Sample records for millimeter-wave frequency range

  1. Generation of Optical Millimeter Wave Using Two Cascaded Polarization Modulators Based on Frequency Octupling Without Filtering

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ma, Jianxin; Zhang, Ruijiao; Xin, Xiangjun; Zhang, Junyi

    2015-11-01

    An approach to generate an optical millimeter wave is introduced with frequency octupling using two cascaded polarization modulators followed by polarizers, respectively. By adjusting the modulation indexes of polarization modulators, only the ±4th-order sidebands are generated with a pure spectrum. Since no filter is needed, the proposed technique can be used to generate a frequency-tunable millimeter wave with a large frequency-tunable range. To prove the feasibility of the proposed approach, a simulation is conducted to generate an 80-GHz millimeter wave, and then its transmission performance is checked.

  2. Ultra-Wideband Millimeter-Wave Dielectric Characteristics of Freshly Excised Normal and Malignant Human Skin Tissues.

    PubMed

    Mirbeik-Sabzevari, Amir; Ashinoff, Robin; Tavassolian, Negar

    2018-06-01

    Millimeter waves have recently gained attention for the evaluation of skin lesions and the detection of skin tumors. Such evaluations heavily rely on the dielectric contrasts existing between normal and malignant skin tissues at millimeter-wave frequencies. However, current studies on the dielectric properties of normal and diseased skin tissues at these frequencies are limited and inconsistent. In this study, a comprehensive dielectric spectroscopy study is conducted for the first time to characterize the ultra-wideband dielectric properties of freshly excised normal and malignant skin tissues obtained from skin cancer patients having undergone Mohs micrographic surgeries at Hackensack University Medical Center. Measurements are conducted using a precision slim-form open-ended coaxial probe in conjunction with a millimeter-wave vector network analyzer over the frequency range of 0.5-50 GHz. A one-pole Cole-Cole model is fitted to the complex permittivity dataset of each sample. Statistically considerable contrasts are observed between the dielectric properties of malignant and normal skin tissues over the ultra-wideband millimeter-wave frequency range considered.

  3. Microwave and millimeter wave dielectric permittivity and magnetic permeability of epsilon-gallium-iron-oxide nano-powders

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Afsar, Mohammed N.; Ohkoshi, Shin-ichi

    2015-05-01

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe12O19) and strontium ferrite (SrFe12O19), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A series of gallium-substituted ɛ-iron oxides (ɛ-GaxFe2-xO3) are synthesized, which have ferromagnetic resonant frequencies appearing over the frequency range of 30 GHz to 150 GHz. The ɛ-GaxFe2-xO3 is synthesized by the sol-gel method. The particle sizes are observed to be smaller than 100 nm. In this paper, in-waveguide transmission and reflection method and the free space magneto-optical approach have been employed to study these newly developed ɛ-GaxFe2-xO3 particles in millimeter waves. These techniques enable to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the microwave and millimeter wave frequency range from single set of direct measurements. The complex dielectric permittivity and magnetic permeability spectra of ɛ-GaxFe2-xO3 are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.

  4. Tunable ferromagnetic resonance in La-Co substituted barium hexaferrites at millimeter wave frequencies

    NASA Astrophysics Data System (ADS)

    Korolev, Konstantin A.; Wu, Chuanjian; Yu, Zhong; Sun, Ke; Afsar, Mohammed N.; Harris, Vincent G.

    2018-05-01

    Transmittance measurements have been performed on La-Co substituted barium hexaferrites in millimeter waves. Broadband millimeter-wave measurements have been carried out using the free space quasi-optical spectrometer, equipped with a set of high power backward wave oscillators covering the frequency range of 30 - 120 GHz. Strong absorption zones have been observed in the millimeter-wave transmittance spectra of all La-Co substituted barium hexaferrites due to the ferromagnetic resonance. Linear shift of ferromagnetic resonance frequency as functions of La-Co substitutions have been found. Real and imaginary parts of dielectric permittivity of La-Co substituted barium hexaferrites have been calculated using the analysis of recorded high precision transmittance spectra. Frequency dependences of magnetic permeability of La-Co substituted barium hexaferrites, as well as saturation magnetization and anisotropy field have been determined based on Schlömann's theory for partially magnetized ferrites. La-Co substituted barium hexaferrites have been further investigated by DC magnetization to assess magnetic behavior and compare with millimeter wave data. Consistency of saturation magnetization determined independently by both millimeter wave absorption and DC magnetization have been found for all La-Co substituted barium hexaferrites. These materials seem to be quite promising as tunable millimeter wave absorbers, filters, circulators, based on the adjusting of their substitution parameters.

  5. Amplifier based broadband pixel for sub-millimeter wave imaging

    NASA Astrophysics Data System (ADS)

    Sarkozy, Stephen; Drewes, Jonathan; Leong, Kevin M. K. H.; Lai, Richard; Mei, X. B. (Gerry); Yoshida, Wayne; Lange, Michael D.; Lee, Jane; Deal, William R.

    2012-09-01

    Broadband sub-millimeter wave technology has received significant attention for potential applications in security, medical, and military imaging. Despite theoretical advantages of reduced size, weight, and power compared to current millimeter wave systems, sub-millimeter wave systems have been hampered by a fundamental lack of amplification with sufficient gain and noise figure properties. We report a broadband pixel operating from 300 to 340 GHz, biased off a single 2 V power supply. Over this frequency range, the amplifiers provide > 40 dB gain and <8 dB noise figure, representing the current state-of-art performance capabilities. This pixel is enabled by revolutionary enhancements to indium phosphide (InP) high electron mobility transistor technology, based on a sub-50 nm gate and indium arsenide composite channel with a projected maximum oscillation frequency fmax>1.0 THz. The first sub-millimeter wave-based images using active amplification are demonstrated as part of the Joint Improvised Explosive Device Defeat Organization Longe Range Personnel Imager Program. This development and demonstration may bring to life future sub-millimeter-wave and THz applications such as solutions to brownout problems, ultra-high bandwidth satellite communication cross-links, and future planetary exploration missions.

  6. Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T. (Inventor)

    1997-01-01

    The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.

  7. Large-scale transmission-type multifunctional anisotropic coding metasurfaces in millimeter-wave frequencies

    NASA Astrophysics Data System (ADS)

    Cui, Tie Jun; Wu, Rui Yuan; Wu, Wei; Shi, Chuan Bo; Li, Yun Bo

    2017-10-01

    We propose fast and accurate designs to large-scale and low-profile transmission-type anisotropic coding metasurfaces with multiple functions in the millimeter-wave frequencies based on the antenna-array method. The numerical simulation of an anisotropic coding metasurface with the size of 30λ × 30λ by the proposed method takes only 20 min, which however cannot be realized by commercial software due to huge memory usage in personal computers. To inspect the performance of coding metasurfaces in the millimeter-wave band, the working frequency is chosen as 60 GHz. Based on the convolution operations and holographic theory, the proposed multifunctional anisotropic coding metasurface exhibits different effects excited by y-polarized and x-polarized incidences. This study extends the frequency range of coding metasurfaces, filling the gap between microwave and terahertz bands, and implying promising applications in millimeter-wave communication and imaging.

  8. Microwave and millimeter wave dielectric permittivity and magnetic permeability of epsilon-gallium-iron-oxide nano-powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Liu, E-mail: liu.chao@tufts.edu; Afsar, Mohammed N.; Ohkoshi, Shin-ichi

    2015-05-07

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe{sub 12}O{sub 19}) and strontium ferrite (SrFe{sub 12}O{sub 19}), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A series of gallium-substituted ε-iron oxides (ε-Ga{sub x}Fe{sub 2−x}O{sub 3}) are synthesized, which have ferromagnetic resonant frequencies appearing over the frequency range of 30 GHz to 150 GHz. The ε-Ga{sub x}Fe{sub 2−x}O{sub 3} is synthesized by the sol-gel method. The particlemore » sizes are observed to be smaller than 100 nm. In this paper, in-waveguide transmission and reflection method and the free space magneto-optical approach have been employed to study these newly developed ε-Ga{sub x}Fe{sub 2−x}O{sub 3} particles in millimeter waves. These techniques enable to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the microwave and millimeter wave frequency range from single set of direct measurements. The complex dielectric permittivity and magnetic permeability spectra of ε-Ga{sub x}Fe{sub 2−x}O{sub 3} are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.« less

  9. Sub-millimeter wave frequency heterodyne detector system

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)

    2009-01-01

    The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.

  10. Sub-millimeter wave frequency heterodyne detector system

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)

    2010-01-01

    The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.

  11. High power broadband millimeter wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1999-05-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed using this technology, and have been deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts to 50 kilowatts. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies other technologies will have to be considered particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  12. High Power Broadband Millimeter Wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1998-04-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  13. Millimeter wave transmission systems and related devices

    NASA Technical Reports Server (NTRS)

    Hebert, L. M.

    1984-01-01

    A survey was made of the state-of-the-art in millimeter (20 GHz to 300 GHz) wave transmission systems and related devices. The survey includes summaries of analytical studies and theoretical results that were obtained for various transmission line structures. This material was supplemented by further analysis where appropriate. The transmission line structures are evaluated in terms of electrical performance, ease of manufacture, usefulness for building other devices and compatibility with solid state devices. Descriptions of waveguide transmission lines which have commonly been used in the microwave frequency range are provided along with special attention given to the problems that these guides face when their use is extended into the millimeter wave range. Also, guides which have been introduced specifically to satisfy the requirements of millimeter wave transmission are discussed in detail.

  14. Millimeter-wave detection using resonant tunnelling diodes

    NASA Technical Reports Server (NTRS)

    Mehdi, I.; Kidner, C.; East, J. R.; Haddad, G. I.

    1990-01-01

    A lattice-matched InGaAs/InAlAs resonant tunnelling diode is studied as a video detector in the millimeter-wave range. Tangential signal sensitivity and video resistance measurements are made as a function of bias and frequency. A tangential signal sensitivity of -37 dBm (1 MHz amplifier bandwidth) with a corresponding video resistance of 350 ohms at 40 GHz has been measured. These results appear to be the first millimeter-wave tangential signal sensitivity and video resistance results for a resonant tunnelling diode.

  15. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Technical Reports Server (NTRS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  16. Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics

    DOEpatents

    Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.

    1999-03-23

    A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.

  17. A Robust Waveguide Millimeter-Wave Noise Source

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; Piepmeier, Jeffrey R.; Solly, Michael; Macmurphy, Shawn; Lucey, Jared; Wollack, Edward

    2015-01-01

    This paper presents the design, fabrication, and characterization of a millimeter-wave noise source for the 160- 210 GHz frequency range. The noise source has been implemented in an E-split-block waveguide package and the internal circuitry was developed on a quartz substrate. The measured excess noise ratio at 200 GHz is 9.6 dB.

  18. Millimeter-wave generation and characterization of a GaAs FET by optical mixing

    NASA Technical Reports Server (NTRS)

    Ni, David C.; Fetterman, Harold R.; Chew, Wilbert

    1990-01-01

    Coherent mixing of optical radiation from a tunable continuous-wave dye laser and a stabilized He-Ne laser was used to generate millimeter-wave signals in GaAs FETs attached to printed-circuit millimeter-wave antennas. The generated signal was further down-converted to a 2-GHz IF by an antenna-coupled millimeter-wave local oscillator at 62 GHz. Detailed characterizations of power and S/N under different bias conditions have been performed. This technique is expected to allow signal generation and frequency-response evaluation of millimeter-wave devices at frequencies as high as 100 GHz.

  19. Modeling of Millimeter-Wave Modulation Characteristics of Semiconductor Lasers under Strong Optical Feedback

    PubMed Central

    Bakry, Ahmed

    2014-01-01

    This paper presents modeling and simulation on the characteristics of semiconductor laser modulated within a strong optical feedback (OFB-)induced photon-photon resonance over a passband of millimeter (mm) frequencies. Continuous wave (CW) operation of the laser under strong OFB is required to achieve the photon-photon resonance in the mm-wave band. The simulated time-domain characteristics of modulation include the waveforms of the intensity and frequency chirp as well as the associated distortions of the modulated mm-wave signal. The frequency domain characteristics include the intensity modulation (IM) and frequency modulation (FM) responses in addition to the associated relative intensity noise (RIN). The signal characteristics under modulations with both single and two mm-frequencies are considered. The harmonic distortion and the third order intermodulation distortion (IMD3) are examined and the spurious free dynamic range (SFDR) is calculated. PMID:25383381

  20. Millimeter Wave Holographical Inspection of Honeycomb Composites

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Kharkovsky, S.; Zoughi, R.; Stefes, G.; Hepburn, Frank L.; Hepburn, Frank L.

    2007-01-01

    Multi-layered composite structures manufactured with honeycomb, foam or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as disbond, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz - 300 GHz with corresponding wavelengths of 10 - 1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.

  1. Millimeter Wave Holographical Inspection of Honeycomb Composites

    NASA Astrophysics Data System (ADS)

    Case, J. T.; Kharkovsky, S.; Zoughi, R.; Steffes, G.; Hepburn, F. L.

    2008-02-01

    Multi-layered composite structures manufactured with honeycomb, foam, or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites, standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as isband, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz-300 GHz with corresponding wavelengths of 10-1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.

  2. Millimeter wave sensor for monitoring effluents

    DOEpatents

    Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.

    1995-01-01

    A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.

  3. A superconducting tunnel junction receiver for millimeter-wave astronomy

    NASA Technical Reports Server (NTRS)

    Pan, S. K.; Kerr, A. R.

    1986-01-01

    The development and construction of an ultralow noise heterodyne receiver for millimeter wave astronomy is described along with its use for 115.3 GHz Co line observations. The receiver uses a Superconductor-Insulator-Superconductor (SIS) quasiparticle tunnel junction mixer to convert the millimeter wave signal to a microwave intermediate frequency. Experiments aimed at quantitative verification of J. R. Tucker's quantum mixer theory are studied, to see whether it could be used as the basis for the design of a practical receiver. The experimental results were in excellent agreement with the theory, assuming the three frequency approximation. Infinite available gain and negative output resistance were observed for the first time, nonclassical effects which are not seen in conventional diode mixers. Using Tucker's theory, an SIS receiver was then designed and constructed. At 115 GHz, the single sideband receiver noise temperature is 83K, the lowest ever reported in this frequency range. A CO survey toward Cygnus-X region, using this SIS receiver on the Columbia-GISS 4 ft. telescope, is also described.

  4. Identifying explosives using broadband millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Weatherall, James C.; Yam, Kevin; Barber, Jeffrey; Smith, Barry T.; Smith, Peter R.; Greca, Joseph

    2017-05-01

    Millimeter wave imaging is employed in Advanced Technology Imaging (AIT) systems to screen personnel for concealed explosives and weapons. AIT systems deployed in airports auto-detect potential threats by highlighting their location on a generic outline of a person using imaging data collected over a range of frequency. We show how the spectral information from the imaging data can be used to identify the composition of an anomalous object, in particular if it is an explosive material. The discriminative value of the technique was illustrated on military sheet explosive using millimeter-wave reflection data at frequencies 18 - 40 GHz, and commercial explosives using 2 - 18 GHz, but the free-space measurement was limited to a single horn with a large-area sample. This work extends the method to imaging data collected at high resolution with a 18 - 40 GHz imaging system. The identification of explosives is accomplished by extracting the dielectric constant from the free-space, multifrequency data. The reflection coefficient is a function of frequency because of propagation effects associated with the material's complex dielectric constant, which include interference from multiple reflections and energy loss in the sample. The dielectric constant is obtained by numerically fitting the reflection coefficient as a function of frequency to an optical model. In principal, the implementation of this technique in standoff imaging systems would allow threat assessment to be accomplished within the scope of millimeter-wave screening.

  5. Wide-Bandwidth, Wide-Beamwidth, High-Resolution, Millimeter-Wave Imaging for Concealed Weapon Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.

    2013-06-12

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The lateral resolution, depth resolution, clothing penetration, and image illumination quality obtained from next-generation systems can be significantly enhanced through the selection the aperture size, antenna beamwidth, center frequency, and bandwidth. In this paper, the results of an extensive imaging trade study are presented using both planar and cylindrical three-dimensional imaging techniques at frequency ranges of 10-20 GHz, 10 – 40 GHz, 40 – 60 GHz, and 75 – 105 GHz

  6. Linearly Tapered Slot Antenna Radiation Characteristics at Millimeter-Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1998-01-01

    An endfire travelling wave antenna, such as, a linearly tapered slot antenna (LTSA) is a viable alternative to a patch antenna at millimeter-wave frequencies because of its simple design and ease of fabrication. This paper presents the radiation characteristics of LTSA at higher millimeter-wave frequencies. The measured radiation patterns are observed to be well behaved and symmetric with the main beam in the endfire direction. The measured gain is about 10 dB. The LTSAs have potential wireless applications at 50 GHz, 77 GHz, and 94 GHz.

  7. Millimeter Wave Communication through Plasma

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.

    2008-01-01

    Millimeter wave communication through plasma at frequencies of 35 GHz or higher shows promise in maintaining communications connectivity during rocket launch and re-entry, critical events which are typically plagued with communication dropouts. Extensive prior research into plasmas has characterized the plasma frequency at these events, and research at the Kennedy Space Center is investigating the feasibility of millimeter communication through these plasma frequencies.

  8. Microwave Remote Sensing of Falling Snow

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Wang, J. R.; Meneghini, R.; Johnson, B.; Tanelli, S.; Roman-Nieves, J. I.; Sekelsky, S. M.; Skofronick-Jackson, G.

    2005-01-01

    This study analyzes passive and active microwave measurements during the 2003 Wakasa Bay field experiment for understanding of the electromagnetic characteristics of frozen hydrometeors at millimeter-wave frequencies. Based on these understandings, parameterizations of the electromagnetic scattering properties of snow at millimeter-wave frequencies are developed and applied to the hydrometeor profiles obtained by airborne radar measurements. Calculated brightness temperatures and radar reflectivity are compared with the millimeter-wave measurements.

  9. Millimeter-wave reflectometry for electron density profile and fluctuation measurements on NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, S.; Nguyen, X. V.; Peebles, W. A.

    2001-01-01

    A millimeter-wave reflectometry system for electron density profile and fluctuation measurements is being developed and installed on the National Spherical Torus Experiment. The initial frequency coverage will be in the bands 12--18, 20--32, and 33--50 GHz, provided by frequency-tunable solid-state sources. These frequencies correspond to O-mode cutoff densities ranging from 1.8x10{sup 12} to 3.1x10{sup 13}cm{sup -3}, which will span both the plasma core ({rho}=r/a<0.8) and edge ({rho}>0.8) regions. Operated as a broadband swept-frequency (frequency-modulated continuous-wave) reflectometer, the diagnostic is expected to provide routine (shot-to-shot) time- ({<=}50 {mu}s) and spatially resolved ({approx}1 cm) density profiles. The previous hardware can be easilymore » reconfigured as a fixed-frequency reflectometer for density fluctuation measurements. The combination of measurements would be valuable for studying phenomena such as possible L- to H-mode transitions and edge-localized modes.« less

  10. Study of transmission line attenuation in broad band millimeter wave frequency range.

    PubMed

    Pandya, Hitesh Kumar B; Austin, M E; Ellis, R F

    2013-10-01

    Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.

  11. Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models

    NASA Astrophysics Data System (ADS)

    Rappaport, Theodore S.; Xing, Yunchou; MacCartney, George R.; Molisch, Andreas F.; Mellios, Evangelos; Zhang, Jianhua

    2017-12-01

    This paper provides an overview of the features of fifth generation (5G) wireless communication systems now being developed for use in the millimeter wave (mmWave) frequency bands. Early results and key concepts of 5G networks are presented, and the channel modeling efforts of many international groups for both licensed and unlicensed applications are described here. Propagation parameters and channel models for understanding mmWave propagation, such as line-of-sight (LOS) probabilities, large-scale path loss, and building penetration loss, as modeled by various standardization bodies, are compared over the 0.5-100 GHz range.

  12. Millimeter wave spectra of carbonyl cyanide ⋆

    PubMed Central

    Bteich, S.B.; Tercero, B.; Cernicharo, J.; Motiyenko, R.A.; Margulès, L.; Guillemin, J.-C.

    2016-01-01

    Context More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods The rotational spectrum of carbonyl cyanide was measured in the frequency range 152 - 308 GHz and analyzed using Watson’s A- and S-reduction Hamiltonians. Results The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. PMID:27738349

  13. Low-Noise Amplifier for 100 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Pukala, David; Fung, King Man; Gaier, Todd; Mei, Xiaobing; Lai, Richard; Deal, William

    2009-01-01

    A three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifier designed to exhibit low noise in operation at frequencies from about 100 to somewhat above 180 GHz has been built and tested. This is a prototype of broadband amplifiers that have potential utility in diverse applications, including measurement of atmospheric temperature and humidity and millimeter-wave imaging for inspecting contents of opaque containers. Figure 1 depicts the amplifier as it appears before packaging. Figure 2 presents data from measurements of the performance of the amplifier as packaged in a WR-05 waveguide and tested in the frequency range from about 150 to about 190 GHz. The amplifier exhibited substantial gain throughout this frequency range. Especially notable is the fact that at 165 GHz, the noise figure was found to be 3.7 dB, and the noise temperature was found to be 370 K: This is less than half the noise temperature of the prior state of the art.

  14. Millimeter-wave signal generation for a wireless transmission system based on on-chip photonic integrated circuit structures.

    PubMed

    Guzmán, R; Carpintero, G; Gordon, C; Orbe, L

    2016-10-15

    We demonstrate and compare two different photonic-based signal sources for generating the carrier wave in a wireless communication link operating in the millimeter-wave range. The first signal source uses the optical heterodyne technique to generate a 113 GHz carrier wave frequency, while the second employs a different technique based on a pulsed mode-locked source with 100 GHz repetition rate frequency. The two optical sources were fabricated in a multi-project wafer run from an active/passive generic integration platform process using standardized building blocks, including multimode interference reflectors which allow us to define the structures on chip, without the need for cleaved facet mirrors. We highlight the superior performance of the mode-locked sources over an optical heterodyne technique. Error-free transmission was achieved in this experiment.

  15. Performance Investigation of Millimeter Wave Generation Reliant on Stimulated Brillouin Scattering

    NASA Astrophysics Data System (ADS)

    Tickoo, Sheetal; Gupta, Amit

    2018-04-01

    In this work, photonic method of generating the millimeter waves has been done based on Brillouin scattering effect in optical fiber. Here different approaches are proposed to get maximum frequency shift in mm-wave region using only pumps, radio signals with Mach-Zehnder modulator. Moreover for generated signal validation, signals modulated and send to both wired and wireless medium in optical domain. It is observed that maximum shift of 300 GHz is realized using 60 GHz input sine wave. Basically a frequency doubler is proposed which double shift of input frequency and provide better SNR. For the future generation network system, the generation of millimeter waves makes them well reliable for the transmission of the data.

  16. A Novel Unit Cell for Active Switches in the Millimeter-Wave Frequency Range

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Scherer, Gunnar; Lewark, Ulrich J.; Massler, Hermann; Wagner, Sandrine; Tessmann, Axel; Leuther, Arnulf; Zwick, Thomas; Kallfass, Ingmar

    2018-02-01

    This paper presents a novel transistor unit cell which is intended to realize compact active switches in the high millimeter-wave frequency range. The unit cell consists of the combination of shunt and common gate transistor within a four-finger transistor cell, achieving gain in the amplifying state as well as good isolation in the isolating state. Gate width-dependent characteristics of the unit cell as well as the design of actual switch implementations are discussed in detail. To verify the concept, two switches, a single pole double throw (SPDT) switch and single pole quadruple throw (SP4T) switch, intended for the WR3 frequency range (220-325 GHz) were manufactured and characterized. The measured gain at 250 GHz is 4.6 and 2.2 dB for the SPDT and SP4T switch, respectively. An isolation of more than 24 dB for the SPDT switch and 12.8 dB for the SP4T switch was achieved.

  17. High-power free-electron maser with frequency multiplication operating in a shortwave part of the millimeter wave range

    NASA Astrophysics Data System (ADS)

    Bandurkin, I. V.; Kaminsky, A. K.; Perelstein, E. A.; Peskov, N. Yu.; Savilov, A. V.; Sedykh, S. N.

    2012-08-01

    The possibility of using frequency multiplication in order to obtain high-power short-wavelength radiation from a free-electron maser (FEM) with a Bragg resonator has been studied. Preliminary experiments with an LIU-3000 (JINR) linear induction accelerator demonstrate the operation of a frequency-multiplying FEM at megawatt power in the 6- and 4-mm wave bands on the second and third harmonic, respectively.

  18. Millimeter wave propagation measurements using the ATS 5 satellite

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1972-01-01

    The ATS 5 millimeter wave propagation experiment determines long- and short-term attenuation statistics of operational millimeter wavelength earthspace links as functions of defined meteorological conditions. A preliminary analysis of results with 15 GHz downlink and 32 GHz uplink frequency bands indicates that both frequency bands exhibit an excellent potential for utilization in reliable high data rate earth-space communications systems.

  19. [Acoustic detection of absorption of millimeter-band electromagnetic waves in biological objects].

    PubMed

    Polnikov, I G; Putvinskiĭ, A V

    1988-01-01

    Principles of photoacoustic spectroscopy were applied to elaborate a new method for controlling millimeter electromagnetic waves absorption in biological objects. The method was used in investigations of frequency dependence of millimeter wave power absorption in vitro and in vivo in the commonly used experimental irradiation systems.

  20. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    The design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator is presented. The intended applications of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37 to 43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  1. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37-43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  2. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37 to 43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  3. Analysis of Pheochromocytoma (PC12) Membrane Potential under the Exposure to Millimeter-wave Radiation

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Hirata, A.; Kawase, K.; Otani, C.; Nagatsuma, T.

    2004-08-01

    Non-thermal effects of millimeter wave (MMW) on Pheochromocytoma (PC12) were studied by potential measurement with a voltage sensitive dye (DiBAC4(3)). Cells were irradiated at fixed frequencies of 30, 40, 60, 76GHz as well as sweeping frequency between 10 and 100 GHz by an MMW generator based on a uni-traveling-carrier photodiode (UTC-PD), the most widely tunable MMW source. However there were no significant changes in membrane potential between MMW-irradiated and control cells. The results suggest that MMW irradiation in the range from 10 to 100GHz appears to be safe for ordinary PC12 cells under non-thermal conditions.

  4. Chirped-Pulse Millimeter-Wave Spectroscopy of Rydberg-Rydberg Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prozument, Kirill; Colombo, Anthony P.; Zhou Yan

    2011-09-30

    Transitions between Rydberg states of Ca atoms, in a pulsed, supersonic atomic beam, are directly detected by chirped-pulse millimeter-wave spectroscopy. Broadband, high-resolution spectra with accurate relative intensities are recorded instantly. Free induction decay (FID) of atoms, polarized by the chirped pulse, at their Rydberg-Rydberg transition frequencies, is heterodyne detected, averaged in the time domain, and Fourier transformed into the frequency domain. Millimeter-wave transient nutations are observed, and the possibility of FID evolving to superradiance is discussed.

  5. Study of transmission line attenuation in broad band millimeter wave frequency range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.

    2013-10-15

    Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmosphericmore » water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.« less

  6. PNNL Expert Doug McMakin Discusses Millimeter Wave Technology

    ScienceCinema

    McMakin, Doug

    2018-02-13

    Electrical Engineer Doug McMakin discusses Millimeter Wave Holographic technology, which uses non-harmful, ultrahigh-frequency radio waves to penetrate clothing to detect and identify concealed objects, as well as obtain accurate body measurements.

  7. Demonstration of a Sub-Millimeter Wave Integrated Circuit (S-MMIC) using InP HEMT with a 35-nm Gate

    NASA Technical Reports Server (NTRS)

    Deal, W. R.; Din, S.; Padilla, J.; Radisic, V.; Mei, G.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; Gaier, T.; hide

    2006-01-01

    In this paper, we present two single stage MMIC amplifiers with the first demonstrating a measured S21 gain of 3-dB at 280-GHz and the second demonstrating 2.5-dB gain at 300- GHz, which is the threshold of the sub-millimeter wave regime. The high-frequency operation is enabled by a high-speed InP HEMT with a 35-nm gate. This is the first demonstrated S21 gain at sub-millimeter wave frequencies in a MMIC.

  8. Millimeter Wave Detection of Localized Anomalies in the Space Shuttle External Fuel Tank Insulating Foam and Acreage Heat Tiles

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Case, J. T.; Zoughi, R.; Hepburn, F.

    2005-01-01

    The Space Shuttle Columbia's catastrophic accident emphasizes the growing need for developing and applying effective, robust and life-cycle oriented nondestructive testing (NDT) methods for inspecting the shuttle external fuel tank spray on foam insulation (SOFI) and its protective acreage heat tiles. Millimeter wave NDT techniques were one of the methods chosen for evaluating their potential for inspecting these structures. Several panels with embedded anomalies (mainly voids) were produced and tested for this purpose. Near-field and far-field millimeter wave NDT methods were used for producing millimeter wave images of the anomalies in SOFI panel and heat tiles. This paper presents the results of an investigation for the purpose of detecting localized anomalies in two SOFI panels and a set of heat tiles. To this end, reflectometers at a relatively wide range of frequencies (Ka-band (26.5 - 40 GHz) to W-band (75 - 110 GHz)) and utilizing different types of radiators were employed. The results clearly illustrate the utility of these methods for this purpose.

  9. Effect of Al on the microstructure, magnetic and millimeter-wave properties of high oriented barium hexaferrite thin films

    NASA Astrophysics Data System (ADS)

    Chen, Daming; Chen, Zhuo; Wang, Guijuan; Chen, Yong; Li, Yuanxun; Liu, Yingli

    2017-12-01

    The microstructure, magnetic and millimeter-wave properties of high oriented barium hexaferrite (BaAlxFe12-xO19) thin films with Al doping level x from 0 to 2 are reported. The films were grown on Pt/TiO2/SiO2/Si substrate by Sol-gel method. It is found that with increasing x from 0 to 2 the hexagonal grain disappear, together with Curie temperature dropped from 449 °C to 332 °C and saturated magnetization (4πMs) decreased from 3.8 kG to 1.9 kG, it is attributed to the fact that the Fe ions were substituted by non-magnetic Al ions, leading to the Fe3+-O-Fe3+ super-exchange interaction became weak. The ferromagnetic resonance (FMR) measurement showed that the FMR linewidths is as low as 113 Oe @ 58 GHz, and the FMR frequency shifted to higher frequency range when increasing Al doping level. These result offer the potential application of barium ferrite thin films in tunable millimeter wave devices such as filter, circulator and isolator.

  10. Millimeter-Wave Chemical Sensor Using Substrate-Integrated-Waveguide Cavity

    PubMed Central

    Memon, Muhammad Usman; Lim, Sungjoon

    2016-01-01

    This research proposes a substrate-integrated waveguide (SIW) cavity sensor to detect several chemicals using the millimeter-wave frequency range. The frequency response of the presented SIW sensor is switched by filling a very small quantity of chemical inside of the fluidic channel, which also causes a difference in the effective permittivity. The fluidic channel on this structure is either empty or filled with a chemical; when it is empty the structure resonates at 17.08 GHz. There is always a different resonant frequency when any chemical is injected into the fluidic channel. The maximum amount of chemical after injection is held in the center of the SIW structure, which has the maximum magnitude of the electric field distribution. Thus, the objective of sensing chemicals in this research is achieved by perturbing the electric fields of the SIW structure. PMID:27809240

  11. Millimeter wave complementary metal-oxide-semiconductor on-chip hexagonal nano-ferrite circulator

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Oukacha, Hassan; Fu, Enjin; Koomson, Valencia Joyner; Afsar, Mohammed N.

    2015-05-01

    Hexagonal ferrites such as M-type BaFe12O19 and SrFe12O19 have strong uniaxial anisotropic magnetic field and remanent magnetism. The nano-sized ferrite powder exhibits high compatibility and processability in composite material. New magnetic devices using the M-type ferrite materials can work in the tens of GHz frequency range from microwave to millimeter wave without the application of strong external magnetic field. The micro- and nano-sized hexagonal ferrite can be conveniently utilized to fabricate magnetic components integrated in CMOS integrated circuits as thin as several micrometers. The micro-fabrication method of such nano ferrite device is presented in this paper. A circulator working at 60 GHz is designed and integrated into the commercial CMOS process. The circulator exhibits distinct circulation properties in the frequency range from 56 GHz to 58 GHz.

  12. Split-Waveguide Mounts For Submillimeter-Wave Multipliers And Harmonic Mixers

    NASA Technical Reports Server (NTRS)

    Raisanen, Antti; Choudhury, Debabani; Dengler, Robert J.; Oswald, John E.; Siegel, Peter H.

    1996-01-01

    Novel variation of split-waveguide mount for millimeter-and submillimeter-wavelength frequency multipliers and harmonic mixers developed. Designed to offer wide range of available matching impedances, while maintaining relatively simple fabrication sequence. Wide tuning range achieved with separate series and parallel elements, consisting of two pairs of noncontacting sliding backshorts, at fundamental and harmonic frequencies. Advantages include ease of fabrication, reliability, and tunability.

  13. Characterization and Applications of Micro- and Nano- Ferrites at Microwave and Millimeter Waves

    NASA Astrophysics Data System (ADS)

    Chao, Liu

    Ferrite materials are one of the most widely used magnetic materials in microwave and millimeter wave applications such as radar, wireless communication. They provide unique properties for microwave and millimeter wave devices especially non-reciprocal devices. Some ferrite materials with strong magnetocrystalline anisotropy fields can extend these applications to tens of GHz range while reducing the size, weight and cost. This thesis focuses on characterization of such ferrite materials as micro- and nano-powder and the fabrication of the devices. The ferrite materials with strong magnetocrystalline anisotropy field are metal/non-metal substituted iron oxides oriented in low crystal symmetry. The ferrite materials characterized in this thesis include M-type hexagonal ferrites such as barium ferrite (BaFe12O19), strontium ferrite (SrFe12O19), epsilon phase iron oxide (epsilon-Fe 2O3), substituted epsilon phase iron oxide (epsilon-Ga xFe2-xO3, epsilon-AlxFe2-xO 3). These ferrites exhibit great anisotropic magnetic fields. A transmission-reflection based in-waveguide technique that employs a vector network analyzer was used to determine the scattering parameters for each sample in the microwave bands (8.2--40 GHz). From the S-parameters, complex dielectric permittivity and complex magnetic permeability are evaluated by an improved algorithm. The millimeter wave measurement is based on a free space quasi-optical spectrometer. Initially precise transmittance spectra over a broad millimeter wave frequency range from 40 GHz to 120 GHz are acquired. Later the transmittance spectra are converted into complex permittivity and permeability spectra. These ferrite powder materials are further characterized by x-ray diffraction (XRD) to understand the crystalline structure relating to the strength and the shift of the ferromagnetic resonance affected by the particle size. A Y-junction circulator working in the 60 GHz frequency band is designed based on characterized M-type barium micro- and nano-ferrite. A new fabrication process using ferrite composite is proposed to integrate the Y-junction circulator into the semiconductor substrate. Theoretical design of a high gain Traveling Wave Tube (TWT) amplifier using a metamaterial (MTM) structure and cold-test of the MTM structure are also included in this dissertation. An SWS working around 6 GHz below the X-band waveguide TE10 cutoff frequency is fabricated.

  14. Millimeter-wave spectroscopy of hydantoin, a possible precursor of glycine

    NASA Astrophysics Data System (ADS)

    Ozeki, Hiroyuki; Miyahara, Rio; Ihara, Hiroto; Todaka, Satoshi; Kobayashi, Kaori; Ohishi, Masatoshi

    2017-04-01

    Context. Hydantoin (Imidazolidine-2, 4-dione, C3H4N2O2) is a five-membered heterocyclic compound that is known to arise from prebiotic molecules such as glycolic acid and urea, and to give the simplest amino acid, glycine, by hydrolysis under acidic condition. The gas chromatography combined with the mass spectrometry of carbonaceous chondrites lead to the detection of this molecule as well as several kinds of amino acids. Aims: The lack of spectroscopic information, especially on the rotational constants, has prevented us from conducting a search for hydantoin in interstellar space. If a rotational temperature of 100 K is assumed as the kinetic temperature of a star-forming region, the spectral intensity is expected to be at its maximum in the millimeter-wave region. Laboratory spectroscopy of hydantoin in the millimeter-wave region is the most important in providing accurate rest frequencies to be used for astronomical research. Methods: Pure rotational spectra of hydantoin were observed in the millimeter-wave region using the frequency modulated microwave spectrometer at Toho University. Solid hydantoin was heated to around 150 °C to provide appropriate vapor pressure. Quantum chemical calculations suggest that the permanent dipole moment of this molecule lies almost along the b-molecular axis, so that spectral search for b-type R-branch transition has been conducted. Results: Rotational and centrifugal distortion constants up to the fourth order for the ground vibrational state of hydantoin were accurately determined by measuring 161 b-type transitions in the frequency range between 90 and 370 GHz. In addition, we succeeded in assigning 230 satellite lines, which were attributed to the two vibrationally excited states. The spectral intensity ratio of these lines indicates that these states correspond to the low-lying (approximately 150 cm-1 above the ground state) vibrational modes. Conclusions: The frequency catalog of hydantoin in the millimeter-wave range was created for the ground state and for the two low-lying excited states, and are ideal for a future astronomical research. The 1σ frequency accuracy is lower than 100 kHz for the lines with upper-state energy below 200 cm-1, corresponding to a velocity resolution of 0.1 km s-1 at 300 GHz The spectral line list of hydantoin is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A44

  15. Damping of surface waves due to oil emulsions in application to ocean remote sensing

    NASA Astrophysics Data System (ADS)

    Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Lavrova, O.

    2017-10-01

    Applications of different radar and optical methods for detection of oil pollutions based on the effect of damping of short wind waves by surface films have been extensively studied last decades. The main problem here is poor knowledge of physical characteristics of oil films, in particular, emulsified oil layers (EOL). The latter are ranged up to 70% of all pollutants. Physical characteristics of EOL which are responsible for wave damping and respectively for possibilities of their remote sensing depend on conditions of emulsification processes, e.g., mixing due to wave breaking, on percentage of water in the oil, etc. and are not well studied by now. In this paper results of laboratory studies of damping of gravity-capillary waves due to EOL on water are presented and compared to oil layers (OL). A laboratory method used previously for monomolecular films and OL, and based on measuring the damping coefficient and wavelength of parametrically generated standing waves has been applied for determination of EOL characteristics. Investigations of characteristics of crude oil, oil emulsions and crude OL and EOL have been carried out in a wide range of surface wave frequencies (from 10 to 25 Hz) and OL and EOL film thickness (from hundredths of millimeter to a few millimeters. The selected frequency range corresponds to Bragg waves for microwave, X- to Ka-band radars typically used for ocean remote sensing. An effect of enhanced wave damping due to EOL compared to non emulsified crude OL is revealed.

  16. Millimeter Wave Spectrum of the Weakly Bound Complex CH2═CHCN·H2O: Structure, Dynamics, and Implications for Astronomical Search.

    PubMed

    Calabrese, Camilla; Vigorito, Annalisa; Maris, Assimo; Mariotti, Sergio; Fathi, Pantea; Geppert, Wolf D; Melandri, Sonia

    2015-12-03

    The weakly bound 1:1 complex between acrylonitrile (CH2═CHCN) and water has been characterized spectroscopically in the millimeter wave range (59.6-74.4 GHz) using a Free Jet Absorption Millimeter Wave spectrometer. Precise values of the rotational and quartic centrifugal distortion constants have been obtained from the measured frequencies of the normal and isotopically substituted water moiety (DOH, DOD, H(18)OH). Structural parameters have been estimated from the rotational constants and their differences among isotopologues: the complex has a planar structure with the two subunits held together by a O-H···N (2.331(3) Å) and a C-H···O (2.508(4) Å) interaction. The ab initio intermolecular binding energy, obtained at the counterpoise corrected MP2/aug-cc-pVTZ level of calculation, is De = 24.4 kJ mol(-1).

  17. Overview of Microwave and Millimeter Wave Testing Activities for the Inspection of the Space Shuttle SOH and Heat Tiles

    NASA Technical Reports Server (NTRS)

    Zoughi, R.

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation methods, have shown great potential for inspecting the Space Shuttle s external tank spray on foam insulation (SOFI) and acreage heat tiles. These methods are capable of producing high-resolution images of et interior of these structures. To this end, several different microwave and millimeter wave nondestructive testing methods have been investigated for this purpose. These methods have included near-field as well as focused approaches ranging in frequency from 10 GHz to beyond 100 GHz. Additionally, synthetic aperture focusing methods have also been developed in this regime for obtaining high-resolution images of the interior of these critical structures. These methods possess the potential for producing 3D images of these structures in a relatively short amount of time. This paper presents a summary of these activities in addition to providing examples of images produced using these diverse methods.

  18. Millimeter and Submillimeter Wave Spectroscopy of Higher Energy Conformers of 1,2-PROPANEDIOL

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Bossa, Jean-Baptiste; Lewen, Frank; Schlemmer, Stephan; Müller, Holger S. P.

    2017-06-01

    We have performed a study of the millimeter/submillimeter wave spectrum of four higher energy conformers of 1,2-propanediol (continuation of the previous study on the three lowest energy conformers. The present analysis of rotational transitions carried out in the frequency range 38 - 400 GHz represents a significant extension of previous microwave work. The new data were combined with previously-measured microwave transitions and fitted using a Watson's S-reduced Hamiltonian. The final fits were within experimental accuracy, and included spectroscopic parameters up to sixth order of angular momentum, for the ground states of the four higher energy conformers following previously studied ones: g'Ga, gG'g', aGg' and g'Gg. The present analysis provides reliable frequency predictions for astrophysical detection of 1,2-propanediol by radio telescope arrays at millimeter wavelengths. J.-B. Bossa, M.H. Ordu, H.S.P. Müller, F. Lewen, S. Schlemmer, A&A 570 (2014) A12)

  19. Comparison between broadband Bessel beam launchers based on either Bessel or Hankel aperture distribution for millimeter wave short pulse generation.

    PubMed

    Pavone, Santi C; Mazzinghi, Agnese; Freni, Angelo; Albani, Matteo

    2017-08-07

    In this paper, a comparison is presented between Bessel beam launchers at millimeter waves based on either a cylindrical standing wave (CSW) or a cylindrical inward traveling wave (CITW) aperture distribution. It is theoretically shown that CITW launchers are better suited for the generation of electromagnetic short pulses because they maintain their performances over a larger bandwidth than those realizing a CSW aperture distribution. Moreover, the wavenumber dispersion of both the launchers is evaluated both theoretically and numerically. To this end, two planar Bessel beam launchers, one enforcing a CSW and the other enforcing a CITW aperture distribution, are designed at millimeter waves with a center operating frequency of f¯=60GHz and analyzed in the bandwidth 50 - 70 GHz by using an in-house developed numerical code to solve Maxwell's equations based on the method of moments. It is shown that a monochromatic Bessel beam can be efficiently generated by both the launchers over a wide fractional bandwidth. Finally, we investigate the generation of limited-diffractive electromagnetic pulses at millimeter waves, up to a certain non-diffractive range. Namely, it is shown that by feeding the launcher with a Gaussian short pulse, a spatially confined electromagnetic pulse can be efficiently generated in front of the launcher.

  20. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mears, Carl Atherton

    1991-09-01

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit bymore » studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 ± 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker`s theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.« less

  1. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mears, C.A.

    1991-09-01

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit bymore » studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 {plus minus} 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker's theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.« less

  2. Quad-channel beam switching WR3-band transmitter MMIC

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Eren, Gülesin; Wagner, Sandrine; Tessmann, Axel; Leuther, Arnulf; Zwick, Thomas; Kallfass, Ingmar

    2017-05-01

    Millimeter wave radar systems offer several advantages such as the combination of high resolution and the penetration of adverse atmosphere like smoke, dust or rain. This paper presents a monolithic millimeter wave integrated circuit (MMIC) transmitter which offers four channel beam steering capabilities and can be used as a radar or communication system transmitter. At the local oscillator input, in order to simplify packaging, a frequency tripler is used to multiply the 76.6 - 83.3 GHz input signal to the intended 230 - 250 GHz output frequency range. A resistive mixer is used for the conversion of the intermediate frequency signal into the RF domain. The actual beam steering network is realized using an active single pole quadruple throw (SP4T) switch, which is connected to a integrated Butler matrix. The MMIC was fabricated in a 35 nm InGaAs mHEMT process and has a size of 4.0 mm × 1.5 mm

  3. Continuous millimeter-wave radiation has no effect on lipid peroxidation in liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logani, M.K.; Ziskin, M.C.

    1996-02-01

    The effect of millimeter waves on lipid peroxidation was studied in the presence and absence of melanin. Irradiation of liposomes with continuous millimeter electromagnetic waves at frequencies of 53.6, 61.2 and 78.2 GHz and incident power densities of 10, 1 and 500 mW/cm{sup 2}, respectively, did not show an enhancement in the formation of lipid peroxides compared to unirradiated samples. Liposomes exposed to 254 nm UVC radiation at 0.32 mW/cm{sup 2} and 302 nm UVB radiation at 1.12 mW/cm{sup 2} served as positive controls. No increment in the formation of lipid peroxides was observed when irradiation of liposomes was carriedmore » out in the presence of ADP-Fe{sup +3} and EDTA-Fe{sup +3}. Direct irradiation of melanin with millimeter waves did not exhibit an increased formation of superoxide or hydrogen peroxide. The present results indicate that millimeter waves of the above frequencies and intensities do not cause lipid peroxidation in liposomal membranes. 19 refs., 2 figs., 1 tab.« less

  4. THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De la Luz, Victor; Raulin, Jean-Pierre; Lara, Alejandro

    2013-01-10

    We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimetermore » wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMC shows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.« less

  5. Towards Breath Gas Analysis Based on Millimeter-Wave Molecular Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothbart, Nick; Hübers, Heinz-Wilhelm; Schmalz, Klaus; Borngräber, Johannes; Kissinger, Dietmar

    2018-03-01

    Breath gas analysis is a promising non-invasive tool for medical diagnosis as there are thousands of Volatile Organic Compounds (VOCs) in human breath that can be used as health monitoring markers. Millimeter-wave/terahertz molecular spectroscopy is highly suitable for breath gas analysis due to unique fingerprint spectra of many VOCs in that frequency range. We present our recent work on sensor systems for gas spectroscopy based on integrated transmitters (TX) and receivers (RX) fabricated in IHP's 0.13 μm SiGe BiCMOS technology. For a single-band system, spectroscopic measurements and beam profiles are presented. The frequency is tuned by direct voltage-frequency tuning and by a fractional-n PLL, respectively. The spectroscopic system includes a folded gas absorption cell with gas pre-concentration abilities demonstrating the detection of a 50 ppm mixture of ethanol in ambient air corresponding to a minimum detectable concentration of 260 ppb. Finally, the design of a 3-band system covering frequencies from 225 to 273 GHz is introduced.

  6. On-Wafer Characterization of Millimeter-Wave Antennas for Wireless Applications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1998-01-01

    The paper demonstrates a de-embedding technique and a direct on-substrate measurement technique for fast and inexpensive characterization of miniature antennas for wireless applications at millimeter-wave frequencies. The technique is demonstrated by measurements on a tapered slot antenna (TSA). The measured results at Ka-Band frequencies include input impedance, mutual coupling between two TSAs and absolute gain of TSA.

  7. Optical millimeter-wave signal generation by frequency quadrupling using one dual-drive Mach-Zehnder modulator to overcome chromatic dispersion

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Yao, Zhoushi; Tan, Qinggui; Li, Yongjun; Chu, Xingchun; Shi, Lei; Zhang, Xi

    2012-06-01

    We propose a novel approach to generate quadrupling-frequency optical millimeter-wave using a dual-drive Mach-Zehnder modulator (MZM) in radio-over-fiber system. By properly adjusting the phase difference in the two modulation arms of MZM, the direct current (DC) bias, the modulation index and the gain of base-band signal, the quadrupling-frequency optical millimeter-wave with signal only carried by one second-order sideband is generated. As the signal is transmitted along the fiber, there is no time shift of the codes caused by chromatic dispersion. Theoretical analysis and simulation results show that the eye diagram keeps open and clear even when the quadrupling-frequency optical millimeter-wave are transmitted over 110 km and the power penalty is about 0.45 dB after fiber transmission distance of 60 km. Furthermore, due to another second-order sideband carrying no signals, a full duplex radio-over-fiber link based on wavelength reuse is also built to simplify the base station. The bidirectional 2.5 Gbit/s data is successfully transmitted over 40 km standard single mode fiber with less than 0.6 dB power penalty in the simulation.

  8. Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion.

    PubMed

    Rolland, A; Brunel, M; Loas, G; Frein, L; Vallet, M; Alouini, M

    2011-02-28

    Down-conversion of a high-frequency beat note to an intermediate frequency is realized by a Mach-Zehnder intensity modulator. Optically-carried microwave signals in the 10-60 GHz range are synthesized by using a two-frequency solid-state microchip laser as a voltage-controlled oscillator inside a digital phase-locked loop. We report an in-loop relative frequency stability better than 2.5×10⁻¹¹. The principle is applicable to beat notes in the millimeter-wave range.

  9. Near millimeter wave bandpass filters

    NASA Technical Reports Server (NTRS)

    Timusk, T.; Richards, P. L.

    1981-01-01

    The properties of bandpass filters for broadband photometry are reported in the 3-12/cm frequency range. The filters are based on a combination of capacitive grids deposited on thick Mylar substrates and are designed to have very high out-of-band rejection. Low frequencies are blocked by a thick grill that consists of a hexagonal grid of circular holes in a thick metal plate.

  10. Tolerance of the frequency deviation of LO sources at a MIMO system

    NASA Astrophysics Data System (ADS)

    Xiao, Jiangnan; Li, Xingying; Zhang, Zirang; Xu, Yuming; Chen, Long; Yu, Jianjun

    2015-11-01

    We analyze and simulate the tolerance of frequency offset at a W-band optical-wireless transmission system. The transmission system adopts optical polarization division multiplexing (PDM), and multiple-input multiple-output (MIMO) reception. The transmission signal adopts optical quadrature phase shift keying (QPSK) modulation, and the generation of millimeter-wave is based on the optical heterodyning technique. After 20-km single-mode fiber-28 (SMF-28) transmission, tens of Gb/s millimeter-wave signal is delivered. At the receiver, two millimeter-wave signals are down-converted into electrical intermediate-frequency (IF) signals in the analog domain by mixing with two electrical local oscillators (LOs) with different frequencies. We investigate the different frequency LO effect on the 2×2 MIMO system performance for the first time, finding that the process during DSP of implementing frequency offset estimation (FOE) before cascaded multi-modulus-algorithm (CMMA) equalization can get rid of the inter-channel interference (ICI) and improve system bit-error-ratio (BER) performance in this type of transmission system.

  11. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul.

    PubMed

    Alavi, S E; Soltanian, M R K; Amiri, I S; Khalily, M; Supa'at, A S M; Ahmad, H

    2016-01-27

    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.

  12. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul

    PubMed Central

    Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa’at, A. S. M.; Ahmad, H.

    2016-01-01

    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated. PMID:26814621

  13. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul

    NASA Astrophysics Data System (ADS)

    Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa'At, A. S. M.; Ahmad, H.

    2016-01-01

    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.

  14. Millimeter Wave Systems for Airports and Short-Range Aviation Communications: A Survey of the Current Channel Models at mmWave Frequencies

    NASA Technical Reports Server (NTRS)

    Khatun, Mahfuza; Mehrpouyan, Hani; Matolak, David; Guvenc, Ismail

    2017-01-01

    Millimeter-wave (mmWave) communications will play a key role in enhancing the throughput, reliability, and security of next generation wireless networks. These advancements are achieved through the large bandwidth available in this band and through the use of highly directional links that will be used to overcome the large pathloss at these frequencies. Although the terrestrial application of mmWave systems is advancing at a rapid pace, the use of mmWave communication systems in aviation systems or airports is still in its infancy. This can be attributed to the challenges related to radio technology and lack of development, and characterization of mmWave wireless channels for the aviation field and the airport environment. Consequently, one of our goals is to develop methodologies that support mmWave air to ground links, and various links at airports, by applying new localization schemes that allow for application of highly directional links that can be deployed over longer distances despite the high path loss at mmWave frequencies. However, a very thorough understanding of the mmWave channel models are needed to enable such new applications. To this end, in this paper, we present a survey of the current channel models in the mmWave band. The 3-dimensional statistical channel model is also reviewed and its parameters and typical characteristics for this model are identified and computed through simulation for the Boise metropolitan area.

  15. Comparison of Focused and Near-Field Imaging of Spray on Foam Insulation (SOFI) at Millimeter Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Kharkovshy, S.; Zoughi, R.; Hepburn, F. L.

    2007-01-01

    Millimeter wave imaging techniques can provide high spatial-resolution images of various composites. Lens antennas may be incorporated into the imaging system to provide a small incident beam footprint. Another approach may involve the use of horn antennas, which if operating in their near-fields, images with reasonably high spatial-resolutions may also be obtained. This paper gives a comparison between such near-field and focused far-field imaging of the Space Shuttle Spray on Foam Insulation (SOFI) used in its external fuel tank at millimeter wave frequencies. Small horn antennas and lens antennas with relatively long depth of focus were used in this investigation.

  16. Millimeter-wave MMIC technology for smart weapons

    NASA Astrophysics Data System (ADS)

    Seashore, Charles R.

    1994-12-01

    Millimeter wave MMIC component technology has made dramatic progress over the last ten years largely due to funding stimulation received under the ARPA Tri-Service MIMIC program. In several smart weapon systems, MMIC components are now specified as the baseline approach for millimeter wave radar transceiver hardware. Availability of this new frontier in microelectronics has also enabled realization of sensor fusion for multispectral capability to defeat many forms of known countermeasures. The current frequency range for these MMIC-based components is approximately 30 to 100 GHz. In several cases, it has been demonstrated that the MMIC component performance has exceeded that available from hybrid microstrip circuits using selected discrete devices. However, challenges still remain in chip producibility enhancement and cost reduction since many of the essential device structure candidates are themselves emerging technologies with a limited wafer fabrication history and accumulated test databases. It is concluded that smart weapons of the future will rely heavily on advanced microelectronics to satisfy performance requirements as well as meeting stringent packaging and power source constraints.

  17. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  18. Wafer Scale Union.

    DTIC Science & Technology

    1992-05-31

    configuration. 25 We have tested it electronically to 26 GHz and found that the microwave loss is under 10 dB over the entire range. Our initial phase...UNION EFFORT 32 IEEE MICROWAVE AND GUIDED WAVE LETTERS. VOL. I. NO. 2. FEBRUARY 1991 Wide-Band Millimeter Wave Characterization of Sub-0.2 Micrometer...transistors (HEMT’s) ar nra- (over the frequency range of 1-26 GHz) and a network analyzer H ingly replacing GaAs MESFET’s in microwave and rail- als(ove r

  19. A millimeter-wave reflection-beam isolator

    NASA Technical Reports Server (NTRS)

    Kanda, M.; May, W. G.

    1975-01-01

    A new and simple type of millimeter-wave isolator using a solid-state magnetoplasma in a reflection-beam system is described. Some data are presented showing performance at 94 GHz. Practical considerations indicate that performance should be much closer to ideal at higher frequencies.

  20. Development of a contrast phantom for active millimeter-wave imaging systems

    NASA Astrophysics Data System (ADS)

    Barber, Jeffrey; Weatherall, James C.; Brauer, Carolyn S.; Smith, Barry T.

    2011-06-01

    As the development of active millimeter wave imaging systems continues, it is necessary to validate materials that simulate the expected response of explosives. While physics-based models have been used to develop simulants, it is desirable to image both the explosive and simulant together in a controlled fashion in order to demonstrate success. To this end, a millimeter wave contrast phantom has been created to calibrate image grayscale while controlling the configuration of the explosive and simulant such that direct comparison of their respective returns can be performed. The physics of the phantom are described, with millimeter wave images presented to show successful development of the phantom and simulant validation at GHz frequencies.

  1. Microwave and Millimeter Wave Testing for the Inspection of the Space Shuttle Spray on Foam Insulations (SOFI) and the Acreage Heat Tiles

    NASA Technical Reports Server (NTRS)

    Zoughi, R.; Kharkovsky, S.; Hepburn, F. L.

    2005-01-01

    The utility of microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods, for testing the Space Shuttle's external he1 tank spray on foam insulation (SOFI) and the acreage heat tiles has been investigated during the past two years. Millimeter wave NDE techniques are capable of producing internal images of SOFI. This paper presents the results of testing several diverse panels with embedded voids and debonds at millimeter wave frequencies. Additionally, the results of testing a set of heat tiles are also presented. Finally, the attributes of these methods as well as the advantageous features associated with these systems are also provided.

  2. Optical generation of millimeter-wave pulses using a fiber Bragg grating in a fiber-optics system.

    PubMed

    Ye, Qing; Qu, Ronghui; Fang, Zujie

    2007-04-10

    A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission.

  3. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication.

    PubMed

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-02-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80-100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes.

  4. Integrated Millimeter-Wave Frequency Multiplers

    NASA Astrophysics Data System (ADS)

    Schoenthal, Gerhard S.; Deaver, B. S.; Crowe, T. W.; Bishop, W. L.; Saini, K.; Bradley, R. F.

    2001-11-01

    Many of the molecules of interest to radio astronomers and atmospheric chemists resonate at frequencies in the millimeter and submillimeter wavelength bands. To measure the spectra of these molecules scientists rely on heterodyne receivers that convert the high frequency signal to the GHz band where it is readily amplified and analyzed. One of the challenges of developing suitable receiver systems is the development of compact, reliable and affordable sources of local oscillator power at frequencies in excess of 100 GHz. One useful solution is to use GaAs Schottky diodes, in their varactor mode, to generate high frequency harmonics of lower frequency sources such as Gunn oscillators. As a part of a multi-national radio astronomy project, the Atacama Millimeter Large Array (ALMA), we have designed and fabricated a broadband frequency tripler with an output centered at 240 GHz. It is integrated on a quartz substrate to greatly reduce the parasitic capacitance and thereby improve electrical performance. The integrated circuit was designed to require no oxides or ohmic contacts, thereby easing fabrication. This talk will discuss the novel millimeter-wave integrated circuit fabrication process and the initial results.

  5. The gyrotron - a natural source of high-power orbital angular momentum millimeter-wave beams

    NASA Astrophysics Data System (ADS)

    Thumm, M.; Sawant, A.; Choe, M. S.; Choi, E. M.

    2017-08-01

    Orbital angular momentum (OAM) of electromagnetic-wave beams provides further diversity to multiplexing in wireless communication. The present report shows that higher-order mode gyrotrons are natural sources of high-power OAM millimeter (mm) wave beams. The well-defined OAM of their rotating cavity modes operating at near cutoff frequency has been derived by photonic and electromagnetic wave approaches.

  6. An Airborne Millimeter-Wave FM-CW Radar for Thickness Profiling of Freshwater Ice

    DTIC Science & Technology

    1992-11-01

    commercial and recreational application, including safety and trafficability surveys. A proto- type broadband millimeter wave (26.5 to 40 GHz) Frequency...and utility for ice safety and traffica- appropriate antenna for transmission. Morey (1974) bility studies. Other important applications include...resolution and a 2.7- which can provide reliable safety survey profiling for GHz center frequency, that is capable of airborne pro- the entire practical

  7. A millimeter wave quasi-optical mixer and multiplier

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of an experimental study of a biconical quasi-optical Schottky barrier diode mount design which could be used for mixing and multiplying in the frequency range 200-1000 Ghz are reported. The biconical mount is described and characteristics measured at 185 Ghz are presented. The use of the mount for quasi-optical frequency doubling from 56 to 112 Ghz is described and efficiency estimates given.

  8. High-speed digital fiber optic links for satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  9. A SETI Search of Nearby Solar-Type Stars at the 203-GHz Positronium Hyperfine Resonance

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.; DeBoer, David R.

    1994-01-01

    The development of advanced millimeter-wave technology has made it possible to construct low-noise receivers and high-power transmitters comparable to those available at much lower frequencies. This technology, plus certain physical characteristics of the millimeter-wave spectrum, suggests possible advantages for use of this wavelength range for interstellar communications. As a result, a Search for ExtraTerrestrial Intelligence(SETI) type search has been conducted for narrow-bandwidth signals at frequencies near the positronium hyperfine spectral line (203.385 GHz), a potential natural reference frequency. A total of 40 solar-type stars within 23 parsecs were observed, in addition to three locations near the galactic center. No detections were made at the detection threshold of 2.3 x 10(exp -19) W/sq m in each of two orthogonal linear polarizations Future observations will be made with a higher resolution Fast Fourier Transform Spectrum Analyzer (FFTSA), which should improve sensitivity by an order of magnitude and reduce required observing time.

  10. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    PubMed

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  11. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies

    PubMed Central

    Balal, Nezah; Pinhasi, Gad A.; Pinhasi, Yosef

    2016-01-01

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide “chirped” Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution. PMID:27223286

  12. Millimeter Wave Spectrum of Nitromethane

    NASA Astrophysics Data System (ADS)

    Ilyushin, V.

    2016-06-01

    A new study of the millimeter wave spectrum of nitromethane CH_3NO_2 is reported. The new measurements covering the frequency range from 49 GHz to 236 GHz have been carried out using spectrometer in IRA NASU (Ukraine). The transitions belonging to the m ≤ 8 torsional states have been analyzed using the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. The dataset consisting of 5838 microwave line frequencies and including transitions with J up to 50 was fit using a model consisting of 93 parameters and weighted root-mean-square deviation of 0.89 has been achieved. In the talk the details of this new study will be discussed. V. Ilyushin, Z. Kisiel, L. Pszczólkowski, H. Mäder, J. T. Hougen J. Mol. Spectrosc. 259 (2010) 26-38.

  13. Microfabricated Millimeter-Wave High-Power Vacuum Electronic Amplifiers

    DTIC Science & Technology

    2015-01-01

    Applications filed 2012). In spite of the challenges, high power sources of electromagnetic radiation are needed in the mmW bands for advanced DoD...Research Laboratory is demonstrating and developing millimeter-wave vacuum electronic traveling wave tube amplifiers at W- and G- band in the 10’ s to 100... s of watts power range at several percent instantaneous bandwidth. Keywords: Traveling wave tube; millimeter wave; vacuum electron device

  14. A compendium of millimeter wave propagation studies performed by NASA

    NASA Technical Reports Server (NTRS)

    Kaul, R.; Rogers, D.; Bremer, J.

    1977-01-01

    Key millimeter wave propagation experiments and analytical results were summarized. The experiments were performed with the Ats-5, Ats-6 and Comstar satellites, radars, radiometers and rain gage networks. Analytic models were developed for extrapolation of experimental results to frequencies, locations, and communications systems.

  15. Development of 2-D horn-antenna millimeter-wave imaging device (HMID) for the plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Nagayama, Y.; Ito, N.; Kuwahara, D.; Tsuchiya, H.; Yamaguchi, S.

    2017-04-01

    The two-dimensional (2-D) Horn-antenna Millimeter-wave Imaging Device (HMID) has been developed for the O-mode Microwave Imaging Reflectometry (O-MIR) in the Large Helical Device (LHD). The detectable frequency range of the HMID is 23-33 GHz, which corresponds to the cutoff electron density of 0.8-1.5 × 1019 m-3 in the O-MIR. The HMID is a 2-D imaging device that improves on the horn-antenna mixer array, which had been developed for the X-mode MIR in the LHD. In the HMID, the signal (RF) wave from the horn antenna is transmitted to the microstrip line by the finline transmitter, and this is mixed by the double-balanced-mixer with the local oscillation wave that is fed by a coaxial cable. By using the HMID, the MIR optical system can be significantly simplified.

  16. Development of 2-D horn-antenna millimeter-wave imaging device (HMID) for the plasma diagnostics.

    PubMed

    Nagayama, Y; Ito, N; Kuwahara, D; Tsuchiya, H; Yamaguchi, S

    2017-04-01

    The two-dimensional (2-D) Horn-antenna Millimeter-wave Imaging Device (HMID) has been developed for the O-mode Microwave Imaging Reflectometry (O-MIR) in the Large Helical Device (LHD). The detectable frequency range of the HMID is 23-33 GHz, which corresponds to the cutoff electron density of 0.8-1.5 × 10 19 m -3 in the O-MIR. The HMID is a 2-D imaging device that improves on the horn-antenna mixer array, which had been developed for the X-mode MIR in the LHD. In the HMID, the signal (RF) wave from the horn antenna is transmitted to the microstrip line by the finline transmitter, and this is mixed by the double-balanced-mixer with the local oscillation wave that is fed by a coaxial cable. By using the HMID, the MIR optical system can be significantly simplified.

  17. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication

    PubMed Central

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-01-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80–100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes. PMID:28145513

  18. Invited article: Dielectric material characterization techniques and designs of high-Q resonators for applications from micro to millimeter-waves frequencies applicable at room and cryogenic temperatures.

    PubMed

    Le Floch, Jean-Michel; Fan, Y; Humbert, Georges; Shan, Qingxiao; Férachou, Denis; Bara-Maillet, Romain; Aubourg, Michel; Hartnett, John G; Madrangeas, Valerie; Cros, Dominique; Blondy, Jean-Marc; Krupka, Jerzy; Tobar, Michael E

    2014-03-01

    Dielectric resonators are key elements in many applications in micro to millimeter wave circuits, including ultra-narrow band filters and frequency-determining components for precision frequency synthesis. Distributed-layered and bulk low-loss crystalline and polycrystalline dielectric structures have become very important for building these devices. Proper design requires careful electromagnetic characterization of low-loss material properties. This includes exact simulation with precision numerical software and precise measurements of resonant modes. For example, we have developed the Whispering Gallery mode technique for microwave applications, which has now become the standard for characterizing low-loss structures. This paper will give some of the most common characterization techniques used in the micro to millimeter wave regime at room and cryogenic temperatures for designing high-Q dielectric loaded cavities.

  19. Millimeter-wave interconnects for microwave-frequency quantum machines

    NASA Astrophysics Data System (ADS)

    Pechal, Marek; Safavi-Naeini, Amir H.

    2017-10-01

    Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.

  20. Millimeter-Wave Absorption as a Quality Control Tool for M-Type Hexaferrite Nanopowders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Korolev, Konstantin A.; Crum, Jarrod V.

    2013-01-01

    Millimeter wave (MMW) absorption measurements have been conducted on commercial samples of large (micrometer-sized) and small (nanometer-sized) particles of BaFe12O19 and SrFe12O19 using a quasi-optical MMW spectrometer and a series of backwards wave oscillators encompassing the 30-120 GHz range. Effective anisotropy of the particles calculated from the resonant absorption frequency indicates lower overall anisotropy in the nano-particles. Due to their high magnetocrystalline anisotropy, both BaFe12O19 and SrFe12O19 are expected to have spin resonances in the 45-55 GHz range. Several of the sampled BaFe12O19 powders did not have MMW absorptions, so they were further investigated by DC magnetization and x-ray diffractionmore » to assess magnetic behavior and structure. The samples with absent MMW absorption contained primarily iron oxides, suggesting that MMW absorption could be used for quality control in hexaferrite powder manufacture.« less

  1. [Collective movement of ions in cytoplasm].

    PubMed

    Sizonenko, V L

    2012-01-01

    Theoretical model of transmission in cytoplasm of self consistent electric-and magnetic waves of millimeter-infrared range have been developed; cytoplasm ions surrounded by water molecule "fur-coats" being the main carriers of these waves. It has been discovered that not only own long-wave transverse waves, but also linear waves which are not able to leave cytoplasm can exist in tissues of living organisms. Frequencies and logarithmic decrements of such perturbation have been found, and it has been shown that these frequencies approach the ion fluctuation frequencies inside the "fur-coats". Laser radiation movement in bioobjects on the indicated frequencies has been analyzed, and it was detected the existence of no penetrative stripes of waves into bodies. The new mechanism of swinging of cytoplasm own fluctuation based on the existence of the extreme border of the ion movement area has been proposed. It has been shown that having this mechanism the electric field magnitude of linear waves is six-seven degrees larger than Plank fluctuation level.

  2. Producibility consideration for millimeter-wave transceivers

    NASA Astrophysics Data System (ADS)

    Seashore, Charles R.

    1995-10-01

    Considerable progress has been made in the development and demonstration of millimeter wave MMIC technology up to frequencies approaching 100 GHz. The recently completed multiyear, ARPA-sponsored, MIMIC program provided a considerable amount of funding and government-contractor team energy to advance the state-of-art with a number of important GaAs-based transceiver building blocks. Unfortuanely, producibility of millimeter wave MMIC transceiver modules has not been similarly addressed to provide a truly low cost, marketable product. This paper considers the module producibility problem and its various technological implications.

  3. Material fabrication using acoustic radiation forces

    DOEpatents

    Sinha, Naveen N.; Sinha, Dipen N.; Goddard, Gregory Russ

    2015-12-01

    Apparatus and methods for using acoustic radiation forces to order particles suspended in a host liquid are described. The particles may range in size from nanometers to millimeters, and may have any shape. The suspension is placed in an acoustic resonator cavity, and acoustical energy is supplied thereto using acoustic transducers. The resulting pattern may be fixed by using a solidifiable host liquid, forming thereby a solid material. Patterns may be quickly generated; typical times ranging from a few seconds to a few minutes. In a one-dimensional arrangement, parallel layers of particles are formed. With two and three dimensional transducer arrangements, more complex particle configurations are possible since different standing-wave patterns may be generated in the resonator. Fabrication of periodic structures, such as metamaterials, having periods tunable by varying the frequency of the acoustic waves, on surfaces or in bulk volume using acoustic radiation forces, provides great flexibility in the creation of new materials. Periodicities may range from millimeters to sub-micron distances, covering a large portion of the range for optical and acoustical metamaterials.

  4. Submillimeter Laboratory Investigations: Spectroscopy and Collisions

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; DeLucia, Frank C.

    2002-01-01

    Currently, millimeter-wave and submillimeter-wave spectroscopy is conducted in our laboratory on several different types of spectrometers. Our standard spectrometer utilizes the output of a phase-locked klystron operating in the 40-60 GHz region, which is sent into a crossed-waveguide harmonic generator, or "multiplier". The high frequency millimeter-and submillimeter-wave radiation is transmitted via quasi-optical techniques through an absorption cell and then onto a detector, which is either an InSb hot electron bolometer cooled to 1.4 K or a Si bolometer cooled to 0.3 K. The detector response is sent to a computer for measurement and analysis. The frequency range produced and detected in this manner goes from 80 GHz to upwards of 1 THz. Spectra are normally taken with source modulation, with line frequencies typically measured to an accuracy of 50-100 kHz. Higher accuracy is available when needed. Recently, we developed a new, broad-band spectrometer in our laboratory based on a free-running backward wave oscillator (BWO) of Russian manufacture as the primary source of radiation. The so-called FASSST (fast-scan submillimeter spectroscopic technique) system uses fast-scan and optical calibration methods rather than the traditional locking techniques. The output power from the BWO is split such that 90% goes into the absorption cell while 10% is coupled to a 40-meter Fabry-Perot cavity, which yields fringe? for frequency measurement. Results from this spectrometer on the spectrum of nitric acid (HNO3) show that 100 GHz of spectral data can be obtained in 5 seconds with a measurement accuracy of 50 kHz. Currently, the frequency range of the FASSST system in our laboratory is roughly 100-700 GHz.

  5. Design and construction of prototype radio antenna for shortest radio wavelengths

    NASA Technical Reports Server (NTRS)

    Leighton, R. B.

    1975-01-01

    A paraboloid radio antenna of 10.4 meters diameter, 0.41 meter focal length was constructed and its successful completion is described. The surface accuracy of the antenna is at least four times better than any existing antenna in its class size (50 micrometers rms). Antenna design specifications (i.e., for mounting, drive motors, honeycomb structures) are discussed and engineering drawings and photographs of antenna components are shown. The antenna will be used for millimeter-wave interferometry and sub-millimeter wave radiometry over a full frequency range (up to approximately 860 GHz). The antenna will also be moveable (for interferometric use) between reinforced concrete pads by rail. The effects of the weather and gravity on antenna performance are briefly discussed.

  6. Millimeter wave micro-CPW integrated antenna

    NASA Astrophysics Data System (ADS)

    Tzuang, Ching-Kuang C.; Lin, Ching-Chyuan

    1996-12-01

    This paper presents the latest result of applying the microstrip's leaky mode for a millimeter-wave active integrated antenna design. In contrast to the use of the first higher-order leaky mode, the second higher-order leaky mode, the second higher-order leaky mode of even symmetry is employed in the new approach, which allows larger dimension for leaky-wave antenna design and thereby reduces its performance sensitivity to the photolithographic tolerance. The new active integrated antenna operating at frequency about 34 GHz comprises of a microstrip and a coplanar waveguide stacked on top of each other, named as the millimeter wave micro-CPW integrated antenna. The feed is through the CPW that would be connected to the active uniplanar millimeter-wave (M)MIC's. Our experimental and theoretical investigations on the new integrated antenna show good input matching characteristics for such a highly directed leaky-wave antenna with the first-pass success.

  7. Millimeter-wave active probe

    DOEpatents

    Majidi-Ahy, Gholamreza; Bloom, David M.

    1991-01-01

    A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

  8. Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2000-07-01

    A novel millimeter-wave imaging technique has been developed for personnel surveillance applications, including the detection of concealed weapons, explosives, drugs, and other contraband material. Millimeter-waves are high-frequency radio waves in the frequency band of 30 - 300 GHz, and pose no health threat to humans at moderate power levels. These waves readily penetrate common clothing materials, and are reflected by the human body and by concealed items. The combined illumination cylindrical imaging concept consists of a vertical, high-resolution, millimeter-wave array of antennas which is scanned in a cylindrical manner about the person under surveillance. Using a computer, the data from this scan is mathematically reconstructed into a series of focused 3D images of the person. After reconstruction, the images are combined into a single high-resolution 3D image of the person under surveillance. This combined image is then rendered using 3D computer graphics techniques. The combined cylindrical illumination is critical as it allows the display of information from all angles. This is necessary because millimeter-waves do not penetrate the body. Ultimately, the images displayed to the operate will be icon-based to protect the privacy of the person being screened. Novel aspects of this technique include the cylindrical scanning concept and the image reconstruction algorithm, which was developed specifically for this imaging system. An engineering prototype based on this cylindrical imaging technique has been fabricated and tested. This work has been sponsored by the Federal Aviation Administration.

  9. A Three-Frequency Feed for Millimeter-Wave Radiometry

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel J.; Khayatian, Behrouz; Sosnowski, John B.; Johnson, Alan K.; Bruneau, Peter J.

    2012-01-01

    A three-frequency millimeter-wave feed horn was developed as part of an advanced component technology task that provides components necessary for higher-frequency radiometers to meet the needs of the Surface Water and Ocean Topography (SWOT) mission. The primary objectives of SWOT are to characterize ocean sub-mesoscale processes on 10-km and larger scales in the global oceans, and to measure the global water storage in inland surface water bodies, including rivers, lakes, reservoirs, and wetlands. In this innovation, the feed provides three separate output ports in the 87-to- 97-GHz, 125-to-135-GHz, and 161-to-183- GHz bands; WR10 for the 90-GHz channel, WR8 for the 130-GHz channel, and WR5 for the 170-GHz channel. These ports are in turn connected to individual radiometer channels that will also demonstrate component technology including new PIN-diode switches and noise diodes for internal calibration integrated into each radiometer front end. For this application, a prime focus feed is required with an edge taper of approximately 20 dB at an illumination angle of 40 deg. A single polarization is provided in each band. Preliminary requirements called for a return loss of better than 15 dB, which is achieved across all three bands. Good pattern symmetry is also obtained throughout all three-frequency bands. This three-frequency broadband millimeter-wave feed also minimizes mass and provides a common focal point for all three millimeter-wave bands.

  10. Millimeter wave transmission studies of YBa2Cu3O7-delta thin films in the 26.5 to 40.0 GHz frequency range

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Heinen, V. O.; Warner, J. D.; Valco, G. J.

    1989-01-01

    Millimeter wave transmission measurements through YBa2Cu3O(7-delta) thin films on MgO, ZrO2 and LaAlO3 substrates, are reported. The films (approx. 1 micron) were deposited by sequential evaporation and laser ablation techniques. Transition temperatures T sub c, ranging from 89.7 K for the Laser Ablated film on LaAlO3 to approximately 72 K for the sequentially evaporated film on MgO, were obtained. The values of the real and imaginary parts of the complex conductivity, sigma 1 and sigma 2, are obtained from the transmission data, assuming a two fluid model. The BCS approach is used to calculate values for an effective energy gap from the obtained values of sigma sub 1. A range of gap values from 2 DELTA o/K sub B T sub c = 4.19 to 4.35 was obtained. The magnetic penetration depth is evaluated from the deduced values of sigma 2. These results are discussed together with the frequency dependence of the normalized transmission amplitude, P/P sub c, below and above T sub c.

  11. A Millimeter-Wave Digital Link for Wireless MRI

    PubMed Central

    Aggarwal, Kamal; Joshi, Kiran R.; Rajavi, Yashar; Taghivand, Mazhareddin; Pauly, John M.; Poon, Ada S. Y.; Scott, Greig

    2017-01-01

    A millimeter (mm) wave radio is presented in this work to support wireless MRI data transmission. High path loss and availability of wide bandwidth make mm-waves an ideal candidate for short range, high data rata communication required for wireless MRI. The proposed system uses a custom designed integrated chip (IC) mm-wave radio with 60 GHz as radio frequency carrier. In this work, we assess performance in a 1.5 T MRI field, with the addition of optical links between the console room and magnet. The system uses ON-OFF keying (OOK) modulation for data transmission and supports data rates from 200 Mb/s to 2.5 Gb/s for distances up-to 65 cm. The presence of highly directional, linearly polarized, on-chip dipole antennas on the mm-wave radio along with the time division multiplexing (TDM) circuitry allows multiple wireless links to be created simultaneously with minimal inter-channel interference. This leads to a highly scalable solution for wireless MRI. PMID:27810803

  12. A Millimeter-Wave Digital Link for Wireless MRI.

    PubMed

    Aggarwal, Kamal; Joshi, Kiran R; Rajavi, Yashar; Taghivand, Mazhareddin; Pauly, John M; Poon, Ada S Y; Scott, Greig

    2017-02-01

    A millimeter (mm) wave radio is presented in this work to support wireless MRI data transmission. High path loss and availability of wide bandwidth make mm-waves an ideal candidate for short range, high data rata communication required for wireless MRI. The proposed system uses a custom designed integrated chip (IC) mm-wave radio with 60 GHz as radio frequency carrier. In this work, we assess performance in a 1.5 T MRI field, with the addition of optical links between the console room and magnet. The system uses ON-OFF keying (OOK) modulation for data transmission and supports data rates from 200 Mb/s to 2.5 Gb/s for distances up-to 65 cm. The presence of highly directional, linearly polarized, on-chip dipole antennas on the mm-wave radio along with the time division multiplexing (TDM) circuitry allows multiple wireless links to be created simultaneously with minimal inter-channel interference. This leads to a highly scalable solution for wireless MRI.

  13. Measurements of millimeter wave radar transmission and backscatter during dusty infrared test 2, dirt 2

    NASA Astrophysics Data System (ADS)

    Petito, F. C.; Wentworth, E. W.

    1980-05-01

    Recently there has been much interest expressed to determine the ability of millimeter wave radar to perform target acquisition during degraded visibility conditions. In this regard, one of the primary issues of concern has been the potential of high-explosive artillery barrages to obscure the battlefield from millimeter wave radar systems. To address this issue 95 GHz millimeter wave radar measurements were conducted during the Dusty Infrared Test 2 (DIRT 2). This test was held at White Sands Missile Range, NM, 18-28 July 1979. Millimeter wave transmission and backscatter measurements were performed during singular live firings and static detonations of 155 mm and 105 mm high-explosive artillery rounds in addition to static detonations of C-4 explosives. A brief description of the millimeter wave portion of the test and instrumentation is given. The data along with some preliminary conclusions are presented.

  14. An adjustable RF tuning element for microwave, millimeter wave, and submillimeter wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Lubecke, Victor M.; Mcgrath, William R.; Rutledge, David B.

    1991-01-01

    Planar RF circuits are used in a wide range of applications from 1 GHz to 300 GHz, including radar, communications, commercial RF test instruments, and remote sensing radiometers. These circuits, however, provide only fixed tuning elements. This lack of adjustability puts severe demands on circuit design procedures and materials parameters. We have developed a novel tuning element which can be incorporated into the design of a planar circuit in order to allow active, post-fabrication tuning by varying the electrical length of a coplanar strip transmission line. It consists of a series of thin plates which can slide in unison along the transmission line, and the size and spacing of the plates are designed to provide a large reflection of RF power over a useful frequency bandwidth. Tests of this structure at 1 GHz to 3 Ghz showed that it produced a reflection coefficient greater than 0.90 over a 20 percent bandwidth. A 2 GHz circuit incorporating this tuning element was also tested to demonstrate practical tuning ranges. This structure can be fabricated for frequencies as high as 1000 GHz using existing micromachining techniques. Many commercial applications can benefit from this micromechanical RF tuning element, as it will aid in extending microwave integrated circuit technology into the high millimeter wave and submillimeter wave bands by easing constraints on circuit technology.

  15. 24-71 GHz PCB Array for 5G ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Millimeter-wave 5G mobile architectures need to consolidate disparate frequency bands into a single, multifunctional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter wave array to operate across six 5G and ISM bands spanning 24-71 GHz. Importantly, the array is realized using low-cost PCB. The paper presents the design and optimized layout, and discusses fabrication and measurements.

  16. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Next generation 5G mobile architectures will take advantage of the millimeter-wave spectrum to deliver unprecedented bandwidth. Concurrently, there is a need to consolidate numerous disparate allocations into a single, multi-functional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter-wave array to operate across the six 5G and ISM bands spanning 24-71 GHz. Critically, the array is realized using low-cost PCB. The design concept and optimized layout are presented, and fabrication and measurement considerations are discussed.

  17. Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2016-01-01

    This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.

  18. Astronomers Win Protection for Key Part of Radio Spectrum

    NASA Astrophysics Data System (ADS)

    2000-06-01

    Astronomers using the millimeter-wave region of the radio spectrum have won crucial protection for their science. Dedicated allocations for radio astronomy have been given final approval by the 2,500 delegates to the World Radiocommunication Conference (WRC-00), which recently concluded a month of deliberations in Istanbul, Turkey. Radio services can transmit in these parts of the spectrum as long as they don't hinder astronomers' attempts to catch faint signals from the cosmos. The new allocations represent the culmination of more than three years of cooperative planning by radio astronomers in many countries. Millimeter waves -- high-frequency radio waves -- have come of age as an astronomical tool in the last ten years. They are one of the last technological frontiers for astronomers. WRC-00 has protected for science all the frequencies between 71 and 275 Gigahertz (GHz) that radio astronomers currently use, adding more than 90 GHz of spectrum to the 44 GHz already set aside in this frequency range. As a result, radio astronomy is now allocated most of the frequencies between 71 and 275 GHz that can get through the Earth's atmosphere. "We have formal access to all three atmospheric 'windows', apart from their very edges," said Dr. Tom Gergely of the National Science Foundation, one of the U.S. delegates to WRC-00. The WRC also changed most of the frequencies allocated to satellite downlinks within the 71-275 GHz range to frequencies not used for science. Since no satellites yet operate at these high frequencies, no equipment needs to be altered. "Commercial technologies are just starting to develop above 50 GHz," said Dr. Klaus Ruf, Chairman of the Inter-Union Commission for the Allocation of Frequencies. "The WRC's actions mean that, when they are, radio astronomers should be able to share this part of the spectrum with most terrestrial services." The World Radiocommunication Conference is held every two or three years. Here member countries of the International Telecommunication Union meet to painstakingly parcel out the radio frequency spectrum between radio-based applications such as personal communications, satellite broadcasting, GPS and amateur radio, and the sciences of radio astronomy, earth exploration and deep space research. The WRC also coordinates sharing between services in the same radio bands. WRC decisions are incorporated into the Radio Regulations that govern radio services worldwide. The new spectrum allocations for radio astronomy are the first since 1979. Millimeter-wave astronomy was then in its infancy and many of its needs were not yet known. As astronomers began to explore this region of the spectrum they found spectral lines from many interesting molecules in space. Many of those lines had not fallen into the areas originally set aside for astronomy, but most will be under the new allocations. "It's a win for millimeter-wave science," said Dr. John Whiteoak of the Australia Telescope National Facility, Australian delegate to WRC-00. "This secures its future." The protection is a significant step for both existing millimeter-wave telescopes and new ones such as the Atacama Large Millimeter Array (ALMA) now being planned by a U.S.-European consortium. Even at its isolated site in Chile's Atacama desert, ALMA would be vulnerable to interference from satellite emissions. Sensitive radio astronomy receivers are blinded by these emissions, just as an optical telescope would be by a searchlight. "There is more energy at millimeter and sub-millimeter wavelengths washing through the Universe than there is of light or any other kind of radiation," said ALMA Project Scientist, Dr. Al Wootten of the National Radio Astronomy Observatory. "Imaging the sources of this energy can tell us a great deal about the formation of stars and galaxies, and even planets." "But the Earth's atmosphere isn't very kind to us - it has only a few windows at these frequencies, and not very transparent ones at that. They are easily clogged up. It's very important that we keep them as free as possible from interference." The new spectrum allocations were welcomed by Dr Johannes Andersen, General Secretary of the International Astronomical Union, which represents astronomers worldwide. "Protecting our ability to observe the Universe is the top priority for the International Astronomical Union," he said. "This action shows that international bodies accept the need for environmental emission standards in space as well as on Earth, for the benefit of all."

  19. Millimeter wave generation by relativistic electron beams and microwave-plasma interaction

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer

    1990-12-01

    The design and operation of a compact, high power, millimeter wave source (cusptron) has been completed and proven successful. Extensive theoretical analysis of cusptron beam and rf dynamics has been carried out and published. Theory agrees beautifully with experiment. Microwave Bragg scattering due to been achieved by using expanding plasmas to upshift rf signal frequencies.

  20. MIMIC For Millimeter Wave Integrated Circuit Radars

    NASA Astrophysics Data System (ADS)

    Seashore, C. R.

    1987-09-01

    A significant program is currently underway in the U.S. to investigate, develop and produce a variety of GaAs analog circuits for use in microwave and millimeter wave sensors and systems. This represents a "new wave" of RF technology which promises to significantly change system engineering thinking relative to RF Architectures. At millimeter wave frequencies, we look forward to a relatively high level of critical component integration based on MESFET and HEMT device implementations. These designs will spawn more compact RF front ends with colocated antenna/transceiver functions and innovative packaging concepts which will survive and function in a typical military operational environment which includes challenging temperature, shock and special handling requirements.

  1. Millimeter wave spectrum of nitromethane

    NASA Astrophysics Data System (ADS)

    Ilyushin, Vadim

    2018-03-01

    A new study of the millimeter wave spectrum of nitromethane, CH3NO2, is reported. The new measurements covering the frequency range from 49 GHz to 237 GHz have been carried out using the spectrometer in IRA NASU (Ukraine). Transitions belonging to the |m| ≤ 8 torsional states have been analyzed using the Rho-axis-method and the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. A data set consisting of 5925 microwave line frequencies and including transitions with J up to 55 was fit using a model consisting of 97 parameters, and a weighted root-mean-square deviation of 0.84 was achieved. The analysis of the spectrum covers the m torsional states lying below the lowest small amplitude vibration in nitromethane molecule, which is the NO2 in plane rock at 475 cm-1. It serves as a preparatory step in further studies of intervibrational interactions in this molecule.

  2. Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V.

    1994-12-31

    A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.

  3. Josephson Junction spectrum analyzer for millimeter and submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Larkin, S. Y.; Anischenko, S. E.; Khabayev, P. V.

    1995-01-01

    A prototype of the Josephson-effect spectrum analyzer developed for the millimeter wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.

  4. Advanced density profile reflectometry; the state-of-the-art and measurement prospects for ITER

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.

    2006-10-01

    Dramatic progress in millimeter-wave technology has allowed the realization of a key goal for ITER diagnostics, the routine measurement of the plasma density profile from millimeter-wave radar (reflectometry) measurements. In reflectometry, the measured round-trip group delay of a probe beam reflected from a plasma cutoff is used to infer the density distribution in the plasma. Reflectometer systems implemented by UCLA on a number of devices employ frequency-modulated continuous-wave (FM-CW), ultrawide-bandwidth, high-resolution radar systems. One such system on DIII-D has routinely demonstrated measurements of the density profile over a range of electron density of 0-6.4x10^19,m-3, with ˜25 μs time and ˜4 mm radial resolution, meeting key ITER requirements. This progress in performance was made possible by multiple advances in the areas of millimeter-wave technology, novel measurement techniques, and improved understanding, including: (i) fast sweep, solid-state, wide bandwidth sources and power amplifiers, (ii) dual polarization measurements to expand the density range, (iii) adaptive radar-based data analysis with parallel processing on a Unix cluster, (iv) high memory depth data acquisition, and (v) advances in full wave code modeling. The benefits of advanced system performance will be illustrated using measurements from a wide range of phenomena, including ELM and fast-ion driven mode dynamics, L-H transition studies and plasma-wall interaction. The measurement capabilities demonstrated by these systems provide a design basis for the development of the main ITER profile reflectometer system. This talk will explore the extent to which these reflectometer system designs, results and experience can be translated to ITER, and will identify what new studies and experimental tests are essential.

  5. Electromagnetic properties of polycrystalline diamond from 35 K to room temperature and microwave to terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Floch, Jean-Michel Le; Bara, Romain; Hartnett, John G.; Tobar, Michael E.; Mouneyrac, David; Passerieux, Damien; Cros, Dominique; Krupka, Jerzy; Goy, Philippe; Caroopen, Sylvain

    2011-05-01

    Dielectric resonators are key components for many microwave and millimeter wave applications, including high-Q filters and frequency-determining elements for precision frequency synthesis. These often depend on the quality of the dielectric material. The commonly used material for building the best cryogenic microwave oscillators is sapphire. However, sapphire is becoming a limiting factor for higher frequency designs. It is, then, important to find new candidates that can fulfill the requirements for millimeter wave low noise oscillators at room and cryogenic temperatures. These clocks are used as a reference in many fields, such as modern telecommunication systems, radio astronomy (very-long-baseline interferometry), and precision measurements at the quantum limit. High resolution measurements were taken of the temperature-dependence of the electromagnetic properties of a polycrystalline diamond disk at temperatures between 35 and 330 K at microwave to submillimeter wave frequencies. The cryogenic measurements were made using a TE01δ dielectric mode resonator placed inside a vacuum chamber connected to a single-stage pulse-tube cryocooler. The high frequency characterization was performed at room temperature using a combination of a quasi-optical two-lens transmission setup, a Fabry-Perot cavity, and a whispering gallery mode resonator excited with waveguides. Our CVD diamond sample exhibits a decreasing loss tangent with increasing frequencies. We compare the results with well known crystals. This comparison makes it clear that polycrystalline diamond could be an important material for generating stable frequencies at millimeter waves.

  6. Precise Millimeter-Wave Laboratory Frequencies for CS and C34S

    NASA Astrophysics Data System (ADS)

    Gottlieb, C. A.; Myers, P. C.; Thaddeus, P.

    2003-05-01

    Nine successive rotational lines in the ground vibrational state of CS and C34S between 96 GHz (J=2-1) and 500 GHz (10-9) were measured in the laboratory to an accuracy of a few kHz. When our measurements are combined with the submillimeter-wave measurements of Ahrens & Winnewisser, the entire rotational spectrum of both isotopic species is predicted to an accuracy of about 1 part in 108 up to 500 GHz and 5 parts in 108 near 1000 GHz. These frequencies should be useful for quantitative studies of cloud core collapse and star formation in the millimeter- and submillimeter-wave bands.

  7. Effects of Different Types of Burn Wounds and its Dressings on Millimeter-Wave Images

    NASA Astrophysics Data System (ADS)

    Daniel, Oppelt; Patrick, Korf; Julian, Adametz; Jannis, Groh; Martin, Vossiek; Kristina, Zhuravleva; Ole, Goertz

    2018-03-01

    Millimeter-wave imaging is a promising technology for diagnosing skin burns, that may make it easier to assess and determine the burn depth in the near future. However, up to now, it has not yet been brought to clinical use due to the lack of clinical trails on patients and a millimeter-wave-aided classification of skin burns. In this paper, in a preliminary step, ex-vivo burned porcine skin is utilized to visualize and quantify skin that has been burned in different ways, and to access its effect on millimeter-wave images. For the first time, a 24 hour study of in-vivo human skin visualizes the effect of wound dressings using a fast imaging system operating at frequencies from 70 to 80 GHz. For validation, the effective relative permittivity of the skin and the dressings are measured using a open-ended coaxial probe. An analytical model is applied to calculate the reflection coefficient which are compared to the intensity of the millimeter-wave images to validate the model.

  8. 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system.

    PubMed

    Fice, M J; Rouvalis, E; van Dijk, F; Accard, A; Lelarge, F; Renaud, C C; Carpintero, G; Seeds, A J

    2012-01-16

    We report the experimental implementation of a wireless transmission system with a 146-GHz carrier frequency which is generated by optical heterodyning the two modes from a monolithically integrated quantum dash dual-DFB source. The monolithic structure of the device and the inherent low noise characteristics of quantum dash gain material allow us to demonstrate the transmission of a 1 Gbps ON-OFF keyed data signal with the two wavelengths in a free-running state at 146-GHz carrier wave frequency. The tuning range of the device fully covers the W-band (75 - 110 GHz) and the F-band (90 - 140 GHz).

  9. Millimeter and submillimeter wave spectra of 13C methylamine

    NASA Astrophysics Data System (ADS)

    Motiyenko, R. A.; Margulès, L.; Ilyushin, V. V.; Smirnov, I. A.; Alekseev, E. A.; Halfen, D. T.; Ziurys, L. M.

    2016-03-01

    Context. Methylamine (CH3NH2) is a light molecule of astrophysical interest, which has an intensive rotational spectrum that extends in the submillimeter wave range and far beyond, even at temperatures characteristic for the interstellar medium. It is likely for 13C isotopologue of methylamine to be identified in astronomical surveys, but there is no information available for the 13CH3NH2 millimeter and submillimeter wave spectra. Aims: In this context, to provide reliable predictions of 13CH3NH2 spectrum in millimeter and submillimeter wave ranges, we have studied rotational spectra of the 13C methylamine isotopologue in the frequency range from 48 to 945 GHz. Methods: The spectrum of 13C methylamine was recorded using conventional absorption spectrometers. The analysis of the rotational spectrum of 13C methylamine in the ground vibrational state was performed on the basis of the group-theoretical high-barrier tunneling Hamiltonian that was developed for methylamine. The available multiple observations of the parent methylamine species toward Sgr B2(N) at 1, 2, and 3 mm using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory were used to make a search for interstellar 13CH3NH2. Results: In the recorded spectra, we have assigned 2721 rotational transitions that belong to the ground vibrational state of the 13CH3NH2. These measurements were fitted to the Hamiltonian model that uses 75 parameters to achieve an overall weighted rms deviation of 0.73. On the basis of these spectroscopic results, predictions of transition frequencies in the frequency range up to 950 GHz with J ≤ 50 and Ka ≤ 20 are presented. The search for interstellar 13C methylamine in available observational data was not successful and therefore only an upper limit of 6.5 × 1014 cm-2 can be derived for the column density of 13CH3NH2 toward Sgr B2(N), assuming the same source size, temperature, linewidth, and systemic velocity as for parent methylamine isotopic species. Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A152

  10. The Rotational Spectrum of Anti-Ethylamine (CH3CH2NH2) from 10 to 270 GHz: A Laboratory Study and Astronomical Search in Sgr B2(N)

    NASA Astrophysics Data System (ADS)

    Apponi, A. J.; Sun, M.; Halfen, D. T.; Ziurys, L. M.; Müller, H. S. P.

    2008-02-01

    The pure rotational spectrum of the lowest energy (anti-) conformer of ethylamine (CH3CH2NH2) has been measured in the frequency range of 10-270 GHz. The spectrum was recorded using both millimeter-wave absorption spectroscopy and Fourier transform microwave (FTMW) techniques. Ten rotational transitions of this molecule were recorded in the frequency range of 10-40 GHz using FTMW methods, resulting in the assignment of 53 quadrupole-resolved hyperfine lines; in the millimeter-wave region (48-270 GHz), nearly 600 transitions were assigned to the ground (anti-) state. The amine group in CH3CH2NH2 undergoes inversion, resulting in a doubling that is frequently small and most apparent in the low-frequency K-doubling transitions. In addition, seemingly random rotational levels of this molecule were found to be significantly perturbed. The cause of these perturbations is presently uncertain, but torsion-rotation interactions with the higher lying gauche conformers seem to be a likely explanation. An astronomical search was conducted for ethylamine toward Sgr B2(N) using the Kitt Peak 12 m antenna and the Sub-Millimeter Telescope (SMT) of the Arizona Radio Observatory. Frequencies of 70 favorable rotational transitions were observed in this search, which covered the range 68-263 GHz. Ethylamine was not conclusively detected in Sgr B2(N), with an upper limit to the column density of (1-8) × 1013 cm-2 with f(CH3CH2NH2/H2) ~ (0.3-3) × 10-11, assuming a rotational temperature of 50-220 K. These observations indicate a gas-phase CH3CH2NH2/CH3NH2 ratio of <0.001-0.01, in contrast to the nearly equal ratio suggested by the acid hydrolysis of cometary solids from the Stardust mission.

  11. A Novel Split-Waveguide Mount Design For MM and SubMM wave frequency multipliers and Harmonic Mixers

    NASA Technical Reports Server (NTRS)

    Raisanen, Anti V.; Choudhury, Debabani; Dengler, Robert J.; Oswald, John E.; Siegel, Peter H.

    1993-01-01

    A novel split-waveguide mount for millimeter and submillimeter wave frequency multipliers and harmonic mixers is presented. It consists of only two pieces, block halves, which are mirror images of each other.

  12. Understanding the variation in the millimeter-wave emission of Venus

    NASA Technical Reports Server (NTRS)

    Fahd, Antoine K.; Steffes, Paul G.

    1992-01-01

    Recent observations of the millimeter-wave emission from Venus at 112 GHz (2.6 mm) have shown significant variations in the continuum flux emission that may be attributed to the variability in the abundances of absorbing constituents in the Venus atmosphere. Such constituents include gaseous H2SO4, SO2, and liquid sulfuric acid (cloud condensates). Recently, Fahd and Steffes have shown that the effects of liquid H, SO4, and gaseous SO2 cannot completely account for this measured variability in the millimeter-wave emission of Venus. Thus, it is necessary to study the effect of gaseous H2SO4 on the millimeter-wave emission of Venus. This requires knowledge of the millimeter-wavelength (MMW) opacity of gaseous H2SO4, which unfortunately has never been determined for Venus-like conditions. We have measured the opacity of gaseous H2SO4 in a CO2 atmosphere at 550, 570, and 590 K, at 1 and 2 atm total pressure, and at a frequency of 94.1 GHz. Our results, in addition to previous centimeter-wavelength results are used to verify a modeling formalism for calculating the expected opacity of this gaseous mixture at other frequencies. This formalism is incorporated into a radiative transfer model to study the effect of gaseous H2SO4 on the MMW emission of Venus.

  13. Transmission characteristic of graphene/TiO2 paper measured at Ka-band

    NASA Astrophysics Data System (ADS)

    Agusu, La; Mitsudo, Seitaro; Ahmad, La Ode; Herdianto, Fujii, Yutaka; Ishikawa, Yuya; Furuya, Takahashi; Ramadhan, La Ode Ahmad Nur

    2017-01-01

    The commercial telecommunication system in future would explore the electromagnetic spectrum with higher frequency than used now, because it requires higher speed of transmission data. Using the millimeter waves (mmW) with frequency ranging from 30 to 300 GHz, such requirement could be fulfilled. The upcoming 5G cellular technology is expected to use frequency 30 GHz or higher. Then materials with a specific characteristic at the mmW range are interesting to be explored and investigated. Here, we report the synthesis process of graphene/TiO2 deposited on paper and their transmission characteristics to the electromagnetic energy at frequency 27-40 GHz (Ka-Band). The reduced graphene oxide (rGO) was synthesized by a modified Hummers method with introduction of microwave irradiation in the process. rGO and TiO2 were mixed in ethanol solution and deposited on the paper by a spraying technique. Transmission coefficient of electromagnetic wave energy at Ka-Band was measured by using the millimeter vector network analyzer. Conductivity of rGO is 1.89 Scm-1 and for the graphene/TiO2 with TiO2 content is up to 50%, conductivity is down to Scm-1 Graphene/TiO2 layer with thickness of 60).lm and TiO2 loading up to 25% can has the transmission coefficient of -4 dB at the middle frequency of 31 GHz and bandwidth of 2.2 GHz. This can be useful as the electromagnetic interference shielding material at Ka-band.

  14. International Conference on Infrared and Millimeter Waves, 18th, Univ. of Essex, Colchester, United Kingdom, Sept. 6-10, 1993, Conference Digest

    NASA Astrophysics Data System (ADS)

    Birch, James R.; Parker, Terence J.

    Papers presented in these proceedings are grouped under the topics of FEL, detectors and sources, gas lasers, spectroscopy, windows for high-power applications, scattering, plasma diagnostics, waveguides, gyrotron, quasi-optical components, biological effects of IR and millimeter waves, and astronomical and atmospheric systems. Particular attention is given to the ENEA compact millimeter wave FEL, excitonic detectors of IR and submm waves, identification of submm CD2O lines, a two-frequency quasi-optical radiospectrometer for substance investigations, the effect of window tolerances on gyrotron performance, and analysis of scattering of the open resonator field from the cavity-backed aperture. Other papers are on submm laser interferometer-polarimeter for plasma diagnostics, the characteristics of the closed circular groove guide, a kW sixth-harmonic gyrofrequency multiplier, rugged FIR bandpass filters, millimeter waves and quantum medicines, and a horizontal atmospheric temperature sounder based on the 60-GHz oxygen absorptions.

  15. High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation.

    PubMed

    Wang, Li Xian; Li, Wei; Zheng, Jian Yu; Wang, Hui; Liu, Jian Guo; Zhu, Ning Hua

    2013-02-15

    We propose a scheme for generating millimeter-wave (MMW) ultra-wideband (UWB) signal that is free from low-frequency components and a residual local oscillator. The system consists of two cascaded polarization modulators and is equivalent to a high-speed microwave photonic switch, which truncates a sinusoidal MMW into short pulses. The polarity switchability of the generated MMW-UWB pulse is also demonstrated.

  16. A practical double-sided frequency selective surface for millimeter-wave applications

    NASA Astrophysics Data System (ADS)

    Mohyuddin, Wahab; Woo, Dong Sik; Choi, Hyun Chul; Kim, Kang Wook

    2018-02-01

    Analysis, design, and implementation of a practical, high-rejection frequency selective surface (FSS) are presented in this paper. An equivalent circuit model is introduced for predicting the frequency response of the FSS. The FSS consists of periodic square loop structures fabricated on both sides of the thin dielectric substrate by using the low-cost chemical etching technique. The proposed FSS possesses band-stop characteristics and is implemented to suppress the 170 GHz signal with attenuation of more than 45 dB with insensitivity to an angle of incident plane wave over 20°. Good agreement is observed among calculated, simulated, and measured results. The proposed FSS filter can be used in various millimeter-wave applications such as the protection of imaging diagnostic systems from high spurious input power.

  17. Millimeter and X-Ray Emission from the 5 July 2012 Solar Flare

    NASA Astrophysics Data System (ADS)

    Tsap, Y. T.; Smirnova, V. V.; Motorina, G. G.; Morgachev, A. S.; Kuznetsov, S. A.; Nagnibeda, V. G.; Ryzhov, V. S.

    2018-03-01

    The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39 - 11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (≳ 300 keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.

  18. Design and development of a multifunction millimeter wave sensor

    NASA Astrophysics Data System (ADS)

    Nadimi, Sayyid Abdolmajid

    1998-11-01

    The millimeter-wave (MMW) spectrum (30-300 GHz) offers a unique combination of features that are advantageous when retrieving information about the environment. Due to small wavelengths involved, physically small antennas may be used to obtain very high gains (>50 dB) and resulting high spatial resolutions. Moreover, some features have scattering and emission behaviors that are more sensitive at MMW wavelengths than at microwave wavelengths. Examples include, water vapor (H2O). fog, haze, clouds, ozone (O 3) molecules, and chlorine monoxide (ClO) have rotational spectra in this region. The 75-110 GHz (W-band) atmospheric window is relatively quiet, and it can supply spectral information that can be useful in identifying and quantifying pollutants. Information such as the size and concentration of particulate pollutants can be obtained using radar techniques at W-band. Although there have been some activities at millimeter wave frequencies over very narrow bandwidths, there is a great need for wider bandwidth instruments for studying scattering and emission behaviors. To address this need and provide a versatile system for laboratory studies of electromagnetic phenomena at millimeter-wave frequencies, a multifunctionmillimeter- wave sensor has been designed and developed. This instrument is an active/passive wide band sensor operating in the 75-110 GHz region of the millimeter wave spectrum in four primary modes: (1)As a spectrometer measuring absorption over the entire 75-110 GHz region. (2)As a radiometer measuring blackbody emissions over the entire 75-110 GHz region. (3)As a pulse radar over a 500 MHz bandwidth centered around 93.1 GHz with a peak power of 200 mW. (4)As a step frequency radar when used in combination with a network analyzer over selected 9 GHz bandwidth segments (75-84, 84-93, 93-102, and 102-110) of the 75-110 GHz region. Measurements were performed on two volume fraction (15% and 20%) dense random media targets using this system. The results for backscattering and transmission measurements are presented for both targets for the frequencies from 95.1 to 110.1 GHz.

  19. Advanced Millimeter-Wave Imaging Enhances Security Screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-01-12

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  20. Advanced Millimeter-Wave Security Portal Imaging Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-04-01

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  1. Open nonradiative cavities as millimeter wave single-mode resonators

    NASA Astrophysics Data System (ADS)

    Annino, G.; Cassettari, M.; Martinelli, M.

    2005-06-01

    Open single-mode metallic cavities operating in nonradiative configurations are proposed and demonstrated. Starting from well-known dielectric resonators, possible nonradiative cavities have been established; their behavior on the fundamental TE011 mode has been predicted on the basis of general considerations. As a result, very efficient confinement properties are expected for a wide variety of open structures having rotational invariance. Test cavities realized having in mind practical millimeter wave constraints have been characterized at microwave frequencies. The obtained results confirm the expected high performances on widely open configurations. A possible excitation of the proposed resonators exploiting their nonradiative character is discussed, and the resulting overall ease of realization enlightened in view of millimeter wave employments.

  2. RF to millimeter wave integration and module technologies

    NASA Astrophysics Data System (ADS)

    Vähä-Heikkilä, T.

    2015-04-01

    Radio Frequency (RF) consumer applications have boosted silicon integrated circuits (IC) and corresponding technologies. More and more functions are integrated to ICs and their performance is also increasing. However, RF front-end modules with filters and switches as well as antennas still need other way of integration. This paper focuses to RF front-end module and antenna developments as well as to the integration of millimeter wave radios. VTT Technical Research Centre of Finland has developed both Low Temperature Co-fired Ceramics (LTCC) and Integrated Passive Devices (IPD) integration platforms for RF and millimeter wave integrated modules. In addition to in-house technologies, VTT is using module and component technologies from other commercial sources.

  3. Four-amplitude shift keying-single sideband millimeter-wave signal generation with frequency sextupling based on optical phase modulation

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Ma, Jianxin

    2017-03-01

    We have proposed and demonstrated a scheme to generate a frequency-sextupling amplitude shift keying (ASK)-single sideband optical millimeter (mm)-wave signal with high dispersion tolerance based on an optical phase modulator (PM) by ably using the-4th-order and +2nd-order sidebands of the optical modulation. The ASK radio frequency signal, superposed by a local oscillator with the same frequency, modulates the lightwave via an optical PM with proper voltage amplitudes, the +2nd-order sideband carries the ASK signal with a constant slope while the -4th-order sideband maintains constant amplitude. These two sidebands can be abstracted by a wavelength selective switch to form a dual-tone optical mm-wave with only one tone carrying the ASK signal. As only one tone bears the ASK signal while the other tone is unmodulated, the generated dual-tone optical mm-wave signal has high dispersion tolerance.

  4. Millimeter wave case study of operational deployments: retail, airport, military, courthouse, and customs

    NASA Astrophysics Data System (ADS)

    Tryon, Gary V.

    2008-04-01

    In the wake of the September 11, 2001 terrorist attack on America, our security and defense industry was instantly tasked with delivering technologies that could be used to help prevent future terrorist activities. The general public world wide is asking for solutions that will foster a safe society and travel environment. Our best defenses rest in our talents within a free open society to prevent dangerous individuals from boarding planes, entering buildings, courthouses, transportations hubs and military bases with weapons capable of causing damage and bodily harm in the first place. Passive millimeter wave (PMMW) whole body imaging systems are based upon the principle that every physical entity emits, reflects, and/or absorbs electromagnetic energy. The term "passive" means that this approach does not bombard the test subject with energy radiation to further induce the discovery of hidden objects. PMMW whole body imaging systems focus on the human body's natural emission and reflection of millimeter wavelength energy. In physics, "millimeter waves" (MMW) are defined as extremely high-frequency (30-300 GHz) electromagnetic oscillations. On the electromagnetic spectrum these waves are just larger than infrared waves, but smaller than radio waves. The wavelength of a MMW is between 1 millimeter and 10 millimeters. That is approximately the thickness of a large paperclip up to the diameter of an "AAA" battery.

  5. High power water load for microwave and millimeter-wave radio frequency sources

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  6. Millimeter and submillimeter wave spectra of mono-13C-acetaldehydes

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Ilyushin, V. V.; Guillemin, J. C.

    2015-07-01

    Context. The acetaldehyde molecule is ubiquitous in the interstellar medium of our galaxy, and due to its dense and complex spectrum, large dipole moment, and several low-lying torsional states, acetaldehyde is considered to be a "weed" molecule for radio astronomy observations. Mono-13C acetaldehydes 13CH3CHO and CH313CHO are likely to be identified in astronomical surveys, such as those available with the very sensitive ALMA telescope. Laboratory measurements and analysis of the millimeter and submillimeter-wave spectra are the prerequisites for the successful radioastronomical search for the new interstellar molecular species, as well as for new isotopologs of already detected interstellar molecules. Aims: In this context, to provide reliable predictions of 13CH3CHO and CH313CHO spectra in millimeter and submillimeter wave ranges, we study rotational spectra of these species in the frequency range from 50 to 945 GHz. Methods: The spectra of mono-13C acetaldehydes were recorded using the spectrometer based on Schottky-diode frequencymultiplication chains in the Lille laboratory. The rotational spectra of 13CH3CHO and CH313CHO molecules were analyzed using the Rho axis method. Results: In the recorded spectra we have assigned 6884 for the 13CH3CHO species and 6458 for CH313CHO species new rotational transitions belonging to the ground, first, and second excited torsional states. These measurements were fitted together with previously published data to the Hamiltonian models that use 91 and 87 parameters to achieve overall weighted rms deviations 0.88 for the 13CH3CHO species and 0.95 for CH313CHO. On the basis of the new spectroscopic results, predictions of transition frequencies in the frequency range up to 1 THz with J ≤ 60 and Ka ≤ 20 are presented for both isotopologs. Full Tables 3-6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A46

  7. Pre-coding assisted generation of a frequency quadrupled optical vector D-band millimeter wave with one Mach-Zehnder modulator.

    PubMed

    Zhou, Wen; Li, Xinying; Yu, Jianjun

    2017-10-30

    We propose QPSK millimeter-wave (mm-wave) vector signal generation for D-band based on balanced precoding-assisted photonic frequency quadrupling technology employing a single intensity modulator without an optical filter. The intensity MZM is driven by a balanced pre-coding 37-GHz QPSK RF signal. The modulated optical subcarriers are directly sent into the single ended photodiode to generate 148-GHz QPSK vector signal. We experimentally demonstrate 1-Gbaud 148-GHz QPSK mm-wave vector signal generation, and investigate the bit-error-rate (BER) performance of the vector signals at 148-GHz. The experimental results show that the BER value can be achieved as low as 1.448 × 10 -3 when the optical power into photodiode is 8.8dBm. To the best of our knowledge, it is the first time to realize the frequency-quadrupling vector mm-wave signal generation at D-band based on only one MZM without an optical filter.

  8. Identifying explosives by dielectric properties obtained through wide-band millimeter-wave illumination

    NASA Astrophysics Data System (ADS)

    Weatherall, James C.; Barber, Jeffrey; Smith, Barry T.

    2015-05-01

    A method for extracting dielectric constant from free-space 18 - 40 GHz millimeter-wave reflection data is demonstrated. The reflection coefficient is a function of frequency because of propagation effects, and numerically fitting data to a theoretical model based on geometric optics gives a solution for the complex dielectric constant and target thickness. The discriminative value is illustrated with inert substances and military sheet explosive. In principle, the measurement of reflectivity across multiple frequencies can be incorporated into Advanced Imaging Technology (AIT) systems to automatically identify the composition of anomalies detected on persons at screening checkpoints.

  9. A Practical Millimeter-Wave Holographic Imaging System with Tunable IF Attenuator

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-Kun; Yang, Ming-Hui; Wu, Liang; Sun, Yun; Sun, Xiao-Wei

    2017-10-01

    A practical millimeter-wave (mmw) holographic imaging system with tunable intermediate frequency (IF) attenuator has been developed. It can be used for the detection of concealed weapons at security checkpoints, especially the airport. The system is utilized to scan the passenger and detect the weapons hidden in the clothes. To reconstruct the three dimensions (3-D) image, a holographic mmw imaging algorithm based on aperture synthesis and back scattering is presented. The system is active and works at 28-33 GHz. Tunable IF attenuator is applied to compensate the intensity and phase differences between multi-channels and multi-frequencies.

  10. Millimeter-wave studies

    NASA Technical Reports Server (NTRS)

    Allen, Kenneth C.

    1988-01-01

    Progress on millimeter-wave propagation experiments in Hawaii is reported. A short path for measuring attenuation in rain at 9.6, 28.8, 57.6, and 96.1 GHz is in operation. A slant path from Hilo to the top of Mauna Kea is scheduled. On this path, scattering from rain and clouds that may cause interference for satellites closely spaced in geosynchronous orbit will be measured at the same frequencies at 28.8 and 96.1 GHz. In addition the full transmission matrix will be measured at the same frequencies on the slant path. The technique and equipment used to measure the transmission matrix are described.

  11. Millimeter wave spectra of carbonyl cyanide

    NASA Astrophysics Data System (ADS)

    Bteich, S. B.; Tercero, B.; Cernicharo, J.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2016-07-01

    Context. More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims: The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods: The rotational spectrum of carbonyl cyanide was measured in the frequency range 152-308 GHz and analyzed using Watson's A- and S-reduction Hamiltonians. Results: The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This work was also based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).The full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A43

  12. Spectral perspective on the electromagnetic activity of cells.

    PubMed

    Kučera, Ondrej; Červinková, Kateřina; Nerudová, Michaela; Cifra, Michal

    2015-01-01

    In this mini-review, we summarize the current hypotheses, theories and experimental evidence concerning the electromagnetic activity of living cells. We systematically classify the bio-electromagnetic phenomena in terms of frequency and we assess their general acceptance in scientific community. We show that the electromagnetic activity of cells is well established in the low frequency range below 1 kHz and on optical wavelengths, while there is only limited evidence for bio-electromagnetic processes in radio- frequency and millimeter-wave ranges. This lack of generally accepted theory or trustful experimental results is the cause for controversy which accompanies this topic. We conclude our review with the discussion of the relevance of the electromagnetic activity of cells to human medicine.

  13. An evaluation of HEMT potential for millimeter-wave signal sources using interpolation and harmonic balance techniques

    NASA Technical Reports Server (NTRS)

    Kwon, Youngwoo; Pavlidis, Dimitris; Tutt, Marcel N.

    1991-01-01

    A large-signal analysis method based on an harmonic balance technique and a 2-D cubic spline interpolation function has been developed and applied to the prediction of InP-based HEMT oscillator performance for frequencies extending up to the submillimeter-wave range. The large-signal analysis method uses a limited number of DC and small-signal S-parameter data and allows the accurate characterization of HEMT large-signal behavior. The method has been validated experimentally using load-pull measurement. Oscillation frequency, power performance, and load requirements are discussed, with an operation capability of 300 GHz predicted using state-of-the-art devices (fmax is approximately equal to 450 GHz).

  14. Passive millimeter-wave imaging for concealed article detection

    NASA Astrophysics Data System (ADS)

    Lovberg, John A.; Galliano, Joseph A., Jr.; Clark, Stuart E.

    1997-02-01

    Passive-millimeter-wave imaging (PMI) provides a powerful sensing tool for law enforcement, allowing an unobtrusive means for detecting concealed weapons, explosives, or contraband on persons or in baggage. Natural thermal emissions at millimeter wavelengths from bodies, guns, explosives, and other articles pass easily through clothing or other concealment materials, where they can be detected and converted into conventional 2-dimensional images. A new implementation of PMI has demonstrated a large-area, near- real-time staring capability for personnel inspection at standoff ranges of greater than 10 meters. In this form, PMI does not require operator cuing based on subjective 'profiles' of suspicious appearance or behaviors, which may otherwise be construed as violations of civil rights. To the contrary, PMI detects and images heat generated by any object with no predisposition as to its nature or function (e.g. race or gender of humans). As a totally passive imaging tool, it generates no radio-frequency or other radiation which might raise public health concerns. Specifics of the new PMI architecture are presented along with a host of imaging data representing the current state- of-the-art.

  15. Millimeter wave front-end figure of merit, part 2

    NASA Astrophysics Data System (ADS)

    Silberman, Gabriel G.

    1995-09-01

    This report presents a practical approach for defining and calculating a meaningful figure of merit for frequency modulated continuous wave radar systems with separate receive and transmit (bistatic) antennas.

  16. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) using Synthetic Aperture Focusing Techniques (SAFT}

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkivskiy, S.; Hepburn, F.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia s catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch. These methods are capable of producing relatively high-resolution images of the interior of SOFI particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques (SAFT) are being developed. This paper presents some of the preliminary results of this investigation using SAFT-based methods and microwave holography at relatively low frequencies illustrating their potential capabilities for operation at millimeter wave frequencies.

  17. Millimeter-wave sensor based on a λ/2-line resonator for identification and dielectric characterization of non-ionic surfactants

    PubMed Central

    Rodilla, H.; Kim, A. A.; Jeffries, G. D. M.; Vukusic, J.; Jesorka, A.; Stake, J.

    2016-01-01

    Studies of biological and artificial membrane systems, such as niosomes, currently rely on the use of fluorescent tags, which can influence the system under investigation. For this reason, the development of label-free, non-invasive detection techniques is of great interest. We demonstrate an open-volume label-free millimeter-wave sensing platform based on a coplanar waveguide, developed for identification and characterization of niosome constituents. A design based on a λ/2-line resonator was used and on-wafer measurements of transmission and reflection parameters were performed up to 110 GHz. Our sensor was able to clearly distinguish between common niosome constituents, non-ionic surfactants Tween 20 and Span 80, measuring a resonance shift of 3 GHz between them. The complex permittivities of the molecular compounds have been extracted. Our results indicate insignificant frequency dependence in the investigated frequency range (3 GHz – 110 GHz). Values of permittivity around 3.0 + 0.7i and 2.2 + 0.4i were obtained for Tween 20 and Span 80, respectively. PMID:26786983

  18. Millimeter-wave sensor based on a λ/2-line resonator for identification and dielectric characterization of non-ionic surfactants.

    PubMed

    Rodilla, H; Kim, A A; Jeffries, G D M; Vukusic, J; Jesorka, A; Stake, J

    2016-01-20

    Studies of biological and artificial membrane systems, such as niosomes, currently rely on the use of fluorescent tags, which can influence the system under investigation. For this reason, the development of label-free, non-invasive detection techniques is of great interest. We demonstrate an open-volume label-free millimeter-wave sensing platform based on a coplanar waveguide, developed for identification and characterization of niosome constituents. A design based on a λ/2-line resonator was used and on-wafer measurements of transmission and reflection parameters were performed up to 110 GHz. Our sensor was able to clearly distinguish between common niosome constituents, non-ionic surfactants Tween 20 and Span 80, measuring a resonance shift of 3 GHz between them. The complex permittivities of the molecular compounds have been extracted. Our results indicate insignificant frequency dependence in the investigated frequency range (3 GHz - 110 GHz). Values of permittivity around 3.0 + 0.7i and 2.2 + 0.4i were obtained for Tween 20 and Span 80, respectively.

  19. Radio frequency radiation of millimeter wave length: potential occupational safety issues relating to surface heating.

    PubMed

    Ryan, K L; D'Andrea, J A; Jauchem, J R; Mason, P A

    2000-02-01

    Currently, technology is being developed that makes use of the millimeter wave (MMW) range (30-300 GHz) of the radio frequency region of the electromagnetic spectrum. As more and more systems come on line and are used in everyday applications, the possibility of inadvertent exposure of personnel to MMWs increases. To date, there has been no published discussion regarding the health effects of MMWs; this review attempts to fill that void. Because of the shallow depth of penetration, the energy and, therefore, heat associated with MMWs will be deposited within the first 1-2 mm of human skin. MMWs have been used in states of the former Soviet Union to provide therapeutic benefit in a number of diverse disease states, including skin disorders, gastric ulcers, heart disease and cancer. Conversely, the possibility exists that hazards might be associated with accidental overexposure to MMWs. This review attempts to critically analyze the likelihood of such acute effects as burn and eye damage, as well as potential long-term effects, including cancer.

  20. Millimeter-Wave GaN MMIC Integration with Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Coffey, Michael

    This thesis addresses the analysis, design, integration and test of microwave and millimeter-wave monolithic microwave integrated circuits (MMIC or MMICs). Recent and ongoing progress in semiconductor device fabrication and MMIC processing technology has pushed the upper limit in MMIC frequencies from millimeter-wave (30-300 GHz) to terahertz (300-3000 GHz). MMIC components operating at these frequencies will be used to improve the sensitivity and performance of radiometers, receivers for communication systems, passive remote sensing systems, transceivers for radar instruments and radio astronomy systems. However, a serious hurdle in the utilization of these MMIC components, and a main topic presented in this thesis, is the development and reliable fabrication of practical packaging techniques. The focus of this thesis is the investigation of first, the design and analysis of microwave and millimeter-wave GaN MMICs and second, the integration of those MMICs into usable waveguide components. The analysis, design and testing of various X-band (8-12 GHz) thru H-band (170-260 GHz) GaN MMIC power amplifier (PA or PAs), including a V-band (40-75 GHz) voltage controlled oscillator, is the majority of this work. Several PA designs utilizing high-efficiency techniques are analyzed, designed and tested. These examples include a 2nd harmonic injection amplifier, a Class-E amplifier fabricated with a GaN-on-SiC 300 GHz fT process, and an example of the applicability of supply-modulation with a Doherty power amplifier, all operating at 10 GHz. Two H-band GaN MMIC PAs are designed, one with integrated CPW-to-waveguide transitions for integration. The analysis of PA stability is especially important for wideband, high- fT devices and a new way of analyzing stability is explored and experimentally validated. Last, the challenges of integrating MMICs operating at millimeter-wave frequencies are discussed and assemblies using additive and traditional manufacturing are demonstrated.

  1. Millimeter-wave monolithic diode-grid frequency multiplier

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    A semiconductor diode structure useful for harmonic generation of millimeter or submillimeter wave radiation from a fundamental input wave is fabricated on a GaAs substrate. A heavily doped layer of n(sup ++) GaAs is produced on the substrate and then a layer of intrinsic GaAs on said heavily doped layer on top of which a sheet of heavy doping (++) is produced. A thin layer of intrinsic GaAs grown over the sheet is capped with two metal contacts separated by a gap to produce two diodes connected back to back through the n(sup ++) layer for multiplication of frequency by an odd multiple. If only one metal contact caps the thin layer of intrinsic GaAs, the second diode contact is produced to connect to the n(sup ++) layer for multiplication of frequency by an even number. The odd or even frequency multiple is selected by a filter. A phased array of diodes in a grid will increase the power of the higher frequency generated.

  2. Ground station hardware for the ATS-F millimeter wave experiment

    NASA Technical Reports Server (NTRS)

    Duffield, T. L.

    1973-01-01

    The results are presented of a program to design, fabricate, test, and install a primary ATS-F millimeter wave ground receiving station. Propagation parameters at millimeter waves are discussed along with the objective of the overall experiment. A general description is given of the receiving system and its function in the experiment. Typical receiver characteristics are presented which show that the experiment is entirely feasible from a link SNR standpoint. The receiving system hardware designs are discussed with separate treatment given to the propagation and the radiometer receiver designs. The modification and relocation are described of an existing 15-ft antenna to meet the ATS-F requirements. The design of a dual frequency feed subsystem and self calibration equipment is included.

  3. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  4. AC Josephson effect applications in microwave systems

    NASA Astrophysics Data System (ADS)

    Larkin, Serguey Y.

    1996-12-01

    A complication of the tasks solving by the modem radliolocation, radionavigation and communication systems connected with the demand promotion to the resolution and accuracy of coordinates definition and increase in the volumes of transmitted information in satellite communication systems has resulted in boisterous mastering of millimeter wave bands. Success in microwave technology reached in 80' allowed such leading instrument developing companies as Hewlett Packard; EIP, lB millimeter etc. to set up an output of mm- and submm-wave bands devices and systems. It has streamlined Scientific Technological Progress in several spheres, since millimeter, through infra-red frequency range was closed to researchers for a long period of time because of the absence of necessary equipment. At present microwave devices of the short-wave part of mm- wave band and of submm- wave bands are used not only in radiolocation and communications. Unique diagnostic systems based on the analysis of the radiation parameters of different microwave sources were created. They have their application in medicine, thermonuclear energetics, radioastronomy, biology, nuclear physics, the physics of the solid state body, geology, etc. The above circumstances caused the beginning of the measuring microwave technology researches in 60 to 600 GHz frequency range: generators, power and frequency meters, spectrum analyzers. The task of working out equipment and techniques of the effective control as well as frequency and intensity measurements of the microwave signals in the investigated range is of the special interest. Here are some examples. The creation of a thermonuclear reactor in ITER project is considered to be the project of the century in the energetics sphere. One of the basic engineering tasks in the course of project realization is the creation of the diagnostic equipment realizing in real time spectrum analysis of thermonuclear plasma radiation at the so called cyclotron hannonics. Such analysis allow to get the picture of temperature distribution along the plasma cord diameter in accordance with dynamics of thermonuclear process development. Modem raclioastronomic research gives scientists the unique information on the world tructure. It is also necessary to analyze Space microwave radiation providing exclusive sensitivity of the equipment. In both cases equipment is required to be superwide band, to have high sensitivity and ability to operate at more than 300 GHz frequencies. Today all these requirements are met by the devices using the ac Josephson effect. The Josephson junctions are used as an active transforming element in such devices. At the end of 20 century the sphere of their utilization embraces medicine, communications, radiophysics, space exploration, ecology, military use, etc. The State Research Center "Fonon" ( SRC "Fonon") of the State Committee on Science and Technology of Ukraine was founded in 1991. The main aim of its creation was to concentrate the scientific and financial efforts for development and production of unique devices based on the results of fundamental study in physics of high T superconductivity. First of all we were interested in technological research on the obtaining of low impedance Josephson junctions out of the High T thin films. Using such junctions in combination with our original techniques developed in our Center we have succeed in creating the following new generation equipment: industrial set-up of the frequency meter in the range of 60 ... 600 GHz; experimental set-up of the spectrum analyzer operating in the range of 50 250 GHz; experimental model of radiometric receiver in 180...260 GHz range. All the above devices are based on the using ac Josephson effect for the receiving and processing mm- and submm- microwave signals.

  5. Atmospheric microwave refractivity and refraction

    NASA Technical Reports Server (NTRS)

    Yu, E.; Hodge, D. B.

    1980-01-01

    The atmospheric refractivity can be expressed as a function of temperature, pressure, water vapor content, and operating frequency. Based on twenty-year meteorological data, statistics of the atmospheric refractivity were obtained. These statistics were used to estimate the variation of dispersion, attenuation, and refraction effects on microwave and millimeter wave signals propagating along atmospheric paths. Bending angle, elevation angle error, and range error were also developed for an exponentially tapered, spherical atmosphere.

  6. Evaluation of DCS III Transmission Alternatives, Phase 1B.

    DTIC Science & Technology

    1980-09-30

    Most commonly used measure are straight and precision tubing, dielectric lining, and helix construction. These measures make the millimeter waveguide...channel tran- sistorized and microprocessor-controlled L5E. The broadband signal, either analog or digital, can be transmitted over a coaxial cable...kilowatts. One kind of mm source is travelling wave tubes ( TWT ) which are currently under development in the frequency range from 20 to 50 GHz with

  7. Overmoded W-Band Traveling Wave Tube Amplifier

    DTIC Science & Technology

    2014-11-24

    developing high power tubes for use in that frequency range. In addition , there is a window at 220 GHz which is also an area of large development for...equipment. operation. Figure 1-4 shows electronic warfare applications, which involve disrupting electronic systems with high power microwave and millimeter...requiring gyrotrons to power the high -energy beam and a large transport vehicle. In addition to being difficult to transport, it is currently incapable

  8. W-Band InP Wideband MMIC LNA with 30K Noise Temperature

    NASA Technical Reports Server (NTRS)

    Weinreb, S.; Lai, R.; Erickson, N.; Gaier, T.; Wielgus, J.

    2000-01-01

    This paper describe a millimeter wave low noise amplifier with extraordinary low noise, low consumption, and wide frequency range. These results are achieved utilizing state-of-the-art InP HEMT transistors coupled with CPW circuit design. The paper describes the transistor models, modeled and measured on-wafer and in-module results at both 300K am 24K operating temperatures for many samples of the device.

  9. Study of and proposals for the correction of errors in a radar ranging device designed to facilitate docking of a teleoperator maneuvering system

    NASA Technical Reports Server (NTRS)

    Mcdonald, M. W.

    1982-01-01

    A frequency modulated continuous wave radar system was developed. The system operates in the 35 gigahertz frequency range and provides millimeter accuracy range and range rate measurements. This level of range resolution allows soft docking for the proposed teleoperator maneuvering system (TMS) or other autonomous or robotic space vehicles. Sources of error in the operation of the system which tend to limit its range resolution capabilities are identified. Alternative signal processing techniques are explored with emphasis on determination of the effects of inserting various signal filtering circuits in the system. The identification and elimination of an extraneous low frequency signal component created as a result of zero range immediate reflection of radar energy from the surface of the antenna dish back into the mixer of the system is described.

  10. Reflective measurement of water concentration using millimeter wave illumination

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Bennett, David; Taylor, Zachary; Bajwa, Neha; Tewari, Priyamvada; Maccabi, Ashkan; Culjat, Martin; Singh, Rahul; Grundfest, Warren

    2011-04-01

    THz and millimeter wave technology have shown the potential to become a valuable medical imaging tool because of its sensitivity to water and safe, non-ionizing photon energy. Using the high dielectric constant of water in these frequency bands, reflectionmode THz sensing systems can be employed to measure water content in a target with high sensitivity. This phenomenology may lead to the development of clinical systems to measure the hydration state of biological targets. Such measurements may be useful in fast and convenient diagnosis of conditions whose symptoms can be characterized by changes in water concentration such as skin burns, dehydration, or chemical exposure. To explore millimeter wave sensitivity to hydration, a reflectometry system is constructed to make water concentration measurements at 100 GHz, and the minimum detectable water concentration difference is measured. This system employs a 100 GHz Gunn diode source and Golay cell detector to perform point reflectivity measurements of a wetted polypropylene towel as it dries on a mass balance. A noise limited, minimum detectable concentration difference of less than 0.5% by mass can be detected in water concentrations ranging from 70% to 80%. This sensitivity is sufficient to detect hydration changes caused by many diseases and pathologies and may be useful in the future as a diagnostic tool for the assessment of burns and other surface pathologies.

  11. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization.

    PubMed

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic; Gear, Walter K

    2006-09-20

    An achromatic half-wave plate (HWP) to be used in millimeter cosmic microwave background (CMB) polarization experiments has been designed, manufactured, and tested. The design is based on the 5-plates Pancharatnam recipe and it works in the frequency range 85-185 GHz. A model has been used to predict the transmission, reflection, absorption, and phase shift as a function of frequency. The HWP has been tested by using coherent radiation from a back-wave oscillator to investigate its modulation efficiency and with incoherent radiation from a polarizing Fourier transform spectrometer (FTS) to explore its frequency behavior. The FTS measurements have been fitted with an optical performance model which is in excellent agreement with the data. A detailed analysis of the data also allows a precise determination of the HWP fast and slow axes in the frequency band of operation. A list of the HWP performance characteristics is reported including estimates of its cross polarization.

  12. Mode-locked laser with pulse interleavers in a monolithic photonic integrated circuit for millimeter wave and terahertz carrier generation.

    PubMed

    Lo, Mu-Chieh; Guzmán, Robinson; Gordón, Carlos; Carpintero, Guillermo

    2017-04-15

    This Letter presents a photonics-based millimeter wave and terahertz frequency synthesizer using a monolithic InP photonic integrated circuit composed of a mode-locked laser (MLL) and two pulse interleaver stages to multiply the repetition rate frequency. The MLL is a multiple colliding pulse MLL producing an 80 GHz repetition rate pulse train. Through two consecutive monolithic pulse interleaver structures, each doubling the repetition rate, we demonstrate the achievement of 160 and 320 GHz. The fabrication was done on a multi-project wafer run of a generic InP photonic technology platform.

  13. Numerical modeling of heat and mass transfer in the human eye under millimeter wave exposure.

    PubMed

    Karampatzakis, Andreas; Samaras, Theodoros

    2013-05-01

    Human exposure to millimeter wave (MMW) radiation is expected to increase in the next several years. In this work, we present a thermal model of the human eye under MMW illumination. The model takes into account the fluid dynamics of the aqueous humor and predicts a frequency-dependent reversal of its flow that also depends on the incident power density. The calculated maximum fluid velocity in the anterior chamber and the temperature rise at the corneal apex are reported for frequencies from 40 to 100 GHz and different values of incident power density. Copyright © 2013 Wiley Periodicals, Inc.

  14. Highly Efficient Broadband Multiplexed Millimeter-Wave Vortices from Metasurface-Enabled Transmit-Arrays of Subwavelength Thickness

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi Hao; Kang, Lei; Hong, Wei; Werner, Douglas H.

    2018-06-01

    Structured electromagnetic waves carrying nonvanishing orbital angular momentum (OAM) have recently opened up alternative frontiers in the field of wave physics, holding great promise for a wide range of potential applications. By leveraging geometric phases originating from spin-to-orbital interactions, spin-dependent wave phenomena can be created, leading to a more versatile realm of dispersionless wave-front manipulation. However, the currently available transmissive vortex-beam generators suffer from a narrow bandwidth, require an optically thick device profile, or are limited by a low efficiency, severely restricting their integration into systems and/or widespread usage for practical applications. We present the design methodology and a physical analysis and complete experimental characterization of a class of millimeter-wave Pancharatnam-Berry transmit-arrays with a thickness of about λ0/3 , which enables highly efficient generation and separation of spin-controlled vortex beams over a broad bandwidth, achieving an unprecedented peak efficiency of 88% for a single vortex beam and 71% for dual vortex beams. The proposed transmit-array, which is capable of providing two-dimensional OAM multiplexing and demultiplexing without normal-mode background interference, overcomes all previous roadblocks and paves the way for high-efficiency electromagnetic vortex-beam generation as well as other wave-front-shaping devices from microwave frequencies to optical wavelengths.

  15. Millimeter-wave optical double resonance schemes for rapid assignment of perturbed spectra, with applications to the C{sup ~} {sup 1}B{sub 2} state of SO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, G. Barratt, E-mail: barratt@mit.edu, E-mail: barratt.park@gmail.com; Womack, Caroline C.; Jiang, Jun

    2015-04-14

    Millimeter-wave detected, millimeter-wave optical double resonance (mmODR) spectroscopy is a powerful tool for the analysis of dense, complicated regions in the optical spectra of small molecules. The availability of cavity-free microwave and millimeter wave spectrometers with frequency-agile generation and detection of radiation (required for chirped-pulse Fourier-transform spectroscopy) opens up new schemes for double resonance experiments. We demonstrate a multiplexed population labeling scheme for rapid acquisition of double resonance spectra, probing multiple rotational transitions simultaneously. We also demonstrate a millimeter-wave implementation of the coherence-converted population transfer scheme for background-free mmODR, which provides a ∼10-fold sensitivity improvement over the population labeling scheme.more » We analyze perturbations in the C{sup ~} state of SO{sub 2}, and we rotationally assign a b{sub 2} vibrational level at 45 328 cm{sup −1} that borrows intensity via a c-axis Coriolis interaction. We also demonstrate the effectiveness of our multiplexed mmODR scheme for rapid acquisition and assignment of three predissociated vibrational levels of the C{sup ~} state of SO{sub 2} between 46 800 and 47 650 cm{sup −1}.« less

  16. Millimeter wave attenuation prediction using a piecewise uniform rain rate model

    NASA Technical Reports Server (NTRS)

    Persinger, R. R.; Stutzman, W. L.; Bostian, C. W.; Castle, R. E., Jr.

    1980-01-01

    A piecewise uniform rain rate distribution model is introduced as a quasi-physical model of real rain along earth-space millimeter wave propagation paths. It permits calculation of the total attenuation from specific attenuation in a simple fashion. The model predications are verified by comparison with direct attenuation measurements for several frequencies, elevation angles, and locations. Also, coupled with the Rice-Holmberg rain rate model, attenuation statistics are predicated from rainfall accumulation data.

  17. A honeycomb-like three-dimensional metamaterial absorber via super-wideband and wide-angle performances at millimeter wave and low THz frequencies

    NASA Astrophysics Data System (ADS)

    Vahidi, Alireza; Rajabalipanah, Hamid; Abdolali, Ali; Cheldavi, Ahmad

    2018-04-01

    Achieving wideband absorption via three-dimensional (3D) metamaterials has revealed as a new emerging innovative field of research, especially in recent years. Here, a novel 3D metamaterial absorber (MA) having a sixfold symmetry is designed which consists of periodic resistive honeycomb-like units. The proposed 3D MA exhibits a strong absorptivity above 90% in the widest bandwidth ever reported to the authors' knowledge from 50 to 460 GHz (the bandwidth ratio larger than 1:9), covering both millimeter wave and low -terahertz spectra. To understand the physical mechanism of absorption, the electric field and surface current distributions, the power loss density as well as the deteriorating effects of the high-order Floquet modes are monitored and discussed. As a distinctive feature in comparison to the similar 3D MAs, our engineered absorber provides multiple resonances, contributing to further broadening of the operating bandwidth. In addition, it is shown that the honeycomb-like MA retains its polarization-insensitive absorption in a wide range of incident wave angles and polarization angles. Due to flexibility of the design, these superior performances can be simply extended to terahertz, infrared and visible frequencies, potentially leading to many promising applications in imaging, sensing, and camouflage technology.

  18. Measurement and simulation of ionic current as a means of quantifying effects of therapeutic millimeter wave radiation

    NASA Astrophysics Data System (ADS)

    Slovinsky, William Stanley

    A "millimeter wave" (MMW) is an electromagnetic oscillation with a wavelength between 1 and 10 mm, and a corresponding frequency of 30 to 300 GHz. In the spectrum of electromagnetic radiation, this band falls above the frequencies of radio waves and microwaves, and below that of infrared radiation. Since the 1950s, frequencies in this regime have been used for short range communications and beginning in the 1970s, a form of therapy known as "millimeter wave therapy" (MWT) , or microwave resonance therapy, in some publications. This form of therapy has been widely used in the republics of the former Soviet Union (FSU). As of 1995, it is estimated that more than one thousand medical centers in the FSU have performed MWT and more than three million patients have received this method of treatment. Despite the abundant use of this form of medicine, very little is known about the mechanisms by which it works. Early accounts of use are limited to Soviet government documents, largely unavailable to the scientific public, and limited translations and oral accounts from FSU scientists and literature reviews . This anecdotal body of evidence lacks the scrutiny of peer-reviewed journal publications. In order to gain more widespread acceptance in Western medicine, the pathway through which this regime of the electromagnetic radiation spectrum affects the human body must be rigorously mapped and quantified. Despite the anecdotal nature of a large portion of the existing research on biological MMW effects, a common link is the idea of an interaction occurring at the skin level, which is transduced into a signal used at a remote location in the body. This study explores a possible mechanism for the generation of this signal. The effects of therapeutic frequency MMW on the ionic currents through two different types of ion transport channels were studied, and the results are discussed with emphasis on how they relate to possible changes in nerve signals used by the body for communication between tissues in remote locations.

  19. A Tri-Band Frequency Selective Surface (FSS) to Diplex Widely Separated Bands for Millimeter Wave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Poojali, Jayaprakash; Ray, Shaumik; Pesala, Bala; Chitti, Krishnamurthy V.; Arunachalam, Kavitha

    2016-10-01

    A substrate-backed frequency selective surface (FSS) is presented for diplexing the widely separated frequency spectrum centered at 55, 89, and 183 GHz with varying bandwidth for spatial separation in the quasi-optical feed network of the millimeter wave sounder. A unit cell composed of a crossed dipole integrated with a circular ring and loaded inside a square ring is optimized for tri-band frequency response with transmission window at 89 GHz and rejection windows at 55 and 183 GHz. The reflection and transmission losses predicted for the optimized unit cell (728 μm × 728 μm) composed of dissimilar resonant shapes is less than 0.5 dB for transverse electric (TE) and transverse magnetic (TM) polarizations and wide angle of incidence (0°-45°). The FSS is fabricated on a 175-μm-thick quartz substrate using microfabrication techniques. The transmission characteristics measured with continuous wave (CW) terahertz transmit receive system are in good agreement with the numerical simulations.

  20. Wide-bandwidth, wide-beamwidth, high-resolution, millimeter-wave imaging for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.; McMakin, Douglas L.; Jones, A. Mark; Lechelt, Wayne M.; Severtsen, Ronald H.

    2013-05-01

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The cylindrical imaging techniques used in the deployed systems are based on licensed technology developed at the Pacific Northwest National Laboratory. The cylindrical and a related planar imaging technique form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images of the person being screened. The resolution, clothing penetration, and image illumination quality obtained with these techniques can be significantly enhanced through the selection of the aperture size, antenna beamwidth, center frequency, and bandwidth. The lateral resolution can be improved by increasing the center frequency, or it can be increased with a larger antenna beamwidth. The wide beamwidth approach can significantly improve illumination quality relative to a higher frequency system. Additionally, a wide antenna beamwidth allows for operation at a lower center frequency resulting in less scattering and attenuation from the clothing. The depth resolution of the system can be improved by increasing the bandwidth. Utilization of extremely wide bandwidths of up to 30 GHz can result in depth resolution as fine as 5 mm. This wider bandwidth operation may allow for improved detection techniques based on high range resolution. In this paper, the results of an extensive imaging study that explored the advantages of using extremely wide beamwidth and bandwidth are presented, primarily for 10-40 GHz frequency band.

  1. Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach-Zehnder modulators.

    PubMed

    Zhu, Zihang; Zhao, Shanghong; Zheng, Wanze; Wang, Wei; Lin, Baoqin

    2015-11-10

    A novel frequency 12-tupling optical millimeter-wave (mm-wave) generation using two cascaded dual-parallel Mach-Zehnder modulators (DP-MZMs) without an optical filter is proposed and demonstrated by computer simulation. By properly adjusting the amplitude and phase of radio frequency (RF) driving signal and the direct current (DC) bias points of two DP-MZMs, a 120 GHz mm-wave with an optical sideband suppression ratio (OSSR) of 25.1 dB and a radio frequency spurious suppression ratio (RFSSR) of 19.1 dB is shown to be generated from a 10 GHz RF driving signal, which largely reduces the response frequency of electronic devices. Furthermore, it is also proved to be valid that even if the phase difference of RF driving signals, the RF driving voltage, and the DC bias voltage deviate from the ideal values to a certain degree, the performance is still acceptable. Since no optical filter is employed to suppress the undesired optical sidebands, a high-spectral-purity mm-wave signal tunable from 48 to 216 GHz can be obtained theoretically when a RF driving signal from 4 to 18 GHz is applied to the DP-MZMs, and the system can be readily implemented in wavelength-division-multiplexing upconversion systems to provide high-quality optical local oscillator signal.

  2. Millimeter Wave Alternate Route Study.

    DTIC Science & Technology

    1981-04-01

    processing gains are based upon the assumption that the jammer equally distributes his available power over all the hopping frequencies. If this is true...Examples Assumptions 0 25 GHz hopping range (e.g., 20 GHz to 45 GHz) 0 10 ms settling time * 0.1 second dwell time - implies 11% increase in channel data...of the architectures presented previously. The assumption that each link has equal probability p of being disrupted (i.e., successfully jammed) seems

  3. A novel optical millimeter-wave signal generation approach to overcome chromatic dispersion

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Jiang, Wei; Tan, Qinggui; Zhu, Zhongbo; Liu, Feng

    2014-06-01

    In this paper, a novel frequency octupling approach for optical millimeter-wave signal generation to overcome chromatic dispersion is proposed and demonstrated. The frequency octupling mm-wave with the baseband signal carried only by -4th order sideband is generated by properly adjusting a series of parameters, which are the modulation constant, the gain of baseband signal, the direct current bias and the different phase of the modulation arms. As the optical millimeter-wave signal is transmitted along the fiber, there is no time shift caused by chromatic dispersion. Theoretical analyses and simulated results show that when the optical mm-wave carrying 2.5 Gbps baseband signal transmits a distance of over 110 km, the eye diagram still keeps open and clear. The power penalty is about 0.4 dB after the optical signal transmits over 40 km. In additions, given the +4th order sideband carries no data, a full-duplex RoF link based on wavelength reuse is built for the uplink. The bidirectional 2.5 Gbps baseband signal could successfully transmit over 40 km with about 0.8 dB power penalty in the simulation. Both theoretical analyses and simulation results show that the full-duplex RoF link has good performance.

  4. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    PubMed

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.

  5. Research on the Crystal Growth and Dielectric Properties of High Permittivity Ferroelectric Materials.

    DTIC Science & Technology

    1984-05-01

    decrease in millimeter wave dielectric losses at low temperatures now makes it imperitive to examine the value of dn/dE from liquid nitrogen up to and...and dielectric losses, with both / decreasing at low temperatures down to 77K for the electric field parallel to the polar axis. The observed changes in...xSrxK -vNa Nb501 5 Crystals at RF and Millimeter Wave Frqutncies ................................. 30 APPENDIX 2 Low and High Frequency Dielectric

  6. The influence of polarization on millimeter wave propagation through rain. [radio signals

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.

    1973-01-01

    The measurement and analysis of the depolarization and attenuation that occur when millimeter wave radio signals propagate through rain are described. Progress was made in three major areas: the processing of recorded 1972 data, acquisition and processing of a large amount of 1973 data, and the development of a new theoretical model to predict rain cross polarization and attenuation. Each of these topics is described in detail along with radio frequency system design for cross polarization measurements.

  7. Biological Effects of Millimeter-Wave Irradiation.

    DTIC Science & Technology

    1982-12-01

    With the recent advances in millimeter-wave technology, including the availability of high - power transmitters in this band , the interaction of fields at... power was 14 mW for E- band , 10 mW for U- band ; and the frequency increment was 0.5 GHz. The mean values and the SD for the number of revertant colonies... high stability for short periods (i.e., about 30 minutes). We are now evaluating electronic means of stabilizing the klystron so that a ±1-MHz

  8. The influence of polarization on millimeter wave propagation through rain

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.

    1974-01-01

    The limitations which precipitation depolarization will place on future millimeter wave earth-satellite communications systems employing orthogonal-polarization frequency sharing was studied and the possibility of improving the fade resistance of such systems either through polarization diversity operation or by the choice of the polarization(s) least subject to attenuation was examined. Efforts were confined largely to ground-based communications systems investigated during a twenty-seven month period. Plans to extend the theoretical results to satellite systems are discussed.

  9. Integrated Radial Probe Transition From MMIC to Waveguide

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Chattopadhyay, Goutam

    2007-01-01

    A radial probe transition between a monolithic microwave integrated circuit (MMIC) and a waveguide has been designed for operation at frequency of 340 GHz and to be fabricated as part of a monolithic unit that includes the MMIC. Integrated radial probe transitions like this one are expected to be essential components of future MMIC amplifiers operating at frequencies above 200 GHz. While MMIC amplifiers for this frequency range have not yet been widely used because they have only recently been developed, there are numerous potential applications for them-- especially in scientific instruments, test equipment, radar, and millimeter-wave imaging systems for detecting hidden weapons.

  10. Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket

    NASA Technical Reports Server (NTRS)

    Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin

    2015-01-01

    The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.

  11. Full-duplex radio-over-fiber system with tunable millimeter-wave signal generation and wavelength reuse for upstream signal.

    PubMed

    Wang, Yiqun; Pei, Li; Li, Jing; Li, Yueqin

    2017-06-10

    A full-duplex radio-over-fiber system is proposed, which provides both the generation of a millimeter-wave (mm-wave) signal with tunable frequency multiplication factors (FMFs) and wavelength reuse for uplink data. A dual-driving Mach-Zehnder modulator and a phase modulator are cascaded to form an optical frequency comb. An acousto-optic tunable filter based on a uniform fiber Bragg grating (FBG-AOTF) is employed to select three target optical sidebands. Two symmetrical sidebands are chosen to generate mm waves with tunable FMFs up to 16, which can be adjusted by changing the frequency of the applied acoustic wave. The optical carrier is reused at the base station for uplink connection. FBG-AOTFs driven by two acoustic wave signals are experimentally fabricated and further applied in the proposed scheme. Results of the research indicate that the 2-Gbit/s data can be successfully transmitted over a 25-km single-mode fiber for bidirectional full-duplex channels with power penalty of less than 2.6 dB. The feasibility of the proposed scheme is verified by detailed simulations and partial experiments.

  12. Multi Ray Model for Near-Ground Millimeter Wave Radar

    PubMed Central

    Litvak, Boris; Pinhasi, Yosef

    2017-01-01

    A quasi-optical multi-ray model for a short-range millimeter wave radar is presented. The model considers multi-path effects emerging while multiple rays are scattered from the target and reflected to the radar receiver. Among the examined scenarios, the special case of grazing ground reflections is analyzed. Such a case becomes relevant when short range anti-collision radars are employed in vehicles. Such radars operate at millimeter wavelengths, and are aimed at the detection of targets located several tens of meters from the transmitter. Reflections from the road are expected to play a role in the received signal strength, together with the direct line-of-sight beams illuminated and scattered from the target. The model is demonstrated experimentally using radar operating in the W-band. Controlled measurements were done to distinguish between several scattering target features. The experimental setup was designed to imitate vehicle near-ground millimeter wave radars operating in vehicles. A comparison between analytical calculations and experimental results is made and discussed. PMID:28867776

  13. Millimeter-wave monolithic integrated circuit characterization by a picosecond optoelectronic technique

    NASA Astrophysics Data System (ADS)

    Hung, Hing-Loi A.; Smith, Thane; Huang, Ho C.; Polak-Dingels, Penny; Webb, Kevin J.

    1989-08-01

    The characterization of microwave and millimeter-wave monolithic integrated circits (MIMICs) using picosecond pulse-sampling techniques is developed with emphasis on improving broadband coverage and measurement accuracy. GaAs photoconductive swithces are used for signal generation and sampling operations. The measured time-domain response allows the spectral transfer function of the MIMIC to be obtained. This measurement technique is verified by characterization of the frequency response (magnitude and phase) of a reference 50-ohm microstrip line and a two-stage Ka-band MIMIC amplifier. The measured broadband results agree with those obtained from conventional frequency-domain measurements using a network analyzer. The application of this optical technique to on-wafer MIMIC characterization is described.

  14. Microwave and Millimeter Wave Imaging Using Synthetic Aperture Focusing and Holographical Techniques

    NASA Technical Reports Server (NTRS)

    Case, Joseph Tobias

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods have shown great potential for determining material composition in composite structures, determining material thickness or debond thickness between two layers, and determining the location and size of flaws, defects, and anomalies. The same testing methods have also shown great potential to produce relatively high-resolution images of voids inside Spray On Foam Insulation (SOFI) test panels using real focused methods employing lens antennas. An alternative to real focusing methods are synthetic focusing methods. The essence of synthetic focusing is to match the phase of the scattered signal to measured points spaced regularly on a plane. Many variations of synthetic focusing methods have already been developed for radars, ultrasonic testing applications, and microwave concealed weapon detection. Two synthetic focusing methods were investigated; namely, a) frequency-domain synthetic aperture focusing technique (FDSAFT), and b) wide-band microwave holography. These methods were applied towards materials whose defects were of low dielectric contrast like air void in SOFI. It is important to note that this investigation used relatively low frequencies from 8.2 GHz to 26.5 GHz that are not conducive for direct imaging of the SOFI. The ultimate goal of this work has been to demonstrate the capability of these methods before they are applied to much higher frequencies such as the millimeter wave frequency spectrum (e.g., 30-300 GHz).

  15. Millimeter-wave micro-Doppler measurements of small UAVs

    NASA Astrophysics Data System (ADS)

    Rahman, Samiur; Robertson, Duncan A.

    2017-05-01

    This paper discusses the micro-Doppler signatures of small UAVs obtained from a millimeter-wave radar system. At first, simulation results are shown to demonstrate the theoretical concept. It is illustrated that whilst the propeller rotation rate of the small UAVs is quite high, millimeter-wave radar systems are capable of capturing the full micro-Doppler spread. Measurements of small UAVs have been performed with both CW and FMCW radars operating at 94 GHz. The CW radar was used for obtaining micro-Doppler signatures of individual propellers. The field test data of a flying small UAV was collected with the FMCW radar and was processed to extract micro-Doppler signatures. The high fidelity results clearly reveal features such as blade flashes and propeller rotation modulation lines which can be used to classify targets. This work confirms that millimeter-wave radar is suitable for the detection and classification of small UAVs at usefully long ranges.

  16. Guided waves and ultrasonic characterization of three-dimensional composites

    NASA Astrophysics Data System (ADS)

    Leymarie, Nicolas; Baste, Stéphane

    2000-05-01

    Ultrasonic NDE of anisotropic media appears nowadays as one of the best experimental approaches in studying mechanical properties. A complete identification of stiffness tensor can be performed with phase velocity measurements of obliquely incidence ultrasonic bulk waves from water onto a plate. The medium considered, however, has to be homogeneous with respect to wavelength used. In the case of 3D-composites, textures scales may reach one millimeter and their cut-off frequency is less than MHz. The dispersion curves observed in the considered range of frequencies are often very close and sometimes may be overlapped. Experimental studies show complex signals, which are due to a combination of both bulk and guided waves. Wave-speed measurements of the bulk wave and its detection become unreliable with classical techniques of signal processing (simple time or spectral analysis). Moreover, even if the coupled time-frequency analysis with wavelet transforms allows a better interpretation of the signal, the time delay estimation for the bulk wave and so the characterization of the material remains uncertain. To understand blended signals more accurately, different analytical and numerical models are proposed to show the advantages and disadvantages of methods used in NDE.

  17. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes were developed that provide low-loss, hermetic enclosure for advanced monolithic microwave and millimeter-wave integrated circuits (MMICs). The package designs are based on a fused quartz substrate material that offers improved radio frequency (RF) performance through 44 gigahertz (GHz). The small size and weight of the packages make them appropriate for a variety of applications, including phased array antenna systems. Packages were designed in two forms; one for housing a single MMIC chip, the second in the form of a multi-chip phased array module. The single chip array module was developed in three separate sizes, for chips of different geometry and frequency requirements. The phased array module was developed to address packaging directly for antenna applications, and includes transmission line and interconnect structures to support multi-element operation. All packages are fabricated using fused quartz substrate materials. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices. The package and test fixture designs were both developed in a generic sense, optimizing performance for a wide range of possible applications and devices.

  18. Dual-tone optical vector millimeter wave signal generated by frequency-nonupling the radio frequency 16-star quadrature-amplitude-modulation signal

    NASA Astrophysics Data System (ADS)

    Wu, Tonggen; Ma, Jianxin

    2017-12-01

    This paper proposes an original scheme to generate the photonic dual-tone optical millimeter wave (MMW) carrying the 16-star quadrature-amplitude-modulation (QAM) signal via an optical phase modulator (PM) and an interleaver with adaptive photonic frequency-nonupling without phase precoding. To enable the generated optical vector MMW signal to resist the power fading effect caused by the fiber chromatic dispersion, the modulated -5th- and +4th-order sidebands are selected from the output of the PM, which is driven by the precoding 16-star QAM signal. The modulation index of the PM is optimized to gain the maximum opto-electrical conversion efficiency. A radio over fiber link is built by simulation, and the simulated constellations and the bit error rate graph demonstrate that the frequency-nonupling 16-star QAM MMW signal has good transmission performance. The simulation results agree well with our theoretical results.

  19. Millimeter and Sub-millimeter High Resolution Spectroscopy: New Frontiers with ALMA

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.

    2016-06-01

    It is becoming increasingly clear that new laboratory data will be critical for the next decade of observations with the Atacama Large Millimeter Array (ALMA). The high spatial resolution offered by ALMA will probe new regions of molecular complexity, including the inner envelopes of evolved stars, regions dominated by UV radiation, and the densest cores of molecular clouds. New molecular lines will be discovered in the wide wavelength range covered by the ALMA bands, and high resolution, gas-phase spectroscopy are needed to provide crucial “rest frequencies.” In particular, highly accurate methods that measure millimeter and sub-millimeter rotational transitions, such as direct absorption and Fourier transform mm-wave techniques, are important, especially when coupled to exotic molecular production schemes. Recent ALMA studies of SH+ and larger organic species have already demonstrated the need for laboratory measurements. New laboratory work will likely be required for circumstellar refractory molecules, radicals and ions generated near photon-dominated regions (PDRs), and large, organic-type species. This talk will give an overview of current contributions of laboratory spectroscopy to ALMA observations, summarize relevant spectroscopic techniques, and provide input into future prospects and directions.

  20. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Y. L.; Xie, J. L., E-mail: jlxie@ustc.edu.cn; Yu, C. X.

    2016-11-15

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven bymore » fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.« less

  1. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Zhu, Y. L.; Xie, J. L.; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.; Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X.; Tobias, B. J.

    2016-11-01

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  2. A blind green bank telescope millimeter-wave survey for redshifted molecular absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanekar, N.; Gupta, A.; Carilli, C. L.

    2014-02-10

    We present the methodology for 'blind' millimeter-wave surveys for redshifted molecular absorption in the CO/HCO{sup +} rotational lines. The frequency range 30-50 GHz appears optimal for such surveys, providing sensitivity to absorbers at z ≳ 0.85. It is critical that the survey is 'blind', i.e., based on a radio-selected sample, including sources without known redshifts. We also report results from the first large survey of this kind, using the Q-band receiver on the Green Bank Telescope (GBT) to search for molecular absorption toward 36 sources, 3 without known redshifts, over the frequency range 39.6-49.5 GHz. The GBT survey has amore » total redshift path of Δz ≈ 24, mostly at 0.81 < z < 1.91, and a sensitivity sufficient to detect equivalent H{sub 2} column densities ≳ 3 × 10{sup 21} cm{sup –2} in absorption at 5σ significance (using CO-to-H{sub 2} and HCO{sup +}-to-H{sub 2} conversion factors of the Milky Way). The survey yielded no confirmed detections of molecular absorption, yielding the 2σ upper limit n(z = 1.2) < 0.15 on the redshift number density of molecular gas at column densities N(H{sub 2}) ≳ 3 × 10{sup 21} cm{sup –2}.« less

  3. Basic antenna transmitting characteristics using an extrapolation range measurement technique at a millimeter-wave band at NMIJ/AIST.

    PubMed

    Yamamoto, Tetsuya

    2007-06-01

    A novel test fixture operating at a millimeter-wave band using an extrapolation range measurement technique was developed at the National Metrology Institute of Japan (NMIJ). Here I describe the measurement system using a Q-band test fixture. I measured the relative insertion loss as a function of antenna separation distance and observed the effects of multiple reflections between the antennas. I also evaluated the antenna gain at 33 GHz using the extrapolation technique.

  4. Study of 42 and 85 GHz coupled cavity traveling-wave tubes for space use

    NASA Technical Reports Server (NTRS)

    Kennedy, J. B.; Tammaru, I.; Wolcott, P. S.

    1977-01-01

    Designs were formulated for four CW, millimeter wavelength traveling-wave tubes having high efficiency and long life. Three of these tubes, in the 42 to 44 GHz frequency region, develop power outputs of 100 to 300 watts with overall efficiencies of typically 45 percent. Another tube, which covers the frequency range of 84 to 86 GHz, provides a power output of 200 watts at 25 percent efficiency. The cathode current density in each design was 1A/sq cm. Each tube includes: metal-ceramic construction, periodic permanent magnet focusing, a two step velocity taper, an electron beam refocusing section, and a radiation cooled three-stage depressed collector. The electrical and mechanical design for each tube type is discussed in detail. The results of thermal and mechanical analyses are presented.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Ivan R.; De Lucia, Frank C.; Herbst, Eric

    Since methyl formate (HCOOCH{sub 3}) is found to have a high abundance in hot molecular cores and other types of clouds in the galactic center, it is reasonable to search among such sources for detectable abundances of the more complex analog ethyl formate (HCOOC{sub 2}H{sub 5}). Following a previous study of the millimeter-wave spectrum of ethyl formate, we have extended the analysis of the vibrational ground state of the trans and gauche conformers of ethyl formate into the submillimeter-wave range. Over 2200 new spectral lines have been measured and analyzed at frequencies up to 380 GHz. Fitting the data formore » each conformer to a Watson A-reduced asymmetric-top Hamiltonian has allowed us to predict the frequencies and intensities of many more transitions through 380 GHz.« less

  6. Photonic all-silicon microsensor for electromagnetic power in the microwave and millimeter-wave range

    NASA Astrophysics Data System (ADS)

    Rendina, Ivo; Bellucci, Marco; Cocorullo, Giuseppe; Della Corte, Francesco G.; Iodice, Mario

    2000-03-01

    A new type of non-perturbing electromagnetic power sensor for microwaves and millimeter-waves, based on the thermo- optical effect in a silicon interferometric etalon cavity is presented. The incident field power is partially dissipated into the all-silicon metal-less etalon, constituting the sensing element of the detector, so causing its temperature increase. This, in turn, induces the intensity modulation of a probe laser beam reflected by the cavity after a multiple beam interference process. The sensing element is directly connected to an optical fiber for remote interrogation, so avoiding the use of perturbing coaxial cables. The performances of such a new class of non-perturbing and wideband probes, in terms of sensitivity and resolution are discussed in detail. The experimental results concerning the characterization of a preliminary prototype sensor are presented and compared with theoretical data. The dependence of the sensor response on the electromagnetic frequency and on the sensing element characteristics is finally discussed.

  7. Passive millimeter wave simulation in blender

    NASA Astrophysics Data System (ADS)

    Murakowski, Maciej

    Imaging in the millimeter wave (mmW) frequency range is being explored for applications where visible or infrared (IR) imaging fails, such as through atmospheric obscurants. However, mmW imaging is still in its infancy and imager systems are still bulky, expensive, and fragile, so experiments on imaging in real-world scenarios are difficult or impossible to perform. Therefore, a simulation system capable of predicting mmW phenomenology would be valuable in determining the requirements (e.g. resolution or noise floor) of an imaging system for a particular scenario and aid in the design of such an imager. Producing simulation software for this purpose is the objective of the work described in this thesis. The 3D software package Blender was modified to simulate the images produced by a passive mmW imager, based on a Geometrical Optics approach. Simulated imagery was validated against experimental data and the software was applied to novel imaging scenarios. Additionally, a database of material properties for use in the simulation was collected.

  8. Visualization of frequency-modulated electric field based on photonic frequency tracking in asynchronous electro-optic measurement system

    NASA Astrophysics Data System (ADS)

    Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao

    2018-04-01

    We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.

  9. Exposure safety standards for nonionizing radiation (NIR) from collision-avoidance radar

    NASA Astrophysics Data System (ADS)

    Palmer-Fortune, Joyce; Brecher, Aviva; Spencer, Paul; Huguenin, Richard; Woods, Ken

    1997-02-01

    On-vehicle technology for collision avoidance using millimeter wave radar is currently under development and is expected to be in vehicles in coming years. Recently approved radar bands for collision avoidance applications include 47.5 - 47.8 GHz and 76 - 77 GHz. Widespread use of active radiation sources in the public domain would contribute to raised levels of human exposure to high frequency electromagnetic radiation, with potential for adverse health effects. In order to design collision avoidance systems that will pose an acceptably low radiation hazard, it is necessary to determine what levels of electromagnetic radiation at millimeter wave frequencies will be acceptable in the environment. This paper will summarize recent research on NIR (non-ionizing radiation) exposure safety standards for high frequency electromagnetic radiation. We have investigated both governmental and non- governmental professional organizations worldwide.

  10. Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.

    1999-01-01

    Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses tha_ may not be important in longer wavelength designs. This paper describes the design of multi-bandwidth filters operating in the I-5 micrometer wavelength range. This work follows on previous design [1,2]. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using micro-lithographic techniques and used ir spectral imaging applications will be presented.

  11. Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.

    1998-01-01

    Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses that may not be important in longer wavelength designs. This paper describes the design of multi- bandwidth filters operating in the 1-5 micrometer wavelength range. This work follows on a previous design. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using microlithographic techniques and used in spectral imaging applications will be presented.

  12. On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)

    2015-01-01

    A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.

  13. Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces

    PubMed Central

    Hashemi, Mohammed Reza M.; Yang, Shang-Hua; Wang, Tongyu; Sepúlveda, Nelson; Jarrahi, Mona

    2016-01-01

    Engineered metamaterials offer unique functionalities for manipulating the spectral and spatial properties of electromagnetic waves in unconventional ways. Here, we report a novel approach for making reconfigurable metasurfaces capable of deflecting electromagnetic waves in an electronically controllable fashion. This is accomplished by tilting the phase front of waves through a two-dimensional array of resonant metasurface unit-cells with electronically-controlled phase-change materials embedded inside. Such metasurfaces can be placed at the output facet of any electromagnetic radiation source to deflect electromagnetic waves at a desired frequency, ranging from millimeter-wave to far-infrared frequencies. Our design does not use any mechanical elements, external light sources, or reflectarrays, creating, for the first time, a highly robust and fully-integrated beam-steering device solution. We demonstrate a proof-of-concept beam-steering metasurface optimized for operation at 100 GHz, offering up to 44° beam deflection in both horizontal and vertical directions. Dynamic control of electromagnetic wave propagation direction through this unique platform could be transformative for various imaging, sensing, and communication applications, among others. PMID:27739471

  14. Optimal Design of Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants.

    PubMed

    Ahn, Dukju; Ghovanloo, Maysam

    2016-02-01

    This paper presents a design methodology for RF power transmission to millimeter-sized implantable biomedical devices. The optimal operating frequency and coil geometries are found such that power transfer efficiency (PTE) and tissue-loss-constrained allowed power are maximized. We define receiver power reception susceptibility (Rx-PRS) and transmitter figure of merit (Tx-FoM) such that their multiplication yields the PTE. Rx-PRS and Tx-FoM define the roles of the Rx and Tx in the PTE, respectively. First, the optimal Rx coil geometry and operating frequency range are identified such that the Rx-PRS is maximized for given implant constraints. Since the Rx is very small and has lesser design freedom than the Tx, the overall operating frequency is restricted mainly by the Rx. Rx-PRS identifies such operating frequency constraint imposed by the Rx. Secondly, the Tx coil geometry is selected such that the Tx-FoM is maximized under the frequency constraint at which the Rx-PRS was saturated. This aligns the target frequency range of Tx optimization with the frequency range at which Rx performance is high, resulting in the maximum PTE. Finally, we have found that even in the frequency range at which the PTE is relatively flat, the tissue loss per unit delivered power can be significantly different for each frequency. The Rx-PRS can predict the frequency range at which the tissue loss per unit delivered power is minimized while PTE is maintained high. In this way, frequency adjustment for the PTE and tissue-loss-constrained allowed power is realized by characterizing the Rx-PRS. The design procedure was verified through full-wave electromagnetic field simulations and measurements using de-embedding method. A prototype implant, 1 mm in diameter, achieved PTE of 0.56% ( -22.5 dB) and power delivered to load (PDL) was 224 μW at 200 MHz with 12 mm Tx-to-Rx separation in the tissue environment.

  15. An Airborne Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR)

    NASA Technical Reports Server (NTRS)

    Piepmeier, J.; Racette, P.; Wang, J.; Crites, A.; Doiron, T.; Engler, C.; Lecha, J.; Powers, M.; Simon, E.; Triesky, M.; hide

    2001-01-01

    An airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) for high-altitude observations from the NASA Research Aircraft (ER-2) is discussed. The primary application of the CoSMIR is water vapor profile remote sensing. Four radiometers operating at 50 (three channels), 92, 150, and 183 (three channels) GHz provide spectral coverage identical to nine of the Special Sensor Microwave Imager/Sounder (SSMIS) high-frequency channels. Constant polarization-basis conical and cross-track scanning capabilities are achieved using an elevation-under-azimuth two-axis gimbals.

  16. Apparatus for millimeter-wave signal generation

    DOEpatents

    Vawter, G. Allen; Hietala, Vincent M.; Zolper, John C.; Mar, Alan; Hohimer, John P.

    1999-01-01

    An opto-electronic integrated circuit (OEIC) apparatus is disclosed for generating an electrical signal at a frequency .gtoreq.10 GHz. The apparatus, formed on a single substrate, includes a semiconductor ring laser for generating a continuous train of mode-locked lasing pulses and a high-speed photodetector for detecting the train of lasing pulses and generating the electrical signal therefrom. Embodiments of the invention are disclosed with an active waveguide amplifier coupling the semiconductor ring laser and the high-speed photodetector. The invention has applications for use in OEICs and millimeter-wave monolithic integrated circuits (MMICs).

  17. Linear theory on temporal instability of megahertz faraday waves for monodisperse microdroplet ejection.

    PubMed

    Tsai, Shirley C; Tsai, Chen S

    2013-08-01

    A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery.

  18. High temperature superconductor analog electronics for millimeter-wavelength communications

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Bhasin, K. B.

    1991-01-01

    The performance of high temperature superconductor (HTS) passive microwave circuits up to X-band was encouraging when compared to their metallic counterparts. The extremely low surface resistance of HTS films up to about 10 GHz enables a reduction in loss by as much as 100 times compared to copper when both materials are kept at about 77 K. However, a superconductor's surface resistance varies in proportion to the frequency squared. Consequently, the potential benefit of HTS materials to millimeter-wave communications requires careful analysis. A simple ring resonator was used to evaluate microstrip losses at Ka-band. Additional promising components were investigated such as antennas and phase shifters. Prospects for HTS to favorable impact millimeter-wave communications systems are discussed.

  19. Millimeter-wave and terahertz integrated circuit antennas

    NASA Technical Reports Server (NTRS)

    Rebeiz, Gabriel M.

    1992-01-01

    This paper presents a comprehensive review of integrated circuit antennas suitable for millimeter and terahertz applications. A great deal of research was done on integrated circuit antennas in the last decade and many of the problems associated with electrically thick dielectric substrates, such as substrate modes and poor radiation patterns, have been understood and solved. Several new antennas, such as the integrated horn antenna, the dielectric-filled parabola, the Fresnel plate antenna, the dual-slot antenna, and the log-periodic and spiral antennas on extended hemispherical lenses, have resulted in excellent performance at millimeter-wave frequencies, and are covered in detail in this paper. Also, a review of the efficiency definitions used with planar antennas is given in detail in the appendix.

  20. Simultaneous generation of 40, 80 and 120 GHz optical millimeter-wave from one Mach-Zehnder modulator and demonstration of millimeter-wave transmission and down-conversion

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Qin, Chaoyi

    2017-09-01

    We demonstrate multi-frequency QPSK millimeter-wave (mm-wave) vector signal generation enabled by MZM-based optical carrier suppression (OCS) modulation and in-phase/quadrature (I/Q) modulation. We numerically simulate the generation of 40-, 80- and 120-GHz vector signal. Here, the three different signals carry the same QPSK modulation information. We also experimentally realize 11Gbaud/s QPSK vector signal transmission over 20 km fiber, and the generation of the vector signals at 40-GHz, 80-GHz and 120-GHz. The experimental results show that the bit-error-rate (BER) for all the three different signals can reach the forward-error-correction (FEC) threshold of 3.8×10-3. The advantage of the proposed system is that provide high-speed, high-bandwidth and high-capacity seamless access of TDM and wireless network. These features indicate the important application prospect in wireless access networks for WiMax, Wi-Fi and 5G/LTE.

  1. High-speed millimeter communication through radio-over-free-space-optics network by mode-division multiplexing

    NASA Astrophysics Data System (ADS)

    Chaudhary, Sushank; Amphawan, Angela

    2017-11-01

    In an attempt to meet the goal of distributing millimeter-wave (mm-wave) signals, recent years have witnessed significant relevance being given to combining radio frequency with optical fiber technologies. The future of radio-over-free-space-optics technology aims to build a universal platform for distributing millimeter waves for wireless local area networks without using expensive optical fibers. This work is focused on simultaneous transmission of four independent OFDM-based channels, each carrying 20 Gbps to 40 GHz data, by mode-division multiplexing of Laguerre-Gaussian mode with vortex lens and Hermite-Gaussian mode to realize a total transmission of 80 Gbps to 160 GHz data over 50-km free-space optical link. Moreover, the performance of the proposed system is also evaluated under the influence of various atmospheric turbulences, such as light fog, thin fog, and thick fog.

  2. Low loss millimeter-wave switches based on the Vanadium Dioxide Metal - Insulator - Transition

    NASA Astrophysics Data System (ADS)

    Field, Mark; Hillman, Christopher; Stupar, Philip; Griffith, Zachary; Rodwell, Mark

    2014-03-01

    A new ultra-low-loss and broad band millimeter wave switch technology based on the reversible metal / insulator phase transition of vanadium dioxide has been developed. We report having fabricated series configured, single-pole single-throw (SPST) switches having measured S-parameters from DC to 110 GHz. The on-state insertion loss is 0.2 dB and off-state isolation is 21 dB at 50 GHz. The resulting impedance contrast ratio, ZOFF / ZON, is greater than 500:1 at 50 GHz (i.e. cut-off frequency fc ~ 40 THz). As a demonstration of the technology's utility, we also present the results of a 2-bit real time delay phase shifter incorporating a pair of VO2 SP4T switches. This switch technology's high impedance contrast ratio combined with its compactness, ease of integration, and low voltage operation make it an enabler of previously unachievable high-performance millimeter wave FPGAs.

  3. Advances in real-time millimeter-wave imaging radiometers for avionic synthetic vision

    NASA Astrophysics Data System (ADS)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.; Galliano, Joseph A., Jr.

    1995-06-01

    Millimeter-wave imaging has advantages over conventional visible or infrared imaging for many applications because millimeter-wave signals can travel through fog, snow, dust, and clouds with much less attenuation than infrared or visible light waves. Additionally, passive imaging systems avoid many problems associated with active radar imaging systems, such as radar clutter, glint, and multi-path return. ThermoTrex Corporation previously reported on its development of a passive imaging radiometer that uses an array of frequency-scanned antennas coupled to a multichannel acousto-optic spectrum analyzer (Bragg-cell) to form visible images of a scene through the acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output from the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. An application of this system is its incorporation as part of an enhanced vision system to provide pilots with a synthetic view of a runway in fog and during other adverse weather conditions. Ongoing improvements to a 94 GHz imaging system and examples of recent images taken with this system will be presented. Additionally, the development of dielectric antennas and an electro- optic-based processor for improved system performance, and the development of an `ultra- compact' 220 GHz imaging system will be discussed.

  4. Photonic generation of background-free millimeter-wave ultra-wideband pulses based on a single dual-drive Mach-Zehnder modulator.

    PubMed

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Wang, Li Xian; Zhu, Ning Hua

    2014-03-01

    We propose a novel photonic approach for generating a background-free millimeter-wave (MMW) ultra-wideband (UWB) signal based on a conventional dual-drive Mach-Zehnder modulator (DMZM). One arm of the DMZM is driven by a local oscillator (LO) signal. The LO power is optimized to realize optical carrier suppressed modulation. The other arm is fed by a rectangular signal. The MMW UWB pulses are generated by truncating the continuous wave LO signal into a pulsed one in a photodetector (PD). The generated MMW UWB signal is background-free by eliminating the baseband frequency components because the optical power launched to the PD keeps constant all the time. The proposed method is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at a frequency of 26 GHz meets the Federal Communications Commission spectral mask very well.

  5. Millimeter wave backscatter measurements in support of collision avoidance applications

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.; Snuttjer, Brett R. J.

    1997-11-01

    Millimeter-wave short range radar systems have unique advantages in surface navigation applications, such as military vehicle mobility, aircraft landing assistance, and automotive collision avoidance. In collision avoidance applications, characterization of clutter due to terrain and roadside objects is necessary in order to maximize the signal-to-clutter ratio (SCR) and to minimize false alarms. The results of two types of radar cross section (RCS) measurements at 95 GHz are reported in this paper. The first set of measurements presents data on the normalized RCS (NRCS) as well as clutter distributions of various terrain types at low grazing angles of 5° and 7.5°. The second set of measurements presents RCS data and statistics on various types of roadside objects, such as metallic and wooden sign posts. These results are expected to be useful for designers of short-range millimeter-wave collision avoidance radar systems.

  6. A hybrid MAC protocol design for energy-efficient very-high-throughput millimeter wave, wireless sensor communication networks

    NASA Astrophysics Data System (ADS)

    Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung

    2010-12-01

    This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.

  7. Investigation of radiant millimeter wave/terahertz radiation from low-infrared signature targets

    NASA Astrophysics Data System (ADS)

    Aytaç, B.; Alkuş, Ü.; Sivaslıgil, M.; Şahin, A. B.; Altan, H.

    2017-10-01

    Millimeter (mm) and sub-mm wave radiation is increasingly becoming a region of interest as better methods are developed to detect in this wavelength range. The development of sensitive focal plane array (FPA) architectures as well as single pixel scanners has opened up a new field of passive detection and imaging. Spectral signatures of objects, a long standing area of interest in the Short Wave Infrared (SWIR), Mid-Wave (MWIR) and Long Wave-IR (LWIR) bands can now be assessed in the mm-wave/terahertz (THz) region. The advantage is that this form of radiation is not as adversely affected by poor atmospheric conditions compared to other bands. In this study, a preliminary experiment in a laboratory environment is performed to assess the radiance from targets with low infrared signatures in the millimeter wave/terahertz (THz) band (<1 THz). The goal of this approach is to be able to model the experimental results to better understand the mm-wave/THz signature of targets with low observability in the IR bands.

  8. On increasing the spectral efficiency and transmissivity in the data transmission channel on the spacecraft-ground tracking station line

    NASA Astrophysics Data System (ADS)

    Andrianov, M. N.; Kostenko, V. I.; Likhachev, S. F.

    2018-01-01

    The algorithms for achieving a practical increase in the rate of data transmission on the space-craft-ground tracking station line has been considered. This increase is achieved by applying spectral-effective modulation techniques, the technology of orthogonal frequency compression of signals using millimeterrange radio waves. The advantages and disadvantages of each of three algorithms have been revealed. A significant advantage of data transmission in the millimeter range has been indicated.

  9. Resonant-tunnelling diode oscillator using a slot-coupled quasioptical open resonator

    NASA Technical Reports Server (NTRS)

    Stephan, K. D.; Brown, E. R.; Parker, C. D.; Goodhue, W. D.; Chen, C. L.

    1991-01-01

    A resonant-tunneling diode has oscillated at X-band frequencies in a microwave circuit consisting of a slot antenna coupled to a semiconfocal open resonator. Coupling between the open resonator and the slot oscillator improves the noise-to-carrier ratio by about 36 dB relative to that of the slot oscillator alone in the 100-200 kHz range. A circuit operating near 10 GHz has been designed as a scale model for millimeter- and submillimeter-wave applications.

  10. Recent Upgrades and Extensions of the ASDEX Upgrade ECRH System

    NASA Astrophysics Data System (ADS)

    Wagner, Dietmar; Stober, Jörg; Leuterer, Fritz; Monaco, Francesco; Münich, Max; Schmid-Lorch, Dominik; Schütz, Harald; Zohm, Hartmut; Thumm, Manfred; Scherer, Theo; Meier, Andreas; Gantenbein, Gerd; Flamm, Jens; Kasparek, Walter; Höhnle, Hendrik; Lechte, Carsten; Litvak, Alexander G.; Denisov, Gregory G.; Chirkov, Alexey; Popov, Leonid G.; Nichiporenko, Vadim O.; Myasnikov, Vadim E.; Tai, Evgeny M.; Solyanova, Elena A.; Malygin, Sergey A.

    2011-03-01

    The multi-frequency Electron Cyclotron Heating (ECRH) system at the ASDEX Upgrade tokamak employs depressed collector gyrotrons, step-tunable in the range 105-140 GHz. The system is equipped with a fast steerable launcher allowing for remote steering of the ECRH RF beam during the plasma discharge. The gyrotrons and the mirrors are fully integrated in the discharge control system. The polarization can be controlled in a feed-forward mode. 3 Sniffer probes for millimeter wave stray radiation detection have been installed.

  11. Detecting Extrasolar Planets With Millimeter-Wave Observatories

    NASA Astrophysics Data System (ADS)

    1996-01-01

    Do nearby stars have planetary systems like our own? How do such systems evolve? How common are such systems? Proposed radio observatories operating at millimeter wavelengths could start answering these questions within the next 6-10 years, according to scientists at the National Radio Astronomy Observatory (NRAO). Bryan Butler, Robert Brown, Richard Simon, Al Wootten and Darrel Emerson, all of NRAO, presented their findings today to the American Astronomical Society meeting in San Antonio, TX. Detecting planets circling other stars is a particularly difficult task, and only a few such planets have been discovered so far. In order to answer fundamental questions about planetary systems and their origin, scientists need to find and study many more extrasolar planets. According to the NRAO scientists, millimeter-wavelength observatories could provide valuable information about extrasolar planetary systems at all stages of their evolution. "With instruments planned by 2005, we could detect planets the size of Jupiter around a solar-type star out to a distance of 100 light-years," said Robert Brown, Associate Director of NRAO. "That means," he added, "that we could survey approximately 2,000 stars of different types to learn if they have planets this size." Millimeter waves occupy the portion of the electromagnetic spectrum between radio microwaves and infrared waves. Telescopes for observing at millimeter wavelengths utilize advanced electronic equipment similar to that used in radio telescopes observing at longer wavelengths. Millimeter-wave observatories offer a number of advantages in the search for extrasolar planets. Planned multi-antenna millimeter-wave telescopes can provide much higher resolving power, or ability to see fine detail, than current optical or infrared telescopes. Millimeter-wave observations would not be degraded by interference from the "zodiacal light" reflected by interplanetary dust, either in the extrasolar system or our own solar system. Another important advantage is that, at millimeter wavelengths, the star's brightness poses less of a problem for observers because, while it is still brighter than a planet, the difference in brightness between the two is far less. Because of the physical nature of the objects themselves, protoplanets in different stages of formation could readily be detected by advanced millimeter-wave observatories. The observatories that could provide these advantages are the Millimeter Array (MMA), a proposed 40-antenna millimeter-wave telescope that could be operational by 2005, and an upgraded version of the existing Very Large Array (VLA), a 27-antenna radio telescope in New Mexico. The MMA is a radio telescope designed to operate at wavelengths from 11.5 millimeters down to 0.5 millimeters, or frequencies from 26 to 650 GHz. It will use 40 precision antennas, each 8 meters in diameter, all operating in concert to produce extremely high- resolution images. As is done with the existing VLA and VLBA radio telescopes, the signals from all the MMA antennas will be processed in a special-purpose computer called a correlator. The processing of the signals corrects for atmospheric propagation effects and for the fact that the "synthesized telescope" is in fact made up of individual antennas. Planning for the MMA began as early as 1983, and a number of scientific workshops have allowed U.S. researchers to make known their needs for a millimeter-wave observatory to serve a wide variety of specialties. The National Science Foundation (NSF) provided initial design funding to NRAO in 1995 for MMA studies. Currently, MMA efforts are centered on selecting an appropriate site, which must be very high, dry and flat. A site at 16,500 feet elevation in northern Chile is now being tested. Hawaii's Mauna Kea is also under consideration. If funding is approved for the MMA, the instrument could be in operation by the year 2005. The MMA is expected to be an international instrument, with funding from both U.S. and foreign sources. The MMA will be capable of imaging planetary systems in the earliest stages of their formation. The MMA will be able to detect many more young, low-mass stellar systems and to examine them to determine if they have the disks from which planetary systems are formed. In addition, the MMA could be used to examine the properties of these disks in detail. The properties that could be examined include size, temperature, dust density and chemistry. A number of enhancements have been proposed to the MMA, including longer baselines for greater resolution, the ability to observe at higher frequencies, and greater signal bandwidth. This enhanced MMA would have the sensitivity to directly detect very young giant planets in the nearest star-forming regions, the resolving power to distinguish them from their central stars, and the ability to detect giant planets by measuring their gravitational effect upon their parent stars and thus determine their masses. The VLA, dedicated in 1980, also could contribute to the search for extrasolar planets if proposed upgrades are implemented. Though originally designed to operate at a highest frequency of 24 GHz, the VLA recently has been equipped with receivers for 40-50 GHz. Funding for receivers in this range, at a wavelength of 7 millimeters, was provided in 1993 by the government of Mexico. The VLA now has 13 of its 27 antennas equipped with these 40-50 GHz receivers. Plans for upgrading the VLA include equipping all remaining antennas with such receivers, improving its electronics, and improving its resolution by adding antennas at extended distances. The upgraded VLA will be able to study the inner parts of the dust disks surrounding young stars -- disks that are believed to be the precursors to planetary systems. The inner parts of such disks are obscured at shorter wavelengths. The enhanced VLA will be able to reveal processes occurring in these disks at scales comparable to the size of our own Solar System. "The reason we hope to search for extrasolar planets with millimeter-wave telescopes is that we can build on the experience U.S. astronomers have gained with both millimeter observing and aperture-synthesis telescopes such as the VLA over the past two or three decades," said Brown. He added, "We look forward to applying this expertise to the challenge of answering one of mankind's oldest questions."

  12. Applications of superconducting bolometers in security imaging

    NASA Astrophysics Data System (ADS)

    Luukanen, A.; Leivo, M. M.; Rautiainen, A.; Grönholm, M.; Toivanen, H.; Grönberg, L.; Helistö, P.; Mäyrä, A.; Aikio, M.; Grossman, E. N.

    2012-12-01

    Millimeter-wave (MMW) imaging systems are currently undergoing deployment World-wide for airport security screening applications. Security screening through MMW imaging is facilitated by the relatively good transmission of these wavelengths through common clothing materials. Given the long wavelength of operation (frequencies between 20 GHz to ~ 100 GHz, corresponding to wavelengths between 1.5 cm and 3 mm), existing systems are suited for close-range imaging only due to substantial diffraction effects associated with practical aperture diameters. The present and arising security challenges call for systems that are capable of imaging concealed threat items at stand-off ranges beyond 5 meters at near video frame rates, requiring substantial increase in operating frequency in order to achieve useful spatial resolution. The construction of such imaging systems operating at several hundred GHz has been hindered by the lack of submm-wave low-noise amplifiers. In this paper we summarize our efforts in developing a submm-wave video camera which utilizes cryogenic antenna-coupled microbolometers as detectors. Whilst superconducting detectors impose the use of a cryogenic system, we argue that the resulting back-end complexity increase is a favorable trade-off compared to complex and expensive room temperature submm-wave LNAs both in performance and system cost.

  13. Variable Coupling Scheme for High Frequency Electron Spin Resonance Resonators Using Asymmetric Meshes

    PubMed Central

    Tipikin, D. S.; Earle, K. A.; Freed, J. H.

    2010-01-01

    The sensitivity of a high frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter wave transmission line optical axis. We quantify the performance of this device with nitroxide spin-label spectra in both a lossy aqueous solution and a low loss solid state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems in particular are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high frequency ESR to the study of biological systems at physiological conditions, for example. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in signal to noise at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples. PMID:20458356

  14. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1989-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. Work performed has shown that laboratory measurements of the millimeter-wave opacity of ammonia between 7.5 mm and 9.3 mm and also at the 3.2 mm wavelength require a different lineshape to be used in the theoretical prediction for millimeter-wave ammonia opacity than was previously used. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  15. Laboratory microwave, millimeter wave and far-infrared spectra of dimethyl sulfide

    NASA Astrophysics Data System (ADS)

    Jabri, A.; Van, V.; Nguyen, H. V. L.; Mouhib, H.; Kwabia Tchana, F.; Manceron, L.; Stahl, W.; Kleiner, I.

    2016-05-01

    Context. Dimethyl sulfide, CH3SCH3 (DMS), is a nonrigid, sulfur-containing molecule whose astronomical detection is considered to be possible in the interstellar medium. Very accurate spectroscopic constants were obtained by a laboratory analysis of rotational microwave and millimeter wave spectra, as well as rotation-torsional far-infrared (FIR) spectra, which can be used to predict transition frequencies for a detection in interstellar sources. Aims: This work aims at the experimental study and theoretical analysis of the ground torsional state and ground torsional band ν15 of DMS in a large spectral range for astrophysical use. Methods: The microwave spectrum was measured in the frequency range 2-40 GHz using two Molecular Beam Fourier Transform MicroWave (MB-FTMW) spectrometers in Aachen, Germany. The millimeter spectrum was recorded in the 50-110 GHz range. The FIR spectrum was measured for the first time at high resolution using the FT spectrometer and the newly built cryogenic cell at the French synchrotron SOLEIL. Results: DMS has two equivalent methyl internal rotors with a barrier height of about 730 cm-1. We performed a fit, using the XIAM and BELGI-Cs-2Tops codes, that contained the new measurements and previous transitions reported in the literature for the ground torsional state νt = 0 (including the four torsional species AA, AE, EA and EE) and for the ground torsional band ν15 = 1 ← 0 (including only the AA species). In the microwave region, we analyzed 584 transitions with J ≤ 30 of the ground torsional state νt = 0 and 18 transitions with J ≤ 5 of the first excited torsional state νt = 1. In the FIR range, 578 transitions belonging to the torsional band ν15 = 1 ← 0 with J ≤ 27 were assigned. Totally, 1180 transitions were included in a global fit with 21 accurately determined parameters. These parameters can be used to produce a reliable line-list for an astrophysical detection of DMS. Full Tables B.1 and C.1, and Table E.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A127

  16. High performance millimeter-wave microstrip circulators and isolators

    NASA Technical Reports Server (NTRS)

    Shih, Ming; Pan, J. J.

    1990-01-01

    Millimeter wave systems, phased array antennas, and high performance components all require wideband circulators (and isolators) to perform diplexing and switching, to improve isolation and Voltage Standing Wave Ratio (VSWR), and to construct IMPATT diode reflection amplifiers. Presently, most of the millimeter-wave circulators and isolators are available in the configurations of waveguide or stripline, both of which suffer from the shortcomings of bulky size/weight, narrow bandwidth, and poor compatibility with monolithic millimeter-wave integrated circuits (MMIC). MMW microstrip circulators/isolators can eliminate or improve these shortcomings. Stub-tuned microstrip circulator configuration were developed utilizing the electromagnetic fields perturbation technique, the adhesion problems of microstrip metallization on new ferrite substrate were overcome, the fabrication, assembly, packaging techniques were improved, and then successfully designed, fabricated a Ka band circulator which has isolation and return loss of greater than 16dB, insertion loss less than 0.7dB. To assess the steady and reliable performance of the circulator, a temperature cycling test was done over the range of -20 to +50 C for 3 continuous cycles and found no significant impact or variation of circulator performance.

  17. High quality factor manganese-doped aluminum lumped-element kinetic inductance detectors sensitive to frequencies below 100 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.; Johnson, B. R.; Abitbol, M. H.

    Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less

  18. High quality factor manganese-doped aluminum lumped-element kinetic inductance detectors sensitive to frequencies below 100 GHz

    DOE PAGES

    Jones, G.; Johnson, B. R.; Abitbol, M. H.; ...

    2017-05-29

    Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less

  19. Millimeter Wave Spectroscopy in a Semi-Confocal Fabry-Perot Cavity

    NASA Astrophysics Data System (ADS)

    Drouin, Brian; Tang, Adrian; Reck, Theodore J.; Nemchick, Deacon J.; Cich, Matthew J.; Crawford, Timothy J.; Raymond, Alexander W.; Chang, M.-C. Frank; Kim, Rod M.

    2017-06-01

    A new generation of CMOS circuits operating at 89-104 GHz with improved output power and pulse switch isolation have enhanced the performance of the miniaturized pulsed-echo Fourier transform spectrometer under development for planetary exploration at the Jet Propulsion laboratory. Additional progress has been made by creating a waveguide-fed structure for the novel planar coupler design. This structure has enabled characterization of each component in the system and enabled spectroscopy to be done with conventional millimeter hardware that enables (1) direct comparisons to the CMOS components, (2) enhanced bandwidth of 74-109 GHz, and (3) amplification of the transmitter prior to cavity injection. We have now demonstrated the technique with room temperature detections on multiple species including N_2O, OCS, CH_3CN, CH_3OH, CH_3NH_2, CH_3CHO, CH_3Cl, HDO, D_2O, CH_3CH_2CN and CH_3CH_2OH. Of particular interest to spectroscopic work in the millimeter range is the ongoing incorporation of a ΔΣ radio-frequency source into the millimeter-wave lock-loop - this has improved the phase-noise of the tunable CMOS transceiver to better than the room-temperature Doppler limit and provides a promising source for general use that may replace the high end microwave synthesizers. We are in the process of building a functional interface to the various subsystems. We will present a trade-space study to determine the optimal operating conditions of the pulse-echo system.

  20. A general numerical analysis of the superconducting quasiparticle mixer

    NASA Technical Reports Server (NTRS)

    Hicks, R. G.; Feldman, M. J.; Kerr, A. R.

    1985-01-01

    For very low noise millimeter-wave receivers, the superconductor-insulator-superconductor (SIS) quasiparticle mixer is now competitive with conventional Schottky mixers. Tucker (1979, 1980) has developed a quantum theory of mixing which has provided a basis for the rapid improvement in SIS mixer performance. The present paper is concerned with a general method of numerical analysis for SIS mixers which allows arbitrary terminating impedances for all the harmonic frequencies. This analysis provides an approach for an examination of the range of validity of the three-frequency results of the quantum mixer theory. The new method has been implemented with the aid of a Fortran computer program.

  1. 338-GHz Semiconductor Amplifier Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin; hide

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.

  2. A Study of the Interaction of Millimeter Wave Fields with Biological Systems.

    DTIC Science & Technology

    1984-07-01

    structurally complex proteins . The third issue is the relevance of the parameters used in previous modeling efforts. The strength of the exciton-phonon...modes of proteins in the millimeter and submillimeter regions of the electromagnetic spectrum. Specifically: o " Four separate groups of frequencies...Rhodopseudomonas Sphaeroides (4). In industrial or military environments a significant number of personnel are exposed to electromagnetic fields

  3. Near millimeter wave characterization of dual mode materials

    NASA Astrophysics Data System (ADS)

    Stead, Michael; Simonis, George

    1989-05-01

    Nine materials which have application to both the millimeter and IR wavelength regions have been analyzed, and their indices of refraction and absorption coefficients have been determined in the 4-18/cm range. The lowest loss materials are found to be ALON and sapphire, and the highest loss samples to be ZnS and ZnSe. The mm-wave indices are all shown to be higher than their corresponding IR indices.

  4. Millimeter-Wave Voltage-Controlled Oscillators in 0.13-micrometer CMOS Technology

    DTIC Science & Technology

    2006-06-01

    controlled oscillators. Varactor , transistor, and in- ductor designs are optimized to reduce the parasitic capacitances. An investigation of tradeoff between...quality factor and tuning range for MOS varactors at 24 GHz has shown that the polysilicon gate lengths between 0.18 and 0.24 m result both good...millimeter wave, MOS varactor , quality factor, transmission line, voltage-controlled oscillator (VCO). I. INTRODUCTION WITH THE RAPID advance of high

  5. Characteristics of enhanced-mode AlGaN/GaN MIS HEMTs for millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Min; Ahn, Ho-Kyun; Jung, Hyun-Wook; Shin, Min Jeong; Lim, Jong-Won

    2017-09-01

    In this paper, an enhanced-mode (E-mode) AlGaN/GaN high electron mobility transistor (HEMT) was developed by using 4-inch GaN HEMT process. We designed and fabricated Emode HEMTs and characterized device performance. To estimate the possibility of application for millimeter wave applications, we focused on the high frequency performance and power characteristics. To shift the threshold voltage of HEMTs we applied the Al2O3 insulator to the gate structure and adopted the gate recess technique. To increase the frequency performance the e-beam lithography technique was used to define the 0.15 um gate length. To evaluate the dc and high frequency performance, electrical characterization was performed. The threshold voltage was measured to be positive value by linear extrapolation from the transfer curve. The device leakage current is comparable to that of the depletion mode device. The current gain cut-off frequency and the maximum oscillation frequency of the E-mode device with a total gate width of 150 um were 55 GHz and 168 GHz, respectively. To confirm the power performance for mm-wave applications the load-pull test was performed. The measured power density of 2.32 W/mm was achieved at frequencies of 28 and 30 GHz.

  6. IMPATT Diodes Based on 〈111〉, 〈100〉, and 〈110〉 Oriented GaAs: A Comparative Study to Search the Best Orientation for Millimeter-Wave Atmospheric Windows

    PubMed Central

    Banerjee, Bhadrani; Tripathi, Anvita; Das, Adrija; Singh, Kumari Alka; Banerjee, J. P.

    2015-01-01

    The authors have carried out the large-signal (L-S) simulation of double-drift region (DDR) impact avalanche transit time (IMPATT) diodes based on 〈111〉, 〈100〉, and 〈110〉 oriented GaAs. A nonsinusoidal voltage excited (NSVE) L-S simulation technique is used to investigate both the static and L-S performance of the above-mentioned devices designed to operate at millimeter-wave (mm-wave) atmospheric window frequencies, such as 35, 94, 140, and 220 GHz. Results show that 〈111〉 oriented GaAs diodes are capable of delivering maximum RF power with highest DC to RF conversion efficiency up to 94 GHz; however, the L-S performance of 〈110〉 oriented GaAs diodes exceeds their other counterparts while the frequency of operation increases above 94 GHz. The results presented in this paper will be helpful for the future experimentalists to choose the GaAs substrate of appropriate orientation to fabricate DDR GaAs IMPATT diodes at mm-wave frequencies. PMID:27347524

  7. Synthesis of structures of electric small-sized radiators using impedance matching materials for millimeter waves

    NASA Astrophysics Data System (ADS)

    Klimov, Konstantin N.; Epaneshnikova, Irina K.; Belevtsev, Andrey M.; Godin, Andrey S.; Drize, Artemiy D.

    2017-10-01

    The usage of impedance matching materials for millimeters waves in antenna systems is a promising direction in the development of modern radar stations that allows unifying nomenclature of radiating elements. One of possible appliances of impedance matching materials is transfer of working frequencies of radiating elements to bands with greater wavelength. The usage of several impedance matching mediums, for example, with ɛr=μr=2, ɛr=μr=4, ɛr=μr=8, ɛr=μr=10 allows to extend waveband of the radiating element by 2, 4, 8 and 10 times.

  8. Millimeter- and submillimeter-wave characterization of various fabrics.

    PubMed

    Dunayevskiy, Ilya; Bortnik, Bartosz; Geary, Kevin; Lombardo, Russell; Jack, Michael; Fetterman, Harold

    2007-08-20

    Transmission measurements of 14 fabrics are presented in the millimeter-wave and submillimeter-wave electromagnetic regions from 130 GHz to 1.2 THz. Three independent sources and experimental set-ups were used to obtain accurate results over a wide spectral range. Reflectivity, a useful parameter for imaging applications, was also measured for a subset of samples in the submillimeter-wave regime along with polarization sensitivity of the transmitted beam and transmission through doubled layers. All of the measurements were performed in free space. Details of these experimental set-ups along with their respective challenges are presented.

  9. Measurements of the radar cross section and Inverse Synthetic Aperture Radar (ISAR) images of a Piper Navajo at 9.5 GHz and 49 GHz

    NASA Astrophysics Data System (ADS)

    Dinger, R.; Kinzel, G.; Lam, W.; Jones, S.

    1993-01-01

    Studies were conducted of the enhanced radar cross section (RCS) and improved inverse synthetic aperture radar (ISAR) image quality that may result at millimeter-wave (mmw) frequencies. To study the potential for mmw radar in these areas, a program was initiated in FY-90 to design and fabricate a 49.0- to 49.5-GHz stepped-frequency radar. After conducting simultaneous measurements of the RCS of an airborne Piper Navajo twin-engine aircraft at 9.0 and 49.0 GHz, the RCS at 49.0 GHz was always found to be higher than at 9.0 GHz by an amount that depended on the target aspect angle. The largest increase was 19 dB and was measured at nose-on incidence; at other angles of incidence, the increase ranged from 3 to 10 dB. The increase averaged over a 360-degree aspect-angle change was 7.2 dB. The 49.0-GHz radar has demonstrated a capability to gather well-calibrated millimeter-wave RCS data of flying targets. In addition, the successful ISAR images obtainable with short aperture time suggest that 49.0-GHz radar may have a role to play in noncooperative target identification (NCTI).

  10. Extension of the millimeter- and submillimeter-wave spectral databases of deuterated methyl cyanides (CH2DCN and CHD2CN)

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Walters, A.; Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.; Kahane, C.; Ceccarelli, C.

    2013-05-01

    Context. The study of deuterated abundant molecules is recognized as important in understanding molecular complexity in star-forming regions. Aims: We seek to assign the laboratory millimeter and submillimeter wave rotational spectra of the CHD2CN and CH2DCN deuterated isotopologues of methyl cyanide over a wide frequency range in order to provide precise spectral predictions for observations. Methods: Using the solid-state submillimeter-wave spectrometer in Lille, we measured and assigned 723 new lines for CHD2CN and 307 new lines for CH2DCN. The observed rotational transition frequencies were fitted with the ASFIT program to determine the spectroscopic parameters. The prediction of transition frequencies was performed using the SPCAT program. Results: Measurements for both isotoplogues were taken up to 945 GHz and are made available at the CDS. For CHD2CN this is significantly higher than the previous range of measurement up to 40 GHz. For CH2DCN many more lines of high Ka have been measured than previously. Conclusions: Our work confirms the recent analysis for CHD2CN given in the CDMS database and extends the number of determined molecular parameters from 10 to 19. For CH2DCN, 3 new parameters including DK have been determined, and the uncertainty on parameters has been decreased by a factor of approximately 2. For both isotopologues the measured data show shifts in the frequency of some high Ka transitions that are attributed to interactions with a low-lying vibrational state. The availability of more directly measured data and the increase in confidence of the predictions to higher quantum numbers and frequencies will be helpful for the radio astronomical detection of deuterated isotopologues of methyl cyanide in the interstellar medium. Full Tables B.1 and B.2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/553/A84

  11. Strip dielectric wave guide antenna-for the measurement of dielectric constant of low-loss materials

    NASA Astrophysics Data System (ADS)

    Rastogi, Alok Kumar; Tiwari, A. K.; Shrivastava, R. P.

    1993-07-01

    The value of dielectric constant are the most important parameters in material science technology. In micro-wave and millimeter wave circuits using dielectric materials the values of this parameters should be known accurately. It is observed that the number of methods are reported in litrature, however these methods impose difficulties in experimentation and are not very accurate. In this paper a novel approach to the measurement of the dielectric constant of low loss materials at micro-wave and millimeter wave frequencies has been discussed. In this method by using antenna theory, a metallic strip dielectric guide is taken in to constideration and band reject phenomenon of dielectric antenna is used. Frequency response of an antenna in band reject mode is a function of the dimensional parameters, such as the metallic strip period, the profile of the metallic strip and the dielectric constant of the material used. Hence if one measure the frequency responce of the antenna in band reject mode, the dielectric constant of the material is determined provided all other parameters are known. This method gives a direct measure of dielectric constant and is quite accurate as computer techniques are used for evaluating the dielectric constant. This method verified experimentally also.

  12. Detection of small metal particles by a quasi-optical system at sub-millimeter wavelength

    NASA Astrophysics Data System (ADS)

    Kitahara, Yasuyuki; Domier, C. W.; Ikeda, Makoto; Pham, Anh-Vu; Luhmann, Neville C.

    2016-04-01

    Inspection of alien metal particles in electronic materials such as glass fibers and resins is a critical issue to control the quality and guarantee the safety of products. In this paper, we present a new detection technique using sub-millimeter wave for films as electric materials in product lines. The advantage of using sub-millimeter wave frequency is that it is easy to distinguish conductive particles from a nonconductive material such as plastic films. Scattering of a submillimeter wave by a metal particle is used as the detection principle. By simulation, it is observed that the scattering pattern varies intricately as the diameter varies from 10 to 700 μm at 300 GHz. The demonstration system is composed of a Keysight performance network analyzer (N5247A PNA-X) with 150-330 GHz VDI extension modules, transmitting and receiving antennas, and focusing dielectric lens. An output signal is radiated via an antenna and focused onto a metal particle on a film. The wave scattered by the metal particle is detected by an identical antenna through a lens. The signal scattered from a metal particle is evaluated from the insertion loss between antennas (S21). The result shows that a particle of diameter 300 μm is detectable at 150-330 GHz through S21 in the experimental system that we prepared. Peaks calculated in simulation were detected in experimental data as well as in the curves of the particle diameter versus S21. It was shown that using this peak frequency could improve S21 level without higher frequency.

  13. TEMPEST-D MM-Wave Radiometer

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Gaier, T.; Reising, S. C.; Lim, B.; Stachnik, R. A.; Jarnot, R.; Berg, W. K.; Kummerow, C. D.; Chandrasekar, V.

    2016-12-01

    The TEMPEST-D radiometer is a five-frequency millimeter-wave radiometer at 89, 165, 176, 180, and 182 GHz. The direct-detection architecture of the radiometer reduces its power consumption and eliminates the need for a local oscillator, reducing complexity. The Instrument includes a blackbody calibrator and a scanning reflector, which enable precision calibration and cross-track scanning. The MMIC-based millimeter-wave radiometers take advantage of the technology developed under extensive investment by the NASA Earth Science Technology Office (ESTO). The five-frequency millimeter-wave radiometer is built by Jet Propulsion Laboratory (JPL), which has produced a number of state-of-the-art spaceborne microwave radiometers, such as the Microwave Limb Sounder (MLS), Advanced Microwave Radiometer (AMR) for Jason-2/OSTM, Jason-3, and the Juno Microwave Radiometer (MWR). The TEMPEST-D Instrument design is based on a 165 to 182 GHz radiometer design inherited from RACE and an 89 GHz receiver developed under the ESTO ACT-08 and IIP-10 programs at Colorado State University (CSU) and JPL. The TEMPEST reflector scan and calibration methodology is adapted from the Advanced Technology Microwave Sounder (ATMS) and has been validated on the Global Hawk unmanned aerial vehicle (UAV) using the High Altitude MMIC Sounding radiometer (HAMSR) instrument. This presentation will focus on the design, development and performance of the TEMPEST-D radiometer instrument. The flow-down of the TEMPEST-D mission objectives to instrument level requirements will also be discussed.

  14. Millimeter Wave Generation by Relativistic Electron Beams.

    DTIC Science & Technology

    1984-12-01

    frequency and wave vector matching relations for influence of various nonlinear effects on this instability is this four-wave interaction require...following coupled mode equations _ 6 = 6 _ (14)-- v vx (14) ." .’ for the lower hybrid sidebands: v - V 2 - The x component of the resultant vector equation...involves a purely growing modte, a four-wave interaction plitoces is analysed, including a u ap ti wave- vector up-shifted and ilown-shiftes upper

  15. Millimeter wave treatment induces apoptosis via activation of the mitochondrial-dependent pathway in human osteosarcoma cells.

    PubMed

    Wu, Guangwen; Chen, Xuzheng; Peng, Jun; Cai, Qiaoyan; Ye, Jinxia; Xu, Huifeng; Zheng, Chunsong; Li, Xihai; Ye, Hongzhi; Liu, Xianxiang

    2012-05-01

    Millimeter wave (MW) is an electromagnetic wave with a wavelength between 1 and 10 mm and a frequency of 30-300 GHz that causes multiple biological effects and has been used as a major component in physiotherapies for the clinical treatment of various types of diseases including cancers. However, the precise molecular mechanism of the anticancer activity of millimeter wave remains to be elucidated. In the present study, we investigated the cellular effects of the MW in the U-2OS human osteosarcoma cell line. Our results showed that MW induced cell morphological changes and reduced cell viability in a dose- and time-dependent manner suggesting that MW inhibited the growth of U-2OS cells as demonstrated. Hoechst 33258 staining and Annexin V/propidium iodide double staining exhibited the typical nuclear features of apoptosis and increased the proportion of apoptotic Annexin V-positive cells in a dose-dependent manner, respectively. In addition, MW treatment caused loss of plasma membrane asymmetry, release of cytochrome c, collapse of mitochondrial membrane potential, activation of caspase-9 and -3, and increase of the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2. Taken together, the results indicate that the U-2OS cell growth inhibitory activity of MW was due to mitochondrial-mediated apoptosis, which may partly explain the anticancer activity of millimeter wave treatment.

  16. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  17. Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond

    NASA Astrophysics Data System (ADS)

    Austermann, J. E.; Beall, J. A.; Bryan, S. A.; Dober, B.; Gao, J.; Hilton, G.; Hubmayr, J.; Mauskopf, P.; McKenney, C. M.; Simon, S. M.; Ullom, J. N.; Vissers, M. R.; Wilson, G. W.

    2018-05-01

    Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-m Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise ˜ 7000 polarization-sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers—a critical step toward future large-scale experiments with over 10^5 detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.

  18. Remote Effects of Electromagnetic Millimeter Waves on Experimentally Induced Cold Pain: A Double-Blinded Crossover Investigation in Healthy Volunteers.

    PubMed

    Partyla, Tomasz; Hacker, Henriette; Edinger, Hardy; Leutzow, Bianca; Lange, Joern; Usichenko, Taras

    2017-03-01

    The hypoalgesic effect of electromagnetic millimeter waves (MW) is well studied in animal model; however, the results of human research are controversial. The aim of this study was to evaluate the effects of various frequency ranges of MW on hypoalgesia using the cold pressor test (CPT). Experimental pain was induced using standardized CPT protocols in 20 healthy male volunteers. The skin of the lower part of sternum was exposed to MW with a frequency of 42.25 GHz (active generator); MW within 50-75 GHz frequency range (noise generator); or an inactive MW device (placebo generator) in a random crossover double-blinded manner. Pain threshold, measured using the CPT, was the primary outcome. Other CPT parameters, heart rate, blood pressure, incidence of subjective sensations (paresthesia) during exposure, as well as quality of volunteers' blinding were also recorded. The end points of the condition with exposure to 42.25 GHz, were compared with baseline; exposure to noise 50-75 GHz; and placebo generators. Pain threshold increased during exposure to the 42.25 GHz generator when compared with baseline: median difference (MD), 1.97 seconds (95% confidence interval [CI], 0.35-3.73) and noise generator: MD, 1.27 seconds (95% CI, 0.05-2.33) but not compared with the placebo generator. Time to onset of cold and increasing pain sensations as well as diastolic blood pressure increased under the exposure to the 42.25 GHz generator when compared with baseline and noise generator. Other outcome measures were comparable among the study conditions. We were able to partially confirm the previously suggested hypoalgesic effects of low-intensity electromagnetic MW. However, the effect was indistinguishable from the placebo condition in our investigation.

  19. A thin wideband high-spatial-resolution focusing metasurface for near-field passive millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Chu, Hongjun; Qi, Jiaran; Xiao, Shanshan; Qiu, Jinghui

    2018-04-01

    In this paper, we present a flat transmission-type focusing metasurface for the near-field passive millimeter-wave (PMMW) imaging systems. Considering the non-uniform wavefront of the actual feeding horn, the metasurface is configured by unit cells consisting of coaxial annular apertures and is optimized to achieve broadband, high spatial resolution, and polarization insensitive properties important for PMMW imaging applications in the frequency range from 33 GHz to 37 GHz, with the focal spot as small as 0.43λ0 (@35 GHz). A prototype of the proposed metasurface is fabricated, and the measurement results fairly agree with the simulation ones. Furthermore, an experimental single-sensor PMMW imaging system is constructed based on the metasurface and a Ka-band direct detection radiometer. The experimental results show that the azimuth resolution of the system can reach approximately 4 mm (≈0.47λ0). It is shown that the proposed metasurface can potentially replace the bulky dielectric-lens or reflector antenna to achieve possibly more compact PMMW imaging systems with high spatial resolution approaching the diffraction-limit.

  20. The 60 GHz radiometric local vertical sensor experiment

    NASA Technical Reports Server (NTRS)

    Grauling, C. H., Jr.

    1973-01-01

    The experiment concept involves the use of millimeter wave radiation the atmospheric oxygen to provide vertical sensing information to a satellite-borne radiometer. The radiance profile studies require the calculation of ray brightness temperature as a function of tangential altitude and atmosphere model, and the computer program developed for this purpose is discussed. Detailed calculations have been made for a total of 12 atmosphere models, including some showing severe warning conditions. The experiment system analysis investigates the effect of various design choices on system behavior. Calculated temperature profiles are presented for a wide variety of frequencies, bandwidths, and atmosphere models. System performance is determined by the convolution of the brightness temperature and an assumed antenna pattern. A compensation scheme to account for different plateau temperatures is developed and demonstrated. The millimeter wave components developed for the local vertical sensor are discussed, with emphasis on the antenna, low noise mixer, and solid state local oscillator. It was concluded that a viable sensing technique exists, useful over a wide range of altitude with an accuracy generally on the order of 0.01 degree or better.

  1. Monolithic millimeter-wave diode array beam controllers: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Sjogren, L. B.; Liu, H.-X. L.; Wang, F.; Liu, T.; Wu, W.; Qin, X.-H.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.; Maserjian, J.

    1992-01-01

    In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively.

  2. Towards Terahertz MMIC Amplifiers: Present Status and Trends

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene

    2006-01-01

    This viewgraph presentation surveys the fastest Monolithic Millimeter-wave Integrated Circuit (MMIC) amplifiers to date; summarize previous solid state power amp results to date; reviews examples of MMICs, reviews Power vs. Gate periphery and frequency; Summarizes previous LNA results to date; reviews Noise figure results and trends toward higher frequency

  3. Laboratory measurements of the millimeter-wave spectra of calcium isocyanide

    NASA Astrophysics Data System (ADS)

    Steimle, Timothy C.; Saito, Shuji; Takano, Shuro

    1993-06-01

    The ground state of CaNC is presently characterized by mm-wave spectroscopy, using a standard Hamiltonian linear molecule model to analyze the spectrum. The resulting spectroscopic parameters were used to predict the transition frequencies and Einstein A-coefficients, which should make possible a quantitative astrophysical search for CaNC.

  4. Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine Y.

    1994-01-01

    The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.

  5. Polarization-based material classification technique using passive millimeter-wave polarimetric imagery.

    PubMed

    Hu, Fei; Cheng, Yayun; Gui, Liangqi; Wu, Liang; Zhang, Xinyi; Peng, Xiaohui; Su, Jinlong

    2016-11-01

    The polarization properties of thermal millimeter-wave emission capture inherent information of objects, e.g., material composition, shape, and surface features. In this paper, a polarization-based material-classification technique using passive millimeter-wave polarimetric imagery is presented. Linear polarization ratio (LPR) is created to be a new feature discriminator that is sensitive to material type and to remove the reflected ambient radiation effect. The LPR characteristics of several common natural and artificial materials are investigated by theoretical and experimental analysis. Based on a priori information about LPR characteristics, the optimal range of incident angle and the classification criterion are discussed. Simulation and measurement results indicate that the presented classification technique is effective for distinguishing between metals and dielectrics. This technique suggests possible applications for outdoor metal target detection in open scenes.

  6. Nutating subreflector for a millimeter wave telescope

    NASA Astrophysics Data System (ADS)

    Radford, Simon J. E.; Boynton, Paul; Melchiorri, Francesco

    1990-03-01

    Nutating a Cassegrain telescope's secondary mirror is a convenient method of steering the telescope beam through a small angle. This principle has been used to construct a high-performance beam switch for a millimeter wave telescope. A low mass, graphite-epoxy laminate secondary mirror is driven by linear electric motors operated in a frequency compensated control loop. By design, the nutator exerts little net oscillating torque on the telescope structure, resulting in virtually vibration free operation. The inherent versatility of beam switching by subreflector nutation permits a variety of switching waveforms to be tested without making any hardware changes. The nutator can shift the telescope beam by 10 arcminutes, a 1.25 deg rotation of the 75-cm-diam secondary mirror, in an interval of 8 ms and it can sustain a switching frequency of 10 Hz.

  7. Modern Microwave and Millimeter-Wave Power Electronics

    NASA Astrophysics Data System (ADS)

    Barker, Robert J.; Luhmann, Neville C.; Booske, John H.; Nusinovich, Gregory S.

    2005-04-01

    A comprehensive study of microwave vacuum electronic devices and their current and future applications While both vacuum and solid-state electronics continue to evolve and provide unique solutions, emerging commercial and military applications that call for higher power and higher frequencies to accommodate massive volumes of transmitted data are the natural domain of vacuum electronics technology. Modern Microwave and Millimeter-Wave Power Electronics provides systems designers, engineers, and researchers-especially those with primarily solid-state training-with a thoroughly up-to-date survey of the rich field of microwave vacuum electronic device (MVED) technology. This book familiarizes the R&D and academic communities with the capabilities and limitations of MVED and highlights the exciting scientific breakthroughs of the past decade that are dramatically increasing the compactness, efficiency, cost-effectiveness, and reliability of this entire class of devices. This comprehensive text explores a wide range of topics: * Traveling-wave tubes, which form the backbone of satellite and airborne communications, as well as of military electronic countermeasures systems * Microfabricated MVEDs and advanced electron beam sources * Klystrons, gyro-amplifiers, and crossed-field devices * "Virtual prototyping" of MVEDs via advanced 3-D computational models * High-Power Microwave (HPM) sources * Next-generation microwave structures and circuits * How to achieve linear amplification * Advanced materials technologies for MVEDs * A Web site appendix providing a step-by-step walk-through of a typical MVED design process Concluding with an in-depth examination of emerging applications and future possibilities for MVEDs, Modern Microwave and Millimeter-Wave Power Electronics ensures that systems designers and engineers understand and utilize the significant potential of this mature, yet continually developing technology. SPECIAL NOTE: All of the editors' royalties realized from the sale of this book will fund the future research and publication activities of graduate students in the vacuum electronics field.

  8. Radio-over-fiber system with octuple frequency optical millimeter-wave signal generation using dual-parallel Mach-Zehnder modulator based on four-wave mixing in semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Zeng, Yuting; Chen, Ming; Shen, Yunlong

    2018-03-01

    We have proposed a scheme of radio-over-fiber (RoF) system employing a dual-parallel Mach-Zehnder modulator (DP-MZM) based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). In this scheme, the pump and the signal are generated by properly adjusting the direct current bias, modulation index of the DP-MZM, and the phase difference between the sub-MZMs. Because of the pump and the signal deriving from the same optical wave, the polarization states of the two lightwaves are copolarized. The single-pump FWM is polarization insensitive. After FWM and optical filtering, the optical millimeter-wave with octuple frequency is generated. About 40-GHz RoF system with a 2.5-Gbit / s signal is implemented by numerical simulation; the result shows that it has a good performance after the signal is transmitted over 40-km single-mode fiber. Then, the effects of the SOA's injection current and the carrier-to-sideband ratio on the system performance are discussed by simulation, and the optimum value for the system is obtained.

  9. Optoelectronic cross-injection locking of a dual-wavelength photonic integrated circuit for low-phase-noise millimeter-wave generation.

    PubMed

    Kervella, Gaël; Van Dijk, Frederic; Pillet, Grégoire; Lamponi, Marco; Chtioui, Mourad; Morvan, Loïc; Alouini, Mehdi

    2015-08-01

    We report on the stabilization of a 90-GHz millimeter-wave signal generated from a fully integrated photonic circuit. The chip consists of two DFB single-mode lasers whose optical signals are combined on a fast photodiode to generate a largely tunable heterodyne beat note. We generate an optical comb from each laser with a microwave synthesizer, and by self-injecting the resulting signal, we mutually correlate the phase noise of each DFB and stabilize the beatnote on a multiple of the frequency delivered by the synthesizer. The performances achieved beat note linewidth below 30 Hz.

  10. Millimeter-wave surface resistance of laser-ablated YBa2Cu3O(7-delta) superconducting films

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Warner, J. D.

    1990-01-01

    The millimeter-wave surface resistance of YBa2Cu3O(7-delta) superconducting films was measured in a gold-plated copper host cavity at 58.6 GHz between 25 and 300 K. High-quality laser-ablated films of 1.2-micron thickness were deposited on SrTiO3 and LaGaO3 substrates. Their transition temperatures were 90.0 and 88.9 K, with a surface resistance at 70 K of 82 and 116 milliohms, respectively. These values are better than the values for the gold-plated cavity at the same temperature and frequency.

  11. Formation of Ion Beam from High Density Plasma of ECR Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izotov, I.; Razin, S.; Sidorov, A.

    2005-03-15

    One of the most promising directions of ECR multicharged ion sources evolution is related with increase in frequency of microwave pumping. During last years microwave generators of millimeter wave range - gyrotrons have been used more frequently. Creation of plasma with density 1013 cm-3 with medium charged ions and ion flux density through a plug of a magnetic trap along magnetic field lines on level of a few A/cm2 is possible under pumping by powerful millimeter wave radiation and quasigasdynamic (collisional) regime of plasma confinement in the magnetic trap. Such plasma has great prospects for application in plasma based ionmore » implantation systems for processing of surfaces with complicated and petit relief. Use it for ion beam formation seams to be difficult because of too high ion current density. This paper continues investigations described elsewhere and shows possibility to arrange ion extraction in zone of plasma expansion from the magnetic trap along axis of system and magnetic field lines.Plasma was created at ECR gas discharge by means of millimeter wave radiation of a gyrotron with frequency 37.5 GHz, maximum power 100 kW, pulse duration 1.5 ms. Two and three electrode quasi-Pierce extraction systems were used for ion beam formation.It is demonstrated that there is no changes in ion charge state distribution along expansion routing of plasma under collisional confinement. Also ion flux density decreases with distance from plug of the trap, it allows to control extracting ion current density. Multicharged ion beam of Nitrogen with total current up to 2.5 mA at diameter of extracting hole 1 mm, that corresponds current density 320 mA/cm2, was obtained. Magnitude of total ion current was limited due to extracting voltage (60 kV). Under such conditions characteristic transversal dimension of plasma equaled 4 cm, magnetic field value in extracting zone was about 0.1 T at axisymmetrical configuration.« less

  12. CdTe-based Light-Controllable Frequency-Selective Photonic Crystal Switch for Millimeter Waves

    DTIC Science & Technology

    2011-09-01

    position (magenta curves with circular points which correspond to different light pulses) 23 Fig. 11.3. (a) Phase of transmission wave (in...11.4. Transmission spectra of plastic-air PC with CdTe-coated triple -quartz-wafer insertion of the kind ‘6t-qvqvqs-6t’ (computed yellow and measured...experimental requirements of matching the frequency band of VNA facility (f = 75–110 GHz), PC structures with triple -wafer insertion layers

  13. Broad-bandwidth Metamaterial Antireflection Coatings for Sub-Millimeter Astronomy and CMB Foreground Removal

    NASA Astrophysics Data System (ADS)

    McMahon, Jeff

    Sub-millimeter observations are crucial for answering questions about star and galaxy formation; understanding galactic dust foregrounds; and for removing these foregrounds to detect the faint signature of inflationary gravitational waves in the polarization of the Cosmic Microwave Background (CMB). Achieving these goals requires improved, broad-band antireflection coated lenses and half-wave plates (HWPs). These optical elements will significantly boost the sensitivity and capability of future sub-millimeter and CMB missions. We propose to develop wide-bandwidth metamaterial antireflection coatings for silicon lenses and sapphire HWPs with 3:1 ratio bandwidth that are scalable across the sub-millimeter band from 300 GHz to 3 THz. This is an extension of our successful work on saw cut metamaterial AR coatings for silicon optics at millimeter wave lengths. These, and the proposed coatings consist of arrays of sub-wavelength scale features cut into optical surfaces that behave like simple dielectrics. We have demonstrated saw cut 3:1 bandwidth coatings on silicon lenses, but these coatings are limited to the millimeter wave band by the limitations of dicing saw machining. The crucial advance needed to extend these broad band coatings throughout the sub-millimeter band is the development of laser cut graded index metamaterial coatings. The proposed work includes developing the capability to fabricate these coatings, optimizing the design of these metamaterials, fabricating and testing prototype lenses and HWPs, and working with the PIPER collaboration to achieve a sub-orbital demonstration of this technology. The proposed work will develop potentially revolutionary new high performance coatings for the sub-millimeter bands, and cary this technology to TRL 7 paving the way for its use in space. We anticipate that there will be a wide range of applications for these coatings on future NASA balloons and satellites.

  14. Millimeter Wave Radar Applications to Weapons Systems

    DTIC Science & Technology

    1976-06-01

    meter wave region compared with the high attenuation in the optical region. It is this unique characteristic of millimeter waves to penetrate fog...miiliaeter wave radars in graund-to-- air , ground-to-ground, and air -to-ground weapons systems aye presented. The advantages and limitation~s¶ of operating...MILLIMETER WAVE RADAR CHARACTERISTICS ..... ............ .. 27 A, General ................ ......................... ... 27 B. Ground-to- Air Millimeter

  15. Communications and logic systems at millimeter wave frequencies

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Activities in materials development, lithography, FET experiments, and mixer diode fabrication are reported. In addition, articles are presented which address leakage effects in n-GaAs MESFET's and lateral nonuniform doping in GaAs MESFET's.

  16. Characterization of the atmosphere above a site for millimeter wave astronomy

    NASA Astrophysics Data System (ADS)

    Nasir, Francesco Tony; Buffa, Franco; Deiana, Gian Luigi

    2011-04-01

    The Sardinia Radio Telescope (SRT) is a challeging scientific project managed by the National Institute for Astrophysics (INAF), it is being developed at 30 km North of the city of Cagliari, Italy. The goal of the SRT project is to build a general purpose, fully steerable, 64 m diameter radio telescope, capable of operating with high efficiency in the centimeter and millimeter frequency range (0.3-100 GHz). In portions of this frequency range, especially towards the high end, astronomical observations can be heavily deteriorated by non-optimal atmospheric conditions, especially by water vapor content. The water molecule permanent electric dipole in fact, leads to pressure broadened rotational transitions around the 22.23 GHz spectral line. Furthermore, water vapor's continuum absorption and emission may influence higher frequency observations too. To a lower degree, cloud liquid black body radiation can also affect centimeter and millimeter observations. In addition to this, inhomogeneities in water vapor distributions can cause signal phase errors which introduce a great amount of uncertainty to VLBI mode observations. The Astronomical Observatory of Cagliari (OA-CA) has obtained historical timeseries of radiosonde profiles conducted at the airport of Cagliari. Through the radiosonde measurements and an appropriate radiative transfer model, we have performed a statistical analysis of the SRT site's atmosphere which accounts for atmospheric opacity at different frequencies, integrated water vapor (IWV), integrated liquid water (ILW) and cloud cover distributions during the year. This will help to investigate in which period of the year astronomical observations at different frequencies should be performed preferably. The results show that, at the SRT site, K-band astronomical observations are possible all year round, the median opacity at 22.23 GHz is 0.10 Np in the winter (Dec-Jan-Feb) and 0.16 Np in the summer (Jun-Jul-Aug). Integrated water vapor during winter months ranges, on average, between 7 and 15 mm. Cloud cover is usually not present for more than 36% of the time during the year. The atmospheric opacity study indicates that observations at higher frequencies (50-100 GHz) may be performed usefully: the median opacity at 100 GHz is usually below or equal to 0.2 Np in the period that ranges from January to April.

  17. Full-wave feasibility study of anti-radar diagnostic of magnetic field based on O-X mode conversion and oblique reflectometry imaging

    DOE PAGES

    Meneghini, Orso; Volpe, Francesco A.

    2016-08-19

    An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and edge current as a function of the minor radius in the tokamak pedestal region. The idea is to identify the direction of minimum reflectivity at the O-mode cutoff layer. Correspondingly, the transmissivity due to O-X mode conversion is maximum. That direction, and the angular map of reflectivity around it, contain information on the magnetic field vector B at the cutoff layer. By probing the plasma with different wave frequencies it provides the radial profile of B. Full-wave finite-element simulations are presented here in 2D slab geometry.more » Modeling confirms the existence of a minimum in reflectivity that depends on the magnetic field at the cutoff, as expected from mode conversion physics, giving confidence in the feasibility of the diagnostic. We proposed an reflectometric approach in order to yield superior signal-to-noise ratio and to access wider ranges of density and magnetic field, compared with related radiometric techniques that require the plasma to emit Electron Bernstein Waves. Due to computational limitations, frequencies of 10-20 GHz were considered in this initial study. Furthermore, frequencies above the edge electron-cyclotron frequency (f >28 GHz here) would be preferable for the experiment, because the upper hybrid resonance and right cutoff would lie in the plasma, and would help separate the O-mode of interest from spurious X-waves.« less

  18. Full-wave feasibility study of anti-radar diagnostic of magnetic field based on O-X mode conversion and oblique reflectometry imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meneghini, Orso; Volpe, Francesco A., E-mail: fvolpe@columbia.edu

    An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and edge current as a function of the minor radius in the tokamak pedestal region. The idea is to identify the direction of minimum reflectivity at the O-mode cutoff layer. Correspondingly, the transmissivity due to O-X mode conversion is maximum. That direction, and the angular map of reflectivity around it, contains information on the magnetic field vector B at the cutoff layer. Probing the plasma with different wave frequencies provides the radial profile of B. Full-wave finite-element simulations are presented here in 2D slab geometry. Modeling confirmsmore » the existence of a minimum in reflectivity that depends on the magnetic field at the cutoff, as expected from mode conversion physics, giving confidence in the feasibility of the diagnostic. The proposed reflectometric approach is expected to yield superior signal-to-noise ratio and to access wider ranges of density and magnetic field, compared with related radiometric techniques that require the plasma to emit electron Bernstein waves. Due to computational limitations, frequencies of 10-20 GHz were considered in this initial study. Frequencies above the edge electron-cyclotron frequency (f > 28 GHz here) would be preferable for the experiment, because the upper hybrid resonance and right cutoff would lie in the plasma, and would help separate the O-mode of interest from spurious X-waves.« less

  19. Diagnosis and Treatment of Neurological Disorders by Millimeter-Wave Stimulation

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Pikov, Victor

    2011-01-01

    Increasingly, millimeter waves are being employed for telecomm, radar, and imaging applications. To date in the U.S, however, very few investigations on the impact of this radiation on biological systems at the cellular level have been undertaken. In the beginning, to examine the impact of millimeter waves on cellular processes, researchers discovered that cell membrane depolarization may be triggered by low levels of integrated power at these high frequencies. Such a situation could be used to advantage in the direct stimulation of neuronal cells for applications in neuroprosthetics and diagnosing or treating neurological disorders. An experimental system was set up to directly monitor cell response on exposure to continuous-wave, fixed-frequency, millimeter-wave radiation at low and modest power levels (0.1 to 100 safe exposure standards) between 50 and 100 GHz. Two immortalized cell lines derived from lung and neuronal tissue were transfected with green fluorescent protein (GFP) that locates on the inside of the cell membrane lipid bi-layer. Oxonol dye was added to the cell medium. When membrane depolarization occurs, the oxonal bound to the outer wall of the lipid bi-layer can penetrate close to the inner wall where the GFP resides. Under fluorescent excitation (488 nm), the normally green GFP (520 nm) optical signal quenches and gives rise to a red output when the oxonol comes close enough to the GFP to excite a fluorescence resonance energy transfer (FRET) with an output at 620 nm. The presence of a strong FRET signature upon exposures of 30 seconds to 2 minutes at 5-10 milliwatts per square centimeter RF power at 50 GHz, followed by a return to the normal 520-nm GFP signal after a few minutes indicating repolarization of the membrane, indicates that low levels of RF energy may be able to trigger non-destructive membrane depolarization without direct cell contact. Such a mechanism could be used to stimulate neuronal cells in the cortex without the need for invasive electrodes as millimeter waves penetrate skin and bone on the order of 15 mm in depth. Although 50 GHz could not readily penetrate from the outer skull to the center of the cortex, implants on the outer skull or even on the scalp could reach the outer layer of the cerebral cortex where substantial benefit could be realized from such non-contact type excitation.

  20. Image fusion based on millimeter-wave for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Zhu, Weiwen; Zhao, Yuejin; Deng, Chao; Zhang, Cunlin; Zhang, Yalin; Zhang, Jingshui

    2010-11-01

    This paper describes a novel multi sensors image fusion technology which is presented for concealed weapon detection (CWD). It is known to all, because of the good transparency of the clothes at millimeter wave band, a millimeter wave radiometer can be used to image and distinguish concealed contraband beneath clothes, for example guns, knives, detonator and so on. As a result, we adopt the passive millimeter wave (PMMW) imaging technology for airport security. However, in consideration of the wavelength of millimeter wave and the single channel mechanical scanning, the millimeter wave image has law optical resolution, which can't meet the need of practical application. Therefore, visible image (VI), which has higher resolution, is proposed for the image fusion with the millimeter wave image to enhance the readability. Before the image fusion, a novel image pre-processing which specifics to the fusion of millimeter wave imaging and visible image is adopted. And in the process of image fusion, multi resolution analysis (MRA) based on Wavelet Transform (WT) is adopted. In this way, the experiment result shows that this method has advantages in concealed weapon detection and has practical significance.

  1. Lunar Radio_phase Ranging in Chinese Lunar Lander Mission for Astrometry

    NASA Astrophysics Data System (ADS)

    Ping, Jinsong; Meng, Qiao; Li, Wenxiao; Wang, Mingyuan; Wang, Zhen; Zhang, Tianyi; Han, Songtao

    2015-08-01

    The radio tracking data in lunar and planetary missions can be directly applied for scientific investigation. The variations of phase and of amplitude of the radio carrier wave signal linked between the spacecraft and the ground tracking antenna are used to deduce the planetary atmospheric and ionospheric structure, planetary gravity field, mass, ring, ephemeris, and even to test the general relativity. In the Chinese lunar missions, we developed the lunar and planetary radio science receiver to measure the distance variation between the tracking station-lander by means of open loop radio phase tracking. Using this method in Chang’E-3 landing mission, a lunar radio_phase ranging (LRR) technique was realized at Chinese deep space tracking stations and astronomical VLBI stations with H-maser clocks installed. Radio transponder and transmitter had been installed on the Chang’E-3/4. Transponder will receive the uplink S/X band radio wave transmitted from the two newly constructed Chinese deep space stations, where the high quality hydrogen maser atomic clocks have been used as local time and frequency standard. The clocks between VLBI stations and deep space stations can be synchronized to UTC standard within 20 nanoseconds using satellite common view methods. In the near future there will be a plan to improve this accuracy to 5 nanoseconds or better, as the level of other deep space network around world. In the preliminary LRR experiments of Chang'E-3, the obtained 1sps phase ranging observables have a resolution of 0.2 millimeter or better, with a fitting RMS about 2~3 millimeter, after the atmospheric and ionospheric errors removed. This method can be a new astrometric technique to measure the Earth tide and rotation, lunar orbit, tides and liberation, by means of solo observation or of working together with Lunar Laser Ranging. After differencing the ranging, we even obtained 1sps doppler series of 2-way observables with resolution of 0.07mm/second, which can be used to check the uplimit for low frequency (0.001~1 Hz) gravitational wave detection between the Earth and the Moon.

  2. Novel high-gain, improved-bandwidth, finned-ladder V-band Traveling-Wave Tube slow-wave circuit design

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1994-01-01

    The V-band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for inter-satellite communications. As a first effort to develop a high-efficiency V-band Traveling-Wave Tube (TWT), variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite these advantages, however, low bandwidth and high voltage requirements have, until now, prevented its acceptance outside the laboratory. In this paper, the three-dimensional electrodynamic simulation code MAFIA (solution of MAxwell's Equation by the Finite-Integration-Algorithm) is used to investigate methods of increasing the bandwidth and lowering the operating voltage of the ring-plane circuit. Calculations of frequency-phase dispersion, beam on-axis interaction impedance, attenuation and small-signal gain per wavelength were performed for various geometric variations and loading distributions of the ring-plane TWT slow-wave circuit. Based on the results of the variations, a circuit termed the finned-ladder TWT slow-wave circuit was designed and is compared here to the scaled prototype ring-plane and a conventional ferruled coupled-cavity TWT circuit over the V-band frequency range. The simulation results indicate that this circuit has a much higher gain, significantly wider bandwidth, and a much lower voltage requirement than the scaled ring-plane prototype circuit, while retaining its excellent thermal dissipation properties. The finned-ladder circuit has a much larger small-signal gain per wavelength than the ferruled coupled-cavity circuit, but with a moderate sacrifice in bandwidth.

  3. Background-free millimeter-wave ultra-wideband signal generation based on a dual-parallel Mach-Zehnder modulator.

    PubMed

    Zhang, Fangzheng; Pan, Shilong

    2013-11-04

    A novel scheme for photonic generation of a millimeter-wave ultra-wideband (MMW-UWB) signal is proposed and experimentally demonstrated based on a dual-parallel Mach-Zehnder modulator (DPMZM). In the proposed scheme, a single-frequency radio frequency (RF) signal is applied to one sub-MZM of the DPMZM to achieve optical suppressed-carrier modulation, and an electrical control pulse train is applied to the other sub-MZM biased at the minimum transmission point, to get an on/off switchable optical carrier. By filtering out the optical carrier with one of the first-order sidebands, and properly setting the amplitude of the control pulse, an MMW-UWB pulse train without the residual local oscillation is generated after photo-detection. The generated MMW-UWB signal is background-free, because the low-frequency components in the electrical spectrum are effectively suppressed. In the experiment, an MMW-UWB pulse train centered at 25 GHz with a 10-dB bandwidth of 5.5 GHz is successfully generated. The low frequency components are suppressed by 22 dB.

  4. Continuous Beam Steering Through Broadside Using Asymmetrically Modulated Goubau Line Leaky-Wave Antennas.

    PubMed

    Tang, Xiao-Lan; Zhang, Qingfeng; Hu, Sanming; Zhuang, Yaqiang; Kandwal, Abhishek; Zhang, Ge; Chen, Yifan

    2017-09-15

    Goubau line is a single-conductor transmission line, featuring easy integration and low-loss transmission properties. Here, we propose a periodic leaky-wave antenna (LWA) based on planar Goubau transmission line on a thin dielectric substrate. The leaky-wave radiations are generated by introducing periodic modulations along the Goubau line. In this way, the surface wave, which is slow-wave mode supported by the Goubau line, achieves an additional momentum and hence enters the fast-wave region for radiations. By employing the periodic modulations, the proposed Goubau line LWAs are able to continuously steer the main beam from backward to forward within the operational frequency range. However, the LWAs usually suffer from a low radiation efficiency at the broadside direction. To overcome this drawback, we explore both transversally and longitudinally asymmetrical modulations to the Goubau line. Theoretical analysis, numerical simulations and experimental results are given in comparison with the symmetrical LWAs. It is demonstrated that the asymmetrical modulations significantly improve the radiation efficiency of LWAs at the broadside. Furthermore, the measurement results agree well with the numerical ones, which experimentally validates the proposed LWA structures. These novel Goubau line LWAs, experimentally demonstrated and validated at microwave frequencies, show also great potential for millimeter-wave and terahertz systems.

  5. Submillimeter sources for radiometry using high power Indium Phosphide Gunn diode oscillators

    NASA Technical Reports Server (NTRS)

    Deo, Naresh C.

    1990-01-01

    A study aimed at developing high frequency millimeter wave and submillimeter wave local oscillator sources in the 60-600 GHz range was conducted. Sources involved both fundamental and harmonic-extraction type Indium Phosphide Gunn diode oscillators as well as varactor multipliers. In particular, a high power balanced-doubler using varactor diodes was developed for 166 GHz. It is capable of handling 100 mW input power, and typically produced 25 mW output power. A high frequency tripler operating at 500 GHz output frequency was also developed and cascaded with the balanced-doubler. A dual-diode InP Gunn diode combiner was used to pump this cascaded multiplier to produce on the order of 0.5 mW at 500 GHz. In addition, considerable development and characterization work on InP Gunn diode oscillators was carried out. Design data and operating characteristics were documented for a very wide range of oscillators. The reliability of InP devices was examined, and packaging techniques to enhance the performance were analyzed. A theoretical study of a new class of high power multipliers was conducted for future applications. The sources developed here find many commercial applications for radio astronomy and remote sensing.

  6. Photonic crystal devices formed by a charged-particle beam

    DOEpatents

    Lin, Shawn-Yu; Koops, Hans W. P.

    2000-01-01

    A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.

  7. Millimeter wave propagation modeling of inhomogeneous rain media for satellite communications systems

    NASA Technical Reports Server (NTRS)

    Persinger, R. R.; Stutzman, W. L.

    1978-01-01

    A theoretical propagation model that represents the scattering properties of an inhomogeneous rain often found on a satellite communications link is presented. The model includes the scattering effects of an arbitrary distribution of particle type (rain or ice), particle shape, particle size, and particle orientation within a given rain cell. An associated rain propagation prediction program predicts attenuation, isolation and phase shift as a function of ground rain rate. A frequency independent synthetic storm algorithm is presented that models nonuniform rain rates present on a satellite link. Antenna effects are included along with a discussion of rain reciprocity. The model is verified using the latest available multiple frequency data from the CTS and COMSTAR satellites. The data covers a wide range of frequencies, elevation angles, and ground site locations.

  8. International Conference on Antennas and Propagation (ICAP 89), 6th, University of Warwick, Coventry, England, Apr. 4-7, 1989, Proceedings. Part 1 - Antennas. Part 2 - Propagation

    NASA Astrophysics Data System (ADS)

    Various papers on antennas and propagation are presented. The general topics addressed include: phased arrays; reflector antennas; slant path propagation; propagation data for HF radio systems performance; satellite and earth station antennas; radio propagation in the troposphere; propagation data for HF radio systems performance; microstrip antennas; rain radio meteorology; conformal antennas; horns and feed antennas; low elevation slant path propagation; radio millimeter wave propagation; array antennas; propagation effects on satellite mobile, satellite broadcast, and aeronautical systems; ionospheric irregularities and motions; adaptive antennas; transient response; measurement techniques; clear air radio meteorology; ionospheric and propagation modeling; millimeter wave and lens antennas; electromagnetic theory and numerical techniques; VHF propagation modeling, system planning methods; radio propagation theoretical techniques; scattering and diffraction; transhorizon rain scatter effects; ELF-VHF and broadcast antennas; clear air millimeter propagation; scattering and frequency-selective surfaces; antenna technology; clear air transhorizon propagation.

  9. Ultrafast Narrow Band Modulation of VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Multimode beating was greatly enhanced by taking output from part (e.g., half) of the output facet. Simpler sources of microwaves and millimeter waves of various frequencies were generated by varying the VCSEL diameter in a single multimode VCSEL our coupling of a few VCSELs. Breathing frequency in multi-mode operations affects modulation response and bandwidth. Optimizing RO frequency and mode beating frequency could potentially expand bandwidths suitable for wide band digital communications.

  10. Low-Noise MMIC Amplifiers for 120 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Peralta, Alejandro; Bayuk, Brian; Grundbacher, Ron; Oliver, Patricia; Cavus, Abdullah; Liu, Po-Hsin

    2009-01-01

    Three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifiers capable of providing useful amounts of gain over the frequency range from 120 to 180 GHz have been developed as prototype low-noise amplifiers (LNAs) to be incorporated into instruments for sensing cosmic microwave background radiation. There are also potential uses for such LNAs in electronic test equipment, passive millimeter- wave imaging systems, radar receivers, communication receivers, and systems for detecting hidden weapons. The main advantage afforded by these MMIC LNAs, relative to prior MMIC LNAs, is that their coverage of the 120-to-180-GHz frequency band makes them suitable for reuse in a wider variety of applications without need to redesign them. Each of these MMIC amplifiers includes InP transistors and coplanar waveguide circuitry on a 50- mthick chip (see Figure 1). Coplanar waveguide transmission lines are used for both applying DC bias and matching of input and output impedances of each transistor stage. Via holes are incorporated between top and bottom ground planes to suppress propagation of electromagnetic modes in the substrate. On the basis of computational simulations, each of these amplifiers was expected to operate with a small-signal gain of 14 dB and a noise figure of 4.3 dB. At the time of writing this article, measurements of noise figures had not been reported, but on-chip measurements had shown gains approaching their simulated values (see Figure 2).

  11. Characteristics of ocular temperature elevations after exposure to quasi- and millimeter waves (18-40 GHz)

    NASA Astrophysics Data System (ADS)

    Kojima, Masami; Suzuki, Yukihisa; Tsai, Cheng-Yu; Sasaki, Kensuke; Wake, Kanako; Watanabe, Soichi; Taki, Masao; Kamimura, Yoshitsugu; Hirata, Akimasa; Sasaki, Kazuyuki; Sasaki, Hiroshi

    2015-04-01

    In order to investigate changes in ocular temperature in rabbit eyes exposed to different frequencies (18 to 40 GHz) of quasi-millimeter waves, and millimeter waves (MMW). Pigmented rabbits were anesthetized with both general and topical anesthesia, and thermometer probes (0.5 mm in diameter) were inserted into their cornea (stroma), lens (nucleus) and vitreous (center of vitreous). The eyes were exposed unilaterally to 200 mW/cm2 by horn antenna for 3 min at 18, 22 and 26.5 GHz using a K band exposure system or 26.5, 35 and 40 GHz using a Ka band exposure system. Changes in temperature of the cornea, lens and vitreous were measured with a fluoroptic thermometer. Since the ocular temperatures after exposure to 26.5 GHz generated by the K band and Ka band systems were similar, we assumed that experimental data from these 2 exposure systems were comparable. The highest ocular temperature was induced by 40 GHz MMW, followed by 35 GHz. The 26.5 and 22 GHz corneal temperatures were almost the same. The lowest temperature was recorded at 18 GHz. The elevation in ocular temperature in response to exposure to 200 mW/cm2 MMW is dependent on MMW frequency. MMW exposure induced heat is conveyed not only to the cornea but also the crystalline lens.

  12. Millimeter waves: acoustic and electromagnetic.

    PubMed

    Ziskin, Marvin C

    2013-01-01

    This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. Copyright © 2012 Wiley Periodicals, Inc.

  13. Millimeter wave imaging: a historical review

    NASA Astrophysics Data System (ADS)

    Appleby, Roger; Robertson, Duncan A.; Wikner, David

    2017-05-01

    The SPIE Passive and Active Millimeter Wave Imaging conference has provided an annual focus and forum for practitioners in the field of millimeter wave imaging for the past two decades. To celebrate the conference's twentieth anniversary we present a historical review of the evolution of millimeter wave imaging over the past twenty years. Advances in device technology play a fundamental role in imaging capability whilst system architectures have also evolved. Imaging phenomenology continues to be a crucial topic underpinning the deployment of millimeter wave imaging in diverse applications such as security, remote sensing, non-destructive testing and synthetic vision.

  14. Boring and Sealing Rock with Directed Energy Millimeter-Waves

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Einstein, H. H.; Oglesby, K.

    2015-12-01

    Millimeter-wave directed energy is being investigated to penetrate into deep crystalline basement rock formations to lower well costs and to melt rocks, metals, and other additives to seal wells for applications that include nuclear waste storage and geothermal energy. Laboratory tests have established that intense millimeter-wave (MMW) beams > 1 kW/cm2 can melt and/ or vaporize hard crystalline rocks. In principle this will make it possible to create open boreholes and a method to seal them with a glass/ceramic liner and plug formed from the original rock or with other materials. A 10 kW, 28 GHz commercial (CPI) gyrotron system with a launched beam diameter of about 32 mm was used to heat basalt, granite, limestone, and sandstone specimens to temperatures over 2500 °C to create melts and holes. A calibrated 137 GHz radiometer view, collinear with the heating beam, monitored real time peak rock temperature. A water load surrounding the rock test specimen primarily monitored unabsorbed power at 28 GHz. Power balance analysis of the laboratory observations shows that the temperature rise is limited by radiative heat loss, which would be expected to be trapped in a borehole. The analysis also indicates that the emissivity (absorption efficiency) in the radiated infrared range is lower than the emissivity at 28 GHz, giving the MMW frequency range an important advantage for rock melting. Strength tests on one granite type indicated that heating the rock initially weakens it, but with exposure to higher temperatures the resolidified black glassy product regains strength. Basalt was the easiest to melt and penetrate, if a melt leak path was provided, because of its low viscosity. Full beam holes up to about 50 mm diameter (diffraction increased beam size) were achieved through 30 mm thick basalt and granite specimens. Laboratory experiments to form a seal in an existing hole have also been carried out by melting rock and a simulated steel casing.

  15. Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Flanigan, D.; McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P.; Araujo, D.; Bradford, K.; Cantor, R.; Che, G.; Day, P.; Doyle, S.; Kjellstrand, C. B.; Leduc, H.; Limon, M.; Luu, V.; Mauskopf, P.; Miller, A.; Mroczkowski, T.; Tucker, C.; Zmuidzinas, J.

    2016-02-01

    We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP≈2 ×10-17 W Hz-1 /2 , referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP∝P for broadband (chaotic) illumination and NEP∝P1 /2 for continuous-wave (coherent) illumination.

  16. Multilevel photonic modules for millimeter-wave phased-array antennas

    NASA Astrophysics Data System (ADS)

    Paolella, Arthur C.; Bauerle, Athena; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.

    2000-09-01

    Millimeter wave phased array systems have antenna element sizes and spacings similar to MMIC chip dimensions by virtue of the operating wavelength. Designing modules in traditional planar packaing techniques are therefore difficult to implement. An advantageous way to maintain a small module footprint compatible with Ka-Band and high frequency systems is to take advantage of two leading edge technologies, opto- electronic integrated circuits (OEICs) and multilevel packaging technology. Under a Phase II SBIR these technologies are combined to form photonic modules for optically controlled millimeter wave phased array antennas. The proposed module, consisting of an OEIC integrated with a planar antenna array will operate on the 40GHz region. The OEIC consists of an InP based dual-depletion PIN photodetector and distributed amplifier. The multi-level module will be fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated, using standard commercial processes, it has the potential to be low cost while maintaining high performance, impacting both military and commercial communications systems.

  17. A contribution to the design of wideband tunable second harmonic mode millimeter-wave InP-TED oscillators above 110 GHz

    NASA Astrophysics Data System (ADS)

    Rydberg, Anders

    1990-03-01

    Second harmonic InP-TED oscillators are investigated for frequencies above 110 GHz using different mounts and TED's. It is found that state of the art output powers, comparable to Schottky-varactor multipliers, of more than 2 mW can be generated above 190 GHz by reducing the capsule parasitics. Output power up to 216 GHz are observed. The tuning range above 110 GHz is found to be more than 40 percent. Using theoretical waveguide models the tuning behavior of the oscillators is also investigated.

  18. Development of Novel RF and Millimeter Wave Structures by Laser Direct-Write

    DTIC Science & Technology

    2009-06-01

    layers of patterned dielectric or conductor can be stacked or laminated to form multi-layer FSSs. A FSS is designed to perform at a specific frequency...in millimeters) a) b) c) a) b) Fig. 2 Schematic representations of a) a “traditional” FSS, b) a Fresnel zone plate, and c) a convolution of...cannot be predicted so easily. Even in cases where a “ convolution of models” allows one to pre- dict the performance of a “non-traditional” FSS, it

  19. Josephson frequency meter for millimeter and submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Anischenko, S. E.; Larkin, S. Y.; Chaikovsky, V. I.; Kabayev, P. V.; Kamyshin, V. V.

    1995-01-01

    Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoffs for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decrease with the increase of wavelength due to diffraction losses. That requires a priori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is one based on frequency conversion, resonance and interferometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain a panoramic display of the results as well as full automation of the measuring process.

  20. Enhanced traveling wave amplification of co-planar slow wave structure by extended phase-matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palm, Andrew; Sirigiri, Jagadishwar; Shin, Young-Min, E-mail: yshin@niu.edu

    2015-09-15

    The electron beam co-propagating with slow waves in a staggered double grating array (SDGA) efficiently amplifies millimeter and sub-millimeter waves over a wide spectrum. Our theoretical and numerical analyses show that the power amplification in the fundamental passband is enhanced by the extended beam-wave phase-matching. Particle-in-cell simulations on the SDGA slow wave structure, designed with 10.4 keV and 50–100 mA sheet beam, indicate that maintaining beam-wave synchronization along the entire length of the circuit improves the gain by 7.3% leading to a total gain of 28 dB, corresponding to 62 W saturated power at the middle of operating band, and a 3-dB bandwidthmore » of 7 GHz with 10.5% at V-band (73.5 GHz center frequency) with saturated peak power reaching 80 W and 28 dB at 71 GHz. These results also show a reasonably good agreement with analytic calculations based on Pierce small signal gain theory.« less

  1. Simplified human model and pedestrian simulation in the millimeter-wave region

    NASA Astrophysics Data System (ADS)

    Han, Junghwan; Kim, Seok; Lee, Tae-Yun; Ka, Min-Ho

    2016-02-01

    The 24 GHz and 77 GHz radar sensors have been studied as a strong candidate for advanced driver assistance systems(ADAS) because of their all-weather capability and accurate range and radial velocity measuring scheme. However, developing a reliable pedestrian recognition system hasmany obstacles due to the inaccurate and non-trivial radar responses at these high frequencies and the many combinations of clothes and accessories. To overcome these obstacles, many researchers used electromagnetic (EM) simulation to characterize the radar scattering response of a human. However, human simulation takes so long time because of the electrically huge size of a human in the millimeter-wave region. To reduce simulation time, some researchers assumed the skin of a human is the perfect electric conductor (PEC) and have simulated the PEC human model using physical optics (PO) algorithm without a specific explanation about how the human body could be modeled with PEC. In this study, the validity of the assumption that the surface of the human body is considered PEC in the EM simulation is verified, and the simulation result of the dry skin human model is compared with that of the PEC human model.

  2. Improvements to the design process for a real-time passive millimeter-wave imager to be used for base security and helicopter navigation in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Anderton, Rupert N.; Cameron, Colin D.; Burnett, James G.; Güell, Jeff J.; Sanders-Reed, John N.

    2014-06-01

    This paper discusses the design of an improved passive millimeter wave imaging system intended to be used for base security in degraded visual environments. The discussion starts with the selection of the optimum frequency band. The trade-offs between requirements on detection, recognition and identification ranges and optical aperture are discussed with reference to the Johnson Criteria. It is shown that these requirements also affect image sampling, receiver numbers and noise temperature, frame rate, field of view, focusing requirements and mechanisms, and tolerance budgets. The effect of image quality degradation is evaluated and a single testable metric is derived that best describes the effects of degradation on meeting the requirements. The discussion is extended to tolerance budgeting constraints if significant degradation is to be avoided, including surface roughness, receiver position errors and scan conversion errors. Although the reflective twist-polarization imager design proposed is potentially relatively low cost and high performance, there is a significant problem with obscuration of the beam by the receiver array. Methods of modeling this accurately and thus designing for best performance are given.

  3. Measurements of Ocean Surface Scattering Using an Airborne 94-GHz Cloud Radar: Implication for Calibration of Airborne and Spaceborne W-band Radars

    NASA Technical Reports Server (NTRS)

    Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.

    2004-01-01

    Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

  4. MMIC Replacement for Gunn Diode Oscillators

    NASA Technical Reports Server (NTRS)

    Crowe, Thomas W.; Porterfield, David

    2011-01-01

    An all-solid-state replacement for high-frequency Gunn diode oscillators (GDOs) has been proposed for use in NASA s millimeter- and submillimeter-wave sensing instruments. Highly developed microwave oscillators are used to achieve a low-noise and highly stable reference signal in the 10-40-GHz band. Compact amplifiers and high-power frequency multipliers extend the signal to the 100-500-GHz band with minimal added phase noise and output power sufficient for NASA missions. This technology can achieve improved output power and frequency agility, while maintaining phase noise and stability comparable to other GDOs. Additional developments of the technology include: a frequency quadrupler to 145 GHz with 18 percent efficiency and 15 percent fixed tuned bandwidth; frequency doublers featuring 124, 240, and 480 GHz; an integrated 874-GHz subharmonic mixer with a mixer noise temperature of 3,000 K DSB (double sideband) and mixer conversion loss of 11.8 dB DSB; a high-efficiency frequency tripler design with peak output power of 23 mW and 14 mW, and efficiency of 16 and 13 percent, respectively; millimeter-wave integrated circuit (MMIC) power amplifiers to the 30-40 GHz band with high DC power efficiency; and an 874-GHz radiometer suitable for airborne observation with state-of-the-art sensitivity at room temperature and less than 5 W of total power consumption.

  5. Low-cost three-dimensional millimeter-wave holographic imaging system based on a frequency-scanning antenna.

    PubMed

    Amin Nili, Vahid; Mansouri, Ehsan; Kavehvash, Zahra; Fakharzadeh, Mohammad; Shabany, Mahdi; Khavasi, Amin

    2018-01-01

    In this paper, a closed-form two-dimensional reconstruction technique for hybrid frequency and mechanical scanning millimeter-wave (MMW) imaging systems is proposed. Although being commercially implemented in many imaging systems as a low-cost real-time solution, the results of frequency scanning systems have been reconstructed numerically or have been reported as the captured raw data with no clear details. Furthermore, this paper proposes a new framework to utilize the captured data of different frequencies for three-dimensional (3D) reconstruction based on novel proposed closed-form relations. The hybrid frequency and mechanical scanning structure, together with the proposed reconstruction method, yields a low-cost MMW imaging system with a satisfying performance. The extracted reconstruction formulations are validated through numerical simulations, which show comparable image quality with conventional MMW imaging systems, i.e., switched-array (SA) and phased-array (PA) structures. Extensive simulations are also performed in the presence of additive noise, demonstrating the acceptable robustness of the system against system noise compared to SA and comparable performance with PA. Finally, 3D reconstruction of the simulated data shows a depth resolution of better than 10 cm with minimum degradation of lateral resolution in the 10 GHz frequency bandwidth.

  6. Flower elliptical constellation of millimeter-wave radiometers for precipitating cloud monitoring at geostationary scale

    NASA Astrophysics Data System (ADS)

    Marzano, F. S.; Cimini, D.; Montopoli, M.; Rossi, T.; Mortari, D.; di Michele, S.; Bauer, P.

    2009-04-01

    Millimeter-wave observation of the atmospheric parameters is becoming an appealing goal within satellite radiometry applications. The major technological advantage of millimeter-wave (MMW) radiometers is the reduced size of the overall system, for given performances, with respect to microwave sensor. On the other hand, millimeter-wave sounding can exploit window frequencies and various gaseous absorption bands at 50/60 GHz, 118 GHz and 183 GHz. These bands can be used to estimate tropospheric temperature profiles, integrated water vapor and cloud liquid content and, using a differentia spectral mode, light rainfall and snowfall. Millimeter-wave radiometers, for given observation conditions, can also exhibit relatively small field-of-views (FOVs), of the order of some kilometers for low-Earth-orbit (LEO) satellites. However, the temporal resolution of LEO millimeter-wave system observations remains a major drawback with respect to the geostationary-Earth-orbit (GEO) satellites. An overpass every about 12 hours for a single LEO platform (conditioned to a sufficiently large swath of the scanning MMW radiometer) is usually too much when compared with the typical temporal scale variation of atmospheric fields. This feature cannot be improved by resorting to GEO platforms due to their high orbit altitude and consequent degradation of the MMW-sensor FOVs. A way to tackle this impasse is to draw our attention at the regional scale and to focus non-circular orbits over the area of interest, exploiting the concept of micro-satellite flower constellations. The Flower Constellations (FCs) is a general class of elliptical orbits which can be optimized, through genetic algorithms, in order to maximize the revisiting time and the orbital height, ensuring also a repeating ground-track. The constellation concept nicely matches the choice of mini-satellites as a baseline choice, due to their small size, weight (less than 500 kilograms) and relatively low cost (essential when deploying several identical speceborne platforms). Moreover, the micro-satellite solution clearly addresses the choice of small passive sensors with small size, low weight and power consumption, features which cannot be usually satisfied by active sensors. In this respect, MMW technology is the most compatible with the specifications and constraints of micro-satellites. In this work, we will discuss the numerical results of a feasibility study aimed at designing a Flower elliptical constellation of 3 micro-satellite millimeter-wave radiometers for pseudo-geostationary atmospheric observations over the Mediterranean region. The Flower constellation will be optimized in such a way to simulate a pseudo-geostationary observation of the Mediterranean area with an observation repetition time less than 2 hours. The mission requirements request the retrieval of thermodinamical and hydrological properties of the troposphere, specifically temperature profiles, integrated water vapor and cloud liquid content, rainfall and snowfall. Several configurations of the MMW radiometer multi-band channels will be discussed, pointing out the trade-off between performances and complexity. Integrated estimation algorithms, based on a Bayesian approache, will be illustrated to retrieve the requested atmospheric parameters, discussing its sensitivity to sensor radiometric precision and accuracy within each frequency-set configuration. After this numerical study, a review of the mission requirements and specifications will be also proposed.

  7. First On-Wafer Power Characterization of MMIC Amplifiers at Sub-Millimeter Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Gaier, T.; Samoska, L.; Deal, W. R.; Radisic, V.; Mei, X. B.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; hide

    2008-01-01

    Recent developments in semiconductor technology have enabled advanced submillimeter wave (300 GHz) transistors and circuits. These new high speed components have required new test methods to be developed for characterizing performance, and to provide data for device modeling to improve designs. Current efforts in progressing high frequency testing have resulted in on-wafer-parameter measurements up to approximately 340 GHz and swept frequency vector network analyzer waveguide measurements to 508 GHz. On-wafer noise figure measurements in the 270-340 GHz band have been demonstrated. In this letter we report on on-wafer power measurements at 330 GHz of a three stage amplifier that resulted in a maximum measured output power of 1.78mW and maximum gain of 7.1 dB. The method utilized demonstrates the extension of traditional power measurement techniques to submillimeter wave frequencies, and is suitable for automated testing without packaging for production screening of submillimeter wave circuits.

  8. High efficiency and output power from second- and third-harmonic millimeter-wave InP-TED oscillators at frequencies above 170 GHz

    NASA Astrophysics Data System (ADS)

    Rydberg, Anders

    1990-10-01

    InP TED (transferred electron device) oscillators have been experimentally investigated for frequencies between 170 and 279 GHz. It has been found that output powers of more than 7 and 0.2 mW are possible at 180 and 272 GHz using second- and third-harmonic mode operation, respectively. Conversion efficiencies of more than 13 percent and 0.3 percent between fundamental and second harmonic and fundamental and third harmonic, respectively, have been found. The conversion efficiencies are comparable to GaAs TEDs. The output powers, conversion efficiencies, and tuning ranges (more than 22 percent) are the largest reported for InP TEDs at these frequencies. The output power at third harmonic was sufficient for supplying a superconducting mixer with local oscillator power.

  9. Millimeter-wave spectroscopy of CoNO Produced by UV laser photolysis of Co(CO){sub 3}NO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Ai; Hayashi, Masato; Harada, Kensuke

    2008-10-07

    The rotational spectrum of cobalt mononitrosyl (CoNO) produced by ultraviolet photolysis of Co(CO){sub 3}NO was observed in the millimeter-wave region. Seven rotational transitions in the ground state ranging from J=6-5 to 12-11, with hyperfine splittings due to the Co nucleus (I=7/2), were detected in a supersonic jet environment, while higher-frequency transitions in the range from J=29-28 to 35-34 were measured in the ground, {nu}{sub 1}, {nu}{sub 2}, {nu}{sub 3}, and 2{nu}{sub 2} vibrational states using a free-space absorption cell. It was confirmed from the observed spectral pattern that the CoNO molecule has a linear structure with the electronic ground statemore » of {sup 1}{sigma}{sup +} symmetry. The rotational lines in the 2{nu}{sub 2}({sigma}) and {nu}{sub 3} states were observed to be perturbed by Fermi resonance. The equilibrium rotational constant B{sub e} is determined to be 4682.207(15) MHz. The CoN bond length is derived to be 1.5842 A assuming the NO bond length of 1.1823 A. A large nuclear spin-rotation interaction constant, C{sub I}=123.8(11) kHz, was determined, suggesting a {sup 1}{pi} electronic excited state lying close to the ground state.« less

  10. Interferometric millimeter wave and THz wave doppler radar

    DOEpatents

    Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas

    2015-08-11

    A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.

  11. An optical mm-wave generation scheme by frequency octupling using a nested MMI

    NASA Astrophysics Data System (ADS)

    Shang, Lei; Wen, Aijun; Li, Bo; Wang, Tonggang; Chen, Yang; Li, Ming'an

    2011-12-01

    A novel method of a filterless optical millimeter-wave (MMW) signal generation with frequency octupling via a nested multimode interference (MMI) coupler is proposed for Radio-over-fiber systems. By setting the DC bias voltage applied to the central arms of MMI-b and MMI-c accurately, the optical carrier can be completely suppressed. The OSSR can be as high as about 58 dB without optical filter and the radio frequency spurious suppression ratio (RFSSR) exceeds 32 dB, which is the best result as we know. Simulation results suggest that when the generated optical mm-wave signal is transmitted along the standard single-mode fiber, the eye diagram is still opened after being transmitted over a 50 km fiber.

  12. Modeling and characterization of shielded low loss CPWs on 65 nm node silicon

    NASA Astrophysics Data System (ADS)

    Hongrui, Wang; Dongxu, Yang; Li, Zhang; Lei, Zhang; Zhiping, Yu

    2011-06-01

    Coplanar waveguides (CPWs) are promising candidates for high quality passive devices in millimeter-wave frequency bands. In this paper, CPW transmission lines with and without ground shields have been designed and fabricated on 65 nm CMOS technology. A physical-based model is proposed to describe the frequency-dependent per-unit-length L, C, R and G parameters. Starting with a basic CPW structure, the slow-wave effect and ground-shield influence have been analyzed and incorporated into the general model. The accuracy of the model is confirmed by experimental results.

  13. Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation: erratum.

    PubMed

    Hasan, Mehedi; Guemri, Rabiaa; Maldonado-Basilio, Ramón; Lucarz, Frédéric; de Bougrenet de la Tocnaye, Jean-Louis; Hall, Trevor

    2015-12-15

    A novel photonic circuit design for implementing frequency 8-tupling and 24-tupling was presented [Opt. Lett.39, 6950 (2014)10.1364/OL.39.006950OPLEDP0146-9592], and although its key message remains unaltered, there were typographical errors in the equations that are corrected in this erratum.

  14. Advanced millimeter-wave security portal imaging techniques

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-03-01

    Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.

  15. A system for measuring complex dielectric properties of thin films at submillimeter wavelengths using an open hemispherical cavity and a vector network analyzer.

    PubMed

    Rahman, Rezwanur; Taylor, P C; Scales, John A

    2013-08-01

    Quasi-optical (QO) methods of dielectric spectroscopy are well established in the millimeter and submillimeter frequency bands. These methods exploit standing wave structure in the sample produced by a transmitted Gaussian beam to achieve accurate, low-noise measurement of the complex permittivity of the sample [e.g., J. A. Scales and M. Batzle, Appl. Phys. Lett. 88, 062906 (2006); R. N. Clarke and C. B. Rosenberg, J. Phys. E 15, 9 (1982); T. M. Hirovnen, P. Vainikainen, A. Lozowski, and A. V. Raisanen, IEEE Trans. Instrum. Meas. 45, 780 (1996)]. In effect the sample itself becomes a low-Q cavity. On the other hand, for optically thin samples (films of thickness much less than a wavelength) or extremely low loss samples (loss tangents below 10(-5)) the QO approach tends to break down due to loss of signal. In such a case it is useful to put the sample in a high-Q cavity and measure the perturbation of the cavity modes. Provided that the average mode frequency divided by the shift in mode frequency is less than the Q (quality factor) of the mode, then the perturbation should be resolvable. Cavity perturbation techniques are not new, but there are technological difficulties in working in the millimeter/submillimeter wave region. In this paper we will show applications of cavity perturbation to the dielectric characterization of semi-conductor thin films of the type used in the manufacture of photovoltaics in the 100 and 350 GHz range. We measured the complex optical constants of hot-wire chemical deposition grown 1-μm thick amorphous silicon (a-Si:H) film on borosilicate glass substrate. The real part of the refractive index and dielectric constant of the glass-substrate varies from frequency-independent to linearly frequency-dependent. We also see power-law behavior of the frequency-dependent optical conductivity from 316 GHz (9.48 cm(-1)) down to 104 GHz (3.12 cm(-1)).

  16. Micro and nano devices in passive millimetre wave imaging systems

    NASA Astrophysics Data System (ADS)

    Appleby, R.

    2013-06-01

    The impact of micro and nano technology on millimetre wave imaging from the post war years to the present day is reviewed. In the 1950s whisker contacted diodes in mixers and vacuum tubes were used to realise both radiometers and radars but required considerable skill to realise the performance needed. Development of planar semiconductor devices such as Gunn and Schottky diodes revolutionised mixer performance and provided considerable improvement. The next major breakthrough was high frequency transistors based on gallium arsenide which were initially used at intermediate frequencies but later after further development at millimeter wave frequencies. More recently Monolithic Microwave Integrated circuits(MMICs) offer exceptional performance and the opportunity for innovative design in passive imaging systems. In the future the use of micro and nano technology will continue to drive system performance and we can expect to see integration of antennae, millimetre wave and sub millimetre wave circuits and signal processing.

  17. Technical overview of the millimeter-wave imaging reflectometer on the DIII-D tokamak (invited)

    DOE PAGES

    Muscatello, Christopher M.; Domier, Calvin W.; Hu, Xing; ...

    2014-07-22

    The two-dimensional mm-wave imaging reflectometer (MIR) on DIII-D is a multi-faceted device for diagnosing electron density fluctuations in fusion plasmas. Its multi-channel, multi-frequency capabilities and high sensitivity permit visualization and quantitative diagnosis of density perturbations, including correlation length, wavenumber, mode propagation velocity, and dispersion. The two-dimensional capabilities of MIR are made possible with twelve vertically separated sightlines and four-frequency operation (corresponding to four radial channels). The 48-channel DIII-D MIR system has a tunable source that can be stepped in 500 µs increments over a range of 56 to 74 GHz. An innovative optical design keeps both on-axis and off-axis channelsmore » focused at the cutoff surface, permitting imaging over an extended poloidal region. As a result, the integrity of the MIR optical design is confirmed by comparing Gaussian beam calculations to laboratory measurements of the transmitter beam pattern and receiver antenna patterns.« less

  18. Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine.

    PubMed

    Sivachenko, I B; Medvedev, D S; Molodtsova, I D; Panteleev, S S; Sokolov, A Yu; Lyubashina, O A

    2016-02-01

    Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doménech, J. L.; Herrero, V. J.; Tanarro, I.

    The chloroniumyl cation, HCl{sup +}, has been recently identified in space from Herschel 's spectra. A joint analysis of extensive vis-UV spectroscopy emission data together with a few high-resolution and high-accuracy millimeter-wave data provided the necessary rest frequencies to support the astronomical identification. Nevertheless, the analysis did not include any infrared (IR) vibration–rotation data. Furthermore, with the end of the Herschel mission, IR observations from the ground may be one of the few available means to further study this ion in space. In this work, we provide a set of accurate rovibrational transition wavenumbers, as well as a new andmore » improved global fit of vis-UV, IR, and millimeter-wave spectroscopy laboratory data, that will aid in future studies of this molecule.« less

  20. Ferrite film growth on semiconductor substrates towards microwave and millimeter wave integrated circuits

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Harris, V. G.

    2012-10-01

    It is widely recognized that as electronic systems' operating frequency shifts to microwave and millimeter wave bands, the integration of ferrite passive devices with semiconductor solid state active devices holds significant advantages in improved miniaturization, bandwidth, speed, power and production costs, among others. Traditionally, ferrites have been employed in discrete bulk form, despite attempts to integrate ferrite as films within microwave integrated circuits. Technical barriers remain centric to the incompatibility between ferrite and semiconductor materials and their processing protocols. In this review, we present past and present efforts at ferrite integration with semiconductor platforms with the aim to identify the most promising paths to realizing the complete integration of on-chip ferrite and semiconductor devices, assemblies and systems.

  1. Stability analysis of a two-stage tapered gyrotron traveling-wave tube amplifier with distributed losses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, C. L.; Lian, Y. H.; Cheng, N. H.

    2012-11-15

    The two-stage tapered gyrotron traveling-wave tube (gyro-TWT) amplifier has achieved wide bandwidth in the millimeter wave range. However, possible oscillations in each stage limit this amplifier's operating beam current and thus its output power. To further enhance the amplifier's stability, distributed losses are applied to the interaction circuit of the two-stage tapered gyro-TWT. A self-consistent particle-tracing code is used for analyzing the beam-wave interactions. The stability analysis includes the effects of the wall losses and the length of each stage on the possible oscillations. Simulation results reveal that the distributed-loss method effectively stabilizes all the oscillations in the two stages.more » Under stable operating conditions, the device is predicted to produce a peak power of 60 kW with an efficiency of 29% and a saturated gain of 52 dB in the Ka-band. The 3-dB bandwidth is 5.7 GHz, which is approximately 16% of the center frequency.« less

  2. Fly Eye radar: detection through high scattered media

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Gorwara, Ashok

    2017-05-01

    Longer radio frequency waves better penetrating through high scattered media than millimeter waves, but imaging resolution limited by diffraction at longer wavelength. Same time frequency and amplitudes of diffracted waves (frequency domain measurement) provides information of object. Phase shift of diffracted waves (phase front in time domain) consists information about shape of object and can be applied for reconstruction of object shape or even image by recording of multi-frequency digital hologram. Spectrum signature or refracted waves allows identify the object content. Application of monopulse method with overlap closely spaced antenna patterns provides high accuracy measurement of amplitude, phase, and direction to signal source. Digitizing of received signals separately in each antenna relative to processor time provides phase/frequency independence. Fly eye non-scanning multi-frequency radar system provides simultaneous continuous observation of multiple targets and wide possibilities for stepped frequency, simultaneous frequency, chaotic frequency sweeping waveform (CFS), polarization modulation for reliable object detection. Proposed c-band fly eye radar demonstrated human detection through 40 cm concrete brick wall with human and wall material spectrum signatures and can be applied for through wall human detection, landmines, improvised explosive devices detection, underground or camouflaged object imaging.

  3. On the mechanisms of interaction of low-intensity millimeter waves with biological objects

    NASA Astrophysics Data System (ADS)

    Betskii, O. V.

    1994-01-01

    The interaction of low-intensity millimeter-band electromagnetic waves with biological objects is examined. These waves are widely used in medical practice as a means of physiotherapy for the treatment of various human disorders. Principal attention is given to the mechanisms through which millimeter waves act on the human organism.

  4. EEG changes as heat stress reactions in rats irradiated by high intensity 35 GHz millimeter waves.

    PubMed

    Xie, Taorong; Pei, Jian; Cui, Yibin; Zhang, Jie; Qi, Hongxing; Chen, Shude; Qiao, Dengjiang

    2011-06-01

    As the application of millimeter waves for civilian and military use increases, the possibility of overexposure to millimeter waves will also increase. This paper attempts to evaluate stress reactions evoked by 35 GHz millimeter waves. The stress reactions in Sprague-Dawley (SD) rats were quantitatively studied by analyzing electroencephalogram (EEG) changes induced by overexposure to 35 GHz millimeter waves. The relative changes in average energy of the EEG and its wavelet decompositions were used for extracting the stress reaction indicators. Incident average power densities (IAPDs) of 35 GHz millimeter waves from 0.5 W cm(-2) to 7.5 W cm(-2) were employed to investigate the relation between irradiation dose and the stress reactions in the rats. Different stress reaction periods evoked by irradiation were quantitatively evaluated by EEG results. The results illustrate that stress reactions are more intense during the first part of the irradiation than during the later part. The skin temperature increase produced by millimeter wave irradiation is the principle reason for stress reactions and skin injuries. As expected, at the higher levels of irradiation, the reaction time decreases and the reaction intensity increases.

  5. Nova Oph 2017 (TCP J17394608-2457555) detected at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Kaminski, T.; Gehrz, R.

    2017-06-01

    Millimeter-wave continuum emission was detected in Nova Oph 2017 (ATel #10366, #10367) with the Submillimeter Array in Hawaii. The object was observed on July 20, 2017 in four spectral ranges: 224.3-232.3, 240.6-248.6, 336-344, and 352-360 GHz. The combined continuum flux in the two lower ranges (i.e., at a wavelength of 1.3 mm) is of 4.8 mJy, well above the noise with an rms of 0.6 mJy per beam.

  6. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    DOEpatents

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  7. [The influence of low-energy millimeter electromagnetic waves on the stability of DNA molecules in solution].

    PubMed

    Babaian; Markarian, A Sh; Kalantarian, V P; Kazarian, R S; Parsadanian, M A; Vardevanian, P O

    2007-01-01

    The influence of low-energy millimeter electromagnetic waves on aqueous saline solution of DNA from the liver of healthy rats and rats with sarcoma 45 has been investigated. The characteristic parameters of irradiated and unirradiated DNA, melting temperature, and the range of melting were obtained from melting curves. The duration of exposure did not practically affect the range of melting, while the thermostability of DNA increased; as irradiation duration increased to 90 min, the melting temperature of tumor increased by approximately 1.5 degrees C. It was assumped that the increase in the thermostability of DNA is due to a more effective stabilization of the DNA double helix caused by the dehydration of Na(+)- ions present in the solution.

  8. Development of Leaky Wave Antennas for Layered Ridge Dielectric Waveguide

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.

    1993-01-01

    The millimeter wave, especially above 100 GHz, and the submillimeter wave frequency spectrum offers the possibility for narrow-beam, high-resolution antennas which are critical for high definition radars required for space debris tracking, airport ground avoidance radars, and missile tracking. In addition, the frequency which most atmospheric constituents may be detected lie in this part of the frequency spectrum. Therefore, the development of electronic components for millimeter/submillimeter wave passive sensors is required for environmental monitoring of the Earth's atmosphere. Typical microwave transmission lines such as microstrip and coplanar waveguide rely on two or more electrical conductors to concentrate and guide the electromagnetic energy. Unfortunately, the surface resistance of the conductors increases as the square root of frequency. In addition, the circuit dimensions must be decreased with increasing frequency to maintain a single mode transmission line which further increases the conductor loss. An alternative family of transmission lines are formed from two or more insulating materials and rely on the differences in the permittivities between the two materials to guide the wave. No metal conductors are required although some dielectric waveguides do utilize a metallic ground plane to facilitate the interconnections of active electrical elements or to reduce the transmission line size. Examples of such transmission lines are image guides, insulated image guides, trapped image guides, ridge guide, and layered ridge dielectric waveguide (LRDW). Although most dielectric waveguides have dimensions on the order of lambda to provide sufficient field confinement, the LRDW has been shown to provide good field confinement for electrically small lines. This offers an advantage in circuit integration. It has been shown that a periodic array of metallic strips placed either along or on top of a dielectric waveguide forms an effective radiator. This antenna is easy to fabricate and there is good background of microstrip type antenna design information in the literature. This paper reports the development of the first frequency scanning antenna fed by a LRDW.

  9. VizieR Online Data Catalog: Sub-millimeter spectra of 2-hydroxyacetonitrile (Margules+, 2017)

    NASA Astrophysics Data System (ADS)

    Margules, L.; McGuire, B. A.; Senent, M. L.; Motiyenko, R. A.; Remijan, A.; Guillemin, J. C.

    2017-02-01

    Measured frequencies and residuals from the global fit of the submillimeter-wave data for 2-hydroxyacetonitrile and files used for SPFIT. Detailled explanations on SPFIT could be found at https://www.astro.uni-koeln.de/cdms/pickett (4 data files).

  10. Free-space microwave-to-optical conversion via six-wave mixing in Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui

    2017-04-01

    The interconversion of millimeter waves and optical fields is an important and highly topical subject for classical and quantum technologies. In this talk, we report an experimental demonstration of coherent and efficient microwave-to-optical conversion in free space via six-wave mixing in Rydberg atoms. Our scheme utilizes the strong coupling of millimeter waves to Rydberg atoms as well as the frequency mixing based on electromagnetically induced transparency (EIT) that greatly enhances the nonlinearity for the conversion process. We achieve a free-space conversion efficiency of 0.25% with a bandwidth of about 4 MHz in our experiment. Optimized geometry and energy level configurations should enable the broadband interconversion of microwave and optical fields with near-unity efficiency. These results indicate the tremendous potential of Rydberg atoms for the efficient conversion between microwave and optical fields, and thus paves the way to many applications. This work is supported by Singapore Ministry of Education Academic Research Fund Tier 2 (Grant No. MOE2015-T2-1-085).

  11. Josephson frequency meter for millimeter and submillimeter wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I.

    1994-12-31

    Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelengthmore » due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process.« less

  12. Compressive passive millimeter wave imager

    DOEpatents

    Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W; Koehl, Eugene R; Heifetz, Alexander; Raptis, Apostolos C

    2015-01-27

    A compressive scanning approach for millimeter wave imaging and sensing. A Hadamard mask is positioned to receive millimeter waves from an object to be imaged. A subset of the full set of Hadamard acquisitions is sampled. The subset is used to reconstruct an image representing the object.

  13. Low Noise Amplifiers for 140 Ghz Wide-Band Cryogenic Receivers

    NASA Technical Reports Server (NTRS)

    Larkoski, Patricia V.; Kangaslahti, Pekka; Samoska, Lorene; Lai, Richard; Sarkozy, Stephen

    2013-01-01

    We report S-parameter and noise measurements for three different Indium Phosphide 35-nanometer-gate-length High Electron Mobility Transistor (HEMT) Low Noise Amplifier (LNA) designs operating in the frequency range centered on 140 gigahertz. When packaged in a Waveguide Rectangular-6.1 waveguide housing, the LNAs have an average measured noise figure of 3.0 decibels - 3.6 decibels over the 122-170 gigahertz band. One LNA was cooled to 20 degrees Kelvin and a record low noise temperature of 46 Kelvin, or 0.64 decibels noise figure, was measured at 152 gigahertz. These amplifiers can be used to develop receivers for instruments that operate in the 130-170 gigahertz atmospheric window, which is an important frequency band for ground-based astronomy and millimeter-wave imaging applications.

  14. Ultra-Wideband Massive MIMO Communications Using Multi-mode Antennas

    NASA Astrophysics Data System (ADS)

    Hoeher, P. A.; Manteuffel, D.; Doose, N.; Peitzmeier, N.

    2017-09-01

    An ultra-wideband system design is presented which supports wireless internet access and similar short-range applications with data rates of the order of 100 Gbps. Unlike concurrent work exploring the 60 GHz regime and beyond for this purpose, our focus is on the 6.0 -8.5 GHz frequency band. Hence, a bandwidth efficiency of about 50 bps/Hz is necessary. This sophisticated goal is targeted by employing two key enabling techniques: massive MIMO communications in conjunction with multi-mode antennas. This concept is suitable both for small-scale terminals like smartphones, as well as for powerful access points. Compared to millimeter wave and THz band communications, the 6.0 -8.5 GHz frequency band offers more robustness in NLOS scenarios and is more mature with respect to system components.

  15. Theoretical and experimental investigation of millimeter-wave TED's in cross-waveguide oscillators

    NASA Astrophysics Data System (ADS)

    Rydberg, A.

    1985-07-01

    Theoretical and experimental investigations of millimeterwave GaAs second harmonic transferred electron device (TED) oscillators using separate circuits for frequency and power optimization, are described. The theory predicts the oscillation frequency with less than 2 percent error for the second harmonic. Apart from the 2d and 3d, a 4th harmonic from the TED was observed up to 130 GHz.

  16. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1988-01-01

    In the first half of this grant year, laboratory measurements were conducted on the millimeter-wave properties of atmospheric gases under simulated conditions for the outer planet. Significant improvements in the current system have made it possible to accurately characterize the opacity from gaseous NH3 at longer millimeter wavelengths (7 to 10 mm) under simulated Jovian conditions. In the second half of the grant year, it is hoped to extend such measurements to even shorter millimeter-wavelengths. Further analysis and application of the laboratory results to microwave and millimeter-wave absorption data for the outer planets, such as results from Voyager Radio Occultation experiments and earth-based radio astronomical observations will be continued. The analysis of available multispectral microwave opacity data from Venus, including data from the most recent radio astronomical ovservations in the 1.3 to 3.6 cm wavelength range and newly obtained Pioneer-Venus Radio Occulatation measurements at 13 cm, using the laboratory measurements as an interpretative tool will be pursued.

  17. Flight test of MMW radar for brown-out helicopter landing

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Kolinko, Vladimir; Otto, Gregory P.; Lovberg, John A.

    2012-06-01

    Trex Enterprises and US Army RDECOM CERDEC Night Vision Electronic Sensors Directorate developed and tested helicopter radar to aid in brown-out landing situations. A brown-out occurs when sand and dust kicked up by the helicopter rotors impair the pilot's vision. Millimeter-wave (MMW) radiation penetrates sand and dust with little loss or scattering, and radar at this frequency can provide a pilot with an image of the intended landing zone. The Brown-out Situational Awareness System (BSAS) is a frequency-modulated, continuous-wave radar that measures range to the ground across a conical field-of-view and uses that range information to create an image for the pilot. The BSAS collected imagery from a helicopter in a blowing sand environment with obstacles including ditches, hills, posts, poles, wires, buildings and vehicles. The BSAS proved the capability to form images of the ground through heavy blowing sand and resolve images of some obstacles. The BSAS also attempted to differentiate flat ground from bumpy ground with limited success at some viewing angles. The BSAS test imagery includes some artifacts formed by high radar cross-section targets in the field-of-view or sidelobes. The paper discusses future improvements that could limit these artifacts.

  18. Grid oscillators

    NASA Technical Reports Server (NTRS)

    Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.

    1988-01-01

    Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.

  19. A prototype fully polarimetric 160-GHz bistatic ISAR compact radar range

    NASA Astrophysics Data System (ADS)

    Beaudoin, C. J.; Horgan, T.; DeMartinis, G.; Coulombe, M. J.; Goyette, T.; Gatesman, A. J.; Nixon, William E.

    2017-05-01

    We present a prototype bistatic compact radar range operating at 160 GHz and capable of collecting fullypolarimetric radar cross-section and electromagnetic scattering measurements in a true far-field facility. The bistatic ISAR system incorporates two 90-inch focal length, 27-inch-diameter diamond-turned mirrors fed by 160 GHz transmit and receive horns to establish the compact range. The prototype radar range with its modest sized quiet zone serves as a precursor to a fully developed compact radar range incorporating a larger quiet zone capable of collecting X-band bistatic RCS data and 3D imagery using 1/16th scale objects. The millimeter-wave transmitter provides 20 GHz of swept bandwidth in the single linear (Horizontal/Vertical) polarization while the millimeter-wave receiver, that is sensitive to linear Horizontal and Vertical polarization, possesses a 7 dB noise figure. We present the design of the compact radar range and report on test results collected to validate the system's performance.

  20. Millimeter wave detection of nuclear radiation: an alternative detection mechanism.

    PubMed

    Gopalsami, N; Chien, H T; Heifetz, A; Koehl, E R; Raptis, A C

    2009-08-01

    We present a nuclear radiation detection mechanism using millimeter waves as an alternative to conventional detection. It is based on the concept that nuclear radiation causes ionization of air and that if we place a dielectric material near the radiation source, it acts as a charge accumulator of the air ions. We have found that millimeter waves can interrogate the charge cloud on the dielectric material remotely. This concept was tested with a standoff millimeter wave system by monitoring the charge levels on a cardboard tube placed in an x-ray beam.

  1. Research on metal-plated cellulose nitrate flakes and their infrared / millimeter wave characteristics

    NASA Astrophysics Data System (ADS)

    Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei

    2016-10-01

    Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.

  2. Intentionally Short-Range Communications (ISRC)

    NASA Astrophysics Data System (ADS)

    Yen, J.; Poirier, P.; Obrien, M.

    1994-02-01

    The U.S. Marine Corps (USMC) desired to develop short-range communications links whose ranges are intentionally limited to very short distances. These links support tactical missions such as LAN Backbone, Wideband Data Link, and Company Radio. The short-range limitation arises from the need for low probability of detection and intercept (LPD/LPI). Since the detection of an undecipherable transmission would still provide an enemy with information regarding transmitter location and allow him to take countermeasures, the Marine Corps Systems Command (MARCORSYSCOM) is sponsoring the development of technologies that can be LPD by their very nature. The Intentionally Short-Range Communications (ISRC) project at the Naval Command, Control and Ocean Surveillance Center (NCCOSC) RDT&E Division (NRaD) is pursuing feasibility studies for these USMC missions based on such technologies as ultraviolet (LTV) lamps, UV lasers, infrared (IR) lasers, millimeter waves and direct sequence spread spectrum (DSSS) at radio frequencies.

  3. Broadband notch filter design for millimeter-wave plasma diagnostics.

    PubMed

    Furtula, V; Michelsen, P K; Leipold, F; Salewski, M; Korsholm, S B; Meo, F; Nielsen, S K; Stejner, M; Moseev, D; Johansen, T

    2010-10-01

    Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ∼900 MHz, and a typical insertion loss below 2 dB in the passband of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode in the cylindrical cavities is the fundamental TE(11). The performance of the constructed filter is measured using a vector network analyzer monitoring a total bandwidth of 30 GHz. We compare the measurements with numerical simulations.

  4. Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2016-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: fifth generation mobile architecture (5G): 28, 38, 39, 64-71 GHz, as well as Industrial, Scientific, and Medical bands (ISM): 24 and 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 24-72 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication.

  5. Wired/wireless access integrated RoF-PON with scalable generation of multi-frequency MMWs enabled by polarization multiplexed FWM in SOA.

    PubMed

    Xiang, Yu; Chen, Chen; Zhang, Chongfu; Qiu, Kun

    2013-01-14

    In this paper, we propose and demonstrate a novel integrated radio-over-fiber passive optical network (RoF-PON) system for both wired and wireless access. By utilizing the polarization multiplexed four-wave mixing (FWM) effect in a semiconductor optical amplifier (SOA), scalable generation of multi-frequency millimeter-waves (MMWs) can be provided so as to assist the configuration of multi-frequency wireless access for the wire/wireless access integrated ROF-PON system. In order to obtain a better performance, the polarization multiplexed FWM effect is investigated in detail. Simulation results successfully verify the feasibility of our proposed scheme.

  6. Fundamental and subharmonic excitation for an oscillator with several tunneling diodes in series

    NASA Technical Reports Server (NTRS)

    Boric-Lubecke, Olga; Pan, Dee-Son; Itoh, Tatsuo

    1995-01-01

    Connecting several tunneling diodes in series shows promise as a method for increasing the output power of these devices as millimeter-wave oscillators. However, due to the negative differential resistance (NDR) region in the dc I-V curve of a single tunneling diode, a circuit using several devices connected in series, and biased simultaneously in the NDR region, is dc unstable. Because of this instability, an oscillator with several tunneling diodes in series has a demanding excitation condition. Excitation using an externally applied RF signal is one approach to solving this problem. This is experimentally demonstrated using an RF source, both with frequency close to as well as with frequency considerably lower than the oscillation frequency. Excitation by an RF (radio frequency) source with a frequency as low as one sixth of the oscillation frequency was demonstrated in a proof-of-principle experiment at 2 GHz, for an oscillator with two tunnel diodes connected in series. Strong harmonics of the oscillation signal were generated as a result of the highly nonlinear dc I-V curve of the tunnel diode and a large signal oscillator design. Third harmonic output power comparable to that of the fundamental was observed in one oscillator circuit. If submillimeter wave resonant-tunneling diodes (RTD's) are used instead of tunnel diodes, this harmonic output may be useful for generating signals at frequencies well into the terahertz range.

  7. Modeling of a Compact Terahertz Source based on the Two-Stream Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svimonishvili, Tengiz

    2016-05-17

    THz radiation straddles the microwave and infrared bands of the electromagnetic spectrum, thus combining the penetrating power of lower-frequency waves and imaging capabilities of higher-energy infrared radiation. THz radiation is employed in various elds such as cancer research, biology, agriculture, homeland security, and environmental monitoring. Conventional vacuum electronic sources of THz radiation (e.g., fast- and slow-wave devices) either require very small structures or are bulky and expensive to operate. Optical sources necessitate cryogenic cooling and are presently capable of producing milliwatt levels of power at THz frequencies. We propose a millimeter and sub-millimeter wave source based on a well-known phenomenonmore » called the two-stream instability. The two-beam source relies on lowenergy and low-current electron beams for operation. Also, it is compact, simple in design, and does not contain expensive parts that require complex machining and precise alignment. In this dissertation, we perform 2-D particle-in-cell (PIC) simulations of the interaction region of the two-beam source. The interaction region consists of a beam pipe of radius ra and two electron beams of radius rb co-propagating and interacting inside the pipe. The simulations involve the interaction of unmodulated (no initial energy modulation) and modulated (energy-modulated, seeded at a given frequency) electron beams. In addition, both cold (monoenergetic) and warm (Gaussian) beams are treated.« less

  8. Hot electron generation under large-signal radio frequency operation of GaN high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Latorre-Rey, Alvaro D.; Sabatti, Flavio F. M.; Albrecht, John D.; Saraniti, Marco

    2017-07-01

    In order to assess the underlying physical mechanisms of hot carrier-related degradation such as defect generation in millimeter-wave GaN power amplifiers, we have simulated the electron energy distribution function under large-signal radio frequency conditions in AlGaN/GaN high-electron-mobility transistors. Our results are obtained through a full band Monte Carlo particle-based simulator self-consistently coupled to a harmonic balance circuit solver. At lower frequency, simulations of a Class AB power amplifier at 10 GHz show that the peak hot electron generation is up to 43% lower under RF drive than it is under DC conditions, regardless of the input power or temperature of operation. However, at millimeter-wave operation up to 40 GHz, RF hot carrier generation reaches that from DC biasing and even exceeds it up to 75% as the amplifier is driven into compression. Increasing the temperature of operation also shows that degradation of DC and RF characteristics are tightly correlated and mainly caused by increased phonon scattering. The accurate determination of the electron energy mapping is demonstrated to be a powerful tool for the extraction of compact models used in lifetime and reliability analysis.

  9. Millimeter and submillimeter wave spectra of 13C-glycolaldehydes

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Motiyenko, R. A.; Margulès, L.; Huet, T. R.

    2013-01-01

    Context. Glycolaldehyde (CH2OHCHO) is the simplest sugar and an important intermediate in the path toward forming more complex biologically relevant molecules. Astronomical surveys of interstellar molecules, such as those available with the very sensitive ALMA telescope, require preliminary laboratory investigations of the microwave and submillimeter-wave spectra of molecular species including new isotopologs - to identify these in the interstellar media. Aims: To achieve the detection of the 13C isotopologs of glycolaldehyde in the interstellar medium, their rotational spectra in the millimeter and submillimeter-wave regions were studied. Methods: The spectra of 13CH2OHCHO and CH2OH13CHO were recorded in the 150-945 GHz spectral range in the laboratory using a solid-state submillimeter-wave spectrometer in Lille. The observed line frequencies were measured with an accuracy of 30 kHz up to 700 GHz and of 50 kHz above 700 GHz. We analyzed the spectra with a standard Watson Hamiltonian. Results: About 10 000 new lines were identified for each isotopolog. The spectroscopic parameters were determined for the ground- and the three lowest vibrational states up to 945 and 630 GHz. Previous microwave assignments of 13CH2OHCHO were not confirmed. Conclusions: The provided line-lists and sets of molecular parameters meet the needs for a first astrophysical search of 13C-glycolaldehydes. Full Tables 3 and 4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A96

  10. Millimeter-Wave Spectroscopy, X-ray Crystal Structure, and Quantum Chemical Studies of Diketene: Resolving Ambiguities Concerning the Structure of the Ketene Dimer.

    PubMed

    Orr, Vanessa L; Esselman, Brian J; Dorman, P Matisha; Amberger, Brent K; Guzei, Ilia A; Woods, R Claude; McMahon, Robert J

    2016-10-06

    The pure rotational spectrum of diketene has been studied in the millimeter-wave region from ∼240 to 360 GHz. For the ground vibrational state and five vibrationally excited satellites (ν 24 , 2ν 24 , 3ν 24 , 4ν 24 , and ν 16 ), the observed spectrum allowed for the measurement, assignment, and least-squares fitting a total of more than 10 000 distinct rotational transitions. In each case, the transitions were fit to single-state, complete or near-complete sextic centrifugally distorted rotor models to near experimental error limits using Kisiel's ASFIT. Additionally, we obtained less satisfactory least-squares fits to single-state centrifugally distorted rotor models for three additional vibrational states: ν 24 + ν 16 , ν 23 , and 5ν 24 . The structure of diketene was optimized at the CCSD(T)/ANO1 level, and the vibration-rotation interaction (α i ) values for each normal mode were determined with a CCSD(T)/ANO1 VPT2 anharmonic frequency calculation. These α i values were helpful in identifying the previously unreported ν 16 and ν 23 fundamental states. We obtained a single-crystal X-ray structure of diketene at -173 °C. The bond distances are increased in precision by more than an order of magnitude compared to those in the 1958 X-ray crystal structure. The improved accuracy of the crystal structure geometry resolves the discrepancy between previous computational and experimental structures. The rotational transition frequencies provided herein should be useful for a millimeter-wave or terahertz search for diketene in the interstellar medium.

  11. Contactless measurement of electrical conductivity of semiconductor wafers using the reflection of millimeter waves

    NASA Astrophysics Data System (ADS)

    Ju, Yang; Inoue, Kojiro; Saka, Masumi; Abe, Hiroyuki

    2002-11-01

    We present a method for quantitative measurement of electrical conductivity of semiconductor wafers in a contactless fashion by using millimeter waves. A focusing sensor was developed to focus a 110 GHz millimeter wave beam on the surface of a silicon wafer. The amplitude and the phase of the reflection coefficient of the millimeter wave signal were measured by which electrical conductivity of the wafer was determined quantitatively, independent of the permittivity and thickness of the wafers. The conductivity obtained by this method agrees well with that measured by the conventional four-point-probe method.

  12. Millimeter wave scattering characteristics and radar cross section measurements of common roadway objects

    NASA Astrophysics Data System (ADS)

    Zoratti, Paul K.; Gilbert, R. Kent; Majewski, Ronald; Ference, Jack

    1995-12-01

    Development of automotive collision warning systems has progressed rapidly over the past several years. A key enabling technology for these systems is millimeter-wave radar. This paper addresses a very critical millimeter-wave radar sensing issue for automotive radar, namely the scattering characteristics of common roadway objects such as vehicles, roadsigns, and bridge overpass structures. The data presented in this paper were collected on ERIM's Fine Resolution Radar Imaging Rotary Platform Facility and processed with ERIM's image processing tools. The value of this approach is that it provides system developers with a 2D radar image from which information about individual point scatterers `within a single target' can be extracted. This information on scattering characteristics will be utilized to refine threat assessment processing algorithms and automotive radar hardware configurations. (1) By evaluating the scattering characteristics identified in the radar image, radar signatures as a function of aspect angle for common roadway objects can be established. These signatures will aid in the refinement of threat assessment processing algorithms. (2) Utilizing ERIM's image manipulation tools, total RCS and RCS as a function of range and azimuth can be extracted from the radar image data. This RCS information will be essential in defining the operational envelope (e.g. dynamic range) within which any radar sensor hardware must be designed.

  13. Waveguide Photonic Choke Joint with Wide Out-of-Band Rejection

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.

    2015-01-01

    A photonic choke joint structure with a wide-stop-band is proposed for use as a waveguide flange interface. The structure consists of arrays of square metal pillars arranged in a periodic pattern to suppress the dominant-mode wave propagation in parallel-plate waveguide over a wide frequency bandwidth. The measurement results at microwave frequencies confirm that the structure can provide broadband suppression of more than 56dB over 6.25 times its operating frequency. Applications at millimeter wavelength are discussed.

  14. Waveguide Photonic Choke Joint with Wide Out-of-Band Rejection

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.

    2015-01-01

    A photonic choke joint structure with a wide- stop-band is proposed for use as a waveguide flange interface. The structure consists of arrays of square metal pillars arranged in a periodic pattern to suppress the dominant-mode wave propagation in parallel-plate waveguide over a wide frequency bandwidth. The measurement results at microwave frequencies confirm the structure can provide broadband suppression, more than 56 dB over 6.25 times its operating frequency. Applications at millimeter wavelength are discussed.

  15. A Millimeter-Wave Cavity-Backed Suspended Substrate Stripline Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    1999-01-01

    Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency bands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency, and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz), cavity backed, circular aperture antenna with suspended substrate stripline (SSS) feed is presented.

  16. Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz

    NASA Astrophysics Data System (ADS)

    Sasaki, Kensuke; Mizuno, Maya; Wake, Kanako; Watanabe, Soichi

    2017-09-01

    In this study, we present an assessment of human-body exposure to an electromagnetic field at frequencies ranging from 10 GHz to 1 THz. The energy absorption and temperature elevation were assessed by solving boundary value problems of the one-dimensional Maxwell equations and a bioheat equation for a multilayer plane model. Dielectric properties were measured in~vitro at frequencies of up to 1 THz at body temperature. A Monte Carlo simulation was conducted to assess variations of the transmittance into a skin surface and temperature elevation inside a body by considering the variation of the tissue thickness due to individual differences among human bodies. Furthermore, the impact of the dielectric properties of adipose tissue on temperature elevation, for which large discrepancies between our present measurement results and those in past works were observed, was also examined. We found that the dielectric properties of adipose tissue do not impact on temperature elevation at frequencies over 30 GHz. The potential risk of skin burn was discussed on the basis of the temperature elevation in millimeter-wave and terahertz-wave exposure. Furthermore, the consistency of the basic restrictions in the international guidelines set by ICNIRP was discussed.

  17. Development of Millimeter Wave Fabry-Pérot Resonator for Simultaneous Electron-Spin and Nuclear Magnetic Resonance Measurement

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yuya; Ohya, Kenta; Fujii, Yutaka; Fukuda, Akira; Miura, Shunsuke; Mitsudo, Seitaro; Yamamori, Hidetomo; Kikuchi, Hikomitsu

    2018-04-01

    We report a Fabry-Pérot resonator with spherical and flat mirrors to allow simultaneous electron-spin resonance (ESR) and nuclear magnetic resonance (NMR) measurements that could be used for double magnetic resonance (DoMR). In order to perform simultaneous ESR and NMR measurements, the flat mirror must reflect millimeter wavelength electromagnetic waves and the resonator must have a high Q value ( Q > 3000) for ESR frequencies, while the mirror must simultaneously let NMR frequencies pass through. This requirement can be achieved by exploiting the difference of skin depth for the two frequencies, since skin depth is inversely proportional to the square root of the frequency. In consideration of the skin depth, the optimum conditions for conducting ESR and NMR using a gold thin film are explored by examining the relation between the Q value and the film thickness. A flat mirror with a gold thin film was fabricated by sputtering gold on an epoxy plate. We also installed a Helmholtz radio frequency coil for NMR and tested the system both at room and low temperatures with an optimally thick gold film. As a result, signals were obtained at 0.18 K for ESR and at 1.3 K for NMR. A flat-mirrored resonator with a thin gold film surface is an effective way to locate NMR coils closer to the sample being examined with DoMR.

  18. A Channelized 2nd IF/LO Downconverter for the E0S Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    LaBelle, Remi C.

    2003-01-01

    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) is scheduled for launch in 2004 on the EOS Aura spacecraft. The design, assembly and test of the flight 2nd Intermediate Frequency/ Local Oscillator (2nd IF/LO) subsystem for this instrument has been completed and is presented here. The 2nd IF/LO subsystem consists of 5 separate microwave assemblies, 1 for each of the 5 millimeter wave radiometer front ends, providing a total of 33 separate IF channels. Some key requirements of the subsystem are as follows: provide frequency multiplexing of overlapping or closely spaced 1st IF channels while maintaining low ripple in the passbands; generate 19 different 2nd LO frequencies, in the range of 4-20 GHz, with low phase noise and a placement resolution of 400 KHz; downconvert the 1st IF's to a common 2nd IF frequency centered at 900 MHz; minimize cost and schedule by using common designs for the 5 different assemblies wherever possible.

  19. An array of antenna-coupled superconducting microbolometers for passive indoors real-time THz imaging

    NASA Astrophysics Data System (ADS)

    Luukanen, A.; Grönberg, L.; Helistö, P.; Penttilä, J. S.; Seppä, H.; Sipola, H.; Dietlein, C. R.; Grossman, E. N.

    2006-05-01

    The temperature resolving power (NETD) of millimeter wave imagers based on InP HEMT MMIC radiometers is typically about 1 K (30 ms), but the MMIC technology is limited to operating frequencies below ~ 150 GHz. In this paper we report the first results from a pixel developed for an eight pixel sub-array of superconducting antenna-coupled microbolometers, a first step towards a real-time imaging system, with frequency coverage of 0.2 - 3.6 THz. These detectors have demonstrated video-rate NETDs in the millikelvin range, close to the fundamental photon noise limit, when operated at a bath temperature of ~ 4K. The detectors will be operated within a turn-key cryogen-free pulse tube refrigerator, which allows for continuous operation without the need for liquid cryogens. The outstanding frequency agility of bolometric detectors allows for multi-frequency imaging, which greatly enhances the discrimination of e.g. explosives against innoncuous items concealed underneath clothing.

  20. Carbon loaded Teflon (CLT): a power density meter for biological experiments using millimeter waves.

    PubMed

    Allen, Stewart J; Ross, James A

    2007-01-01

    The standard technique for measurement of millimeter wave fields utilizes an open-ended waveguide attached to a HP power meter. The alignment of the waveguide with the propagation (K) vector is critical to making accurate measurements. Using this technique, it is difficult and time consuming to make a detailed map of average incident power density over areas of biological interest and the spatial resolution of this instrument does not allow accurate measurements in non-uniform fields. For biological experiments, it is important to know the center field average incident power density and the distribution over the exposed area. Two 4 ft x 4 ft x 1/32 inch sheets of carbon loaded Teflon (CLT) (one 15% carbon and one 25% carbon) were procured and a series of tests to determine the usefulness of CLT in defining fields in the millimeter wavelength range was initiated. Since the CLT was to be used both in the laboratory, where the environment was well controlled, and in the field, where the environment could not be controlled, tests were made to determine effects of change in environmental conditions on ability to use CLT as a millimeter wave dosimeter. The empirical results of this study indicate CLT to be an effective dosimeter for biological experiments both in the laboratory and in the field.

  1. Investigation of Passive Atmospheric Sounding Using Millimeter- and Submillimeter- Wavelength Channels

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.

    1996-01-01

    This report summarizes progress made during the period from July 1, 1994 through June 30, 1996 on the development of satellite-based observational techniques for high resolution imaging of precipitation and sounding of atmospheric ice and water vapor using passive microwave radiometers in the millimeter (MMW)- and submillimeter (SMMW)-wavelength. This is being achieved by radiative transfer modeling a millimeter and submillimeter wave frequencies and by the development and operation of an airborne millimeter wave imaging radiometer (MIR). The MIR has been used in both airborne and ground-based experiments. Its primary application is to provide calibrated radiometric imagery to verify MMW and SMMW radiative transfer models in clear air, cloud, and precipitation and to develop retrieval techniques using MMW and SMMW channels. The MIR imagery over convective storm cells has been used to illustrate the potentially useful cloud and water vapor sensing and storm-cell mapping capabilities of SMMW channels. The radiometric data has also been used to analyze radiative transfer model discrepancies caused by water vapor errors in radiosondes. The MMW and SMMW channels can be used to extend the altitude that water vapor sounding can be performed up into the lower stratosphere. Together, the use of both SMMW and MMW channels are expected to provide additional observational degrees of freedom related to cloud ice particle size.

  2. A megawatt-level surface wave oscillator in Y-band with large oversized structure driven by annular relativistic electron beam.

    PubMed

    Wang, Jianguo; Wang, Guangqiang; Wang, Dongyang; Li, Shuang; Zeng, Peng

    2018-05-03

    High power vacuum electronic devices of millimeter wave to terahertz regime are attracting extensive interests due to their potential applications in science and technologies. In this paper, the design and experimental results of a powerful compact oversized surface wave oscillator (SWO) in Y-band are presented. The cylindrical slow wave structure (SWS) with rectangular corrugations and large diameter about 6.8 times the radiation wavelength is proposed to support the surface wave interacting with annular relativistic electron beam. By choosing appropriate beam parameters, the beam-wave interaction takes place near the π-point of TM 01 mode dispersion curve, giving high coupling impedance and temporal growth rate compared with higher TM 0n modes. The fundamental mode operation of the device is verified by the particle-in-cell (PIC) simulation results, which also indicate its capability of tens of megawatts power output in the Y-band. Finally, a compact experimental setup is completed to validate our design. Measurement results show that a terahertz pulse with frequency in the range of 0.319-0.349 THz, duration of about 2 ns and radiation power of about 2.1 MW has been generated.

  3. Millimeter-Wave Sensing of Diabetes-Relevant Glucose Concentration Changes in Pigs

    NASA Astrophysics Data System (ADS)

    Cano-Garcia, Helena; Saha, Shimul; Sotiriou, Ioannis; Kosmas, Panagiotis; Gouzouasis, Ioannis; Kallos, Efthymios

    2018-06-01

    The paper presents the first in vivo glucose monitoring animal study in a pig, which correlates radio frequency signal transmission changes with changes in blood glucose concentration in the 58-62 GHz frequency range. The presented non-invasive glucose sensing system consists of two opposite facing patch antennas sandwiching glucose-loaded samples. Prior to the animal study, the system was tested using saline solution samples, for which a linear relationship between changes in transmitted signal and glucose concentration was observed. In the animal study, glucose concentration changes were induced by injecting a known glucose solution in the blood stream. The non-invasive transmission measurements were compared to the glucose levels obtained invasively from the animal. Our results suggest that the system can detect spikes in glucose concentration in the blood, which is an important milestone towards non-invasive glucose monitoring.

  4. Investigation of Microwave Monolithic Integrated Circuit (MMIC) Non-Reciprocal Millimeterwave Components

    DTIC Science & Technology

    1991-09-01

    nickel zinc ferrite films and (2) sputtering of barium hexaferrites with C-axis oriented normally to the film plane. The SSP tech- nique potential for...M-Wave, Components, Ferrites, Films , Yig, Nickel, Zinc , Hexagonal, R96E Measurements, Frequency, Magnetic, Barium Ferrite 17. SECURITY CLASSIFICATION...techniques to integrate millimeter-wave ferrite devices with GaAs VI&Cs. APPROACH Our approach was to deposit ferrite thin films on GaAs sub- strates in a

  5. Evaluation of Specialized Photoacoustic Absorption Chambers for Near-Millimeter Wave (NMMW) Propagation Measurements.

    DTIC Science & Technology

    1980-08-01

    an audio oscillator , speaker, frequency counter, and oscilloscope the spheres could be driven into resonance. This procedure was first done for the...cavity, some of the electromagnetic energy is absorbed by an absorbing media. Heating of the gas occurs with the resultant pressure change creating an...acoustic wave. Due to the double open-ended organ pipe design, a pressure maximum occurs midway down the cavity. Because of the symetric placement of the

  6. Low-voltage high-reliability MEMS switch for millimeter wave 5G applications

    NASA Astrophysics Data System (ADS)

    Shekhar, Sudhanshu; Vinoy, K. J.; Ananthasuresh, G. K.

    2018-07-01

    Lack of reliability of radio-frequency microelectromechanical systems (RF MEMS) switches has inhibited their commercial success. Dielectric stiction/breakdown and mechanical shock due to high actuation voltage are common impediments in capacitive MEMS switches. In this work, we report low-actuation voltage RF MEMS switch and its reliability test. Experimental characterization of fabricated devices demonstrate that proposed MEMS switch topology needs very low voltage (4.8 V) for actuation. The mechanical resonant frequency, f 0, quality factor, Q, and switching time are measured to be 8.35 kHz, 1.2, and 33 microsecond, respectively. These MEMS switches have high reliability in terms of switching cycles. Measurements are performed using pulse waveform of magnitude of 6 V under hot-switching condition. Temperature measurement results confirm that the reported switch topology has good thermal stability. The robustness in terms of the measured pull-in voltage shows a variation of 0.08 V °C‑1. Lifetime measurement results after 10 million switching cycles demonstrate insignificant change in the RF performance without any failure. Experimental results show that low voltage improves the lifetime. Low insertion loss (less than 0.6 dB) and improved isolation (above 40 dB) in the frequency range up to 60 GHz have been reported. Measured RF characteristics in the frequency range from 10 MHz to 60 GHz support that these MEMS switches are favorable choice for mm-wave 5G applications.

  7. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) Using Synthetic Aperture Focusing Techniques (SAFT)

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkovshy, S.; Hepburn, F. L.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods, have shown great potential for inspecting the SOFI for the purpose of detecting anomalies such as small voids that may cause separation of the foam from the external tank during the launch. These methods are capable of producing relatively high-resolution images of the interior of SOH particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques are being deveioped for this purpose. These iechniqiies pradiice high-resolution images that are independent of the distance of the imaging probe to the SOFI with spatial resolution in the order of the half size of imaging probe aperture. At microwave and millimeter wave frequencies these apertures are inherently small resulting in high-resolution images. This paper provides the results of this investigation using 2D and 3D SAF based methods and holography. The attributes of these methods and a full discussion of the results will also be provided.

  8. ATS-5 millimeter wave propagation measurements

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1973-01-01

    Long term experimental measurements to determine the propagation characteristics of 15 and 32 GHz earth-space links and to evaluate performance characteristics of operational millimeter wave systems are reported. The ATS 5 millimeter wave experimental link experienced attenuation and fading characteristics as a function of rainfall rate and other meteorological parameters. A method of site selection for the lowest attenuation rainfall rate improved reception tremendously.

  9. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: Fifth generation mobile architecture (5G): 28, 38, 39, 6471 GHz; Industrial, Scientific, and Medical bands (ISM): 24, 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 2472 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication. The results of this work are presented in this poster.

  10. A Q-band two-beam cryogenic receiver for the Tianma Radio Telescope

    NASA Astrophysics Data System (ADS)

    Zhong, Wei-Ye; Dong, Jian; Gou, Wei; Yu, Lin-Feng; Wang, Jin-Qing; Xia, Bo; Jiang, Wu; Liu, Cong; Zhang, Hui; Shi, Jun; Yin, Xiao-Xing; Shi, Sheng-Cai; Liu, Qing-Hui; Shen, Zhi-Qiang

    2018-04-01

    A Q-band two-beam cryogenic receiver for the Tianma Radio Telescope (TMRT) has been developed, and it uses the independently-developed key microwave and millimeter-wave components operating from 35 to 50GHz with a fractional bandwidth of 35%. The Q-band receiver consists of three parts: optics, cold unit assembly and warm unit assembly, and it can receive simultaneously the left-handed and right-handed circularly polarized waves. The cold unit assembly of each beam is composed of a feed horn, a noise injection coupler, a differential phase shifter, an orthomode transducer and two low-noise amplifiers, and it works at a temperature range near 20 K to greatly improve the detection sensitivity of the receiving system. The warm unit assembly includes four radio-frequency amplifiers, four radio-frequency high-pass filters, four waveguide biased mixers, four 4–12 GHz intermediate-frequency amplifiers and one 31–38 GHz frequency synthesizer. The measured Q-band four-channel receiver noise temperatures are roughly 30–40 K. In addition, the single-dish spectral line and international very long baseline interferometry (VLBI) observations between the TMRT and East Asia VLBI Network at the Q-band have been successfully carried out, demonstrating the advantages of the TMRT equipped with the state-of-the-art Q-band receiver.

  11. Design concepts for a high-impedance narrow-band 42 GHz power TWT using a fundamental/forward ladder-based circuit

    NASA Technical Reports Server (NTRS)

    Karp, A.

    1980-01-01

    A low-cost, narrowband, millimeter wave space communications TWT design was studied. Cold test interaction structure scale models were investigated and analyses were undertaken to predict the electrical and thermal response of the hypothetical 200 W TWT at 42 GHz and 21 kV beam voltage. An intentionally narrow instantaneous bandwidth (1%, with the possibility of electronic tuning of the center frequency over several percent) was sought with a highly dispersive, high impedance "forward wave' interaction structure based on a ladder (for economy in fabrication) and nonspace harmonic interaction, for a high gain rate and a short, economically focused tube. The "TunneLadder' interaction structure devised combines ladder properties with accommodation for a pencil beam. Except for the impedance and bandwidth, there is much in common with the millimeter wave helix TWTs which provided the ideal of diamond support rods. The benefits of these are enhanced in the TunneLadder case because of spatial separation of beam interception and RF current heating.

  12. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    NASA Technical Reports Server (NTRS)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  13. AIN-Coated Al(2)O(3) Substrates For Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Kolawa, Elzbieta; Lowry, Lynn; Herman, Martin; Lee, Karen

    1996-01-01

    Type of improved ceramic substrate for high-frequency, high-power electronic circuits combines relatively high thermal conductivity of aluminum nitride with surface smoothness of alumina. Consists of 15-micrometer layer of AIN deposited on highly polished alumina. Used for packaging millimeter-wave gallium arsenide transmitter chips, power silicon chips, and like.

  14. Superiority of terahertz over infrared transmission through bandages and burn wound ointments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suen, Jonathan Y., E-mail: j.suen@duke.edu; Padilla, Willie J.

    Terahertz electromagnetic waves have long been proposed to be ideal for spectroscopy and imaging through non-polar dielectric materials that contain no water. Terahertz radiation may thus be useful for monitoring burn and wound injury recovery, as common care treatments involve application of both a clinical dressing and topical ointment. Here, we investigate the optical properties of typical care treatments in the millimeter wave (150–300 GHz), terahertz (0.3–3 THz), and infrared (14.5–0.67 μm) ranges of the electromagnetic spectrum. We find that THz radiation realizes low absorption coefficients and high levels of transmission compared to infrared wavelengths, which were strongly attenuated. Terahertz imaging canmore » enable safe, non-ionizing, noninvasive monitoring of the healing process directly through clinical dressings and recovery ointments, minimizing the frequency of dressing changes and thus increasing the rate of the healing process.« less

  15. Evaluation of quadrature-phase-shift-keying signal characteristics in W-band radio-over-fiber transmission using direct in-phase/quadrature-phase conversion technique

    NASA Astrophysics Data System (ADS)

    Suzuki, Meisaku; Kanno, Atsushi; Yamamoto, Naokatsu; Sotobayashi, Hideyuki

    2016-02-01

    The effects of in-phase/quadrature-phase (IQ) imbalances are evaluated with a direct IQ down-converter in the W-band (75-110 GHz). The IQ imbalance of the converter is measured within a range of +/-10 degrees in an intermediate frequency of DC-26.5 GHz. 1-8-G-baud quadrature phase-shift keying (QPSK) signals are transmitted successfully with observed bit error rates within a forward error correction limit of 2×10-3 using radio over fiber (RoF) techniques. The direct down-conversion technique is applicable to next-generation high-speed wireless access communication systems in the millimeter-wave band.

  16. Capability of long distance 100  GHz FMCW using a single GDD lamp sensor.

    PubMed

    Levanon, Assaf; Rozban, Daniel; Aharon Akram, Avihai; Kopeika, Natan S; Yitzhaky, Yitzhak; Abramovich, Amir

    2014-12-20

    Millimeter wave (MMW)-based imaging systems are required for applications in medicine, homeland security, concealed weapon detection, and space technology. The lack of inexpensive room temperature imaging sensors makes it difficult to provide a suitable MMW system for many of the above applications. A 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The radar system requires that the millimeter wave detector will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the 2D image. New experiments show the capability of long distance FMCW detection by using a large scale Cassegrain projection system, described first (to our knowledge) in this paper. The system presents the capability to employ a long distance of at least 20 m with a low-cost plasma-based glow discharge detector (GDD) focal plane array (FPA). Each point on the object corresponds to a point in the image and includes the distance information. This will enable relatively inexpensive 3D MMW imaging.

  17. New 50-m-class single-dish telescope: Large Submillimeter Telescope (LST)

    NASA Astrophysics Data System (ADS)

    Kawabe, Ryohei; Kohno, Kotaro; Tamura, Yoichi; Takekoshi, Tatsuya; Oshima, Tai; Ishii, Shun

    2016-08-01

    We report on a plan to construct a 50-m-class single-dish telescope, the Large Submillimeter Telescope (LST). The conceptual design and key science behind the LST are presented, together with its tentative specifications. This telescope is optimized for wide-area imaging and spectroscopic surveys in the 70-420 GHz frequency range, which spans the main atmospheric windows at millimeter and submillimeter wavelengths for good observation sites such as the Atacama Large Millimeter/submillimeter Array (ALMA) site in Chile. We also target observations at higher frequencies of up to 1 THz, using an inner high-precision surface. Active surface control is required in order to correct gravitational and thermal deformations of the surface, and will be useful for correction of the wind-load deformation. The LST will facilitate new discovery spaces such as wide-field imaging with both continuum and spectral lines, along with new developments for time-domain science. Through exploitation of its synergy with ALMA and other telescopes, the LST will contribute to research on a wide range of topics in the fields of astronomy and astrophysics, e.g., astrochemistry, star formation in our Galaxy and galaxies, the evolution of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect, the search for transients such as γ-ray burst reverse shocks produced during the epoch of re-ionization, electromagnetic follow up of detected gravitational wave sources, and examination of general relativity in the vicinity of super massive black holes via submillimeter very-long-baseline interferometry (VLBI).

  18. A system for measuring complex dielectric properties of thin films at submillimeter wavelengths using an open hemispherical cavity and a vector network analyzer

    NASA Astrophysics Data System (ADS)

    Rahman, Rezwanur; Taylor, P. C.; Scales, John A.

    2013-08-01

    Quasi-optical (QO) methods of dielectric spectroscopy are well established in the millimeter and submillimeter frequency bands. These methods exploit standing wave structure in the sample produced by a transmitted Gaussian beam to achieve accurate, low-noise measurement of the complex permittivity of the sample [e.g., J. A. Scales and M. Batzle, Appl. Phys. Lett. 88, 062906 (2006);, 10.1063/1.2172403 R. N. Clarke and C. B. Rosenberg, J. Phys. E 15, 9 (1982);, 10.1088/0022-3735/15/1/002 T. M. Hirovnen, P. Vainikainen, A. Lozowski, and A. V. Raisanen, IEEE Trans. Instrum. Meas. 45, 780 (1996)], 10.1109/19.516996. In effect the sample itself becomes a low-Q cavity. On the other hand, for optically thin samples (films of thickness much less than a wavelength) or extremely low loss samples (loss tangents below 10-5) the QO approach tends to break down due to loss of signal. In such a case it is useful to put the sample in a high-Q cavity and measure the perturbation of the cavity modes. Provided that the average mode frequency divided by the shift in mode frequency is less than the Q (quality factor) of the mode, then the perturbation should be resolvable. Cavity perturbation techniques are not new, but there are technological difficulties in working in the millimeter/submillimeter wave region. In this paper we will show applications of cavity perturbation to the dielectric characterization of semi-conductor thin films of the type used in the manufacture of photovoltaics in the 100 and 350 GHz range. We measured the complex optical constants of hot-wire chemical deposition grown 1-μm thick amorphous silicon (a-Si:H) film on borosilicate glass substrate. The real part of the refractive index and dielectric constant of the glass-substrate varies from frequency-independent to linearly frequency-dependent. We also see power-law behavior of the frequency-dependent optical conductivity from 316 GHz (9.48 cm-1) down to 104 GHz (3.12 cm-1).

  19. Built-in self-test (BIST) techniques for millimeter wave CMOS transceivers

    NASA Astrophysics Data System (ADS)

    Mahzabeen, Tabassum

    The seamless integration of complementary metal oxide semiconductor (CMOS) transceivers with a digital CMOS process enhances on-chip testability, thus reducing production and testing costs. Built in self testability also improves yield by offering on-chip compensation. This work focuses on built in self test techniques for CMOS based millimeter wave (mm-wave) transceivers. Built-in-self-test (BIST) using the loopback method is one cost-effective method for testing these transceivers. Since the loopback switch is always present during the normal operation of the transceiver, the requirement of the switch is different than for a conventional switch. The switch needs to have high isolation and high impedance during its OFF period. Two 80 GHz single pole single throw (SPST) switches have been designed, fabricated in standard CMOS process, and measured to connect the loopback path for BIST applications. The loopback switches in this work provide the required criteria for loopback BIST. A stand alone 80 GHz low noise amplifier (LNA) and the same LNA integrated with one of the loopback switches have been fabricated, and measured to observe the difference in performance when the loopback switch is present. Besides the loopback switch, substrate leakage also forms a path between the transmitter and receiver. Substrate leakage has been characterized as a function of distance between the transmitter and receiver for consideration in using the BIST method. A BIST algorithm has been developed to estimate the process variation in device sizes by probing a low frequency ring oscillator to estimate the device variation and map this variation to the 80 GHz LNA. Probing a low frequency circuit is cheaper compared to the probing of a millimeter wave circuit and reduces the testing costs. The performance of the LNA degrades due to variation in device size. Once the shift in the device size is being estimated (from the ring oscillator's shifted frequency), the LNA's performance can be recovered using several methods; for example, using tunable transmission line lengths in the amplifier or using a variable supply voltage. This concept of estimating process variation has been demonstrated in Agilent Design System (ADS).

  20. Broadband millimeter-wave GaAs transmitters and receivers using planar bow-tie antennas

    NASA Technical Reports Server (NTRS)

    Konishi, Y.; Kamegawa, M.; Case, M.; Yu, R.; Rodwell, M. J. W.; York, R. A.; Rutledge, D. B.

    1992-01-01

    We report broadband monolithic transmitters and receivers IC's for mm-wave electromagnetic measurements. The IC's use nonlinear transmission lines (NLTL) and sampling circuits as picosecond pulse generators and detectors. The pulses are radiated and received by planar monolithic bow-tie antennas, collimated with silicon substrate lenses and off-axis parabolic reflectors. Through Fourier transformation of the received pulse, 30-250 GHz free space gain-frequency measurements are demonstrated with an accuracy approximately = 0.17 dB, RMS.

  1. Applications of Submillimeter Wave Technology for SDI,

    DTIC Science & Technology

    1992-05-21

    equivalent to the center frequency (in GHz) divided by 2. If we allow a 13 dB "rule of thumb" signal-to- noise ratio (S/N) to account for such items as...suited for low - noise heterodyne mixing. This has led to the rapid development of SIS mixers for use in low - noise millimeter wave receivers for radio...JPL is building a 630 GHz SIS receiver13 for astrophysical remote-sensing applications. Preliminary measurements show its noise temperature to be a

  2. A quasioptically stabilized resonant-tunneling-diode oscillator for the millimeter- and submillimeter-wave regions

    NASA Technical Reports Server (NTRS)

    Brown, Elliott R.; Parker, Christopher D.; Molvar, Karen M.; Stephan, Karl D.

    1992-01-01

    A semiconfocal open-cavity resonator has been used to stabilize a resonant-tunneling-diode waveguide oscillator at frequencies near 100 GHz. The high quality factor of the open cavity resulted in a linewidth of approximately 10 kHz at 10 dB below the peak, which is about 100 times narrower than the linewidth of an unstabilized waveguide oscillator. This technique is well suited for resonant-tunneling-diode oscillators in the submillimeter-wave region.

  3. A Millimeter-wave Cavity-backed Suspended Substrate Stripline Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    1999-01-01

    Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency hands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz) 4 x 4 planar array of cavity backed circular aperture antennas with suspended substrate stripline (SSS) corporate feed is presented.

  4. Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation

    NASA Astrophysics Data System (ADS)

    Booske, John

    2007-11-01

    Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave to terahertz regime electromagnetic radiation, from 0.1 to 10 THz. While sources at the low frequency end, i.e., the gyrotron, have been deployed or are being tested for diverse applications such as WARLOC radar and active denial systems, the challenges for higher frequency sources have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, and high resolution spectroscopy and atmospheric sensing. The compact size requirements for many of these high frequency sources requires miniscule, micro-fabricated slow wave circuits with high rf ohmic losses. This necessitates electron beams with not only very small transverse dimensions but also very high current density for adequate gain. Thus, the emerging family of mm-to-THz e-beam-driven vacuum electronics devices share many of the same plasma physics challenges that currently confront ``classic'' high power microwave (HPM) generators [1] including bright electron sources, intense beam transport, energetic electron interaction with surfaces and rf air breakdown at output windows. Multidimensional theoretical and computational models are especially important for understanding and addressing these challenges. The contemporary plasma physics issues, recent achievements, as well as the opportunities and outlook on THz and HPM will be addressed. [1] R.J. Barker, J.H. Booske, N.C. Luhmann, and G.S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005).

  5. An Ultra-Wideband Millimeter-Wave Phased Array

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  6. Wide-field-of-view millimeter-wave telescope design with ultra-low cross-polarization

    NASA Astrophysics Data System (ADS)

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David; Hatchell, Brian; Valdez, Patrick; Tedeschi, Jonathan; Hall, Thomas; McMakin, Douglas

    2012-06-01

    As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degrees of freedom that offer larger fields of view than possible with single-reflector designs. Dragone's graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone's geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone's design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low cross-polarization and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.

  7. Millimeter-Wave Gyroklystron Amplifier Experiment Using a Relativistic Electron Beam

    DTIC Science & Technology

    1990-03-08

    Qint to 400 for the TE1 l1 mode, while assisting in suppressing other competing modes [7]. The length of these slots is three times the nominal cavity...frequency by tranverse compression by means of separate clamps. However, cavity deformation affects both the center frequency and the value 5 of Q...amplifier operation was limited by the excitation of parasitic oscillation of the competing TE1 12 mode, as predicted by theory [7]. Despite this

  8. Imaging of spatial distributions of the millimeter wave intensity by using the Visible Continuum Radiation from a discharge in a Cs-Xe mixture. Part II: Demonstration of application capabilities of the technique

    NASA Astrophysics Data System (ADS)

    Gitlin, M. S.; Glyavin, M. Yu.; Fedotov, A. E.; Tsvetkov, A. I.

    2017-07-01

    The paper presents the second part of the review on a high-sensitive technique for time-resolved imaging and measurements of the 2D intensity profiles of millimeter-wave radiation by means of Visible Continuum Radiation emitted by the positive column of a medium-pressure Cs-Xe DC Discharge (VCRD method). The first part of the review was focused on the operating principles and fundamentals of this new technique [Plasma Phys. Rep. 43, 253 (2017)]. The second part of the review focuses on experiments demonstrating application of this imaging technique to measure the parameters of radiation at the output of moderate-power millimeter-wave sources. In particular, the output waveguide mode of a moderate-power W-band gyrotron with a pulsed magnetic field was identified and the relative powers of some spurious modes at the outputs of this gyrotron and a pulsed D-band orotron were evaluated. The paper also reviews applications of the VCRD technique for real-time imaging and nondestructive testing with a frame rate of higher than 10 fps by using millimeter waves. Shadow projection images of objects opaque and transparent for millimeter waves have been obtained using pulsed watt-scale millimeter waves for object illumination. Near video frame rate millimeter-wave shadowgraphy has been demonstrated. It is shown that this technique can be used for single-shot screening (including detection of concealed objects) and time-resolved imaging of time-dependent processes.

  9. The Millimeter Sky Transparency Imager (MiSTI)

    NASA Astrophysics Data System (ADS)

    Tamura, Yoichi; Kawabe, Ryohei; Kohno, Kotaro; Fukuhara, Masayuki; Momose, Munetake; Ezawa, Hajime; Kuboi, Akihito; Sekiguchi, Tomohiko; Kamazaki, Takeshi; Vila-Vilaró, Baltasar; Nakagawa, Yuki; Okada, Norio

    2011-04-01

    The Millimeter Sky Transparency Imager (MiSTI) is a small millimeter-wave scanning telescope with a 25-cm diameter dish operating at 183 GHz. MiSTI is installed at Atacama, Chile, and it measures emission from atmospheric water vapor and its fluctuations to estimate atmospheric absorption in the millimeter to submillimeter range. MiSTI observes the water vapor distribution at a spatial resolution of 0.°5, and it is sensitive enough to detect an excess path length of lesssim0.05 mm for an integration time of 1 s. By comparing the MiSTI measurements with those by a 220 GHz tipper, we validated that the 183 GHz measurements of MiSTI are correct, down to the level of any residual systematic errors in the 220 GHz measurements. Since 2008, MiSTI has provided real-time (every 1 hr) monitoring of the all-sky opacity distribution and atmospheric transmission curves in the (sub)millimeter through the internet, allowing us to know the (sub)millimeter sky conditions at Atacama.

  10. Solid State Research

    DTIC Science & Technology

    1987-01-07

    Excimer-Laser Projection Lithography 38 4.5 Observation of Millimeter-Wave Oscillations from Resonant- Tunneling Diodes and Some Theroretical...and SIMOX Circuits 32 4-1 Resonant Tunneling Diode Parameters 41 XI INTRODUCTION 1. SOLID STATE DEVICE RESEARCH Optoelectronic switches have...radiation and reflective optics. Oscillation frequencies as high as 56 GHz have been observed from resonant- tunneling double- barrier diodes. Recent

  11. Gas-phase synthesis and structure of monomeric ZnOH: a model species for metalloenzymes and catalytic surfaces.

    PubMed

    Zack, Lindsay N; Sun, Ming; Bucchino, Matthew P; Clouthier, Dennis J; Ziurys, Lucy M

    2012-02-16

    Monomeric ZnOH has been studied for the first time using millimeter and microwave gas-phase spectroscopy. ZnOH is important in surface processes and at the active site of the enzyme carbonic anhydrase. In the millimeter-wave direct-absorption experiments, ZnOH was synthesized by reacting zinc vapor, produced in a Broida-type oven, with water. In the Fourier-transform microwave measurements, ZnOH was produced in a supersonic jet expansion of CH(3)OH and zinc vapor, created by laser ablation. Multiple rotational transitions of six ZnOH isotopologues in their X(2)A' ground states were measured over the frequency range of 22-482 GHz, and splittings due to fine and hyperfine structure were resolved. An asymmetric top pattern was observed in the spectra, showing that ZnOH is bent, indicative of covalent bonding. From these data, spectroscopic constants and an accurate structure were determined. The Zn-O bond length was found to be similar to that in carbonic anhydrase and other model enzyme systems.

  12. 30-100-GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits

    NASA Astrophysics Data System (ADS)

    Dickson, T. O.; Lacroix, M.-A.; Boret, S.; Gloria, D.; Beerkens, R.; Voinigescu, S. P.

    2005-01-01

    Silicon planar and three-dimensional inductors and transformers were designed and characterized on-wafer up to 100 GHz. Self-resonance frequencies (SRFs) beyond 100 GHz were obtained, demonstrating for the first time that spiral structures are suitable for applications such as 60-GHz wireless local area network and 77-GHz automotive RADAR. Minimizing area over substrate is critical to achieving high SRF. A stacked transformer is reported with S21 of -2.5 dB at 50 GHz, and which offers improved performance and less area (30 μm × 30 μm) than planar transformers or microstrip couplers. A compact inductor model is described, along with a methodology for extracting model parameters from simulated or measured y-parameters. Millimeter-wave SiGe BiCMOS mixer and voltage-controlled-oscillator circuits employing spiral inductors are presented with better or comparable performance to previously reported transmission-line-based circuits.

  13. The laboratory millimeter-wave spectrum of methyl formate in its ground torsional E state

    NASA Technical Reports Server (NTRS)

    Plummer, G. M.; Herbst, E.; De Lucia, F. C.; Blake, G. A.

    1986-01-01

    Over 250 rotational transitions of the internal rotor methyl formate (HCOOCH3) in its ground v(t) = 0 degenerate (E) torsional substate have been measured in the millimeter-wave spectral region. These data and a number of E-state lines identified by several other workers have been analyzed using an extension of the classical principal-axis method in the high barrier limit. The resulting rotational constants allow accurate prediction of the v(t) = 0 E substate methyl formate spectrum below 300 GHz between states with angular momentum J not greater than 30 and rotational energy of not more than 350/cm. The calculated transition frequencies for the E state, when combined with the results of the previous analysis of the ground-symmetric, nondegenerate state, account for over 200 of the emission lines observed toward Orion in a recent survey of the 215-265 GHz band.

  14. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    PubMed

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.

  15. Multilevel photonic modules for millimeter-wave phased-array antennas

    NASA Astrophysics Data System (ADS)

    Paolella, Arthur C.; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.

    1998-11-01

    Optical signal distribution for phased array antennas in communication system is advantageous to designers. By distributing the microwave and millimeter wave signal through optical fiber there is the potential for improved performance and lower weight. In addition when applied to communication satellites this weight saving translates into substantially reduced launch costs. The goal of the Phase I Small Business Innovation Research (SBIR) Program is the development of multi-level photonic modules for phased array antennas. The proposed module with ultimately comprise of a monolithic, InGaAs/InP p-i-n photodetector-p-HEMT power amplifier, opto-electronic integrated circuit, that has 44 GHz bandwidth and output power of 50 mW integrated with a planar antenna. The photodetector will have a high quantum efficiency and will be front-illuminated, thereby improved optical performance. Under Phase I a module was developed using standard MIC technology with a high frequency coaxial feed interconnect.

  16. Passive millimeter-wave concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sinclair, Gordon N.; Anderton, Rupert N.; Appleby, Roger

    2001-02-01

    A method of detecting weapons concealed under clothing using passive millimeter wave imaging is described. The optical properties of clothing are discussed and examples given of the spectral reflectivity and transmission. The transmission tends to be constant from 60 to 150 GHz above which it decreases for some clothing materials. The transmission of a cotton T-shirt is typically 95% and of a leather jacket up to 85% at lower frequencies. A model is presented for calculating the contrast of a metallic concealed weapon when hidden under clothing and it indicates contrasts as large as 200 K can be realized outdoors. The advantages of real time over static frame imagery are discussed. It is concluded that real time imagery offers considerable advantages as weapons can be very varied in size, position and orientation and movement offers vital clues to the human observer which aid the recognition process.

  17. Overview of High-Resolution Nondestructive Inspection of the Space Shuttle External Tank (ET) Spray-on-Foam Insulation (SOFI) and Acreage Heat tiles using Focused, Synthetic and Holographical Millimeter Wave Techniques

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Case, J. T.; Zoughi, R.; Hepburn, Frank L.

    2006-01-01

    Space Shuttle Columbia's catastrophic failure has been attributed to a piece of spray-on-foam insulation (SOFI) that was dislodged from the external tank (ET) and struck the leading edge of the left wing. A piece of SOFI was also dislodged in the recent Space Shuttle Discovery's flight. From immediately after the Columbia accident, microwave and millimeter wave nondestructive testing methods were considered as potential effective inspection tools for evaluating the integrity of the SOFI. To this end and as a result of these efforts, both real-focused, synthetic focusing and holographical techniques, at a wide range of frequencies covering 24 GHz to 150 GHz, have been developed for this purpose. Images of various complex SOFI panels with a wide range of embedded anomalies (representing real potential defects) have been produced using these techniques, including relatively small anomalies located near complex structural features representative of the external tank. These real-focused and 3D holographical images have effectively demonstrated the utility of these methods for SOFI inspection as being viable, robust, repeatable, simple, portable and relatively inexpensive (tens of $K as opposed to hundreds of $K). In addition, the potential viability of these methods for inspecting acreage heat tiles have has been demonstrated. This paper presents an overview of these activities, representative images of these panels using all of the imaging techniques used and a discussion of the practical attributes of these inspection methods.

  18. A silicon technology for millimeter-wave monolithic circuits

    NASA Astrophysics Data System (ADS)

    Stabile, P. J.; Rosen, A.

    1984-12-01

    A silicon millimeter-wave integrated-circuit (SIMMWIC) technology that includes high-energy ion implantation and pulsed-laser annealing, secondary ion mass spectrometry (SIMS) profile diagnostics, and novel wafer thinning has been developed. This technology has been applied to a SIMMWIC single-pole single-throw (SPST) switch and to IMPATT and p-i-n diode fabrication schemes. Thus, the SIMMWIC technology is a proven base for monolithic millimeter-wave sources and control circuit applications.

  19. Electromagnetic characterization of strontium ferrite powders in series 2000, SU8 polymer

    NASA Astrophysics Data System (ADS)

    Sholiyi, Olusegun; Williams, John

    2014-12-01

    In this article, electromagnetic characterization of strontium hexaferrite powders and composites with SU8 was carried out to determine their compatibility with micro and millimeter wave fabrications. The structures of both powders and their composites were scanned with electron microscope to produce the SEM images. Two powder sizes (0.8-1.0 μm and 3-6 μm), were mixed with SU8, spin cast and patterned on wafer, and then characterized using energy dispersive x-ray spectrometry, ferromagnetic resonance (FMR) and vibrating sample magnetometry. In this investigation, FMRs of the samples were determined at 60 GHz while their complex permittivity and permeability were determined using rectangular waveguide method of characterization between 26.5 and 40 GHz frequency range. The results obtained show no adverse effects on the electromagnetic properties of the composites except some slight shift in the resonant frequencies due to anisotropic field of the samples.

  20. Fourier transform millimeter-wave spectroscopy of the ethyl radical in the electronic ground state.

    PubMed

    Kim, Eunsook; Yamamoto, Satoshi

    2004-02-15

    The pure rotational spectrum of the ethyl radical (C2H5) has been detected for the first time with the Fourier transform millimeter-wave spectrometer. The ethyl radical is produced by discharging the C2H5I gas diluted in Ar. The 1(01)-0(00) rotational transition of the ethyl radical is observed in the frequency range from 43,680 to 43,780 MHz. The observed spectrum shows a very complicated pattern of the fine and hyperfine structures of a doublet radical with the nuclear spins of five protons. The fine and hyperfine components are assigned with the aid of measurements of the Zeeman splittings. As a result, the 22 lines are ascribed to the transitions in the ground vibronic state (A2"). The rotational constant, the spin-rotation interaction constant, and hyperfine interaction constants are determined by the least-squares fit. The Fermi contact term of the alpha-proton is determined to be -64.1654 MHz in the gas phase, indicating that the structure of the -CH2 is essentially planar. The present rotational spectroscopic study further supports that the methyl group of the ethyl radical can be regarded as a nearly free internal rotor with a low energy barrier. A few unassigned lines still remain, which may be vibrational satellites of the internal rotation mode. Copyright 2004 American Institute of Physics

  1. Micromachined Millimeter- and Submillimeter-wave SIS Heterodyne Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hu, Qing

    1997-01-01

    This is a progress report for the second year of a NASA-sponsored project. The report discusses the design and fabrication of micromachined Superconductor Insulator Superconductor (SIS) heterodyne receivers with integrated tuning elements. These receivers tune out the functional capacitance at desired frequencies, resulting in less noise, lower temperatures and broader bandwidths. The report also discusses the design and fabrication of the first monolithic 3x3 focal-plane arrays for a frequency range of 170-210 GHz. Also addressed is the construction of a 9-channel bias and read-out system, as well as the redesign of the IF connections to reduce cross talk between SIS junctions, which become significant a frequency of 1.5 GHz IF. Uniformity of the junction arrays were measured and antenna beam patterns of several array elements under operating conditions also were measured. Finally, video and heterodyne responses of our focal-plane arrays were measured as well. Attached is a paper on: 'Development of a 170-210 GHz 3x3 micromachined SIS imaging array'.

  2. Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro.

    PubMed

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment.Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm(2) to 2 mW/cm(2), representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction.

  3. Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage In Vitro

    PubMed Central

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment. Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm2 to 2 mW/cm2, representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction. PMID:23029508

  4. High power test of a wideband diplexer with short-slotted metal half mirrors for electron cyclotron current drive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saigusa, M.; Atsumi, K.; Yamaguchi, T.

    2014-02-12

    The wideband high power diplexer has been developed for combining and fast switching of high power millimeter waves generated by a dual frequency gyrotron. The actual diplexer was tested at the frequency band of 170 GHz in low power. After adjusting a resonant frequency of diplexer for the gyrotron frequency, the evacuated wideband diplexer with short-slotted metal half mirrors was tested at an incident power of about 150 kW, a pulse duration of 30 ms and a frequency band of 170.2–170.3 GHz. Any discharge damage was not observed in the diplexer.

  5. Inspection of the Space Shuttle External Tank SOFI Using Near-Field and Focused Millimeter Wave Nondestructive Testing Techniques

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Hepburn, F.; Walker, J.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure has been attributed to a piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbon/carbon leading edge wing panels. Subsequently, several nondestructive testing (NDT) techniques have been considered for inspecting the external tank. One such method involves using millimeter waves which have been shown to easily penetrate through the foam and provide high resolution images of its interior structures. This paper presents the results of inspecting three different SOFI covered panels by reflectometers at millimeter wave frequencies, specifically at 100 GHz. Each panel was fitted with various embedded anomalies/inserts representing voids and unbonds of diferent shapes, sizes and locations within each panel. In conjunction with these reJqectome&rs, radiators including a focused lens antenna and a small horn antenna were used. The focused lens antenna provided for a footprint diameter of approximately 1.25 cm (0.5") at 25.4 cm (10") away from the lens surface. The horn antenna was primarily operated in its near-field for obtaining relatively high resolution images. These images were produced using 2 0 scanning mechanisms. Discussions of the difference between the capabilities of these two types of antennas (radiators) for the purpose of inspecting the SOFI as it relates to the produced images are also presented.

  6. Critical object recognition in millimeter-wave images with robustness to rotation and scale.

    PubMed

    Mohammadzade, Hoda; Ghojogh, Benyamin; Faezi, Sina; Shabany, Mahdi

    2017-06-01

    Locating critical objects is crucial in various security applications and industries. For example, in security applications, such as in airports, these objects might be hidden or covered under shields or secret sheaths. Millimeter-wave images can be utilized to discover and recognize the critical objects out of the hidden cases without any health risk due to their non-ionizing features. However, millimeter-wave images usually have waves in and around the detected objects, making object recognition difficult. Thus, regular image processing and classification methods cannot be used for these images and additional pre-processings and classification methods should be introduced. This paper proposes a novel pre-processing method for canceling rotation and scale using principal component analysis. In addition, a two-layer classification method is introduced and utilized for recognition. Moreover, a large dataset of millimeter-wave images is collected and created for experiments. Experimental results show that a typical classification method such as support vector machines can recognize 45.5% of a type of critical objects at 34.2% false alarm rate (FAR), which is a drastically poor recognition. The same method within the proposed recognition framework achieves 92.9% recognition rate at 0.43% FAR, which indicates a highly significant improvement. The significant contribution of this work is to introduce a new method for analyzing millimeter-wave images based on machine vision and learning approaches, which is not yet widely noted in the field of millimeter-wave image analysis.

  7. Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D): Risk Reduction for 6U-Class Nanosatellite Constellations

    NASA Astrophysics Data System (ADS)

    Reising, S. C.; Todd, G.; Kummerow, C. D.; Chandrasekar, V.; Padmanabhan, S.; Lim, B.; Brown, S. T.; van den Heever, S. C.; L'Ecuyer, T.; Ruf, C. S.; Luo, Z. J.; Munchak, S. J.; Haddad, Z. S.; Boukabara, S. A.

    2015-12-01

    The Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D) is designed to demonstrate required technology to enable a constellation of 6U-Class nanosatellites to directly observe the time evolution of clouds and study the conditions that control the transition of clouds to precipitation using high-temporal resolution observations. TEMPEST millimeter-wave radiometers in the 90-GHz to 183-GHz frequency range penetrate into the cloud to observe key changes as the cloud begins to precipitate or ice accumulates inside the storm. The evolution of ice formation in clouds is important for climate prediction since it largely drives Earth's radiation budget. TEMPEST improves understanding of cloud processes and helps to constrain one of the largest sources of uncertainty in climate models. TEMPEST-D provides observations at five millimeter-wave frequencies from 90 to 183 GHz using a single compact instrument that is well suited for the 6U-Class architecture and fits well within the capabilities of NASA's CubeSat Launch Initiative (CSLI), for which TEMPEST-D was approved in 2015. For a potential future mission of one year of operations, five identical 6U-Class satellites deployed in the same orbital plane with 5-10 minute spacing at ~400 km altitude and 50°-65° inclination are expected to capture 3 million observations of precipitation, including 100,000 deep convective events. TEMPEST is designed to provide critical information on the time evolution of cloud and precipitation microphysics, yielding a first-order understanding of the behavior of assumptions in current cloud-model parameterizations in diverse climate regimes.

  8. 35-45 Giga Hertz Transceiver System for Phase and Magnitude Detection

    NASA Technical Reports Server (NTRS)

    Beni, Aman Aflaki

    2007-01-01

    Nondestructive evaluation (NDE) is the science and practice of examining an object in a way that the object's usefulness is not adversely affected. Different types of NDE methods exist but this thesis is based on microwave and millimeter wave NDE using imaging techniques. Microwave NDE is based on illuminating the object under test with a microwave signal and studying the various properties of the reflected signal from the object. This reflected signal contains some information about the inner structure of the object under test. This information may be contained in several parameters including the phase and magnitude of the reflected signal. The goal of this project is to design and build a Q-band coherent transceiver that is capable of measuring the reflected signal's phase and magnitude so that an image of the object under test may be reconstructed. From the several techniques that can be used to construct an image of the object under test, techniques of interest to this work include synthetic aperture focusing technique (SAFT) and microwave holography. The transceiver system should have the ability to sweep a large portion of Q-band frequency range in small frequency steps as quick as possible while the detected phase and magnitude of the reflected signal is very accurate. Several different designs were studied and the final schematic diagram of the transceiver system was determined. One of the most important modules that was designed, implemented and tested in the laboratory was an accurate phase/magnitude detector circuit. The compared results of the scans using the transceiver system and vector network analyzer (VNA) showed that this transceiver system has a great potential to replace a VNA for the purpose of microwave and millimeter wave imaging.

  9. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1987-01-01

    Laboratory measurements were conducted to evaluate properties of atmospheric gases under simulated conditions for the outer planets. A significant addition to this effort was the capability to make such measurements at millimeter wavelengths. Measurements should soon be completed on the millimeter wave absorption from ammonia under Jovian conditions. Also studied will be the feasibility of measuring the microwave and millimeter wave properties of phosphine (PH3) under simulated Jovian conditions. Further analysis and application of the laboratory results to microwave and millimeter wave absorption data for the outer planet, such as Voyager Radio Occultation experiments, will be pursued.

  10. Wide-Field-of-View Millimeter-Wave Telescope Design with Ultra-Low Cross-Polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.

    2012-05-01

    As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since most millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degreesmore » of freedom that offer larger fields of view than possible with single-reflector designs. Dragone’s graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone’s geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone’s design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low polarization crosstalk and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.« less

  11. Analysis of limited-diffractive and limited-dispersive X-waves generated by finite radial waveguides

    NASA Astrophysics Data System (ADS)

    Fuscaldo, Walter; Pavone, Santi C.; Valerio, Guido; Galli, Alessandro; Albani, Matteo; Ettorre, Mauro

    2016-05-01

    In this work, we analyze the spatial and temporal features of electromagnetic X-waves propagating in free space and generated by planar radiating apertures. The performance of ideal X-waves is discussed and compared to practical cases where the important effects related to the finiteness of the radiating aperture and the wavenumber dispersion are taken into account. In particular, a practical device consisting of a radial waveguide loaded with radiating slots aligned along a spiral path is considered for the practical case in the millimeter-wave range. A common mathematical framework is defined for a precise comparison of the spatiotemporal properties and focusing capabilities of the generated X-wave. It is clearly shown that the fractional bandwidth of the radiating aperture has a key role in the longitudinal confinement of an X-wave in both ideal and practical cases. In addition, the finiteness of the radiating aperture as well as the wavenumber dispersion clearly affect both the transverse and the longitudinal profiles of the generated radiation as it travels beyond the depth-of-field of the generated X-wave. Nevertheless, the spatiotemporal properties of the X-wave are preserved even in this "dispersive-finite" case within a defined region and duration related to the nondiffractive range and fractional bandwidth of the spectral components of the generated X-wave. The proposed analysis may open new perspectives for the efficient generation of X-waves over finite radiating apertures at millimeter waves where the dispersive behavior of realistic devices is no longer negligible.

  12. Testing Fixture For Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert; Shalkhauser, Kurt

    1989-01-01

    Testing fixture facilitates radio-frequency characterization of microwave and millimeter-wave integrated circuits. Includes base onto which two cosine-tapered ridge waveguide-to-microstrip transitions fastened. Length and profile of taper determined analytically to provide maximum bandwidth and minimum insertion loss. Each cosine taper provides transformation from high impedance of waveguide to characteristic impedance of microstrip. Used in conjunction with automatic network analyzer to provide user with deembedded scattering parameters of device under test. Operates from 26.5 to 40.0 GHz, but operation extends to much higher frequencies.

  13. Mechanically detected terahertz electron spin resonance using SOI-based thin piezoresistive microcantilevers

    NASA Astrophysics Data System (ADS)

    Ohmichi, Eiji; Miki, Toshihiro; Horie, Hidekazu; Okamoto, Tsubasa; Takahashi, Hideyuki; Higashi, Yoshinori; Itoh, Shoichi; Ohta, Hitoshi

    2018-02-01

    We developed piezoresistive microcantilevers for mechanically detected electron spin resonance (ESR) in the millimeter-wave region. In this article, fabrication process and device characterization of our self-sensing microcantilevers are presented. High-frequency ESR measurements of a microcrystal of paramagnetic sample is also demonstrated at multiple frequencies up to 160 GHz at liquid helium temperature. Our fabrication is based on relatively simplified processes with silicon-on-insulator (SOI) wafers and spin-on diffusion doping, thus enabling cost-effective and time-saving cantilever fabrication.

  14. White Sands Missile Range Non-Track Optics: Streamlining the Process of Conducting Business for Improved Customer Support

    DTIC Science & Technology

    2013-12-01

    45 A. METHODOLOGY... 45 B. ANALYSIS .....................................................................................................46 C...digital airborne guidance section MFOM MLRS family of munitions MLRS Multiple Launch Rocket System MMW millimeter wave MT material test MTM

  15. Semiconductor millimeter wavelength electronics

    NASA Astrophysics Data System (ADS)

    Rosenbaum, F. J.

    1985-12-01

    This final report summarizes the results of research carried out on topics in millimeter wavelength semiconductor electronics under an ONR Selected Research Opportunity program. Study areas included III-V compound semiconductor growth and characterization, microwave and millimeter wave device modeling, fabrication and testing, and the development of new device concepts. A new millimeter wave mixer and detector, the Gap diode was invented. Topics reported on include ballistic transport, Zener oscillations, impurities in GaAs, electron velocity-electric field calculation and measurements, etc., calculations.

  16. Measurement of the complex permittivity of low loss polymer powders in the millimeter-wave range.

    PubMed

    Kapilevich, Boris; Litvak, Boris; Wainstein, Vladimir; Moshe, Danny

    2007-01-01

    An improved measurement method of complex permittivity of low loss polymer powders is suggested. The measurements are done in the mm-wave range using a quasi optical resonator. The 2-D corrugated mode exciter is employed to improve suppression of undesirable higher modes. The model used for reconstructing complex permittivity takes into account ohm losses of metal mesh coupling that provide better accuracy of the reconstructing procedure. An example illustrating this method is reported.

  17. Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.; Adelberg, L. K.; Kunkee, D. B.; Jackson, D. M.

    1993-01-01

    Activities within the period from July 1, 1992 through December 31, 1992 by Georgia Tech researchers in millimeter and submillimeter wavelength tropospheric remote sensing have been centered around the calibration of the Millimeter-wave Imaging Radiometer (MIR), preliminary flight data analysis, and preparation for TOGA/COARE. The MIR instrument is a joint project between NASA/GSFC and Georgia Tech. In the current configuration, the MIR has channels at 90, 150, 183(+/-1,3,7), and 220 GHz. Provisions for three additional channels at 325(+/-1,3) and 8 GHz have been made, and a 325-GHz receiver is currently being built by the ZAX Millimeter Wave Corporation for use in the MIR. Past Georgia Tech contributions to the MIR and its related scientific uses have included basic system design studies, performance analyses, and circuit and radiometric load design, in-flight software, and post-flight data display software. The combination of the above millimeter wave and submillimeter wave channels aboard a single well-calibrated instrument will provide unique radiometric data for radiative transfer and cloud and water vapor retrieval studies. A paper by the PI discussing the potential benefits of passive millimeter and submillimeter wave observations for cloud, water vapor and precipitation measurements has recently been published, and is included as an appendix.

  18. Simulation and development of novel slow-wave structures for miniaturized THz-band vacuum-tube devices

    NASA Astrophysics Data System (ADS)

    Benedik, Andrey I.; Karetnikova, Tatiana A.; Torgashov, Roman A.; Terentyuk, Artem G.; Rozhnev, Andrey G.; Torgashov, Gennadiy V.; Ryskin, Nikita M.

    2018-04-01

    Microfabricated vacuum-tube millimeter- and THz-band sources are of great interest for numerous applications such as communications, radar, sensors, imaging, etc. Recently, miniaturized sheet-beam traveling-wave tubes for sub-THz and THz operation have attracted a considerable interest. In this paper, we present the results of modeling and development of slow-wave structures (SWS) for medium power (10-100 W) traveling-wave tube (TWT) amplifiers and backwardwave oscillators (BWO) in near-THz frequency band. Different types of SWSs are considered, such as double-vane SWS for TWT with a sheet electron beam, a folded-waveguide SWS, and novel planar SWSs on dielectric substrates.

  19. Dielectric Waveguides Splitter and Hybrid/Isolator for Bidirectional Link

    NASA Technical Reports Server (NTRS)

    Tang, Adrian Joseph (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer E. (Inventor); Decrossas, Emmanuel (Inventor)

    2016-01-01

    A system, method, device, and apparatus provide a dielectric waveguide splitter/bi-directional link. A dielectric substrate fabricated into a first Y-junction waveguide with a first port splitting into a first branch leading to a second port and a second branch leading to a third port. An angle between the first branch and the second branch is below ninety degrees (90.degree.). The dielectric waveguide splitter enables millimeter-wave (mmWave) transmission between the first port and the second port while reducing feedback of the mmWave between the second and third port. Two Y-junction waveguides may be fabricated back-to-back to provide simultaneous bidirectional mmWave transmission at a single frequency.

  20. Millimeter wavelength observations of solar flares for Max 1991

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Gopalswamy, N.; Nitta, N.; Schmahl, E. J.; White, S. M.; Welch, W. J.

    1988-01-01

    The Hat Creek millimeter-wave interferometer (to be known as the Berkeley-Illinois-Maryland Array, BIMA) is being upgraded. The improved array will become available during the coming solar maximum, and will have guaranteed time for solar observing. The Hat Creek millimeter-wave interferometer is described along with the improvements. The scientific objectives are briefly discussed.

  1. Energy-efficient process-stacking multiplexing access for 60-GHz mm-wave wireless personal area networks.

    PubMed

    Estevez, Claudio; Kailas, Aravind

    2012-01-01

    Millimeter-wave technology shows high potential for future wireless personal area networks, reaching over 1 Gbps transmissions using simple modulation techniques. Current specifications consider dividing the spectrum into effortlessly separable spectrum ranges. These low requirements open a research area in time and space multiplexing techniques for millimeter-waves. In this work a process-stacking multiplexing access algorithm is designed for single channel operation. The concept is intuitive, but its implementation is not trivial. The key to stacking single channel events is to operate while simultaneously obtaining and handling a-posteriori time-frame information of scheduled events. This information is used to shift a global time pointer that the wireless access point manages and uses to synchronize all serviced nodes. The performance of the proposed multiplexing access technique is lower bounded by the performance of legacy TDMA and can significantly improve the effective throughput. Work is validated by simulation results.

  2. VizieR Online Data Catalog: Rotational frequencies of TiO isotopologues (Lincowski+, 2016)

    NASA Astrophysics Data System (ADS)

    Lincowski, A. P.; Halfen, D. T.; Ziurys, L. M.

    2017-03-01

    Pure rotational spectra of the rare isotopologues of titanium oxide, 46TiO, 47TiO, 49TiO, and 50TiO, have been recorded using a combination of Fourier transform millimeter-wave (FTmmW) and millimeter/submillimeter direct absorption techniques in the frequency range 62-538GHz. This study is the first complete spectroscopic characterization of these species in their X3Δr ground electronic states. The isotopologues were created by the reaction of N2O or O2 and titanium vapor, produced either by laser ablation or in a Broida-type oven, and observed in the natural Ti isotopic abundances. Between 10 and 11 rotational transitions J+1<->J were measured for each species, typically in all 3 spin-orbit ladders Ω=1, 2, and 3. For 47TiO and 49TiO, hyperfine structure was resolved, originating from the titanium-47 and titanium-49 nuclear spins of I=5/2 and 7/2, respectively. For the Ω=1 and 3 components, the hyperfine structure was found to follow a classic Lande pattern, while that for Ω=2 appeared to be perturbed, likely a result of mixing with the nearby isoconfigurational a1Δ state. The spectra were analyzed with a case (a) Hamiltonian, and rotational, spin-orbit, and spin-spin parameters were determined for each species, as well as magnetic hyperfine and electric quadrupole constants for the two molecules with nuclear spins. The most abundant species, 48TiO, has been detected in circumstellar envelopes. These measurements will enable other titanium isotopologues to be studied at millimeter wavelengths, providing Ti isotope ratios that can test models of nucleosynthesis. (1 data file).

  3. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  4. Dual-surface dielectric depth detector for holographic millimeter-wave security scanners

    NASA Astrophysics Data System (ADS)

    McMakin, Douglas L.; Keller, Paul E.; Sheen, David M.; Hall, Thomas E.

    2009-05-01

    The Transportation Security Administration (TSA) is presently deploying millimeter-wave whole body scanners at over 20 airports in the United States. Threats that may be concealed on a person are displayed to the security operator of this scanner. "Passenger privacy is ensured through the anonymity of the image. The officer attending the passenger cannot view the image, and the officer viewing the image is remotely located and cannot see the passenger. Additionally, the image cannot be stored, transmitted or printed and is deleted immediately after being viewed. Finally, the facial area of the image has been blurred to further ensure privacy." Pacific Northwest National Laboratory (PNNL) originated research into this novel security technology which has been independently commercialized by L-3 Communications, SafeView, Inc. PNNL continues to perform fundamental research into improved software techniques which are applicable to the field of holographic security screening technology. This includes performing significant research to remove human features from the imagery. Both physical and software imaging techniques have been employed. The physical imaging techniques include polarization diversity illumination and reception, dual frequency implementation, and high frequency imaging at 100 GHz. This paper will focus on a software privacy technique using a dual surface dielectric depth detector method.

  5. Low-latency fiber-millimeter-wave system for future mobile fronthauling

    NASA Astrophysics Data System (ADS)

    Tien Dat, Pham; Kanno, Atsushi; Yamamoto, Naokatsu; Kawanishi, Tetsuya

    2016-02-01

    A seamless combination of fiber and millimeter-wave (MMW) systems can be very attractive for future heterogeneous mobile networks such as 5G because of its flexibility and high bandwidth. Analog mobile signal transmission over seamless fiber-MMW systems is very promising to reduce the latency and the required band-width, and to simplify the systems. However, stable and high-performance seamless systems are indispensable to conserve the quality of the analog signal transmission. In this paper, we present several technologies to develop such seamless fiber-MMW systems. In the downlink direction, a high-performance system can be realized using a high-quality optical MMW signal generator and a self-homodyne MMW signal detector. In the uplink direction, a cascade of radio-on-radio and radio-over-fiber systems using a burst-mode optical amplifier can support bursty radio signal transmission. A full-duplex transmission with negligible interference effects can be realized using frequency multiplexing in the radio link and wavelength-division multiplexing in the optical link. A high-spectral efficiency MMW-over-fiber system using an intermediate frequency-over-fiber system and a high-quality remote delivery of a local oscillator signal is highly desirable to reduce the costs.

  6. Experimental validation of a millimeter wave radar technique to remotely sense atmospheric pressure at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1984-01-01

    Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.

  7. Application of Temperature-Dependent Fluorescent Dyes to the Measurement of Millimeter Wave Absorption in Water Applied to Biomedical Experiments

    PubMed Central

    Popenko, Oleksandr

    2014-01-01

    Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects. PMID:25435859

  8. Application of temperature-dependent fluorescent dyes to the measurement of millimeter wave absorption in water applied to biomedical experiments.

    PubMed

    Kuzkova, Nataliia; Popenko, Oleksandr; Yakunov, Andrey

    2014-01-01

    Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects.

  9. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.; Gang, Guan-Wan; He, J. Q.; Ichitsubo, I.

    1988-05-01

    This final technical report presents results on the computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems. New results include analytical and computer aided device models of GaAs MESFETs and HEMTs or MODFETs, new synthesis techniques for monolithic feedback and distributed amplifiers and a new nonlinear CAD program for MIMIC called CADNON. This program incorporates the new MESFET and HEMT model and has been successfully applied to the design of monolithic millimeter-wave mixers.

  10. Modulated scattering technique in the terahertz domain enabled by current actuated vanadium dioxide switches

    PubMed Central

    Vitale, W. A.; Tamagnone, M.; Émond, N.; Le Drogoff, B.; Capdevila, S.; Skrivervik, A.; Chaker, M.; Mosig, J. R.; Ionescu, A. M.

    2017-01-01

    The modulated scattering technique is based on the use of reconfigurable electromagnetic scatterers, structures able to scatter and modulate an impinging electromagnetic field in function of a control signal. The modulated scattering technique is used in a wide range of frequencies up to millimeter waves for various applications, such as field mapping of circuits or antennas, radio-frequency identification devices and imaging applications. However, its implementation in the terahertz domain remains challenging. Here, we describe the design and experimental demonstration of the modulated scattering technique at terahertz frequencies. We characterize a modulated scatterer consisting in a bowtie antenna loaded with a vanadium dioxide switch, actuated using a continuous current. The modulated scatterer behavior is demonstrated using a time domain terahertz spectroscopy setup and shows significant signal strength well above 0.5 THz, which makes this device a promising candidate for the development of fast and energy-efficient THz communication devices and imaging systems. Moreover, our experiments allowed us to verify the operation of a single micro-meter sized VO2 switch at terahertz frequencies, thanks to the coupling provided by the antenna. PMID:28145523

  11. High-frequency electron-spin-resonance measurements on Mn x Mg1-x O (x = 1.0×10-4) and DPPH at very low temperatures

    NASA Astrophysics Data System (ADS)

    Ishikawa, Y.; Ohya, K.; Miura, S.; Fujii, Y.; Mitsudo, S.; Mizusaki, T.; Fukuda, A.; Matsubara, A.; Kikuchi, H.; Asano, T.; Yamamori, H.; Lee, S.; Vasiliev, S.

    2018-03-01

    We have developed a millimeter-wave electron-spin-resonance (ESR) system for very low temperatures (T < 1 K) that can be employed for nuclear-magnetic-resonance measurements by using dynamic nuclear polarization. The system uses a Fabry-Pérot resonator that works in the frequency range of 125 – 130 GHz and covers the temperature range of 0.09 – 6.5 K. We have performed ESR measurements in the frequency around 128 GHz by using Mn x Mg1-x O (x = 1.0 × 10-4) and free-radical samples of 1, 1-diphenyl-2-picrylhydrazyl (DPPH), because these samples have been proposed as field and sensitivity markers. Temperature dependence of the ESR signal intensity for Mn x Mg1-x O shows anomalies originating from magnetic order are found around 3.5 – 4 K. We estimate the sensitivity of the system for ESR detections to be 6 × 1013 spins/G at 5.8 K. Because DPPH shows no observable shift in the magnetic field, we propose it as a useful standard marker for ESR measurements at very low temperatures.

  12. Extremely high frequency RF effects on electronics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit boardmore » traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.« less

  13. Planar Monolithic Schottky Varactor Diode Millimeter-Wave Frequency Multipliers

    DTIC Science & Technology

    1992-06-01

    wave applications", IEEE Trans on Microwave Theory and Tech., vol. 39, no. 12, Dec. 1991 , pp. 1964-1971. A copy of this paper is 35 included in...Watts to Bulky 1991 spectral HV DC Power line Pwr Very Inguscio varies Massive 1986 with Vac.:um line Very low Gas noise Supply Ledatron Up to 1 W at...PULSED Band up to 1985 HV DC 10 GHz Massive Pwr Magnetic V?4MA > 100 GHz > 1 Watt Wide Cooling Research Quasi- McGruer Theory Theory Band Planar 1991

  14. Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Ward, John; Chattopadhyay, Goutam; Lin, Robert H.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Mehdi, Imran; Lambrigtsen, Bjorn H.; Goldsmith, Paul F.; Soria, Mary M.; hide

    2011-01-01

    Future remote sensing instruments will require focal plane spectrometer arrays with higher resolution at high frequencies. One of the major components of spectrometers are the local oscillator (LO) signal sources that are used to drive mixers to down-convert received radio-frequency (RF) signals to intermediate frequencies (IFs) for analysis. By advancing LO technology through increasing output power and efficiency, and reducing component size, these advances will improve performance and simplify architecture of spectrometer array systems. W-band power amplifiers (PAs) are an essential element of current frequency-multiplied submillimeter-wave LO signal sources. This work utilizes GaN monolithic millimeter-wave integrated circuit (MMIC) PAs developed from a new HRL Laboratories LLC 0.15- m gate length GaN semiconductor transistor. By additionally waveguide power combining PA MMIC modules, the researchers here target the highest output power performance and efficiency in the smallest volume achievable for W-band.

  15. Novel Low-Cost, Low-Power Miniature Thermionic Cathode Developed for Microwave/Millimeter Wave Tube and Cathode Ray Tube Applications

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.

    1999-01-01

    A low cost, small size and mass, low heater power, durable high-performance barium dispenser thermionic cathode has been developed that offers significant advancements in the design, manufacture, and performance of the electron sources used in vacuum electronic devices--such as microwave (and millimeter wave) traveling-wave tubes (TWT's)--and in display devices such as high-brightness, high-resolution cathode ray tubes (CRT's). The lower cathode heater power and the reduced size and mass of the new cathode are expected to be especially beneficial in TWT's for deep space communications, where future missions are requiring smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. Also expected to benefit are TWT's for commercial and government communication satellites, for both low and geosynchronous Earth orbit, with additional benefits offered by lower cost and potentially higher cathode current loading. A particularly important TWT application is in the microwave power module (MPM), which is a hybrid microwave (or millimeter wave) amplifier consisting of a low-noise solid state driver, a vacuum power booster (small TWT), and an electronic power conditioner integrated into a single compact package. The attributes of compactness and potentially high electrical efficiency make the MPM very attractive for many commercial and government (civilian and defense) applications in communication and radar systems. The MPM is already finding application in defense electronic systems and is under development by NASA for deep space communications. However, for the MPM to become competitive and commercially successful, a major reduction in cost must be achieved.

  16. Compact Modules for Wireless Communication Systems in the E-Band (71-76 GHz)

    NASA Astrophysics Data System (ADS)

    Montero-de-Paz, Javier; Oprea, Ion; Rymanov, Vitaly; Babiel, Sebastian; García-Muñoz, Luis Enrique; Lisauskas, Alvydas; Hoefle, Matthias; Jimenez, Álvaro; Cojocari, Oleg; Segovia-Vargas, Daniel; Palandöken, Merih; Tekin, Tolga; Stöhr, Andreas; Carpintero, Guillermo

    2013-04-01

    The millimeter-wave spectrum above 70 GHz provides a cost-effective solution to increase the wireless communications data rates by increasing the carrier wave frequencies. We report on the development of two key components of a wireless transmission system, a high-speed photodiode (HS-PD) and a Schottky Barrier Diode (SBD). Both components operate uncooled, a key issue in the development of compact modules. On the transmitter side, an improved design of the HS-PD allows it to deliver an output RF power exceeding 0 dBm (1 mW). On the receiver side, we present the design process and achieved results on the development of a compact direct envelope detection receiver based on a quasi-optical SDB module. Different resonant (meander dipole) and broadband (Log-Spiral and Log-Periodic) planar antenna solutions are designed, matching the antenna and Schottky diode impedances at high frequency. Impedance matching at baseband is also provided by means of an impedance transition to a 50 Ohm output. From this comparison, we demonstrate the excellent performance of the broadband antennas over the entire E-band by setting up a short-range wireless link transmitting a 1 Gbps data signal.

  17. Millimeter-wave spectra of the Jovian planets

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Steffes, Paul G.

    1991-01-01

    The millimeter wave portion of the electromagnetic spectrum is critical for understanding the subcloud atmospheric structure of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune). This research utilizes a combination of laboratory measurements, computer modeling, and radio astronomical observation in order to obtain a better understanding of the millimeter-wave spectra of the Jovian planets. The pressure broadened absorption from gaseous ammonia (NH3) and hydrogen sulfide (H2S) was measured in the laboratory under simulated conditions for the Jovian atmospheres. Researchers developed new formalisms for computing the absorptivity of gaseous NH3 and H2S based on their laboratory measurements. They developed a radiative transfer and thermochemical model to predict the abundance and distribution of absorbing constituents in the Jovian atmospheres. They used the model to compute the millimeter wave emission from the Jovian planets.

  18. Combining millimeter-wave radar and communication paradigms for automotive applications : a signal processing approach.

    DOT National Transportation Integrated Search

    2016-05-01

    As driving becomes more automated, vehicles are being equipped with more sensors generating even higher data rates. Radars (RAdio Detection and Ranging) are used for object detection, visual cameras as virtual mirrors, and LIDARs (LIght Detection and...

  19. Power Amplifier Module with 734-mW Continuous Wave Output Power

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Samoska, Lorene A.; Kangaslahti, Pekka P.; Lamgrigtsen, Bjorn H.; Goldsmith, Paul F.; Lin, Robert H.; Soria, Mary M.; Cooperrider, Joelle T.; Micovic, Moroslav; Kurdoghlian, Ara

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers-to generate higher frequency signals in nonlinear Schottky diode-based LO sources. By advancing PA technology, the LO system performance can be increased with possible cost reductions compared to current GaAs PAs. High-power, high-efficiency GaN PAs are cross-cutting and can enable more efficient local oscillator distribution systems for new astrophysics and planetary receivers and heterodyne array instruments. It can also allow for a new, electronically scannable solid-state array technology for future Earth science radar instruments and communications platforms.

  20. Millimeter wave radar for automobile crash avoidance systems

    NASA Astrophysics Data System (ADS)

    Huguenin, G. Richard

    1994-08-01

    Low cost, millimeter wave, forward looking radar sensors for applications in Autonomous Collision Warning and Autonomous Intelligent Cruise Control systems will be described. These safety related systems promise the largest payoff in preventing highway crashes.

  1. Design and performance of dual-polarization lumped-element kinetic inductance detectors for millimeter-wave polarimetry

    NASA Astrophysics Data System (ADS)

    McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P. A. R.; Bryan, S.; Day, P.; Essinger-Hileman, T.; Flanigan, D.; Leduc, H. G.; Limon, M.; Mauskopf, P.; Miller, A.; Tucker, C.

    2018-02-01

    Aims: Lumped-element kinetic inductance detectors (LEKIDs) are an attractive technology for millimeter-wave observations that require large arrays of extremely low-noise detectors. We designed, fabricated and characterized 64-element (128 LEKID) arrays of horn-coupled, dual-polarization LEKIDs optimized for ground-based CMB polarimetry. Our devices are sensitive to two orthogonal polarizations in a single spectral band centered on 150 GHz with Δν/ν = 0.2. The 65 × 65 mm square arrays are designed to be tiled into the focal plane of an optical system. We demonstrate the viability of these dual-polarization LEKIDs with laboratory measurements. Methods: The LEKID modules are tested with an FPGA-based readout system in a sub-kelvin cryostat that uses a two-stage adiabatic demagnetization refrigerator. The devices are characterized using a blackbody and a millimeter-wave source. The polarization properties are measured with a cryogenic stepped half-wave plate. We measure the resonator parameters and the detector sensitivity, noise spectrum, dynamic range, and polarization response. Results: The resonators have internal quality factors approaching 1 × 106. The detectors have uniform response between orthogonal polarizations and a large dynamic range. The detectors are photon-noise limited above 1 pW of absorbed power. The noise-equivalent temperatures under a 3.4 K blackbody load are <100 μK √s. The polarization fractions of detectors sensitive to orthogonal polarizations are >80%. The entire array is multiplexed on a single readout line, demonstrating a multiplexing factor of 128. The array and readout meet the requirements for 4 arrays to be read out simultaneously for a multiplexing factor of 512. Conclusions: This laboratory study demonstrates the first dual-polarization LEKID array optimized specifically for CMB polarimetry and shows the readiness of the detectors for on-sky observations.

  2. Batch fabrication of precision miniature permanent magnets

    DOEpatents

    Christenson, Todd R.; Garino, Terry J.; Venturini, Eugene L.

    2002-01-01

    A new class of processes for fabrication of precision miniature rare earth permanent magnets is disclosed. Such magnets typically have sizes in the range 0.1 to 10 millimeters, and dimensional tolerances as small as one micron. Very large magnetic fields can be produced by such magnets, lending to their potential application in MEMS and related electromechanical applications, and in miniature millimeter-wave vacuum tubes. This abstract contains simplifications, and is supplied only for purposes of searching, not to limit or alter the scope or meaning of any claims herein.

  3. VizieR Online Data Catalog: The mm and sub-mm spectra of 13C-glycolaldehydes (Haykal+, 2013)

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Motiyenko, R. A.; Margules, L.; Huet, T. R.

    2012-11-01

    To allow the detection of the 13C-isotopologues of glycolaldeh the interstellar medium, their rotational spectra in the millimeter and submillimeter-wave regions were studied. The spectra of 13CH2OHCHO and CH2OH13CHO were recorded in the 150-945GHz spectral range in the laboratory using a solid-state submillimeter-wave spectrometer in Lille. The observed line frequencies were measured with accuracy, better than 30kHz up to 700GHz and 50kHz above. The analysis was performed using a standard Watson Hamiltonian. Around 10000 new lines were identified for each isotopologue. The spectroscopic parameters were determined for the ground and the three lowest vibrational states, respectively up to 945 and 630GHz. Previous microwave assignments of 13CH2OHCHO were not confirmed. The provided line-lists and sets of molecular parameters meet the needs for a first astrophysical search of 13C-glycolaldehydes. (2 data files).

  4. Rotational Spectroscopy of the NH3-H2 Molecular Complex

    NASA Astrophysics Data System (ADS)

    Surin, L. A.; Tarabukin, I. V.; Schlemmer, S.; Breier, A. A.; Giesen, T. F.; McCarthy, M. C.; van der Avoird, A.

    2017-03-01

    We report the first high resolution spectroscopic study of the NH3-H2 van der Waals molecular complex. Three different experimental techniques, a molecular beam Fourier transform microwave spectrometer, a millimeter-wave intracavity jet OROTRON spectrometer, and a submillimeter-wave jet spectrometer with multipass cell, were used to detect pure rotational transitions of NH3-H2 in the wide frequency range from 39 to 230 GHz. Two nuclear spin species, (o)-NH3-(o)-H2 and (p)-NH3-(o)-H2, have been assigned as carriers of the observed lines on the basis of accompanying rovibrational calculations performed using the ab initio intermolecular potential energy surface (PES) of Maret et al. The experimental spectra were compared with the theoretical bound state results, thus providing a critical test of the quality of the NH3-H2 PES, which is a key issue for reliable computations of the collisional excitation and de-excitation of ammonia in the dense interstellar medium.

  5. Conversion loss and noise of microwave and millimeter-wave mixers. I - Theory. II - Experiment

    NASA Technical Reports Server (NTRS)

    Held, D. N.; Kerr, A. R.

    1978-01-01

    The conversion loss and noise of microwave and millimeter-wave mixers are analyzed. Nonlinear capacitance, arbitrary embedding impedances, as well as shot, thermal and scattering noise arising in the diode, figure in the analysis. The anomalous mixer noise noted in millimeter-wave mixers by Kerr (1975) is shown to be explainable in terms of the correlation of down-converted components of the time-varying shot noise. A digital computer analysis of the conversion loss, noise, and output impedance of an 80-120-GHz mixer is also conducted.

  6. RLE progress report no. 133, 1 January - 31 December 1990

    NASA Technical Reports Server (NTRS)

    Allen, Jonathan; Kleppner, Daniel; Ziegler, Mary J. (Editor); Passero, Barbara (Editor)

    1990-01-01

    Activities of the Research Laboratory of Electronics at MIT are summarized. NASA-sponsored research in the area of synthetic aperture radar image interpretation and simulation is described. Other government-sponsored and industry-sponsored studies are also described which address the following topics: microwave and millimeter wave integrated circuits, high-speed integrated circuit interconnects, Instrument Landing System/Microwave Landing System frequency management assessment, and superconducting electronics.

  7. Depolarization on Earth-space paths

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Sources of depolarization effects on the propagation paths of orthogonally-polarized information channels are considered. The main sources of depolarization at millimeter wave frequencies are hydrometeor absorption and scattering in the troposphere. Terms are defined. Mathematical formulations for the effects of the propagation medium characteristics and antenna performance on signals in dual polarization Earth-space links are presented. Techniques for modeling rain and ice depolarization are discussed.

  8. Focusing Leaky Waves: A Class of Electromagnetic Localized Waves with Complex Spectra

    NASA Astrophysics Data System (ADS)

    Fuscaldo, Walter; Comite, Davide; Boesso, Alessandro; Baccarelli, Paolo; Burghignoli, Paolo; Galli, Alessandro

    2018-05-01

    Localized waves, i.e., the wide class of limited-diffraction, limited-dispersion solutions to the wave equation are generally characterized by real wave numbers. We consider the role played by localized waves with generally complex "leaky" wave numbers. First, the impact of the imaginary part of the wave number (i.e., the leakage constant) on the diffractive (spatial broadening) features of monochromatic localized solutions (i.e., beams) is rigorously evaluated. Then general conditions are derived to show that only a restricted class of spectra (either real or complex) allows for generating a causal localized wave. It turns out that backward leaky waves fall into this category. On this ground, several criteria for the systematic design of wideband radiators, namely, periodic radial waveguides based on backward leaky waves, are established in the framework of leaky-wave theory. An effective design method is proposed to minimize the frequency dispersion of the proposed class of devices and the impact of the "leakage" on the dispersive (temporal broadening) features of polychromatic localized solutions (i.e., pulses) is accounted for. Numerical results corroborate the concept, clearly highlighting the advantages and limitations of the leaky-wave approach for the generation of localized pulses at millimeter-wave frequencies, where energy focusing is in high demand in modern applications.

  9. Wideband monolithically integrated front-end subsystems and components

    NASA Astrophysics Data System (ADS)

    Mruk, Joseph Rene

    This thesis presents the analysis, design, and measurements of passive, monolithically integrated, wideband recta-coax and printed circuit board front-end components. Monolithic fabrication of antennas, impedance transformers, filters, and transitions lowers manufacturing costs by reducing assembly time and enhances performance by removing connectors and cabling between the devices. Computational design, fabrication, and measurements are used to demonstrate the capabilities of these front-end assemblies. Two-arm wideband planar log-periodic antennas fed using a horizontal feed that allows for filters and impedance transformers to be readily fabricated within the radiating region of the antenna are demonstrated. At microwave frequencies, low-cost printed circuit board processes are typically used to produce planar devices. A 1.8 to 11 GHz two-arm planar log-periodic antenna is designed with a monolithically integrated impedance transformer. Band rejection methods based on modifying the antenna aperture, use of an integrated filter, and the application of both methods are investigated with realized gain suppressions of over 25 dB achieved. The ability of standard circuit board technology to fabricate millimeter-wave devices up to 110 GHz is severely limited. Thin dielectrics are required to prevent the excitation of higher order modes in the microstrip substrate. Fabricating the thin line widths required for the antenna aperture also becomes prohibitively challenging. Surface micro-machining typically used in the fabrication of MEMS devices is capable of producing the extremely small features that can be used to fabricate antennas extending through W-band. A directly RF fed 18 to 110 GHz planar log-periodic antenna is developed. The antenna is fabricated with an integrated impedance transformer and additional transitions for measurement characterization. Singly terminated low-loss wideband millimeter-wave filters operating over V- and W- band are developed. High quality performance of an 18 to 100 GHz front-end is realized by dividing the single instantaneous antenna into two apertures operating from 18 to 50 and 50 to 100 GHz. Each channel features an impedance transformer, low-pass (low-frequency) or band-pass (high-frequency) filter, and grounded CPW launch. This dual-aperture front-end demonstrates that micromachining technology is now capable of fabricating broadband millimeter-wave components with a high degree of integration.

  10. Remote Sensing of Precipitation from 6U-Class Small Satellite Constellations: Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D)

    NASA Astrophysics Data System (ADS)

    Reising, S. C.; Gaier, T.; Kummerow, C. D.; Chandra, C. V.; Padmanabhan, S.; Lim, B.; Heneghan, C.; Berg, W. K.; Olson, J. P.; Brown, S. T.; Carvo, J.; Pallas, M.

    2016-12-01

    The Temporal Experiment for Storms and Tropical Systems (TEMPEST) mission concept consists of a constellation of 5 identical 6U-Class nanosatellites observing at 5 millimeter-wave frequencies with 5-minute temporal sampling to observe the time evolution of clouds and their transition to precipitation. The TEMPEST concept is designed to improve the understanding of cloud processes, by providing critical information on the time evolution of cloud and precipitation microphysics and helping to constrain one of the largest sources of uncertainty in climate models. TEMPEST millimeter-wave radiometers are able to make observations in the cloud to observe changes as the cloud begins to precipitate or ice accumulates inside the storm. Such a constellation deployed near 400 km altitude and 50°-65° inclination is expected to capture more than 3 million observations of precipitation during a one-year mission, including over 100,000 deep convective events. The TEMPEST Technology Demonstration (TEMPEST-D) mission will be deployed to raise the TRL of the instrument and key satellite systems as well as to demonstrate measurement capabilities required for a constellation of 6U-Class nanosatellites to directly observe the temporal development of clouds and study the conditions that control their transition from non-precipitating to precipitating clouds. A partnership among Colorado State University (Lead Institution), NASA/Caltech Jet Propulsion Laboratory and Blue Canyon Technologies, TEMPEST-D will provide observations at five millimeter-wave frequencies from 89 to 183 GHz using a single compact instrument that is well suited for the 6U-Class architecture. The top-level requirements for the 90-day TEMPEST-D mission are to: (1) demonstrate precision inter-satellite calibration between TEMPEST-D and one other orbiting radiometer (e.g. GPM or MHS) measuring at similar frequencies; and (2) demonstrate orbital drag maneuvers to control altitude, as verified by GPS, sufficient to achieve relative positioning in a constellation of 6U-Class nanosatellites. The TEMPEST-D 6U-Class satellite is planned to be delivered in July 2017 for launch through NASA CSLI no later than March 2018.

  11. Laser tissue welding mediated with a protein solder

    NASA Astrophysics Data System (ADS)

    Small, Ward, IV; Heredia, Nicholas J.; Celliers, Peter M.; Da Silva, Luiz B.; Eder, David C.; Glinsky, Michael E.; London, Richard A.; Maitland, Duncan J.; Matthews, Dennis L.; Soltz, Barbara A.

    1996-05-01

    A study of laser tissue welding mediated with an indocyanine green dye-enhanced protein solder was performed. Freshly obtained sections of porcine artery were used for the experiments. Sample arterial wall thickness ranged from two to three millimeters. Incisions approximately four millimeters in length were treated using an 805 nanometer continuous- wave diode laser coupled to a one millimeter diameter fiber. Controlled parameters included the power delivered by the laser, the duration of the welding process, and the concentration of dye in the solder. A two-color infrared detection system was constructed to monitor the surface temperatures achieved at the weld site. Burst pressure measurements were made to quantify the strengths of the welds immediately following completion of the welding procedure.

  12. Direct measurement of additional Ar-H2O vibration-rotation-tunneling bands in the millimeter-submillimeter range

    NASA Astrophysics Data System (ADS)

    Zou, Luyao; Widicus Weaver, Susanna L.

    2016-06-01

    Three new weak bands of the Ar-H2O vibration-rotation-tunneling spectrum have been measured in the millimeter wavelength range. These bands were predicted from combination differences based on previously measured bands in the submillimeter region. Two previously reported submillimeter bands were also remeasured with higher frequency resolution. These new measurements allow us to obtain accurate information on the Coriolis interaction between the 101 and 110 states. Here we report these results and the associated improved molecular constants.

  13. Terabit Wireless Communication Challenges

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.

    2012-01-01

    This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz frequency band. The technical challenges in design such a system and the techniques to overcome the challenges will be discussed in this presentation.

  14. Comments on, Xuan Li, Shanghong Zhao, Zihang Zhu, Bing Gong, Xingchun Chu, Yongjun Li, Jing Zhao and Yun Liu `an optical millimeter-wave generation scheme based on two parallel dual-parallel Mach-Zehnder modulators and polarization multiplexing', Journal of Modern Optics, 2015

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hall, Trevor

    2016-11-01

    In the title paper, Li et al. have presented a scheme for filter-less photonic millimetre-wave (mm-wave) generation based on two polarization multiplexed parallel dual-parallel Mach-Zehnder modulators (DP-MZMs). For frequency octo-tupling, all the harmonics are suppressed except those of order 4l, where l is the integer. The carrier is then suppressed by the polarization multiplexing technique, which is the principal innovative step in their design. Frequency 12-tupling and 16-tupling is also described following a similar method. The two DP-MZM are similarly driven and provide identical outputs for the same RF modulation indices. Consequently, a demerit of their design is the requirement to apply two different RF signal modulation indexes in a particular range and set the polarizer to a precise angle which depends on the pair of modulation indices used in order to suppress the unwanted harmonics (e.g. the carrier) without simultaneously suppressing the wanted harmonics. The aim of this comment is to show that, an adjustment of the RF drive phases with a fixed polarizer angle with the design presented by Li, all harmonics can be suppressed except those of order4l, where l is an odd integer. Hence, a filter-less frequency octo-tupling can be generated whose performance is not limited by the careful adjustment of the RF drive signal, rather it can be operated for a wide range of modulation indexes (m 2.5 → 7.5). If the modulation index is adjusted to suppress 4th harmonics, then the design can be used to perform frequency 24-tupling. Since, the carrier is suppressed by design in the modified architecture, the strict requirement to adjust the RF drive (and polarizer angle) can be avoided without any significant change to the circuit complexity.

  15. Millimeter-wave technology advances since 1985 and future trends

    NASA Astrophysics Data System (ADS)

    Meinel, Holger H.

    1991-05-01

    The author focuses on finline or E-plane technology. Several examples, including AVES, a 61.5-GHz radar sensor for traffic data acquisition, are included. Monolithic integrated 60- and 94-GHz receiver circuits composed of a mixer and IF amplifier in compatible FET technology on GaAs are presented to show the state of the art in this area. A promising approach to the use of silicon technology for monolithic millimeter-wave integrated circuits, called SIMMWIC, is described as well. As millimeter-wave technology has matured, increased interest has been generated for very specific applications: (1) commercial automotive applications such as intelligent cruise control and enhanced vision have attracted great interest, calling for a low-cost design approach; and (2) an almost classical application of millimeter-wave techniques is the field of radar seekers, e.g., for intelligent ammunitions, calling for high performance under extreme environmental conditions. Two examples fulfilling these requirements are described.

  16. Design of a Millimeter-Wave Concentrator for Beam Reception in High-Power Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Fukunari, Masafumi; Wongsuryrat, Nat; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Koizumi, Hiroyuki

    2017-02-01

    This study examined the performance of a developed taper-tube concentrator for 94-GHz millimeter-wave beam reception during wireless power transfer. The received energy is converted into kinetic energy of a working gas in the tube to drive an engine or thruster. The concentrator, which is assumed to have mirror reflection of millimeter waves in it, is designed to be shorter than conventional tapered waveguides of millimeter waves. A dimensionless design law of a concentrator is proposed based on geometric optics theory. Because the applicability of geometric optics theory is unclear, the ratio of its bore diameter to its wavelength was set as small compared to those in other possible applications. Then, the discrepancy between the designed and measured power reception was examined. Results show that the maximum discrepancy was as low as 7 % for the bore-to-wavelength ratio of 20 at the narrow end of the concentrator.

  17. Discovering CO and other Interstellar Molecules with the NRAO 36 Foot Antenna

    NASA Astrophysics Data System (ADS)

    Wilson, R. W.

    2008-08-01

    Bell Labs was an early developer of millimeter-wave technology. In the 60's there was a big push to develop a millimeter wave long-distance communications system to do what ultimately fiber optics has accomplished. As part of this system, Charles Burrus at Crawford Hill developed millimeter-wave receivers by making Schottky-barrier diodes using modern photolithography. Arno Penzias and I recognized that these had a potential use in radio astronomy and with Ken Kellermann proposed to build a receiver with them for use on the then-new 36 foot antenna. Unfortunately this attempt was premature and not successful. In 1970 Arno, Keith Jefferts, and I---with much help from Sandy Weinreb---put together a spectral-line receiver. This was done with the hope of detecting rotational transitions of simple molecules in interstellar space. Since, at the time, only a few people (like Phil Solomon) had any idea that molecular clouds existed, we prepared to detect a weak signal. Our backup strategy, suggested by Pat Thaddeus, was to look for CN, which had been known to exist since the late 1930s. If neither line had been detected, we would have observed the H38α recombination line which is close in frequency to the CO J=1-0 line. As we all know now, however, the signal from carbon monoxide (and even its less abundant isotopes) was remarkably strong. Such measurements have since transformed our ideas of star formation.

  18. Custom chipset and compact module design for a 75-110 GHz laboratory signal source

    NASA Astrophysics Data System (ADS)

    Morgan, Matthew A.; Boyd, Tod A.; Castro, Jason J.

    2016-12-01

    We report on the development and characterization of a compact, full-waveguide bandwidth (WR-10) signal source for general-purpose testing of mm-wave components. The monolithic microwave integrated circuit (MMIC) based multichip module is designed for compactness and ease-of-use, especially in size-constrained test sets such as a wafer probe station. It takes as input a cm-wave continuous-wave (CW) reference and provides a factor of three frequency multiplication as well as amplification, output power adjustment, and in situ output power monitoring. It utilizes a number of custom MMIC chips such as a Schottky-diode limiter and a broadband mm-wave detector, both designed explicitly for this module, as well as custom millimeter-wave multipliers and amplifiers reported in previous papers.

  19. Properties of barium strontium titanate at millimeter wave frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osman, Nurul; Free, Charles

    2015-04-24

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangentmore » for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.« less

  20. Velocity modulation spectroscopy of molecular ions II: The millimeter/submillimeter-wave spectrum of TiF + ( X3Φr)

    NASA Astrophysics Data System (ADS)

    Halfen, D. T.; Ziurys, L. M.

    2006-11-01

    The pure rotational spectrum of the molecular ion TiF + in its 3Φr ground state has been measured in the range 327-542 GHz using millimeter-wave direct absorption techniques combined with velocity modulation spectroscopy. TiF + was made in an AC discharge from a mixture of TiCl 4, F 2 in He, and argon. Ten transitions of this ion were recorded. In every transition, fluorine hyperfine interactions, as well as the fine structure splittings, were resolved. The fine structure pattern was found to be regular with almost equal spacing in frequency between the three spin components, in contrast to TiCl +, which is perturbed in the ground state. The data were fit with a case ( a) Hamiltonian and rotational, fine structure, and hyperfine constants were determined. The bond length established for TiF +, r0 = 1.7775 Å, was found to be shorter than that of TiF, r0 = 1.8342 Å—also established from mm-wave data. The hyperfine parameters determined are consistent with a δ1π1 electron configuration with the electrons primarily located on the titanium nucleus. The nuclear spin-orbit constant a indicates that the unpaired electrons are closer to the fluorine nucleus in TiF + relative to TiF, as expected with the decrease in bond length for the ion. The shorter bond distance is thought to arise from increased charge on the titanium nucleus as a result of a Ti 2+F - configuration. A similar decrease in bond length was found for TiCl + relative to TiCl.

  1. Compact Low-Loss Planar Magic-T

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.; Doiron, Terence; Moseley, Sameul H.

    2008-01-01

    This design allows broadband power combining with high isolation between the H port and E port, and achieves a lower insertion loss than any other broadband planar magic-T. Passive micro wave/millimeter-wave signal power is combined both in-phase and out-of-phase at the ports, with the phase error being less than 1 , which is limited by port impedance. The in-phase signal combiner consists of two quarter-wavelength-long transmission lines combined at the microstrip line junction. The out-of-phase signal combiner consists of two half-wavelength-long transmission lines combined in series. Structural symmetry creates a virtual ground plane at the combining junction, and the combined signal is converted from microstrip line to slotline. Optimum realizable characteristic impedances are used so that the magic-T provides broadband response with low return loss. The magic-T is used in microwave and millimeter-wave frequencies, with the operating bandwidth being approximately 100 percent. The minimum isolation obtainable is 32 dB from port E to port H. The magic-T VSWR is less than 1.1 in the operating band. Operating temperature is mainly dependent on the variation in the dielectric constant of the substrate. Using crystallized substrate, the invention can operate in an extremely broad range of temperatures (from 0 to 400 K). It has a very high reliability because it has no moving parts and requires no maintenance, though it is desirable that the magic-T operate in a low-humidity environment. Fabrication of this design is very simple, using only two metallized layers. No bond wires, via holes, or air bridges are required. Additionally, this magic-T can operate as an individual component without auxiliary components.

  2. Real-time millimeter-wave imaging radiometer for avionic synthetic vision

    NASA Astrophysics Data System (ADS)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.

    1994-07-01

    ThermoTrex Corporation (TTC) has developed an imaging radiometer, the passive microwave camera (PMC), that uses an array of frequency-scanned antennas coupled to a multi-channel acousto-optic (Bragg cell) spectrum analyzer to form visible images of a scene through acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output of the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. One application of this system could be its incorporation into an enhanced vision system to provide pilots with a clear view of the runway during fog and other adverse weather conditions. The unique PMC system architecture will allow compact large-aperture implementations because of its flat antenna sensor. Other potential applications include air traffic control, all-weather area surveillance, fire detection, and security. This paper describes the architecture of the TTC PMC and shows examples of images acquired with the system.

  3. The millimeter wave spectrum of methyl cyanate: a laboratory study and astronomical search in space.

    PubMed

    Kolesniková, L; Alonso, J L; Bermúdez, C; Alonso, E R; Tercero, B; Cernicharo, J; Guillemin, J-C

    2016-07-01

    The recent discovery of methyl isocyanate (CH 3 NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH 3 OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A - E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J″ = 10 - 35 and [Formula: see text] and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty. Spectral features of methyl cyanate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methyl cyanate are provided.

  4. The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States

    NASA Astrophysics Data System (ADS)

    Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago

    2017-06-01

    The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).

  5. Millimeter/Submillimeter Spectroscopy of TiO (X3Δr): The Rare Titanium Isotopologues

    NASA Astrophysics Data System (ADS)

    Lincowski, A. P.; Halfen, D. T.; Ziurys, L. M.

    2016-12-01

    Pure rotational spectra of the rare isotopologues of titanium oxide, 46TiO, 47TiO, 49TiO, and 50TiO, have been recorded using a combination of Fourier transform millimeter-wave (FTmmW) and millimeter/submillimeter direct absorption techniques in the frequency range 62-538 GHz. This study is the first complete spectroscopic characterization of these species in their X 3Δ r ground electronic states. The isotopologues were created by the reaction of N2O or O2 and titanium vapor, produced either by laser ablation or in a Broida-type oven, and observed in the natural Ti isotopic abundances. Between 10 and 11 rotational transitions J + 1 ≤ftrightarrow J were measured for each species, typically in all 3 spin-orbit ladders Ω = 1, 2, and 3. For 47TiO and 49TiO, hyperfine structure was resolved, originating from the titanium-47 and titanium-49 nuclear spins of I = 5/2 and 7/2, respectively. For the Ω = 1 and 3 components, the hyperfine structure was found to follow a classic Landé pattern, while that for Ω = 2 appeared to be perturbed, likely a result of mixing with the nearby isoconfigurational a 1Δ state. The spectra were analyzed with a case (a) Hamiltonian, and rotational, spin-orbit, and spin-spin parameters were determined for each species, as well as magnetic hyperfine and electric quadrupole constants for the two molecules with nuclear spins. The most abundant species, 48TiO, has been detected in circumstellar envelopes. These measurements will enable other titanium isotopologues to be studied at millimeter wavelengths, providing Ti isotope ratios that can test models of nucleosynthesis.

  6. Inverse multipath fingerprinting for millimeter wave V2I beam alignment.

    DOT National Transportation Integrated Search

    2017-05-01

    Efficient beam alignment is a crucial component in millimeter wave systems with analog beamforming, especially in fast-changing vehicular settings. This paper uses the vehicles position (e.g., available via GPS) to query the multipath fingerprint ...

  7. Rotational spectroscopy of ClZnCH3 (X1A1): Gas-phase synthesis and characterization of a monomeric Grignard-type reagent

    NASA Astrophysics Data System (ADS)

    Min, J.; Bucchino, M. P.; Kilchenstein, K. M.; Ziurys, L. M.

    2016-02-01

    The pure rotational spectrum of the organozinc halide, ClZnCH3 (X1A1), has been measured using Fourier-transform microwave (FTMW) and millimeter-wave direct-absorption methods in the frequency range 10-296 GHz. This work is the first study of ClZnCH3 by gas-phase spectroscopy. The molecule was created in a DC discharge from the reaction of zinc vapor, produced either by a Broida-type oven or by laser ablation, with chloromethane in what appears to be a metal insertion process. Rotational and chlorine quadrupole constants were determined for three zinc isotopologues. The Znsbnd Cl bond was found to be partly ionic and significantly shorter than in EtZnCl.

  8. Rotational Spectroscopy of ClZnCH3 (tilde{X}1A1): Characterization of a Monomeric Grignard-Type Reagent

    NASA Astrophysics Data System (ADS)

    Kilchenstein, K. M.; Min, Jie; Bucchino, Matthew; Ziurys, Lucy M.

    2016-06-01

    The pure rotational spectrum of the organozinc halide, ClZnCH3 (tilde{X}1A1), has been measured using Fourier-transform microwave (FTMW) and millimeter-wave direct-absorption methods in the frequency range 10-296 GHz. This work is the first study of ClZnCH3 by gas-phase spectroscopy. The molecule was created in a DC discharge from the reaction of zinc vapor, produced either by a Broida-type oven or by laser ablation, with chloromethane in what appears to be a metal insertion process. Rotational and chlorine quadrupole constants were determined for three zinc isotopologues. The Zn - Cl bond was found to be partly ionic and significantly shorter than in EtZnCl.

  9. Sparse interferometric millimeter-wave array for centimeter-level 100-m standoff imaging

    NASA Astrophysics Data System (ADS)

    Suen, Jonathan Y.; Lubin, Philip M.; Solomon, Steven L.; Ginn, Robert P.

    2013-05-01

    We present work on the development of a long range standoff concealed weapons detection system capable of imaging under very heavy clothing at distances exceeding 100 m with a cm resolution. The system is based off a combination of phased array technologies used in radio astronomy and SAR radar by using a coherent, multi-frequency reconstruction algorithm which can run at up to 1000 Hz frame rates and high SNR with a multi-tone transceiver. We show the flexible design space of our system as well as algorithm development, predicted system performance and impairments, and simulated reconstructed images. The system can be used for a variety of purposes including portal applications, crowd scanning and tactical situations. Additional uses include seeing through dust and fog.

  10. Micromachined Millimeter- and Submillimeter-Wave SIS Heterodyne Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hu, Qing

    1998-01-01

    A heterodyne mixer with a micromachined horn antenna and a superconductor -insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30+/-3 K without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.

  11. Statistical Modelling and Characterization of Experimental mm-Wave Indoor Channels for Future 5G Wireless Communication Networks

    PubMed Central

    Al-Samman, A. M.; Rahman, T. A.; Azmi, M. H.; Hindia, M. N.; Khan, I.; Hanafi, E.

    2016-01-01

    This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios. PMID:27654703

  12. Statistical Modelling and Characterization of Experimental mm-Wave Indoor Channels for Future 5G Wireless Communication Networks.

    PubMed

    Al-Samman, A M; Rahman, T A; Azmi, M H; Hindia, M N; Khan, I; Hanafi, E

    This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios.

  13. Millimeter-Wave Generation with Spiraling Electron Beams

    DOT National Transportation Integrated Search

    1971-02-01

    An investigation has been carried out of the feasibility : of using the interaction between a thin, solid, : spiraling electron beam of 10-20kV energy and a microwave : cavity to generate watts of CW millimeter-wave power. : Experimental results are ...

  14. Method and apparatus for millimeter-wave detection of thermal waves for materials evaluation

    DOEpatents

    Gopalsami, Nachappa; Raptis, Apostolos C.

    1991-01-01

    A method and apparatus for generating thermal waves in a sample and for measuring thermal inhomogeneities at subsurface levels using millimeter-wave radiometry. An intensity modulated heating source is oriented toward a narrow spot on the surface of a material sample and thermal radiation in a narrow volume of material around the spot is monitored using a millimeter-wave radiometer; the radiometer scans the sample point-by-point and a computer stores and displays in-phase and quadrature phase components of thermal radiations for each point on the scan. Alternatively, an intensity modulated heating source is oriented toward a relatively large surface area in a material sample and variations in thermal radiation within the full field of an antenna array are obtained using an aperture synthesis radiometer technique.

  15. Millimeter- and Submillimeter-Wave Remote Sensing Using Small Satellites

    NASA Technical Reports Server (NTRS)

    Ehsan, N.; Esper, J.; Piepmeier, J.; Racette, P.; Wu, D.

    2014-01-01

    Cloud ice properties and processes play fundamental roles in atmospheric radiation and precipitation. Limited knowledge and poor representation of clouds in global climate models have led to large uncertainties about cloud feedback processes under climate change. Ice clouds have been used as a tuning parameter in the models to force agreement with observations of the radiation budget at the top of the atmosphere, and precipitation at the bottom. The lack of ice cloud measurements has left the cloud processes at intermediate altitudes unconstrained. Millimeter (mm) and submillimeter (submm)-wave radiometry is widely recognized for its potential to fill the cloud measurement gap in the middle and upper troposphere. Analyses have shown that channels from 183900 GHz offer good sensitivity to ice cloud scattering and can provide ice water path (IWP) products to an accuracy of 25 by simultaneously retrieving ice particle size (Dme) and IWP. Therefore, it is highly desirable to develop a cost-effective, compact mm/submm-wave instrument for cloud observations that can be deployed on future small satellites.This paper presents a conceptual study for a mm/submm-wave instrument for multispectral measurements of ice clouds. It discusses previous work at these frequencies by NASA Goddard Space Flight Center (GSFC) and the current instrument study, as well as receiver architectures and their anticipated performance. And finally, it describes a microsatellite prototype intended for use with this mm/submm-wave instrument.

  16. Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link.

    PubMed

    Wang, Huai-Yung; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-08-08

    A novel millimeter-wave radio over fiber (MMW-RoF) link at carrier frequency of 35-GHz is proposed with the use of remotely beating MMW generation from reference master and injected slave colorless laser diode (LD) carriers at orthogonally polarized dual-wavelength injection-locking. The slave colorless LD supports lasing one of the dual-wavelength master modes with orthogonal polarizations, which facilitates the single-mode direct modulation of the quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data. Such an injected single-carrier encoding and coupled dual-carrier transmission with orthogonal polarization effectively suppresses the cross-heterodyne mode-beating intensity noise, the nonlinear modulation (NLM) and four-wave mixing (FWM) sidemodes during injection locking and fiber transmission. In 25-km single-mode fiber (SMF) based wireline system, the dual-carrier under single-mode encoding provides baseband 24-Gbit/s 64-QAM OFDM transmission with an error vector magnitude (EVM) of 8.8%, a bit error rate (BER) of 3.7 × 10-3, a power penalty of <1.5 dB. After remotely self-beating for wireless transmission, the beat MMW carrier at 35 GHz can deliver the passband 16-QAM OFDM at 4 Gbit/s to show corresponding EVM and BER of 15.5% and 1.4 × 10-3, respectively, after 25-km SMF and 1.6-m free-space transmission.

  17. [The action of low-intensity extremely high-freguency electromagnetic radiation on growth parameters for bacteria Enterococcus hirae].

    PubMed

    Oganian, V; Sarkisian, A; Tadevosian, A; Torchunian, A

    2008-01-01

    It has been found that the exposure of Enterococcus hirae ATCC9790, grown under anaerobic conditions for 30 min or 1 h, to low-intensity (flux capacity 0.06 mW/sm2) coherent electromagnetic radiation (EMI) of extremely high-frequency 45 - 53 GHz), or millimeter waves causes a marked prolongation of the lag-growth phase and a decrease in their specific growth rate, the inhibitory effect increasing in the frequency range from 49 to 53 GHz. The effect enhanced as duration of expocure was encreased from 30 min to 1 h; however, further increase in exposure duration to 2 h did not cause an enhancement of the effect. It has been shown that the action of extremely high-frequency EMI on these bacteria does not depend on medium pH (pH 8.0 or pH 6.0). It is proposed that these bacteria have defensive or reparation mechanisms which compensate for the action of radiation; the occurrence of different mechanisms for pH regulation is not ruled out.

  18. New technologies for the detection of millimeter and submillimeter waves

    NASA Technical Reports Server (NTRS)

    Richards, P. L.; Clarke, J.; Gildemeister, J. M.; Lanting, T.; Lee, A. T.

    2001-01-01

    Voltage-biased superconducting bolometers have many operational advantages over conventional bolometer technology including sensitivity, linearity, speed, and immunity from environmental disturbance. A review is given of the Berkeley program for developing this new technology. Developments include fully lithographed individual bolometers in the spiderweb configuration, arrays of 1024 close-packed absorber-coupled bolometers, antenna-coupled bolometers, and a frequency-domain SQUID (superconducting quantum interference device) readout multiplexer.

  19. CARMA Observations of PTF10vdl

    NASA Astrophysics Data System (ADS)

    Carpenter, John M.

    2010-09-01

    We used the Combined Array for Research in Millimeter-wave Astronomy (CARMA) to observe the field of view toward PTF10vdl (ATEL#2862), discovered by the Palomar Transient Factory . The observations began at September 18, 2010 04:18 UT and continued for 4.9 hours. The mean frequency of the observations was 97.5 GHz with a total bandwidth of 8 GHz.

  20. Millimeter Wave Radio Frequency Propagation Model Development

    DTIC Science & Technology

    2014-08-28

    two. According to the Beer - Lambert law , this term is defined as the absorption coefficient. When n’’ is positive, radiation is absorbed. If it is...4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply...size distribution has a power- law relationship to rainfall rate. From this knowledge, coefficients were developed based on Marshall and Palmer, Laws

  1. Efficient EM Simulation of GCPW Structures Applied to a 200-GHz mHEMT Power Amplifier MMIC

    NASA Astrophysics Data System (ADS)

    Campos-Roca, Yolanda; Amado-Rey, Belén; Wagner, Sandrine; Leuther, Arnulf; Bangert, Axel; Gómez-Alcalá, Rafael; Tessmann, Axel

    2017-05-01

    The behaviour of grounded coplanar waveguide (GCPW) structures in the upper millimeter-wave range is analyzed by using full-wave electromagnetic (EM) simulations. A methodological approach to develop reliable and time-efficient simulations is proposed by investigating the impact of different simplifications in the EM modelling and simulation conditions. After experimental validation with measurements on test structures, this approach has been used to model the most critical passive structures involved in the layout of a state-of-the-art 200-GHz power amplifier based on metamorphic high electron mobility transistors (mHEMTs). This millimeter-wave monolithic integrated circuit (MMIC) has demonstrated a measured output power of 8.7 dBm for an input power of 0 dBm at 200 GHz. The measured output power density and power-added efficiency (PAE) are 46.3 mW/mm and 4.5 %, respectively. The peak measured small-signal gain is 12.7 dB (obtained at 196 GHz). A good agreement has been obtained between measurements and simulation results.

  2. Range and azimuth resolution enhancement for 94 GHz real-beam radar

    NASA Astrophysics Data System (ADS)

    Liu, Guoqing; Yang, Ken; Sykora, Brian; Salha, Imad

    2008-04-01

    In this paper, two-dimensional (2D) (range and azimuth) resolution enhancement is investigated for millimeter wave (mmW) real-beam radar (RBR) with linear or non-linear antenna scan in the azimuth dimension. We design a new architecture of super resolution processing, in which a dual-mode approach is used for defining region of interest for 2D resolution enhancement and a combined approach is deployed for obtaining accurate location and amplitude estimations of targets within the region of interest. To achieve 2D resolution enhancement, we first adopt the Capon Beamformer (CB) approach (also known as the minimum variance method (MVM)) to enhance range resolution. A generalized CB (GCB) approach is then applied to azimuth dimension for azimuth resolution enhancement. The GCB approach does not rely on whether the azimuth sampling is even or not and thus can be used in both linear and non-linear antenna scanning modes. The effectiveness of the resolution enhancement is demonstrated by using both simulation and test data. The results of using a 94 GHz real-beam frequency modulation continuous wave (FMCW) radar data show that the overall image quality is significantly improved per visual evaluation and comparison with respect to the original real-beam radar image.

  3. Application of fluorescent dyes for some problems of bioelectromagnetics

    NASA Astrophysics Data System (ADS)

    Babich, Danylo; Kylsky, Alexandr; Pobiedina, Valentina; Yakunov, Andrey

    2016-04-01

    Fluorescent organic dyes solutions are used for non-contact measurement of the millimeter wave absorption in liquids simulating biological tissue. There is still not any certain idea of the physical mechanism describing this process despite the widespread technology of microwave radiation in the food industry, biotechnology and medicine. For creating adequate physical model one requires an accurate command of knowledge concerning to the relation between millimeter waves and irradiated object. There were three H-bonded liquids selected as the samples with different coefficients of absorption in the millimeter range like water (strong absorption), glycerol (medium absorption) and ethylene glycol (light absorption). The measurements showed that the greatest response to the action of microwaves occurs for glycerol solutions: R6G (building-up luminescence) and RC (fading luminescence). For aqueous solutions the signal is lower due to lower quantum efficiency of luminescence, and for ethylene glycol — due to the low absorption of microwaves. In the area of exposure a local increase of temperature was estimated. For aqueous solutions of both dyes the maximum temperature increase is about 7° C caused with millimeter waves absorption, which coincides with the direct radio physical measurements and confirmed by theoretical calculations. However, for glycerol solution R6G temperature equivalent for building-up luminescence is around 9° C, and for the solution of ethylene glycol it's about 15°. It is assumed the possibility of non-thermal effect of microwaves on the different processes and substances. The application of this non-contact temperature sensing is a simple and novel method to detect temperature change in small biological objects.

  4. Specific NIST projects in support of the NIJ Concealed Weapon Detection and Imaging Program

    NASA Astrophysics Data System (ADS)

    Paulter, Nicholas G.

    1998-12-01

    The Electricity Division of the National Institute of Standards and Technology is developing revised performance standards for hand-held (HH) and walk-through (WT) metal weapon detectors, test procedures and systems for these detectors, and a detection/imaging system for finding concealed weapons. The revised standards will replace the existing National Institute of Justice (NIJ) standards for HH and WT devices and will include detection performance specifications as well as system specifications (environmental conditions, mechanical strength and safety, response reproducibility and repeatability, quality assurance, test reporting, etc.). These system requirements were obtained from the Law Enforcement and corrections Technology Advisory Council, an advisory council for the NIJ. Reproducible and repeatable test procedures and appropriate measurement systems will be developed for evaluating HH and WT detection performance. A guide to the technology and application of non- eddy-current-based detection/imaging methods (such as acoustic, passive millimeter-wave and microwave, active millimeter-wave and terahertz-wave, x-ray, etc.) Will be developed. The Electricity Division is also researching the development of a high- frequency/high-speed (300 GH to 1 THz) pulse-illuminated, stand- off, video-rate, concealed weapons/contraband imaging system.

  5. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generationa)

    NASA Astrophysics Data System (ADS)

    Booske, John H.

    2008-05-01

    Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave (mmw) to terahertz (THz) regime electromagnetic radiation, from 0.1 to 10THz. While vacuum electronic sources are a natural choice for high power, the challenges have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, high resolution radar, next generation acceleration drivers, and analysis of fluids and condensed matter. The compact size requirements for many of these high frequency sources require miniscule, microfabricated slow wave circuits. This necessitates electron beams with tiny transverse dimensions and potentially very high current densities for adequate gain. Thus, an emerging family of microfabricated, vacuum electronic devices share many of the same plasma physics challenges that are currently confronting "classic" high power microwave (HPM) generators including long-life bright electron beam sources, intense beam transport, parasitic mode excitation, energetic electron interaction with surfaces, and rf air breakdown at output windows. The contemporary plasma physics and other related issues of compact, high power mmw-to-THz sources are compared and contrasted to those of HPM generation, and future research challenges and opportunities are discussed.

  6. VizieR Online Data Catalog: HCOO13CH3 rotational spectrum

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Carvajal, M.; Tercero, B.; Kleiner, I.; Lopez, A.; Cernicharo, J.; Motiyenko, R. A.; Huet, T. R.; Guillemin, J. C.; Margules, L.

    2014-08-01

    The details about synthesis and identification by NMR spectroscopy were described in Carvajal et al. (2009, Cat. J/A+A/500/1109). The millimeter- and submillimeter-wave spectra were recorded using the Lille spectrometer that is based on solid-state sources. The sample pressure was in the range 20-30x10-6 bars. Spectra were recorded at room temperature (T=294K) in the 150-210, 225-315, 400-500, 500-630, and 780-940GHz regions with frequency steps of 30, 36, 48, 54, and 76kHz and an acquisition time of 35ms per point. The absolute accuracy of the line-centre frequency is estimated to be better than 30kHz (50kHz above 700GHz) for isolated lines and can be as low as 100kHz (150kHz above 700GHz) for blended or very weak lines. See section 2.2. The IRAM spectra will be published on the IRAM website: http://www.iram-institute.org/ (1 data file).

  7. Reverse Current Characteristics of InP Gunn Diodes for W-Band Waveguide Applications.

    PubMed

    Kim, Hyun-Seok; Heo, Jun-Woo; Chol, Seok-Gyu; Ko, Dong-Sik; Rhee, Jin-Koo

    2015-07-01

    InP is considered as the most promising material for millimeter-wave laser-diode applications owing to its superior noise performance and wide operating frequency range of 75-110 GHz. In this study, we demonstrate the fabrication of InP Gunn diodes with a current-limiting structure using rapid thermal annealing to modulate the potential height formed between an n-type InP active layer and a cathode contact. We also explore the reverse current characteristics of the InP Gunn diodes. Experimental results indicate a maximum anode current and an oscillation frequency of 200 mA and 93.53 GHz, respectively. The current-voltage characteristics are modeled by considering the Schottky and ohmic contacts, work function variations, negative differential resistance (NDR), and tunneling effect. Although no direct indication of the NDR is observed, the simulation results match the measured data well. The modeling results show that the NDR effect is always present but is masked because of electron emission across the shallow Schottky barrier.

  8. Millimeter-Wave Propagation and Remote Sensing of the Atmosphere,

    DTIC Science & Technology

    1983-12-01

    tool to probe lower atmospheric structure. The principal applications of millimeter waves have been in the areas of communications, radar, and remote ... sensing . The availability of large bandwidths makes this region of the spectrum particularly attractive for high data rate communications. Because

  9. Permittivity of water at millimeter wave-lengths

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1976-01-01

    Work performed on the permittivity of seawater and ice at 100 GHz was described. Measurements on water covered the temperature range from 0 to 50 C, while the measurements on ice were taken near - 10 C. In addition, a small number of measurements were made on the reflectivity of absorber materials used in a previous program on research in millimeter wave techniques. Normal incidence reflectivity was measured, and the result was used to obtain the index of refraction. For the case of normal incidence, reflectivity at a fixed temperature was reproducible to 1% for values near 40%. For reflectivity measurements on ice, the lack of attenuation leads to reflection from the back surface of the sample; this complication was circumvented by using a wedge shaped sample and freezing the water in a container lined with absorber material.

  10. The mm-wave compact component of an AGN

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Vogel, Stuart; Baldi, Ranieri D.; Smith, Krista L.; Mushotzky, Richard F.

    2018-07-01

    mm-wave emission from active galactic nuclei (AGNs) may hold the key to understanding the physical origin of their radio cores. The correlation between radio/mm and X-ray luminosity may suggest a similar physical origin of the two sources. Since synchrotron self-absorption decreases with frequency, mm-waves probe smaller length-scales than cm-waves. We report on 100 GHz (3 mm) observations with the Combined Array for Research in Millimeter-wave Astronomy of 26 AGNs selected from the hard X-ray Swift/Burst Alert Telescope survey. 20/26 targets were detected at 100 GHz down to the 1 mJy (3σ) sensitivity, which corresponds to optically thick synchrotron source sizes of 10-4-10-3 pc. Most sources show a 100 GHz flux excess with respect to the spectral slope extrapolated from low frequencies. This mm spectral component likely originates from smaller scales than the few-GHz emission. The measured mm sources lie roughly around the Lmm (100 GHz) ˜10-4LX (2-10 keV) relation, similar to a few previously published X-ray selected sources, and hinting perhaps at a common coronal origin.

  11. International Conference on Infrared and Millimeter Waves, 16th, Ecole Polytechnique Federale de Lausanne, Switzerland, Aug. 26-30, 1991, Conference Digest

    NASA Astrophysics Data System (ADS)

    Siegrist, M. R.; Tran, T. M.; Tran, M. Q.

    1991-10-01

    Consideration is given to millimeter waves (MMW), submillimeter waves, materials properties, and gyrotrons/FEL. Particular attention is given to MMW sources, detectors and mixers; MMW systems, devices and antennas; guided propagation; high Tc superconductors; semiconductors; MMW astronomy and atmospheric physics; lasers, submillimeter devices, and plasma diagnostics; and submillimeter detectors.

  12. Millimeter Wave Radar Clutter Program

    DTIC Science & Technology

    1989-10-30

    conduct experimental measurments and develop theoretical models to Improve our understanding of electromagnetic wave interaction with terrain at...various types of terrain under a variety of conditions. The experimental data servos to guide the development of the models as well as to verify their... experimental measurement. Task 4 - Examination of Bistatic Scattering from Surfaces and Volumes: Prior to this program, no millimeter-wave bistatic

  13. Collaborative research in tunneling and field emission pumped surface wave local oscillators and amplifiers for infrared and submillimeter wavelengths under director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Gustafson, T. K.

    1982-01-01

    Progress is reported in work towards the development of surface wave sources for the infrared and sub-millimeter portion of the spectrum to be based upon electron pumping by tunneling electrons in metal-barrier-metal or metal-barrier-semiconductor devices. Tunneling phenomena and the coupling of radiation to tunnel junctions were studied. The propagation characteristics of surface electro-magnetic modes in metal-insulator-p(++) semiconductor structures as a function of frequency were calculated. A model for the gain process based upon Tucker's formalism was developed and used to estimate what low frequency gain might be expected from such structures. The question of gain was addressed from a more fundamental viewpoint using the method of Lasher and Stern.

  14. Millimeter Wave Nonreciprocal Devices.

    DTIC Science & Technology

    1983-01-03

    measures microwave magnetic field patterns of magnetostatic waves in LPE -YIG thin films has been developed. The probe’s sensing element is either a...Morgenthaler, "Workshop on Application of Garnet and Ferrite Thin Films to Microwave Devices," Session FC, Third Joint Intermag - Magnetism and...thin films Li... millimeter waves magnetostati c waves i A TRAC" =CmE4 F*91040 eEp y mnenu -d Dfenvely by Noek n.m--) The Microwave and Quantum

  15. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37 to 42 GHz) and V/W-band (71 to 76 GHz) satellite-to-ground signals.

  16. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.

  17. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-time Emission from the Kilonova Ejecta

    DOE PAGES

    Alexander, K. D.; Berger, E.; Fong, W.; ...

    2017-10-16

    Here, we present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW\\,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter (more » $13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $$\\gtrsim 10^{48}$$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $$\\gtrsim 20^{\\circ}$$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $$\\sim 10^{49}-10^{50}$$ erg that exploded in a uniform density environment with $$n\\sim 10^{-4}-10^{-2}$$ cm$$^{-3}$$, viewed at an angle of $$\\sim 20^{\\circ}-40^{\\circ}$$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $$\\sim 5-10$$ years that will remain detectable for decades with next-generation radio facilities, making GW\\,170817 a compelling target for long-term radio monitoring.« less

  18. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-time Emission from the Kilonova Ejecta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, K. D.; Berger, E.; Fong, W.

    Here, we present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW\\,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter (more » $13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $$\\gtrsim 10^{48}$$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $$\\gtrsim 20^{\\circ}$$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $$\\sim 10^{49}-10^{50}$$ erg that exploded in a uniform density environment with $$n\\sim 10^{-4}-10^{-2}$$ cm$$^{-3}$$, viewed at an angle of $$\\sim 20^{\\circ}-40^{\\circ}$$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $$\\sim 5-10$$ years that will remain detectable for decades with next-generation radio facilities, making GW\\,170817 a compelling target for long-term radio monitoring.« less

  19. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-time Emission from the Kilonova Ejecta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, K. D.; Berger, E.; Fong, W.

    2017-10-16

    We present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW\\,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter (more » $13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $$\\gtrsim 10^{48}$$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $$\\gtrsim 20^{\\circ}$$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $$\\sim 10^{49}-10^{50}$$ erg that exploded in a uniform density environment with $$n\\sim 10^{-4}-10^{-2}$$ cm$$^{-3}$$, viewed at an angle of $$\\sim 20^{\\circ}-40^{\\circ}$$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $$\\sim 5-10$$ years that will remain detectable for decades with next-generation radio facilities, making GW\\,170817 a compelling target for long-term radio monitoring.« less

  20. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1980-01-01

    A computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between O and 3000 GHz (such as; wavelengths longer than 100 m) is discussed. The catalogue was used as a planning guide and as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances.

Top