« less

  19. ESO and NSF Sign Agreement on ALMA

    NASA Astrophysics Data System (ADS)

    2003-02-01

    Green Light for World's Most Powerful Radio Observatory On February 25, 2003, the European Southern Observatory (ESO) and the US National Science Foundation (NSF) are signing a historic agreement to construct and operate the world's largest and most powerful radio telescope, operating at millimeter and sub-millimeter wavelength. The Director General of ESO, Dr. Catherine Cesarsky, and the Director of the NSF, Dr. Rita Colwell, act for their respective organizations. Known as the Atacama Large Millimeter Array (ALMA), the future facility will encompass sixty-four interconnected 12-meter antennae at a unique, high-altitude site at Chajnantor in the Atacama region of northern Chile. ALMA is a joint project between Europe and North America. In Europe, ESO is leading on behalf of its ten member countries and Spain. In North America, the NSF also acts for the National Research Council of Canada and executes the project through the National Radio Astronomy Observatory (NRAO) operated by Associated Universities, Inc. (AUI). The conclusion of the ESO-NSF Agreement now gives the final green light for the ALMA project. The total cost of approximately 650 million Euro (or US Dollars) is shared equally between the two partners. Dr. Cesarsky is excited: "This agreement signifies the start of a great project of contemporary astronomy and astrophysics. Representing Europe, and in collaboration with many laboratories and institutes on this continent, we together look forward towards wonderful research projects. With ALMA we may learn how the earliest galaxies in the Universe really looked like, to mention but one of the many eagerly awaited opportunities with this marvellous facility". "With this agreement, we usher in a new age of research in astronomy" says Dr. Colwell. "By working together in this truly global partnership, the international astronomy community will be able to ensure the research capabilities needed to meet the long-term demands of our scientific enterprise, and that we will be able to study and understand our universe in ways that have previously been beyond our vision". The recent Presidential decree from Chile for AUI and the agreement signed in late 2002 between ESO and the Government of the Republic of Chile (cf. ESO PR 18/02) recognize the interest that the ALMA Project has for Chile, as it will deepen and strengthen the cooperation in scientific and technological matters between the parties. A joint ALMA Board has been established which oversees the realisation of the ALMA project via the management structure. This Board meets for the first time on February 24-25, 2003, at NSF in Washington and will witness this historic event. ALMA: Imaging the Light from Cosmic Dawn ESO PR Photo 06a/03 ESO PR Photo 06a/03 [Preview - JPEG: 588 x 400 pix - 52k [Normal - JPEG: 1176 x 800 pix - 192k] [Hi-Res - JPEG: 3300 x 2244 pix - 2.0M] ESO PR Photo 06b/03 ESO PR Photo 06b/03 [Preview - JPEG: 502 x 400 pix - 82k [Normal - JPEG: 1003 x 800 pix - 392k] [Hi-Res - JPEG: 2222 x 1773 pix - 3.0M] ESO PR Photo 06c/03 ESO PR Photo 06c/03 [Preview - JPEG: 474 x 400 pix - 84k [Normal - JPEG: 947 x 800 pix - 344k] [Hi-Res - JPEG: 2272 x 1920 pix - 2.0M] ESO PR Photo 06d/03 ESO PR Photo 06d/03 [Preview - JPEG: 414 x 400 pix - 69k [Normal - JPEG: 828 x 800 pix - 336k] [HiRes - JPEG: 2935 x 2835 pix - 7.4k] Captions: PR Photo 06a/03 shows an artist's view of the Atacama Large Millimeter Array (ALMA), with 64 12-m antennae. PR Photo 06b/03 is another such view, with the array arranged in a compact configuration at the high-altitude Chajnantor site. The ALMA VertexRSI prototype antennae is shown in PR Photo 06c/03 on the Antenna Test Facility (ATF) site at the NRAO Very Large Array (VLA) site near Socorro (New Mexico, USA). The future ALMA site at Llano de Chajnantor at 5000 metre altitude, some 40 km East of the village of San Pedro de Atacama (Chile) is seen in PR Photo 06d/03 - this view was obtained at 11 hrs in the morning on a crisp and clear autumn day (more views of this site are available at the Chajnantor Photo Gallery). The Atacama Large Millimeter Array (ALMA) will be one of astronomy's most powerful telescopes - providing unprecedented imaging capabilities and sensitivity in the corresponding wavelength range, many orders of magnitude greater than anything of its kind today. ALMA will be an array of 64 antennae that will work together as one telescope to study millimeter and sub-millimeter wavelength radiation from space. This radiation crosses the critical boundary between infrared and microwave radiation and holds the key to understanding such processes as planet and star formation, the formation of early galaxies and galaxy clusters, and the formation of organic and other molecules in space. "ALMA will be one of astronomy's premier tools for studying the universe" says Nobel Laureate Riccardo Giacconi, President of AUI (and former ESO Director General (1993-1999)). "The entire astronomical community is anxious to have the unprecedented power and resolution that ALMA will provide". The President of the ESO Council, Professor Piet van der Kruit, agrees: "ALMA heralds a break-through in sub-millimeter and millimeter astronomy, allowing some of the most penetrating studies the Universe ever made. It is safe to predict that there will be exciting scientific surprises when ALMA enters into operation". What is millimeter and sub-millimeter wavelength astronomy? Astronomers learn about objects in space by studying the energy emitted by those objects. Our Sun and the other stars throughout the Universe emit visible light. But these objects also emit other kinds of light waves, such as X-rays, infrared radiation, and radio waves. Some objects emit very little or no visible light, yet are strong sources at other wavelengths in the electromagnetic spectrum. Much of the energy in the Universe is present in the sub-millimeter and millimeter portion of the spectrum. This energy comes from the cold dust mixed with gas in interstellar space. It also comes from distant galaxies that formed many billions of years ago at the edges of the known universe. With ALMA, astronomers will have a uniquely powerful facility with access to this remarkable portion of the spectrum and hence, new and wonderful opportunities to learn more about those objects. Current observatories simply do not have anywhere near the necessary sensitivity and resolution to unlock the secrets that abundant sub-millimeter and millimeter wavelength radiation can reveal. It will take the unparalleled power of ALMA to fully study the cosmic emission at this wavelength and better understand the nature of the universe. Scientists from all over the world will use ALMA. They will compete for observing time by submitting proposals, which will be judged by a group of their peers on the basis of scientific merit. ALMA's unique capabilities ALMA's ability to detect remarkably faint sub-millimeter and millimeter wavelength emission and to create high-resolution images of the source of that emission gives it capabilities not found in any other astronomical instruments. ALMA will therefore be able to study phenomena previously out of reach to astronomers and astrophysicists, such as: * Very young galaxies forming stars at the earliest times in cosmic history; * New planets forming around young stars in our galaxy, the Milky Way; * The birth of new stars in spinning clouds of gas and dust; and * Interstellar clouds of gas and dust that are the nurseries of complex molecules and even organic chemicals that form the building blocks of life. How will ALMA work? All of ALMA's 64 antennae will work in concert, taking quick "snapshots" or long-term exposures of astronomical objects. Cosmic radiation from these objects will be reflected from the surface of each antenna and focussed onto highly sensitive receivers cooled to just a few degrees above absolute zero in order to suppress undesired "noise" from the surroundings. There the signals will be amplified many times, digitized, and then sent along underground fiber-optic cables to a large signal processor in the central control building. This specialized computer, called a correlator - running at 16,000 million-million operations per second - will combine all of the data from the 64 antennae to make images of remarkable quality. The extraordinary ALMA site Since atmospheric water vapor absorbs millimeter and (especially) sub-millimeter waves, ALMA must be constructed at a very high altitude in a very dry region of the earth. Extensive tests showed that the sky above the Atacama Desert of Chile has the excellent clarity and stability essential for ALMA. That is why ALMA will be built there, on Llano de Chajnantor at an altitude of 5,000 metres in the Chilean Andes. A series of views of this site, also in high-resolution suitable for reproduction, is available at the Chajnantor Photo Gallery. Timeline for ALMA June 1998: Phase 1 (Research and Development) June 1999: European/American Memorandum of Understanding February 2003: Signature of the bilateral Agreement 2004: Tests of the Prototype System 2007: Initial scientific operation of a partially completed array 2011: End of construction of the array

  20. Imaging bolometer

    DOEpatents

    Wurden, G.A.

    1999-01-19

    Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.

  1. Imaging bolometer

    DOEpatents

    Wurden, Glen A.

    1999-01-01

    Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.

  2. Development of adaptive liquid microlenses and microlens arrays

    NASA Astrophysics Data System (ADS)

    Berry, Shaun R.; Stewart, Jason B.; Thorsen, Todd A.; Guha, Ingrid

    2013-03-01

    We report on the development of sub-millimeter size adaptive liquid microlenses and microlens arrays using two immiscible liquids to form individual lenses. Microlenses and microlens arrays having aperture diameters as small as 50 microns were fabricated on a planar quartz substrate using patterned hydrophobic/hydrophilic regions. Liquid lenses were formed by a self-assembled oil dosing process that created well-defined lenses having a high fill factor. Variable focus was achieved by controlling the lens curvature through electrowetting. Greater than 70° of contact angle change was achieved with less than 20 volts, which results in a large optical power dynamic range.

  3. Graphene array antenna for 5G applications

    NASA Astrophysics Data System (ADS)

    Sa'don, Siti Nor Hafizah; Kamarudin, Muhammad Ramlee; Ahmad, Fauzan; Jusoh, Muzammil; Majid, Huda A.

    2017-02-01

    Fifth generation (5G) needs to provide better coverage than the previous generation. However, high frequency and millimeter wave experience penetration loss, propagation loss and even more loss in energy for long distance. Hence, a graphene array antenna is proposed for high gain to cover a long distance communications since array antenna enables in providing more directive beams. The investigation is conducted on three types of substrates with gain achieved is more than 7 dBi. The gain obtained is good since it is comparable with other studies. In addition, these antennas consume small numbers of elements to achieve high gain.

  4. Trench formation in <110> silicon for millimeter-wave switching device

    NASA Astrophysics Data System (ADS)

    Datta, P.; Kumar, Praveen; Nag, Manoj; Bhattacharya, D. K.; Khosla, Y. P.; Dahiya, K. K.; Singh, D. V.; Venkateswaran, R.; Kumar, Devender; Kesavan, R.

    1999-11-01

    Anisotropic etching using alkaline solution has been adopted to form trenches in silicon while fabricating surface oriented bulk window SPST switches. An array pattern has been etched on silicon with good control on depth of trenches. KOH-water solution is seen to yield a poor surface finish. Use of too much of additive like isopropyl alcohol improves the surface condition but distorts the array pattern due to loss of anisotropy. However, controlled use of this additive during the last phase of trench etching is found to produce trenched arrays with desired depth, improved surface finish and minimum distortion of lateral dimensions.

  5. Frequency division multiplexed readout of TES detectors with baseband feedback

    NASA Astrophysics Data System (ADS)

    den Hartog, R.; Audley, M. D.; Beyer, J.; Bruijn, M. P.; de Korte, P.; Gottardi, L.; Hijmering, R.; Jackson, B.; Nieuwenhuizen, A.; van der Kuur, J.; van Leeuwen, B.-J.; Van Loon, D.

    2012-09-01

    SRON is developing an electronic system for the multiplexed read-out of an array of transition edge sensors (TES) by combining the techniques of frequency domain multiplexing (FDM) with base-band feedback (BBFB). The astronomical applications are the read-out of soft X-ray microcalorimeters and the far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In this paper we derive the requirements for the read-out system regarding noise and dynamic range in the context of the SAFARI instrument, and demonstrate that the current experimental prototype is capable of simultaneously locking 57 channels and complies with these requirements.

  6. Neutrinoless double-beta decay search with CUORE and CUORE-0 experiments

    DOE PAGES

    Moggi, N.; Artusa, D. R.; F. T. Avignone; ...

    2015-03-24

    The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for the neutrinoless double-beta decays. Observation of the process would unambiguously establish that neutrinos are Majorana particles and provide information on their absolute mass scale hierarchy. CUORE is now under construction and will consist of an array of 988 TeO 2 crystal bolometers operated at 10 mK, but the first tower (CUORE-0) is already taking data. The experimental techniques used will be presented as well as the preliminary CUORE-0 results. The current status of the full-mass experiment and its expected sensitivity will then be discussed.

  7. High performance millimeter-wave microstrip circulators and isolators

    NASA Technical Reports Server (NTRS)

    Shih, Ming; Pan, J. J.

    1990-01-01

    Millimeter wave systems, phased array antennas, and high performance components all require wideband circulators (and isolators) to perform diplexing and switching, to improve isolation and Voltage Standing Wave Ratio (VSWR), and to construct IMPATT diode reflection amplifiers. Presently, most of the millimeter-wave circulators and isolators are available in the configurations of waveguide or stripline, both of which suffer from the shortcomings of bulky size/weight, narrow bandwidth, and poor compatibility with monolithic millimeter-wave integrated circuits (MMIC). MMW microstrip circulators/isolators can eliminate or improve these shortcomings. Stub-tuned microstrip circulator configuration were developed utilizing the electromagnetic fields perturbation technique, the adhesion problems of microstrip metallization on new ferrite substrate were overcome, the fabrication, assembly, packaging techniques were improved, and then successfully designed, fabricated a Ka band circulator which has isolation and return loss of greater than 16dB, insertion loss less than 0.7dB. To assess the steady and reliable performance of the circulator, a temperature cycling test was done over the range of -20 to +50 C for 3 continuous cycles and found no significant impact or variation of circulator performance.

  8. ALMA test interferometer control system: past experiences and future developments

    NASA Astrophysics Data System (ADS)

    Marson, Ralph G.; Pokorny, Martin; Kern, Jeff; Stauffer, Fritz; Perrigouard, Alain; Gustafsson, Birger; Ramey, Ken

    2004-09-01

    The Atacama Large Millimeter Array (ALMA) will, when it is completed in 2012, be the world's largest millimeter & sub-millimeter radio telescope. It will consist of 64 antennas, each one 12 meters in diameter, connected as an interferometer. The ALMA Test Interferometer Control System (TICS) was developed as a prototype for the ALMA control system. Its initial task was to provide sufficient functionality for the evaluation of the prototype antennas. The main antenna evaluation tasks include surface measurements via holography and pointing accuracy, measured at both optical and millimeter wavelengths. In this paper we will present the design of TICS, which is a distributed computing environment. In the test facility there are four computers: three real-time computers running VxWorks (one on each antenna and a central one) and a master computer running Linux. These computers communicate via Ethernet, and each of the real-time computers is connected to the hardware devices via an extension of the CAN bus. We will also discuss our experience with this system and outline changes we are making in light of our experiences.

  9. Integrated Millimeter-Wave Frequency Multiplers

    NASA Astrophysics Data System (ADS)

    Schoenthal, Gerhard S.; Deaver, B. S.; Crowe, T. W.; Bishop, W. L.; Saini, K.; Bradley, R. F.

    2001-11-01

    Many of the molecules of interest to radio astronomers and atmospheric chemists resonate at frequencies in the millimeter and submillimeter wavelength bands. To measure the spectra of these molecules scientists rely on heterodyne receivers that convert the high frequency signal to the GHz band where it is readily amplified and analyzed. One of the challenges of developing suitable receiver systems is the development of compact, reliable and affordable sources of local oscillator power at frequencies in excess of 100 GHz. One useful solution is to use GaAs Schottky diodes, in their varactor mode, to generate high frequency harmonics of lower frequency sources such as Gunn oscillators. As a part of a multi-national radio astronomy project, the Atacama Millimeter Large Array (ALMA), we have designed and fabricated a broadband frequency tripler with an output centered at 240 GHz. It is integrated on a quartz substrate to greatly reduce the parasitic capacitance and thereby improve electrical performance. The integrated circuit was designed to require no oxides or ohmic contacts, thereby easing fabrication. This talk will discuss the novel millimeter-wave integrated circuit fabrication process and the initial results.

  10. Multimode bolometer development for the PIXIE instrument

    NASA Astrophysics Data System (ADS)

    Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.

    2016-07-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polar- ization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With ˜ 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.

  11. Multimode Bolometer Development for the PIXIE Instrument

    NASA Technical Reports Server (NTRS)

    Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.

    2016-01-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With approximately 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.

  12. Multimode Bolometer Development for the Primordial Inflation Explorer (PIXIE) Instrument

    NASA Technical Reports Server (NTRS)

    Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.

    2016-01-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background [1]. In this work, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a tensioning scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.

  13. ORAC-DR: A generic data reduction pipeline infrastructure

    NASA Astrophysics Data System (ADS)

    Jenness, Tim; Economou, Frossie

    2015-03-01

    ORAC-DR is a general purpose data reduction pipeline system designed to be instrument and observatory agnostic. The pipeline works with instruments as varied as infrared integral field units, imaging arrays and spectrographs, and sub-millimeter heterodyne arrays and continuum cameras. This paper describes the architecture of the pipeline system and the implementation of the core infrastructure. We finish by discussing the lessons learned since the initial deployment of the pipeline system in the late 1990s.

  14. Characterization of surface tilt of foundations for high-precision radio-astronomic antennas

    NASA Astrophysics Data System (ADS)

    Hoff, Brian D.; Puga, Jose P.

    2010-07-01

    The Atacama Large Millimeter/Submillimeter Array (ALMA) is a joint project between astronomical organizations in Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA will consist of at least 54 twelve-meter antennas operating in the millimeter and sub-millimeter wavelength range. It will be located at an altitude above 5000m in the Chajnantor Plateau in northern Chile. There are 192 antenna foundations under construction at ALMA's Array Operations Site (AOS). Interchangeability between foundations will permit a variety of array configurations. Foundations provide the physical interface to the bedrock, as well as to the underground signal and power cable conduits. To achieve ALMA's precision requirements, the antenna pointing angular error budget is strict with anticipated non-repeatable error on the order of a few arc seconds. This level of precision imposes rigorous requirements on antenna foundations. The objective of this study is to demonstrate the methodology of precision tilt measurements combined with finite element simulation predictions to portray the qualitative nature of the antenna foundation surface deformation. Characteristics of foundation surface tilt have been examined in detail. Although the actual foundation has demonstrated much less resistance to tilt than the finite element representation, the simulation has predicted some key characteristics of the tilt pattern. The large deviations from the ideal have incited speculations into the compliance of materials, ambiguities in the construction, thermal effects and several other aspects described herein. This research has served as groundwork to characterize ALMA's foundation surface behavior on a micro-degree level and to identify subsequent studies to pursue. This in turn has contributed to the diagnosis of antenna pointing anomalies.

  15. Film Vetoes for Alpha Background Rejection in Bolometer Detectors

    NASA Astrophysics Data System (ADS)

    Deporzio, Nicholas; Bucci, Carlo; Canonica, Lucia; Divacri, Marialaura; Cuore Collaboration; Absurd Team

    2015-04-01

    This study characterizes the effectiveness of encasing bolometer detectors in scintillator, metal ionization, and more exotic films to veto alpha radiation background. Bolometers are highly susceptible to alpha background and a successful veto should boost the statistical strength, speed, and signal-background ratio of bolometer particle searches. Plastic scintillator films are cooled to bolometer temperatures and bombarded with 1.4 MeV to 6.0 MeV alpha particles representative of detector conditions. Photomultipliers detect the keV range scintillation light and produce a veto signal. Also, layered films of a primary metal, dielectric, and secondary metal, such as gold-polyethylene-gold films, are cooled to milli-kelvin temperatures and biased with 0.1V to 100V to produce a current signal when incident 1.4 MeV to 6.0 MeV alpha particles ionize conduction paths through the film. Veto signals are characterized by their affect on bolometer detection of 865 keV target signals. Similar methods are applied to more exotic films. Early results show scintillator films raise target signal count rate and suppress counts above target energy by at least a factor of 10. This indicates scintillation vetoes are effective and that metal ionization and other films under study will also be effective.

  16. Large-Aperture Wide-Bandwidth Anti-Reflection-Coated Silicon Lenses for Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, E. J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.; hide

    2013-01-01

    The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coffecient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 deg. with low cross-polarization. We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to sub-millimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

  17. Extended Millimeter Emission in the HD 141569 Circumstellar Disk Detected with ALMA

    NASA Astrophysics Data System (ADS)

    White, Jacob Aaron; Boley, A. C.

    2018-06-01

    We present archival Atacama Large Millimeter/submillimeter Array (ALMA) observations of the HD 141569 circumstellar disk at 345, 230, and 100 GHz. These data detect extended millimeter emission that is exterior to the inner disk. We find through simultaneous visibility modeling of all three data sets that the system’s morphology is described well by a two-component disk model. The inner disk ranges from approximately 16–45 au with a spectral index of 1.81 (q = 2.95), and the outer disk ranges from 95 to 300 au with a spectral index of 2.28 (q = 3.21). Azimuthally averaged radial emission profiles derived from the continuum images at each frequency show potential emission that is consistent with the visibility modeling. The analysis presented here shows that at ∼5 Myr, HD 141569's grain size distribution is steeper and therefore possibly evolved in the outer disk than in the inner disk.

  18. High-speed digital fiber optic links for satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  19. Primary Dendrite Array: Observations from Ground-Based and Space Station Processed Samples

    NASA Technical Reports Server (NTRS)

    Tewari, Surendra N.; Grugel, Richard N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    Influence of natural convection on primary dendrite array morphology during directional solidification is being investigated under a collaborative European Space Agency-NASA joint research program, Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST). Two Aluminum-7 wt pct Silicon alloy samples, MICAST6 and MICAST7, were directionally solidified in microgravity on the International Space Station. Terrestrially grown dendritic monocrystal cylindrical samples were remelted and directionally solidified at 18 K per centimeter (MICAST6) and 28 K per centimeter (MICAST7). Directional solidification involved a growth speed step increase (MICAST6-from 5 to 50 millimeters per second) and a speed decrease (MICAST7-from 20 to 10 millimeters per second). Distribution and morphology of primary dendrites is currently being characterized in these samples, and also in samples solidified on earth under nominally similar thermal gradients and growth speeds. Primary dendrite spacing and trunk diameter measurements from this investigation will be presented.

  20. Leak Detection in Spacecraft Using a 64-Element Multiplexed Passive Array to Monitor Structure-Borne Noise

    NASA Astrophysics Data System (ADS)

    Holland, Stephen D.; Song, Jun-Ho; Chimenti, D. E.; Roberts, Ron

    2006-03-01

    We demonstrate an array sensor method intended to locate leaks in manned spacecraft using leak-generated, structure-borne ultrasonic noise. We have developed and tested a method for sensing and processing leak noise to reveal the leak location involving the use of a 64-element phased-array. Cross-correlations of ultrasonic noise waveforms from a leak into vacuum have been used with a phased-array analysis to find the direction from the sensor to the leak. This method measures the propagation of guided ultrasonic Lamb waves passing under the PZT array sensor in the spacecraft skin structure. This paper will describe the custom-designed array with integrated electronics, as well as the performance of the array in prototype applications. We show that this method can be used to successfully locate leaks to within a few millimeters on a 0.6-m square aluminum plate.

  1. Quasi-optical antenna-mixer-array design for terahertz frequencies

    NASA Technical Reports Server (NTRS)

    Guo, Yong; Potter, Kent A.; Rutledge, David B.

    1992-01-01

    A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.

  2. The tapered slot antenna - A new integrated element for millimeter-wave applications

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Kim, Young-Sik; Korzeniowski, T. L.; Kollberg, Erik L.; Johansson, Joakim F.

    1989-01-01

    Tapered slot antennas (TSAs) with a number of potential applications as single elements and focal-plane arrays are discussed. TSAs are fabricated with photolithographic techniques and integrated in either hybrid or MMIC circuits with receiver or transmitter components. They offer considerably narrower beams than other integrated antenna elements and have high aperture efficiency and packing density as array elements. Both the circuit and radiation properties of TSAs are reviewed. Topics covered include: antenna beamwidth, directivity, and gain of single-element TSAs; their beam shape and the effect of different taper shapes; and the input impedance and the effects of using thick dielectrics. These characteristics are also given for TSA arrays, as are the circuit properties of the array elements. Different array structures and their applications are also described.

  3. Channel microband electrode arrays for mechanistic electrochemistry. Two-dimensional voltammetry:  transport-limited currents.

    PubMed

    Alden, J A; Feldman, M A; Hill, E; Prieto, F; Oyama, M; Coles, B A; Compton, R G; Dobson, P J; Leigh, P A

    1998-05-01

    A channel electrode array, with electrodes ranging in size from the millimeter to the submicrometer scale, is used for the amperometric interrogation of mechanistically complex electrode processes. In this way, the transport-limited current, measured as a function of both electrode size and electrolyte flow rate (convection), is shown to provide a highly sensitive probe of mechanism and kinetics. The application of "two-dimensional voltammetry" to diverse electrode processes, including E, ECE, ECEE, EC', and DISP2 reactions, is reported.

  4. 92 GHz dual-polarized integrated horn antennas

    NASA Technical Reports Server (NTRS)

    Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1991-01-01

    A dual-polarized two-dimensional imaging array was designed for millimeter-wave applications. The dual-polarized design consists of two dipoles perpendicular to each other and suspended on the same membrane inside a pyramidal cavity etched in silicon. The dual-polarized antenna is fully monolithic with room available for processing electronics. The IF or video signals are taken out through a novel bias and feeding structure. The measured polarization isolation is better than 20 dB at 92 GHz, and the orthogonal channels show identical far-field patterns. The antenna is well suited for millimeter-wave polarimetric synthetic-aperture radars (SARs) and high-efficiency balanced-mixer receivers.

  5. Fabrication of an Aluminum Based Hot Electron Mixer for Terahertz Applications

    NASA Technical Reports Server (NTRS)

    Echternach, P. M.; LeDuc, H. G.; Skalare, A.; McGrath, W. R.

    2000-01-01

    Aluminum based diffusion cooled hot electron bolometers (HEB) mixers, predicted to have better noise, bandwidth and to require less LO power than Nb based diffusion cooled HEBs, have been fabricated. Preliminary DC tests were performed. The bolometer elements consisted of short (0.1 to 0.3 micron), narrow (0.08 to 0. 15 micron) and thin (11 nm) aluminum wires connected to large contact pads consisting of a novel trilayer Al/Ti/Au. The patterns were defined by electron beam lithography and the metal deposition involved a double angle process, the Aluminum wires being deposited straight on and the pads being deposited at a 45 degree angle without breaking vacuum. The Al/Ti/Au trilayer was developed to provide a way of making contact between the aluminum wire and the gold antenna. The Titanium layer acts as a diffusion barrier to avoid damage of the Aluminum contact and bolometer wire and to lower the transition temperature of the pads to below that of the bolometer wire. The Au layer avoids the formation of an oxide on the Ti layer and provides good electrical contact to the IF/antenna structure. The resistance of the bolometers as a function of temperature was measured. It is clear that below the transition temperature of the wire (1.8K) but above the transition temperature of the contact pads (0.6K), the proximity effect drives most of the bolometer wire normal, causing a very broad transition. This effect should not affect the performance of the bolometers since they will be operated at a temperature below the TC of the pads. This is evident from the IV characteristics measured at 0.3K. RF characterization tests will begin shortly.

  6. Analysis of the calibration methods and error propagation for the sensitivity S and the cooling time constant τc of the gold metal foil bolometers

    NASA Astrophysics Data System (ADS)

    Murari, A.; Cecconello, M.; Marrelli, L.; Mast, K. F.

    2004-08-01

    Bolometers are radiation sensors designed to have a spectral response as constant as possible in the region of interest. In high-temperature plasmas, the main radiation output is in the ultraviolet and SXR part of the spectrum and the metal foil bolometers are special detectors developed for this interval. For such sensors, as in general for all bolometers, the absolute calibration is a crucial issue. This problem becomes particularly severe when, like in nuclear fusion, the sensors are not easily accessible. In this article, a detailed description of the in situ calibration methods for the bolometer sensitivity S and the cooling time τc, the two essential parameters characterizing the behavior of the sensor, is provided and an estimate of the uncertainties for both constants is presented. The sensitivity S is determined via an electrical calibration, in which the effect of the cables connecting the bolometers to the powering circuitry is taken into account leading to an effective estimate for S. Experimental measurements confirming the quality of the adopted coaxial cable modelling are reported. The cooling time constant τc is calculated via an optical calibration, in which the bolometer is stimulated by a light-emitting diode. The behavior of τc in a broad pressure range is investigated, showing that it does not depend upon this quantity up until 10-2 mbar, well above the standard operating conditions of many applications. The described methods were tested on 36 bolometric channels of RFX tomography, providing a significant statistical basis for present applications and future developments of both the calibration procedures and the detectors.

  7. Building the analytical response in frequency domain of AC biased bolometers. Application to Planck/HFI

    NASA Astrophysics Data System (ADS)

    Sauvé, Alexandre; Montier, Ludovic

    2016-12-01

    Context: Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for ν < 1 Hz, and secondly the Analog To digital Converter (ADC) component had been insufficiently characterized on-ground. These two problems require an exquisite knowledge of detector response. However bolometers have highly nonlinear characteristics, coming from their electrical and thermal coupling making them very difficult to model. Goal: We present a method to build the analytical transfer function in frequency domain which describe the voltage response of an Alternative Current (AC) biased bolometer to optical excitation, based on the standard bolometer model. This model is built using the setup of the Planck/HFI instrument and offers the major improvement of being based on a physical model rather than the currently in use had-hoc model based on Direct Current (DC) bolometer theory. Method: The analytical transfer function expression will be presented in matrix form. For this purpose, we build linearized versions of the bolometer electro thermal equilibrium. A custom description of signals in frequency is used to solve the problem with linear algebra. The model performances is validated using time domain simulations. Results: The provided expression is suitable for calibration and data processing. It can also be used to provide constraints for fitting optical transfer function using real data from steady state electronic response and optical response. The accurate description of electronic response can also be used to improve the ADC nonlinearity correction for quickly varying optical signals.

  8. Approaches on calibration of bolometer and establishment of bolometer calibration device

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Gao, Jianqiang; Ye, Jun'an; Xia, Junwen; Yin, Dejin; Li, Tiecheng; Zhang, Dong

    2015-10-01

    Bolometer is mainly used for measuring thermal radiation in the field of public places, labor hygiene, heating and ventilation and building energy conservation. The working principle of bolometer is under the exposure of thermal radiation, temperature of black absorbing layer of detector rise after absorption of thermal radiation, which makes the electromotive force produced by thermoelectric. The white light reflective layer of detector does not absorb thermal radiation, so the electromotive force produced by thermoelectric is almost zero. A comparison of electromotive force produced by thermoelectric of black absorbing layer and white reflective layer can eliminate the influence of electric potential produced by the basal background temperature change. After the electromotive force which produced by thermal radiation is processed by the signal processing unit, the indication displays through the indication display unit. The measurement unit of thermal radiation intensity is usually W/m2 or kW/m2. Its accurate and reliable value has important significance for high temperature operation, labor safety and hygiene grading management. Bolometer calibration device is mainly composed of absolute radiometer, the reference light source, electric measuring instrument. Absolute radiometer is a self-calibration type radiometer. Its working principle is using the electric power which can be accurately measured replaces radiation power to absolutely measure the radiation power. Absolute radiometer is the standard apparatus of laser low power standard device, the measurement traceability is guaranteed. Using the calibration method of comparison, the absolute radiometer and bolometer measure the reference light source in the same position alternately which can get correction factor of irradiance indication. This paper is mainly about the design and calibration method of the bolometer calibration device. The uncertainty of the calibration result is also evaluated.

  9. CTS/Comstar communications link characterization experiment

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.; Taylor, R. C.

    1980-01-01

    Measurements of angle of arrival and amplitude fluctuations on millimeter wavelength Earth-space communication links are described. Measurement of rainfall attenuation and radiometric temperature statistics and the assessment of the performance of a self-phased array as a receive antenna on an Earth-space link are also included.

  10. IR detector system based on high-Tc superconducting bolometer on SI membrane

    NASA Astrophysics Data System (ADS)

    Burnus, M.; Hefle, G.; Heidenblut, T.; Khrebtov, Igor A.; Laukemper, J.; Michalke, W.; Neff, H.; Schwierzi, B.; Semtchinova, O. K.; Steinbeiss, E.; Tkachenko, A. D.

    1996-06-01

    An infrared detector system based on high-T(subscript c) superconducting (HTS) membrane bolometer is reported. Superconducting transition-edge bolometer has been manufactured by silicon micromachining using an epitaxial GdBa(subscript 2)Cu(subscript 3)O(subscript 7-x) film on an epitaxial yttria- stabilized zirconia buffer layer on silicon. The active area of the element is 0.85 X 0.85 mm(superscript 2). The membrane thickness is 1 micrometers , those of the buffer layer and HTS films are 50 nm. The detectivity of bolometer, D(superscript *), is 3.8 X 10(superscript 9) cm Hz(superscript 1/2) W(superscript -1) at 84.5 K and within the frequency regime 100 < f < 300 Hz. The optical response is 580 V/W at time constant 0.4 ms. This is one of the fastest composite type HTS-bolometer ever reported. The bolometer is mounted on a metal N(subscript 2)-liquid cryostat, which fits the preamplifier. With the volume of N(subscript 2)-reservoir being 0.1 liter, the cryostat holds nitrogen for about 8 hours. Using only wire heater with constant current, the temperature stability of about 0.03 K/h is achieved. The detector system can be used in IR- Fourier spectroscopy at wavelengths longer than the typical operating range of semiconductor detectors (wavelength greater than about 20 micrometers ).

  11. Theory of noise equivalent power of a high-temperature superconductor far-infrared bolometer in a photo-thermoelectrical mode of operation

    NASA Astrophysics Data System (ADS)

    Kaila, M. M.; Russell, G. J.

    2000-12-01

    We present a theory of noise equivalent power (NEP) and related parameters for a high-temperature superconductor (HTSC) bolometer in which temperature and resistance are the noise sources for open circuit operation and phonon and resistance are the noise sources for voltage-biased operation of the bolometer. The bolometer is designed to use a photo-thermoelectrical mode of operation. A mathematical formulation for the open circuit operation is first presented followed by an analysis of the heterodyne case with a bias applied in constant voltage mode. For the first time electrothermal (ET) and thermoelectrical (TE) feedback are treated in the heat balance equation simultaneously. A parallel resistance geometry consisting of thermoelectric and HTSC material legs has been chosen for the device. Computations for the ET-TE feedback show that the response time improves by three orders of magnitude and the responsivity becomes double for the same TE feedback. In the heat balance equation we have included among the heat transfer processes the temperature dependence of the thermal conductance at the bolometer-substrate interface for the dynamic state.

  12. The AzTEC millimeter-wave camera: Design, integration, performance, and the characterization of the (sub-)millimeter galaxy population

    NASA Astrophysics Data System (ADS)

    Austermann, Jason Edward

    One of the primary drivers in the development of large format millimeter detector arrays is the study of sub-millimeter galaxies (SMGs) - a population of very luminous high-redshift dust-obscured starbursts that are widely believed to be the dominant contributor to the Far-Infrared Background (FIB). The characterization of such a population requires the ability to map large patches of the (sub-)millimeter sky to high sensitivity within a feasible amount of time. I present this dissertation on the design, integration, and characterization of the 144-pixel AzTEC millimeter-wave camera and its application to the study of the sub-millimeter galaxy population. In particular, I present an unprecedented characterization of the "blank-field" (fields with no known mass bias) SMG number counts by mapping over 0.5 deg^2 to 1.1mm depths of ~1mJy - a previously unattained depth on these scales. This survey provides the tightest SMG number counts available, particularly for the brightest and rarest SMGs that require large survey areas for a significant number of detections. These counts are compared to the predictions of various models of the evolving mm/sub-mm source population, providing important constraints for the ongoing refinement of semi-analytic and hydrodynamical models of galaxy formation. I also present the results of an AzTEC 0.15 deg^2 survey of the COSMOS field, which uncovers a significant over-density of bright SMGs that are spatially correlated to foreground mass structures, presumably as a result of gravitational lensing. Finally, I compare the results of the available SMG surveys completed to date and explore the effects of cosmic variance on the interpretation of individual surveys.

  13. Design of an adiabatic demagnetization refrigerator for studies in astrophysics

    NASA Technical Reports Server (NTRS)

    Castles, S.

    1983-01-01

    An adiabatic demagnetization refrigerator was designed for cooling infrared bolometers for studies in astrophysics and aeronomy. The design was tailored to the requirements of a Shuttle sortie experiment. The refrigerator should be capable of maintaining three bolometers at 0.1 K with a 90% cycle. The advantage are of operations the bolometer at 0.1K. greater sensitivity, faster response time, and the ability to use larger bolometer elements without compromising the response time. The design presented is the first complete design of an ADR intended for use in space. The most important of these specifications are to survive a Shuttle launch, to operate with 1.5 K - 2.0 K space-pumped liquid helium as a heat sink, to have a 90% duty cycle, and to be highly efficient.

  14. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    Polyimide aerogels were considered to serve as a filling for millimeter-wave waveguides. While these waveguides present a slightly higher loss than hollow waveguides, they have less losses than Duroid substrate integrated waveguides (less than 0.15 dB at Ka-band, in a 20 mm section), and exhibit an order of magnitude of mass reduction when compared to commercial waveguides. A Ka-band slotted aerogel-filled-waveguide array was designed, which provided the same gain (9 dBi) as its standard waveguide counterpart, and a slotted aerogel-filled-waveguide array using folded-slots was designed for comparison, obtaining a gain of 9 dB and a bandwidth of 590 MHz.

  15. High Tc bolometer developments for planetary missions

    NASA Technical Reports Server (NTRS)

    Brasunas, J.; Lakew, B.

    1991-01-01

    A simple polishing technique was developed for thinning the LaAlO3 substrates for high-quality Tc bolometer films, and thus reducing their heat capacity. A 150-ms bolometer was made on a LaAlO3 substrate with a 5-Hz D* value of 1.5 x 10 exp 8. It is shown that passive temperature stabilization is adequate for operation at the transition. There remained excess noise at the transition, but this noise appears to be of nonbolometric origin.

  16. Highly Efficient Broadband Multiplexed Millimeter-Wave Vortices from Metasurface-Enabled Transmit-Arrays of Subwavelength Thickness

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi Hao; Kang, Lei; Hong, Wei; Werner, Douglas H.

    2018-06-01

    Structured electromagnetic waves carrying nonvanishing orbital angular momentum (OAM) have recently opened up alternative frontiers in the field of wave physics, holding great promise for a wide range of potential applications. By leveraging geometric phases originating from spin-to-orbital interactions, spin-dependent wave phenomena can be created, leading to a more versatile realm of dispersionless wave-front manipulation. However, the currently available transmissive vortex-beam generators suffer from a narrow bandwidth, require an optically thick device profile, or are limited by a low efficiency, severely restricting their integration into systems and/or widespread usage for practical applications. We present the design methodology and a physical analysis and complete experimental characterization of a class of millimeter-wave Pancharatnam-Berry transmit-arrays with a thickness of about λ0/3 , which enables highly efficient generation and separation of spin-controlled vortex beams over a broad bandwidth, achieving an unprecedented peak efficiency of 88% for a single vortex beam and 71% for dual vortex beams. The proposed transmit-array, which is capable of providing two-dimensional OAM multiplexing and demultiplexing without normal-mode background interference, overcomes all previous roadblocks and paves the way for high-efficiency electromagnetic vortex-beam generation as well as other wave-front-shaping devices from microwave frequencies to optical wavelengths.

  17. VizieR Online Data Catalog: Molecular clouds in the dwarf galaxy NGC6822 (Schruba+, 2017)

    NASA Astrophysics Data System (ADS)

    Schruba, A.; Leroy, A. K.; Kruijssen, J. M. D.; Bigiel, F.; Bolatto, A. D.; de Blok, W. J. G.; Tacconi, L.; van Dishoeck, E. F.; Walter, F.

    2017-09-01

    We observed five fields in NGC 6822 with the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 using the 1.3mm Band 6 receivers (project code: 2013.1.00351.S; PI. A. Schruba) in 2014 Mar 23-25. (1 data file).

  18. Erratum: Correction to: Rapid and controllable perforation of carbon nanotubes by microwave radiation

    NASA Astrophysics Data System (ADS)

    Ojaghi, Neda; Mokhtarifar, Maryam; Sabaghian, Zahra; Arab, Hamed; Maghrebi, Morteza; Baniadam, Majid

    2018-06-01

    This study presents a new controlled approach to deep perforation of millimeter-long carbon nanotube arrays (CNTAs) by fast oxidative cutting. The approach is based on decorating CNTAs with silver (Ag) nanoparticles, followed by heating Ag-decorated CNTAs with microwave radiation (2.48 GHz, 300 W).

  19. Fabrication of Monolithic Sapphire Membranes for High Tc Bolometer Array Development

    NASA Technical Reports Server (NTRS)

    Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.

    2003-01-01

    This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to hot H2SO4:H3PO4 etchant, will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology and elemental concentration of the Pt/Cr thin film layers and (2) etch pit formation on the sapphire surface will be presented.

  20. Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Grygar, J.

    2018-04-01

    Although infrared radiation was described by W. Herschel already in 1800, technical problems delayed its use in astronomy for 160 years. After the invention of a sensitive bolometer and semiconducting CCD arrays for very wide infrared window the progress in the field accelerated. Many high-altitude observatories started their work in the last three decades of XXth century and since 1983 space observatories became most important due to the fact that infrared radiation penetrates through opaque cold shells. Moreover, cosmological expansion of the Universe shifts the maximum of spectral energy of distant hot objects from ultraviolet to near infrared region. Infrared astronomy is also essential for improving our knowledge of the cold universe, particularly for studies about the birth of stars, planetary systems and galaxies.

  1. A sub-millimeter resolution detector module for small-animal PET applications

    NASA Astrophysics Data System (ADS)

    Sacco, I.; Dohle, R.; Fischer, P.; Gola, A.; Piemonte, C.; Ritzert, M.

    2017-01-01

    We present a gamma detection module optimized for very high resolution PET applications, able to resolve arrays of scintillating crystals with sub-millimeter pitch. The detector is composed of a single ceramic substrate (LTCC): it hosts four flip-chip mounted PETA5 ASICs on the bottom side and an array of SiPM sensors on the top surface, fabricated in HD-RGB technology by FBK. Each chip has 36 channels, for a maximum of 144 readout channels on a sensitive area of about 32 mm × 32 mm. The module is MR-compatible. The thermal decoupling of the readout electronics from the photon sensors is obtained with an efficient internal liquid channel, integrated within the ceramic substrate. Two modules have been designed, based on different SiPM topologies: • Light spreader-based: an array of 12 × 12 SiPMs, with an overall pitch of 2.5 mm, is coupled with a scintillators array using a 1 mm thick glass plate. The light from one crystal is spread over a group of SiPMs, which are read out in parallel using PETA5 internal neighbor logic. • Interpolating SiPM-based: ISiPMs are intrinsic position-sensitive sensors. The photon diodes in the array are connected to one of the four available outputs so that the center of gravity of any bunch of detected photons can be reconstructed using a proper weight function of the read out amplitudes. An array of ISiPMs, each 7.5 mm× 5 mm sized, is directly coupled with the scintillating crystals. Both modules can clearly resolve LYSO arrays with a pitch of only 0.833 mm. The detector can be adjusted for clinical PET, where it has already shown ToF resolution of about 230 ps CRT at FWHM. The module designs, their features and results are described.

  2. A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monfardini, A.; Benoit, A.; Bideaud, A.

    The Neel IRAM KIDs Array (NIKA) is a fully integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. The instrument includes dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz. The imaging sensors consist of two spatially separated arrays of KIDs. The first array, mounted on the 150 GHz branch, is composed of 144 lumped-element KIDs. The second array (220 GHz) consists of 256 antenna-coupled KIDs. Each of the arrays is sensitive to a single polarization; the band splitting is achieved by using a grid polarizer. The optics and sensors aremore » mounted in a custom dilution cryostat, with an operating temperature of {approx}70 mK. Electronic readout is realized using frequency multiplexing and a transmission line geometry consisting of a coaxial cable connected in series with the sensor array and a low-noise 4 K amplifier. The dual-band NIKA was successfully tested in 2010 October at the Institute for Millimetric Radio Astronomy (IRAM) 30 m telescope at Pico Veleta, Spain, performing in-line with laboratory predictions. An optical NEP was then calculated to be around 2 x 10{sup -16} W Hz{sup -1/2} (at 1 Hz) while under a background loading of approximately 4 pW pixel{sup -1}. This improvement in comparison with a preliminary run (2009) verifies that NIKA is approaching the target sensitivity for photon-noise limited ground-based detectors. Taking advantage of the larger arrays and increased sensitivity, a number of scientifically relevant faint and extended objects were then imaged including the Galactic Center SgrB2 (FIR1), the radio galaxy Cygnus A, and the NGC1068 Seyfert galaxy. These targets were all observed simultaneously in the 150 GHz and 220 GHz atmospheric windows.« less

  3. A superconducting bolometer camera for APEX

    NASA Astrophysics Data System (ADS)

    Jethava, N.; Kreysa, E.; Siringo, G.; Esch, W.; Gemünd, H.-P.; May, T.; Anders, S.; Fritzsch, L.; Boucher, R.; Zakosarenko, V.; Meyer, H.-G.

    2006-06-01

    We present the experimental results of voltage-biased superconducting bolometers (VSB) on silicon nitride (Si 3N 4) membranes with niobium wiring developed in collaboration between the Institut fur Physikalische Hochtechnologie (IPHT), Jena, Germany and the Max-Planck-Institut fur Radioastronomie (MPIfR), Bonn, Germany. The bolometer current is measured with the superconducting quantum interference device (SQUID), and as expected, the current responsivity is proportional to the inverse of the bias voltage. The experiments were performed with bilayer gold-palladium molybdenum thermistor at 300 mK 3He cooled cryostat and the desired transition temperature of T c = 450 mK is achieved. The strong negative electro-thermal feedback of the VSB maintains the constant bolometer temperature and reduces the response time from 4 ms to 100 μs. We have tested thermistors of various size and shape on a continuous membrane and achieved a noise equivalent power (NEP) of 3.5 × 10 -16 W/√Hz. The measured NEP is relatively high due to the comparatively high background and high thermal conductance of the unstructured silicon nitride (Si 3N 4) membrane. We have fabricated 8-leg spider structured membranes in three different geometries and the relation between the geometry and the thermal conductance (G) is studied. Using the COSMOS finite element analysis tool, we have modeled the TES bolometers to determine the thermal conductance for different geometries and calculated the various parameters. Due to the demands of large number pixel bolometer camera we plan to implement multiplex readout with integrated SQUIDs in our design.

  4. The initial design of LAPAN's IR micro bolometer using mission analysis process

    NASA Astrophysics Data System (ADS)

    Bustanul, A.; Irwan, P.; M. T., Andi; Firman, B.

    2016-11-01

    As new player in Infra Red (IR) sector, uncooled, small, and lightweight IR Micro Bolometer has been chosen as one of payloads for LAPAN's next micro satellite project. Driven the desire to create our own IR Micro Bolometer, mission analysis design procedure has been applied. After tracing all possible missions, the Planck's and Wien's Law for black body, Temperature Responsivity (TR), and sub-pixel response had been utilized in order to determine the appropriate spectral radiance. The 3.8 - 4 μm wavelength were available to detect wild fire (forest fire) and active volcanoes, two major problems faced by Indonesia. In order to strengthen and broaden the result, iteration process had been used throughout the process. The analysis, then, were continued by calculating Ground pixel size, IFOV pixel, swath width, and focus length. Meanwhile, regarding of resolution, at least it is 400 m. The further procedure covered the integrated of optical design, wherein we combined among optical design software, Zemax, with mechanical analysis software (structure and thermal analysis), such as Nastran and Thermal Desktop / Sinda Fluint. The integration process was intended to produce high performance optical system of our IR Micro Bolometer that can be used under extreme environment. The results of all those analysis, either in graphs or in measurement, show that the initial design of LAPAN'S IR Micro Bolometer meets the determined requirement. However, it needs the further evaluation (iteration). This paper describes the initial design of LAPAN's IR Micro Bolometer using mission analysis process

  5. Controlled Synthesis of Millimeter-Long Silicon Nanowires with Uniform Electronic Properties

    PubMed Central

    Park, Won Il; Zheng, Gengfeng; Jiang, Xiaocheng; Tian, Bozhi; Lieber, Charles M.

    2009-01-01

    We report the nanocluster-catalyzed growth of ultra-long and highly-uniform single-crystalline silicon nanowires (SiNWs) with millimeter-scale lengths and aspect ratios up to ca. 100,000. The average SiNW growth rate using disilane (Si2H6) at 400 °C was 31 µm/min, while the growth rate determined for silane (SiH4) reactant under similar growth conditions was 130 times lower. Transmission electron microscopy studies of millimeter-long SiNWs with diameters of 20–80 nm show that the nanowires grow preferentially along the <110> direction independent of diameter. In addition, ultra-long SiNWs were used as building blocks to fabricate one-dimensional arrays of field-effect transistors (FETs) consisting of ca. 100 independent devices per nanowire. Significantly, electrical transport measurements demonstrated that the millimeter-long SiNWs had uniform electrical properties along the entire length of wires, and each device can behave as a reliable FET with an on-state current, threshold voltage, and transconductance values (average ± 1 standard deviation) of 1.8 ± 0.3 µA, 6.0 ± 1.1 V, 210 ± 60 nS, respectively. Electronically-uniform millimeter-long SiNWs were also functionalized with monoclonal antibody receptors, and used to demonstrate multiplexed detection of cancer marker proteins with a single nanowire. The synthesis of structurally- and electronically-uniform ultra-long SiNWs may open up new opportunities for integrated nanoelectronics, and could serve as unique building blocks linking integrated structures from the nanometer through millimeter length scales. PMID:18710294

  6. Laboratory Measurements of Sulfuric Acid Vapor Opacity at Millimeter Wavelengths Under Venus Conditions

    NASA Astrophysics Data System (ADS)

    Akins, Alexander Brooks; Steffes, Paul G.

    2017-10-01

    Radio astronomical observations of the lower-cloud and sub-cloud regions of the Venusian atmosphere at millimeter wavelengths can provide insight into the nature of the sub-cloud sulfur chemistry. Previous observations (de Pater et al., Icarus 90, 1991 and Sagawa, J. Natl. Inst. of Inf. And Comm. Tech. 55, 2008) indicate substantial variations in Venus disc brightness at millimeter wavelengths, likely due to variations in SO2 and H2SO4 vapor abundances. Although previous measurements of H2SO4 vapor opacity provide accurate information at centimeter wavelengths (Kolodner and Steffes, Icarus 132, 1998), extrapolation to millimeter wavelength observations is speculative. A Fabry-Perot open resonator with a quality factor in excess of 15,000 has been designed to measure the opacity of H2SO4 vapor in a CO2 atmosphere under Venus temperature and pressure conditions below the clouds. The resonator system has been designed using corrosion-resistant materials to ensure data integrity. Opacity measurements made with this system target the 2-4 millimeter wavelength range, applicable to recent Atacama Large Millimeter Array observations of Venus. Initial laboratory results for H2SO4 vapor opacity will be presented, and the implications of these results for pressure broadened opacity formalisms will be discussed. In addition to radio astronomical observations, these results of these measurements can aid in the interpretation of radiometer and radio occultation measurements from future Venus missions, such as the Venera D orbiter. This work is supported by the NASA Solar System Workings Program under grant NNX17AB19G.

  7. ZEUS-2: a second generation submillimeter grating spectrometer for exploring distant galaxies

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Irwin, Kent D.; Cho, Hsiao-Mei; Halpern, Mark

    2010-07-01

    ZEUS-2, the second generation (z)Redshift and Early Universe Spectrometer, like its predecessor is a moderate resolution (R~1000) long-slit, echelle grating spectrometer optimized for the detection of faint, broad lines from distant galaxies. It is designed for studying star-formation across cosmic time. ZEUS-2 employs three TES bolometer arrays (555 pixels total) to deliver simultaneous, multi-beam spectra in up to 4 submillimeter windows. The NIST Boulder-built arrays operate at ~100mK and are readout via SQUID multiplexers and the Multi-Channel Electronics from the University of British Columbia. The instrument is cooled via a pulse-tube cooler and two-stage ADR. Various filter configurations give ZEUS-2 access to 7 different telluric windows from 200 to 850 micron enabling the simultaneous mapping of lines from extended sources or the simultaneous detection of the 158 micron [CII] line and the [NII] 122 or 205 micron lines from z = 1-2 galaxies. ZEUS-2 is designed for use on the CSO, APEX and possibly JCMT.

  8. Sn nanothreads in GaAs: experiment and simulation

    NASA Astrophysics Data System (ADS)

    Semenikhin, I.; Vyurkov, V.; Bugaev, A.; Khabibullin, R.; Ponomarev, D.; Yachmenev, A.; Maltsev, P.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.

    2016-12-01

    The gated GaAs structures like the field-effect transistor with the array of the Sn nanothreads was fabricated via delta-doping of vicinal GaAs surface by Sn atoms with a subsequent regrowth. That results in the formation of the chains of Sn atoms at the terrace edges. Two device models were developed. The quantum model accounts for the quantization of the electron energy spectrum in the self-consistent two-dimensional electric potential, herewith the electron density distribution in nanothread arrays for different gate voltages is calculated. The classical model ignores the quantization and electrons are distributed in space according to 3D density of states and Fermi-Dirac statistics. It turned out that qualitatively both models demonstrate similar behavior, nevertheless, the classical one is in better quantitative agreement with experimental data. Plausibly, the quantization could be ignored because Sn atoms are randomly placed along the thread axis. The terahertz hot-electron bolometers (HEBs) could be based on the structure under consideration.

  9. ALMA Partners Break Ground on World's Largest Millimeter Wavelength Telescope

    NASA Astrophysics Data System (ADS)

    2003-11-01

    Scientists and dignitaries from North America, Europe, and Chile broke ground today (Thursday, November 6, 2003) on what will be the world's largest, most sensitive radio telescope operating at millimeter wavelengths. ALMA - the Atacama Large Millimeter Array - will be a single instrument composed of 64 high-precision antennas located on the Chajnantor plain of the Chilean Andes in the District of San Pedro de Atacama, 16,500 feet (5,000 meters) above sea level. ALMA's primary function will be to observe and image with unprecedented clarity the enigmatic cold regions of the Universe, which are optically dark, yet shine brightly in the millimeter portion of the electromagnetic spectrum. ALMA Array Artist's Conception of ALMA Array in Compact Configuration (Click on Image for Larger Version) Other Images Available: Artist's conception of the antennas for the Atacama Large Millimeter Array Moonrise over ALMA test equipment near Cerro Chajnantor, Chile VertexRSI antenna at the VLA test site The Atacama Large Millimeter Array is an international astronomy facility. ALMA is an equal partnership between Europe and North America, in cooperation with the Republic of Chile, and is funded in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Europe by the European Southern Observatory (ESO) and Spain. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO. "The U.S. National Science Foundation joins today with our North American partner, Canada, and with the European Southern Observatory, Spain, and Chile to prepare for a spectacular new instrument," said Dr. Rita Colwell, director of the U.S. National Science Foundation. "The Atacama Large Millimeter Array will expand our vision of the Universe with "eyes" that pierce the shrouded mantles of space through which light cannot penetrate." Wayne Van Citters, Division Director for the NSF's Division of Astronomical Sciences represented Dr. Colwell at this ceremony. "ALMA will be a giant leap forward for our studies of this relatively little explored spectral window towards the Universe," said Dr. Catherine Cesarsky, Director General of ESO. "With ESO leading the European part of this ambitious and forward-looking project, the impact of ALMA will be felt in wide circles on our continent. Together with our partners in North America and Chile, we are all looking forward to the truly outstanding opportunities that will be offered by ALMA, also to young scientists and engineers." SCIENCE WITH ALMA ALMA will receive millimeter and sub-millimeter wavelength electromagnetic radiation from space. This portion of the spectrum, which is more energetic than most radio waves yet less energetic than visible and infrared light, holds the key to understanding a great variety of fundamental processes, including planet and star formation, and the formation and evolution of galaxies and galaxy clusters in the early Universe. The possibility to detect emission from organic and other molecules in space is of particularly high interest. "ALMA will push the limits of engineering to provide a telescope array at a fantastic site for astronomers to peer at the beginnings of the Universe, galaxies, stars and planets, and perhaps even life," said Dr. Fred K.Y. Lo, director of the National Radio Astronomy Observatory (NRAO). The millimeter and sub-millimeter radiation that ALMA will study is able to penetrate the vast clouds of dust and gas that populate interstellar and intergalactic space, revealing previously hidden details about astronomical objects. This energy, however, is blocked by atmospheric moisture here on Earth. To conduct research in this critical portion of the spectrum, astronomers need a site that is very dry, and preferably at a very high altitude where the atmosphere is thinner. Extensive tests showed that the sky above the high-altitude Chajnantor plain in the Atacama Desert has the unsurpassed clarity and stability needed to perform efficient observations with ALMA. ALMA OPERATION ALMA will be the highest altitude, full-time ground-based observatory in the world. Work at this altitude, however, is very challenging. To help ensure the safety of the scientists and engineers at ALMA, operations will be conducted from the Operations Support Facility, a compound located close to the cities of Toconao and San Pedro de Atacama, which is at a more comfortable 2,900 meters (9,500 feet) above sea level. Phase 1 of the ALMA Project, which included the design and development, was completed in 2002. The beginning of Phase 2 of this project happened on February 25, 2003, when the NSF and ESO signed an agreement to construct and operate ALMA. Construction will continue until 2012; however, initial scientific observations are planned in 2007, with a partial array of the first antennas. ALMA's operation will progressively increase until 2012 with the installation of the remaining antennas. The entire project will cost approximately $552 million U.S. (in FY 2000 dollars). Earlier this year, the ALMA Board selected Professor Massimo Tarenghi, formerly manager of ESO's VLT (Very Large Telescope) Project, to become ALMA Director. He is confident that he and his team will succeed. "We may have a lot of hard work in front of us," he said, "but all of us in the team are excited about this unique project. We are ready to work for the international astronomical community and to provide them in due time with a unique instrument allowing trailblazing research projects in many different fields of modern astrophysics." HOW IT WILL WORK ALMA will be composed of 64 high-precision antennas, each 12 meters in diameter. The ALMA antennas can be repositioned, allowing the telescope to function much like the zoom lens on a camera. At its largest, ALMA will be 14 kilometers (8.7 miles) across. This will allow the telescope to observe the fine-scale details of astronomical objects. At its smallest, approximately 150 meters (492 feet) across, ALMA will be able to study the large-scale structures of these same objects. ALMA will function as an interferometer, meaning it will combine the signals from all its antennas (two at a time) to simulate a telescope the size of the distance between the antennas. With 64 antennas, ALMA will generate 2016 individual antenna pairs (baselines) during its observations. To handle this much data, ALMA will rely on a very powerful, specialized computer called a correlator, which will perform 16,000 million-million operations per second. Currently, the two prototype ALMA antennas are undergoing rigorous testing at the NRAO's Very Large Array site, near Socorro, New Mexico. INTERNATIONAL COLLABORATION For this ambitious project, ALMA has become a joint effort among several nations and scientific institutions. This will be the first truly global project of ground-based astronomy, an essential development in view of the increasing technological sophistication and the high costs of the front line astronomy installations. "Today marks the official start of construction," said Dr. Colwell. "But the ALMA partnership also breaks ground with a novel collaboration that ensures equal access by astronomers on at least three continents. International partnerships are quickly becoming the norm of the millennium, enabling organizations and nations to combine funds to achieve greater scientific capability. NSF is proud to participate in the creation of an instrument that will provide unprecedented power for science and immeasurable knowledge for all." At the groundbreaking in Chile, the ALMA partners unveiled the ALMA logo.

  10. The HERSCHEL/PACS early Data Products

    NASA Astrophysics Data System (ADS)

    Wieprecht, E.; Wetzstein, M.; Huygen, R.; Vandenbussche, B.; De Meester, W.

    2006-07-01

    ESA's Herschel Space Observatory to be launched in 2007, is the first space observatory covering the full far-infrared and submillimeter wavelength range (60 - 670 microns). The Photodetector Array Camera & Spectrometer (PACS) is one of the three science instruments. It contains two Ge:Ga photoconductor arrays and two bolometer arrays to perform imaging line spectroscopy and imaging photometry in the 60 - 210 micron wavelength band. The HERSCHEL ground segment (Herschel Common Science System - HCSS) is implemented using JAVA technology and written in a common effort by the HERSCHEL Science Center and the three instrument teams. The PACS Common Software System (PCSS) is based on the HCSS and used for the online and offline analysis of PACS data. For telemetry bandwidth reasons PACS science data are partially processed on board, compressed, cut into telemetry packets and transmitted to the ground. These steps are instrument mode dependent. We will present the software model which allows to reverse the discrete on board processing steps and evaluate the data. After decompression and reconstruction the detector data and instrument status information are organized in two main PACS Products. The design of these JAVA classes considers the individual sampling rates, data formats, memory and performance optimization aspects and comfortable user interfaces.

  11. Optical and IR applications in astronomy and astrophysics

    NASA Astrophysics Data System (ADS)

    McLean, Ian S.

    2009-06-01

    The set comprising silicon charge-coupled devices, low band-gap infrared arrays and bolometer arrays provide astronomers with position-sensitive photon detectors from the X-ray to the sub-mm. In recent years the most significant advances have occurred in the near-infrared part of the spectrum because not only have the detector formats caught up with those of charge-coupled device (CCDs) but also because the advent of adaptive optics (AO) has meant that the very largest telescopes can achieve their diffraction limit in the near-infrared. Thus infrared cameras, spectrometers and hybrid instruments that measure spatial and spectral information simultaneously are now commanding the greatest attention on telescopes from 6.5 to 10 m in effective aperture. Scientific applications of these new infrared instruments span everything from the search for nearby solar systems to the orbital motions of stars about the massive black hole at the center of the Milky Way, and studies of the first galaxies to form in the high redshift Universe. Background, principles and applications of infrared array detectors to astronomy and astrophysics will be discussed with particular emphasis on work at the W.M. Keck 10-m telescope on Mauna Kea, Hawaii.

  12. Spectroscopic Capabilities and Possibilities of the Far Infrared and Submillimeter Telescope Mission

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.

    2000-01-01

    The Far Infrared and Submillimeter Telescope (FIRST) mission is the fourth European Space Agency corner stone mission. FIRST will be an observatory with a passively cooled (80 Kelvin) 3.5 meter class telescope and three cryogenic instruments covering the 670 to 80 mm spectral region. The mission is slated for a 4.5 year operational lifetime in an L2 orbit. It will share an Arian 5 launch with PLANCK in early 2007. The three payload instruments include the Spectral and Photometric Imaging Receiver (SPIRE), which is a bolometer array with Martin-Puplett FTS for 200-670 microns, the Photoconductor Array Camera and Spectrometer (PACS), which is a photoconductor array with a grating spectrometer for 80-210 microns and the Heterodyne Instrument for FIRST (HIFI), which is a series of seven heterodyne receivers covering 480-1250 GHz and portions of 1410-1910 GHz and 2400-2700 GHz. FIRST will make many detailed spectral surveys of a wide variety of objects previously obscured by the atmosphere and in regions of the spectrum seldom used for astronomical observations, With all of the spectroscopic capability on FIRST a great deal of laboratory spectroscopic support will be needed for accurate interpretation of the spectral data.

  13. Preliminary performance measurements of bolometers for the planck high frequency instrument

    NASA Technical Reports Server (NTRS)

    Holmes, W.; Bock, J.; Ganga, K.; Hristov, V. V.; Hustead, L.; Koch, T.; Lange, A. E.; Paine, C.; Yun, M.

    2002-01-01

    We report on the characterization of bolometers fabricated at the Jet Propulsion Laboratory for the High Frequency Instrument (HFI) of the joint ESA/NASA Herschel/Planck mission to be launched in 2007.

  14. First Local Ties from Data of the Wettzell Triple Radio Telescope Array

    NASA Astrophysics Data System (ADS)

    Schüler, T.; Plötz, C.; Mähler, S.; Klügel, T.; Neidhardt, A.; Bertarini, A.; Halsig, S.; Nothnagel, A.; Lösler, M.; Eschelbach, C.; Anderson, J.

    2016-12-01

    The Geodetic Observatory Wettzell features three radio telescopes. Local ties between the reference points are available from terrestrial precision surveying with an expected accuracy below 0.7 mm. In addition, local VLBI data analysis is currently investigated to provide independent vectors and to provide quality feedback to the engineers. The preliminary results presented in this paper show a deviation from the local survey at the level of one millimeter with a clear systematic component. Sub-millimeter precision is reached after removal of this bias. This systematic effect is likely caused by omission of thermal expansion and gravity deformation, which is not yet implemented in our local VLBI analysis software.

  15. Bulk and integrated acousto-optic spectrometers for radio astronomy

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    The development of sensitive heterodyne receivers (front end) in the centimeter and millimeter range, and the construction of sensitive RF spectrometers (back end) enable the spectral lines of interstellar molecules to be detected and identified. A technique was developed which combines acoustic bending of a collimated coherent light beam by a Bragg cell followed by detection by a sensitive array of photodetectors (thus forming an RF acousto-optic spectrometer (AOS). An AOS has wide bandwidth, large number of channels, and high resolution, and is compact, lightweight, and energy efficient. The thrust of receiver development is towards high frequency heterodyne systems, particularly in the millimeter, submillimeter, far infrared, and 10 micron spectral ranges.

  16. Detection of the Intrinsic Size of Sagittarius A* Through Closure Amplitude Imaging

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Falcke, Heino; Herrnstein, Robeson M.; Zhao, Jun-Hui; Goss, W. M.; Backer, Donald C.

    2004-04-01

    We have detected the intrinsic size of Sagittarius A*, the Galactic center radio source associated with a supermassive black hole, showing that the short-wavelength radio emission arises from very near the event horizon of the black hole. Radio observations with the Very Long Baseline Array show that the source has a size of 24 +/- 2 Schwarzschild radii at 7-millimeter wavelength. In one of eight 7-millimeter epochs, we also detected an increase in the intrinsic size of 60+25-17%. These observations place a lower limit to the mass density of Sagittarius A* of 1.4 × 104 solar masses per cubic astronomical unit.

  17. Long-term Spatial Distribution Patterns of Protozoa in Connected Microhabitats

    NASA Astrophysics Data System (ADS)

    Taghon, G. L.; Tuorto, S. J.

    2016-02-01

    Studies of microbial ecosystems usually assume habitat homogeneity. Recent research, however, indicates that habitat structure varies at millimeter scales and that this patchiness affects abundance and behavior of microbes. In this study, two species of ciliated protozoa were maintained, together, for multiple generations in microfluidic devices consisting of arrays of interconnected microhabitats with differing resource availability. The species differed in their population dynamics and tendency to disperse among microhabitats. Both species coexisted for over 45 days, and their coexistence likely resulted from habitat selection at millimeter scales. We demonstrate that it is not only possible, but imperative, that detailed ecological phenomena of microbial systems be studied at the relevant spatial and temporal scales.

  18. The Front-End System For MARE In Milano

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Claudio; Pessina, Gianluigi

    2009-12-01

    The first phase of MARE consists of 72 μ-bolometers composed each of a crystal of AgReO4 readout by Si thermistors. The spread in the thermistor characteristics and bolometer thermal coupling leads to different energy conversion gains and optimum operating points of the detectors. Detector biasing levels and voltage gains are completely remote-adjustable by the front end system developed, the subject of this paper, achieving the same signal range at the input of the DAQ system. The front end consists of a cold buffer stage, a second pseudo differential stage followed by a gain stage, an antialiasing filter, and a battery powered detector biasing set up. The DAQ system can be used to set all necessary parameters of the electronics remotely, by writing to a μ-controller located on each board. Fiber optics are used for the serial communication between the DAQ and the front end. To suppress interference noise during normal operation, the clocked devices of the front end are maintained in sleep-mode, except during the set-up phase of the experiment. An automatic DC detector characterization procedure is used to establish the optimum operating point of every detector of the array. A very low noise level has been achieved: about 3nV/□Hz at 1 Hz and 1 nV/□Hz for the white component, high frequencies.

  19. Mapping TES Aerobreaking Data of The Martian Polar Caps

    NASA Astrophysics Data System (ADS)

    Altunaiji, E. S.; Edwards, C. S.; Smith, M. D.; AlShamsi, M. R.; AlJanaahi, A. A.

    2016-12-01

    The purpose of this paper is to create maps of the north and south Mars polar caps using Thermal Emission Spectrometer (TES) aerobreaking surface temperature data in south and north as well as Lambert albedo data in the south. TES is an instrument on board the Mars Global Surveyor (MGS) spacecraft. It has six detectors arranged in a 2x3 array with a nominal spot size of 3 × 6 km; however, given the elliptical nature of the orbit during aerobreaking the footprint can be significantly larger (10s of km), especially over the southern hemisphere. TES is a Fourier transform infrared spectrometer designed to study the Martian surface and atmosphere using thermal infrared emission spectroscopy. It is composed of 2 separate channels, a broadband visible/near-infrared bolometer and hyperspectral thermal infrared spectrometer with a broadband thermal infrared bolometer. TES aerobraking spectra were taken between Mars Year 23, Ls=180° and Mars Year 24, Ls=30°. To determine the footprint location on the surface, geometry is calculated using the Spacecraft Planet Instrument Camera Matrix and Event (SPICE) Toolkit. These data were then binned and mapped to surface in polar stereographic projection. While some early studies focused on these data, we have expanded upon the ranges, generated time-/seasonally-binned data, and re-examined this largely underutilized set of data from TES ultimately extending the record of polar science on Mars.

  20. The LUCIFER Project: Achievements and Near Future Prospects

    NASA Astrophysics Data System (ADS)

    Beeman, J. W.; Bellini, F.; Benetti, P.; Cardani, L.; Casali, N.; Chiesa, D.; Clemenza, M.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gironi, L.; Giuliani, A.; Gotti, C.; Maino, M.; Nagorny, S. S.; Nisi, S.; Nones, C.; Pagnanini, L.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.

    2016-08-01

    In the view of exploring the inverted hierarchy region future experiments investigating the neutrinoless double beta decay have to demand for detectors with excellent energy resolution and zero background in the energy region of interest. Cryogenic scintillating bolometers are very suitable detectors for this task since they provide particle discrimination: the simultaneous detection of the phonon and light signal allows us to identify the interacting type of particle and thus guarantees a suppression of α -induced backgrounds, the key-issue for next-generation tonne-scale bolometric experiments. The LUCIFER project aims at running the first array of enriched scintillating Zn^{ {82}}Se bolometers (total mass of about 8kg of ^{ {82}}Se) with a background level as low as 10^{ {-3}} counts/(keV kg y) in the energy region of interest. The main effort is currently focused on the finalization of the crystal growth procedure in order to achieve high quality Zn^{ {82}}Se crystals both in terms of radiopurity and bolometric properties. We present results from tests of such crystals operated at mK temperatures which demonstrate the excellent background rejection capabilities of this detection approach towards a background-free demonstrator experiment. Besides, the high purity of the enriched ^{ {82}}Se material allows us to establish the most stringent limits on the half-life of the double beta decay of ^{ {82}}Se on excited levels.

  1. Surveying Low-Mass Star Formation with the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Dunham, Michael

    2018-01-01

    Large astronomical surveys yield important statistical information that can’t be derived from single-object and small-number surveys. In this talk I will review two recent surveys in low-mass star formation undertaken by the Submillimeter Array (SMA): a millimeter continuum survey of disks surrounding variably accreting young stars, and a complete continuum and molecular line survey of all protostars in the nearby Perseus Molecular Cloud. I will highlight several new insights into the processes by which low-mass stars gain their mass that have resulted from the statistical power of these surveys.

  2. Monolithic control components for high power mm-waves

    NASA Astrophysics Data System (ADS)

    Armstrong, A.; Goodrich, J.; Moroney, W.; Wheeler, D.

    1985-09-01

    Monolithic PIN diode arrays are shown to provide significant advances in switching ratios, bandwidth, and high-power capability for millimeter control applications The PIN diodes are arranged in a series/parallel configuration and form an electronically controlled window for switching RF power by applying DC voltage. At Ka band, an SPST switch using the window array (WINAR) design typically has 0.6 dB insertion loss and 22 dB isolation over the 26.5 to 40.0 GHz band. The switch has over 500 W peak power and 25 W average power capability.

  3. Synthesis of Millimeter-Scale Carbon Nanotube Arrays and Their Applications on Electrochemical Supercapacitors

    NASA Astrophysics Data System (ADS)

    Cui, Xinwei

    This research is aimed at synthesizing millimeter-scale carbon nanotube arrays (CNTA) by conventional chemical vapor deposition (CCVD) and water-assisted chemical vapor deposition (WACVD) methods, and exploring their application as catalyst supports for electrochemical supercapacitors. The growth mechanism and growth kinetics of CNTA under different conditions were systematically investigated to understand the relationship among physical characteristics of catalyst particles, growth parameters, and carbon nanotube (CNT) structures within CNTAs. Multiwalled CNT (MWCNT) array growth demonstrates lengthening and thickening stages in CCVD and WACVD. In CCVD, the lengthening and thickening were found to be competitive. By investigating catalyst particles after different pretreatment conditions, it has been found that inter-particle spacing plays a significant role in influencing CNTA height, CNT diameter and wall number. In WACVD, a long linear lengthening stage has been found. CNT wall number remains constant and catalysts preserve the activity in this stage, while MWCNTs thicken substantially and catalysts deactivate following the previously proposed radioactive decay model in the thickening stage of WACVD. Water was also shown to preserve the catalyst activity by significantly inhibiting catalyst-induced and gas phase-induced thickening processes in WACVD. Mn3O4 nanoparticles were successfully deposited and uniformly distributed within millimeter-long CNTAs by dip-casting method from non-aqueous solutions. After modification with Mn3O4 nanoparticles, CNTAs have been changed from hydrophobic to hydrophilic without their alignment and integrity being destroyed. The hydrophilic Mn 3O4/CNTA composite electrodes present ideal capacitive behavior with high reversibility. This opens up a new route of utilizing ultra-long CNTAs, based on which a scalable and cost-effective method was developed to fabricate composite electrodes using millimeter-long CNTAs. To improve the performance of the composites, epsilon-MnO2 nanorods were anodically pulse-electrodeposited within hydrophilic 0.5 mm-thick Mn 3O4 decorated CNTAs. The maximum gravimetric capacitance for the MnO2 nanorods/CNTA composite electrode was found to be 185 F/g, and that for epsilon-MnO2 nanorods was determined to be 221 F/g. After electrodeposition, the area-normalized capacitance and volumetric capacitance values were increased by a factor of 3, and an extremely high area-normalized capacitance of 1.80 F/cm2 was also achieved for the MnO2 nanorods/CNTA composite.

  4. Millimeter and Submillimeter Wave Spectroscopy of Higher Energy Conformers of 1,2-PROPANEDIOL

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Bossa, Jean-Baptiste; Lewen, Frank; Schlemmer, Stephan; Müller, Holger S. P.

    2017-06-01

    We have performed a study of the millimeter/submillimeter wave spectrum of four higher energy conformers of 1,2-propanediol (continuation of the previous study on the three lowest energy conformers. The present analysis of rotational transitions carried out in the frequency range 38 - 400 GHz represents a significant extension of previous microwave work. The new data were combined with previously-measured microwave transitions and fitted using a Watson's S-reduced Hamiltonian. The final fits were within experimental accuracy, and included spectroscopic parameters up to sixth order of angular momentum, for the ground states of the four higher energy conformers following previously studied ones: g'Ga, gG'g', aGg' and g'Gg. The present analysis provides reliable frequency predictions for astrophysical detection of 1,2-propanediol by radio telescope arrays at millimeter wavelengths. J.-B. Bossa, M.H. Ordu, H.S.P. Müller, F. Lewen, S. Schlemmer, A&A 570 (2014) A12)

  5. Investigation of radiant millimeter wave/terahertz radiation from low-infrared signature targets

    NASA Astrophysics Data System (ADS)

    Aytaç, B.; Alkuş, Ü.; Sivaslıgil, M.; Şahin, A. B.; Altan, H.

    2017-10-01

    Millimeter (mm) and sub-mm wave radiation is increasingly becoming a region of interest as better methods are developed to detect in this wavelength range. The development of sensitive focal plane array (FPA) architectures as well as single pixel scanners has opened up a new field of passive detection and imaging. Spectral signatures of objects, a long standing area of interest in the Short Wave Infrared (SWIR), Mid-Wave (MWIR) and Long Wave-IR (LWIR) bands can now be assessed in the mm-wave/terahertz (THz) region. The advantage is that this form of radiation is not as adversely affected by poor atmospheric conditions compared to other bands. In this study, a preliminary experiment in a laboratory environment is performed to assess the radiance from targets with low infrared signatures in the millimeter wave/terahertz (THz) band (<1 THz). The goal of this approach is to be able to model the experimental results to better understand the mm-wave/THz signature of targets with low observability in the IR bands.

  6. Mechanical Designs and Developement of Advanced ACT: A Transfomative Upgrade to the ACTPol Receiver on the Atacama Cosmology Telescope.

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan; Advanced ACT Collaboration, NASA Space Technology Research Fellowship

    2017-06-01

    The Atacama Cosmology Telescope is a six-meter diameter telescope located at 17,000 feet (5,200 meters) on Cerro Toco in the Andes Mountains of northern Chile. The next generation Advanced ACT (AdvACT) experiment is currently underway and will consist of three multichroic TES bolometer arrays operating together, totaling 5800 detectors on the sky. Each array will be sensitive to two frequency bands: a high frequency (HF) array at 150 and 230 GHz, two middle frequency (MF) arrays at 90 and 150 GHz, and a low frequency (LF) array at 28 and 41 GHz. The AdACT detector arrays will feature a revamped design when compared to ACTPol, including a transition to 150mm wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors consists of a feedhorn array of stacked silicon wafers which form a corrugated profile leading to each pixel. This is then followed by a four-piece detector stack assembly of silicon wafers which includes a waveguide interface plate, detector wafer, backshort cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured out of gold-plated, high purity copper. In addition to the detector array assembly, the array package also encloses the majority of our readout electronics. We present the full mechanical design of the AdvACT HF and MF detector array packages along with a detailed look at the detector array assemblies. We also highlight the use of continuously rotating warm half-wave plates (HWPs) at the front of the AdvACT receiver. We review the design of the rotation system and also early pipeline data analysis results. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT instruments with pre-existing ACTPol infrastructure.

  7. The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument

    NASA Technical Reports Server (NTRS)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.; Angile, F. E.; Amiri, M.; Beall, J. A.; Becker, D. T.; Cho, H.-M.; Choi, S. K.; Corlies, P.; hide

    2016-01-01

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3deg field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.

  8. The Atacama Cosmology Telescope: The Polarization-sensitive ACTPol Instrument

    NASA Astrophysics Data System (ADS)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.; Angilè, F. E.; Amiri, M.; Beall, J. A.; Becker, D. T.; Cho, H.-M.; Choi, S. K.; Corlies, P.; Coughlin, K. P.; Datta, R.; Devlin, M. J.; Dicker, S. R.; Dünner, R.; Fowler, J. W.; Fox, A. E.; Gallardo, P. A.; Gao, J.; Grace, E.; Halpern, M.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Hincks, A. D.; Ho, S. P.; Hubmayr, J.; Irwin, K. D.; Klein, J.; Koopman, B.; Li, Dale; Louis, T.; Lungu, M.; Maurin, L.; McMahon, J.; Munson, C. D.; Naess, S.; Nati, F.; Newburgh, L.; Nibarger, J.; Niemack, M. D.; Niraula, P.; Nolta, M. R.; Page, L. A.; Pappas, C. G.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sievers, J. L.; Simon, S. M.; Staggs, S. T.; Tucker, C.; Uehara, M.; van Lanen, J.; Ward, J. T.; Wollack, E. J.

    2016-12-01

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev–Zel’dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.

  9. Dense arrays of millimeter-sized glass lenses fabricated at wafer-level.

    PubMed

    Albero, Jorge; Perrin, Stéphane; Bargiel, Sylwester; Passilly, Nicolas; Baranski, Maciej; Gauthier-Manuel, Ludovic; Bernard, Florent; Lullin, Justine; Froehly, Luc; Krauter, Johann; Osten, Wolfgang; Gorecki, Christophe

    2015-05-04

    This paper presents the study of a fabrication technique of lenses arrays based on the reflow of glass inside cylindrical silicon cavities. Lenses whose sizes are out of the microfabrication standards are considered. In particular, the case of high fill factor arrays is discussed in detail since the proximity between lenses generates undesired effects. These effects, not experienced when lenses are sufficiently separated so that they can be considered as single items, are corrected by properly designing the silicon cavities. Complete topographic as well as optical characterizations are reported. The compatibility of materials with Micro-Opto-Electromechanical Systems (MOEMS) integration processes makes this technology attractive for the miniaturization of inspection systems, especially those devoted to imaging.

  10. Phonon Recycling for Ultrasensitive Kinetic Inductance Detectors

    NASA Astrophysics Data System (ADS)

    Zmuidzinas, Jonas

    Initially proposed (Day et al. 2003; Zmuidzinas 2012) in 1999 by our Caltech/JPL group, and thanks to strong support from NASA, the superconducting (microwave) kinetic inductance detector (MKID or KID) technology continues to develop rapidly as it transitions into applications. The development effort worldwide is intensifying and NASA's continued support of KID development is essential in order to keep pace. Here we propose to investigate and demonstrate a new, low-TRL concept, which we call phonon recycling, that promises to open broad new avenues in KID design and performance. Briefly, phonon recycling allows the detector designer to tailor the responsivity and sensitivity of a KID to match the needs of the application by using geometry to restrict the rate at which recombination phonons are allowed to escape from the detector. In particular, phonon recycling should allow very low noise-equivalent power (NEP) to be achieved without requiring very low operating tem- peratures. Phonon recycling is analogous to the use of micromachined suspension legs to control the flow of heat in a bolometer, as measured by the thermal conductivity G. However, phonon recycling exploits the non-thermal distribution of recombination phonons as well as their very slow decay in crystals at low temperatures. These properties translate to geometrical and mechanical requirements for a phonon-recycled KID that are considerably more relaxed than for a bolometer operating at the same temperature and NEP. Our ultimate goal is to develop detector arrays suitable for a far-infrared (FIR) space mission, which will impose strict requirements on the array sensitivity, yield, uniformity, multiplexing density, etc. Through previous NASA support under the Strategic Astrophysics Technology (SAT) program, we have successfully demonstrated the MAKO submillimeter camera at the Caltech Submillimeter Observatory and have become familiar with these practical issues. If our demonstration of phonon recycling is successful, we will have a path for continuously adapting the high-background, high-NEP detectors we have demonstrated on the ground to the ultralow-NEP detectors needed for space.

  11. The Green Bank Telescope: Transformational Science for the Next Decade.

    NASA Astrophysics Data System (ADS)

    Wootten, Al; GBO Staff

    2018-01-01

    The Robert C Byrd Green Bank Telescope has met its design goal of providing high-quality observations at 115 GHz. The accurate small beam of the telescope at high frequencies is leveraged by deployment of multi beam receivers. An overview is presented. Observers now have access to the new, 16-pixel, 3-mm Argus receiver, which is providing high-dynamic range images over wide fields for the multitude of spectral lines between 85 and 115 GHz. The successful performance of Argus, and its modular design, demonstrates that receivers with many more pixels could be built for the GBT. A 12 x 12 array of the Argus design would have mapping speeds about nine times faster than Argus without suffering any degradation in performance for the outer pixels in the array. The Observatory plans to build the next-generation Argus instrument (Argus+) with 144-pixels, a footprint 5'x5', and 7" resolution at 110 GHz. The project will be a collaboration between the Green Bank Observatory and university groups, who will supply key components. The key science drivers for Argus+ are studies of molecular filaments in the Milky Way, studies of molecular clouds in nearby galaxies, and the observations of rapidly evolving solar system objects. Observers also have access to MUSTANG-2, a 223-feedhorn bolometer camera which was commissioned on the GBT in spring 2016, and was offered for observations on a shared risk basis, in collaboration with the instrument team, in the 2018A GBO proposal call. Several features distinguish it from its predecessor, MUSTANG: A new, microstrip-coupled detector design yields higher sensitivity and less susceptibility to environmental microphonics. Detectors are feedhorn coupled, with the sum of two linear polarizations measured by a single TES per feed. The instantaneous field of view is 4 arcminutes (vs 42 arcseconds for MUSTANG) The receiver design incorporates a tilted refrigerator and receiver rotator, resulting in much lower dependence of cooling performance on telescope elevation. The detector readout is the first astronomical use of microwave resonators to multiplex TES bolometers. MUSTANG-2 has been developed by a collaboration including the University of Pennsylvania, NIST, NRAO, the University of Michigan, and Cardiff University. A 7-pixel K-band Feed Array covering 18-28 GHz with Dual polarization feeds and a noise temperature < 40-50 K has been available for several years. The array offers an instantaneous bandwidth/beam of 1.8 GHz. Future upgrade concepts under study envision increasing the number of beams by an order of magnitude.

  12. Ka-band MMIC subarray technology program (Ka-Mist)

    NASA Technical Reports Server (NTRS)

    Pottenger, Warren

    1995-01-01

    The broad objective of this program was to demonstrate a proof of concept insertion of Monolithic Microwave Integrated Circuit (MMIC) device technology into an innovative (tile architecture) active phased array antenna application supporting advanced EHF communication systems. Ka-band MMIC arrays have long been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in close proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments.

  13. A Millimeter-wave Cavity-backed Suspended Substrate Stripline Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    1999-01-01

    Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency hands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz) 4 x 4 planar array of cavity backed circular aperture antennas with suspended substrate stripline (SSS) corporate feed is presented.

  14. Development of theoretical models of integrated millimeter wave antennas

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Schaubert, Daniel H.

    1991-01-01

    Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.

  15. Nanostructure based EO/IR sensor development for homeland security applications

    NASA Astrophysics Data System (ADS)

    Sood, Ashok K.; Welser, Roger E.; Sood, Adam W.; Puri, Yash R.; Manzur, Tariq; Dhar, Nibir K.; Polla, Dennis L.; Wang, Zhong L.; Wijewarnasuriya, Priyalal S.; Anwar, A. F. M.

    2011-06-01

    Next Generation EO/IR focal plane arrays using nanostructure materials are being developed for a variety of Defense and Homeland Security Sensor Applications. Several different nanomaterials are being evaluated for these applications. These include ZnO nanowires, GaN Nanowires and II-VI nanowires, which have demonstrated large signal to noise ratio as a wide band gap nanostructure material in the UV band. Similarly, the work is under way using Carbon Nanotubes (CNT) for a high speed detector and focal plane array as two-dimensional array as bolometer for IR bands of interest, which can be implemented for the sensors for homeland security applications. In this paper, we will discuss the sensor design and model predicting performance of an EO/IR focal plane array and Sensor that can cover the UV to IR bands of interest. The model can provide a robust means for comparing performance of the EO/IR FPA's and Sensors that can operate in the UV, Visible-NIR (0.4- 1.8μ), SWIR (2.0-2.5μ), MWIR (3-5μ), and LWIR bands (8-14μ). This model can be used as a tool for predicting performance of nanostructure arrays under development. We will also discuss our results on growth and characterization of ZnO nanowires and CNT's for the next generation sensor applications. We also present several approaches for integrated energy harvesting using nanostructure based solar cells and Nanogenerators that can be used to supplement the energy required for nanostructure based sensors.

  16. Instrument development of the CMB polarization POLARBEAR-2 experiment

    NASA Astrophysics Data System (ADS)

    Siritanasak, Praween; POLARBEAR Collaboration

    2017-06-01

    We present the status of the development of the Polarbear-2 (PB-2) and Simons Array experiments. PB-2 is a ground-based Cosmic Microwave Back- ground (CMB) polarization experiment located at the James Ax observatory in the Atacama desert of Northern Chile. The Simons Array will consist of three PB-2 receivers on three Huan Tran-style telescopes, each containing a multi-chroic detector array. The first new Simons Array receiver, Polarbear- 2A(PB-2A), will be deployed in 2017. The PB-2A focal plane consists of 1,897 lenslet-coupled, dual-polarization, sinuous-antenna-coupled pixels operating at 95 and 150 GHz, making a total of 7,588 polarization-sensitive transition edge sensor (TES) bolometers. In the order to cover both frequencies, we developed broadband two layer anti-reflection (AR) coating for 5.345 mm diameter lenslets using two types of epoxy: Stycast2850FT and Stycast1090. We developed a mass production AR coating methodology that can control the uniformity and shape to within 25 μm error from the designed value. The second (PB-2B) and third (PB-2C) receivers will employ similar technologies and will cover 95, 150, 220 and 280 GHz. The Simons Array will survey 80% of the sky with broad frequency coverage and high resolution, making it a powerful tool to constrain the tensor-to-scalar ratio through measurements of primordial B-modes and the sum of the neutrino masses through measurements of B-modes produced by gravitational lensing.

  17. The Polarbear-2 and the Simons Array experiments

    DOE PAGES

    Suzuki, A.; Ade, P.; Akiba, Y.; ...

    2016-01-06

    Here, we present an overview of the design and status of the POLARBEAR-2 and the Simons Array experiments. POLARBEAR- 2 is a Cosmic Microwave Background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm diameter focal plane cooled to 270 milli-Kelvin. The focal plane is filled with 7,588 dichroic lenslet-antenna coupled polarization sensitive Transition Edge Sensor (TES) bolometric pixels that are sensitive to 95 GHz and 150 GHz bands simultaneously. The TES bolometers aremore » read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 µK CMB√s in each frequency band. POLARBEAR-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three POLARBEAR-2 type receivers. The Simons Array will cover 95 GHz, 150 GHz and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to σ(r) = 6×10 $-$3 at r = 0.1 and Σm ν(σ = 1) to 40 meV.« less

  18. TES arrays for the short wavelength band of the SAFARI instrument on SPICA

    NASA Astrophysics Data System (ADS)

    Khosropanah, P.; Hijmering, R.; Ridder, M.; Gao, J. R.; Morozov, D.; Mauskopf, P. D.; Trappe, N.; O'Sullivan, C.; Murphy, A.; Griffin, D.; Goldie, D.; Glowacka, D.; Withington, S.; Jackson, B. D.; Audley, M. D.; de Lange, G.

    2012-09-01

    SPICA is an infra-red (IR) telescope with a cryogenically cooled mirror (~5K) with three instruments on board, one of which is SAFARI that is an imaging Fourier Transform Spectrometer (FTS) with three bands covering the wavelength of 34-210 μm. We develop transition edge sensors (TES) array for short wavelength band (34-60 μm) of SAFARI. These are based on superconducting Ti/Au bilayer as TES bolometers with a Tc of about 105 mK and thin Ta film as IR absorbers on suspended silicon nitride (SiN) membranes. These membranes are supported by long and narrow SiN legs that act as weak thermal links between the TES and the bath. Previously an electrical noise equivalent power (NEP) of 4×10-19 W/√Hz was achieved for a single pixel of such detectors. As an intermediate step toward a full-size SAFARI array (43×43), we fabricated several 8×9 detector arrays. Here we describe the design and the outcome of the dark and optical tests of several of these devices. We achieved high yield (<93%) and high uniformity in terms of critical temperature (<5%) and normal resistance (7%) across the arrays. The measured dark NEPs are as low as 5×10-19 W/√Hz with a response time of about 1.4 ms at preferred operating bias point. The optical coupling is implemented using pyramidal horns array on the top and hemispherical cavity behind the chip that gives a measured total optical coupling efficiency of 30±7%.

  19. Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2000-07-01

    A novel millimeter-wave imaging technique has been developed for personnel surveillance applications, including the detection of concealed weapons, explosives, drugs, and other contraband material. Millimeter-waves are high-frequency radio waves in the frequency band of 30 - 300 GHz, and pose no health threat to humans at moderate power levels. These waves readily penetrate common clothing materials, and are reflected by the human body and by concealed items. The combined illumination cylindrical imaging concept consists of a vertical, high-resolution, millimeter-wave array of antennas which is scanned in a cylindrical manner about the person under surveillance. Using a computer, the data from this scan is mathematically reconstructed into a series of focused 3D images of the person. After reconstruction, the images are combined into a single high-resolution 3D image of the person under surveillance. This combined image is then rendered using 3D computer graphics techniques. The combined cylindrical illumination is critical as it allows the display of information from all angles. This is necessary because millimeter-waves do not penetrate the body. Ultimately, the images displayed to the operate will be icon-based to protect the privacy of the person being screened. Novel aspects of this technique include the cylindrical scanning concept and the image reconstruction algorithm, which was developed specifically for this imaging system. An engineering prototype based on this cylindrical imaging technique has been fabricated and tested. This work has been sponsored by the Federal Aviation Administration.

  20. The ITER bolometer diagnostic: Status and plansa)

    NASA Astrophysics Data System (ADS)

    Meister, H.; Giannone, L.; Horton, L. D.; Raupp, G.; Zeidner, W.; Grunda, G.; Kalvin, S.; Fischer, U.; Serikov, A.; Stickel, S.; Reichle, R.

    2008-10-01

    A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R&D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration.

  1. SINIS bolometer with a suspended absorber

    NASA Astrophysics Data System (ADS)

    Tarasov, M.; Edelman, V.; Mahashabde, S.; Fominsky, M.; Lemzyakov, S.; Chekushkin, A.; Yusupov, R.; Winkler, D.; Yurgens, A.

    2018-03-01

    We have developed a Superconductor-Insulator-Normal Metal-Insulator-Superconductor (SINIS) bolometer with a suspended normal metal bridge. The suspended bridge acts as a bolometric absorber with reduced heat losses to the substrate. Such bolometers were characterized at 100-350 mK bath temperatures and electrical responsivity of over 109 V/W was measured by dc heating the absorber through additional contacts. Suspended bolometers were also integrated in planar twin-slot and log-periodic antennas for operation in the submillimetre-band of radiation. The measured voltage response to radiation at 300 GHz and at 100 mK bath temperature is 3*108 V/W and a current response is 1.1*104 A/W which corresponds to a quantum efficiency of ~15 electrons per photon. An important feature of such suspended bolometers is the thermalization of electrons in the absorber heated by optical radiation, which in turn provides better quantum efficiency. This has been confirmed by comparison of bolometric response to dc and rf heating. We investigate the performance of direct SN traps and NIS traps with a tunnel barrier between the superconductor and normal metal trap. Increasing the volume of superconducting electrode helps to reduce overheating of superconductor. Influence of Andreev reflection and Kapitza resistance, as well as electron-phonon heat conductivity and thermal conductivity of N-wiring are estimated for such SINIS devices.

  2. Technological development of multispectral filter assemblies for micro bolometer

    NASA Astrophysics Data System (ADS)

    Le Goff, Roland; Tanguy, François; Fuss, Philippe; Etcheto, Pierre

    2017-11-01

    Since 2007 Sodern has successfully developed visible and near infrared multispectral filter assemblies for Earth remote sensing imagers. Filter assembly is manufactured by assembling several sliced filter elements (so-called strips), each corresponding to one spectral band. These strips are cut from wafers using a two dimensional accuracy precision process. In the frame of a 2011 R&T preparatory initiative undertaken by the French agency CNES, the filter assembly concept was adapted by Sodern to the long wave infrared spectral band taken into account the germanium substrate, the multilayer bandpass filters and the F-number of the optics. Indeed the current trend in space instrumentation toward more compact uncooled infrared radiometer leads to replace the filter wheel with a multispectral filter assembly mounted directly above the micro bolometer window. The filter assembly was customized to fit the bolometer size. For this development activity we consider a ULIS VGA LWIR micro bolometer with 640 by 480 pixels and 25 microns pixel pitch. The feasibility of the concept and the ability to withstand space environment were investigated and demonstrated by bread boarding activities. The presentation will contain a detailed description of the bolometer and filter assembly design, the stray light modeling analysis assessing the crosstalk between adjacent spectral bands and the results of the manufacturing and environmental tests (damp heat and thermal vacuum cycling).

  3. Location of γ-ray Flare Emission in the Jet of the BL Lacertae Object OJ287 More than 14 pc from the Central Engine

    NASA Astrophysics Data System (ADS)

    Agudo, Iván; Jorstad, Svetlana G.; Marscher, Alan P.; Larionov, Valeri M.; Gómez, José L.; Lähteenmäki, Anne; Gurwell, Mark; Smith, Paul S.; Wiesemeyer, Helmut; Thum, Clemens; Heidt, Jochen; Blinov, Dmitriy A.; D'Arcangelo, Francesca D.; Hagen-Thorn, Vladimir A.; Morozova, Daria A.; Nieppola, Elina; Roca-Sogorb, Mar; Schmidt, Gary D.; Taylor, Brian; Tornikoski, Merja; Troitsky, Ivan S.

    2011-01-01

    We combine time-dependent multi-waveband flux and linear polarization observations with submilliarcsecond-scale polarimetric images at λ = 7 mm of the BL Lacertae type blazar OJ287 to locate the γ-ray emission in prominent flares in the jet of the source >14 pc from the central engine. We demonstrate a highly significant correlation between the strongest γ-ray and millimeter-wave flares through Monte Carlo simulations. The two reported γ-ray peaks occurred near the beginning of two major millimeter-wave outbursts, each of which is associated with a linear polarization maximum at millimeter wavelengths. Our very long baseline array observations indicate that the two millimeter-wave flares originated in the second of two features in the jet that are separated by >14 pc. The simultaneity of the peak of the higher-amplitude γ-ray flare and the maximum in polarization of the second jet feature implies that the γ-ray and millimeter-wave flares are cospatial and occur >14 pc from the central engine. We also associate two optical flares, accompanied by sharp polarization peaks, with the two γ-ray events. The multi-waveband behavior is most easily explained if the γ-rays arise from synchrotron self-Compton scattering of optical photons from the flares. We propose that flares are triggered by interaction of moving plasma blobs with a standing shock. The γ-ray and optical emission is quenched by inverse Compton losses as synchrotron photons from the newly shocked plasma cross the emission region. The millimeter-wave polarization is high at the onset of a flare, but decreases as the electrons emitting at these wavelengths penetrate less polarized regions.

  4. LOCATION OF {gamma}-RAY FLARE EMISSION IN THE JET OF THE BL LACERTAE OBJECT OJ287 MORE THAN 14 pc FROM THE CENTRAL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agudo, Ivan; Jorstad, Svetlana G.; Marscher, Alan P.

    We combine time-dependent multi-waveband flux and linear polarization observations with submilliarcsecond-scale polarimetric images at {lambda} = 7 mm of the BL Lacertae type blazar OJ287 to locate the {gamma}-ray emission in prominent flares in the jet of the source >14 pc from the central engine. We demonstrate a highly significant correlation between the strongest {gamma}-ray and millimeter-wave flares through Monte Carlo simulations. The two reported {gamma}-ray peaks occurred near the beginning of two major millimeter-wave outbursts, each of which is associated with a linear polarization maximum at millimeter wavelengths. Our very long baseline array observations indicate that the two millimeter-wavemore » flares originated in the second of two features in the jet that are separated by >14 pc. The simultaneity of the peak of the higher-amplitude {gamma}-ray flare and the maximum in polarization of the second jet feature implies that the {gamma}-ray and millimeter-wave flares are cospatial and occur >14 pc from the central engine. We also associate two optical flares, accompanied by sharp polarization peaks, with the two {gamma}-ray events. The multi-waveband behavior is most easily explained if the {gamma}-rays arise from synchrotron self-Compton scattering of optical photons from the flares. We propose that flares are triggered by interaction of moving plasma blobs with a standing shock. The {gamma}-ray and optical emission is quenched by inverse Compton losses as synchrotron photons from the newly shocked plasma cross the emission region. The millimeter-wave polarization is high at the onset of a flare, but decreases as the electrons emitting at these wavelengths penetrate less polarized regions.« less

  5. Advances in real-time millimeter-wave imaging radiometers for avionic synthetic vision

    NASA Astrophysics Data System (ADS)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.; Galliano, Joseph A., Jr.

    1995-06-01

    Millimeter-wave imaging has advantages over conventional visible or infrared imaging for many applications because millimeter-wave signals can travel through fog, snow, dust, and clouds with much less attenuation than infrared or visible light waves. Additionally, passive imaging systems avoid many problems associated with active radar imaging systems, such as radar clutter, glint, and multi-path return. ThermoTrex Corporation previously reported on its development of a passive imaging radiometer that uses an array of frequency-scanned antennas coupled to a multichannel acousto-optic spectrum analyzer (Bragg-cell) to form visible images of a scene through the acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output from the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. An application of this system is its incorporation as part of an enhanced vision system to provide pilots with a synthetic view of a runway in fog and during other adverse weather conditions. Ongoing improvements to a 94 GHz imaging system and examples of recent images taken with this system will be presented. Additionally, the development of dielectric antennas and an electro- optic-based processor for improved system performance, and the development of an `ultra- compact' 220 GHz imaging system will be discussed.

  6. The Density of Mid-sized Kuiper Belt Objects from ALMA Thermal Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Michael E.; Butler, Bryan J.

    The densities of mid-sized Kuiper Belt objects (KBOs) are a key constraint in understanding the assembly of objects in the outer solar system. These objects are critical for understanding the currently unexplained transition from the smallest KBOs with densities lower than that of water, to the largest objects with significant rock content. Mapping this transition is made difficult by the uncertainties in the diameters of these objects, which maps into an even larger uncertainty in volume and thus density. The substantial collecting area of the Atacama Large Millimeter Array allows significantly more precise measurements of thermal emission from outer solarmore » system objects and could potentially greatly improve the density measurements. Here we use new thermal observations of four objects with satellites to explore the improvements possible with millimeter data. We find that effects due to effective emissivity at millimeter wavelengths make it difficult to use the millimeter data directly to find diameters and thus volumes for these bodies. In addition, we find that when including the effects of model uncertainty, the true uncertainties on the sizes of outer solar system objects measured with radiometry are likely larger than those previously published. Substantial improvement in object sizes will likely require precise occultation measurements.« less

  7. Heat trap - An optimized far infrared field optics system. [for astronomical sources

    NASA Technical Reports Server (NTRS)

    Harper, D. A.; Hildebrand, R. H.; Winston, R.; Stiening, R.

    1976-01-01

    The article deals with the design and performance of a heat trap IR system designed to maximize the concentration and efficient reception of far IR and submillimeter wavelength radiation. The test object is assumed to be extended and/or viewed at wavelengths much longer than the detector, and the entrance aperture is limited to the size of the telescope Airy diffraction disk. The design of lenses, cavity, bolometers, light collectors, and mirrors for the system is discussed. Advantages and feasibility of arrays of heat traps are considered. Beam patterns, flux concentration, and performance variation with wavelength are dealt with. The heat trap is recommended for sensing all types of far IR sources and particularly for extended far IR sources.-

  8. Fabrication of Monolithic Sapphire Membranes for High T(sub c) Bolometer Array Development

    NASA Technical Reports Server (NTRS)

    Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.

    2004-01-01

    This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane single crystal sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to boiling H2SO4:H3PO4 etchant will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology (2) elemental concentration of the Pt/Cr thin film layers and (3) etch pit formation on the sapphire surface will be presented.

  9. Waveguide modes in sparse III-V nanowire arrays for ultra-broadband tunable perfect absorbers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fountaine, Katherine T.; Cheng, Wen-Hui; Bukowsky, Colton R.; Atwater, Harry A.

    2016-09-01

    Design of perfect absorbers and emitters has been a primary focus of the metamaterials community owing to their potential to enhance device efficiency and sensitivity in energy harvesting and sensing applications, specifically photovoltaics, thermal emission control, bolometers and photodetectors, to name a few. While reports of perfect absorbers/emitters for a specific frequency, wavevector, and polarization are ubiquitous, a broadband and polarization- and angle-insensitive perfect absorber remains a particular challenge. In this work, we report on directed optical design and fabrication of sparse III-V nanowire arrays as broadband, polarization- and angle-insensitive perfect absorbers and emitters. Specifically, we target response in the UV-Vis-NIR and NIR-SWIR-MWIR via two material systems, InP (Eg=1.34 eV) and InSb (Eg=0.17 eV), respectively. Herein, we present results on InP and InSb nanowire array broadband absorbers, supported by experiment, simulation and analytic theory. Electromagnetic simulations indicate that, with directed optical design, tapered nanowire arrays and multi-radii nanowire arrays with 5% fill fraction can achieve greater than 95% broadband absorption (λInP=400-900nm, λInSb=1.5-5.5µm), due to efficient excitation and interband transition-mediated attenuation of the HE11 waveguide mode. Experimentally-fabricated InP nanowire arrays embedded in PDMS achieved broadband, polarization- and angle-insensitive 90-95% absorption, limited primarily by reflection off the PDMS interface. Addition of a thin, planar VO2 layer above a sparse InSb nanowire array enables active thermal tunability in the infrared, effecting a 50% modulation, from 87% (insulating VO2) to 43% (metallic VO2) average absorption. These concepts and results along with photovoltaic and other optical and optoelectronic device applications will be discussed.

  10. SMURF: SubMillimeter User Reduction Facility

    NASA Astrophysics Data System (ADS)

    Jenness, Tim; Chapin, Edward L.; Berry, David S.; Gibb, Andy G.; Tilanus, Remo P. J.; Balfour, Jennifer; Tilanus, Vincent; Currie, Malcolm J.

    2013-10-01

    SMURF reduces submillimeter single-dish continuum and heterodyne data. It is mainly targeted at data produced by the James Clerk Maxwell Telescope but data from other telescopes have been reduced using the package. SMURF is released as part of the bundle that comprises Starlink (ascl:1110.012) and most of the packages that use it. The two key commands are MAKEMAP for the creation of maps from sub millimeter continuum data and MAKECUBE for the creation of data cubes from heterodyne array instruments. The software can also convert data from legacy JCMT file formats to the modern form to allow it to be processed by MAKECUBE. SMURF is a core component of the ORAC-DR (ascl:1310.001) data reduction pipeline for JCMT.

  11. Spectral Characterizations of the Clouds and the Earth's Radiant Energy System (CERES) Thermistor Bolometers using Fourier Transform Spectrometer (FTS) Techniques

    NASA Technical Reports Server (NTRS)

    Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1998-01-01

    Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.

  12. A Millimeter-Wave Cavity-Backed Suspended Substrate Stripline Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    1999-01-01

    Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency bands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency, and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz), cavity backed, circular aperture antenna with suspended substrate stripline (SSS) feed is presented.

  13. Development of dual-polarization LEKIDs for CMB observations

    NASA Astrophysics Data System (ADS)

    McCarrick, Heather; Abitbol, Maximilian H.; Ade, Peter A. R.; Barry, Peter; Bryan, Sean; Che, George; Day, Peter; Doyle, Simon; Flanigan, Daniel; Johnson, Bradley R.; Jones, Glenn; LeDuc, Henry G.; Limon, Michele; Mauskopf, Philip; Miller, Amber; Tucker, Carole; Zmuidzinas, Jonas

    2016-07-01

    We discuss the design considerations and initial measurements from arrays of dual-polarization, lumped-element kinetic inductance detectors (LEKIDs) nominally designed for cosmic microwave background (CMB) studies. The detectors are horn-coupled, and each array element contains two single-polarization LEKIDs, which are made from thin-film aluminum and optimized for a single spectral band centered on 150 GHz. We are developing two array architectures, one based on 160 micron thick silicon wafers and the other based on silicon-on-insulator (SOI) wafers with a 30 micron thick device layer. The 20-element test arrays (40 LEKIDs) are characterized with both a linearly-polarized electronic millimeter wave source and a thermal source. We present initial measurements including the noise spectra, noise-equivalent temperature, and responsivity. We discuss future testing and further design optimizations to be implemented.

  14. Applications of superconducting bolometers in security imaging

    NASA Astrophysics Data System (ADS)

    Luukanen, A.; Leivo, M. M.; Rautiainen, A.; Grönholm, M.; Toivanen, H.; Grönberg, L.; Helistö, P.; Mäyrä, A.; Aikio, M.; Grossman, E. N.

    2012-12-01

    Millimeter-wave (MMW) imaging systems are currently undergoing deployment World-wide for airport security screening applications. Security screening through MMW imaging is facilitated by the relatively good transmission of these wavelengths through common clothing materials. Given the long wavelength of operation (frequencies between 20 GHz to ~ 100 GHz, corresponding to wavelengths between 1.5 cm and 3 mm), existing systems are suited for close-range imaging only due to substantial diffraction effects associated with practical aperture diameters. The present and arising security challenges call for systems that are capable of imaging concealed threat items at stand-off ranges beyond 5 meters at near video frame rates, requiring substantial increase in operating frequency in order to achieve useful spatial resolution. The construction of such imaging systems operating at several hundred GHz has been hindered by the lack of submm-wave low-noise amplifiers. In this paper we summarize our efforts in developing a submm-wave video camera which utilizes cryogenic antenna-coupled microbolometers as detectors. Whilst superconducting detectors impose the use of a cryogenic system, we argue that the resulting back-end complexity increase is a favorable trade-off compared to complex and expensive room temperature submm-wave LNAs both in performance and system cost.

  15. CdTe Focal Plane Detector for Hard X-Ray Focusing Optics

    NASA Technical Reports Server (NTRS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Inglis, Andrew; Panessa, Marco

    2015-01-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 millimeter x 20 millimeter CdTe-based detector with 250 micrometer square pixels (80 x 80 pixels) which achieves 1 kiloelectronvolt FWHM (Full-Width Half-Maximum) @ 60 kiloelectronvolts and gives full spectroscopy between 5 kiloelectronvolts and 200 kiloelectronvolts. An added advantage of these detectors is that they have a full-frame readout rate of 10 kilohertz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1 millimeter-thick CdTe detectors are tiled into a 2 x 2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flight-suitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  16. PMMW Camera TRP. Phase 1

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Passive millimeter wave (PMMW) sensors have the ability to see through fog, clouds, dust and sandstorms and thus have the potential to support all-weather operations, both military and commercial. Many of the applications, such as military transport or commercial aircraft landing, are technologically stressing in that they require imaging of a scene with a large field of view in real time and with high spatial resolution. The development of a low cost PMMW focal plane array camera is essential to obtain real-time video images to fulfill the above needs. The overall objective of this multi-year project (Phase 1) was to develop and demonstrate the capabilities of a W-band PMMW camera with a microwave/millimeter wave monolithic integrated circuit (MMIC) focal plane array (FPA) that can be manufactured at low cost for both military and commercial applications. This overall objective was met in July 1997 when the first video images from the camera were generated of an outdoor scene. In addition, our consortium partner McDonnell Douglas was to develop a real-time passive millimeter wave flight simulator to permit pilot evaluation of a PMMW-equipped aircraft in a landing scenario. A working version of this simulator was completed. This work was carried out under the DARPA-funded PMMW Camera Technology Reinvestment Project (TRP), also known as the PMMW Camera DARPA Joint Dual-Use Project. In this final report for the Phase 1 activities, a year by year description of what the specific objectives were, the approaches taken, and the progress made is presented, followed by a description of the validation and imaging test results obtained in 1997.

  17. Thermoelectric bolometers based on silicon membranes

    NASA Astrophysics Data System (ADS)

    Varpula, Aapo; Timofeev, Andrey V.; Shchepetov, Andrey; Grigoras, Kestutis; Ahopelto, Jouni; Prunnila, Mika

    2017-05-01

    State-of-the-art high performance IR sensing and imaging systems utilize highly expensive photodetector technology, which requires exotic and toxic materials and cooling. Cost-effective alternatives, uncooled bolometer detectors, are widely used in commercial long-wave IR (LWIR) systems. Compared to the cooled detectors they are much slower and have approximately an order of magnitude lower detectivity in the LWIR. We present uncooled bolometer technology which is foreseen to be capable of narrowing the gap between the cooled and uncooled technologies. The proposed technology is based on ultra-thin silicon membranes, the thermal conductivity and electrical properties of which can be controlled by membrane thickness and doping, respectively. The thermal signal is transduced into electric voltage using thermocouple consisting of highly-doped n and p type Si beams. Reducing the thickness of the Si membrane improves the performance (i.e. sensitivity and speed) as thermal conductivity and thermal mass of Si membrane decreases with decreasing thickness. Based on experimental data we estimate the performance of these uncooled thermoelectric bolometers.

  18. Fabrication and Test of Large Area Spider-Web Bolometers for CMB Measurements

    NASA Astrophysics Data System (ADS)

    Biasotti, M.; Ceriale, V.; Corsini, D.; De Gerone, M.; Gatti, F.; Orlando, A.; Pizzigoni, G.

    2016-08-01

    Detecting the primordial 'B-mode' polarization of the cosmic microwave background is one of the major challenges of modern observational cosmology. Microwave telescopes need sensitive cryogenic bolometers with an overall equivalent noise temperature in the nK range. In this paper, we present the development status of large area (about 1 cm2) spider-web bolometer, which imply additional fabrication challenges. The spider-web is a suspended Si3N4 1 \\upmu m-thick and 8-mm diameter with mesh size of 250 \\upmu m. The thermal sensitive element is a superconducting transition edge sensor (TES) at the center of the bolometer. The first prototype is a Ti-Au TES with transition temperature tuned around 350 mK, new devices will be a Mo-Au bilayer tuned to have a transition temperature of 500 mK. We present the fabrication process with micro-machining techniques from silicon wafer covered with SiO2 - Si3N4 CVD films, 0.3 and 1 \\upmu m- thick, respectively, and preliminary tests.

  19. Developments of Highly Multiplexed, Multi-chroic Pixels for Balloon-Borne Platforms

    NASA Astrophysics Data System (ADS)

    Aubin, F.; Hanany, S.; Johnson, B. R.; Lee, A.; Suzuki, A.; Westbrook, B.; Young, K.

    2018-02-01

    We present our work to develop and characterize low thermal conductance bolometers that are part of sinuous antenna multi-chroic pixels (SAMP). We use longer, thinner and meandered bolometer legs to achieve 9 pW/K thermal conductance bolometers. We also discuss the development of inductor-capacitor chips operated at 4 K to extend the multiplexing factor of the frequency domain multiplexing to 105, an increase of 60% compared to the factor currently demonstrated for this readout system. This technology development is motivated by EBEX-IDS, a balloon-borne polarimeter designed to characterize the polarization of foregrounds and to detect the primordial gravity waves through their B-mode signature on the polarization of the cosmic microwave background. EBEX-IDS will operate 20,562 transition edge sensor bolometers spread over 7 frequency bands between 150 and 360 GHz. Balloon and satellite platforms enable observations at frequencies inaccessible from the ground and with higher instantaneous sensitivity. This development improves the readiness of the SAMP and frequency domain readout technologies for future satellite applications.

  20. Development of a Bolometer Detector System for the NIST High Accuracy Infrared Spectrophotometer

    PubMed Central

    Zong, Y.; Datla, R. U.

    1998-01-01

    A bolometer detector system was developed for the high accuracy infrared spectrophotometer at the National Institute of Standards and Technology to provide maximum sensitivity, spatial uniformity, and linearity of response covering the entire infrared spectral range. The spatial response variation was measured to be within 0.1 %. The linearity of the detector output was measured over three decades of input power. After applying a simple correction procedure, the detector output was found to deviate less than 0.2 % from linear behavior over this range. The noise equivalent power (NEP) of the bolometer system was 6 × 10−12 W/Hz at the frequency of 80 Hz. The detector output 3 dB roll-off frequency was 200 Hz. The detector output was stable to within ± 0.05 % over a 15 min period. These results demonstrate that the bolometer detector system will serve as an excellent detector for the high accuracy infrared spectrophotometer. PMID:28009364

  1. Nanotube Surface Arrays: Weaving, Bending, and Assembling on Patterned Silicon

    NASA Astrophysics Data System (ADS)

    Tsukruk, Vladimir V.; Ko, Hyunhyub; Peleshanko, Sergiy

    2004-02-01

    We report the fabrication of ordered arrays of oriented and bent carbon nanotube on a patterned silicon surface with a micron scale spacing extending over millimeter size surface areas. We suggest that the patterning is controlled by the hydrodynamic behavior of a fluid front and orientation and bending mechanisms are facilitated by the pinned carbon nanotubes trapped by the liquid-solid-vapor contact line. The bending of the pinned nanotubes occurs along the shrinking receding front of the drying microdroplets. The formation of stratified microfluidic layers is vital for stimulating periodic instabilities of the contact line.

  2. Dynamical theory of responsivity and response time of a high temperature superconductor photo-thermoelectrical bolometer

    NASA Astrophysics Data System (ADS)

    Kaila, M. M.

    2002-11-01

    Dynamical theory of responsivity and response time for an high temperature superconductor (HTSC) photo-thermoelectrical bolometer is analysed in this paper. There is a thermoelectric feedback (TEF) due to the heat transfer from the sensitive area (HTSC-BiSb thermojunction) towards the cold junction of the thermocouple. This is in addition to the normal electrothermal feedback (ETF) between the detector and the substrate, in a photoelectrical bolometer. The two legs of the thermocouple are connected in a parallel geometry configuration. It is seen that TEF can be used in combination with the ETF to enhance responsivity and response time of the detector.

  3. An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Mancuso, M.; Beeman, J. W.; Giuliani, A.; Dumoulin, L.; Olivieri, E.; Pessina, G.; Plantevin, O.; Rusconi, C.; Tenconi, M.

    2014-01-01

    Luminescent bolometers are double-readout devices able to measure simultaneously the phonon and the light yields after a particle interaction in the detector. This operation allows in some cases to tag the type of the interacting quantum, crucial issue for background control in rare event experiments such as the search for neutrinoless double beta decay and for interactions of particle dark matter candidates. The light detectors used in the LUCIFER and LUMINEU searches (projects aiming at the study of the double beta interesting candidates 82Se and 100Mo using ZnSe and ZnMoO4 scintillating bolometers) consist of hyper-pure Ge thin slabs equipped with NTD thermistors. A substantial sensitivity improvement of the Ge light detectors can be obtained applying a proper anti-reflective coatings on the Ge side exposed to the luminescent bolometer. The present paper deals with the investigation of this aspect, proving and quantifying the positive effect of a SiO2 and a SiO coating and setting the experimental bases for future tests of other coating materials. The results confirm that an appropriate coating procedure helps in improving the sensitivity of bolometric light detectors by an important factor (in the range 20% - 35%) and needs to be included in the recipe for the development of an optimized radio-pure scintillating bolometer.

  4. The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument

    DOE PAGES

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.; ...

    2016-12-09

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less

  5. THE ATACAMA COSMOLOGY TELESCOPE: THE POLARIZATION-SENSITIVE ACTPol INSTRUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel’dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less

  6. The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less

  7. Measurements of the optical performance of bolometers for SPICA/SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Ridder, Marcel; Ferrari, Lorenza; Laauwen, Wouter M.; Ranjan, Manisha; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.

    2012-09-01

    We have measured the optical response of detectors designed for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. To take advantage of SPICA's cooled optics, SAFARI’s three bolometer arrays are populated with extremely sensitive (NEP~2×10-19 W/√Hz) transition edge sensors with a transition temperature close to 100 mK. The extreme sensitivity and low saturation power (~4 fW) of SAFARI’s detectors present challenges to characterizing them. We have therefore built up an ultra-low background test facility with a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion. Our use of a pulse-tube cooler to pre-cool the dilution refrigerator required that the SAFARI Detector System Test Facility provide a high degree electrical, magnetic, and mechanical isolation for the detectors. We have carefully characterized the performance of the test facility in terms of background power loading. The test facility has been designed to be flexible and easily reconfigurable with internal illuminators that allow us to characterize the optical response of the detectors. We describe the test facility and some of the steps we took to create an ultra-low background test environment. We have measured the optical response of two detectors designed for SAFARI’s short-wave wavelength band in combination with a spherical backshort and conical feedhorn. We find an overall optical efficiency of 40% for both, compared with an ideal-case predicted optical efficiency of 66%.

  8. Detectors for the Atacama B-mode Search experiment

    NASA Astrophysics Data System (ADS)

    Appel, John William

    Inflation is the leading theory for explaining the initial conditions that brought about our homogeneous and isotropic Universe. It predicts the presence of gravitational waves in the early Universe, which implant a characteristic B-mode polarization pattern on the Cosmic Microwave Background (CMB). The Atacama B-mode Search (ABS) experiment is a polarimeter observing from Cerro Toco (located in the Atacama desert of Chile at an altitude of 5190 m), searching for the yet undetected B-mode signal. ABS carries 480 superconducting Transition Edge Sensor (TES) Bolometers that couple 150 GHz radiation via planar Ortho-Mode Transducers (OMTs) mounted at the output of corrugated feedhorns. The feedhorn beam is projected onto the sky through crossed Dragonian reflectors, a set of reflective and absorptive filters, and a rotating Half Wave Plate (HWP) that modulates any polarized sky signal at 10.2 Hz. The bolometers are cooled to 300 mK by a He3-He4 adsorption fridge system backed by pulse tubes. The reflectors are located within the 4 K cavity of the cryostat, while the HWP is mounted on frictionless air bearings above the cryostat window. This thesis discusses the development and construction of the ABS detector focal plane, and presents results of its performance in the field through August 2012. The ABS detector array sensitivity of 31 μKs 1/2, together with the experiment's unique set of systematic controls, and expected multi-year integration time, could detect a B-mode signal with tensor to scalar ratio r ˜ 0.1.

  9. Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys

    NASA Astrophysics Data System (ADS)

    Vavagiakis, E. M.; Henderson, S. W.; Zheng, K.; Cho, H.-M.; Cothard, N. F.; Dober, B.; Duff, S. M.; Gallardo, P. A.; Hilton, G.; Hubmayr, J.; Irwin, K. D.; Koopman, B. J.; Li, D.; Nati, F.; Niemack, M. D.; Reintsema, C. D.; Simon, S.; Stevens, J. R.; Suzuki, A.; Westbrook, B.

    2018-05-01

    In the next decade, new ground-based cosmic microwave background (CMB) experiments such as Simons Observatory, CCAT-prime, and CMB-S4 will increase the number of detectors observing the CMB by an order of magnitude or more, dramatically improving our understanding of cosmology and astrophysics. These projects will deploy receivers with as many as hundreds of thousands of transition edge sensor (TES) bolometers coupled to superconducting quantum interference device (SQUID)-based readout systems. It is well known that superconducting devices such as TESes and SQUIDs are sensitive to magnetic fields. However, the effects of magnetic fields on TESes are not easily predicted due to the complex behavior of the superconducting transition, which motivates direct measurements of the magnetic sensitivity of these devices. We present comparative four-lead measurements of the critical temperature versus applied magnetic field of AlMn TESes varying in geometry, doping, and leg length, including Advanced ACT and POLARBEAR-2/Simons Array bolometers. MoCu ACTPol TESes are also tested and are found to be more sensitive to magnetic fields than the AlMn devices. We present an observation of weak-link-like behavior in AlMn TESes at low critical currents. We also compare measurements of magnetic sensitivity for time division multiplexing SQUIDs and frequency division multiplexing microwave (μ MUX) rf-SQUIDs. We discuss the implications of our measurements on the magnetic shielding required for future experiments that aim to map the CMB to near-fundamental limits.

  10. Fabrication of Feedhorn-Coupled Transition Edge Sensor Arrays for Measurement of the Cosmic Microwave Background Polarization

    NASA Technical Reports Server (NTRS)

    Denis, Kevin L.; Aamir, A.; Bennett, C. L.; Chang, M. P.; Chuss, D. T.; Colazo, F. A.; Costen, N.; Essinger-Hileman, T.; Hu, R.; Marriage, T.; hide

    2015-01-01

    Characterization of the minute cosmic microwave background polarization signature requires multi-frequency high-throughput precision instrument systems. We have previously described the detector fabrication of a 40 GHz focal plane and now describe the fabrication of the detector modules for measurement of the CMB at 90GHz. The 74-TES based bolometers in each module are coupled to a niobium based planar orthomode transducer with integrated band defining filters implemented in microstrip transmission line. A single crystal silicon dielectric substrate serves as microstrip dielectric and as a thermal link between the membrane isolated MoAu TES operating at 150mK and the heat bath. A short silicon leg between the heat bath and the TES bolometer is designed for ballistic phonon transport and provides improved process control and uniformity of thermal conductance in the presence of phonon scattering on roughened surfaces. Micro-machined structures are used to realize the orthomode transducer backshort, provide out of band signal rejection, and a silicon photonic choke for feedhorn coupling are described. The backshort, choke wafer, and detector wafer are indium bump bonded to create a single 37-element dual-polarization detector module. Fourteen such hexagonally shaped modules each 90 mm in size comprise two focal planes. These, along with the recently delivered 40GHz focal plane, will survey a large fraction of the sky as part of the Johns Hopkins University led ground based CLASS (Cosmology Large Angular Scale Surveyor) telescope.

  11. A 1.5 THz hot-electron bolometer mixer operated by a planar diode based local oscillator

    NASA Technical Reports Server (NTRS)

    Tong, C. Y. E.; Meledin, D.; Blundell, R.; Erickson, N.; Mehdi, I.; Goltsman, G.

    2003-01-01

    We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is oprated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier.

  12. Fabrication of Pop-up Detector Arrays on Si Wafers

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.

    1999-01-01

    High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way, preparing us for the next step of the experiment, the thermal test.

  13. Latest improvements in microbolometer thin film packaging: paving the way for low-cost consumer applications

    NASA Astrophysics Data System (ADS)

    Yon, J. J.; Dumont, G.; Goudon, V.; Becker, S.; Arnaud, A.; Cortial, S.; Tisse, C. L.

    2014-06-01

    Silicon-based vacuum packaging is a key enabling technology for achieving affordable uncooled Infrared Focal Plane Arrays (IRFPA) required by a promising mass market that shows momentum for some extensive consumer applications, such as automotive driving assistance, smart presence localization and building management. Among the various approaches studied worldwide, CEA, LETI in partnership with ULIS is committed to the development of a unique technology referred to as PLP (Pixel Level Packaging). In this PLP technology, each bolometer pixel is sealed under vacuum using a transparent thin film deposition on wafer. PLP operates as an array of hermetic micro caps above the focal plane, each enclosing a single microbolometer. In continuation of our on-going studies on PLP for regular QVGA IRFPAs, this paper emphasizes on the innate scalability of the technology which was successfully demonstrated through the development of an 80 × 80 pixel IRFPA. The relevance of the technology with regard to the two formats is discussed, considering both performance and cost issues. We show that the suboptimal fill factor inherent to the PLP arrangement is not so critical when considering smaller arrays preferably fitted for consumer applications. The discussion is supported with the electro-optical performance measurements of the PLP-based 80×80 demonstrator.

  14. Challenges, constraints, and results of lens design for 17 micron-bolometer focal plane arrays in 8-12 micron waveband

    NASA Astrophysics Data System (ADS)

    Schuster, Norbert; Franks, John

    2011-06-01

    In the 8-12 micron waveband Focal Plane Arrays (FPA) are available with a 17 micron pixel pitch in different arrays sizes (e.g. 512 x 480 pixels and 320 x 240 pixels) and with excellent electrical properties. Many applications become possible using this new type of IR-detector which will become the future standard in uncooled technology. Lenses with an f-number faster than f/1.5 minimize the diffraction impact on the spatial resolution and guarantee a high thermal resolution for uncooled cameras. Both effects will be quantified. The distinction between Traditional f-number (TF) and Radiometric f-number (RF) is discussed. Lenses with different focal lengths are required for applications in a variety of markets. They are classified by their Horizontal field of view (HFOV). Respecting the requirements for high volume markets, several two lens solutions will be discussed. A commonly accepted parameter of spatial resolution is the Modulation Transfer Function (MTF)-value at the Nyquist frequency of the detector (here 30cy/mm). This parameter of resolution will be presented versus field of view. Wide Angle and Super Wide Angle lenses are susceptible to low relative illumination in the corner of the detector. Measures to reduce this drop to an acceptable value are presented.

  15. Diagnostics for Z-pinch implosion experiments on PTS

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Huang, X. B.; Zhou, S. T.; Zhang, S. Q.; Dan, J. K.; Li, J.; Cai, H. C.; Wang, K. L.; Ouyang, K.; Xu, Q.; Duan, S. C.; Chen, G. H.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.

    2014-12-01

    The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.

  16. The large millimeter telescope/el Gran Telescopio Milimétrico: a new instrument for astrobiology.

    PubMed

    Irvine, William M; Carramiñana, Alberto; Carrasco, Luis; Schloerb, F Peter

    2003-12-01

    The Instituto Nacional de Astrofísica, Optica y Electrónica in Mexico and the University of Massachusetts in the U.S.A. are collaborating to build the world's largest radio telescope that operates at short millimeter wavelengths. This facility, known as the Large Millimeter Telescope (LMT) or el Gran Telescopio Milimétrico (GTM), is being sited at an altitude of 4600 m on Volcan Sierra Negra in the Mexican state of Puebla. The telescope will be a fully steerable dish with a diameter of 50 m and a surface consisting of 180 panels that are actively adjusted under computer control to correct for deformations due to gravity and temperature gradients. Instruments will include focal plane arrays to image both continuum and spectral line emission from celestial sources. The LMT/GTM will be an extremely powerful facility for studies encompassing almost all areas of astronomy, including astrobiology. In particular, the high sensitivity, angular resolution, and mapping speed will enable detailed investigations of the organic chemistry of interstellar molecular clouds, protoplanetary disks, and comets.

  17. Ssalmon - The Solar Simulations For The Atacama Large Millimeter Observatory Network

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Ssalmon Group

    2016-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) provides a new powerful tool for observing the solar chromosphere at high spatial, temporal, and spectral resolution, which will allow for addressing a wide range of scientific topics in solar physics. Numerical simulations of the solar atmosphere and modeling of instrumental effects are valuable tools for constraining, preparing and optimizing future observations with ALMA and for interpreting the results. In order to co-ordinate related activities, the Solar Simulations for the Atacama Large Millimeter Observatory Network (SSALMON) was initiated on September 1st, 2014, in connection with the NA- and EU-led solar ALMA development studies. As of April, 2015, SSALMON has grown to 83 members from 18 countries (plus ESO and ESA). Another important goal of SSALMON is to promote the scientific potential of solar science with ALMA, which has resulted in two major publications so far. During 2015, the SSALMON Expert Teams produced a White Paper with potential science cases for Cycle 4, which will be the first time regular solar observations will be carried out. Registration and more information at http://www.ssalmon.uio.no.

  18. Joint Services Electronics Program.

    DTIC Science & Technology

    1987-12-31

    and annealing, using deep level transient spectroscopy (DLTS), and the effects of co-implantation on 4l the activation of amphoteric dopants and...theriithe study of optical quantum effects with emphasis on nonlinear optical phenomena. For example, a significant accomplishment write-up describes...Millimeter-Wave Array Components Tatsuo Itoh A number of novel solid state devices such as metal semiconductor field effect transistors (MESFET

  19. Design of a 2-mm Wavelength KIDs Prototype Camera for the Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Velázquez, M.; Ferrusca, D.; Castillo-Dominguez, E.; Ibarra-Medel, E.; Ventura, S.; Gómez-Rivera, V.; Hughes, D.; Aretxaga, I.; Grant, W.; Doyle, S.; Mauskopf, P.

    2016-08-01

    A new camera is being developed for the Large Millimeter Telescope (Sierra Negra, México) by an international collaboration with the University of Massachusetts, the University of Cardiff, and Arizona State University. The camera is based on kinetic inductance detectors (KIDs), a very promising technology due to their sensitivity and especially, their compatibility with frequency domain multiplexing at microwave frequencies allowing large format arrays, in comparison with other detection technologies for mm-wavelength astronomy. The instrument will have a 100 pixels array of KIDs to image the 2-mm wavelength band and is designed for closed cycle operation using a pulse tube cryocooler along with a three-stage sub-kelvin 3He cooler to provide a 250 mK detector stage. RF cabling is used to readout the detectors from room temperature to 250 mK focal plane, and the amplification stage is achieved with a low-noise amplifier operating at 4 K. The readout electronics will be based on open-source reconfigurable open architecture computing hardware in order to perform real-time microwave transmission measurements and monitoring the resonance frequency of each detector, as well as the detection process.

  20. Probing Titan's Complex Atmospheric Chemistry Using the Atacama Large Millimeter/Submillimeter Array

    NASA Technical Reports Server (NTRS)

    Cordiner, Martin A.; Nixon, Conor; Charnley, Steven B.; Teanby, Nick; Irwin, Pat; Serigano, Joseph; Palmer, Maureen; Kisiel, Zbigniew

    2015-01-01

    Titan is Saturn's largest moon, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Atmospheric photochemistry results in the production of a wide range of complex organic molecules, including hydrocarbons, nitriles, aromatics and other species of possible pre-biotic relevance. Titan's carbon-rich atmosphere may be analogous to that of primitive terrestrial planets throughout the universe, yet its origin, evolution and complete chemical inventory are not well understood. Here we present spatially-resolved maps of emission from C2H5CN, HNC, HC3N, CH3CN and CH3CCH in Titan's atmosphere, observed using the Atacama Large Millimeter/submillimeter Array (ALMA) in 2012-2013. These data show previously-undetected spatial structures for the observed species and provide the first spectroscopic detection of C2H5CN on Titan. Our maps show spatially resolved peaks in Titan's northern and southern hemispheres, consistent with photochemical production and transport in the upper atmosphere followed by subsidence over the poles. The HNC emission peaks are offset from the polar axis, indicating that Titan's mesosphere may be more longitudinally variable than previously thought.

  1. ISM Properties of a Massive Dusty Star-forming Galaxy Discovered at z ˜ 7

    NASA Astrophysics Data System (ADS)

    Strandet, M. L.; Weiss, A.; De Breuck, C.; Marrone, D. P.; Vieira, J. D.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bothwell, M. S.; Bradford, C. M.; Carlstrom, J. E.; Chapman, S. C.; Cunningham, D. J. M.; Chen, Chian-Chou; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hayward, C. C.; Hezaveh, Y.; Litke, K.; Ma, J.; Malkan, M.; Menten, K. M.; Miller, T.; Murphy, E. J.; Narayanan, D.; Phadke, K. A.; Rotermund, K. M.; Spilker, J. S.; Sreevani, J.

    2017-06-01

    We report the discovery and constrain the physical conditions of the interstellar medium of the highest-redshift millimeter-selected dusty star-forming galaxy to date, SPT-S J031132-5823.4 (hereafter SPT0311-58), at z=6.900+/- 0.002. SPT0311-58 was discovered via its 1.4 mm thermal dust continuum emission in the South Pole Telescope (SPT)-SZ survey. The spectroscopic redshift was determined through an Atacama Large Millimeter/submillimeter Array 3 mm frequency scan that detected CO(6-5), CO(7-6), and [{{C}} {{I}}](2-1), and subsequently was confirmed by detections of CO(3-2) with the Australia Telescope Compact Array and [{{C}} {{II}}] with APEX. We constrain the properties of the ISM in SPT0311-58 with a radiative transfer analysis of the dust continuum photometry and the CO and [{{C}} {{I}}] line emission. This allows us to determine the gas content without ad hoc assumptions about gas mass scaling factors. SPT0311-58 is extremely massive, with an intrinsic gas mass of {M}{gas}=3.3+/- 1.9× {10}11 {M}⊙ . Its large mass and intense star formation is very rare for a source well into the epoch of reionization.

  2. High-altitude medical and operations problems and solutions for the Millimeter Array

    NASA Astrophysics Data System (ADS)

    Napier, Peter J.; West, John B.

    1998-07-01

    The 5000m altitude of the potential site for the Millimeter Array (MMA) in Northern Chile is so high that high-altitude problems for both the staff and equipment must be considered and included in planing for the facility. The very good accessibility of the site, only one hour's drive from the nearest town at altitude 2440m, makes it possible for MMA workers to sleep and perform much of their work at low altitude. Workers on the site will have 11 percent less oxygen available than workers at Mauna Kea Observatory. It is expected that the mental abilities and ability to do hard physical labor of workers on the high site will be reduced by 10 percent to 30 percent compared to sea-level. In-doors working areas on the MMA site will have their atmospheres oxygen enriched to provide an effective working altitude of 3500m where loss of mental ability should be small. Tests of oxygen enrichment at high-altitude Chilean mines and at the University of California White Mountain Research Station show that it is feasible and economic. Problems of equipment operation at 5000m altitude are expected to be manageable.

  3. Architecture and settings optimization procedure of a TES frequency domain multiplexed readout firmware

    NASA Astrophysics Data System (ADS)

    Clenet, A.; Ravera, L.; Bertrand, B.; den Hartog, R.; Jackson, B.; van Leeuwen, B.-J.; van Loon, D.; Parot, Y.; Pointecouteau, E.; Sournac, A.

    2014-11-01

    IRAP is developing the readout electronics of the SPICA-SAFARI's TES bolometer arrays. Based on the frequency domain multiplexing technique the readout electronics provides the AC-signals to voltage-bias the detectors; it demodulates the data; and it computes a feedback to linearize the detection chain. The feedback is computed with a specific technique, so called baseband feedback (BBFB) which ensures that the loop is stable even with long propagation and processing delays (i.e. several μ s) and with fast signals (i.e. frequency carriers of the order of 5 MHz). To optimize the power consumption we took advantage of the reduced science signal bandwidth to decouple the signal sampling frequency and the data processing rate. This technique allowed a reduction of the power consumption of the circuit by a factor of 10. Beyond the firmware architecture the optimization of the instrument concerns the characterization routines and the definition of the optimal parameters. Indeed, to operate an array TES one has to properly define about 21000 parameters. We defined a set of procedures to automatically characterize these parameters and find out the optimal settings.

  4. A compact lightweight Earth horizon sensor using an uncooled infrared bolometer

    NASA Astrophysics Data System (ADS)

    Marchese, Linda E.; Thomas, Paul; Pope, Timothy D.; Asselin, Daniel; Jerominek, Hubert

    2007-06-01

    A compact, lightweight Earth horizon sensor has been designed based on uncooled infrared microbolometer array technology developed at INO. The design has been optimized for use on small satellites in Low Earth Orbits. The sensor may be used either as an attitude sensor or as an atmospheric limb detector. Various configurations may be implemented for both spinning and 3-axis stabilized satellites. The core of the sensor is the microbolometer focal plane array equipped with 256 x 1 VO x thermistor pixels with a pitch of 52 μm. The optics consists of a single Zinc Selenide lens with a focal length of 39.7 mm. The system's F-number is 3.8 and the detector limited Noise Equivalent Temperature Difference is estimated to be 0.75 K at 300 K for the 14 - 16 μm wavelength range. A single-sensor configuration will have a mass of less than 300g, a volume of 125 cm 3 and a power consumption of 600 mW, making it well-suited for small satellite missions.

  5. Design and Fabrication of TES Detector Modules for the TIME-Pilot [CII] Intensity Mapping Experiment

    NASA Astrophysics Data System (ADS)

    Hunacek, J.; Bock, J.; Bradford, C. M.; Bumble, B.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A.; Crites, A.; Hailey-Dunsheath, S.; Gong, Y.; Kenyon, M.; Koch, P.; Li, C.-T.; O'Brient, R.; Shirokoff, E.; Shiu, C.; Staniszewski, Z.; Uzgil, B.; Zemcov, M.

    2016-08-01

    We are developing a series of close-packed modular detector arrays for TIME-Pilot, a new mm-wavelength grating spectrometer array that will map the intensity fluctuations of the redshifted 157.7 \\upmu m emission line of singly ionized carbon ([CII]) from redshift z ˜ 5 to 9. TIME-Pilot's two banks of 16 parallel-plate waveguide spectrometers (one bank per polarization) will have a spectral range of 183-326 GHz and a resolving power of R ˜ 100. The spectrometers use a curved diffraction grating to disperse and focus the light on a series of output arcs, each sampled by 60 transition edge sensor (TES) bolometers with gold micro-mesh absorbers. These low-noise detectors will be operated from a 250 mK base temperature and are designed to have a background-limited NEP of {˜ }10^{-17} mathrm {W}/mathrm {Hz}^{1/2}. This proceeding presents an overview of the detector design in the context of the TIME-Pilot instrument. Additionally, a prototype detector module produced at the Microdevices Laboratory at JPL is shown.

  6. Active terahertz imaging with Ne indicator lamp detector arrays

    NASA Astrophysics Data System (ADS)

    Kopeika, N. S.; Abramovich, A.; Yadid-Pecht, O.; Yitzhaky, Y.

    2009-08-01

    The advantages of terahertz (THz) imaging are well known. They penetrate well most non-conducting media and there are no known biological hazards, This makes such imaging systems important for homeland security, as they can be used to image concealed objects and often into rooms or buildings from the outside. There are also biomedical applications that are arising. Unfortunately, THz imaging is quite expensive, especially for real time systems, largely because of the price of the detector. Bolometers and pyroelectric detectors can each easily cost at least hundreds of dollars if not more, thus making focal plane arrays of them quite expensive. We have found that common miniature commercial neon indicator lamps costing typically about 30 cents each exhibit high sensitivity to THz radiation [1-3], with microsecond order rise times, thus making them excellent candidates for such focal plane arrays. NEP is on the order of 10-10 W/Hz1/2. Significant improvement of detection performance is expected when heterodyne detection is used Efforts are being made to develop focal plane array imagers using such devices at 300 GHz. Indeed, preliminary images using 4x4 arrays have already been obtained. An 8x8 VLSI board has been developed and is presently being tested. Since no similar imaging systems have been developed previously, there are many new problems to be solved with such a novel and unconventional imaging system. These devices act as square law detectors, with detected signal proportional to THz power. This allows them to act as mixers in heterodyne detection, thus allowing NEP to be reduced further by almost two orders of magnitude. Plans are to expand the arrays to larger sizes, and to employ super resolution techniques to improve image quality beyond that ordinarily obtainable at THz frequencies.

  7. Full colorless transmission of millimeter-wave band gigabit data over WDM-PON using sideband routing

    NASA Astrophysics Data System (ADS)

    Won, Yong-Yuk; Kim, Hyun-Seung; Son, Yong-Hwan; Han, Sang-Kook

    2011-12-01

    A new wavelength division multiplexed-radio over fiber (WDM-RoF) access network scheme supporting the simultaneous transmission of a 1.25-Gb/s wired data as well as a 1.25-Gb/s wireless data is proposed in this paper. An optical carrier suppression effect and sideband routing using the multiplexing of arrayed waveguide grating (AWG) with 50-GHz channel spacing are utilized to generate a millimeter wave band carrier. These techniques make the proposed architecture transmit both a wired data and a wireless one at the same time. A reflective semiconductor optical amplifier (RSOA) is employed at both central office and base station so that this architecture is operated colorlessly. Error free transmissions (BER of 10-9) of both downlink and uplink are achieved simultaneously.

  8. Dimension-Factorized Range Migration Algorithm for Regularly Distributed Array Imaging

    PubMed Central

    Guo, Qijia; Wang, Jie; Chang, Tianying

    2017-01-01

    The two-dimensional planar MIMO array is a popular approach for millimeter wave imaging applications. As a promising practical alternative, sparse MIMO arrays have been devised to reduce the number of antenna elements and transmitting/receiving channels with predictable and acceptable loss in image quality. In this paper, a high precision three-dimensional imaging algorithm is proposed for MIMO arrays of the regularly distributed type, especially the sparse varieties. Termed the Dimension-Factorized Range Migration Algorithm, the new imaging approach factorizes the conventional MIMO Range Migration Algorithm into multiple operations across the sparse dimensions. The thinner the sparse dimensions of the array, the more efficient the new algorithm will be. Advantages of the proposed approach are demonstrated by comparison with the conventional MIMO Range Migration Algorithm and its non-uniform fast Fourier transform based variant in terms of all the important characteristics of the approaches, especially the anti-noise capability. The computation cost is analyzed as well to evaluate the efficiency quantitatively. PMID:29113083

  9. Micromachined Millimeter- and Submillimeter-wave SIS Heterodyne Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hu, Qing

    1997-01-01

    This is a progress report for the second year of a NASA-sponsored project. The report discusses the design and fabrication of micromachined Superconductor Insulator Superconductor (SIS) heterodyne receivers with integrated tuning elements. These receivers tune out the functional capacitance at desired frequencies, resulting in less noise, lower temperatures and broader bandwidths. The report also discusses the design and fabrication of the first monolithic 3x3 focal-plane arrays for a frequency range of 170-210 GHz. Also addressed is the construction of a 9-channel bias and read-out system, as well as the redesign of the IF connections to reduce cross talk between SIS junctions, which become significant a frequency of 1.5 GHz IF. Uniformity of the junction arrays were measured and antenna beam patterns of several array elements under operating conditions also were measured. Finally, video and heterodyne responses of our focal-plane arrays were measured as well. Attached is a paper on: 'Development of a 170-210 GHz 3x3 micromachined SIS imaging array'.

  10. A concordant scenario to explain FU Orionis from deep centimeter and millimeter interferometric observations

    NASA Astrophysics Data System (ADS)

    Liu, Hauyu Baobab; Vorobyov, Eduard I.; Dong, Ruobing; Dunham, Michael M.; Takami, Michihiro; Galván-Madrid, Roberto; Hashimoto, Jun; Kóspál, Ágnes; Henning, Thomas; Tamura, Motohide; Rodríguez, Luis F.; Hirano, Naomi; Hasegawa, Yasuhiro; Fukagawa, Misato; Carrasco-Gonzalez, Carlos; Tazzari, Marco

    2017-06-01

    Aims: The aim of this work is to constrain properties of the disk around the archetype FU Orionis object, FU Ori, with as good as 25 au resolution. Methods: We resolved FU Ori at 29-37 GHz using the Karl G. Jansky Very Large Array (JVLA) in the A-array configuration, which provided the highest possible angular resolution to date at this frequency band ( 0.07 arcsec). We also performed complementary JVLA 8-10 GHz observations, Submillimeter Array (SMA) 224 GHz and 272 GHz observations, and compared these with archival Atacama Large Millimeter Array (ALMA) 346 GHz observations to obtain the spectral energy distributions (SEDs). Results: Our 8-10 GHz observations do not find evidence for the presence of thermal radio jets, and constrain the radio jet/wind flux to at least 90 times lower than the expected value from the previously reported bolometric luminosity-radio luminosity correlation. The emission at frequencies higher than 29 GHz may be dominated by the two spatially unresolved sources, which are located immediately around FU Ori and its companion FU Ori S, respectively. Their deconvolved radii at 33 GHz are only a few au, which is two orders of magnitude smaller in linear scale than the gaseous disk revealed by the previous Subaru-HiCIAO 1.6 μm coronagraphic polarization imaging observations. We are struck by the fact that these two spatially compact sources contribute to over 50% of the observed fluxes at 224 GHz, 272 GHz, and 346 GHz. The 8-346 GHz SEDs of FU Ori and FU Ori S cannot be fit by constant spectral indices (over frequency), although we cannot rule out that it is due to the time variability of their (sub)millimeter fluxes. Conclusions: The more sophisticated models for SEDs considering the details of the observed spectral indices in the millimeter bands suggest that the >29 GHz emission is contributed by a combination of free-free emission from ionized gas and thermal emission from optically thick and optically thin dust components. We hypothesize that dust in the innermost parts of the disks (≲0.1 au) has been sublimated, and thus the disks are no longer well shielded against the ionizing photons. The estimated overall gas and dust mass based on SED modeling, can be as high as a fraction of a solar mass, which is adequate for developing disk gravitational instability. Our present explanation for the observational data is that the massive inflow of gas and dust due to disk gravitational instability or interaction with a companion/intruder, was piled up at the few-au scale due to the development of a deadzone with negligible ionization. The piled up material subsequently triggered the thermal instability and the magnetorotational instability when the ionization fraction in the inner sub-au scale region exceeded a threshold value, leading to the high protostellar accretion rate.

  11. High-temperature-superconducting magnetic susceptibility bolometer

    NASA Technical Reports Server (NTRS)

    Brasunas, J.; Lakew, B.; Lee, C.

    1992-01-01

    An infrared detector called the magnetic susceptibility bolometer is introduced which is based on the tmperature dependence of the diamagnetic screening of a high-Tc superconductor film near Tc. Results are reported for the response of a prototype model to modulated blackbody radiation. Possible improvements are discussed as is the potential sensitivity of an improved device.

  12. Progress on Background-Limited Membrane-Isolated TES Bolometers for Far-IR/Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kenyon, M.; Day, P. K.; Bradford, C. M.; Bock, J. J.; Leduc, H. G.

    2006-01-01

    To determine the lowest attainable phonon noise equivalent power (NEP) for membrane-isolation bolometers, we fabricated and measured the thermal conductance of suspended Si3N4 beams with different geometries via a noise thermometry technique. We measured beam cross-sectional areas ranging from 0.35 x 0.5 (micro)m(sup 2) to 135 x 1.0 (micro)m(sup 2) and beam lengths ranging from (micro)m to 8300 (micro)m. The measurements directly imply that membrane-isolation bolometers are capable of reaching a phonon noise equivalent power (NEP) of 4 x 10(sup -20)W/Hz(sup 1)/O . This NEP adequate for the Background-Limited Infrared-Submillimeter Spectrograph (BLISS) proposed for the Japanese SPICA observatory, and adequate for NASA's SAFIR observatory, a 10-meter, 4 K telescope to be deployed at L2. Further, we measured the heat capacity of a suspended Si3N4 membrane and show how this result implies that one can make membrane-isolation bolometers with a response time which is fast enough for BLISS.

  13. Antenna-coupled transition-edge hot-electron microbolometers

    NASA Astrophysics Data System (ADS)

    Ali, Shafinaz; Timbie, Peter T.; Malu, Siddharth; McCammon, Dan; Nelms, Kari L.; Pathak, Rashmi; van der Weide, Daniel W.; Allen, Christine A.; Abrahams, J.; Chervenak, James A.; Hsieh, Wen-Ting; Miller, Timothy M.; Moseley, S. H., Jr.; Stevenson, Thomas R.; Wollack, Edward J.

    2004-10-01

    We are developing a new type of detector for observational cosmology and astrophysical research. Incoming radiation from the sky is coupled to a superconducting microstrip transmission line that terminates in a thin film absorber. At sub-Kelvin temperature, the thermal isolation between the electrons and the lattice makes it possible for the electrons in the small absorber (100's of cubic micro-meter) and superconducting bilayer (Transition Edge Sensor) to heat up by the radiation absorbed by the electrons of the normal absorbing layer. We call this detector a Transition-edge Hot-electron Micro-bolometer (THM). THMs can be fabricated by photo lithography, so it is relatively easy to make matched detectors for a large focal plane array telescope. We report on the thermal properties of Mo/Au THMs with Bi/Au absorbers.

  14. NIKA2, a dual-band millimetre camera on the IRAM 30 m telescope to map the cold universe

    NASA Astrophysics Data System (ADS)

    Désert, F.-X.; Adam, R.; Ade, P.; André, P.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; Doyle, S.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Lestrade, J.-F.; Macías-Pérez, J. F.; Maury, A.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Romero, C.; Roussel, H.; Ruppin, F.; Soler, J.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2016-12-01

    A consortium led by Institut Néel (Grenoble) has just finished installing a new powerful millimetre camera NIKA2 on the IRAM 30 m telescope. It has an instantaneous field-of-view of 6.5 arcminutes at both 1.2 and 2.0 mm with polarimetric capabilities at 1.2 mm. NIKA2 provides a near diffraction-limited angular resolution (resp. 12 and 18 arcseconds). The 3 detector arrays are made of more than 1000 KIDs each. KIDs are new superconducting devices emerging as an alternative to bolometers. The commissionning is ongoing in 2016 with a likely opening to the IRAM community in early 2017. NIKA2 is a very promising multi-purpose instrument which will enable many scientific discoveries in the coming decade.

  15. Light curves of flat-spectrum radio sources (Jenness+, 2010)

    NASA Astrophysics Data System (ADS)

    Jenness, T.; Robson, E. I.; Stevens, J. A.

    2010-05-01

    Calibrated data for 143 flat-spectrum extragalactic radio sources are presented at a wavelength of 850um covering a 5-yr period from 2000 April. The data, obtained at the James Clerk Maxwell Telescope using the Submillimetre Common-User Bolometer Array (SCUBA) camera in pointing mode, were analysed using an automated pipeline process based on the Observatory Reduction and Acquisition Control - Data Reduction (ORAC-DR) system. This paper describes the techniques used to analyse and calibrate the data, and presents the data base of results along with a representative sample of the better-sampled light curves. A re-analysis of previously published data from 1997 to 2000 is also presented. The combined catalogue, comprising 10493 flux density measurements, provides a unique and valuable resource for studies of extragalactic radio sources. (2 data files).

  16. THERMAP : a mid-infrared spectro-imager for the Marco Polo R mission

    NASA Astrophysics Data System (ADS)

    Groussin, O.; Brageot, E.; Reynaud, J.-L.; Lamy, P.; Jorda, L.; Licandro, J.; Helbert, J.; Knollenberg, J.; Kührt, E.; Delbó, M.

    2012-09-01

    We present THERMAP, a mid-infrared (8-16 μm) spectro-imager based on uncooled micro-bolometer detector arrays. Due to the recent technological development of these detectors, which have undergone significant improvements in the last decade, we wanted to test their performances for a space mission to small bodies in the inner Solar System. THERMAP was selected by ESA in January 2012 for a one year assessment study, in the framework of a call for declaration of interest in science instrumentation for the Marco Polo R Cosmic Vision mission. In this paper, we present some results of this study and in particular demonstrate that the new generation of uncooled micro-bolometer detectors has all the imaging and spectroscopic capabilities to fulfill the scientific objectives of the Marco Polo R mission. THERMAP scientific objectives - The midinfrared instrument of the Marco Polo R mission must be able i) to determine the surface temperature by mapping the entire surface with an absolute accuracy of at least 5 K (goal 1 K) above 200 K, ii) to determine the thermal inertia with an accuracy of 10% and iii) to determine the surface composition by mapping the entire surface with a spectral resolution of 70 between 8 and 16 μm. The above mappings should be performed with a spatial resolution of 10 m for the entire surface (global characterization) and 10 cm for the sampling sites (local characterization). THERMAP imaging capabilities - In order to test the imaging capabilities of the THERMAP uncooled microbolometer detector, we set up an experiment based on a 640x480 ULIS micro-bolometer array, a germanium objective and a black body. Using the results of this experiment, we show that calibrated radiometric images can be obtained down to at least 258 K (lower limit of our experiment), and that two calibration points are sufficient to determine the absolute scene temperature with an accuracy better than 1.5 K. An extrapolation to lower temperatures provides an accuracy of about 5 K at 180 K, the lowest temperature the detector can measure. THERMAP spectroscopic capabilites - In order to test the spectroscopic performances of the detector, we added flux attenuating neutral density mid-infrared filters (transmittance: 50%, 10%, 1%) to our experiment. Our results show that we can perform spectroscopic measurements with a spectral resolution R=40-80 in the wavelength range 8-16 μm for a scene temperature larger than 300 K, the typical surface temperature of a Near Earth Asteroid at 1 AU from the Sun. THERMAP preliminary design - From the above results, we defined a preliminary design for the instrument. THERMAP is a mid-infrared (8-16 μm) spectro-imager based on two uncooled microbolometer arrays. It is composed of two channels, one for imaging and one for spectroscopy. A flip mirror allows switching between the two channels. Calibration is performed using deep space and two black bodies at known temperature. The design of the THERMAP instrument has a strong heritage from the MERTIS instrument on board Bepi-Colombo [1], which guarantees its feasibility and reliability. Our design is very flexible in term of operations, which is fundamental for a mission to a binary asteroid system (1996 FG3). The THERMAP instrument will be proposed for Marco Polo R and any future space missions to small bodies in the inner solar system.

  17. Upcoming planetary missions and the applicability of high temperature superconductor bolometers

    NASA Technical Reports Server (NTRS)

    Brasunas, J.; Kunde, V.; Moseley, H.; Lakew, B.

    1991-01-01

    Planetary missions to Mars and beyond can last 11 years and longer, making impractical the use of stored cryogens. Passive radiative coolers and single-stage mechanical coolers remain possibilities. Cassini and Comet Rendezvous/Asteroid Fly-by (CRAF), both using the newly developed Mariner Mark 2 spacecraft, will be the next outer planet missions after Galileo; they are intended to provide information on the origin and evolution of the solar system. CRAF is slated for a 1994 launch. Cassini was chosen by ESA and will be launched by a Titan 4/Centaur in 1996. It will fly by Jupiter in 2000, inject an ESA-supplied probe into Titan in 2002, and take data in Saturn's orbit from 2002 to 2006. NASA/Goddard is currently developing a prototype Fourier transform spectrometer, the Composite Infrared Spectrometer (CIRS), for the Cassini mission. The baseline infrared detectors for CIRS are HgCdTe to 16 microns and Schwarz-type thermopiles from 16 to 1000 microns. The far infrared focal plane could be switched from thermopiles to high temperature superconductor (HTS) bolometers between now and 1996. An HTS bolometer could be built using the kinetic inductance effect, or the sharp resistance change at the transition. The transition-edge bolometer is more straightforward to implement, and initial efforts at NASA/Goddard are directed to that device. A working device was made and tested in early 1989. It also has somewhat elevated noise levels below 100 Hz. Upcoming efforts will center on reducing the time constant of the HTS bolometer by attempting to deposit an HTS film on a diamond substrate, and by thinning SrTiO3 substrates. Attempts will be made to improve the film quality to reduce the 1/4 noise level, and to improve the thermal isolation to increase the bolometer sensitivity. An attempt is being made to deposit good-quality HTS films on diamond films using a metal-organic chemical vapor deposition (MOCVD) technique.

  18. Upcoming planetary missions and the applicability of high temperature superconductor bolometers

    NASA Technical Reports Server (NTRS)

    Brasunas, J.; Kunde, V.; Moseley, H.; Lakew, B.

    1990-01-01

    Planetary missions to Mars and beyond can last 11 years and longer, making impractical the use of stored cryogens. Passive radiative coolers and single-stage mechanical coolers remain possibilities. CRAF and CASSINI, both using the newly developed Mariner Mark 2 spacecraft, will be the next outer planet missions after Galileo; they are intended to provide information on the origin and evolution of the solar system. CRAF is a cometary rendezvous mission slated for a 1994 launch. CASSINI has been chosen by ESA and will be launched by a Titan 4/Centaur in 1996. It will fly by Jupiter in 2000, inject an ESA-supplied probe into Titan in 2002, and take data in Saturn orbit from 2002 to 2006. NASA/Goddard is currently developing a prototype Fourier transform spectrometer (CIRS) that will be proposed for the CASSINI mission. The baseline infrared detectors for CIRS are HgCdTe to 16 microns and Schwarz-type thermopiles from 16 to 1000 microns. The far infrared focal plane could be switched from thermopiles to high temperature superconductor (HTS) bolometers between now and 1996. An HTS bolometer could be built using the kinetic inductance effect, or the sharp resistance change at the transition. The transition-edge bolometer is more straightforward to implement and initial efforts at NASA/Goddard are directed to that device. A working device was made and tested in early 1989. It also has somewhat elevated noise levels below 100 Hz. Upcoming efforts will center on reducing the time constant of the HTS bolometer by attempting to deposit an HTS film on a diamond substrate, and by thinning SrTiO3 substrates. Attempts will be made to improve the film quality to reduce th 1/f noise level, and to improve the thermal isolation to increase the bolometer sensitivity. An attempt is being made to deposit good-quality HTS films on diamond films using an MOCVD technique.

  19. Development of Calorimetric Particle Spectrometer and Measurement of Specific Heat at Low Temperature.

    NASA Astrophysics Data System (ADS)

    Zhou, Jun-Wei

    1991-02-01

    A dilution refrigerator has been put into work from 30 mK to 300 K to study bolometer characteristics relevant to its potential use as a high resolution X-ray and alpha, beta, gamma particle spectrometer. Tests of the energy deposited in the detector by measuring the temperature rise following absorption of individual nuclear particles or X- or gamma-rays have been done. Essential studies were made of electromagnetic and acoustic noise. A composite-composite bolometer fabricated by the group of N. Coron (Institute of Space Astrophysics, France), with whom we collaborate, was used. This design allows the separate optimization of the absorber and thermistor, and avoids problems with absorption inhomogeneties. A FWHM resolution of 10.5 KeV for 5 to 6 MeV alpha spectra was obtained. This resolution exceeds the best obtainable with surface barrier semiconductor detectors. A broad spectrum recording simultaneously gamma-rays, beta and alpha particles from 15 KeV to 6 MeV was obtained with the same bolometer cooled below 0.1 K. Other bolometers were also tested. 6 KeV X-rays have been observed with a resolution of 472 eV. The bolometers were also used for determination of specific heat of the sapphire at low temperatures. Assuming a specific heat C = AT^3, we find in a 2.3 g sample A ~eq 1.4 times 10^{-8} J/Kcdotg from T = 0.1 K to T = 0.4 K. A discussion of the systematic errors in determining A is given. From our measurements, it was determined that a bolometer designed for a future possible neutrino mass measurement would have a resolution of 7.5 eV at 80 mK under optimal operation. Since tritium was implanted in this detector, systematic errors associated with electron spectrometer beta spectrum measurements can be, in principle, avoided.

  20. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    NASA Astrophysics Data System (ADS)

    Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B.; Tai, Yuan-Chuan

    2010-05-01

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications.

Top