Sample records for millimolar concentration range

  1. Evidence for a Na/H Antiporter in Membrane Vesicles Isolated from Roots of the Halophyte Atriplex nummularia.

    PubMed

    Braun, Y; Hassidim, M; Lerner, H R; Reinhold, L

    1988-05-01

    The ATP-dependent establishment of a positive membrane potential (measured as S(14)CN(-)-accumulation) in membrane vesicles isolated from the roots of Atriplex nummularia Lindl. was not inhibited by NaMes and KMes at concentrations up to 140 millimolar. On the other hand, the formation of DeltapH (measured as (14)C-methylamine accumulation or quenching of quinacrine fluorescence), was depressed by NaMes concentrations as low as 30 millimolar. Supply of NaMes after the DeltapH had been established brought about partial dissipation within 30 seconds. Extent of dissipation of DeltapH increased with NaMes concentration over the range tested (up to 180 millimolar). The H(+)/Na(+) exchange indicated by these results was not due to the creation of a Na(+) diffusion potential. Formation of DeltapH in these vesicles was stable to NO(3) (-) up to 100 millimolar; further, the dissipating effect of Na(+) supply was apparent on a DeltapH formed in the presence of 30 millimolar NO(3) (-). Additional evidence that the origin of the membrane vesicles observed in this investigation was not the tonoplast and was probably the plasmalemma included the vanadate sensitivity of the establishment of the membrane potential.

  2. Evidence for a Na+/H+ Antiporter in Membrane Vesicles Isolated from Roots of the Halophyte Atriplex nummularia1

    PubMed Central

    Braun, Yael; Hassidim, Miriam; Lerner, Henri R.; Reinhold, Leonora

    1988-01-01

    The ATP-dependent establishment of a positive membrane potential (measured as S14CN−-accumulation) in membrane vesicles isolated from the roots of Atriplex nummularia Lindl. was not inhibited by NaMes and KMes at concentrations up to 140 millimolar. On the other hand, the formation of ΔpH (measured as 14C-methylamine accumulation or quenching of quinacrine fluorescence), was depressed by NaMes concentrations as low as 30 millimolar. Supply of NaMes after the ΔpH had been established brought about partial dissipation within 30 seconds. Extent of dissipation of ΔpH increased with NaMes concentration over the range tested (up to 180 millimolar). The H+/Na+ exchange indicated by these results was not due to the creation of a Na+ diffusion potential. Formation of ΔpH in these vesicles was stable to NO3− up to 100 millimolar; further, the dissipating effect of Na+ supply was apparent on a ΔpH formed in the presence of 30 millimolar NO3−. Additional evidence that the origin of the membrane vesicles observed in this investigation was not the tonoplast and was probably the plasmalemma included the vanadate sensitivity of the establishment of the membrane potential. PMID:16666082

  3. Polyamine Uptake in Carrot Cell Cultures 1

    PubMed Central

    Pistocchi, Rossella; Bagni, Nello; Creus, José A.

    1987-01-01

    Putrescine and spermidine uptake into carrot (Daucus carota L.) cells in culture was studied. The time course of uptake showed that the two polyamines were very quickly transported into the cells, reaching a maximum absorption within 1 minute. Increasing external polyamine concentrations up to 100 millimolar showed the existence of a biphasic system with different affinities at low and high polyamine concentrations. The cellular localization of absorbed polyamines was such that a greater amount of putrescine was present in the cytoplasmic soluble fraction, while spermidine was mostly present in cell walls. The absorbed polyamines were released into the medium in the presence of increasing external concentrations of the corresponding polyamine or Ca2+. The effects of Ca2+ were different for putrescine and spermidine; putrescine uptake was slightly stimulated by 10 micromolar Ca2+ and inhibited by higher concentrations, while for spermidine uptake there was an increasing stimulation in the Ca2+ concentration range between 10 micromolar and 1 millimolar. La3+ nullified the stimulatory effect of 10 micromolar Ca2+ on putrescine uptake and that of 1 millimolar Ca2+ on spermidine uptake. La3+ at 0.5 to 1 millimolar markedly inhibited the uptake of both polyamines, suggesting that it interferes with the sites of polyamine uptake. Putrescine uptake was affected to a lesser extent by metabolic inhibitors than was spermidine uptake. It is proposed that the entry of polyamines into the cells is driven by the transmembrane electrical gradient, with a possible antiport mechanism between external and internal polyamine molecule. PMID:16665446

  4. Reaction of tetracycline with biologically relevant chloramines

    NASA Astrophysics Data System (ADS)

    Benavides, J.; Barrias, P.; Piro, N.; Arenas, A.; Orrego, A.; Pino, E.; Villegas, L.; Dorta, E.; Aspée, A.; López-Alarcón, C.

    2017-05-01

    Helicobacter pylori (H. pylori) infection triggers inflammatory processes with the consequent production of hypochlorous acid (HOCl), monochloramine (NH2Cl), and protein-derived chloramines. As the therapy for eradicating H. pylori is partially based on the use of tetracycline, we studied the kinetic of its consumption elicited by HOCl, NH2Cl, N-chloro-n-butylamine (NHCl-But, used as a lysine-derived chloramine model), and lysozyme-derived chloramines. In the micromolar concentration range, tetracycline reacted rapidly with HOCl, generating in the first few seconds intermediates of short half-life. In contrast, a slow tetracycline consumption was observed in the presence of high NH2Cl and NHCl-But concentrations (millimolar range). Similar chlorinated products of tetracycline were identified by mass spectrometry, in the presence of HOCl and NH2Cl. These results evidenced that tautomers of tetracycline are pivotal intermediates in all reactions. In spite of the low reactivity of chloramines towards tetracycline, it is evident that, in the concentration range where they are produced in a H. pylori infection (millimolar range), the reactions lead to oxidation and/or chlorination of tetracycline. This kind of reactions, which were also observed triggered by lysozyme-derived chloramines, could limit the efficiency of the tetracycline-based therapy.

  5. Dodine as a Protein Denaturant: The Best of Two Worlds?

    PubMed Central

    Gelman, Hannah; Perlova, Tatyana; Gruebele, Martin

    2013-01-01

    Traditional denaturants such as urea and guanidinium ion unfold proteins in a cooperative “all-or-none” fashion. However, their high working concentration in combination with their strong absorption in the far ultraviolet region make it impossible to measure high quality circular dichroism or infrared spectra, which are commonly used to detect changes in protein secondary structure. On the other hand, detergents such as dodecyl sulfate destabilize native protein conformation at low millimolar concentrations and are UV transparent, but they do denature proteins more gradually than guanidinium or urea. In this work we studied the denaturation properties of the fungicide dodecylguanidinium acetate (dodine), which combines both denaturants into one. We show that dodine unfolds some small proteins at millimolar concentrations, facilitates temperature denaturation, and is transparent enough at its working concentration, unlike guanidinium, to measure full range circular dichroism spectra. Our results also suggest that dodine allows fine-tuning of the protein’s unfolded state, unlike traditional “all-or-none” denaturants. PMID:23906507

  6. Bioinspired design of a polymer gel sensor for the realization of extracellular Ca2+ imaging

    NASA Astrophysics Data System (ADS)

    Ishiwari, Fumitaka; Hasebe, Hanako; Matsumura, Satoko; Hajjaj, Fatin; Horii-Hayashi, Noriko; Nishi, Mayumi; Someya, Takao; Fukushima, Takanori

    2016-04-01

    Although the role of extracellular Ca2+ draws increasing attention as a messenger in intercellular communications, there is currently no tool available for imaging Ca2+ dynamics in extracellular regions. Here we report the first solid-state fluorescent Ca2+ sensor that fulfills the essential requirements for realizing extracellular Ca2+ imaging. Inspired by natural extracellular Ca2+-sensing receptors, we designed a particular type of chemically-crosslinked polyacrylic acid gel, which can undergo single-chain aggregation in the presence of Ca2+. By attaching aggregation-induced emission luminogen to the polyacrylic acid as a pendant, the conformational state of the main chain at a given Ca2+ concentration is successfully translated into fluorescence property. The Ca2+ sensor has a millimolar-order apparent dissociation constant compatible with extracellular Ca2+ concentrations, and exhibits sufficient dynamic range and excellent selectivity in the presence of physiological concentrations of biologically relevant ions, thus enabling monitoring of submillimolar fluctuations of Ca2+ in flowing analytes containing millimolar Ca2+ concentrations.

  7. Partial Purification and Properties of an Alkaline α-Galactosidase from Mature Leaves of Cucurbita pepo1

    PubMed Central

    Gaudreault, Pierre-Richard; Webb, John A.

    1983-01-01

    A fourth molecular from of α-galactosidase, designated LIV, an alkaline α-galactosidase, was isolated from leaves of Cucurbita pepo and purified 165-fold. It was active over a narrow pH range with optimal hydrolysis of p-nitrophenyl-α-d-galactoside and stachyose at pH 7.5. The rate of stachyose hydrolysis was 10 times that of raffinose. Km determinations in McIlvaine buffer (200 millimolar Na2-phosphate, 100 millimolar citric acid, pH 7.5) for p-nitrophenyl-α-d-galactoside, stachyose, and raffinose were 1.40, 4.5, and 36.4 millimolar, respectively. LIV was partially inhibited by Ca2+, Mg2+, and Mn2+, more so by Ni2+, Zn2+, and Co2+, and highly so by Cu2+, Ag2+, Hg2+ and by p-chloromercuribenzoate. It was not inhibited by high concentrations of the substrate p-nitrophenyl-α-d-galactoside or by myo-inositol, but α-d-galactose was a strong inhibitor. As observed for most other forms of α-galactosidase, LIV only catalyzed the hydrolysis of glycosides possessing the α-d-galactose configuration at C1, C2, and C4, and did not hydrolyze p-nitrophenyl-α-d-fucoside (α-d-galactose substituted at C6). The enzyme was highly sensitive to buffers and chelating agents. Maximum hydrolytic activity for p-nitrophenyl-α-d-galactoside was obtained in McIlvaine buffer (pH 7.5). In 10 millimolar triethanolaminehydrochloride-NaOH (pH 7.5) or 10 millimolar Hepes-NaOH (pH 7.5), hydrolytic activity was virtually eliminated, but the addition of low concentrations of either ethylenediaminetetraacetate or citrate to these buffers restored activity almost completely. Partial restoration of activity was also observed, but at higher concentrations, with pyruvate and malate. Similar effects were found for stachyose hydrolysis, but in addition some inhibition of LIV in McIlvaine buffer, possibly due to the high phosphate concentration, was observed with this substrate. It is questionable whether the organic acid anions possess any regulatory control of LIVin vivo. It was possible that the results reflected the ability of these anions, and ethylene-diaminetetraacetate, to restore LIV activity through coordination with some toxic cation introduced as a buffer contaminant. Images Fig. 1 PMID:16662884

  8. Synergistic Effect of Light and Fusicoccin on Stomatal Opening 1

    PubMed Central

    Assmann, Sarah M.; Schwartz, Amnon

    1992-01-01

    Upon incubation of epidermal peels of Commelina communis in 1 millimolar KCl, a synergistic effect of light and low fusicoccin (FC) concentrations on stomatal opening is observed. In 1 millimolar KCl, stomata remain closed even in the light. However, addition of 0.1 micromolar FC results in opening up to 12 micrometers. The same FC concentration stimulates less than 5 micrometers of opening in darkness. The synergistic effect (a) decreases with increasing FC or KCl concentrations; (b) is dark-reversible; (c) like stomatal opening in high KCl concentrations (120 millimolar) is partially inhibited by the K+ channel blocker, tetraethyl-ammonium+ (20 millimolar). In whole-cell patch-clamp experiments with guard cell protoplasts of Vicia faba, FC (1 or 10 micromolar) stimulates an increase in outward current that is essentially voltage independent between - 100 and +60 millivolts, and occurs even when the membrane potential is held at a voltage (−60 millivolts) at which K+ channels are inactivated. These results are indicative of FC activation of a H+ pump. FC effects on the magnitude of inward and outward K+ currents are not observed. Epidermal peel and patch clamp data are both consistent with the hypothesis that the plasma membrane H+ ATPase of guard cells is a primary locus for the FC effect on stomatal apertures. PMID:16668799

  9. Investigation of Classical Organic and Ionic Liquid Cosolvents for Early-Stage Screening in Fragment-Based Inhibitor Design with Unrelated Bacterial and Human Dihydrofolate Reductases.

    PubMed

    Toulouse, Jacynthe L; Abraham, Sarah M J; Kadnikova, Natalia; Bastien, Dominic; Gauchot, Vincent; Schmitzer, Andreea R; Pelletier, Joelle N

    Drug design by methods such as fragment screening requires effective solubilization of millimolar concentrations of small organic compounds while maintaining the properties of the biological target. We investigate four organic solvents and three 1-butyl-3-methylimidazolium (BMIm)-based ionic liquids (ILs) as cosolvents to establish conditions for screening two structurally unrelated dihydrofolate reductases (DHFRs) that are prime drug targets. Moderate concentrations (10%-15%) of cosolvents had little effect on inhibition of the microbial type II R67 DHFR and of human DHFR (hDHFR), while higher concentrations of organic cosolvents generally decreased activity of both DHFRs. In contrast, a specific IL conserved the activity of one DHFR, while severely reducing the activity of the other, and vice versa, illustrating the differing effect of ILs on distinct protein folds. Most of the cosolvents investigated preserved the fold of R67 DHFR and had little effect on binding of the cofactor NADPH, but reduced the productive affinity for its substrate. In contrast, cosolvents resulted in modest structural destabilization of hDHFR with little effect on productive affinity. We conclude that the organic cosolvents, methanol, dimethylformamide, and dimethylsulfoxide, offer the most balanced conditions for early-stage compound screening as they maintain sufficient biological activity of both DHFRs while allowing for compound dissolution in the millimolar range. However, IL cosolvents showed poor capacity to solubilize organic compounds at millimolar concentrations, mitigating their utility in early-stage screening. Nonetheless, ILs could provide an alternative to classical organic cosolvents when low concentrations of inhibitors are used, as when characterizing higher affinity inhibitors.

  10. Isolated adrenal cells: adrenocorticotropic hormone, calcium, steroidogenesis, and cyclic adenosine monophosphate.

    PubMed

    Sayers, G; Beall, R J; Seelig, S

    1972-03-10

    Corticosterone production by isolated adrenal cells in response to adrenocorticotropic hormone is reduced when the cells are incubated in a medium that contains no calcium. This reduction is associated with an equal reduction of accumulation of cyclic adenosine monophosphate. Production of corticosterone and accumulation of cyclic adenosine monophosphate are increased when the calcium concentration in the medium is increased (from zero to 7.65 millimolar). This is in contrast to the situation in "subcellular membrane fragments" of adrenal tissue where high calcium in the medium (> 1.0 millimolar) inhibits cyclic adenosine monophosphate accumulation. We propose that adenyl cyclase in the intact plasma membrane is located in a compartment wherein calcium concentration is low and remains unaffected by the concentration of calcium in the extracellular space. It is proposed that, as the concentration of calcium in the incubation medium is increased from zero to 7.65 millimolar, the strength of the signal generated by the interaction of adrenocorticotropic hormone with its receptor and transmitted to the adenyl cyclase compartment is proportionately increased.

  11. Manganese toxicity to chlorophyll synthesis in tobacco callus. [Nicotiana tabacum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clairmont, K.B.; Hagar, W.G.; Davis, E.A.

    1986-01-01

    Tobacco (Nicotiana tabacum) pith explants were grown on manganese containing medium. At moderate concentration (10 millimolar), manganese selectivity inhibited chlorophyll synthesis, resulting initially in growth of white callus. Several weeks later the white callus turned brown due to the accumulation of a pigment identified as protoporphyrin IX by its elution profile using high performance liquid chromatography, by its absorption spectrum, and by its fluorescence properties. At a concentration of 100 millimolar manganese the pigment accumulated without growth of the explant.

  12. Optimal N:P ratios of growth media: quantification of nutrient-replete growth rates in five ion hyperspace for Chlorella vulgaris (Dinophyceae) and Peridinium cinctum (Dinophyceae).

    USDA-ARS?s Scientific Manuscript database

    In this study our principal goal was to quantify the main effects and interactions of several primary nutrient and bulk solution ions. The total ion concentration range chosen spans fresh to brackish waters (1-30 milliMolar) and explores most of the hypervolume delineated by the five ion/concentrat...

  13. Minoxidil Induction of VEGF Is Mediated by Inhibition of HIF-Prolyl Hydroxylase

    PubMed Central

    Yum, Soohwan; Jeong, Seongkeun; Kim, Dohoon; Lee, Sunyoung; Kim, Wooseong; Yoo, Jin-Wook; Kwon, Oh Sang; Kim, Dae-Duk; Min, Do Sik; Jung, Yunjin

    2017-01-01

    The topical application of minoxidil may achieve millimolar concentrations in the skin. We investigated whether millimolar minoxidil could induce vascular endothelial growth factor (VEGF), a possible effector for minoxidil-mediated hair growth, and how it occurred at the molecular level. Cell-based experiments were performed to investigate a molecular mechanism underlying the millimolar minoxidil induction of VEGF. The inhibitory effect of minoxidil on hypoxia-inducible factor (HIF) prolyl hydroxylase-2 (PHD-2) was tested by an in vitro von Hippel–Lindau protein (VHL) binding assay. To examine the angiogenic potential of millimolar minoxidil, a chorioallantoic membrane (CAM) assay was used. In human keratinocytes and dermal papilla cells, millimolar minoxidil increased the secretion of VEGF, which was not attenuated by a specific adenosine receptor antagonist that inhibits the micromolar minoxidil induction of VEGF. Millimolar minoxidil induced hypoxia-inducible factor-1α (HIF-1α), and the induction of VEGF was dependent on HIF-1. Moreover, minoxidil applied to the dorsal area of mice increased HIF-1α and VEGF in the skin. In an in vitro VHL binding assay, minoxidil directly inhibited PHD-2, thus preventing the hydroxylation of cellular HIF-1α and VHL-dependent proteasome degradation and resulting in the stabilization of HIF-1α protein. Minoxidil inhibition of PHD-2 was reversed by ascorbate, a cofactor of PHD-2, and the minoxidil induction of cellular HIF-1α was abrogated by the cofactor. Millimolar minoxidil promoted angiogenesis in the CAM assay, an in vivo angiogenic test, and this was nullified by the specific inhibition of VEGF. Our data demonstrate that PHD may be the molecular target for millimolar minoxidil-mediated VEGF induction via HIF-1. PMID:29295567

  14. Melatonin inhibits voltage-sensitive Ca(2+) channel-mediated neurotransmitter release.

    PubMed

    Choi, Tae-Yong; Kwon, Ji Eun; Durrance, Eunice Sung; Jo, Su-Hyun; Choi, Se-Young; Kim, Kyong-Tai

    2014-04-04

    Melatonin is involved in various neuronal functions such as circadian rhythmicity and thermoregulation. Melatonin has a wide range of pharmacologically effective concentration levels from the nanomolar to millimolar levels. Recently, the antiepileptic effect of high dose melatonin has been the focus of clinical studies; however, its detailed mechanism especially in relation to neurotransmitter release and synaptic transmission remains unclear. We studied the effect of melatonin at high concentrations on the neurotransmitter release by monitoring norepinephrine release in PC12 cells, and excitatory postsynaptic potential in rat hippocampal slices. Melatonin inhibits the 70mM K(+)-induced Ca(2+) increase at millimolar levels without effect on bradykinin-triggered Ca(2+) increase in PC12 cells. Melatonin (1mM) did not affect A2A adenosine receptor-evoked cAMP production, and classical melatonin receptor antagonists did not reverse the melatonin-induced inhibitory effect, suggesting G-protein coupled receptor independency. Melatonin inhibits the 70mM K(+)-induced norepinephrine release at a similar effective concentration range in PC12 cells. We confirmed that melatonin (100µM) inhibits excitatory synaptic transmission of the hippocampal Schaffer collateral pathway with the decrease in basal synaptic transmission and the increase in paired pulse ratio. These results show that melatonin inhibits neurotransmitter release through the blocking of voltage-sensitive Ca(2+) channels and suggest a possible mechanism for the antiepileptic effect of melatonin. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Photosynthesis in Ulva fasciata

    PubMed Central

    Beer, Sven; Israel, Alvaro; Drechsler, Zivia; Cohen, Yael

    1990-01-01

    Evidence of an inorganic carbon concentrating system in a marine macroalga is provided here. Based on an O2 technique, supported by determinations of inorganic carbon concentrations, of experimental media (as well as compensation points) using infrared gas analysis, it was found that Ulva fasciata maintained intracellular inorganic carbon levels of 2.3 to 6.0 millimolar at bulk medium concentrations ranging from 0.02 to 1.5 millimolar. Bicarbonate seemed to be the preferred carbon form taken up at all inorganic carbon levels. It was found that ribulose-1,5-bisphosphate carboxylase/oxygenase from Ulva had a Km(CO2) of 70 micromolar and saturated at about 250 micromolar CO2. Assuming a cytoplasmic pH of 7.2 (as measured for another Ulva species, P Lundberg et al. [1988] Plant Physiol 89: 1380-1387), and given the high activity of internal carbonic anhydrase (S Beer, A Israel [1990] Plant Cell Environ [in press]) and the here measured internal inorganic carbon level, it was concluded that internal CO2 in Ulva could, at ambient external inorganic carbon concentrations, be maintained at a high enough level to saturate ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation. It is suggested that this suppresses photorespiration and optimizes net photosynthetic production in an alga representing a large group of marine plants faced with limiting external CO2 concentrations in nature. PMID:16667887

  16. Calcium dependence of rapid auxin action in maize roots

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.

    1986-01-01

    We investigated the interaction of Ca2+ and auxin on root elongation in seedlings of Zea mays L. The seedlings were raised either in the presence of Ca2+ (high calcium; HC = imbibed and raised in 10 millimolar CaCl2), in the absence of additional Ca2+ (intermediate calcium; IC = imbibed and raised in distilled H2O, calcium supply from seed only), or without additional Ca2+ and subsequently depleting them of Ca2+ (low calcium; LC = imbibed and raised in distilled H2O and subsequently treated with 1 millimolar ethyleneglycol-bis-[beta-aminoethylether]-N,N,N',N'-tetraacetic acid [EGTA]). Exposure of roots of either HC or IC seedlings to auxin concentrations from 0.1 to 10 micromolar resulted in strong inhibition of elongation. In roots of LC seedlings, on the other hand, auxin concentrations as high as 10 micromolar caused only slight inhibition of elongation. Adding 0.5 millimolar Ca2+ to LC roots in the presence of IAA allowed normal expression of the inhibitory action of the hormone. Inhibition of elongation in IC roots by indoleacetic acid was reversible upon treatment of the roots with 1 millimolar EGTA. The inhibitory action of auxin could then be re-established by supplying 0.5 millimolar Ca2+. The data indicate that Ca2+ may be necessary to the growth-regulating action of auxin. The significance of this finding is discussed with respect to the potential role of Ca2+ as a second messenger of auxin action and the relevance of this model to recent evidence for gravi-induced redistribution of Ca2+ and its role in establishing gravitropic curvature.

  17. Biosynthesis of sulfoquinovosyldiacylglycerol in higher plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleppinger-Sparace, K.F.; Mudd, J.B.

    1987-07-01

    Intact spinach chloroplasts incorporated /sup 35/SO/sub 4//sup 2 -/ into sulfoquinovosyldiacylglycerol in the dark at rates equivalent to those previously reported for illuminated chloroplasts provided that either ATP itself or an ATP-generating system was added. No additional reductant was necessary for SQDG synthesis by chloroplasts. The optimal concentration of ATP was between 2 and 3 millimolar. Rates of synthesis up to 2.6 nanomoles per milligram chlorophyll per hour were observed. UTP, GTP, and CTP could not substitute for ATP. Incubation of UTP with ATP (1:1) stimulated synthesis of sulfoquinovosyldiacylglycerol. No additional stimulation of the reaction was observed upon addition ofmore » other nucleoside triphosphates with ATP. For the generation of ATP in the chloroplast, addition of dihydroxyacetone phosphate alone did not promote synthesis of sulfoquinovosyldiacylglycerol, but in combination with inorganic phosphate and oxaloacetate, rates of synthesis up to 3.2 nanomoles per milligram chlorophyll per hour were observed. Dark synthesis was optimal in the presence of 2 millimolar dihydroxyacetone phosphate, 2 millimolar oxaloacetate, and 1 millimolar KH/sub 2/PO/sub 4/.« less

  18. Ion Relations of Symplastic and Apoplastic Space in Leaves from Spinacia oleracea L. and Pisum sativum L. under Salinity 1

    PubMed Central

    Speer, Michael; Kaiser, Werner M.

    1991-01-01

    Salt tolerant spinach (Spinacia oleracea) and salt sensitive pea (Pisum sativum) plants were exposed to mild salinity under identical growth conditions. In order to compare the ability of the two species for extra- and intracellular solute compartmentation in leaves, various solutes were determined in intercellular washing fluids and in aqueously isolated intact chloroplasts. In pea plants exposed to 100 millimolar NaCl for 14 days, apoplastic salt concentrations in leaflets increased continuously with time up to 204 (Cl−) and 87 millimolar (Na+), whereas the two ions reached a steady concentration of only 13 and 7 millimolar, respectively, in spinach leaves. In isolated intact chloroplasts from both species, sodium concentrations were not much different, but chloride concentrations were significantly higher in pea than in spinach. Together with data from whole leaf extracts, these measurements permitted an estimation of apoplastic, cytoplasmic, and vacuolar solute concentrations. Sodium and chloride concentration gradients across the tonoplast were rather similar in both species, but spinach was able to maintain much steeper sodium gradients across the plasmamembrane compared with peas. Between day 12 and day 17, concentrations of other inorganic ions in the pea leaf apoplast increased abruptly, indicating the onset of cell disintegration. It is concluded that the differential salt sensitivity of pea and spinach cannot be traced back to a single plant performance. Major differences appear to be the inability of pea to control salt accumulation in the shoot, to maintain steep ion gradients across the leaf cell plasmalemma, and to synthesize compatible solutes. Perhaps less important is a lower selectivity of pea for K+/Na+ and NO3−/Cl− uptake by roots. PMID:16668541

  19. 31P-Nuclear Magnetic Resonance Determination of Phosphate Compartmentation in Leaves of Reproductive Soybeans (Glycine max L.) as Affected by Phosphate Nutrition 1

    PubMed Central

    Lauer, Michael J.; Blevins, Dale G.; Sierzputowska-Gracz, Hanna

    1989-01-01

    Most leaf phosphorus is remobilized to the seed during reproductive development in soybean. We determined, using 31P-NMR, the effect phosphorus remobilization has on vacuolar inorganic phosphate pool size in soybean (Glycine max [L.] Merr.) leaves with respect to phosphorus nutrition and plant development. Phosphate compartmentation between cytoplasmic and vacuolar pools was observed and followed in intact tissue grown hydroponically, at the R2, R4, and R6 growth stages. As phosphorus in the nutrient solution decreased from 0.45 to 0.05 millimolar, the vacuolar phosphate peak became less prominent relative to cytoplasmic phosphate and hexose monophosphate peaks. At a nutrient phosphate concentration of 0.05 millimolar, the vacuolar phosphate peak was not detectable. At higher levels of nutrient phosphate, as plants progressed from the R2 to the R6 growth stage, the vacuolar phosphate peak was the first to disappear, suggesting that storage phosphate was remobilized to a greater extent than metabolic phosphate. Under suboptimal phosphate nutrition (≤ 0.20 millimolar), the hexose monophosphate and cytoplasmic phosphate peaks declined earlier in reproductive development than when phosphate was present in optimal amounts. Under low phosphate concentrations (0.05 millimolar) cytoplasmic phosphate was greatly reduced. Carbon metabolism was coincidently disrupted under low phosphate nutrition as shown by the appearance of large, prominent starch grains in the leaves. Cytoplasmic phosphate, and leaf carbon metabolism dependent on it, are buffered by vacuolar phosphate until late stages of reproductive growth. Images Figure 4 PMID:16666705

  20. Effect of T-2 Toxin, Fasting, and 2-Methyl-thiazolidine-4-carboxylate, a Glutathione Prodrug, on Hepatic Glutathione Levels1,2

    DTIC Science & Technology

    1986-11-14

    Iftnvi fnr fard mirn: O Fo, M73 3 r0tiON OF I MOV 6s IS OBSOLETE SECURITY CLASSIFICATION OF THIS PACE (When Does Entoeed) , I I I I I 4.5± 0.39...Glende, 1973). An important cellular defense against peroxida- tive damage is the presence of glutathione and its use as an enzyme substrate or...cofactor. Even though intracellular glutathione concentration is in the millimolar range (Kosower and Kosower, 1978), there are conditions which lead to

  1. Studies on H-Translocating ATPases in Plants of Varying Resistance to Salinity : I. Salinity during Growth Modulates the Proton Pump in the Halophyte Atriplex nummularia.

    PubMed

    Braun, Y; Hassidim, M; Lerner, H R; Reinhold, L

    1986-08-01

    Membrane vesicles were isolated from the roots of the halophyte Atriplex nummularia Lindl. H(+)-translocating Mg(2+)-ATPase activity was manifested by the establishment of a positive membrane potential (measured as SCN(-) accumulation); and also by the establishment of a transmembrane pH gradient (measured by quinacrine fluorescence quenching). H(+)-translocation was highly specific to ATP and was stable to oligomycin. Growing the plants in the presence of 400 millimolar NaCl doubled the proton-translocating activity per milligram of membrane protein and otherwise modulated it in the following ways. First, the flat pH profile observed in non-salt-grown plants was transformed to one showing a peak at about pH 6.2. Second, the lag effect observed at low ATP concentration in curves relating SCN(-) accumulation to ATP concentration was abolished; the concave curvature shown in the double reciprocal plot was diminished. Third, sensitivity to K-2 (N-morpholino)ethanesulfonic acid stimulation was shown in salt-grown plants (about 40% stimulation) but was absent in non-salt-grown plants. Fourth, the KCl concentration bringing about 50% dissipation of ATP-dependent SCN(-) accumulation was 20 millimolar for salt-grown plants and 50 millimolar for non-salt-grown plants. Vanadate sensitivity was shown in both cases. No clear NO(3) (-) inhibition was observed.

  2. Studies on H+-Translocating ATPases in Plants of Varying Resistance to Salinity 1

    PubMed Central

    Braun, Yael; Hassidim, Miriam; Lerner, Henri R.; Reinhold, Leonora

    1986-01-01

    Membrane vesicles were isolated from the roots of the halophyte Atriplex nummularia Lindl. H+-translocating Mg2+-ATPase activity was manifested by the establishment of a positive membrane potential (measured as SCN− accumulation); and also by the establishment of a transmembrane pH gradient (measured by quinacrine fluorescence quenching). H+-translocation was highly specific to ATP and was stable to oligomycin. Growing the plants in the presence of 400 millimolar NaCl doubled the proton-translocating activity per milligram of membrane protein and otherwise modulated it in the following ways. First, the flat pH profile observed in non-salt-grown plants was transformed to one showing a peak at about pH 6.2. Second, the lag effect observed at low ATP concentration in curves relating SCN− accumulation to ATP concentration was abolished; the concave curvature shown in the double reciprocal plot was diminished. Third, sensitivity to K-2 (N-morpholino)ethanesulfonic acid stimulation was shown in salt-grown plants (about 40% stimulation) but was absent in non-salt-grown plants. Fourth, the KCl concentration bringing about 50% dissipation of ATP-dependent SCN− accumulation was 20 millimolar for salt-grown plants and 50 millimolar for non-salt-grown plants. Vanadate sensitivity was shown in both cases. No clear NO3− inhibition was observed. Images Fig. 3 PMID:16664942

  3. Transport of Phosphoenolpyruvate by Chloroplasts from Mesembryanthemum crystallinum L. Exhibiting Crassulacean Acid Metabolism 1

    PubMed Central

    Neuhaus, H. Ekkehard; Holtum, Joseph A. M.; Latzko, Erwin

    1988-01-01

    Chloroplasts from CAM-Mesembryanthemum crystallinum can transport phosphoenolpyruvate (PEP) across the envelope. The initial velocities of PEP uptake in the dark at 4°C exhibited saturation kinetics with increasing external PEP concentration. PEP uptake had a Vmax of 6.46 (±0.05) micromoles per milligram chlorophyll per hour and an apparent Kmpep of 0.148 (±0.004) millimolar. The uptake was competitively inhibited by Pi (apparent Ki = 0.19 millimolar), by glycerate 3-phosphate (apparent Ki = 0.13 millimolar), and by dihydroxyacetone phosphate, but malate and pyruvate were without effect. The chloroplasts were able to synthesize PEP when presented with pyruvate. PEP synthesis was light dependent. The prolonged synthesis and export of PEP from the chloroplasts required the presence of Pi or glycerate 3-phosphate in the external medium. It is suggested that the transport of pyruvate and PEP across the chloroplasts envelope is required during the gluconeogenic conversion of carbon from malate to storage carbohydrate in the light. PMID:16666128

  4. Nutritional Control of Regreening and Degreening in Citrus Peel Segments 1

    PubMed Central

    Huff, Albert

    1983-01-01

    A method for reversibly regreening and degreening citrus epicarp in vitro using peel segments was developed. Peel segments from mature degreened fruit promptly regreened when kept in light upon agar medium containing low (15 millimolar) concentrations of sucrose. Higher concentrations of sucrose inhibited this regreening, but NO3− and certain amino acids included in the media overcame the inhibition by sucrose. However, l-serine strongly inhibited regreening. In the presence of nitrogen, sucrose promoted regreening. Peel segments from green fruit remained green on media with low concentrations of sucrose and on media with high concentrations of sucrose and 60 millimolar KNO3, but degreened in response to high concentrations of sucrose in the absence of nitrogen. Nitrate overcame the degreening effects of high sucrose concentrations in both light and dark. Peel segments were reversibly degreened and regreened by transferring the segments between appropriate media. Nitrate in the media markedly reduced the levels of endogenous sugars in the epicarp and increased endogenous amino acid levels. Sucrose in the media increased endogenous sugar levels and, in the presence of nitrate, increased endogenous amino acid levels. In the absence of nitrogen, high sucrose concentrations reduced endogenous amino acid concentrations. PMID:16663202

  5. First steps of bacteriophage SPP1 entry into Bacillus subtilis.

    PubMed

    Jakutytė, Lina; Lurz, Rudi; Baptista, Catarina; Carballido-Lopez, Rut; São-José, Carlos; Tavares, Paulo; Daugelavičius, Rimantas

    2012-01-20

    The mechanism of genome transfer from the virion to the host cytoplasm is critical to understand and control the beginning of viral infection. The initial steps of bacteriophage SPP1 infection of the Gram-positive bacterium Bacillus subtilis were monitored by following changes in permeability of the cytoplasmic membrane (CM). SPP1 leads to a distinctively faster CM depolarization than the one caused by podovirus ϕ29 or myovirus SP01 during B. subtilis infection. Depolarization requires interaction of SPP1 infective virion to its receptor protein YueB. The amplitude of depolarization depends on phage input and concentration of YueB at the cell surface. Sub-millimolar concentrations of Ca(2+) are necessary and sufficient for SPP1 reversible binding to the host envelope and thus to trigger depolarization while DNA delivery to the cytoplasm depends on millimolar concentrations of this divalent cation. A model describing the early events of bacteriophage SPP1 infection is presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Myochrysine Solution Structure and Reactivity

    PubMed Central

    Jones, William B.; Zhao, Zheng; Dorsey, John G.; Tepperman, Katherine

    1994-01-01

    We have determined the framework structure of Myochrysine (disodium gold(I)thiomalate) in the solid state and extremely concentrated aqueous solution, previously. It consists of an open chain polymer with linear gold coordination to two thiolates from the thiomalic acid moieties which bridge between pairs of gold atoms providing an Au-S-Au angle of 95°. The question remained: was this structure relevant to the dilute solutions of drugs administered and the still lower concentrations of gold found in the bodies of patients (typically 1 ppm Au in blood and urine or 5 μM in Au). We have provided an answer to that question using extended X-ray absorption spectroscopy (EXAFS) and capillary zone electrophoresis (CZE). EXAFS studies confirm that the polymeric structure with two sulfur atoms per gold atom persists from molar concentrations down to millimolar concentrations. CZE is able to separate and detect Myochrysine at millimolar levels. More importantly, at micromolar levels Myochrysine solutions exhibit identical CZE behavior to that measured at millimolar levels. Thus, aqueous solutions of the drug remain oligomeric at concentrations commensurate with those found in patient blood and urine. The reactivity of Myochrysine with cyanide, a species especially prevalent in smoking patients, was explored using CZE. Cyanide freely replaces thiomalic acid to form [Au(CN)2]- and thiomalic acid via a mixed ligand intermediate. The overall apparent equilibrium constant (Kapp) for the reaction is 6×10-4M-1. Further reaction of [Au(CN)2]- with a large excess of L, where L is cysteine, N-acetylcysteine, or glutathione, shows that these amino acids readily replace cyanide to form [AuL2]-. These species are thus potential metabolites and could possibly be active forms of gold in vivo. That all of these species are readily separated and quantified using CZE demonstrates that capillary electrophoresis is an accessible and powerful tool to add to those used for the study of gold-based antiarthritis drugs. PMID:18476256

  7. Protection of Pyruvate,Pi Dikinase from Maize against Cold Lability by Compatible Solutes 1

    PubMed Central

    Krall, John P.; Edwards, Gerald E.; Andreo, Carlos S.

    1989-01-01

    Most C4 species are chilling sensitive and certain enzymes like pyruvate,Pi dikinase of the C4 pathway are also cold labile. The ability of cations and compatible solutes to protect maize (Zea mays) dikinase against cold lability was examined. The enzyme in desalted extracts at pH 8 from preilluminated leaves could be protected against cold lability (at 0°C) by the divalent cations Mn2+, Mg2+, and Ca2+. There was substantial protection by sulfate based salts but little protection by chloride based salts of potassium or ammonium (concentration 250 millimolar). The degree of protection against cold lability under limiting MgCl2 (5 millimolar) was pH sensitive (maximum protection at pH 8), but independent of ionic strength (up to 250 millimolar by addition of KCl). In catalysis Mg2+ is required and Mn2+ could not substitute as a cofactor. Several compatible solutes reduced or prevented the cold inactivation of dikinase (in desalted extracts and the partially purified enzyme), including glycerol, proline, glycinebetaine and trimethylamine-N-oxide (TMAO). TMAO and Mg2+ had an additive effect in protecting dikinase against cold inactivation. TMAO could largely substitute for the divalent cation and addition of TMAO during cold treatment prevented further inactivation. Cold inactivation was partially reversed by incubation at room temperature; with addition of TMAO reversal was complete. The temperature dependence of inactivation at pH 8 and 3 millimolar MgCl2 was evaluated by incubation at 2 to 17°C for 45 minutes, followed by assay at room temperature. At preincubation temperatures below 11°C there was a progressive inactivation which could be prevented by TMAO (450 millimolar). The results are discussed relative to possible effects of the solutes on the quaternary structure of this enzyme, which is known to dissociate at low temperatures. PMID:16666527

  8. Properties of whole cell currents in isolated olfactory neurons from the chilean toad Caudiverbera caudiverbera.

    PubMed

    Delgado, R; Labarca, P

    1993-06-01

    Isolated olfactory neurons from the chilean toad Caudiverbera caudiverbera were found to possess a same set of currents. Outward currents, made of a delayed rectifier and a Ca(2+)-dependent component, were blocked by replacing K+ by Cs+ in the patch pipette, in the presence of millimolar concentrations of tetraethylammonium and 4-aminopyridine in the external solution. Inward currents were made of a transient and a maintained component. The transient was abolished in the absence of external Na+ and was blocked by tetrodotoxin, with an apparent dissociation constant (KDapp) of 25.4 +/- 0.3 nM. The maintained inward currents were suppressed on removing external Ca2+, could be carried also by Ba2+, and were selectively blocked by Cd2+ (KDapp = 3.2 +/- 1.3 microM). A variety of agents found to block the maintained Ca2+ inward currents, including Co2+ and Ni2+, at millimolar concentrations, and nifedipine, verapamil, amiloride, and the amiloride analogue benzamil, at micromolar concentrations, were also effective in either modifying the gating of, or in blocking, the transient inward currents.

  9. Gamma-glutamylcysteine and thiosulfate are the major low-molecular-weight thiols in halobacteria

    NASA Technical Reports Server (NTRS)

    Newton, Gerald L.; Javor, Barbara

    1985-01-01

    Six representative species of extremely halophilic bacteria were found to contain approximately millimolar concentrations of gamma-glutamylcysteine in the absence of significant glutathione. Thiosulfate also accumulated in the halobacteria, apparently as a major product of cysteine oxidation.

  10. Small-Molecule Photostabilizing Agents are Modifiers of Lipid Bilayer Properties

    PubMed Central

    Alejo, Jose L.; Blanchard, Scott C.; Andersen, Olaf S.

    2013-01-01

    Small-molecule photostabilizing or protective agents (PAs) provide essential support for the stability demands on fluorescent dyes in single-molecule spectroscopy and fluorescence microscopy. These agents are employed also in studies of cell membranes and model systems mimicking lipid bilayer environments, but there is little information about their possible effects on membrane structure and physical properties. Given the impact of amphipathic small molecules on bilayer properties such as elasticity and intrinsic curvature, we investigated the effects of six commonly used PAs—cyclooctatetraene (COT), para-nitrobenzyl alcohol (NBA), Trolox (TX), 1,4-diazabicyclo[2.2.2]octane (DABCO), para-nitrobenzoic acid (pNBA), and n-propyl gallate (nPG)—on bilayer properties using a gramicidin A (gA)-based fluorescence quench assay to probe for PA-induced changes in the gramicidin monomer↔dimer equilibrium. The experiments were done using fluorophore-loaded large unilamellar vesicles that had been doped with gA, and changes in the gA monomer↔dimer equilibrium were assayed using a gA channel-permeable fluorescence quencher (Tl+). Changes in bilayer properties caused by, e.g., PA adsorption at the bilayer/solution interface that alter the equilibrium constant for gA channel formation, and thus the number of conducting gA channels in the large unilamellar vesicle membrane, will be detectable as changes in the rate of Tl+ influx—the fluorescence quench rate. Over the experimentally relevant millimolar concentration range, TX, NBA, and pNBA, caused comparable increases in gA channel activity. COT, also in the millimolar range, caused a slight decrease in gA channel activity. nPG increased channel activity at submillimolar concentrations. DABCO did not alter gA activity. Five of the six tested PAs thus alter lipid bilayer properties at experimentally relevant concentrations, which becomes important for the design and analysis of fluorescence studies in cells and model membrane systems. We therefore tested combinations of COT, NBA, and TX; the combinations altered the fluorescence quench rate less than would be predicted assuming their effects on bilayer properties were additive. The combination of equimolar concentrations of COT and NBA caused minimal changes in the fluorescence quench rate. PMID:23746513

  11. Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Huffaker, R. C.

    1989-01-01

    The role of NO3- and NO2- in the induction of nitrite reductase (NiR) activity in detached leaves of 8-day-old barley (Hordeum vulgare L.) seedlings was investigated. Barley leaves contained 6 to 8 micromoles NO2-/gram fresh weight x hour of endogenous NiR activity when grown in N-free solutions. Supply of both NO2- and NO3- induced the enzyme activity above the endogenous levels (5 and 10 times, respectively at 10 millimolar NO2- and NO3- over a 24 hour period). In NO3(-)-supplied leaves, NiR induction occurred at an ambient NO3- concentration of as low as 0.05 millimolar; however, no NiR induction was found in leaves supplied with NO2- until the ambient NO2- concentration was 0.5 millimolar. Nitrate accumulated in NO2(-)-fed leaves. The amount of NO3- accumulating in NO2(-)-fed leaves induced similar levels of NiR as did equivalent amounts of NO3- accumulating in NO3(-)-fed leaves. Induction of NiR in NO2(-)-fed leaves was not seen until NO3- was detectable (30 nanomoles/gram fresh weight) in the leaves. The internal concentrations of NO3-, irrespective of N source, were highly correlated with the levels of NiR induced. When the reduction of NO3- to NO2- was inhibited by WO4(2-), the induction of NiR was inhibited only partially. The results indicate that in barley leaves in NiR is induced by NO3- directly, i.e. without being reduced to NO2-, and that absorbed NO2- induces the enzyme activity indirectly after being oxidized to NO3- within the leaf.

  12. TOXICOLOGICAL HIGHLIGHT (REDOX REDUX: A CLOSER LOOK AT CONCEPTAL LOW MOLECULAR WEIGHT THIOLS)

    EPA Science Inventory

    Glutathione (GSH) is present as the most abundant low molecular weight thiol (LMWT) in virtually all mitochondria-bearing eucaryotic cells, often at millimolar concentrations (Meister, 1988). Functions of GSH include roles in DNA and protein synthesis, maintenance of cell membra...

  13. Single-Scan Multidimensional NMR Analysis of Mixtures at Sub-Millimolar Concentrations by using SABRE Hyperpolarization.

    PubMed

    Daniele, Valeria; Legrand, François-Xavier; Berthault, Patrick; Dumez, Jean-Nicolas; Huber, Gaspard

    2015-11-16

    Signal amplification by reversible exchange (SABRE) is a promising method to increase the sensitivity of nuclear magnetic resonance (NMR) experiments. However, SABRE-enhanced (1)H NMR signals are short lived, and SABRE is often used to record 1D NMR spectra only. When the sample of interest is a complex mixture, this results in severe overlaps for (1)H spectra. In addition, the use of a co-substrate, whose signals may obscure the (1) H spectra, is currently the most efficient way to lower the detection limit of SABRE experiments. Here, we describe an approach to obtain clean, SABRE-hyperpolarized 2D (1)H NMR spectra of mixtures of small molecules at sub-millimolar concentrations in a single scan. The method relies on the use of para-hydrogen together with a deuterated co-substrate for hyperpolarization and ultrafast 2D NMR for acquisition. It is applicable to all substrates that can be polarized with SABRE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Analytical methods involving separation techniques for determination of low-molecular-weight biothiols in human plasma and blood.

    PubMed

    Isokawa, Muneki; Kanamori, Takahiro; Funatsu, Takashi; Tsunoda, Makoto

    2014-08-01

    Low-molecular-weight biothiols such as homocysteine, cysteine, and glutathione are metabolites of the sulfur cycle and play important roles in biological processes such as the antioxidant defense network, methionine cycle, and protein synthesis. Thiol concentrations in human plasma and blood are related to diseases such as cardiovascular disease, neurodegenerative disease, and cancer. The concentrations of homocysteine, cysteine, and glutathione in plasma samples from healthy human subjects are approximately in the range of 5-15, 200-300, and 1-5 μM, respectively. Glutathione concentration in the whole blood is in the millimolar range. Measurement of biothiol levels in plasma and blood is thought to be important for understanding the physiological roles and biomarkers for certain diseases. This review summarizes the relationship of biothiols with certain disease as well as pre-analytical treatment and analytical methods for determination of biothiols in human plasma and blood by using high-performance liquid chromatography and capillary electrophoresis coupled with ultraviolet, fluorescence, or chemiluminescence detection; or mass spectrometry. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes.

    PubMed

    Kazakova, Lyubov I; Shabarchina, Lyudmila I; Anastasova, Salzitsa; Pavlov, Anton M; Vadgama, Pankaj; Skirtach, Andre G; Sukhorukov, Gleb B

    2013-02-01

    The concept of enzyme-assisted substrate sensing based on use of fluorescent markers to detect the products of enzymatic reaction has been investigated by fabrication of micron-scale polyelectrolyte capsules containing enzymes and dyes in one entity. Microcapsules approximately 5 μm in size entrap glucose oxidase or lactate oxidase, with peroxidase, together with the corresponding markers Tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride (Ru(dpp)) complex and dihydrorhodamine 123 (DHR123), which are sensitive to oxygen and hydrogen peroxide, respectively. These capsules are produced by co-precipitation of calcium carbonate particles with the enzyme followed by layer-by-layer assembly of polyelectrolytes over the surface of the particles and incorporation of the dye in the capsule interior or in the multilayer shell. After dissolution of the calcium carbonate the enzymes and dyes remain in the multilayer capsules. In this study we produced enzyme-containing microcapsules sensitive to glucose and lactate. Calibration curves based on fluorescence intensity of Ru(dpp) and DHR123 were linearly dependent on substrate concentration, enabling reliable sensing in the millimolar range. The main advantages of using these capsules with optical recording is the possibility of building single capsule-based sensors. The response from individual capsules was observed by confocal microscopy as increasing fluorescence intensity of the capsule on addition of lactate at millimolar concentrations. Because internalization of the micron-sized multi-component capsules was feasible, they could be further optimized for in-situ intracellular sensing and metabolite monitoring on the basis of fluorescence reporting.

  16. A water soluble Cu(I)-NHC for CuAAC ligation of unprotected peptides under open air conditions.

    PubMed

    Gaulier, Christelle; Hospital, Audrey; Legeret, Bertrand; Delmas, Agnès F; Aucagne, Vincent; Cisnetti, Federico; Gautier, Arnaud

    2012-04-25

    A reducing agent-free version of CuAAC able to operate under open air conditions is reported. A readily-synthesizable, hydrophilic and highly stable Cu(I)-NHC allows the clean ligations of unprotected peptides comprising sensitive side chains, at millimolar concentrations.

  17. Leaf magnesium alters photosynthetic response of low water potentials in sunflower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, I.M.; Sharp, R.E.; Boyer, J.S.

    1987-08-01

    We grew sunflower (Helianthus annuus L.) plants in nutrient solutions having nutritionally adequate but low or high Mg{sup 2+} concentrations and determined whether photosynthesis was effected as leaf water potentials ({psi}{sub w}) decreased. Leaf Mg contents were 3- to 4-fold higher in the plants grown in high Mg{sup 2+} concentrations (10 millimolar) than in those grown in low concentrations (0.25 millimolar). These contents were sufficient to support maximum growth, plant dry weight, and photosynthesis, and the plants appeared normal. As low {psi}{sub w} developed, photosynthesis was inhibited but more so in high Mg leaves than in low Mg leaves. Themore » effect was particularly apparent under conditions of light- and CO{sub 2}-saturation, indicating that the chloroplast capacity to fix CO{sub 2} was altered. The differential inhibition observed in leaves of differing Mg contents was not observed in leaves having differing K contents, suggesting that the effect may have been specific for Mg. Because Mg{sup 2+} inhibits photophosphorylation and coupling factor activities at concentrations likely to occur as leaves dehydrate, Mg may play a role in the inhibition of chloroplast reactions at low {psi}{sub w}, especially in leaves such as sunflower that markedly decrease in water content as {psi}{sub w} decreases.« less

  18. Leaf Magnesium Alters Photosynthetic Response to Low Water Potentials in Sunflower 1

    PubMed Central

    Rao, I. Madhusudana; Sharp, Robert E.; Boyer, John S.

    1987-01-01

    We grew sunflower (Helianthus annuus L.) plants in nutrient solutions having nutritionally adequate but low or high Mg2+ concentrations and determined whether photosynthesis was effected as leaf water potentials (ψw) decreased. Leaf Mg contents were 3- to 4-fold higher in the plants grown in high Mg2+ concentrations (10 millimolar) than in those grown in low concentrations (0.25 millimolar). These contents were sufficient to support maximum growth, plant dry weight, and photosynthesis, and the plants appeared normal. As low ψw developed, photosynthesis was inhibited but moreso in high Mg leaves than in low Mg leaves. The effect was particularly apparent under conditions of light- and CO2-saturation, indicating that the chloroplast capacity to fix CO2 was altered. The differential inhibition observed in leaves of differing Mg contents was not observed in leaves having differing K contents, suggesting that the effect may have been specific for Mg. Because Mg2+ inhibits photophosphorylation and coupling factor activities at concentrations likely to occur as leaves dehydrate, Mg may play a role in the inhibition of chloroplast reactions at low ψw, especially in leaves such as sunflower that markedly decrease in water content as ψw decreases. Images Fig. 2 Fig. 6 PMID:16665587

  19. Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemendinger, Richelle A., E-mail: richelle.hemendinger@carolinashealthcare.org; Armstrong, Edward J.; Brooks, Benjamin Rix

    Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC{sub 50} (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolatemore » (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC{sub 50} (concentration at which 50% of maximal cell death is inhibited) of 0.6 {mu}M and 0.4 {mu}M, respectively. In contrast, MTHF (up to 10 {mu}M) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS.« less

  20. Effects of NaCl and CaCl2 on Water Transport across Root Cells of Maize (Zea mays L.) Seedlings 1

    PubMed Central

    Azaizeh, Hassan; Gunse, Benito; Steudle, Ernst

    1992-01-01

    The effect of salinity and calcium levels on water flows and on hydraulic parameters of individual cortical cells of excised roots of young maize (Zea mays L. cv Halamish) plants have been measured using the cell pressure probe. Maize seedlings were grown in one-third strength Hoagland solution modified by additions of NaCl and/or extra calcium so that the seedlings received one of four treatments: control; +100 millimolar NaCl; +10 millimolar CaCl2; +100 millimolar NaCl + 10 millimolar CaCl2. From the hydrostatic and osmotic relaxations of turgor, the hydraulic conductivity (Lp) and the reflection coefficient (σs) of cortical cells of different root layers were determined. Mean Lp values in the different layers (first to third, fourth to sixth, seventh to ninth) of the four different treatments ranged from 11.8 to 14.5 (Control), 2.5 to 3.8 (+NaCl), 6.9 to 8.7 (+CaCl2), and 6.6 to 7.2 · 10−7 meter per second per megapascal (+NaCl + CaCl2). These results indicate that salinization of the growth media at regular calcium levels (0.5 millimolar) decreased Lp significantly (three to six times). The addition of extra calcium (10 millimolar) to the salinized media produced compensating effects. Mean cell σs values of NaCl ranged from 1.08 to 1.16, 1.15 to 1.22, 0.94 to 1.00, and 1.32 to 1.46 in different root cell layers of the four different treatments, respectively. Some of these σs values were probably overestimated due to an underestimation of the elastic modulus of cells, σs values of close to unity were in line with the fact that root cell membranes were practically not permeable to NaCl. However, the root cylinder exhibited some permeability to NaCl as was demonstrated by the root pressure probe measurements that resulted in σsr of less than unity. Compared with the controls, salinity and calcium increased the root cell diameter. Salinized seedlings grown at regular calcium levels resulted in shorter cell length compared with control (by a factor of 2). The results demonstrate that NaCl has adverse effects on water transport parameters of root cells. Extra calcium could, in part, compensate for these effects. The data suggest a considerable apoplasmic water flow in the root cortex. However, the cell-to-cell path also contributed to the overall water transport in maize roots and appeared to be responsible for the decrease in root hydraulic conductivity reported earlier (Azaizeh H, Steudle E [1991] Plant Physiol 97: 1136-1145). Accordingly, the effect of high salinity on the cell Lp was much larger than that on root Lpr. PMID:16669016

  1. Comparative effectiveness of metal ions in inducing curvature of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.; Stinemetz, C. L.; Moore, R.; Fondren, W. M.; Koon, E. C.; Higby, M. A.; Smucker, A. J.

    1988-01-01

    We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature.

  2. Comparative Effectivness of Metal Ions in Inducing Curvature of Primary Roots of Zea mays1

    PubMed Central

    Hasenstein, Karl Heinz; Evans, Michael L.; Stinemetz, Charles L.; Moore, Randy; Fondren, W. Mark; Koon, E. Colin; Higby, Mary A.; Smucker, Alvin J. M.

    1988-01-01

    We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature. PMID:11538239

  3. Highly sensitive and selective sugar detection by terahertz nano-antennas

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Kyu; Kang, Ji-Hun; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Hun Kim, Jae; Lee, Taikjin; Son, Joo-Hiuk; Park, Q.-Han; Seo, Minah

    2015-10-01

    Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz (THz) frequency range (0.5-2.5 THz). This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz transmission by nano-antennas can effectively increase the molecular absorption cross sections, thereby enabling the detection of these molecules even at low concentrations. We verified the performance of nano-antenna sensing chip by both THz spectra and images of transmittance. Screening and identification of various carbohydrates can be applied to test even real market beverages with a high sensitivity and selectivity.

  4. Highly sensitive and selective sugar detection by terahertz nano-antennas

    PubMed Central

    Lee, Dong-Kyu; Kang, Ji-Hun; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Hun Kim, Jae; Lee, Taikjin; Son, Joo-Hiuk; Park, Q-Han; Seo, Minah

    2015-01-01

    Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz (THz) frequency range (0.5–2.5 THz). This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz transmission by nano-antennas can effectively increase the molecular absorption cross sections, thereby enabling the detection of these molecules even at low concentrations. We verified the performance of nano-antenna sensing chip by both THz spectra and images of transmittance. Screening and identification of various carbohydrates can be applied to test even real market beverages with a high sensitivity and selectivity. PMID:26494203

  5. Aspartate Carbamyltransferase : Site of End-Product Inhibition of the Orotate Pathway in Intact Cells of Cucurbita pepo.

    PubMed

    Lovatt, C J; Cheng, A H

    1984-07-01

    Lovatt et al. (1979 Plant Physiol 64: 562-569) have previously demonstrated that end-product inhibition functions as a mechanism regulating the activity of the orotic acid pathway in intact cells of roots excised from 2-day-old squash plants (Cucurbita pepo L. cv Early Prolific Straightneck). Uridine (0.5 millimolar final concentration) or one of its metabolites inhibited the incorporation of NaH(14)CO(3), but not [(14)C]carbamylaspartate or [(14)C]orotic acid, into uridine nucleotides (SigmaUMP). Thus, regulation of de novo pyrimidine biosynthesis was demonstrated to occur at one or both of the first two reactions of the orotic acid pathway, those catalyzed by carbamylphosphate synthetase (CPSase) and aspartate carbamyltransferase (ACTase). The results of the present study provide evidence that ACTase alone is the site of feedback control by added uridine or one of its metabolites. Evidence demonstrating regulation of the orotic acid pathway by end-product inhibition at ACTase, but not at CPSase, includes the following observations: (a) addition of uridine (0.5 millimolar final concentration) inhibited the incorporation of NaH(14)CO(3) into SigmaUMP by 80% but did not inhibit the incorporation of NaH(14)CO(3) into arginine; (b) inhibition of the orotate pathway by added uridine was not reversed by supplying exogenous ornithine (5 millimolar final concentration), while the incorporation of NaH(14)CO(3) into arginine was stimulated more than 15-fold when both uridine and ornithine were added; (c) incorporation of NaH(14)CO(3) into arginine increased, with or without added ornithine when the de novo pyrimidine pathway was inhibited by added uridine; and (d) in assays employing cell-free extracts prepared from 2-day-old squash roots, the activity of ACTase, but not CPSase, was inhibited by added pyrimidine nucleotides.

  6. Small-molecule photostabilizing agents are modifiers of lipid bilayer properties.

    PubMed

    Alejo, Jose L; Blanchard, Scott C; Andersen, Olaf S

    2013-06-04

    Small-molecule photostabilizing or protective agents (PAs) provide essential support for the stability demands on fluorescent dyes in single-molecule spectroscopy and fluorescence microscopy. These agents are employed also in studies of cell membranes and model systems mimicking lipid bilayer environments, but there is little information about their possible effects on membrane structure and physical properties. Given the impact of amphipathic small molecules on bilayer properties such as elasticity and intrinsic curvature, we investigated the effects of six commonly used PAs--cyclooctatetraene (COT), para-nitrobenzyl alcohol (NBA), Trolox (TX), 1,4-diazabicyclo[2.2.2]octane (DABCO), para-nitrobenzoic acid (pNBA), and n-propyl gallate (nPG)--on bilayer properties using a gramicidin A (gA)-based fluorescence quench assay to probe for PA-induced changes in the gramicidin monomer↔dimer equilibrium. The experiments were done using fluorophore-loaded large unilamellar vesicles that had been doped with gA, and changes in the gA monomer↔dimer equilibrium were assayed using a gA channel-permeable fluorescence quencher (Tl⁺). Changes in bilayer properties caused by, e.g., PA adsorption at the bilayer/solution interface that alter the equilibrium constant for gA channel formation, and thus the number of conducting gA channels in the large unilamellar vesicle membrane, will be detectable as changes in the rate of Tl⁺ influx-the fluorescence quench rate. Over the experimentally relevant millimolar concentration range, TX, NBA, and pNBA, caused comparable increases in gA channel activity. COT, also in the millimolar range, caused a slight decrease in gA channel activity. nPG increased channel activity at submillimolar concentrations. DABCO did not alter gA activity. Five of the six tested PAs thus alter lipid bilayer properties at experimentally relevant concentrations, which becomes important for the design and analysis of fluorescence studies in cells and model membrane systems. We therefore tested combinations of COT, NBA, and TX; the combinations altered the fluorescence quench rate less than would be predicted assuming their effects on bilayer properties were additive. The combination of equimolar concentrations of COT and NBA caused minimal changes in the fluorescence quench rate. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. A technique for collection of exudate from pea seedlings

    NASA Technical Reports Server (NTRS)

    Hanson, S. D.; Cohen, J. D.; Bandurski, R. S. (Principal Investigator)

    1985-01-01

    Ethylenediaminetetraacetic acid (EDTA), at concentrations higher than 1.0 millimolar, is phytotoxic to etiolated seedlings of Pisum sativum. Substantial vascular exudation from pea epicotyls could be obtained without tissue damage at 0.5 millimolar EDTA if the solution was buffered at pH 7.5 with sodium N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid. Treated seedlings exuded 950 micrograms (leucine equivalents) of ninhydrin-positive material per day and 870 micrograms (glucose equivalents) of anthrone-positive material per day. Amino acid analysis showed the exudate to have glutamine as the major amido nitrogen containing compound and sucrose was shown to be the major sugar. Radiolabeled tryptophan and sucrose applied to cotyledons were transferred through the epicotyl and into the collection medium. The pH profile for exudation shows half maximal exudation at pH 7.2, indicating the promotion of exudation by EDTA is probably not due simply to Ca2+ chelation.

  8. Chemical composition of inks of diverse marine molluscs suggests convergent chemical defenses.

    PubMed

    Derby, Charles D; Kicklighter, Cynthia E; Johnson, P M; Zhang, Xu

    2007-05-01

    Some marine molluscs, notably sea hares, cuttlefish, squid, and octopus, release ink when attacked by predators. The sea hare Aplysia californica releases secretions from the ink gland and opaline gland that protect individuals from injury or death from predatory spiny lobsters through a combination of mechanisms that include chemical deterrence, sensory disruption, and phagomimicry. The latter two mechanisms are facilitated by millimolar concentrations of free amino acids (FAA) in sea hare ink and opaline, which stimulate the chemosensory systems of predators, ultimately leading to escape by sea hares. We hypothesize that other inking molluscs use sensory disruption and/or phagomimicry as a chemical defense. To investigate this, we examined concentrations of 21 FAA and ammonium in the defensive secretions of nine species of inking molluscs: three sea hares (Aplysia californica, Aplysia dactylomela, Aplysia juliana) and six cephalopods (cuttlefish: Sepia officinalis; squid: Loligo pealei, Lolliguncula brevis, Dosidicus gigas; octopus: Octopus vulgaris, Octopus bimaculoides). We found millimolar levels of total FAA and ammonium in these secretions, and the FAA in highest concentration were taurine, aspartic acid, glutamic acid, alanine, and lysine. Crustaceans and fish, which are major predators of these molluscs, have specific receptor systems for these FAA. Our chemical analysis supports the hypothesis that inking molluscs have the potential to use sensory disruption and/or phagomimicry as a chemical defense.

  9. The atypical cation-conduction and gating properties of ELIC underscore the marked functional versatility of the pentameric ligand-gated ion-channel fold

    PubMed Central

    Gonzalez-Gutierrez, Giovanni

    2015-01-01

    The superfamily of pentameric ligand-gated ion channels (pLGICs) is unique among ionotropic receptors in that the same overall structure has evolved to generate multiple members with different combinations of agonist specificities and permeant-ion charge selectivities. However, aside from these differences, pLGICs have been typically regarded as having several invariant functional properties. These include pore blockade by extracellular quaternary-ammonium cations in the micromolar-to-millimolar concentration range (in the case of the cation-selective members), and a gain-of-function phenotype, which manifests as a slower deactivation time course, as a result of mutations that reduce the hydrophobicity of the transmembrane pore lining. Here, we tested this notion on three distantly related cation-selective members of the pLGIC superfamily: the mouse muscle nicotinic acetylcholine receptor (nAChR), and the bacterial GLIC and ELIC channels. Remarkably, we found that, whereas low millimolar concentrations of TMA+ and TEA+ block the nAChR and GLIC, neither of these two quaternary-ammonium cations blocks ELIC at such concentrations; instead, both carry measurable inward currents when present as the only cations on the extracellular side. Also, we found that, whereas lidocaine binding speeds up the current-decay time courses of the nAChR and GLIC in the presence of saturating concentrations of agonists, the binding of lidocaine to ELIC slows this time course down. Furthermore, whereas mutations that reduce the hydrophobicity of the side chains at position 9′ of the M2 α-helices greatly slowed the deactivation time course of the nAChR and GLIC, these mutations had little effect—or even sped up deactivation—when engineered in ELIC. Our data indicate that caution should be exercised when generalizing results obtained with ELIC to the rest of the pLGICs, but more intriguingly, they hint at the possibility that ELIC is a representative of a novel branch of the superfamily with markedly divergent pore properties despite a well-conserved three-dimensional architecture. PMID:26078054

  10. One-carbon (bio ?) Geochemistry in Subsurface Waters of the Serpentinizing Coast Range Ophiolite

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Mccollom, Tom; Schrenk, Matt; Cardace, Dawn

    2011-01-01

    Serpentinization - the aqueous alteration of ultramafic rocks - typically imparts a highly reducing and alkaline character to the reacting fluids. In turn, these can influence the speciation and potential for metabolism of one-carbon compounds in the system. We examined the aqueous geochemistry and assessed the biological potential of one-carbon compounds in the subsurface of the McLaughlin Natural Reserve (Coast Range Ophiolite, California, USA). Fluids from wells sunk at depths of 25-90 meters have pH values ranging from 9.7 to 11.5 and dissolved inorganic carbon (DIC concentrations) generally below 60 micromolar. Methane is present at concentrations up to 1.3 millimolar (approximately one-atmosphere saturation), and hydrogen concentrations are below 15 nanomolar, suggesting active consumption of H2 and production of CH4. However, methane production from CO2 is thermodynamically unfavorable under these conditions. Additionally, the speciation of DIC predominantly into carbonate at these high pH values creates a problem of carbon availability for any organisms that require CO2 (or bicarbonate) for catabolism or anabolism. A potential alternative is carbon monoxide, which is present in these waters at concentrations 2000-fold higher than equilibrium with atmospheric CO. CO is utilized in a variety of metabolisms, including methanogenesis, and bioavailability is not adversely affected by pH-dependent speciation (as for DIC). Methanogenesis from CO under in situ conditions is thermodynamically favorable and would satisfy biological energy requirements with respect to both Gibbs Energy yield and power.

  11. Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification.

    PubMed

    Fischer, Sina; Kühnlenz, Tanja; Thieme, Michael; Schmidt, Holger; Clemens, Stephan

    2014-07-01

    Lead (Pb) ranks first among metals with respect to tonnage produced and released into the environment. It is highly toxic and therefore an important pollutant of worldwide concern. Plant Pb uptake, accumulation, and detoxification mobilize Pb into food webs. Still, knowledge about the underlying mechanisms is very limited. This is largely due to serious experimental challenges with respect to Pb availability. In most studies, Pb(II) concentrations in the millimolar range have been used even though the toxicity threshold is in the nanomolar range. We therefore developed a low-phosphate, low-pH assay system that is more realistic with respect to soil solution conditions. In this system the growth of Arabidopsis thaliana seedlings was significantly affected by the addition of only 0.1 μM Pb(NO3)2. Involvement of phytochelatins in the detoxification of Pb(II) could be demonstrated by investigating phytochelatin synthase mutants. They showed a stronger inhibition of root growth and a lack of Pb-activated phytochelatin synthesis. In contrast, other putative Pb hypersensitive mutants were unaffected under these conditions, further supporting the essential role of phytochelatins for Pb detoxification. Our findings demonstrate the need to monitor plant Pb responses at realistic concentrations under controlled conditions and provide a strategy to achieve this.

  12. Sugar Regulation of Plastid Interconversions in Epicarp of Citrus Fruit 1

    PubMed Central

    Huff, Albert

    1984-01-01

    Seasonal transformations between chloroplasts and chromoplasts, as measured by changes in chlorophyll content, in the epicarp of degreening and regreening Citrus sinensis (L.) Osbeck cv Valencia fruit closely parallelled the accumulation and later loss of soluble sugars. At any stage of development, reversing the relative soluble sugar content in the epicarp by culturing pericarp segments on agar media with low (15 millimolar) or high (150 millimolar) sucrose concentrations reversed the direction of change in chlorophyll content. Fruit of C. madurensis Lour., which mature year around and do not regreen, also accumulated soluble sugars in the pericarp as degreening was initiated. The epicarp of C. sinensis fruit accumulated nitrogen, but total nitrogen concentrations and amino acid concentrations changed little, during degreening and regreening of C. sinensis fruit. Cessation of nitrogen fertilization reduced the tendency of pericarp segments to regreen in vitro during subsequent years, but regreening tendency was restored by inclusion of KNO3 in the media. It is concluded that chloroplasts become chromoplasts and citrus fruit degreen partially in response to the accumulation of sugars in the epicarp and that the reverse transformation accompanying regreening of certain citrus species occurs when accumulated sugars disappear. Change in nitrogen flux to the fruit is probably not a factor in regulating seasonal transformations, but an abundance of nitrogen in the epicarp diminishes the effects of high sugar concentrations in inducing transformation of chloroplasts to chromoplasts, thereby retarding degreening and promoting regreening. PMID:16663837

  13. Toxic and signalling effects of oxalic acid

    PubMed Central

    Lehner, Arnaud; Meimoun, Patrice; Errakhi, Rafik; Madiona, Karine; Barakate, Mustapha

    2008-01-01

    Oxalic acid is thought to be a key factor of the early pathogenic stage in a wide range of necrotrophic fungi. We have recently published that oxalic acid induces Programmed Cell Death (PCD) in Arabidopsis thaliana cells. This cell death results from an early anionic efflux which is a prerequisite for the synthesis of ethylene and the PCD. Complementary experiments have been carried out by using seedlings of A. thaliana. The effects of millimolar concentrations of oxalic acid were analysed on A. thaliana seedlings. A treatment with a 3 mM oxalic acid solution does not alter the development of the plants but induces the transcription of defence related genes which are anion channel dependant. Moreover, our results suggest that a pre-treatment of the seedlings with oxalic acid is able to confer the resistance of A. thaliana against Sclerotium rolfsii. Regarding our results, we suggest that oxalic acid plays two distinct roles, depending on the concentration: a high concentration of oxalic acid induces a large PCD and then contribute to the progression of the fungi. However, at low concentration it is able to induce the establishment of a resistance of the plant against the fungi. PMID:19704845

  14. Interactions of surfactants with lipid membranes.

    PubMed

    Heerklotz, Heiko

    2008-01-01

    Surfactants are surface-active, amphiphilic compounds that are water-soluble in the micro- to millimolar range, and self-assemble to form micelles or other aggregates above a critical concentration. This definition comprises synthetic detergents as well as amphiphilic peptides and lipopeptides, bile salts and many other compounds. This paper reviews the biophysics of the interactions of surfactants with membranes of insoluble, naturally occurring lipids. It discusses structural, thermodynamic and kinetic aspects of membrane-water partitioning, changes in membrane properties induced by surfactants, membrane solubilisation to micelles and other phases formed by lipid-surfactant systems. Each section defines and derives key parameters, mentions experimental methods for their measurement and compiles and discusses published data. Additionally, a brief overview is given of surfactant-like effects in biological systems, technical applications of surfactants that involve membrane interactions, and surfactant-based protocols to study biological membranes.

  15. AM(VI) partitioning studies. FY14 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincher, Bruce J.

    2014-10-01

    The use of higher oxidation states of americium in partitioning from the lanthanides is under continued investigation by the sigma team. This is based on the hypothesis that Am(VI) can be produced and remain stable in irradiated first cycle raffinate solution long enough to perform solvent extraction for separations. The stability of Am(VI) to autoreduction was measured using millimolar americium concentrations in a 1-cm cell with a Cary 6000 UV/Vis spectrophotometer for data acquisition. At millimolar americium concentrations, Am(VI) is stable enough against its own autoreduction for separations purposes. A second major accomplishment during FY14 was the hot test. Americiummore » oxidation and extraction was performed using a centrifugal contactor-based test bed consisting of an extraction stage and two stripping stages. Sixty-three percent americium extraction was obtained in one extraction stage, in agreement with batch contacts. Promising electrochemical oxidation results have also been obtained, using terpyridine ligand derivatized electrodes for binding of Am(III). Approximately 50 % of the Am(III) was oxidized to Am(V) over the course of 1 hour. It is believed that this is the first demonstration of the electrolytic oxidation of americium in a non-complexing solution. Finally, an initial investigation of Am(VI) extraction using diethylhexylbutyramide (DEHBA) was performed.« less

  16. Targeted Gold Nanoparticle Contrast Agent for Digital Breast Tomosynthesis and Computed Tomography

    DTIC Science & Technology

    2012-03-01

    bromopropionic acid (10 millimolar) was dissolved in acetonitrile (100 mL) , after which sodium azide (50 millimolar) was added to the solution. The mixture was...Transformation of the ionic X-ray contrast agent diatrizoate and related triiodinated benzoates by Trametes versicolor. Appl Environ Microbiol

  17. Continuous Culture of Ruminal Microorganisms in Chemically Defined Medium1

    PubMed Central

    Quinn, Loyd Y.; Burroughs, Wise; Christiansen, William C.

    1962-01-01

    Ruminal ciliates have been grown in continuous culture in chemically defined media and in the absence of viable bacteria. Oligotrichic ruminal ciliates seem to require insoluble carbohydrates for growth; the holotrichic ciliates require soluble carbohydrates, but at low concentrations. Both groups of ciliates utilize amino acids as their principal nitrogen source when these are supplied in micromolar concentrations; at millimolar concentrations, amino acids are toxic, possibly from excessive ammonia formation arising from ciliate deaminase activity. Holotrichic ruminal ciliates are destroyed by overdeposition of amylopectin when glucose is present above 0.1% concentration in the medium. Ecological requirements of ruminal ciliates are also described. Images FIG. 1 FIG. 2 PMID:13972780

  18. Cadmium alteration of root physiology and potassium ion fluxes.

    PubMed

    Keck, R W

    1978-07-01

    Segments of oat (Avena sativa L.) roots which had been exposed to 1 millimolar CdSO(4) in quarter-strength Hoagland No. 1 solution exhibited decreased respiratory rates, ATP levels, membrane-bound ATPase activity, and reduced K(+) fluxes. Respiration and ATP levels were decreased after a 2-hour treatment with 1 millimolar CdSO(4) to 65 and 75%, respectively, of control rates. A membrane-bound, Mg(2+)-dependent, K(+)-stimulated acid ATPase was rapidly inhibited to 12% of control activity in the presence of 1 millimolar CdSO(4). Potassium uptake into root segments was inhibited to 80% of control values after 30 minutes in the presence of CdSO(4). A 2-hour pretreatment of root segments with CdSO(4) inhibited K(+) uptake to 15% of control values. Cytoplasmic K(+) efflux was inhibited with 1 millimolar CdSO(4).The rates and the degree of Cd(2+) inhibition of the parameters listed above suggest that one of the first sites of Cd(2+) action is the plasmalemma K(+) carrier (ATPase) in oat roots.

  19. Correlation of Electrode Kinetics with Surface Structure.

    DTIC Science & Technology

    1980-09-01

    platinum and gold electrodes is sufficiently strong so that monolayers are formed upon contact even with small (millimolar) bulk iodide concentrations...transition-metal reactants, we have monitored the effects of altering the electrode material from mercury to silver, platinum, and gold upon the...strikingly different behavior for the reduction of Co III(NH3)5X and Co II(en)2X2 at platinum and gold electrodes. 1 0 For halide bridging ligands (X

  20. Inorganic Carbon Source for Photosynthesis in the Seagrass Thalassia hemprichii (Ehrenb.) Aschers.

    PubMed

    Abel, K M

    1984-11-01

    Photosynthetic carbon uptake of the tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers was studied by several methods. Photosynthesis in buffered seawater in media in the range of pH 6 to pH 9 showed an exponentially increasing rate with decreasing pH, thus indicating that free CO(2) was a photosynthetic substrate. However, these experiments were unable to determine whether photosynthesis at alkaline pH also contained some component due to HCO(3) (-) uptake. This aspect was further investigated by studying photosynthetic rates in a number of media of varying pH (7.8-8.61) and total inorganic carbon (0.75-13.17 millimolar). In these media, photosynthetic rate was correlated with free CO(2) concentration and was independent of the HCO(3) (-) concentration in the medium. Short time-course experiments were conducted during equilibration of free CO(2) and HCO(3) (-) after injection of (14)C labeled solution at acid or alkaline pH. High initial photosynthetic rates were observed when acidic solutions (largely free CO(2)) were used but not with alkaline solutions. The concentration of free CO(2) was found to be a limiting factor for photosynthesis in this plant.

  1. New Culture Medium Containing Ionic Concentrations of Nutrients Similar to Concentrations Found in the Soil Solution †

    PubMed Central

    Angle, J. Scott; McGrath, Stephen P.; Chaney, Rufus L.

    1991-01-01

    A new growth medium which closely approximates the composition of the soil solution is presented. This soil solution equivalent (SSE) medium contains the following components (millimolar): NO3, 2.5; NH4, 2.5; HPO4, 0.005; Na, 2.5; Ca, 4.0; Mg, 2.0; K, 0.503; Cl, 4.0; SO4, 5.0; ethylenediamine-di(o-hydroxyphenylacetic acid), 0.02; and MES [2-(N-morpholino)ethanesulfonic acid] (to maintain the pH at 6.0), 10, plus 0.1% arabinose. The advantages of the SSE medium are discussed. PMID:16348614

  2. Enhancement of Phloem Exudation from Fraxinus uhdei Wenz. (Evergreen Ash) using Ethylenediaminetetraacetic Acid 1

    PubMed Central

    Costello, L. R.; Bassham, James A.; Calvin, Melvin

    1982-01-01

    Ethylenediaminetetraacetic acid (EDTA) enhanced the exudation of 14C-labeled assimilates from excised leaflets and whole plant specimens of Fraxinus uhdei Wenz. A 2 millimolar EDTA concentration was found to be most effective in promoting exudation from excised leaflets, while 10 millimolar EDTA was most effective in whole plants experiments. Exudation rate reached a maximum after 24 hours in both experiments. The continuous presence of EDTA throughout the treatment period was required for maximum exudation from excised leaflets. Stachyose, raffinose, verbascose, and sucrose were the principal compounds found to occur in exudate samples. These compounds are typically transported in sieve elements of various Fraxinus species suggesting the exudate was of phloem origin. Electron microscope studies of petiolule sieve plate pores from excised leaflets showed substantially less callose appearing after treatment with EDTA than after H2O treatment. It is suggested that EDTA enhances phloem exudation by inhibiting or reducing callose formation in sieve plate pores. The exudation enhancement technique described for whole plant specimens is suggested as a useful means of collecting phloem sap and studying translocation in woody plants. Images PMID:16662189

  3. Computational Methodology for Absolute Calibration Curves for Microfluidic Optical Analyses

    PubMed Central

    Chang, Chia-Pin; Nagel, David J.; Zaghloul, Mona E.

    2010-01-01

    Optical fluorescence and absorption are two of the primary techniques used for analytical microfluidics. We provide a thorough yet tractable method for computing the performance of diverse optical micro-analytical systems. Sample sizes range from nano- to many micro-liters and concentrations from nano- to milli-molar. Equations are provided to trace quantitatively the flow of the fundamental entities, namely photons and electrons, and the conversion of energy from the source, through optical components, samples and spectral-selective components, to the detectors and beyond. The equations permit facile computations of calibration curves that relate the concentrations or numbers of molecules measured to the absolute signals from the system. This methodology provides the basis for both detailed understanding and improved design of microfluidic optical analytical systems. It saves prototype turn-around time, and is much simpler and faster to use than ray tracing programs. Over two thousand spreadsheet computations were performed during this study. We found that some design variations produce higher signal levels and, for constant noise levels, lower minimum detection limits. Improvements of more than a factor of 1,000 were realized. PMID:22163573

  4. Sodium and Potassium Fluxes and Compartmentation in Roots of Atriplex and Oat 1

    PubMed Central

    Mills, David; Robinson, Kenneth; Hodges, Thomas K.

    1985-01-01

    K+ and Na+ fluxes and ion content have been studied in roots of Atriplex nummularia Lindl. and Avena sativa L. cv Goodfield grown in 3 millimolar K+ with or without 3 or 50 millimolar NaCl. Compartmental analysis was carried out with entire root systems under steady-state conditions. Increasing ambient Na+ concentrations from 0 to 50 millimolar altered K+, in Atriplex, as follows: slightly decreased the cytoplasmic content (Qc), the vacuolar content (Qv), and the plasma membrane influx and efflux. Xylem transport for K+ decreased by 63% in Atriplex. For oat roots, similar increases in Na+ altered K+ parameters as follows: plasma membrane influx and efflux decreased by about 80%. Qc decreased by 65%, and xylem transport decreased by 91%. No change, however, was observed in Qv for K+. Increasing ambient Na+ resulted in higher (3 to 5-fold) Na+ fluxes across the plasma membrane and in Qc of both species. In Atriplex, Na+ fluxes across the tonoplast and Qv increased as external Na+ was increased. In oat, however, no significant change was observed in Na+ flux across the tonoplast or in Qv as external Na+ was increased. In oat roots, Na+ reduced K+ uptake markedly; in Atriplex, this was not as pronounced. However, even at high Na+ levels, the influx transport system at the plasma membrane of both species preferred K+ over Na+. Based upon the Ussing-Teorell equation, it was concluded that active inward transport of K+ occurred across the plasma membrane, and passive movement of K+ occurred across the tonoplast in both species. Na+, in oat roots, was actively pumped out of the cytoplasm to the exterior, whereas, in Atriplex, Na+ was passively distributed between the free space, cytoplasm, and vacuole. PMID:16664273

  5. Sodium and potassium fluxes and compartmentation in roots of atriplex and oat.

    PubMed

    Mills, D; Robinson, K; Hodges, T K

    1985-07-01

    K(+) and Na(+) fluxes and ion content have been studied in roots of Atriplex nummularia Lindl. and Avena sativa L. cv Goodfield grown in 3 millimolar K(+) with or without 3 or 50 millimolar NaCl. Compartmental analysis was carried out with entire root systems under steady-state conditions.Increasing ambient Na(+) concentrations from 0 to 50 millimolar altered K(+), in Atriplex, as follows: slightly decreased the cytoplasmic content (Q(c)), the vacuolar content (Q(v)), and the plasma membrane influx and efflux. Xylem transport for K(+) decreased by 63% in Atriplex. For oat roots, similar increases in Na(+) altered K(+) parameters as follows: plasma membrane influx and efflux decreased by about 80%. Q(c) decreased by 65%, and xylem transport decreased by 91%. No change, however, was observed in Q(v) for K(+). Increasing ambient Na(+) resulted in higher (3 to 5-fold) Na(+) fluxes across the plasma membrane and in Q(c) of both species. In Atriplex, Na(+) fluxes across the tonoplast and Q(v) increased as external Na(+) was increased. In oat, however, no significant change was observed in Na(+) flux across the tonoplast or in Q(v) as external Na(+) was increased. In oat roots, Na(+) reduced K(+) uptake markedly; in Atriplex, this was not as pronounced. However, even at high Na(+) levels, the influx transport system at the plasma membrane of both species preferred K(+) over Na(+).Based upon the Ussing-Teorell equation, it was concluded that active inward transport of K(+) occurred across the plasma membrane, and passive movement of K(+) occurred across the tonoplast in both species. Na(+), in oat roots, was actively pumped out of the cytoplasm to the exterior, whereas, in Atriplex, Na(+) was passively distributed between the free space, cytoplasm, and vacuole.

  6. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparablemore » to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.« less

  7. Effects of fusaric acid treatment on the protocorm-like bodies of Dendrobium sonia-28.

    PubMed

    Dehgahi, Raheleh; Zakaria, Latiffah; Mohamad, Azhar; Joniyas, Alireza; Subramaniam, Sreeramanan

    2016-09-01

    Dendrobium sonia-28 is a popular orchid hybrid due to its flowering recurrence and dense inflorescences. Unfortunately, it is being decimated by fungal diseases, especially those caused by Fusarium proliferatum. In this study, selection of F. proliferatum-tolerant protocorm-like bodies (PLBs) was carried out by assessing the effects of differing concentrations of fusaric acid (FA). PLBs were cultured on Murashige and Skoog (MS) medium supplemented with 0.05 to 0.2 millimolar (mM) concentrations of FA. Higher concentrations of FA increased mortality of PLBs and reduced their growth. The survival rate for 0.05 mM FA was 20 % but only 1 % at the highest dose of 0.2 mM. Additionally, two different size ranges of PLBs were investigated, and growth increased more at lower FA concentrations for larger PLBs, whilst the growth rate of smaller PLBs was inhibited at an FA concentration of 0.2 mM. Histological examination using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses disclosed severe cell wall and organelle damage, as well as stomatal closure in PLBs treated with the high FA concentrations. Reductions in plantlet growth were much greater at the highest concentrations of FA. Some randomly amplified polymorphic DNA (RAPD) markers clearly discriminated between selected and non-selected variants of Dendrobium sonia-28, showing different banding patterns for each FA concentration and specific bands for selected and control plants.

  8. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines.

    PubMed

    Gupta, S C; Goldsbrough, P B

    1991-09-01

    Four cell lines of tomato, Lycopersicon esculentum Mill. cv VFNT-Cherry, were selected for their ability to grow in the presence of up to 6 millimolar CdCl(2). The intracellular Cd concentration in these cells was at least 2.3 times higher than in the medium. Growth in media containing higher concentrations of Cd was accompanied by increased production of Cd-binding phytochelatins and a trend toward accumulation of higher molecular weight phytochelatins. At least 90% of the Cd in the most tolerant cells was associated with Cd-phytochelatin complexes. Cell lines maintained an increased tolerance of Cd in the absence of continuous selection pressure.

  9. Colorimetric Detection and Identification of Natural and Artificial Sweeteners

    PubMed Central

    Musto, Christopher J.; Lim, Sung H.; Suslick, Kenneth S.

    2009-01-01

    A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments made from indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations as well as commonly used individual serving sweetener packets. The array has shown excellent reproducibility and long shelf-life and has been optimized to work in the biological pH regime. PMID:20337402

  10. Colorimetric detection and identification of natural and artificial sweeteners.

    PubMed

    Musto, Christopher J; Lim, Sung H; Suslick, Kenneth S

    2009-08-01

    A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments that are comprised of indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations, as well as commonly used individual-serving sweetener packets. The array has shown excellent reproducibility and long shelf life and has been optimized to work in the biological pH regime.

  11. Elimination of ascorbic acid after high-dose infusion in prostate cancer patients: a pharmacokinetic evaluation.

    PubMed

    Nielsen, Torben K; Højgaard, Martin; Andersen, Jon T; Poulsen, Henrik E; Lykkesfeldt, Jens; Mikines, Kári J

    2015-04-01

    Treatment with high-dose intravenous (IV) ascorbic acid (AA) is used in complementary and alternative medicine for various conditions including cancer. Cytotoxicity to cancer cell lines has been observed with millimolar concentrations of AA. Little is known about the pharmacokinetics of high-dose IV AA. The purpose of this study was to assess the basic kinetic variables in human beings over a relevant AA dosing interval for proper design of future clinical trials. Ten patients with metastatic prostate cancer were treated for 4 weeks with fixed AA doses of 5, 30 and 60 g. AA was measured consecutively in plasma and indicated first-order elimination kinetics throughout the dosing range with supra-physiological concentrations. The target dose of 60 g AA IV produced a peak plasma AA concentration of 20.3 mM. Elimination half-life was 1.87 hr (mean, S.D. ± 0.40), volume of distribution 0.19 L/kg (S.D. ±0.05) and clearance rate 6.02 L/hr (100 mL/min). No differences in pharmacokinetic parameters were observed between weeks/doses. A relatively fast first-order elimination with half-life of about 2 hr makes it impossible to maintain AA concentrations in the potential cytotoxic range after infusion stop in prostate cancer patients with normal kidney function. We propose a regimen with a bolus loading followed by a maintenance infusion based on the calculated clearance. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  12. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.; Presley, Derek J.

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  13. Assaying Ornithine and Arginine Decarboxylases in Some Plant Species 1

    PubMed Central

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    A release of 14CO2 not related to ornithine decarboxylase activity was found in crude leaf extracts from Lycopersicon esculentum, Avena sativa, and especially from the pyrrolizidine alkaloid-bearing Heliotropium angiospermum when incubated with [1-14C]- or [U-14C]ornithine. The total 14CO2 produced was about 5- to 100-fold higher than that due to ornithine decarboxylase activities calculated from labeled putrescine (Put) found by thin-layer electrophoresis in the incubation mixtures. Partial purification with (NH4)2SO4 did not eliminate completely the interfering decarboxylation. When incubated with labeled arginine, a very significant 14CO2 release not related to arginine decarboxylase activity was observed only in extracts from H. angiospermum leaves, especially in Tris·HCl buffer. Under the assay conditions, these extracts exhibited oxidative degradation of added Put and agmatine (Agm) and also revealed a high arginase activity. Amino-guanidine at 0.1 to 0.2 millimolar prevented Put degradation and greatly decreased oxidative degradation of Agm; ornithine at 15 to 20 millimolar significantly inhibited arginase activity. A verification of the reliability of the standard 14CO2-based method by assessing labeled Put and/or Agm—formed in the presence of added aminoguanidine and/or ornithine when needed—is recommended especially when crude or semicrude plant extracts are assayed. When based on Put and/or Agm formed at 1.0 to 2.5 millimolar of substrate, the activities of ornithine decarboxylase and arginine decarboxylase in the youngest leaves of the tested species ranged between 1.1 and 3.6 and 1 and 1600 nanomoles per hour per gram fresh weight, respectively. The enzyme activities are discussed in relation to the biosynthesis of pyrrolizidine alkaloids. PMID:16664441

  14. Regulation of 2-carboxyarabinitol 1-phosphatase.

    PubMed

    Holbrook, G P; Galasinski, S C; Salvucci, M E

    1991-11-01

    The regulation of 2-carboxyarabinitol 1-phosphatase (CA 1-Pase) by phosphorylated effectors was studied with enzyme purified from tobacco (Nicotiana tabacum) leaves. CA 1-Pase activity was most stimulated by fructose 1,6-bisphosphate, exhibiting an A(0.5) value of 1.9 millimolar and a 10-fold enhancement of catalysis. With ribulose-1,5-bisphosphate, the A(0.5) was 0.6 millimolar, and maximal stimulation of activity was 5.3-fold. Among the monophosphates, 3-phosphoglycerate and phosphoglycolate were more potent positive effectors than glyceraldehyde 3-phosphate, glucose 1-phosphate, glucose 6-phosphate, and dihydroxyacetone phosphate. Stimulation of CA 1-Pase by ribulose-1,5-bisphosphate and fructose 1,6-bisphosphate increased V(max) but did not appreciably alter K(m) (2-carboxyarabinitol 1-phosphate) values. Inorganic phosphate appeared to inhibit CA 1-Pase noncompetitively with respect to 2-carboxyarabinitol 1-phosphate, exhibiting a K(i) of 0.3 millimolar. The results suggest that these positive and negative effectors bind to a regulatory site on CA 1-Pase and may have a physiologial role in the light regulation of this enzyme. Related experiments with CA 1-Pase inactivated by dialysis in the absence of dithiothreitol show that partial reactivation can be achieved in the presence of a range of reducing reagents, including dithiothreitol, cysteine, and reduced glutathione. This could imply an ancillary involvement of sulfhydryl reduction during light activation of CA 1-Pase in vivo. The enzyme was thermally stable up to 35 degrees C, in contrast to ribulose-1,5-bisphosphate carboxylase/oxygenase activase which lost activity above 30 degrees C. The activation energy for CA 1-Pase was calculated to be 56.14 kilojoules per mole.

  15. Regulation of 2-Carboxyarabinitol 1-Phosphatase 1

    PubMed Central

    Holbrook, Gabriel P.; Galasinski, Scott C.; Salvucci, Michael E.

    1991-01-01

    The regulation of 2-carboxyarabinitol 1-phosphatase (CA 1-Pase) by phosphorylated effectors was studied with enzyme purified from tobacco (Nicotiana tabacum) leaves. CA 1-Pase activity was most stimulated by fructose 1,6-bisphosphate, exhibiting an A0.5 value of 1.9 millimolar and a 10-fold enhancement of catalysis. With ribulose-1,5-bisphosphate, the A0.5 was 0.6 millimolar, and maximal stimulation of activity was 5.3-fold. Among the monophosphates, 3-phosphoglycerate and phosphoglycolate were more potent positive effectors than glyceraldehyde 3-phosphate, glucose 1-phosphate, glucose 6-phosphate, and dihydroxyacetone phosphate. Stimulation of CA 1-Pase by ribulose-1,5-bisphosphate and fructose 1,6-bisphosphate increased Vmax but did not appreciably alter Km (2-carboxyarabinitol 1-phosphate) values. Inorganic phosphate appeared to inhibit CA 1-Pase noncompetitively with respect to 2-carboxyarabinitol 1-phosphate, exhibiting a Ki of 0.3 millimolar. The results suggest that these positive and negative effectors bind to a regulatory site on CA 1-Pase and may have a physiologial role in the light regulation of this enzyme. Related experiments with CA 1-Pase inactivated by dialysis in the absence of dithiothreitol show that partial reactivation can be achieved in the presence of a range of reducing reagents, including dithiothreitol, cysteine, and reduced glutathione. This could imply an ancillary involvement of sulfhydryl reduction during light activation of CA 1-Pase in vivo. The enzyme was thermally stable up to 35°C, in contrast to ribulose-1,5-bisphosphate carboxylase/oxygenase activase which lost activity above 30°C. The activation energy for CA 1-Pase was calculated to be 56.14 kilojoules per mole. PMID:16668528

  16. Dissimilatory Sb(V) reduction by microorganisms isolated from Sb-contaminated sediment

    NASA Astrophysics Data System (ADS)

    Dovick, M. A.; Kulp, T. R.

    2013-12-01

    Mining and smelting are major sources of trace metal contamination in freshwater systems. Arsenic (As) is a common contaminant derived from certain mining operations and is a known toxic metalloid and carcinogen. Antimony (Sb) is listed as a pollutant of priority interest by the EPA and is presumed to share similar geochemical and toxicological properties with arsenic. Both elements can occur in four different oxidation states (V, III, 0, and -III) under naturally occurring conditions. In aqueous solutions As(V) and Sb(V) predominate in oxygenated surface waters whereas As(III) and Sb(III) are stable in anoxic settings. Numerous studies have examined microbiological redox pathways that utilize As(V) as a terminal electron acceptor for anaerobic respiration, however there have been few studies on microbial mechanisms that may affect the biogeochemical cycling of Sb in the environment. Here we report bacterial reduction of Sb(V) to Sb(III) in anoxic enrichment cultures and bacterial isolates grown from sediment collected from an Sb contaminated pond at a mine tailings site in Idaho (total pond water Sb concentration = 235.2 +/- 136.3 ug/L). Anaerobic sediment microcosms (40 mL) were established in artificial freshwater mineral salt medium, amended with millimolar concentrations of Sb(V), acetate or lactate, and incubated at 27°C for several days. Antimony(V), lactate, and acetate concentrations were monitored during incubation by High Performance Liquid Chromatography (HPLC) and Ion Chromatography (IC). Live sediment microcosms reduced millimolar amendments of Sb(V) to Sb(III) coupled to the oxidation of acetate and lactate, while no activity occurred in killed controls. Enrichment cultures were established by serially diluting Sb(V)-reducing microcosms in mineral salt medium with Sb(V) and acetate, and a Sb(V)-reducing bacterial strain was isolated by plating on anaerobic agar plates amended with millimolar Sb(V) and acetate. Direct cell counting demonstrated that this isolate exhibited Sb(V)-dependent heterotrophic growth. These results suggest that the endogenous microbial community from this Sb-contaminated site includes anaerobic microorganisms capable of obtaining energy for growth by oxidizing heterotrophic electron donors using Sb(V) as the terminal electron acceptor. Ongoing work includes identification of the isolated organism using 16S rDNA phylogenetic markers as well as an inventory of known functional genes (e.g., arrA) within this isolate that may more typically encode for As(V)-reduction. These results elucidate the potentially significant role of microbiological transformations in controlling the speciation of Sb in the environment, and may help to identify potential bioremediation strategies for Sb contaminated waters.

  17. Lemna paucicostata Hegelm. 6746

    PubMed Central

    Datko, Anne H.; Mudd, S. Harvey; Giovanelli, John

    1980-01-01

    Photoautotrophic and mixotrophic growth of Lemna paucicostata Hegelm. 6746 (formerly Lemna perpusilla Torr. 6746) was investigated to establish standardized conditions for biochemical studies. Optimal temperature for growth was 29 to 30 C. The medium used previously (Datko AH, Mudd SH, Giovanelli J 1977 J Biol Chem 252: 3436-3445) was modified by inclusion of NH4Cl, decreasing macronutrient and ethylenediamine tetraacetate concentration, increasing micronutrient concentration, and inclusion of bicarbonate (for photoautotrophic growth) or 2-(N-morpholino)ethanesulfonic acid (for mixotrophic growth) buffers. Varying the sulfate concentration between 14 and 1 millimolar had no effect on growth. For photoautotrophic growth in the new medium (medium 4), the effects of CO2 concentration, light intensity, and pH were measured. Under the optimal conditions, a multiplication rate (MR) of 300 to 315, equivalent to a doubling time of 23 to 24 hours was obtained. Addition of glutamine or asparagine did not increase this MR. For mixotrophic growth in low light, the effects of sucrose concentration and pH were determined. Under optimal conditions, MR was 210. A concentration of sucrose less than maximal for growth was chosen for the medium for experiments which will include 14C-labeling of intermediates. MR under these conditions was 184. Growth was equally good in medium 4 and in half-strength Hutner's medium when sulfate was high (0.4 to 1 millimolar), but better in medium 4 when sulfate was low (20 micromolar). Growth rates could be restored to normal in half-strength Hutner's with low sulfate by decreasing the molybdate concentration. By modifying medium 4 to contain very low amounts of sulfate, and by preconditioning medium and plants, it was shown that there was an increment in plant protein of approximately 2.5 micrograms per nanomole of added MgSO4. Colonies undergoing sulfur limitation exhibited a slow growth rate and a high frond to colony ratio. Molybdate and selenate produced growth inhibition reversible by sulfate. Conditions were developed in which the plants could be maintained indefinitely in the presence of either molybdate or selenate in altered metabolic steady-states with lowered growth rates and protein per frond. Images PMID:16661306

  18. Screening a fragment cocktail library using ultrafiltration

    PubMed Central

    Shibata, Sayaka; Zhang, Zhongsheng; Korotkov, Konstantin V.; Delarosa, Jaclyn; Napuli, Alberto; Kelley, Angela M.; Mueller, Natasha; Ross, Jennifer; Zucker, Frank H.; Buckner, Frederick S.; Merritt, Ethan A.; Verlinde, Christophe L. M. J.; Van Voorhis, Wesley C.; Hol, Wim G. J.; Fan, Erkang

    2011-01-01

    Ultrafiltration provides a generic method to discover ligands for protein drug targets with millimolar to micromolar Kd, the typical range of fragment-based drug discovery. This method was tailored to a 96-well format, and cocktails of fragment-sized molecules, with molecular masses between 150 and 300 Da, were screened against medical structural genomics target proteins. The validity of the method was confirmed through competitive binding assays in the presence of ligands known to bind the target proteins. PMID:21750879

  19. Trace element intakes and dietary phytate/Zn and Ca x phytate/Zn millimolar ratios of periurban Guatemalan women during the third trimester of pregnancy.

    PubMed

    Fitzgerald, S L; Gibson, R S; Quan de Serrano, J; Portocarrero, L; Vasquez, A; de Zepeda, E; Lopez-Palacios, C Y; Thompson, L U; Stephen, A M; Solomons, N W

    1993-02-01

    Repeated 24-h recalls (9-14/subject) were conducted on 52 periurban Guatemalan pregnant women aged 25 +/- 5 y (means +/- SD). Intakes of energy, protein, calcium, zinc, copper, manganese, nonstarch polysaccharide (NSP), phytate, and millimolar ratios of phytate to zinc and (calcium x phytate) to zinc were calculated from food-composition values on the basis of chemical analysis and the literature. Mean (+/- SD) daily intakes were as follows: energy 8694 +/- 1674 kJ, protein 63.0 +/- 13.3 g, calcium 727 +/- 163, zinc 11.3 +/- 2.7, copper 1.3 +/- 0.3, manganese 2.8 +/- 0.6, phytate 2254 +/- 773 mg/d, NSP 26.6 +/- 6.9 g, phytate/zinc 18.8 +/- 4.2, (calcium x phytate)/zinc 706 +/- 21 mmol/MJ. Ninety-four percent had zinc intakes below the recommendations (15 mg) of WHO and the US recommended dietary allowances, assuming 20% absorption. Tortillas were a major source of zinc (46%), copper (20%), manganese (23%), calcium (39%), phytate (68%), and NSP (50%); 19% zinc from flesh foods. Thirty-eight percent had phytate-zinc ratios > 20; 94% had millimolar ratios of (calcium x phytate) to zinc per MJ > or = 22. The high prevalence of millimolar ratios of phytate to zinc and (calcium x phytate) to zinc per MJ above 20 and 22, respectively, may compromise zinc nutriture.

  20. Electrochemical MIP-Sensors for Drugs.

    PubMed

    Yarman, Aysu; Kurbanoglu, Sevinc; Jetzschmann, Katharina J; Ozkan, Sibel A; Wollenberger, Ulla; Scheller, Frieder

    2017-10-05

    In order to replace bio-macromolecules by stable synthetic materials in separation techniques and bioanalysis biomimetic receptors and catalysts have been developed: Functional monomers are polymerized together with the target analyte and after template removal cavities are formed in the "molecularly imprinted polymer" (MIP) which resemble the active sites of antibodies and enzymes. Staring almost 80 years ago, around 1,100 papers on MIPs were published in 2016. Electropolymerization allows to deposit MIPs directly on voltammetric electrodes or chips for quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). For the readout of MIPs for drugs amperometry, differential pulse voltammetry (DPV) and impedance spectroscopy (EIS) offer higher sensitivity as compared with QCM or SPR. Application of simple electrochemical devices allows both the reproducible preparation of MIP sensors, but also the sensitive signal generation. Electrochemical MIP-sensors for the whole arsenal of drugs, e.g. the most frequently used analgesics, antibiotics and anticancer drugs have been presented in literature and tested under laboratory conditions. These biomimetic sensors typically have measuring ranges covering the lower nano- up to millimolar concentration range and they are stable under extreme pH and in organic solvents like non-aqueous extracts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Regulation of Chloroplastic Carbonic Anhydrase 1

    PubMed Central

    Porter, Michael A.; Grodzinski, Bernard

    1983-01-01

    It was previously reported that magnesium ion inhibited carbonic anhydrase (Bamberger and Avron 1975 Plant Physiol 56: 481-485). Studies with partially purified carbonic anhydrase from spinach (Spinacia oleracea L.) chloroplasts show that the effect was the result of the chloride counterion and not the magnesium ion. Enzyme activity was reduced 50% upon addition of 3 to 10 millimolar MgCl2 or KCl while all additions of MgSO4 between 0.3 and 10 millimolar were mildly stimulatory. PMID:16663052

  2. The inhibition of methane hydrate formation by water alignment underneath surface adsorption of surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ngoc N.; Nguyen, Anh V.; Dang, Liem X.

    Sodium dodecyl sulfate (SDS) has been widely shown to strongly promote the formation of methane hydrate. Here we show that SDS displays an extraordinary inhibition effect on methane hydrate formation when the surfactant is used in sub-millimolar concentration (around 0.3 mM). We have also employed Sum Frequency Generation vibrational spectroscopy (SFG) and molecular dynamics simulation (MDS) to elucidate the molecular mechanism of this inhibition. The SFG and MDS results revealed a strong alignment of water molecules underneath surface adsorption of SDS in its sub-millimolar solution. Interestingly, both the alignment of water and the inhibition effect (in 0.3 mM SDS solution)more » went vanishing when an oppositely-charged surfactant (tetra-n-butylammonium bromide, TBAB) was suitably added to produce a mixed solution of 0.3 mM SDS and 3.6 mM TBAB. Combining structural and kinetic results, we pointed out that the alignment of water underneath surface adsorption of dodecyl sulfate (DS-) anions gave rise to the unexpected inhibition of methane hydration formation in sub-millimolar solution of SDS. The adoption of TBAB mitigated the SDS-induced electrostatic field at the solution’s surface and, therefore, weakened the alignment of interfacial water which, in turn, erased the inhibition effect. We discussed this finding using the concept of activation energy of the interfacial formation of gas hydrate. The main finding of this work is to reveal the interplay of interfacial water in governing gas hydrate formation which sheds light on a universal molecular-scale understanding of the influence of surfactants on gas hydrate formation. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less

  3. Mechanosensory calcium-selective cation channels in epidermal cells

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    This paper explores the properties and likely functions of an epidermal Ca(2+)-selective cation channel complex activated by tension. As many as eight or nine linked or linkable equivalent conductance units or co-channels can open together. Open time for co-channel quadruplets and quintuplets tends to be relatively long with millimolar Mg2+ (but not millimolar Ca2+) at the cytosolic face of excised plasma membrane. Sensitivity to tension is regulated by transmembrane voltage and temperature. Under some circumstances channel activity is sychronized in rhythmic pulses. Certain lanthanides and a cytoskeleton-disturbing herbicide that inhibit gravitropic reception act on the channel system at low concentrations. Specifically, ethyl-N-phenylcarbamate promotes tension-dependent activity at micromolar levels. With moderate suction, Gd3+ provided at about 0.5 micromole at the extracellular face of the membrane promotes for several seconds but may then become inhibitory. Provision at 1-2 micromoles promotes and subsequently inhibits more vigorously (often abruptly and totally), and at high levels inhibits immediately. La3+, a poor gravitropic inhibitor, acts similarly but much more gradually and only at much higher concentrations. These properties, particularly these susceptibilities to modulation, indicate that in vivo the mechanosensitive channel must be mechanosensory and mechanoregulatory. It could serve to transduce the shear forces generated in the integrated wall-membrane-cytoskeleton system during turgor changes and cell expansion as well as transducing the stresses induced by gravity, touch and flexure. In so far as such transduction is modulated by voltage and temperature, the channels would also be sensors for these modalities as long as the wall-membrane-cytoskeleton system experiences mechanical stress.

  4. Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells

    NASA Astrophysics Data System (ADS)

    Wang, Yuchi; Mao, Hua; Wong, Lid B.

    2010-02-01

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl-]i) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl-]i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl-]i. Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl-]i. These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  5. Cellular glutathione levels in HL-60 cells during respiratory burst are not correlated with ultra-weak photon emission.

    PubMed

    Burgos, Rosilene Cristina Rossetto; Zhang, Wei; van Wijk, Eduard P A; Hankemeier, Thomas; Ramautar, Rawi; van der Greef, Jan

    2017-10-01

    Recently, ultra-weak photon emission (UPE) was developed as a novel tool for measuring oxidative metabolic processes, as its generation is related to reactive oxygen species (ROS). Both an imbalance in ROS or the uncontrolled production of ROS can lead to oxidative stress, which is commonly associated with many diseases. In addition to playing several biological functions, the thiol amino acid glutathione has an important antioxidant function in the body's defense against ROS. Specifically, glutathione is an important endogenous antioxidant that helps maintain oxidant levels. At the cellular level, glutathione is present in its reduced form (GSH) at relatively high concentrations (in the millimolar range) and in its oxidized form (GSSG) at low concentrations (in the micromolar range). Thus, the GSH/GSSG ratio is often used as an indicator of cellular redox state. Here, we used the HL-60 cell line as a model system in order to determine whether UPE is correlated with intracellular GSH and GSSG levels. HL-60 cells were differentiated into neutrophil-like cells and then stimulated to undergo respiratory burst. We then recorded UPE in real time for 9000 seconds and used capillary electrophoresis coupled to mass spectrometry to measure GSH and GSSG levels in cell extracts. We found that although respiratory burst significantly decreased the GSH/GSSG ratio, this change was not significantly correlated with the UPE profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Movement of Cations through Cuticles of Citrus aurantium and Acer saccharum1

    PubMed Central

    Tyree, Melvin T.; Tabor, Christopher A.; Wescott, Charles R.

    1990-01-01

    We examined some biophysical mechanisms of ion migration across leaf cuticles enzymatically isolated from Acer saccharum L. and Citrus aurantium L. leaves. Diffusion potential measurements were used to calculate the permeabilities of Cl-, Li+, Na+, and Cs+ ions all as a ratio with respect to the permeability of K+ in cuticles. In 2 millimolar ionic strength solutions the permeability sequence from high to low was K = Cs > Na > Li » Cl. When the outer and inner surfaces of cuticles were bathed in artificial precipitation and artificial apoplast, respectively, diffusion potentials ranging from −52 to −91 millivolts were measured (inside negative). The Goldman equation predicted that the measured potentials were enough to increase the driving force on the accumulation of heavy metals by a factor of 4 to 7. Other ions migrate with forces 3 to 10 times less than predicted by the Goldman equation for concentration differences alone. Our analysis showed that Ca2+, and perhaps Mg2+, might even be accumulated against concentration gradients under some circumstances. Their uptake was apparently driven by the diffusion potentials created by the outward migration of monovalent salts. We feel that future models predicting leaching of nutrients from trees during acid rain events must be modified to account for the probable influence of diffusion potentials on ion migration. PMID:16667677

  7. Compartmental efflux analysis and removal of extracellular cadmium from roots. [Agrostis gigantea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauser, W.E.

    1987-09-01

    Profiles of /sup 109/Cd efflux from roots into three solutions were determined for young intact plants of Agrostis gigantea and maize. The solutions were (a) nutrient culture medium containing 3 micromolar Cd at room temperature, (b) ice-cold 5 millimolar CaCl/sub 2/, and (c) ice-cold 5 millimolar PbCl/sub 2/. Efflux profiles were clearly resolved into three easily discernible components having fast, medium, and slow exchange rates. These results were unexpected for the situation where some intracellular Cd was present both as extractable Cd-binding peptide and in electron-dense granules within the cytoplasm and the vacuoles. Adding a fourth compartment to the curve-fittingmore » model produced a splitting of the fast exchanging component. Use of these efflux kinetics to estimate Cd fluxes through membranes was inappropriate. However, they were useful in determining optimal washing times for the removal of extracellular Cd. A 10 minute wash in ice-cold 5 millimolar CaCl/sub 2/ is recommended for this purpose for Agrostis and maize roots.« less

  8. A Dual Electrochemical Sensor Based on a Test-strip Assay for the Quantitative Determination of Albumin and Creatinine.

    PubMed

    Yasukawa, Tomoyuki; Kiba, Yuya; Mizutani, Fumio

    2015-01-01

    A dual-electrochemical sensor based on a test-strip assay with immunochemistry and enzyme reactions has been developed for the determination of albumin and creatinine. Each nitrocellulose membrane with an immobilization area of an anti-albumin antibody or three enzymes was prepared in the device with three working electrodes for measuring albumin, creatinine, and ascorbic acid, as well as an Ag/AgCl electrode used as a counter/pseudo-reference electrode. The reactions of three enzymes were initiated by flowing a solution containing creatinine to detect an oxidation current of hydrogen peroxide. A sandwich-type immunocomplex was formed by albumin and antibody labeled with glucose oxidase (GOx). Captured GOx catalyzed the reduction of Fe(CN)6(3-) to Fe(CN)6(4-), which was oxidized electrochemically to determine the captured albumin. The responses for creatinine and albumin increased with the concentrations in millimolar order and over the range 18.75 - 150 μg mL(-1), respectively. The present sensor would be a distinct demonstration for producing quantitative dual-assays for various biomolecules used for clinical diagnoses.

  9. Purple non-sulfur photosynthetic bacteria monitor environmental stresses.

    PubMed

    Kis, Mariann; Sipka, Gábor; Asztalos, Emese; Rázga, Zsolt; Maróti, Péter

    2015-10-01

    Heavy metal ion pollution and oxygen deficiency are major environmental risks for microorganisms in aqueous habitat. The potential of purple non-sulfur photosynthetic bacteria for biomonitoring and bioremediation was assessed by investigating the photosynthetic capacity in heavy metal contaminated environments. Cultures of bacterial strains Rhodobacter sphaeroides, Rhodospirillum rubrum and Rubrivivax gelatinosus were treated with heavy metal ions in micromolar (Hg(2+)), submillimolar (Cr(6+)) and millimolar (Pb(2+)) concentration ranges. Functional assays (flash-induced absorption changes and bacteriochlorophyll fluorescence induction) and electron micrographs were taken to specify the harmful effects of pollution and to correlate to morphological changes of the membrane. The bacterial strains and functional tests showed differentiated responses to environmental stresses, revealing that diverse mechanisms of tolerance and/or resistance are involved. The microorganisms were vulnerable to the prompt effect of Pb(2+), showed weak tolerance to Hg(2+) and proved to be tolerant to Cr(6+). The reaction center controlled electron transfer in Rvx. gelatinosus demonstrated the highest degree of resistance against heavy metal exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Taurine-induced attenuation of MPP+ neurotoxicity in vitro: a possible role for the GABA(A) subclass of GABA receptors.

    PubMed

    O'Byrne, M B; Tipton, K F

    2000-05-01

    Taurine is a sulphur-containing beta-amino acid found in high (millimolar) concentrations in excitable tissues such as brain and heart. Its suggested roles include osmoregulator, thermoregulator, neuromodulator, and potential neurotransmitter. This amino acid has also been shown to be released in large concentrations during ischaemia and excitotoxin-induced neuronal damage. Here we report a protective effect of taurine against MPP(+)-induced neurotoxicity in coronal slices from rat brain. Significant protective effects were observed at taurine concentrations of 20 and 1 mM, suggesting a potential role for taurine in cases of neuronal insult. Studies with the synthetic taurine analogues taurine phosphonate, guanidinoethane sulphonate, and trimethyltaurine suggested the observed effect to be mediated via an extracellular mechanism. The use of GABA receptor ligands muscimol and bicuculline indicated the effect to be mediated through activation of GABA(A) receptors.

  11. A Supramolecular Ice Growth Inhibitor.

    PubMed

    Drori, Ran; Li, Chao; Hu, Chunhua; Raiteri, Paolo; Rohl, Andrew L; Ward, Michael D; Kahr, Bart

    2016-10-12

    Safranine O, a synthetic dye, was found to inhibit growth of ice at millimolar concentrations with an activity comparable to that of highly evolved antifreeze glycoproteins. Safranine inhibits growth of ice crystals along the crystallographic a-axis, resulting in bipyramidal needles extended along the <0001> directions as well as and plane-specific thermal hysteresis (TH) activity. The interaction of safranine with ice is reversible, distinct from the previously reported behavior of antifreeze proteins. Spectroscopy and molecular dynamics indicate that safranine forms aggregates in aqueous solution at micromolar concentrations. Metadynamics simulations and aggregation theory suggested that as many as 30 safranine molecules were preorganized in stacks at the concentrations where ice growth inhibition was observed. The simulations and single-crystal X-ray structure of safranine revealed regularly spaced amino and methyl substituents in the aggregates, akin to the ice-binding site of antifreeze proteins. Collectively, these observations suggest an unusual link between supramolecular assemblies of small molecules and functional proteins.

  12. Ammonium in thermal waters of Yellowstone National Park: processes affecting speciation and isotope fractionation

    USGS Publications Warehouse

    Holloway, J.M.; Nordstrom, D. Kirk; Böhlke, J.K.; McCleskey, R. Blaine; Ball, J.W.

    2011-01-01

    Dissolved inorganic nitrogen, largely in reduced form (NH4(T)≈NH4(aq)++NH3(aq)o), has been documented in thermal waters throughout Yellowstone National Park, with concentrations ranging from a few micromolar along the Firehole River to millimolar concentrations at Washburn Hot Springs. Indirect evidence from rock nitrogen analyses and previous work on organic compounds associated with Washburn Hot Springs and the Mirror Plateau indicate multiple sources for thermal water NH4(T), including Mesozoic marine sedimentary rocks, Eocene lacustrine deposits, and glacial deposits. A positive correlation between NH4(T) concentration and δ18O of thermal water indicates that boiling is an important mechanism for increasing concentrations of NH4(T) and other solutes in some areas. The isotopic composition of dissolved NH4(T) is highly variable (δ15N = −6‰ to +30‰) and is positively correlated with pH values. In comparison to likely δ15N values of nitrogen source materials (+1‰ to +7‰), high δ15N values in hot springs with pH >5 are attributed to isotope fractionation associated with NH3(aq)o loss by volatilization. NH4(T) in springs with low pH typically is relatively unfractionated, except for some acid springs with negative δ15N values that are attributed to NH3(g)o condensation. NH4(T) concentration and isotopic variations were evident spatially (between springs) and temporally (in individual springs). These variations are likely to be reflected in biomass and sediments associated with the hot springs and outflows. Elevated NH4(T) concentrations can persist for 10s to 1000s of meters in surface waters draining hot spring areas before being completely assimilated or oxidized.

  13. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adámik, Matej; Bažantová, Pavla; Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava

    Highlights: • DNA binding of p53 family core domains is inhibited by cadmium, cobalt and nickel. • Binding to DNA protects p53 family core domains from metal induced inhibition. • Cadmium, cobalt and nickel induced inhibition was reverted by EDTA in vitro. - Abstract: Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt,more » which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50 μM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA–protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA–p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed.« less

  14. Influence of dilution water ionic composition on acute major ion toxicity to the mayfly Neocloeon triangulifer.

    PubMed

    Soucek, David J; Mount, David R; Dickinson, Amy; Hockett, J Russell

    2018-05-01

    Field and laboratory studies have shown that mayflies (Ephemeroptera) tend to be relatively sensitive to elevated major ion concentrations, but little is known about how ionic composition influences these responses. The present study evaluated the acute toxicity of major ion salts to the mayfly Neocloeon triangulifer over a range of background water quality conditions. The mayfly was particularly sensitive to Na 2 SO 4 , with the median lethal concentration (LC50) of 1338 mg SO 4 /L being lower than LC50s reported for 7 other species at that hardness. Increasing hardness of the dilution water from 30 to 150 mg/L (as CaCO 3 ) resulted in doubling of LC50s for sodium salts, and an approximately 1.5-fold increase in LC50 for MgSO 4 . Potassium salt toxicity was not strongly influenced by hardness, consistent with findings for other species. When hardness was held constant but the Ca to Mg ratio was manipulated, the ameliorative effect on Na 2 SO 4 and NaCl did not appear as strong as when hardness was varied; but for MgSO 4 the amelioration relative to Ca activity was similar between the 2 experiments. The toxicity of K salts to N. triangulifer was similar to Na salts on a millimolar basis, which contrasts with several other species for which K salts have been much more toxic. In addition, the toxicity of KCl to N. triangulifer was not notably affected by Na concentration, as has been shown for Ceriodaphnia dubia. Finally, plotting LC50s in terms of ion activity (Cl, SO 4 , Na, Mg, or K) over the range of Ca activities in dilution water resulted in significant positive relationships, with comparable slopes to those previously observed for C. dubia over the same range of Ca activities. Environ Toxicol Chem 2018;37:1330-1339. © 2018 SETAC. © 2018 SETAC.

  15. An experimental phantom study of the effect of gadolinium-based MR contrast agents on PET attenuation coefficients and PET quantification in PET-MR imaging: application to cardiac studies.

    PubMed

    O' Doherty, Jim; Schleyer, Paul

    2017-12-01

    Simultaneous cardiac perfusion studies are an increasing trend in PET-MR imaging. During dynamic PET imaging, the introduction of gadolinium-based MR contrast agents (GBCA) at high concentrations during a dual injection of GBCA and PET radiotracer may cause increased attenuation effects of the PET signal, and thus errors in quantification of PET images. We thus aimed to calculate the change in linear attenuation coefficient (LAC) of a mixture of PET radiotracer and increasing concentrations of GBCA in solution and furthermore, to investigate if this change in LAC produced a measurable effect on the image-based PET activity concentration when attenuation corrected by three different AC strategies. We performed simultaneous PET-MR imaging of a phantom in a static scenario using a fixed activity of 40 MBq [18 F]-NaF, water, and an increasing GBCA concentration from 0 to 66 mM (based on an assumed maximum possible concentration of GBCA in the left ventricle in a clinical study). This simulated a range of clinical concentrations of GBCA. We investigated two methods to calculate the LAC of the solution mixture at 511 keV: (1) a mathematical mixture rule and (2) CT imaging of each concentration step and subsequent conversion to LAC at 511 keV. This comparison showed that the ranges of LAC produced by both methods are equivalent with an increase in LAC of the mixed solution of approximately 2% over the range of 0-66 mM. We then employed three different attenuation correction methods to the PET data: (1) each PET scan at a specific millimolar concentration of GBCA corrected by its corresponding CT scan, (2) each PET scan corrected by a CT scan with no GBCA present (i.e., at 0 mM GBCA), and (3) a manually generated attenuation map, whereby all CT voxels in the phantom at 0 mM were replaced by LAC = 0.1 cm -1 . All attenuation correction methods (1-3) were accurate to the true measured activity concentration within 5%, and there were no trends in image-based activity concentrations upon increasing the GBCA concentration of the solution. The presence of high GBCA concentration (representing a worst-case scenario in dynamic cardiac studies) in solution with PET radiotracer produces a minimal effect on attenuation-corrected PET quantification.

  16. Relationship between Glycolysis and Exopolysaccharide Biosynthesis in Lactococcus lactis

    PubMed Central

    Ramos, Ana; Boels, Ingeborg C.; de Vos, Willem M.; Santos, Helena

    2001-01-01

    The relationships between glucose metabolism and exopolysaccharide (EPS) production in a Lactococcus lactis strain containing the EPS gene cluster (Eps+) and in nonproducer strain MG5267 (Eps−) were characterized. The concentrations of relevant phosphorylated intermediates in EPS and cell wall biosynthetic pathways or glycolysis were determined by 31P nuclear magnetic resonance. The concentrations of two EPS precursors, UDP-glucose and UDP-galactose, were significantly lower in the Eps+ strain than in the Eps− strain. The precursors of the peptidoglycan pathway, UDP-N-acetylglucosamine and UDP-N-acetylmuramoyl-pentapeptide, were the major UDP-sugar derivatives detected in the two strains examined, but the concentration of the latter was greater in the Eps+ strain, indicating that there is competition between EPS synthesis and cell growth. An intermediate in biosynthesis of histidine and nucleotides, 5-phosphorylribose 1-pyrophosphate, accumulated at concentrations in the millimolar range, showing that the pentose phosphate pathway was operating. Fructose 1,6-bisphosphate and glucose 6-phosphate were the prominent glycolytic intermediates during exponential growth of both strains, whereas in the stationary phase the main metabolites were 3-phosphoglyceric acid, 2-phosphoglyceric acid, and phosphoenolpyruvate. The activities of relevant enzymes, such as phosphoglucose isomerase, α-phosphoglucomutase, and UDP-glucose pyrophosphorylase, were identical in the two strains. 13C enrichment on the sugar moieties of pure EPS showed that glucose 6-phosphate is the key metabolite at the branch point between glycolysis and EPS biosynthesis and ruled out involvement of the triose phosphate pool. This study provided clues for ways to enhance EPS production by genetic manipulation. PMID:11133425

  17. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations

    PubMed Central

    2014-01-01

    Background Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Methods Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. Results The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. Conclusions For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates. PMID:24401763

  18. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations.

    PubMed

    Dobaradaran, Sina; Lutze, Holger; Mahvi, Amir Hossein; Schmidt, Torsten C

    2014-01-08

    Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates.

  19. Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry.

    PubMed Central

    Nettleton, E J; Tito, P; Sunde, M; Bouchard, M; Dobson, C M; Robinson, C V

    2000-01-01

    The self-assembly and aggregation of insulin molecules has been investigated by means of nanoflow electrospray mass spectrometry. Hexamers of insulin containing predominantly two, but up to four, Zn(2+) ions were observed in the gas phase when solutions at pH 4.0 were examined. At pH 3.3, in the absence of Zn(2+), dimers and tetramers are observed. Spectra obtained from solutions of insulin at millimolar concentrations at pH 2.0, conditions under which insulin is known to aggregate in solution, showed signals from a range of higher oligomers. Clusters containing up to 12 molecules could be detected in the gas phase. Hydrogen exchange measurements show that in solution these higher oligomers are in rapid equilibrium with monomeric insulin. At elevated temperatures, under conditions where insulin rapidly forms amyloid fibrils, the concentration of soluble higher oligomers was found to decrease with time yielding insoluble high molecular weight aggregates and then fibrils. The fibrils formed were examined by electron microscopy and the results show that the amorphous aggregates formed initially are converted to twisted, unbranched fibrils containing several protofilaments. Fourier transform infrared spectroscopy shows that both the soluble form of insulin and the initial aggregates are predominantly helical, but that formation of beta-sheet structure occurs simultaneously with the appearance of well-defined fibrils. PMID:10920035

  20. Bioremediation of 60Co from simulated spent decontamination solutions.

    PubMed

    Rashmi, K; Sowjanya, T Naga; Mohan, P Maruthi; Balaji, V; Venkateswaran, G

    2004-07-26

    Bioremediation of 60Co from simulated spent decontamination solutions by utilizing different biomass of (Neurospora crassa, Trichoderma viridae, Mucor recemosus, Rhizopus chinensis, Penicillium citrinum, Aspergillus niger and, Aspergillus flavus) fungi is reported. Various fungal species were screened to evaluate their potential for removing cobalt from very low concentrations (0.03-0.16 microM) in presence of a high background of iron (9.33 mM) and nickel (0.93 mM) complexed with EDTA (10.3 mM). The different fungal isolates employed in this study showed a pickup of cobalt in the range 8-500 ng/g of dry biomass. The [Fe]/[Co] and [Ni]/[Co] ratios in the solutions before and after exposure to the fungi were also determined. At micromolar level the cobalt pickup by many fungi especially the mutants of N. crassa is seen to be proportional to the initial cobalt concentration taken in the solution. However, R. chinensis exhibits a low but iron concentration dependent cobalt pickup. Prior saturating the fungi with excess of iron during their growth showed the presence of selective cobalt pickup sites. The existence of cobalt specific sorption sites is shown by a model experiment with R. chinensis wherein at a constant cobalt concentration (0.034 microM) and varying iron concentrations so as to yield [Fe/Co]initial ratios in solution of 10, 100, 1000 and 287000 have all yielded a definite Co pickup capacity in the range 8-47 ng/g. The presence of Cr(III)EDTA (3 mM) in solution along with complexed Fe and Ni has not influenced the cobalt removal. The significant feature of this study is that even when cobalt is present in trace level (sub-micromolar) in a matrix of high concentration (millimolar levels) of iron, nickel and chromium, a situation typically encountered in spent decontamination solutions arising from stainless steel based primary systems of nuclear reactors, a number of fungi studied in this work showed a good sensitivity for cobalt pickup. Copyright 2004 Elsevier B.V.

  1. The dopamine precursor L-dihydroxyphenylalanine is transported by the amino acid transporters rBAT and LAT2 in renal cortex.

    PubMed

    Quiñones, Henry; Collazo, Roberto; Moe, Orson W

    2004-07-01

    The intrarenal autocrine-paracrine dopamine (DA) system is critical for Na(+) homeostasis. l-Dihydroxyphenylalanine (l-DOPA) uptake from the glomerular filtrate and plasma provides the substrate for DA generation by the renal proximal tubule. The transporter(s) responsible for proximal tubule l-DOPA uptake has not been characterized. Renal cortical poly-A(+) RNA injected into Xenopus laevis oocytes induced l-DOPA uptake in a time- and dose-dependent fashion with biphasic K(m)s in the millimolar and micromolar range and independent of inward Na(+), K(+), or H(+) gradients, suggesting the presence of low- and high-affinity l-DOPA carriers. Complementary RNA from two amino acid transporters yielded l-DOPA uptake significantly above water-injected controls the rBAT/b(0,+)AT dimer (rBAT) and the LAT2/4F2 dimer (LAT2). In contradistinction to renal cortical poly-A(+), l-DOPA kinetics of rBAT and LAT2 showed classic Michaelis-Menton kinetics with K(m)s in the micromolar and millimolar range, respectively. Sequence-specific antisense oligonucleotides to rBAT or LAT2 (AS) caused inhibition of rBAT and LAT2 cRNA-induced l-DOPA transport and cortical poly-A(+)-induced arginine and phenylalanine transport. However, the same ASs only partially blocked poly-A(+)-induced l-DOPA transport. In cultured kidney cells, silencing inhibitory RNA (siRNA) to rBAT significantly inhibited l-DOPA uptake. We conclude that rBAT and LAT2 can mediate apical and basolateral l-DOPA uptake into the proximal tubule, respectively. Additional l-DOPA transport mechanisms exist in the renal cortex that remain to be identified.

  2. The uptake of NO3-, NO2-, and NH4+ by intact wheat (Triticum aestivum) seedlings. I. Induction and kinetics of transport systems

    NASA Technical Reports Server (NTRS)

    Goyal, S. S.; Huffaker, R. C.

    1986-01-01

    The inducibility and kinetics of the NO3-, NO2-, and NH4+ transporters in roots of wheat seedlings (Triticum aestivum cv Yercora Rojo) were characterized using precise methods approaching constant analysis of the substrate solutions. A microcomputer-controlled automated high performance liquid chromatography system was used to determine the depletion of each N species (initially at 1 millimolar) from complete nutrient solutions. Uptake rate analyses were performed using computerized curve-fitting techniques. More precise estimates were obtained for the time required for the extent of the induction of each transporter. Up to 10 and 6 hours, respectively, were required to achieve apparent full induction of the NO3- and NO2- transporters. Evidence for substrate inducibility of the NH4+ transporters requiring 5 hours is presented. The transport of NO3- was mediated by a dual system (or dual phasic), whereas only single systems were found for transport of NO2- and NH4+. The Km values for NO3-, NO2-, and NH4+ were, respectively, 0.027, 0.054, and 0.05 millimolar. The Km for mechanism II of NO3- transport could not be defined in this study as it exhibited only apparent first order kinetics up to 1 millimolar.

  3. Effect of xenon on the excited states of phototropic receptor flavin in corn seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vierstra, R.D.; Poff, K.L.; Walker, E.B.

    1981-05-01

    The chemically inert, water-soluble heavy atom gas, xenon, at millimolar concentrations specifically quenches the triplet excited state of flavin in solution without quenching the flavin singlet excited state. The preferential quenching of the flavin triplet over the singlet excited state by Xe has been established by showing that the flavin triplet-sensitized photooxidation of NADH is inhibited while the fluorescence intensity and lifetime of flavin are not affected by Xe. No significant inhibition of phototropism and geotropism by Xe was observed, suggesting that a flavin singlet state is more likely involved than the triplet state in the primary photoprocess of phototropismmore » in corn.« less

  4. NMR at earth's magnetic field using para-hydrogen induced polarization.

    PubMed

    Hamans, Bob C; Andreychenko, Anna; Heerschap, Arend; Wijmenga, Sybren S; Tessari, Marco

    2011-09-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal equilibrium in the earth's magnetic field. Simultaneous 19F and 1H NMR detection on a sub-milliliter sample of a fluorinated alkyne at millimolar concentration (∼10(18) nuclear spins) was realized with just one single scan. A highly resolved spectrum with a signal/noise ratio higher than 50:1 was obtained without using an auxiliary magnet or any form of radio frequency shielding. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Bicarbonate dependency of betaine synthesis in cultured LLC-PK1 cells.

    PubMed

    Moeckel, G W; Lien, Y H

    1994-03-01

    Betaine, one of the major renal organic osmolytes, is synthesized from choline by choline dehydrogenase (EC 1.1.99.1) and betaine-aldehyde dehydrogenase (EC 1.2.1.8) in the kidney. A recent in vitro study has shown that betaine synthesis by renal cortical homogenate is dependent on millimolar amounts of bicarbonate. The present study was aimed to investigate the bicarbonate dependency of betaine formation in cultured LLC-PK1 cells. The data show that betaine formation increases in accordance with a rise in extracellular bicarbonate levels. The measured quantities of [14C]betaine synthesis ranged from 13.4 +/- 1.5 (4.6 mM HCO3-) to 38.0 +/- 1.4 pmol.micrograms protein-1.h-1 (24 mM HCO3-). The carbonic anhydrase inhibitor acetazolamide, added to the incubation medium to block bicarbonate transport, reduced betaine synthesis from choline by 41-49%. We conclude that betaine synthesis in LLC-PK1 cells is dependent on extracellular bicarbonate levels and is reduced by the inhibition of carbonic anhydrase. Because betaine accumulates in renal medulla during antidiuresis, our observations suggest a possible link between acid-base homeostasis and concentration mechanisms in the kidney.

  6. Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper.

    PubMed

    Martínez-Cordero, M Angeles; Martínez, Vicente; Rubio, Francisco

    2004-10-01

    High-affinity K+ uptake in plants plays a crucial role in K+ nutrition and different systems have been postulated to contribute to the high-affinity K+ uptake. The results presented here with pepper (Capsicum annum) demonstrate that a HAK1-type transporter greatly contributes to the high-affinity K+ uptake observed in roots. Pepper plants starved of K+ for 3 d showed high-affinity K+ uptake (Km of 6 microM K+) that was very sensitive to NH and their roots expressed a high-affinity K+ transporter, CaHAK1, which clusters in group I of the KT/HAK/KUP family of transporters. When expressed in yeast ( Saccharomyces cerevisiae ), CaHAK1 mediated high-affinity K+ and Rb+ uptake with Km values of 3.3 and 1.9 microM, respectively. Rb+ uptake was competitively inhibited by micromolar concentrations of NH and Cs+, and by millimolar concentrations of Na+.

  7. Extracellular Ca2(+)-dependent inducible alkaline phosphatase from extremely halophilic archaebacterium Haloarcula marismortui.

    PubMed Central

    Goldman, S; Hecht, K; Eisenberg, H; Mevarech, M

    1990-01-01

    When starved of inorganic phosphate, the extremely halophilic archaebacterium Haloarcula marismortui produces the enzyme alkaline phosphatase and secretes it to the medium. This inducible extracellular enzyme is a glycoprotein whose subunit molecular mass is 160 kDa, as estimated by sodium dodecyl sulfate-gel electrophoresis. The native form of the enzyme is heterogeneous and composed of multiple oligomeric forms. The enzymatic activity of the halophilic alkaline phosphatase is maximal at pH 8.5, and the enzyme is inhibited by phosphate. Unlike most alkaline phosphatases, the halobacterial enzyme requires Ca2+ and not Zn2+ ions for its activity. Both calcium ions (in the millimolar range) and NaCl (in the molar range) are required for the stability of the enzyme. Images PMID:2123861

  8. The oxygen-centered radicals scavenging activity of sulfasalazine and its metabolites. A direct protection of the bowel.

    PubMed

    Prónai, L; Yukinobu, I; Láng, I; Fehér, J

    1992-01-01

    Oxygen-centered radicals, such as superoxide (O2-) and hydroxyl radicals (.OH) generated by phagocytes have been suggested to be involved in the pathogenesis of chronic inflammations of the bowel, such as Crohn's disease and colitis ulcerosa. Recently, sulfasalazine (SASP) and its metabolites have been reported to exert their effects as a direct scavenger of oxygen-centered radicals in the bowel. To scavenge oxygen-centered radicals in vivo, however, SASP and its metabolites have to react with O2- and/or .OH in vitro very rapidly, furthermore they have to reach an appropriate (possible millimolar) concentration range at the site of inflammation. To test this possibility, we investigated the direct O2- and .OH scavenging activity of SASP and its metabolites using the specific electron paramagnetic resonance/spin trapping method, and we compared the 50% inhibition rates of SASP and its metabolites with their known concentrations in the bowel and in the human plasma. It was found that SASP and its metabolites, such as 5-amino-salicylic acid (5-ASA), and acetyl-5-amino-salicylic acid (AC-5-ASA), but not sulfapyridine (SP) and acetyl-sulfapyridine (Ac-SP) have a direct O2- and .OH scavenging activity in vitro systems. Among the compounds, SASP and 5-ASA can reach a concentration which is appropriate to scavenge oxygen-centered radicals in the bowel but not in the human plasma. It was concluded that the in vivo antiinflammatory effects of SASP and its metabolites are, at least partly, due to the direct oxygen-centered scavenging activity of these drugs.

  9. Choline as an agonist: determination of its agonistic potency on cholinergic receptors.

    PubMed

    Ulus, I H; Millington, W R; Buyukuysal, R L; Kiran, B K

    1988-07-15

    These experiments examined the potency of choline as a cholinergic agonist at both muscarinic and nicotinic receptors in rat brain and peripheral tissues. Choline stimulated the contraction of isolated smooth muscle preparations of the stomach fundus, urinary bladder and trachea and reduced the frequency of spontaneous contractions of the right atrium at high micromolar and low millimolar concentrations. The potency of choline to elicit a biological response varied markedly among these tissues; EC50 values ranged between 0.41 mM in the fundus to 14.45 mM in the atrium. Choline also displaced [3H]quinuclidinyl benzilate binding in a concentration-dependent manner although, again, its potency varied among different brain regions (Ki = 1.2 to 3.5 mM) and peripheral tissues (Ki = 0.28 to 3.00 mM). Choline exhibited a comparable affinity for nicotinic receptors. It stimulated catecholamine release from the vascularly perfused adrenal gland (EC50 = 1.3 mM) and displaced L-[3H]nicotine binding to membrane preparations of brain and peripheral tissues (Ki = 0.38 to 1.17 mM). However, the concentration of choline required to bind to cholinergic receptors in most tissues was considerably higher than serum levels either in controls (8-13 microM) or following the administration of choline chloride (200 microM). These results clearly demonstrate that choline is a weak cholinergic agonist. Its potency is too low to account for the central nervous system effects produced by choline administration, although the direct activation of cholinergic receptors in several peripheral tissues may explain some of its side effects.

  10. Quantification of penicillin G during labor and delivery by capillary electrophoresis.

    PubMed

    Thomas, Andrea; Ukpoma, Omon K; Inman, Jennifer A; Kaul, Anil K; Beeson, James H; Roberts, Kenneth P

    2008-04-24

    In this study, a capillary electrophoresis (CE) method was developed as a means to measure levels of penicillin G (PCN G) in Group B Streptococcus (GBS) positive pregnant women during labor and delivery. Volunteers for this developmental study were administered five million units of PCN G at the onset of labor. Urine, blood, and amniotic fluid samples were collected during labor and post delivery. Samples were semi-purified by solid-phase extraction (SPE) using Waters tC18 SepPak 3cc cartridges with a sodium phosphate/methanol step gradient for elution. Capillary electrophoresis or reversed-phase high-performance liquid chromatography (RP-HPLC) with diode-array absorbance detection were used to separate the samples in less than 30 min. Quantification was accomplished by establishing a calibration curve with a linear dynamic range. The tC18 SPE methodology provided substantial sample clean-up with high recovery yields of PCN G ( approximately 90%). It was found that SPE was critical for maintaining the integrity of the separation column when using RP-HPLC, but was not necessary for sample analysis by CE where no stationary phase is present. Quantification results ranged from millimolar concentrations of PCN G in maternal urine to micromolar concentrations in amniotic fluid. Serum and cord blood levels of PCN G were below quantification limits, which is likely due to the prolonged delay in sample collection after antibiotic administration. These results show that CE can serve as a simple and effective means to characterize the pharmacokinetic distribution of PCN G from mother to unborn fetus during labor and delivery. It is anticipated that similar methodologies have the potential to provide a quick, simple, and cost-effective means of monitoring the clinical efficacy of PCN G and other drugs during pregnancy.

  11. Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue

    PubMed Central

    Halnes, Geir; Mäki-Marttunen, Tuomo; Keller, Daniel; Pettersen, Klas H.; Andreassen, Ole A.

    2016-01-01

    Recorded potentials in the extracellular space (ECS) of the brain is a standard measure of population activity in neural tissue. Computational models that simulate the relationship between the ECS potential and its underlying neurophysiological processes are commonly used in the interpretation of such measurements. Standard methods, such as volume-conductor theory and current-source density theory, assume that diffusion has a negligible effect on the ECS potential, at least in the range of frequencies picked up by most recording systems. This assumption remains to be verified. We here present a hybrid simulation framework that accounts for diffusive effects on the ECS potential. The framework uses (1) the NEURON simulator to compute the activity and ionic output currents from multicompartmental neuron models, and (2) the electrodiffusive Kirchhoff-Nernst-Planck framework to simulate the resulting dynamics of the potential and ion concentrations in the ECS, accounting for the effect of electrical migration as well as diffusion. Using this framework, we explore the effect that ECS diffusion has on the electrical potential surrounding a small population of 10 pyramidal neurons. The neural model was tuned so that simulations over ∼100 seconds of biological time led to shifts in ECS concentrations by a few millimolars, similar to what has been seen in experiments. By comparing simulations where ECS diffusion was absent with simulations where ECS diffusion was included, we made the following key findings: (i) ECS diffusion shifted the local potential by up to ∼0.2 mV. (ii) The power spectral density (PSD) of the diffusion-evoked potential shifts followed a 1/f2 power law. (iii) Diffusion effects dominated the PSD of the ECS potential for frequencies up to several hertz. In scenarios with large, but physiologically realistic ECS concentration gradients, diffusion was thus found to affect the ECS potential well within the frequency range picked up in experimental recordings. PMID:27820827

  12. Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue.

    PubMed

    Halnes, Geir; Mäki-Marttunen, Tuomo; Keller, Daniel; Pettersen, Klas H; Andreassen, Ole A; Einevoll, Gaute T

    2016-11-01

    Recorded potentials in the extracellular space (ECS) of the brain is a standard measure of population activity in neural tissue. Computational models that simulate the relationship between the ECS potential and its underlying neurophysiological processes are commonly used in the interpretation of such measurements. Standard methods, such as volume-conductor theory and current-source density theory, assume that diffusion has a negligible effect on the ECS potential, at least in the range of frequencies picked up by most recording systems. This assumption remains to be verified. We here present a hybrid simulation framework that accounts for diffusive effects on the ECS potential. The framework uses (1) the NEURON simulator to compute the activity and ionic output currents from multicompartmental neuron models, and (2) the electrodiffusive Kirchhoff-Nernst-Planck framework to simulate the resulting dynamics of the potential and ion concentrations in the ECS, accounting for the effect of electrical migration as well as diffusion. Using this framework, we explore the effect that ECS diffusion has on the electrical potential surrounding a small population of 10 pyramidal neurons. The neural model was tuned so that simulations over ∼100 seconds of biological time led to shifts in ECS concentrations by a few millimolars, similar to what has been seen in experiments. By comparing simulations where ECS diffusion was absent with simulations where ECS diffusion was included, we made the following key findings: (i) ECS diffusion shifted the local potential by up to ∼0.2 mV. (ii) The power spectral density (PSD) of the diffusion-evoked potential shifts followed a 1/f2 power law. (iii) Diffusion effects dominated the PSD of the ECS potential for frequencies up to several hertz. In scenarios with large, but physiologically realistic ECS concentration gradients, diffusion was thus found to affect the ECS potential well within the frequency range picked up in experimental recordings.

  13. Stimulation of root elongation and curvature by calcium

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.; Suge, H.

    1992-01-01

    Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms.

  14. Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. [Phaseolus vulgaris L. ; Spinacia oleracea L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loewus, M.W.; Bedgar, D.L.; Saito, Kazumi

    An NADP-dependent dehydrogenase catalyzing the conversion of L-sorbosone to L-ascorbic acid has been isolated from Phaseolus vulgaris L. and Spinacia oleracea L. and partially purified. It is stable at {minus}20{degree}C for up to 8 months. Molecular masses, as determined by gel filtration, were 21 and 29 kilodaltons for bean and spinach enzymes, respectively. K{sub m} for sorbosone were 12 {plus minus} 2 and 18 {plus minus} 2 millimolar and for NADP{sup +}, 0.14 {plus minus} 0.05 and 1.2 {plus minus} 0.5 millimolar, for bean and spinach, respectively. Lycorine, a purported inhibitor of L-ascorbic acid biosynthesis, had no effect on themore » reaction.« less

  15. Ascorbate and low concentrations of FeSO4 induce Ca2+-dependent pore in rat liver mitochondria.

    PubMed

    Brailovskaya, I V; Starkov, A A; Mokhova, E N

    2001-08-01

    Oxidative stress is one of the most frequent causes of tissue and cell injury in various pathologies. The molecular mechanism of mitochondrial damage under conditions of oxidative stress induced in vitro with low concentrations of FeSO4 and ascorbate (vitamin C) was studied. FeSO4 (1-4 microM) added to rat liver mitochondria that were incubated in the presence of 2.3 mM ascorbate induced (with a certain delay) a decrease in membrane potential and high-amplitude swelling. It also significantly decreased the ability of mitochondria to accumulate exogenous Ca2+. All the effects of FeSO4 + ascorbate were essentially prevented by cyclosporin A, a specific inhibitor of the mitochondrial Ca2+-dependent pore (also known as the mitochondrial permeability transition). EGTA restored the membrane potential of mitochondria de-energized with FeSO4 + ascorbate. We hypothesize that oxidative stress induced in vitro with FeSO4 and millimolar concentrations of ascorbate damages mitochondria by inducing the cyclosporin A-sensitive Ca2+-dependent pore in the inner mitochondrial membrane.

  16. Characterization of actin filament severing by actophorin from Acanthamoeba castellanii

    PubMed Central

    1991-01-01

    Actophorin is an abundant 15-kD actinbinding protein from Acanthamoeba that is thought to form a nonpolymerizable complex with actin monomers and also to reduce the viscosity of polymerized actin by severing filaments (Cooper et al., 1986. J. Biol. Chem. 261:477-485). Homologous proteins have been identified in sea urchin, chicken, and mammalian tissues. Chemical crosslinking produces a 1:1 covalent complex of actin and actophorin. Actophorin and profilin compete for crosslinking to actin monomers. The influence of actophorin on the steady-state actin polymer concentration gave a Kd of 0.2 microM for the complex of actophorin with actin monomers. Several new lines of evidence, including assays for actin filament ends by elongation rate and depolymerization rate, show that actophorin severs actin filaments both at steady state and during spontaneous polymerization. This is confirmed by direct observation in the light microscope and by showing that the effects of actophorin on the low shear viscosity of polymerized actin cannot be explained by monomer sequestration. The severing activity of actophorin is strongly inhibited by stoichiometric concentrations of phalloidin or millimolar concentrations of inorganic phosphate. PMID:1757465

  17. Off Label Antiviral Therapeutics for Henipaviruses: New Light Through Old Windows

    PubMed Central

    Aljofan, Mohamad; Lo, Michael K.; Rota, Paul A.; Michalski, Wojtek P.; Mungall, Bruce A.

    2010-01-01

    Hendra and Nipah viruses are recently emerged zoonotic paramyxoviruses for which there is no vaccine or protective therapy available. While a number of experimental therapeutics and vaccines have recently been reported, all of these will require lengthy approval processes, limiting their usefulness in the short term. To address the urgent need for henipavirus therapeutics, a number of currently licensed pharmaceuticals have been evaluated for off label efficacy against henipavirus replication in vitro. Initially it was observed that compounds which released intracellular calcium stores induced a potent inhibition of henipaviruses replication, prompting the evaluation of known drugs with a similar effect on calcium mobilisation. Of the eight compounds randomly selected based on existing literature, seven inhibited virus replication in the micromolar range while the remaining compound also inhibited virus replication but only at millimolar concentrations. Pretreatment experiments with various calcium chelators, channel antagonists or endoplasmic reticulum release inhibitors supported a calcium mediated mechanism of action for five of these compounds. The mechanism of antiviral action for the remaining three compounds is currently unknown. Additionally, a number of other modulators of calcium flux, including calcium channel and calmodulin antagonists also exhibited potent antiviral activity in vitro providing a broad range of potential therapeutic options for the treatment of henipavirus infections. Importantly, as many of these compounds are currently licensed drugs, regulatory approval should be a much more streamlined process, with the caveat that appropriate in vivo efficacy can be demonstrated in animal models. PMID:20668647

  18. Fluorescent determination of chloride in nanoliter samples.

    PubMed

    García, N H; Plato, C F; Garvin, J L

    1999-01-01

    Measurements of Cl- in nanoliter samples, such as those collected during isolated, perfused tubule experiments, have been difficult, somewhat insensitive, and/or require custom-made equipment. We developed a technique using a fluorescent Cl- indicator, 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ), to make these measurements simple and reliable. This is a simple procedure that relies on the selectivity of the dye and the fact that Cl-quenches its fluorescence. To measure millimolar quantities of Cl- in nanoliter samples, we prepared a solution of 0.25 mm SPQ and loaded it into the reservoir of a continuous-flow ultramicrofluorometer, which can be constructed from commercially available components. Samples were injected with a calibrated pipette via an injection port, and the resultant peak fluorescent deflections were recorded. The deflections represent a decrease in fluorescence caused by the quenching effect of the Cl- injected. The method yielded a linear response with Cl- concentrations from 5 to 200 mm NaCl. The minimum detectable Cl- concentration was approximately 5 mm. The coefficient of variation between 5 and 200 mm was 1.7%. Resolution, defined as two times the standard error divided by the slope, between 10 and 50 mm and between 50 and 200 mm was 1 mm and 2.6 mm, respectively. Furosemide, diisothiocyanostilbene-2,2'-disulfonic acid and other nonchloride anions (HEPES, HCO3, SO4, and PO4) did not interfere with the assay, whereas 150 mm NaBr resulted in a peak height greater than 150 NaCl. In addition, the ability to measure Cl- did not vary with pH within the physiological range. We developed an easy, accurate, and sensitive method to measure Cl- concentration in small aqueous solution samples.

  19. Detection of ICG at low concentrations by photoacoustic imaging system using LED light source

    NASA Astrophysics Data System (ADS)

    Shigeta, Yusuke; Agano, Toshitaka; Sato, Naoto; Nakatsuka, Hitoshi; Kitagawa, Kazuo; Hanaoka, Takamitsu; Morisono, Koji; Tanaka, Chizuyo

    2017-03-01

    Recently, various type of photoacoustic imaging (PAI) that can visualize properties and distribution of light absorber have been researched. We developed PAI system using LED light source and evaluated characteristics of photoacoustic signal intensity versus Indocyanine Green (ICG) concentration. In this experiment, a linear type PZT array transducer (128-elements, 10.0MHz center frequency) was used to be able to transmit and receive ultrasound and also detect photoacoustic signal from the target object. The transducer was connected to the PAI system, and two sets of LED light source that had 850nm wavelength chip array were set to the both side of the transducer. The transducer head was placed at a distance of 20 mm from the target in the water bath. The target object was a tube filled with ICG in it. The tubes containing ICG at concentrations from 300nanomolar to 3millimolar were made by diluting original ICG solution. We measured the photoacoustic signal strength from RF signal generated from the ICG in the tube, and the results showed that the intensity of the signal was almost linear response to the concentration in log-log scale.

  20. Protoplasmic Swelling as a Symptom of Freezing Injury in Onion Bulb Cells 1

    PubMed Central

    Arora, Rajeev; Palta, Jiwan P.

    1986-01-01

    Freezing injury, in onion bulb tissue, is known to cause enhanced K+ efflux accompanied by a small but significant loss of Ca2+ following incipient freezing injury and swelling of protoplasm during the postthaw secondary injury. The protoplasmic swelling of the cell is thought to be caused by the passive influx of extracellular K+ into the cell followed by water uptake. Using outer epidermal layer of unfrozen onion bulb scales (Allium cepa L. cv Big Red), we were able to stimulate the irreversible freezing injury symptoms, by bathing epidermal cells in 50 millimolar KCl. These symptoms were prevented by adding 20 millimolar CaCl2 to the extracellular KCl solution. Our results provide evidence that loss of cellular Ca2+ plays an important role in the initiation and the progression of freezing injury. Images Fig. 1 PMID:16665083

  1. Inositol trisphosphate metabolism in carrot (Daucus carota L. ) cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Memon, A.R.; Rincon, M.; Boss, W.F.

    1989-10-01

    The metabolism of exogenously added D-myo-(1-{sup 3}H)inositol 1,4,5-trisphosphate (IP{sub 3}) has been examined in microsomal membrane and soluble fractions of carrot cells grown in suspension culture. When ({sup 3}H)IP{sub 3} was added to a microsomal membrane fraction, ({sup 3}H)IP{sub 2} was the primary metabolite consisting of approximately 83% of the total recovered ({sup 3}H) by electrophoresis. ({sup 3}H)IP was only 6% of the ({sup 3}H) recovered, and 10% of the ({sup 3}H)IP{sub 3} was not further metabolized. In contrast, when ({sup 3}H)IP{sub 3} was added to the soluble fraction, approximately equal amounts of ({sup 3}H)IP{sub 2} and ({sup 3}H)IP weremore » recovered. Ca{sup 2+} (100 micromolar) tended to enhance IP{sub 3} dephosphorylation but inhibited the IP{sub 2} dephosphorylation in the soluble fraction by about 20%. MoO{sub 4}{sup 2{minus}} (1 millimolar) inhibited the dephosphorylation of IP{sub 3} by the microsomal fraction and the dephosphorylation of IP{sub 2} by the soluble fraction. MoO{sub 4}{sup 2{minus}}, however, did not inhibit the dephosphorylation of IP{sub 3} by the soluble fraction. Li{sup +} (10 and 50 millimolar) had no effect on IP{sub 3} metabolism in either the soluble or membrane fraction; however, Li{sup +} (50 millimolar) inhibited IP{sub 2} dephosphorylation in the soluble fraction about 25%.« less

  2. Kinetic study of sunflower phospholipase Dα: interactions with micellar substrate, detergents and metals.

    PubMed

    Abdelkafi, Slim; Abousalham, Abdelkarim

    2011-07-01

    Phospholipase Dα (PLDα) purified from six-day post-germinated sunflower seeds was inactive in vitro on bilamellar substrates. It was fully active on mixed micelles made with phospholipids and a mixture of Triton-X100 and SDS at equal concentrations. It had an absolute need for divalent ions and calcium ions at millimolar concentration were the most efficient. Calcium had two effects. Firstly, using the fluorescent probe 2-p-toluidinylnaphtalene-6-sulfonate, we showed that the enzyme was able to bind calcium with a dissociation constant of 40-50 mM. This high value is probably due to the modification of the C2 domain which lacks some coordination residues allowing the binding of the metal. Secondly, using turbidity measurements, we showed that the metal ions interact with the SDS contained in the mixed micelles thus leading to an aggregated form of the substrate which is more easily hydrolyzed by PLDα. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  3. Purification and Characterization of Glucose 6-Phosphate Dehydrogenase, 6-Phosphogluconate Dehydrogenase, and Glutathione Reductase from Rat Heart and Inhibition Effects of Furosemide, Digoxin, and Dopamine on the Enzymes Activities.

    PubMed

    Adem, Sevki; Ciftci, Mehmet

    2016-06-01

    The present study was aimed to investigate characterization and purification of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase from rat heart and the inhibitory effect of three drugs. The purification of the enzymes was performed using 2',5'-ADP sepharose 4B affinity material. The subunit and the natural molecular weights were analyzed by SDS-PAGE and gel filtration. Biochemical characteristics such as the optimum temperature, pH, stable pH, and salt concentration were examined for each enzyme. Types of product inhibition and Ki values with Km and Vmax values of the substrates and coenzymes were determined. According to the obtained Ki and IC50 values, furosemide, digoxin, and dopamine showed inhibitory effect on the enzyme activities at low millimolar concentrations in vitro conditions. Dopamine inhibited the activity of these enzymes as competitive, whereas furosemide and digoxin inhibited the activity of the enzyme as noncompetitive. © 2016 Wiley Periodicals, Inc.

  4. Role of ergothioneine on S-nitrosoglutathione catabolism.

    PubMed Central

    Misiti, F; Castagnola, M; Zuppi, C; Giardina, B; Messana, I

    2001-01-01

    Ergothioneine (ESH) is a low-molecular-mass thiol present in millimolar concentrations in a limited number of tissues, including erythrocytes, kidney, seminal fluid and liver; however, its biological function is still unclear. In the present study we investigated the role of ESH in the catabolism of S-nitrosoglutathione (GSNO). The results show that: (1) GSNO decomposition is strongly influenced by ESH (k"=0.178+/-0.032 M(-1) x s(-1)); (2) ammonia is the main nitrogen-containing compound generated by the reaction; and (3) nitrite is practically absent under both aerobic and anaerobic conditions. These findings are markedly different from those reported for the GSH-induced decomposition of GSNO, in which the nitrogen-containing end products are nitrite, ammonia and nitrous oxide (N(2)O) under aerobic conditions but nitrite, ammonia, nitric oxide (NO) and small quantities of hydroxylamine under anaerobic conditions. Considering the high concentration of ESH in specific cells, the reaction with GSNO should be considered as an important molecular event occurring in the cell. PMID:11389687

  5. Sequence of Key Events in Shoot Gravitropism 1

    PubMed Central

    Migliaccio, Fernando; Rayle, David L.

    1984-01-01

    It has recently been shown that asymmetric acid efflux is closely correlated with the gravitropic curvature of plant shoots and roots. The research reported here addresses whether auxin (IAA) redistribution in shoots is the cause or result of asymmetric acid efflux. When abraded sunflower (Helianthus annuus cv Mammoth) hypocotyls are submerged in 20 millimolar neutral buffer, gravicurvature is greatly retarded relative to 0.2 millimolar controls. Nevertheless, in both buffer systems there is a similar redistribution of [3H]IAA toward the lower surface of gravistimulated sunflower hypocotyls. These results suggest that graviperception initiates IAA redistribution, which in turn results in auxin-induced asymmetric H+ efflux across the shoot. This interpretation is reinforced by data showing the effects of removal of the epidermal layers (peeling), osmotic shock, and morphactin treatment on gravicurvature and [3H]IAA redistribution. Peeling and osmotic shock inhibit gravicurvature but not redistribution. Morphactin inhibits both processes but does not inhibit hypocotyl straight growth. PMID:16663606

  6. High Permeation Rates in Liposome Systems Explain Rapid Glyphosate Biodegradation Associated with Strong Isotope Fractionation.

    PubMed

    Ehrl, Benno N; Mogusu, Emmanuel O; Kim, Kyoungtea; Hofstetter, Heike; Pedersen, Joel A; Elsner, Martin

    2018-06-19

    Bacterial uptake of charged organic pollutants such as the widely used herbicide glyphosate is typically attributed to active transporters, whereas passive membrane permeation as an uptake pathway is usually neglected. For 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) liposomes, the pH-dependent apparent membrane permeation coefficients ( P app ) of glyphosate, determined by nuclear magnetic resonance (NMR) spectroscopy, varied from P app (pH 7.0) = 3.7 (±0.3) × 10 -7 m·s -1 to P app (pH 4.1) = 4.2 (±0.1) × 10 -6 m·s -1 . The magnitude of this surprisingly rapid membrane permeation depended on glyphosate speciation and was, at circumneutral pH, in the range of polar, noncharged molecules. These findings point to passive membrane permeation as a potential uptake pathway during glyphosate biodegradation. To test this hypothesis, a Gram-negative glyphosate degrader, Ochrobactrum sp. FrEM, was isolated from glyphosate-treated soil and glyphosate permeation rates inferred from the liposome model system were compared to bacterial degradation rates. Estimated maximum permeation rates were, indeed, 2 orders of magnitude higher than degradation rates of glyphosate. In addition, biodegradation of millimolar glyphosate concentrations gave rise to pronounced carbon isotope fractionation with an apparent kinetic isotope effect, AKIE carbon , of 1.014 ± 0.003. This value lies in the range typical of non-masked enzymatic isotope fractionation demonstrating that glyphosate biodegradation was not subject to mass transfer limitations and glyphosate exchange across the cell membrane was rapid relative to enzymatic turnover.

  7. Metabolites associated with adaptation of microorganisms to an acidophilic, metal-rich environment identified by stable-isotope-enabled metabolomics.

    PubMed

    Mosier, Annika C; Justice, Nicholas B; Bowen, Benjamin P; Baran, Richard; Thomas, Brian C; Northen, Trent R; Banfield, Jillian F

    2013-03-12

    Microorganisms grow under a remarkable range of extreme conditions. Environmental transcriptomic and proteomic studies have highlighted metabolic pathways active in extremophilic communities. However, metabolites directly linked to their physiology are less well defined because metabolomics methods lag behind other omics technologies due to a wide range of experimental complexities often associated with the environmental matrix. We identified key metabolites associated with acidophilic and metal-tolerant microorganisms using stable isotope labeling coupled with untargeted, high-resolution mass spectrometry. We observed >3,500 metabolic features in biofilms growing in pH ~0.9 acid mine drainage solutions containing millimolar concentrations of iron, sulfate, zinc, copper, and arsenic. Stable isotope labeling improved chemical formula prediction by >50% for larger metabolites (>250 atomic mass units), many of which were unrepresented in metabolic databases and may represent novel compounds. Taurine and hydroxyectoine were identified and likely provide protection from osmotic stress in the biofilms. Community genomic, transcriptomic, and proteomic data implicate fungi in taurine metabolism. Leptospirillum group II bacteria decrease production of ectoine and hydroxyectoine as biofilms mature, suggesting that biofilm structure provides some resistance to high metal and proton concentrations. The combination of taurine, ectoine, and hydroxyectoine may also constitute a sulfur, nitrogen, and carbon currency in the communities. Microbial communities are central to many critical global processes and yet remain enigmatic largely due to their complex and distributed metabolic interactions. Metabolomics has the possibility of providing mechanistic insights into the function and ecology of microbial communities. However, our limited knowledge of microbial metabolites, the difficulty of identifying metabolites from complex samples, and the inability to link metabolites directly to community members have proven to be major limitations in developing advances in systems interactions. Here, we show that combining stable-isotope-enabled metabolomics with genomics, transcriptomics, and proteomics can illuminate the ecology of microorganisms at the community scale.

  8. Influence of partial activation on force-velocity properties of frog skinned muscle fibers in millimolar magnesium ion

    PubMed Central

    1986-01-01

    Segments of briefly glycerinated muscle fibers from Rana pipiens were activated rapidly by a brief exposure to 2.5 mM free calcium followed by a solution containing calcium buffered with EGTA to produce the desired level of force. Steps to isotonic loads were made using a servomotor, usually 3-5 s after the onset of activation. The relative isotonic forces (P/P0) and velocities from contractions obtained under similar circumstances were grouped together and fitted with hyperbolic functions. Under the condition of 6 mM MgCl2 and 5 mM ATP, there was no significant difference in the relative force-velocity relations obtained at full activation compared with those obtained at partial activation when developed force was approximately 40% of its full value. Control experiments showed that a variety of factors did not alter either the relative force-velocity relations or the finding that partial activation did not change these properties. The factors investigated included the decline in force that occurs with each successive contraction of skinned fibers, the segment length (over a range of 1-3 mm), the sarcomere length (over a range of 1.9-2.2 microns), the magnesium ion concentration (26 microM and 1.4 mM were tested), the ATP concentration, the presence of free calcium, and the age of the preparation (up to 30 h). Attempts to repeat earlier experiments by others showing a dependence of shortening velocity on activation were unsuccessful because the low ionic strength used in those experiments caused the fibers to break after a few contractions. The main conclusion, that the shortening velocity is independent of the level of activation, is consistent with the hypothesis that the cross- bridges act independently and that activating calcium acts only as an all-or-none switch for individual cross-bridge attachment sites, and does not otherwise influence the kinetics of cross-bridge movement. PMID:3486252

  9. Surface-enhanced Raman scattering and DFT investigation of 1,5-diphenylcarbazide and its metal complexes with Ca(II), Mn(II), Fe(III) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Szabó, László; Herman, Krisztian; Mircescu, Nicoleta Elena; Tódor, István Szabolcs; Simon, Botond Lorand; Boitor, Radu Alex; Leopold, Nicolae; Chiş, Vasile

    2014-09-01

    In recent years, surface-enhanced Raman scattering (SERS) has become an increasingly viable method for the detection of metal ions, evidenced by the existing studies on metal complexes. In this study, 1,5-diphenylcarbazide (DPC) and its Ca(II), Mn(II), Fe(III) and Cu(II) complexes were investigated by FTIR/ATR, FT-Raman and surface-enhanced Raman spectroscopies. The hybrid B3LYP exchange-correlation functional was used for the molecular geometry optimizations, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculations of the DPC molecule and its complexes. Based on experimental and theoretical data, we were able to accurately identify unique and representative features for each DPC-metal complex, features that enable the detection of said metal complexes in millimolar concentrations.

  10. Induction of Crassulacean Acid Metabolism in Mesembryanthemum crystallinum by High Salinity: Mass Increase and de Novo Synthesis of PEP-Carboxylase 1

    PubMed Central

    Höfner, Roswitha; Vazquez-Moreno, Luz; Winter, Klaus; Bohnert, Hans J.; Schmitt, Jürgen M.

    1987-01-01

    Intact plants of the halophilic species Mesembryanthemum crystallinum were induced to exhibit Crassulacean acid metabolism by irrigation with nutrient solution containing 500 millimolar NaCl. During the induction period, the extractable activity of phosphoenolpyruvate carboxylase (PEPcase) increased approximately 40-fold. This increase was linearly correlated with a mass increase of PEPcase protein as measured by single radial immunodiffusion. De novo synthesis of PEPcase protein was shown by immunoprecipitation of the newly synthesized, radioactively labeled protein in leaf discs from salt-treated plants. Nontreated plants were characterized by a low level of the enzyme and low rates of PEPcase synthesis. Synthesis of this enzyme in leaf discs was correlated with the concentration of NaCl in the nutrient solution during growth. Images Fig. 1 Fig. 2 Fig. 3 PMID:16665363

  11. Chromosome movement in lysed mitotic cells is inhibited by vanadate

    PubMed Central

    1978-01-01

    Mitotic PtK1 cells, lysed at anaphase into a carbowax 20 M Brij 58 solution, continue to move chromosomes toward the spindle poles and to move the spindle poles apart at 50% in vivo rates for 10 min. Chromosome movements can be blocked by adding metabolic inhibitors to the lysis medium and inhibition of movement can be reversed by adding ATP to the medium. Vanadate at micromolar levels reversibly inhibits dynein ATPase activity and movement of demembranated flagella and cilia. It does not affect glycerinated myofibril contraction or myosin ATPase activty at less than millimolar concentrations. Vanadate at 10-- 100 micron reversibly inhibits anaphase movement of chromosomes and spindle elongation. After lysis in vanadate, spindles lose their fusiform appearance and become more barrel shaped. In vitro microtubule polymerization is insensitive to vanadate. PMID:152767

  12. Measuring protein-bound glutathioine (PSSG): Critical correction for cytosolic glutathione species

    USDA-ARS?s Scientific Manuscript database

    Introduction: Protein glutathionylation is gaining recognition as an important posttranslational protein modification. The common first step in measuring protein glutathionylation is the denaturation and precipitation of protein away from soluble, millimolar quantities of glutathione (GSH) and glut...

  13. Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies.

    PubMed

    Sikorska, Emilia; Dawgul, Małgorzata; Greber, Katarzyna; Iłowska, Emilia; Pogorzelska, Aneta; Kamysz, Wojciech

    2014-10-01

    In this work, the self-organization and the behavior of the surfactant-like peptides in the presence of biological membrane models were studied. The studies were focused on synthetic palmitic acid-containing lipopeptides, C16-KK-NH2 (I), C16-KGK-NH2 (II) and C16-KKKK-NH2 (III). The self-assembly was explored by molecular dynamics simulations using a coarse-grained force field. The critical micellar concentration was estimated by the surface tension measurements. The thermodynamics of the peptides binding to the anionic and zwitterionic lipids were established using isothermal titration calorimetry (ITC). The influence of the peptides on the lipid acyl chain ordering was determined using FTIR spectroscopy. The compounds studied show surface-active properties with a distinct CMC over the millimolar range. An increase in the steric and electrostatic repulsion between polar head groups shifts the CMC toward higher values and reduces the aggregation number. An analysis of the peptide-membrane binding revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions enabling the lipopeptides to interact with the lipid bilayer. In the case of C16-KKKK-NH2 (III), compensation of the electrostatic and hydrophobic interactions upon binding to the anionic membrane has been suggested and consequently no overall binding effects were noticed in ITC thermograms and FTIR spectra. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. N-Acetylglucosamine Inhibits LuxR, LasR and CviR Based Quorum Sensing Regulated Gene Expression Levels

    PubMed Central

    Kimyon, Önder; Ulutürk, Zehra İ.; Nizalapur, Shashidhar; Lee, Matthew; Kutty, Samuel K.; Beckmann, Sabrina; Kumar, Naresh; Manefield, Mike

    2016-01-01

    N-acetyl glucosamine, the monomer of chitin, is an abundant source of carbon and nitrogen in nature as it is the main component and breakdown product of many structural polymers. Some bacteria use N-acyl-L-homoserine lactone (AHL) mediated quorum sensing (QS) to regulate chitinase production in order to catalyze the cleavage of chitin polymers into water soluble N-acetyl-D-glucosamine (NAG) monomers. In this study, the impact of NAG on QS activities of LuxR, LasR, and CviR regulated gene expression was investigated by examining the effect of NAG on QS regulated green fluorescent protein (GFP), violacein and extracellular chitinase expression. It was discovered that NAG inhibits AHL dependent gene transcription in AHL reporter strains within the range of 50–80% reduction at low millimolar concentrations (0.25–5 mM). Evidence is presented supporting a role for both competitive inhibition at the AHL binding site of LuxR type transcriptional regulators and catabolite repression. Further, this study shows that NAG down-regulates CviR induced violacein production while simultaneously up-regulating CviR dependent extracellular enzymes, suggesting that an unknown NAG dependent regulatory component influences phenotype expression. The quorum sensing inhibiting activity of NAG also adds to the list of compounds with known quorum sensing inhibiting activities. PMID:27602027

  15. Photochemical properties and sensor applications of modified yellow fluorescent protein (YFP) covalently attached to the surfaces of etched optical fibers (EOFs).

    PubMed

    Veselov, Alexey A; Abraham, Bobin George; Lemmetyinen, Helge; Karp, Matti T; Tkachenko, Nikolai V

    2012-01-01

    Fluorescent proteins have the inherent ability to act as sensing components which function both in vitro and inside living cells. We describe here a novel study on a covalent site-specific bonding of fluorescent proteins to form self-assembled monolayers (SAMs) on the surface of etched optical fibers (EOFs). Deposition of fluorescent proteins on EOFs gives the opportunity to increase the interaction of guided light with deposited molecules relative to plane glass surfaces. The EOF modification is carried out by surface activation using 3-aminopropylthrimethoxysilane (APTMS) and bifunctional crosslinker sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (sulfo-SMCC) which exposes sulfhydryl-reactive maleimide groups followed by covalent site-specific coupling of modified yellow fluorescent protein (YFP). Steady-state and fluorescence lifetime measurements confirm the formation of SAM. The sensor applications of YPF SAMs on EOF are demonstrated by the gradual increase of emission intensity upon addition of Ca(2+) ions in the concentration range from a few tens of micromolars up to a few tens of millimolars. The studies on the effect of pH, divalent cations, denaturing agents, and proteases reveal the stability of YFP on EOFs at normal physiological conditions. However, treatments with 0.5% SDS at pH 8.5 and protease trypsin are found to denaturate or cleave the YFP from fiber surfaces.

  16. Possible role of region 152–156 in the structural duality of a peptide fragment from sheep prion protein

    PubMed Central

    Megy, Simon; Bertho, Gildas; Kozin, Sergey A.; Debey, Pascale; Hui Bon Hoa, Gaston; Girault, Jean-Pierre

    2004-01-01

    The conformational conversion of the nonpathogenic “cellular” prion isoform into a pathogenic “scrapie” protease-resistant isoform is a fundamental event in the onset of transmissible spongiform encephalopathies (TSE). During this pathogenic conversion, helix H1 and its two flanking loops of the normal prion protein are thought to undergo a conformational transition into a β-like structure. A peptide spanning helix H1 and β-strand S2 (residues 142–166 in human numbering) was studied by circular dichroism and nuclear magnetic resonance spectroscopies. This peptide in aqueous solution, in contrast to many prion fragments studied earlier (1) is highly soluble and (2) does not aggregate until the millimolar concentration range, and (3) exhibits an intrinsic propensity to a β-hairpin-like conformation at neutral pH. We found that this peptide can also fold into a helix H1 conformation when dissolved in a TFE/PB mixture. The structures of the peptide calculated by MD showed solvent-dependent internal stabilizing forces of the structures and evidenced a higher mobility of the residues following the end of helix H1. These data suggest that the molecular rearrangement of this peptide in region 152–156, particularly in position 155, could be associated with the pathogenic conversion of the prion protein. PMID:15537751

  17. Ca sup 2+ binding capacity of cytoplasmic proteins from rod photoreceptors is mainly due to arrestin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huppertz, B.; Weyand, I.; Bauer, P.J.

    1990-06-05

    Arrestin (also called S-antigen or 48-kDa protein) binds to photoexcited and phosphorylated rhodopsin and, thereby, blocks competitively the activation of transducin. Using Ca{sup 2+} titration in the presence of the indicator arsenazo III and {sup 45}Ca{sup 2+} autoradiography, we show that arrestin is a Ca2(+)-binding protein. The Ca{sup 2+} binding capacity of arresting-containing protein extracts from bovine rod outer segments is about twice as high as that of arrestin-depleted extracts. The difference in the Ca{sup 2+} binding of arrestin-containing and arrestin-depleted protein extracts was attributed to arrestin. Both, these difference-measurements of protein extracts and the measurements of purified arrestin yieldmore » dissociation constants for the Ca{sup 2+} binding of arrestin between 2 and 4 microM. The titration curves are consistent with a molar ratio of one Ca{sup 2+} binding site per arrestin. No Ca{sup 2+} binding in the micromolar range was found in extracts containing mainly transducin and cGMP-phosphodiesterase. Since arrestin is one of the most abundant proteins in rod photoreceptors occurring presumably up to millimolar concentrations in rod outer segments, we suggest that aside from its function to prevent the activation of transducin, arrestin acts probably as an intracellular Ca{sup 2+} buffer.« less

  18. Aspirin and lipid mediators in the cardiovascular system.

    PubMed

    Schrör, Karsten; Rauch, Bernhard H

    2015-09-01

    Aspirin is an unique compound because it bears two active moieties within one and the same molecule: a reactive acetyl group and the salicylate metabolite. Salicylate has some effects similar to aspirin, however only at higher concentrations, usually in the millimolar range, which are not obtained at conventional antiplatelet aspirin doses of 100-300 mg/day. Pharmacological actions of aspirin in the cardiovascular system at these doses are largely if not entirely due to target structure acetylation. Several classes of lipid mediators become affected: Best known is the cyclooxygenase-1 (COX-1) in platelets with subsequent inhibition of thromboxane and, possibly, thrombin formation. By this action, aspirin also inhibits paracrine thromboxane functions on other lipid mediators, such as the platelet storage product sphingosine-1-phosphate (S1P), an inflammatory mediator. Acetylation of COX-2 allows for generation of 15-(R)HETE and subsequent formation of "aspirin-triggered lipoxin" (ATL) by interaction with white cell lipoxygenases. In the cardiovascular system, aspirin also acetylates eNOS with subsequent upregulation of NO formation and enhanced expression of the antioxidans heme-oxygenase-1. This action is possibly also COX-2/ATL mediated. Many more acetylation targets have been identified in live cells by quantitative acid-cleavable activity-based protein profiling and might result in discovery of even more aspirin targets in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Vitamin C at high concentrations induces cytotoxicity in malignant melanoma but promotes tumor growth at low concentrations.

    PubMed

    Yang, Guang; Yan, Yao; Ma, Younan; Yang, Yixin

    2017-08-01

    Vitamin C has been used in complementary and alternative medicine for cancers regardless of its ineffectiveness in clinical trials and the paradoxical effects antioxidants have on cancer. Vitamin C was found to induce cytotoxicity against cancers. However, the mechanisms of action have not been fully elucidated, and the effects of vitamin C on human malignant melanoma have not been examined. This study revealed that vitamin C at millimolar concentrations significantly reduced the cell viability as well as invasiveness, and induced apoptosis in human malignant melanoma cells. Vitamin C displayed stronger cytotoxicity against the Vemurafenib-resistance cell line A2058 compared with SK-MEL-28. In contrast, vitamin C at micromolar concentrations promoted cell growth, migration and cell cycle progression, and protected against mitochondrial stress. Vemurafenib paradoxically activated the RAS-RAF-MEK-ERK signaling pathway in the Vemurafenib-resistant A2058, however, vitamin C abolished the activations. Vitamin C displayed synergistic cytotoxicity with Vemurafenib against the Vemurafenib-resistant A2058. In vivo assay suggested that lower dosage (equivalent to 0.5 g/70 kg) of vitamin C administered orally increased the melanoma growth. Therefore, vitamin C may exert pro- or anti-melanoma effect depending on concentration. The combination of vitamin C at high dosage and Vemurafenib is promising in overcoming the action of drug resistance. © 2017 Wiley Periodicals, Inc.

  20. Reactive Oxygen and Nitrogen Species Regulate Inducible Nitric Oxide Synthase Function Shifting the Balance of Nitric Oxide and Superoxide Production

    PubMed Central

    Sun, Jian; Druhan, Lawrence J.; Zweier, Jay L.

    2014-01-01

    Inducible NOS (iNOS) is induced in diseases associated with inflammation and oxidative stress, and questions remain regarding its regulation. We demonstrate that reactive oxygen / nitrogen species (ROS/RNS) dose-dependently regulate iNOS function. Tetrahydrobiopterin (BH4)-replete iNOS was exposed to increasing concentrations of ROS/RNS and activity was measured with and without subsequent BH4 addition. Peroxynitrite (ONOO−) produced the greatest change in NO generation rate, ~95% decrease, and BH4 only partially restored this loss of activity. Superoxide (O2.−) greatly decreased NO generation, however, BH4 addition restored this activity. Hydroxyl radical (.OH) mildly decreases NO generation in a BH4-dependent manner. iNOS was resistant to H2O2 with only slightly decreased NO generation with up to millimolar concentrations. In contrast to the inhibition of NO generation, ROS enhanced O2.− production from iNOS, while ONOO− had the opposite effect. Thus, ROS promote reversible iNOS uncoupling, while ONOO− induces irreversible enzyme inactivation and decreases both NO and O2.− production. PMID:19932078

  1. Comparative study of the effect of chloro-, dichloro-, bromo-, and dibromoacetic acid on necrotic, apoptotic and morphological changes in human peripheral blood mononuclear cells (in vitro study).

    PubMed

    Michałowicz, Jaromir; Wróblewski, Wojciech; Mokra, Katarzyna; Maćczak, Aneta; Kwiatkowska, Marta

    2015-10-01

    In this study, the effect of monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA) on human peripheral blood mononuclear cells (PBMCs) was assessed. HAAs studied induced at millimolar concentrations necrotic alterations in PBMCs with the strongest effect noted for MBAA and DBAA. Chloro- and bromoacetic acids also provoked changes in PBMCs morphology because they caused a strong decrease in cell size (particularly DCAA and DBAA) and increase in cell granulation (mainly MBAA and DBAA). All HAAs studied, and DCAA and DBAA in particular (at lower concentrations than those, which caused necrosis) induced apoptotic changes, which was confirmed by analysis of alterations in cell membrane permeability and caspase 8, 9 and 3 activation. Moreover, HAAs examined (mainly dihalogenated acids) strongly increased transmembrane mitochondrial potential and enhanced ROS (mainly hydroxyl radical) formation, which was possibly associated with apoptotic changes provoked by those substances. The results showed that DBAA exhibited the strongest effects on PBMCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Calcium signaling in neuronal cells exposed to the munitions compound Cyclotrimethylenetrinitramine (RDX).

    PubMed

    Ehrich, Marion; Wu, Xiaohua; Werre, Stephen R; Major, Michael A; McCain, Wilfred C; Reddy, Gunda

    2009-01-01

    Cyclotrimethylenetrinitramine (RDX) has been used extensively as an explosive in military munitions. Mechanisms for seizure production, seen in past animal studies, have not been described. Increased calcium levels contribute to excitotoxicity, so in this study neuroblastoma cells are loaded with calcium-indicating dye before application of 1.5 microM to 7.5 mM RDX, with fluorescence recorded for 30 cycles of 11 seconds each. The lowest concentration of RDX increases calcium fluorescence significantly above baseline for cycles 2 to 8; millimolar concentrations increase calcium fluorescence significantly above baseline for cycles 2 to 30. Increases in calcium, like those of 200 nM carbachol, are prevented with 10 mM of calcium chelator ethylene glycol-bis(beta-aminoethyl ether)-N,N,N,N tetra-acetic acid (EGTA, tetrasodium salt). Calcium channel blocker verapamil (20 microM), Ca(2+)-ATPase inhibitor thapsigargin (5 microM), and general membrane stabilizer lidocaine (10 mM) partially attenuate carbachol- and RDX-induced increases in calcium, suggesting that RDX transiently increases intracellular calcium by multiple mechanisms.

  3. The action of ryanodine on rat fast and slow intact skeletal muscles.

    PubMed

    Fryer, M W; Lamb, G D; Neering, I R

    1989-07-01

    1. The action of ryanodine on force development of bundles dissected from rat extensor digitorum longus (EDL) and soleus muscles has been examined. 2. Ryanodine (100-5000 nM) irreversibly depressed twitch and tetanic tension of both muscle types in a dose-related manner. 3. At concentrations above 250 nM, ryanodine induced a slowly developing, dose-dependent contracture which could not be blocked by 5 mM-Co2+. Increasing the stimulation rate or decreasing the oxygenation of the preparation accelerated the rate of contracture development while the total removal of extracellular Ca2+ was required to prevent it. 4. Following the relaxation of the initial contracture (IC) in Ca2+-free solution, a second type of contracture (SC) could be induced by the readdition of Ca2+. This contracture differed from IC in that it was dependent on Ca2+ in the millimolar range and was prevented by 5 mM-Co2+. Both IC and SC were relaxed by perfusion with Ca2+-free, EGTA-containing solution. 5. Subcontracture doses of ryanodine (100 nM) markedly potentiated caffeine contractures of both muscle types. 6. Asymmetric charge movement in EDL fibres was recorded with the Vaseline-gap technique. The amount of charge moved near threshold was virtually unaffected by the presence of 10 microM-ryanodine over the time examined. 7. The results are consistent with the suggestion that ryanodine locks the calcium release channels of the sarcoplasmic reticulum (SR) in an open subconductance state with reduced conductance. It appears that lowering the external calcium concentration might still inactivate the release channels after they have been blocked open by ryanodine, possibly by an effect on the T-tubular voltage sensor.

  4. A physiological and genetic approach to the improvement of tomato (Lycopersicon esculentum Mill. ) fruit soluble solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damon, S.E.

    Physiological processes and the genetic basis determining soluble solids content (SSC) of processing tomato fruit were addressed. Analysis of ({sup 3}H)-(fructosyl)-sucrose translocation in tomato indicates that phloem unloading in the fruit occurs, at least in part, to the apoplast. Apoplastic sucrose, glucose and fructose concentrations were estimated as 1 to 7, 12 to 49 and 8 to 63 millimolar, respectively in tomato fruit pericarp. Short-term uptake of ({sup 14}C)sucrose, -glucose and -fructose in tomato pericarp discs showes first order kinetics over the physiologically relevant concentration range. The uptake of ({sup 14}C)-(glycosyl)-1{prime}fluorosucrose was identical to the rate of ({sup 14}C) sucrosemore » uptake suggesting sucrose may be taken up directly without prior extracellular hydrolysis. Short-term uptake of all three sugars was insensitive to 10 micromolar carbonyl cyanide m-chlorophenylhydrazone and to 10 micromolar p-chloromercuribenzene sulfonic acid. However, long-term accumulation of glucose was sensitive to carbonyl cyanide m-chlorophenylhydrazone. Sugar uptake across the plasmamembrane does not appear to be energy dependent, suggesting that sugar accumulation in the tomato is driven by subsequent intracellular metabolism and/or active uptake at the tonoplast. Fourteen genomic DNA probes and ten restriction endonucleases were used to identify restriction fragment length polymorphisms (RFLPs) useful in the linkage analysis of quantitative trait loci controlling the expression of SSC in a segregating F{sub 2} population from a cross between L. esculentum (UC204B) and L. cheesmanii f. minor, a wild species with high fruit soluble solids. RFLPs were detected between the DNAs of the two tomato species with all 14 probes.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betterton, E.A.; Arnold, R.G.; Liu, Zhijie

    Three abiotic systems are described that catalyze the reductive dehalogenation of heavily halogenated environmental pollutants, including carbon tetrachloride, trichloroethene, and perchloroethene. These systems include (a) an electrolytic reactor in which the potential on the working electrode (cathode) is fixed by using a potentiostat, (b) a light-driven system consisting of a semiconductor and (covalently attached) macrocycle that can accept light transmitted via an optical fiber, and a light-driven, two-solvent (isopropanol/acetone) system that promotes dehalogenation reactions via an unknown mechanism. Each is capable of accelerating reductive dehalogenation reactions to very high rates under laboratory conditions. Typically, millimolar concentrations of aqueous-phase targets canmore » be dehalogenated in minutes to hours. The description of each system includes the elements of reaction mechanism (to the extent known), typical kinetic data, and a discussion of the feasibility of applying this technology for the in situ destruction of hazardous compounds. 14 refs., 11 figs., 2 tabs.« less

  6. Pyrimidine metabolism in Tritrichomonas foetus.

    PubMed Central

    Wang, C C; Verham, R; Tzeng, S F; Aldritt, S; Cheng, H W

    1983-01-01

    The anaerobic parasitic protozoa Tritrichomonas foetus is found incapable of de novo pyrimidine biosynthesis by its failure to incorporate bicarbonate, aspartate, or orotate into pyrimidine nucleotides or nucleic acids. Uracil phosphoribosyltransferase in the cytoplasm provides the major pyrimidine salvage for the parasite. Exogenous uridine and cytidine are mostly converted to uracil by uridine phosphorylase and cytidine deaminase in T. foetus prior to incorporation. T. foetus cannot incorporate labels from exogenous uracil or uridine into DNA; it has no detectable dihydrofolate reductase or thymidylate synthetase and is resistant to methotrexate, pyrimethamine, trimethoprim, and 5-bromovinyldeoxyuridine at millimolar concentrations. It has an enzyme thymidine phosphotransferase in cellular fraction pelleting at 100,000 X g that can convert exogenous thymidine to TMP via a phosphate donor such as p-nitrophenyl phosphate or nucleoside 5'-monophosphate. Thymidine salvage in T. foetus is thus totally dissociated from other pyrimidine salvage. PMID:6573672

  7. Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets.

    PubMed

    De Haan, David O; Hawkins, Lelia N; Kononenko, Julia A; Turley, Jacob J; Corrigan, Ashley L; Tolbert, Margaret A; Jimenez, Jose L

    2011-02-01

    Reactions of methylglyoxal with amino acids, methylamine, and ammonium sulfate can take place in aqueous aerosol and evaporating cloud droplets. These processes are simulated by drying droplets and bulk solutions of these compounds (at low millimolar and 1 M concentrations, respectively) and analyzing the residuals by scanning mobility particle sizing, nuclear magnetic resonance, aerosol mass spectrometry (AMS), and electrospray ionization MS. The results are consistent with imine (but not diimine) formation on a time scale of seconds, followed by the formation of nitrogen-containing oligomers, methylimidazole, and dimethylimidazole products on a time scale of minutes to hours. Measured elemental ratios are consistent with imidazoles and oligomers being major reaction products, while effective aerosol densities suggest extensive reactions take place within minutes. These reactions may be a source of the light-absorbing, nitrogen-containing oligomers observed in urban and biomass-burning aerosol particles.

  8. Identification of alkyl dimethylbenzylammonium surfactants in water samples by solid-phase extraction followed by ion trap LC/MS and LC/MS/MS

    USGS Publications Warehouse

    Ferrer, I.; Furlong, E.T.

    2001-01-01

    A novel methodology was developed for the determination of alkyl (C12, C14, and C16) dimethylbenzylammonium chloride (benzalkonium chloride or BAC, Chemical Abstract Service number: 8001-54-5) in water samples. This method is based on solid-phase extraction (SPE) using polymeric cartridges, followed by high-performance liquid chromatography/ion trap mass spectrometry (LC/MS) and tandem mass spectrometry(MS/MS) detection, equipped with an electrospray interface in positive ion mode. Chromatographic separation was achieved for three BAC homologues by using a C18 column and a gradient of acetonitrile/10 millimolar aqueous ammonium formate. Total method recoveries were higher than 71% in different water matrices. The main ions observed by LC/MS were at mass-to-charge ratios (m/z) of 304, 332, and 360, which correspond to the molecular ions of the C12, C14, and C16 alkyl BAC, respectively. The unequivocal structural identification of these compounds in water samples was performed by LC/MS/MS after isolation and subsequent fragmentation of each molecular ion. The main fragmentation observed for the three different homologues corresponded to the loss of the toluyl group in the chemical structure, which leads to the fragment ions at m/z 212, 240, and 268 and a tropylium ion, characteristic of all homologues, at m/z 91. Detection limits for the methodology developed in this work were in the low nanogram-per-liter range. Concentration levels of BAC - ranging from 1.2 to 36.6 micrograms per liter - were found in surface-water samples collected downstream from different wastewater-treatment discharges, thus indicating its input and persistence through the wastewater-treatment process.

  9. CHANGES IN THE ANAEROBIC THRESHOLD IN AN ANNUAL CYCLE OF SPORT TRAINING OF YOUNG SOCCER PLAYERS

    PubMed Central

    Andrzejewski, M.; Wieczorek, A.; Barinow-Wojewódzki, A.; Jadczak, Ł.; Adrian, S.; Pietrzak, M.; Wieczorek, S.

    2013-01-01

    The aim of the study was to assess changes in the anaerobic threshold of young soccer players in an annual training cycle. A group of highly trained 15-18 year old players of KKS Lech Poznań were tested. The tests included an annual training macrocycle, and its individual stages resulted from the time structure of the sports training. In order to assess the level of exercise capacities of the players, a field exercise test of increasing intensity was carried out on a soccer pitch. The test made it possible to determine the 4 millimolar lactate threshold (T LA 4 mmol · l-1) on the basis of the lactate concentration in blood [LA], to establish the threshold running speed and the threshold heart rate [HR]. The threshold running speed at the level of the 4 millimolar lactate threshold was established using the two-point form of the equation of a straight line. The obtained indicators of the threshold running speed allowed for precise establishment of effort intensity used in individual training in developing aerobic endurance. In order to test the significance of differences in mean values between four dates of tests, a non-parametric Friedman ANOVA test was used. The significance of differences between consecutive dates of tests was determined using a post-hoc Friedman ANOVA test. The tests showed significant differences in values of selected indicators determined at the anaerobic threshold in various stages of an annual training cycle of young soccer players. The most beneficial changes in terms of the threshold running speed were noted on the fourth date of tests, when the participants had the highest values of 4.01 m · s-1 for older juniors, and 3.80 m · s-1 for younger juniors. This may be indicative of effective application of an individualized programme of training loads and of good preparation of teams for competition in terms of players’ aerobic endurance. PMID:24744480

  10. Changes in the anaerobic threshold in an annual cycle of sport training of young soccer players.

    PubMed

    Sliwowski, R; Andrzejewski, M; Wieczorek, A; Barinow-Wojewódzki, A; Jadczak, L; Adrian, S; Pietrzak, M; Wieczorek, S

    2013-06-01

    The aim of the study was to assess changes in the anaerobic threshold of young soccer players in an annual training cycle. A group of highly trained 15-18 year old players of KKS Lech Poznań were tested. The tests included an annual training macrocycle, and its individual stages resulted from the time structure of the sports training. In order to assess the level of exercise capacities of the players, a field exercise test of increasing intensity was carried out on a soccer pitch. The test made it possible to determine the 4 millimolar lactate threshold (T LA 4 mmol · l(-1)) on the basis of the lactate concentration in blood [LA], to establish the threshold running speed and the threshold heart rate [HR]. The threshold running speed at the level of the 4 millimolar lactate threshold was established using the two-point form of the equation of a straight line. The obtained indicators of the threshold running speed allowed for precise establishment of effort intensity used in individual training in developing aerobic endurance. In order to test the significance of differences in mean values between four dates of tests, a non-parametric Friedman ANOVA test was used. The significance of differences between consecutive dates of tests was determined using a post-hoc Friedman ANOVA test. The tests showed significant differences in values of selected indicators determined at the anaerobic threshold in various stages of an annual training cycle of young soccer players. The most beneficial changes in terms of the threshold running speed were noted on the fourth date of tests, when the participants had the highest values of 4.01 m · s(-1) for older juniors, and 3.80 m · s(-1) for younger juniors. This may be indicative of effective application of an individualized programme of training loads and of good preparation of teams for competition in terms of players' aerobic endurance.

  11. Vitamin C transport and its role in the central nervous system

    PubMed Central

    May, James M.

    2013-01-01

    Vitamin C, or ascorbic acid, is important as an antioxidant and participates in numerous cellular functions. Although it circulates in plasma in micromolar concentrations, it reaches millimolar concentrations in most tissues. These high ascorbate cellular concentrations are thought to be generated and maintained by the SVCT2 (Slc23a2), a specific transporter for ascorbate. The vitamin is also readily recycled from its oxidized forms inside cells. Neurons in the central nervous system (CNS) contain some of the highest ascorbic acid concentrations of mammalian tissues. Intracellular ascorbate serves several functions in the CNS, including antioxidant protection, peptide amidation, myelin formation, synaptic potentiation, and protection against glutamate toxicity. The importance of the SVCT2 for CNS function is supported by the finding that its targeted deletion in mice causes widespread cerebral hemorrhage and death on post-natal day one. Neuronal ascorbate content as maintained by this protein also has relevance for human disease, since ascorbate supplements decrease infarct size in ischemia-reperfusion injury models of stroke, and since ascorbate may protect neurons from the oxidant damage associated with neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s. The aim of this review is to assess the role of the SVCT2 in regulating neuronal ascorbate homeostasis and the extent to which ascorbate affects brain function and antioxidant defenses in the CNS. PMID:22116696

  12. Boron Tolerance in Aspergillus nidulans Is Sustained by the SltA Pathway Through the SLC-Family Transporters SbtA and SbtB

    PubMed Central

    Villarino, María; Mendizabal, Gorka; Garzia, Aitor; Ugalde, Unai

    2017-01-01

    Microbial cells interact with the environment by adapting to external changes. Signal transduction pathways participate in both sensing and responding in the form of modification of gene expression patterns, enabling cell survival. The filamentous fungal-specific SltA pathway regulates tolerance to alkalinity, elevated cation concentrations and, as shown in this work, also stress conditions induced by borates. Growth of sltA− mutants is inhibited by increasing millimolar concentrations of boric acid or borax (sodium tetraborate). In an attempt to identify genes required for boron-stress response, we determined the boric acid or borax-dependent expression of sbtA and sbtB, orthologs of Saccharomyces cerevisiae bor1, and a reduction in their transcript levels in a ΔsltA mutant. Deletion of sbtA, but mainly that of sbtB, decreased the tolerance to boric acid or borax. In contrast, null mutants of genes coding for additional transporters of the Solute Carrier (SLC) family, sB, sbtD or sbtE, showed an unaltered growth pattern under the same stress conditions. Taken together, our results suggest that the SltA pathway induces, through SbtA and SbtB, the export of toxic concentrations of borates, which have largely recognized antimicrobial properties. PMID:28753996

  13. Sodium 3D COncentration MApping (COMA 3D) using 23Na and proton MRI

    NASA Astrophysics Data System (ADS)

    Truong, Milton L.; Harrington, Michael G.; Schepkin, Victor D.; Chekmenev, Eduard Y.

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1 T 3D sodium MRI brain images of live rats with spatial resolution of 0.8 × 0.8 × 0.8 mm3 and imaging matrices of 60 × 60 × 60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/ truongm/COMA3D/.

  14. Electrodiffusive Model for Astrocytic and Neuronal Ion Concentration Dynamics

    PubMed Central

    Halnes, Geir; Østby, Ivar; Pettersen, Klas H.; Omholt, Stig W.; Einevoll, Gaute T.

    2013-01-01

    The cable equation is a proper framework for modeling electrical neural signalling that takes place at a timescale at which the ionic concentrations vary little. However, in neural tissue there are also key dynamic processes that occur at longer timescales. For example, endured periods of intense neural signaling may cause the local extracellular K+-concentration to increase by several millimolars. The clearance of this excess K+ depends partly on diffusion in the extracellular space, partly on local uptake by astrocytes, and partly on intracellular transport (spatial buffering) within astrocytes. These processes, that take place at the time scale of seconds, demand a mathematical description able to account for the spatiotemporal variations in ion concentrations as well as the subsequent effects of these variations on the membrane potential. Here, we present a general electrodiffusive formalism for modeling of ion concentration dynamics in a one-dimensional geometry, including both the intra- and extracellular domains. Based on the Nernst-Planck equations, this formalism ensures that the membrane potential and ion concentrations are in consistency, it ensures global particle/charge conservation and it accounts for diffusion and concentration dependent variations in resistivity. We apply the formalism to a model of astrocytes exchanging ions with the extracellular space. The simulations show that K+-removal from high-concentration regions is driven by a local depolarization of the astrocyte membrane, which concertedly (i) increases the local astrocytic uptake of K+, (ii) suppresses extracellular transport of K+, (iii) increases axial transport of K+ within astrocytes, and (iv) facilitates astrocytic relase of K+ in regions where the extracellular concentration is low. Together, these mechanisms seem to provide a robust regulatory scheme for shielding the extracellular space from excess K+. PMID:24367247

  15. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate.

    PubMed

    Tyrakis, Petros A; Palazon, Asis; Macias, David; Lee, Kian L; Phan, Anthony T; Veliça, Pedro; You, Jia; Chia, Grace S; Sim, Jingwei; Doedens, Andrew; Abelanet, Alice; Evans, Colin E; Griffiths, John R; Poellinger, Lorenz; Goldrath, Ananda W; Johnson, Randall S

    2016-12-08

    R-2-hydroxyglutarate accumulates to millimolar levels in cancer cells with gain-of-function isocitrate dehydrogenase 1/2 mutations. These levels of R-2-hydroxyglutarate affect 2-oxoglutarate-dependent dioxygenases. Both metabolite enantiomers, R- and S-2-hydroxyglutarate, are detectible in healthy individuals, yet their physiological function remains elusive. Here we show that 2-hydroxyglutarate accumulates in mouse CD8 + T cells in response to T-cell receptor triggering, and accumulates to millimolar levels in physiological oxygen conditions through a hypoxia-inducible factor 1-alpha (HIF-1α)-dependent mechanism. S-2-hydroxyglutarate predominates over R-2-hydroxyglutarate in activated T cells, and we demonstrate alterations in markers of CD8 + T-cell differentiation in response to this metabolite. Modulation of histone and DNA demethylation, as well as HIF-1α stability, mediate these effects. S-2-hydroxyglutarate treatment greatly enhances the in vivo proliferation, persistence and anti-tumour capacity of adoptively transferred CD8 + T cells. Thus, S-2-hydroxyglutarate acts as an immunometabolite that links environmental context, through a metabolic-epigenetic axis, to immune fate and function.

  16. The immunometabolite S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate

    PubMed Central

    Tyrakis, Petros A.; Palazon, Asis; Macias, David; Lee, Kian. L.; Phan, Anthony. T.; Veliça, Pedro; You, Jia; Chia, Grace S.; Sim, Jingwei; Doedens, Andrew; Abelanet, Alice; Evans, Colin E.; Griffiths, John R.; Poellinger, Lorenz; Goldrath, Ananda. W.; Johnson, Randall S.

    2016-01-01

    R-2-hydroxyglutarate accumulates to millimolar levels in cancers with gain-of-function isocitrate dehydrogenase 1/2 mutations. These levels of R-2-hydroxyglutarate affect 2-oxoglutarate-dependent dioxygenases. Both R- and S-2-hydroxyglutarate, the other enantiomer of this metabolite, are detectible in healthy individuals, yet their physiological function remains elusive. Here we show that CD8+ T-lymphocytes accumulate 2-hydroxyglutarate in response to T-cell receptor triggering. This increases to millimolar levels in physiological oxygen conditions, via a hypoxia inducible factor 1 alpha-dependent mechanism. S-2-hydroxyglutarate predominates over R-2-hydroxyglutarate in activated T cells, and we demonstrate alterations in markers of CD8+ T-lymphocyte differentiation in response to this metabolite. Modulation of histone and DNA demethylation as well as hypoxia inducible factor 1 alpha stability mediate these effects. S-2-hydroxyglutarate treatment greatly enhances the in vivo proliferation, persistence and anti-tumour capacity of adoptively transferred CD8+ T-lymphocytes. Thus S-2-hydroxyglutarate acts as an immunometabolite that links environmental context, via a metabolic-epigenetic axis, to immune fate and function. PMID:27798602

  17. What can in situ ion chromatography offer for Mars exploration?

    PubMed

    Shelor, C Phillip; Dasgupta, Purnendu K; Aubrey, Andrew; Davila, Alfonso F; Lee, Michael C; McKay, Christopher P; Liu, Yan; Noell, Aaron C

    2014-07-01

    The successes of the Mars exploration program have led to our unprecedented knowledge of the geological, mineralogical, and elemental composition of the martian surface. To date, however, only one mission, the Phoenix lander, has specifically set out to determine the soluble chemistry of the martian surface. The surprising results, including the detection of perchlorate, demonstrated both the importance of performing soluble ion measurements and the need for improved instrumentation to unambiguously identify all the species present. Ion chromatography (IC) is the state-of-the-art technique for soluble ion analysis on Earth and would therefore be the ideal instrument to send to Mars. A flight IC system must necessarily be small, lightweight, low-power, and have low eluent consumption. We demonstrate here a breadboard system that addresses these issues by using capillary IC at low flow rates with an optimized eluent generator and suppressor. A mix of 12 ions known or plausible for the martian soil, including 4 (oxy)chlorine species, has been separated at flow rates ranging from 1 to 10 μL/min, requiring as little as 200 psi at 1.0 μL/min. This allowed the use of pneumatic displacement pumping from a pressurized aluminum eluent reservoir and the elimination of the high-pressure pump entirely (the single heaviest and most energy-intensive component). All ions could be separated and detected effectively from 0.5 to 100 μM, even when millimolar concentrations of perchlorate were present in the same mixtures.

  18. Esterified Trehalose Analogues Protect Mammalian Cells from Heat Shock.

    PubMed

    Bragg, Jack T; D'Ambrosio, Hannah K; Smith, Timothy J; Gorka, Caroline A; Khan, Faraz A; Rose, Joshua T; Rouff, Andrew J; Fu, Terence S; Bisnett, Brittany J; Boyce, Michael; Khetan, Sudhir; Paulick, Margot G

    2017-09-19

    Trehalose is a disaccharide produced by many organisms to better enable them to survive environmental stresses, including heat, cold, desiccation, and reactive oxygen species. Mammalian cells do not naturally biosynthesize trehalose; however, when introduced into mammalian cells, trehalose provides protection from damage associated with freezing and drying. One of the major difficulties in using trehalose as a cellular protectant for mammalian cells is the delivery of this disaccharide into the intracellular environment; mammalian cell membranes are impermeable to the hydrophilic sugar trehalose. A panel of cell-permeable trehalose analogues, in which the hydrophilic hydroxyl groups of trehalose are masked as esters, have been synthesized and the ability of these analogues to load trehalose into mammalian cells has been evaluated. Two of these analogues deliver millimolar concentrations of free trehalose into a variety of mammalian cells. Critically, Jurkat cells incubated with these analogues show improved survival after heat shock, relative to untreated Jurkat cells. The method reported herein thus paves the way for the use of esterified analogues of trehalose as a facile means to deliver high concentrations of trehalose into mammalian cells for use as a cellular protectant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Assembly properties of the Bacillus subtilis actin, MreB.

    PubMed

    Mayer, Joshua A; Amann, Kurt J

    2009-02-01

    The bacterial actin MreB has been implicated in a variety of cellular roles including cell shape determination, cell wall synthesis, chromosome condensation and segregation, and the establishment and maintenance of cell polarity. Toward elucidating a clearer understanding of how MreB functions inside the bacterial cell, we investigated biochemically the polymerization of MreB from Bacillus subtilis. Light scattering and sedimentation assays revealed pH-, ionic-, cationic-, and temperature-dependent behavior. B. subtilis MreB polymerizes in the presence of millimolar divalent cations in a protein concentration-dependent manner. Polymerization is favored by decreasing pH and inhibited by monovalent salts and low temperatures. Although B. subtilis MreB binds and hydrolyzes both ATP and GTP, it does not require a bound nucleotide for assembly and polymerizes indistinguishably regardless of the nucleotide species bound, with a critical concentration of approximately 900 nM. A number of the presently reported properties of B. subtilis MreB differ significantly from those of T. maritima MreB1 (Bean and Amann [2008]: Biochemistry 47: 826-835), including the nucleotide requirements and temperature and ionic effects on polymerization state. These observations collectively suggest that additional factors interact with MreB to account for its complex dynamic behavior in cells.

  20. Treatment of Pancreatic Cancer with Pharmacological Ascorbate

    PubMed Central

    Cieslak, John A.; Cullen, Joseph J.

    2016-01-01

    The prognosis for patients diagnosed with pancreatic cancer remains dismal, with less than 3% survival at 5 years. Recent studies have demonstrated that high-dose, intravenous pharmacological ascorbate (ascorbic acid, vitamin C) induces cytotoxicity and oxidative stress selectively in pancreatic cancer cells vs. normal cells, suggesting a promising new role of ascorbate as a therapeutic agent. At physiologic concentrations, ascorbate functions as a reducing agent and antioxidant. However, when pharmacological ascorbate is given intravenously, it is possible to achieve millimolar plasma concentration. At these pharmacological levels, and in the presence of catalytic metal ions, ascorbate can induce oxidative stress through the generation of hydrogen peroxide (H2O2). Recent in vitro and in vivo studies have demonstrated ascorbate oxidation occurs extracellularly, generating H2O2 flux into cells resulting in oxidative stress. Pharmacologic ascorbate also inhibits the growth of pancreatic tumor xenografts and displays synergistic cytotoxic effects when combined with gemcitabine in pancreatic cancer. Phase I trials of pharmacological ascorbate in pancreatic cancer patients have demonstrated safety and potential efficacy. In this chapter, we will review the mechanism of ascorbate-induced cytotoxicity, examine the use of pharmacological ascorbate in treatment and assess the current data supporting its potential as an adjuvant in pancreatic cancer. PMID:26201606

  1. Paper-based electrochemical sensor for on-site detection of the sulphur mustard.

    PubMed

    Colozza, Noemi; Kehe, Kai; Popp, Tanja; Steinritz, Dirk; Moscone, Danila; Arduini, Fabiana

    2018-06-22

    Herein, we report a novel paper-based electrochemical sensor for on-site detection of sulphur mustards. This sensor was conceived combining office paper-based electrochemical sensor with choline oxidase enzyme to deliver a sustainable sensing tool. The mustard agent detection relies on the evaluation of inhibition degree of choline oxidase, which is reversibly inhibited by sulphur mustards, by measuring the enzymatic by-product H 2 O 2 in chronoamperometric mode. A nanocomposite constituted of Prussian Blue nanoparticles and Carbon Black was used as working electrode modifier to improve the electroanalytical performances. This bioassay was successfully applied for the measurement of a sulphur mustard, Yprite, obtaining a detection limit in the millimolar range (LOD = 0.9 mM). The developed sensor, combined with a portable and easy-to-use instrumentation, can be applied for a fast and cost-effective detection of sulphur mustards.

  2. Proteolytic Activity at Alkaline pH in Oat Leaves, Isolation of an Aminopeptidase 1

    PubMed Central

    Casano, Leonardo M.; Desimone, Marcelo; Trippi, Victorio S.

    1989-01-01

    Proteolytic activity in oat leaf extracts was measured with both azocasein and ribulose bisphosphate carboxylase (Rubisco) as substrates over a wide range of pH (3.0-9.2). With either azocasein or Rubisco activity peaks appeared at pH 4.8, 6.6, and 8.4. An aminopeptidase (AP) which hydrolyzes leucine-nitroanilide was partially purified. Purification consisted of a series of six steps which included ammonium sulfate precipitation, gel filtration, and two ionic exchange chromatographies. The enzyme was purified more than 100-fold. The apparent Km for leucine-nitroanilide is 0.08 millimolar at its pH optimum of 8.4. AP may be a cystein protease since it is inhibited by heavy metals and activated by 2-mercaptoethanol. Isolated chloroplasts were also able to hydrolyze leucine-nitroanilide at a pH optimum of 8.4, indicating that AP could be localized inside the photosynthetic organelles. PMID:16667194

  3. Effects of benzyl isothiocyanate on the reproduction of Meloidogyne incognita on Glycine max and Capsicum annuum

    USDA-ARS?s Scientific Manuscript database

    Reproduction of Meloidogyne incognita on Capsicum annuum or Glycine max was suppressed when infective juveniles (J2) were exposed to 0.03 millimolar benzyl isothiocyanate (BITC) for 2hr prior to inoculation of the host. Infectivity assessed by gall index was significantly reduced on both G. max (co...

  4. High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors.

    PubMed

    Lecker, Irene; Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Mazer, C David; Orser, Beverley A

    2017-07-01

    The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.

  5. Retinoic acid stimulation of human dermal fibroblast proliferation is dependent on suboptimal extracellular Ca2+ concentration.

    PubMed Central

    Varani, J.; Shayevitz, J.; Perry, D.; Mitra, R. S.; Nickoloff, B. J.; Voorhees, J. J.

    1990-01-01

    Human dermal fibroblasts failed to proliferate when cultured in medium containing 0.15 mmol/l (millimolar) Ca2+ (keratinocyte growth medium [KGM]) but did when the external Ca2+ concentration was raised to 1.4 mmol/l. All-trans retinoic acid (retinoic acid) stimulated proliferation in KGM but did not further stimulate growth in Ca2(+)-supplemented KGM. The ability of retinoic acid to stimulate proliferation was inhibited in KGM prepared without Ca2+ or prepared with 0.03 mmol/l Ca2+ and in KGM treated with 1 mmol/l ethylene-glycol-bis-(beta-aminoethyl ether)N,N'-tetra acetic acid. Using 45Ca2+ to measure Ca2+ influx and efflux, it was found that retinoic acid minimally increased Ca2+ uptake into fibroblasts. In contrast, retinoic acid treatment of fibroblasts that had been pre-equilibrated for 1 day with 45Ca2+ inhibited release of intracellular Ca2+ into the extracellular fluid. Retinoic acid also stimulated 35S-methionine incorporation into trichloroacetic acid-precipitable material but in contrast to its effect on proliferation, stimulation of 35S-methionine incorporation occurred in both high-Ca2+ and low-Ca2+ medium. These data indicate that retinoic acid stimulation of proliferation, but not protein synthesis, is dependent on the concentration of Ca2+ in the extracellular environment. PMID:2356860

  6. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Wang, Jianling; Zhang, Gen; Li, Qiwei; Jiang, Hui; Liu, Chongyang; Amatore, Christian; Wang, Xuemei

    2013-01-01

    Fluorescence imaging in vivo allows non-invasive tumor diagnostic thus permitting a direct monitoring of cancer therapies progresses. It is established herein that fluorescent gold nanoclusters are spontaneously biosynthesized by cancerous cell (i.e., HepG2, human hepatocarcinoma cell line; K562, leukemia cell line) incubated with micromolar chloroauric acid solutions, a biocompatible molecular Au(III) species. Gold nanoparticles form by Au(III) reduction inside cells cytoplasms and ultimately concentrate around their nucleoli, thus affording precise cell imaging. Importantly, this does not occur in non-cancerous cells, as evidenced with human embryo liver cells (L02) used as controls. This dichotomy is exploited for a new strategy for in vivo self-bio-imaging of tumors. Subcutaneous injections of millimolar chloroauric acid solution near xenograft tumors of the nude mouse model of hepatocellular carcinoma or chronic myeloid leukemia led to efficient biosynthesis of fluorescent gold nanoclusters without significant dissemination to the surrounding normal tissues, hence allowing specific fluorescent self-bio-marking of the tumors.

  7. Purification and characterization of sheep brain cold-stable microtubules.

    PubMed Central

    Pirollet, F; Job, D; Fischer, E H; Margolis, R L

    1983-01-01

    The isolation of cold-stable microtubules in high yields, described previously only from rodents, was extended to the brain of higher animals. Under optimal conditions, yields of 30 mg of cold-stable microtubles per 100 g of sheep brain could be obtained routinely. Material purified by two polymerization cycles displayed the same stability to cold temperature or to millimolar concentrations of calcium and the same lability to calmodulin and to ATP as did the purified material obtained from the rat [Job, D., Rauch, C.T., Fischer, E.H. & Margolis, R.L. (1982) Biochemistry 21, 509]. Furthermore, DE-52 chromatography of this material yielded a fraction that restored cold stability when added to cold-labile microtubules. Known to bind to calmodulin and to enhance microtubule assembly, tau proteins had no cold-stabilizing activity. Protein profiles of the cold-stabilizing fraction from sheep and rat brain were similar to one another but showed no protein bands corresponding to the tau proteins. Images PMID:6572919

  8. Signaling pathways involved in human sperm hyperactivated motility stimulated by Zn2.

    PubMed

    Allouche-Fitoussi, Deborah; Bakhshi, Danit; Breitbart, Haim

    2018-05-11

    To fertilize the egg, sperm cells must reside in the female reproductive tract for several hours during which they undergo chemical and motility changes collectively called capacitation. During capacitation, the sperm develop a unique type of motility known as hyper-activated motility (HAM). The semen contains Zn 2+ in millimolar concentrations, whereas in the female reproductive tract the concentration is around 1 µM. In this study, we characterize the role of Zn 2+ in human sperm capacitation focusing on its effect on HAM. Western blot analysis revealed the presence of GPR39 type Zn-receptor localized mainly in the sperm tail. Zn 2+ at micromolar concentration stimulates HAM which is mediated by a cascade involving GPR39-Adenylyl Cyclase (AC)-cAMP-PKA-Src-EGFR and phospholipase C (PLC). Both the trans-membrane AC and the soluble-AC are involved in the stimulation of HAM by Zn 2+ . The development of HAM is precisely regulated by cAMP, in which relatively low concentration (5-10 µM) stimulated HAM, whereas at 30 µM no stimulation occurred. A similar response was seen when different concentrations of Zn 2+ were added to the cells; low Zn 2+ stimulated HAM, whereas at relatively high Zn 2+ , no effect was seen. We further demonstrate that the Ca 2+ -channel CatSper involved in Zn 2+ - stimulated HAM. These data support a role for extracellular Zn 2+ acting via GPR39 to regulate signaling pathways in sperm capacitation, leading to HAM induction. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Carcinoma autoantigens T and Tn and their cleavage products interact with Gal/GalNAc-specific receptors on rat Kupffer cells and hepatocytes.

    PubMed

    Schlepper-Schäfer, J; Springer, G F

    1989-10-09

    We studied interactions of isolated Thomsen-Friedenreich (T)- and Tn-specific glycoproteins with the Gal/GalNAc-specific receptors on rat Kupffer cells and compared them to those with rat hepatocytes. Immunoreactive T and Tn are specific pancarcinoma epitopes. Electron microscopy of gold-labelled T and Tn antigens revealed their specific binding to Kupffer cells, followed by their uptake via the coated pit/vesicle pathway of receptor-mediated endocytosis. Preincubation of Kupffer cells with GalNAc and GalNAc-BSA, but not GlcNAc or GlcNAc-BSA specifically inhibited binding of the T and Tn glycoproteins. Desialylated, isologous erythrocytes (T RBC) are known to bind to the Gal/GalNAc receptors of rat Kupffer cells and hepatocytes. This attachment was specifically inhibited by T and Tn in a concentration-dependent manner: 50% T RBC-Kupffer cell contacts were inhibited at 8.5.10(-6) mM T and 8.5.10(-5) mM Tn antigen concentrations, respectively. The corresponding figures for hepatocytes were 6.10(-6) mM T and 1.2.10(-6) mM Tn antigen. Amino-terminal cleavage products of the T glycoprotein, possessing clusters terminating in non-reducing Gal/GalNAc, inhibited T RBC binding to Kupffer cells and hepatocytes usually at 10(-2) to 10(-5) mM concentrations, whereas GalNAc, galactose and galactose glycosides inhibited at millimolar concentrations. Galactose-unrelated carbohydrates were inactive at concentrations greater than or equal to 50 mM.

  10. Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility

    NASA Technical Reports Server (NTRS)

    Neumann, P. M.; Van Volkenburgh, E.; Cleland, R. E.

    1988-01-01

    Treatment of bean (Phaseolus vulgaris L.) seedlings with low levels of salinity (50 or 100 millimolar NaCl) decreased the rate of light-induced leaf cell expansion in the primary leaves over a 3 day period. This decrease could be due to a reduction in one or both of the primary cellular growth parameters: wall extensibility and cell turgor. Wall extensibility was assessed by the Instron technique. Salinity did not decrease extensibility and caused small increases relative to the controls after 72 hours. On the other hand, 50 millimolar NaCl caused a significant reduction in leaf bulk turgor at 24 hours; adaptive decreases in leaf osmotic potential (osmotic adjustment) were more than compensated by parallel decreases in xylem tension potential and the leaf apoplastic solute potential, resulting in a decreased leaf water potential. It is concluded that in bean seedlings, mild salinity initially affects leaf growth rate by a decrease in turgor rather than by a reduction in wall extensibility. Moreover, long-term salinization (10 days) resulted in an apparent mechanical adjustment, i.e. an increase in wall extensibility, which may help counteract reductions in turgor and maintain leaf growth rates.

  11. The effect of nicotine and cotinine on human gingival fibroblasts attachment to root surfaces.

    PubMed

    Esfahrood, Zeinab Rezaei; Zamanian, Amirhosein; Torshabi, Maryam; Abrishami, Maryam

    2015-09-01

    Different compounds of smoking (e.g., nicotine and cotinine) are risk factors for various diseases such as oral cancer and periodontal diseases. Some studies reported the negative effects of nicotine on cell proliferation and differentiation. The present in vitro study assessed the effects of nicotine and cotinine (long-acting metabolite of nicotine) on the attachment and viability of human gingival fibroblast (HGF) cells to tooth root surfaces. A total of 70 teeth specimens were placed into 48-well culture plates and covered with HGF cell suspension, in complete Dulbecco's modified Eagle's medium culture medium containing 1 nM, 1 μm, 1 mM, and 5 mM of nicotine and cotinine concentrations. Cellular attachment and viability measured using an MTT assay and a scanning electron microscope were used for cell morphological evaluation. After 24 h, low (nanomolar and micromolar) and high concentrations (millimolar) of nicotine and cotinine caused a significant reduction in the initial cell adhesion in comparison with the control group, but no significant difference was observed between the nicotine and the cotinine groups (p<0.05). Dentally attached cells with low concentrations of nicotine and cotinine proliferated 48 h after exposure, the same as the control group. However, dentally attached cells with high concentrations of nicotine and cotinine (especially 5 mM) did not proliferate 24 h after exposure (p<0.05). Low concentrations of nicotine and cotinine caused a reduction in the initial cell adhesion. However, no significant adverse effects on the proliferation of attached cells were seen in the longer period. High concentrations of nicotine and cotinine have adverse effects on the cell adhesion and proliferation of HGF cells.

  12. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine

    PubMed Central

    Baron, L; Gombault, A; Fanny, M; Villeret, B; Savigny, F; Guillou, N; Panek, C; Le Bert, M; Lagente, V; Rassendren, F; Riteau, N; Couillin, I

    2015-01-01

    The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP) and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase in P2Y1, P2Y2, A2A and/or A2B receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1β secretion in response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation or selective A2A or A2B receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3 inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of adenosine triggers inflammasome activation and IL-1β secretion through adenosine cellular uptake by nucleotide transporters and by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation. PMID:25654762

  13. Studies on the in vivo sensitivity of spindle microtubules to calcium ions and evidence for a vesicular calcium-sequestering system

    PubMed Central

    1981-01-01

    I microinjected calcium ions into echinoderm eggs during mitosis to determine the calcium sensitivity of microtubules (Mts) in vivo. Spindle birefringence (BR), a measure of the number of aligned Mts in the spindle, is locally, rapidly, and reversibly abolished by small volumes of microinjected CaCl2 (1 mM). Rapid return of BR is followed by anaphase, and subsequent divisions are normal. Similar doses of MgCl2, BaCl2, KCl, NaCl, pH buffers, distilled water, or vegetable oil have no effect on spindle BR, whereas large doses of such agents sometimes cause slow, uniform loss in BR over the course of a minute or more. Of the ions tested, only Sr++ causes effects comparable to Ca++. Ca-EGTA buffers, containing greater than micromolar free Ca++, abolishes BR in a manner similar to millimolar concentrations of injected CaCl2. Caffeine, a potent uncoupler of the Ca++-pump/ATPase of sarcoplasmic reticulum, causes a local, transient depression in spindle BR in the injected region. Finally, injection of potassium oxalate results in the formation of small, highly BR crystals, presumably CA- oxalate, in Triton-sensitive compartments in the cytoplasm. Taken together, these findings demonstrate that spindle Mts are sensitive to levels of free Ca++ in the physiological range, provide evidence for the existence of a strong cytoplasmic Ca++-sequestering system, and support the notion that Mt assembly and disassembly in local regions of the spindle may be orchestrated by local changes in the cytoplasmic free Ca++ concentration during mitosis. An appendix offers the design of a new chamber for immobilizing echinoderm eggs for injection, a new method for determining the volume of the injected solution, and a description of the microinjection technique, which was designed, but never fully described, by Hiramoto (Y. Hiramoto, Exp. Cell. Res., 1962, 27:416-426.). PMID:7194345

  14. Vitamin C Transporters in Cancer: Current Understanding and Gaps in Knowledge

    PubMed Central

    Wohlrab, Christina; Phillips, Elisabeth; Dachs, Gabi U.

    2017-01-01

    Sufficient uptake and whole body distribution of vitamin C (ascorbate) is essential for many biochemical processes, including some that are vital for tumor growth and spread. Uptake of ascorbate into cancer cells is modulated by availability, tumor blood flow, tissue diffusion parameters, and ascorbate transport proteins. Uptake into cells is mediated by two families of transport proteins, namely, the solute carrier gene family 23, consisting of sodium-dependent vitamin C transporters (SVCTs) 1 and 2, and the SLC2 family of glucose transporters (GLUTs). GLUTs transport the oxidized form of the vitamin, dehydroascorbate (DHA), which is present at negligible to low physiological levels. SVCT1 and 2 are capable of accumulating ascorbate against a concentration gradient from micromolar concentrations outside to millimolar levels inside of cells. Investigating the expression and regulation of SVCTs in cancer has only recently started to be included in studies focused on the role of ascorbate in tumor formation, progression, and response to therapy. This review gives an overview of the current, limited knowledge of ascorbate transport across membranes, as well as tissue distribution, gene expression, and the relevance of SVCTs in cancer. As tumor ascorbate accumulation may play a role in the anticancer activity of high dose ascorbate treatment, further research into ascorbate transport in cancer tissue is vital. PMID:28484682

  15. Hyperpolarization of “Neat” Liquids by NMR Signal Amplification by Reversible Exchange

    PubMed Central

    2016-01-01

    We report NMR Signal Amplification by Reversible Exchange (SABRE) hyperpolarization of the rare isotopes in “neat” liquids, each composed only of an otherwise pure target compound with isotopic natural abundance (n.a.) and millimolar concentrations of dissolved catalyst. Pyridine (Py) or Py derivatives are studied at 0.4% isotopic natural abundance 15N, deuterated, 15N enriched, and in various combinations using the SABRE-SHEATH variant (microTesla magnetic fields to permit direct 15N polarization from parahydrogen via reversible binding and exchange with an Ir catalyst). We find that the dilute n.a. 15N spin bath in Py still channels spin order from parahydrogen to dilute 15N spins, without polarization losses due to the presence of 14N or 2H. We demonstrate P15N ≈ 1% (a gain of 2900 fold relative to thermal polarization at 9.4 T) at high substrate concentrations. This fundamental finding has a significant practical benefit for screening potentially hyperpolarizable contrast agents without labeling. The capability of screening at n.a. level of 15N is demonstrated on examples of mono- and dimethyl-substituted Py (picolines and lutidines previously identified as promising pH sensors), showing that the presence of a methyl group in the ortho position significantly decreases SABRE hyperpolarization. PMID:26029349

  16. Role of taurine in the pathogenesis of obesity.

    PubMed

    Murakami, Shigeru

    2015-07-01

    Taurine is a sulfur-containing amino acid that is present in mammalian tissues in millimolar concentrations. Taurine is involved in a diverse array of biological and physiological functions, including bile salt conjugation, osmoregulation, membrane stabilization, calcium modulation, anti-oxidation, and immunomodulation. The prevalence of obesity and being overweight continues to rise worldwide at an alarming rate. Obesity is associated with a higher risk of metabolic and cardiovascular diseases, cancer, and other clinical conditions. Ingestion of taurine has been shown to alleviate metabolic diseases such as hyperlipidemia, diabetes, hypertension, and obesity in animal models. A global epidemiological survey showed that 24-h urinary taurine excretion, as a marker of dietary taurine intake, was inversely associated with BMI, blood pressure, and plasma cholesterol in humans. In addition, taurine chloramine, an endogenous product derived from activated neutrophils, has been reported to suppress obesity-induced oxidative stress and inflammation in adipocytes. Synthetic activity and concentration of taurine in adipose tissues and plasma have been shown to decrease in humans and animals during the development of obesity, suggesting a relationship between taurine deficiency and obesity. In this review, I summarize the effects of taurine on the progression of obesity in animal models and humans. Furthermore, I discuss possible mechanisms underlying the antiobesity effects of taurine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microbiological reduction of Sb(V) in anoxic freshwater sediments

    USGS Publications Warehouse

    Oremland, Ronald S.; Kulp, Thomas R.; Miller, Laurence G.; Braiotta, Franco; Webb, Samuel M.; Kocar, Benjamin D; Blum, Jodi S.

    2014-01-01

    Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were enhanced by amendment with lactate or acetate as electron donors but not by H2, and no reduction occurred in sterilized controls. Addition of 2-14C-acetate to Stibnite Mine microcosms resulted in the production of 14CO2 coupled to Sb(V) reduction, suggesting that this process proceeds by a dissimilatory respiratory pathway in those sediments. Antimony(V) reduction in Searsville Lake sediments was not coupled to acetate mineralization and may be associated with Sb-resistance. The microcosms and enrichment cultures also reduced sulfate, and the precipitation of insoluble Sb(III)-sulfide complexes was a major sink for reduced Sb. The reduction of Sb(V) by Stibnite Mine sediments was inhibited by As(V), suggesting that As(V) is a preferred electron acceptor for the indigenous community. These findings indicate a novel pathway for anaerobic microbiological respiration and suggest that communities capable of reducing high concentrations of Sb(V) commonly occur naturally in the environment.

  18. Spin-locking vs. chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons

    PubMed Central

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2010-01-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of non-equivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolites with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: i) On-resonance SL is most sensitive to chemical exchanges in the intermediate exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. ii) Offset frequency-dependent SL and CEST spectra are very similar, and can be explained well with an SL model recently developed by Trott and Palmer. iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. iv) The asymmetry of the magnetization transfer ratio (MTRasym) is highly dependent on the choice of saturation pulse power. In the intermediate exchange regime, MTRasym becomes complicated and should be interpreted with care. PMID:21500270

  19. Biosynthesis of Ethylene from Methionine in Aminoethoxyvinylglycine-Resistant Avocado Tissue

    PubMed Central

    Baker, James E.; Anderson, James D.; Adams, Douglas O.; Apelbaum, Akiva; Lieberman, Morris

    1982-01-01

    This study was conducted to determine if aminoethoxyvinylglycine (AVG) insensitivity in avocado (Persea americana Mill., Lula, Haas, and Bacon) tissue was due to an alternate pathway of ethylene biosynthesis from methionine. AVG, at 0.1 millimolar, had little or no inhibitory effect on either total ethylene production or [14C] ethylene production from [14C]methionine in avocado tissue at various stages of ripening. However, aminoxyacetic acid (AOA), which inhibits 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (the AVG-sensitive enzyme of ethylene biosynthesis), inhibited ethylene production in avocado tissue. Total ethylene production was stimulated, and [14C]ethylene production from [14C]methionine was lowered by treating avocado tissue with 1 millimolar ACC. An inhibitor of methionine adenosyltransferase (EC 2.5.1.6), l-2-amino-4-hexynoic acid (AHA), at 1.5 millimolar, effectively inhibited [14C]ethylene production from [14C]methionine in avocado tissue but had no effect on total ethylene production during a 2-hour incubation. Rates of [14C]AVG uptake by avocado and apple (Malus domestica Borkh., Golden Delicious) tissues were similar, and [14C]AVG was the only radioactive compound in alcohol-soluble fractions of the tissues. Hence, AVG-insensitivity in avocado tissue does not appear to be due to lack of uptake or to metabolism of AVG by avocado tissue. ACC synthase activity in extracts of avocado tissue was strongly inhibited (about 60%) by 10 micromolar AVG. Insensitivity of ethylene production in avocado tissue to AVG may be due to inaccessibility of ACC synthase to AVG. AVG-resistance in the avocado system is, therefore, different from that of early climacteric apple tissue, in which AVG-insensitivity of total ethylene production appears to be due to a high level of endogenous ACC relative to its rate of conversion to ethylene. However, the sensitivity of the avocado system to AOA and AHA, dilution of labeled ethylene production by ACC, and stimulation of total ethylene production by ACC provide evidence for the methionine → SAM → ACC → ethylene pathway in avocado and do not suggest the operation of an alternate pathway. PMID:16662192

  20. Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, P.C.; Evans, J.J.; Bacon, C.W.

    Infection by the fungal endophyte Acremonium coenophialum affected the accumulation of inorganic and organic N in leaf blades and leaf sheaths of KY31 tall fescue (Festuca arundinacea Schreb.) grown under greenhouse conditions. Total soluble amino acid concentrations were increased in either the blade or sheath of the leaf from infected plants. A number of amino acids were significantly increased in the sheath, but only asparagine increased in the blade. Infection resulted in higher sheath NH{sub 4}{sup +} concentrations, whereas NO{sub 3}{sup {minus}} concentrations decreased in both leaf parts. The effects on amino acid, NO{sub 3}{sup {minus}}, and NH{sub 4}{sup +}more » concentrations were dependent upon the level of N fertilization and were usually apparent only at the high rate (10 millimolar) of application. Administration of {sup 14}CO{sub 2} to the leaf blades increased the accumulation of {sup 14}C in their amino acid fraction but not in the sheaths of infected plants. This may indicate that infection increased amino acid synthesis in the blade but that translocation to the sheath, which is the site of fungal colonization, was not affected. Glutamine synthetase activity was greater in leaf blades of infected plants at high and low N rates of fertilization, but nitrate reductase activity was not affected in either part of the leaf. Increased activities of glutamine synthetase together with the other observed changes in N accumulation and metabolism in endophyte-infected tall fescue suggest that NH{sub 4}{sup +} reassimilation could also be affected in the leaf blade.« less

  1. Fragment-based design of symmetrical bis-benzimidazoles as selective inhibitors of the trimethoprim-resistant, type II R67 dihydrofolate reductase.

    PubMed

    Bastien, Dominic; Ebert, Maximilian C C J C; Forge, Delphine; Toulouse, Jacynthe; Kadnikova, Natalia; Perron, Florent; Mayence, Annie; Huang, Tien L; Vanden Eynde, Jean Jacques; Pelletier, Joelle N

    2012-04-12

    The continuously increasing use of trimethoprim as a common antibiotic for medical use and for prophylactic application in terrestrial and aquatic animal farming has increased its prevalence in the environment. This has been accompanied by increased drug resistance, generally in the form of alterations in the drug target, dihydrofolate reductase (DHFR). The most highly resistant variants of DHFR are known as type II DHFR, among which R67 DHFR is the most broadly studied variant. We report the first attempt at designing specific inhibitors to this emerging drug target by fragment-based design. The detection of inhibition in R67 DHFR was accompanied by parallel monitoring of the human DHFR, as an assessment of compound selectivity. By those means, small aromatic molecules of 150-250 g/mol (fragments) inhibiting R67 DHFR selectively in the low millimolar range were identified. More complex, symmetrical bis-benzimidazoles and a bis-carboxyphenyl were then assayed as fragment-based leads, which procured selective inhibition of the target in the low micromolar range (K(i) = 2-4 μM). The putative mode of inhibition is discussed according to molecular modeling supported by in vitro tests. © 2012 American Chemical Society

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, A.; Valdez, V; Rudino-Pinera, E

    Neurospora crassa has two large-subunit catalases, CAT-1 and CAT-3. CAT-1 is associated with non-growing cells and accumulates particularly in asexual spores; CAT-3 is associated with growing cells and is induced under different stress conditions. It is our interest to elucidate the structure-function relationships in large-subunit catalases. Here we have determined the CAT-3 crystal structure and compared it with the previously determined CAT-1 structure. Similar to CAT-1, CAT-3 hydrogen peroxide (H{sub 2}O{sub 2}) saturation kinetics exhibited two components, consistent with the existence of two active sites: one saturated in the millimolar range and the other in the molar range. In themore » CAT-1 structure, we found three interesting features related to its unusual kinetics: (a) a constriction in the channel that conveys H{sub 2}O{sub 2} to the active site; (b) a covalent bond between the tyrosine, which forms the fifth coordination bound to the iron of the heme, and a vicinal cysteine; (c) oxidation of the pyrrole ring III to form a cis-hydroxyl group in C5 and a cis-{gamma}-spirolactone in C6. The site of heme oxidation marks the starts of the central channel that communicates to the central cavity and the shortest way products can exit the active site. CAT-3 has a similar constriction in its major channel, which could function as a gating system regulated by the H{sub 2}O{sub 2} concentration before the gate. CAT-3 functional tyrosine is not covalently bonded, but has instead the electron relay mechanism described for the human catalase to divert electrons from it. Pyrrole ring III in CAT-3 is not oxidized as it is in other large-subunit catalases whose structure has been determined. Different in CAT-3 from these enzymes is an occupied central cavity. Results presented here indicate that CAT-3 and CAT-1 enzymes represent a functional group of catalases with distinctive structural characteristics that determine similar kinetics.« less

  3. Intracellular concentrations and metabolism of carbon compounds in tobacco callus cultures: Effects of light and auxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawyer, A.L.; Grady, K.L.; Bassham, J.A.

    1981-10-01

    Callus cultures derived from pith tissue of Nicotiana tobacum were grown on two media either under continuous illumination or in complete darkness. The first medium limited greening ability of callus grown in the light (3 milligrams per liter naphthalene acetic acid, 0.3 milligram per liter 2-isopentenylaminopurine, Murashige and Skoog salts, and 2% sucrose). The second medium encouraged chlorophyll synthesis (greening) though not shoot formation (0.3 milligram per liter naphthalene acetic acid; 0.3 milligrams per liter 2-isopentylaminopurine). To measure intracellular concentrations, calli were grown for 15 days on these standard media containing (U-/sup 14/C)sucrose. The dry weight proportions of the callimore » (as a fraction of fresh weight) and many metabolite concentrations nearly doubled in light-grown cells compared to dark-grown cells and increase 30 to 40% on low-auxin media relative to high-auxin media. Glutamine concentrations (from 4 to 26 millimolar) were very high, probably due to the NH/sub 3/ content of the media. Proline concentrations were 20-fold higher in calli grown on low-auxin media in the light (green cells), possibly a stress response to high osmotic potentials in these cells. To analyze sucrose metabolism, callus cells were allowed to take up 0.2% (weight per volume) (U-/sup 14/C)sucrose for up to 90 minutes. In callus tissues and in pith sections from stems of tobacco plants, sucrose was primarily metabolized through invertase activity, producing equal amounts of labeling glucose and fructose. Respiration of /sup 14/CO/sub 2/ followed the labeling patterns of tricarboxylic acid cycle intermediates. Photorespiration activity was low.« less

  4. The antiwrinkle effect of topical concentrated 2-dimethylaminoethanol involves a vacuolar cytopathology.

    PubMed

    Morissette, G; Germain, L; Marceau, F

    2007-03-01

    The 'cosmeceutical' agent 2-dimethylaminoethanol (DMAE) is a tertiary amine found in high concentration in numerous topical antiwrinkle preparations. We hypothesized that a 337 mmol L(-1) (3%) DMAE reservoir applied to the skin could reproduce the cytopathology induced by other amines by maintaining a millimolar drug concentration within a certain depth of the skin layers, and that vacuolar cell expansion could account for the very rapid effect on the apparent skin fullness. Morphological and functional assays were applied to cultured rabbit dermal fibroblasts treated with tertiary amines in vitro. A morphological verification of the vacuolization caused by topical DMAE was also attempted in vivo using the inner skin of the rabbit ear and in vitro using primary cultures of human cutaneous epithelial cells. Fibroblasts responded to DMAE (2.5-10 mmol L(-1)) by massive vacuolization (0.5-4 h; phase contrast observations). Triethanolamine, another chemical frequently used topically, was also active in this respect (10 mmol L(-1)). The vacuolar adenosine triphosphatase inhibitor bafilomycin A1 prevented DMAE- or triethanolamine-induced vacuolization; adding bafilomycin A1 or cell washout slowly reversed the established vacuolization induced by DMAE. Further effects of DMAE in cultured fibroblasts included a moderate cytotoxicity (10 mmol L(-1)) that was abated by bafilomycin A1 cotreatment, a concentration-dependent mitotic arrest (2.5 mmol L(-1)) and transient and mild effects on cell ploidy. The epidermis of the rabbit external ear was significantly thickened and exhibited clear perinuclear swelling indicative of vacuolization in response to 3% DMAE (1 h; paraffin tissue sections). Cultured human cutaneous epithelial cells responded to DMAE by vacuolization (inhibited by bafilomycin A1 cotreatment). The vacuolar cytopathology induced by concentrated organic amines may be the cellular basis of the antiwrinkle effect of DMAE.

  5. OmpF, a nucleotide-sensing nanoprobe, computational evaluation of single channel activities

    NASA Astrophysics Data System (ADS)

    Abdolvahab, R. H.; Mobasheri, H.; Nikouee, A.; Ejtehadi, M. R.

    2016-09-01

    The results of highthroughput practical single channel experiments should be formulated and validated by signal analysis approaches to increase the recognition precision of translocating molecules. For this purpose, the activities of the single nano-pore forming protein, OmpF, in the presence of nucleotides were recorded in real time by the voltage clamp technique and used as a means for nucleotide recognition. The results were analyzed based on the permutation entropy of current Time Series (TS), fractality, autocorrelation, structure function, spectral density, and peak fraction to recognize each nucleotide, based on its signature effect on the conductance, gating frequency and voltage sensitivity of channel at different concentrations and membrane potentials. The amplitude and frequency of ion current fluctuation increased in the presence of Adenine more than Cytosine and Thymine in milli-molar (0.5 mM) concentrations. The variance of the current TS at various applied voltages showed a non-monotonic trend whose initial increasing slope in the presence of Thymine changed to a decreasing one in the second phase and was different from that of Adenine and Cytosine; e.g., by increasing the voltage from 40 to 140 mV in the 0.5 mM concentration of Adenine or Cytosine, the variance decreased by one third while for the case of Thymine it was doubled. Moreover, according to the structure function of TS, the fractality of current TS differed as a function of varying membrane potentials (pd) and nucleotide concentrations. Accordingly, the calculated permutation entropy of the TS, validated the biophysical approach defined for the recognition of different nucleotides at various concentrations, pd's and polarities. Thus, the promising outcomes of the combined experimental and theoretical methodologies presented here can be implemented as a complementary means in pore-based nucleotide recognition approaches.

  6. Coarse-Grain Molecular Dynamics Simulations To Investigate the Bulk Viscosity and Critical Micelle Concentration of the Ionic Surfactant Sodium Dodecyl Sulfate (SDS) in Aqueous Solution.

    PubMed

    Ruiz-Morales, Yosadara; Romero-Martínez, Ascención

    2018-04-12

    The first critical micelle concentration (CMC) of the ionic surfactant sodium dodecyl sulfate (SDS) in diluted aqueous solution has been determined at room temperature from the investigation of the bulk viscosity, at several concentrations of SDS, by means of coarse-grain molecular dynamics simulations. The coarse-grained model molecules at the mesoscale level are adopted. The bulk viscosity of SDS was calculated at several millimolar concentrations of SDS in water using the MARTINI force field by means of NVT shear Mesocite molecular dynamics. The definition of each bead in the MARTINI force field is established, as well as their radius, volume, and mass. The effect of the size of the simulation box on the obtained CMC has been investigated, as well as the effect of the number of SDS molecules, in the simulations, on the formation of aggregates. The CMC, which was obtained from a graph of the calculated viscosities versus concentration, is in good agreement with the reported experimental data and does not depend on the size of the box used in the simulation. The formation of a spherical micelle-like aggregate is observed, where the dodecyl sulfate tails point inward and the heads point outward the aggregation micelle, in accordance with experimental observations. The advantage of using coarse-grain molecular dynamics is the possibility of treating explicitly charged beads, applying a shear flow for viscosity calculation, and processing much larger spatial and temporal scales than atomistic molecular dynamics can. Furthermore, the CMC of SDS obtained with the coarse-grained model is in much better agreement with the experimental value than the value obtained with atomistic simulations.

  7. Potent homocysteine-induced ERK phosphorylation in cultured neurons depends on self-sensitization via system Xc{sup -}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Li; Hu Xiaoling; Xue Zhanxia

    2010-01-15

    Homocysteine is increased during pathological conditions, endangering vascular and cognitive functions, and elevated homocysteine during pregnancy may be correlated with an increased incidence of schizophrenia in the offspring. This study showed that millimolar homocysteine concentrations in saline medium cause phosphorylation of extracellular-signal regulated kinases 1 and 2 (ERK{sub 1/2}) in cerebellar granule neurons, inhibitable by metabotropic but not ionotropic glutamate receptor antagonists. These findings are analogous to observations by , that similar concentrations cause neuronal death. However, these concentrations are much higher than those occurring clinically during hyperhomocysteinemia. It is therefore important that a approx 10-fold increase in potency occurredmore » in the presence of the glutamate precursor glutamine, when ERK{sub 1/2} phosphorylation became inhibitable by NMDA or non-NMDA antagonists and dependent upon epidermal growth factor (EGF) receptor transactivation. However, glutamate release to the medium was reduced, suggesting that reversal of the cystine/glutamate antiporter, system X{sub c}{sup -} could be involved in potentiation of the response by causing a localized release of initially accumulated homocysteine. In agreement with this hypothesis further enhancement of ERK{sub 1/2} phosphorylation occurred in the additional presence of cystine. Pharmacological inhibition of system X{sub c}{sup -} prevented the effect of micromolar homocysteine concentrations, and U0126-mediated inhibition of ERK{sub 1/2} phosphorylation enhanced homocysteine-induced death. In conclusion, homocysteine interacts with system X{sub c}{sup -} like quisqualate (Venkatraman et al. 1994), by 'self-sensitization' with initial accumulation and subsequent release in exchange with cystine and/or glutamate, establishing high local homocysteine concentrations, which activate adjacent ionotropic glutamate receptors and cause neurotoxicity.« less

  8. Viscosity reduction of isotonic solutions of the photosensitizer TPCS2a by cyclodextrin complexation.

    PubMed

    Tovsen, Marianne Lilletvedt; Tho, Ingunn; Tønnesen, Hanne Hjorth

    2018-02-01

    Meso-tetraphenyl chlorin disulphonate (TPCS 2a ) is a photosensitizer (PS) particularly developed and patented for use in the technology of photochemical internalization (PCI) against cancer. TPCS 2a is known to aggregate in aqueous media even at low concentrations (≥0.1 µM) and to form a high-viscosity network at clinically relevant concentrations (mM). The aim of this work was to evaluate the effect of two hydroxypropylated cyclodextrin derivatives of beta and gamma type, respectively i.e. HPβCD and HPγCD, on the aggregation and solubilization of TPCS 2a in isotonic solutions. Samples containing micromolar concentrations of TPCS 2a were studied spectrophotometrically, while samples containing a clinical relevant concentration (10 mM = 9 mg/ml) of TPCS 2a were evaluated by dynamic viscosity measurements. HPβCD was determined to be a more suitable solubilizer of TPCS 2a than HPγCD in aqueous media both in the absence and presence of salt. The complexation stoichiometry between TPCS 2a /HPβCD at micromolar to millimolar concentrations of TPCS 2a was determined to be 1:3 and 1:2 in the absence and presence of isotonic NaCl, respectively. The network of TPCS 2a (10 mM) was broken down in the presence of 3% w/v (= 20 mM) HPβCD, i.e. a 1:2 molar ratio between TPCS 2a and the cyclodextrin. Formation of the inclusion complex resulted in low viscosity samples both in water and in the presence of isotonic NaCl or phosphate buffered saline (PBS) at 25 °C and 37 °C.

  9. Effect of dietary fructose on portal and systemic serum fructose levels in rats and in KHK−/− and GLUT5−/− mice

    PubMed Central

    Patel, Chirag; Sugimoto, Keiichiro; Douard, Veronique; Shah, Ami; Inui, Hiroshi; Yamanouchi, Toshikazu

    2015-01-01

    Elevated blood fructose concentrations constitute the basis for organ dysfunction in fructose-induced metabolic syndrome. We hypothesized that diet-induced changes in blood fructose concentrations are regulated by ketohexokinase (KHK) and the fructose transporter GLUT5. Portal and systemic fructose concentrations determined by HPLC in wild-type mice fed for 7 days 0% free fructose were <0.07 mM, were independent of time after feeding, were similar to those of GLUT5−/−, and did not lead to hyperglycemia. Postprandial fructose levels, however, increased markedly in those fed isocaloric 20% fructose, causing significant hyperglycemia. Deletion of KHK prevented fructose-induced hyperglycemia, but caused dramatic hyperfructosemia (>1 mM) with reversed portal to systemic gradients. Systemic fructose in wild-type and KHK−/− mice changed by 0.34 and 1.8 mM, respectively, for every millimolar increase in portal fructose concentration. Systemic glucose varied strongly with systemic, but not portal, fructose levels in wild-type, and was independent of systemic and portal fructose in KHK−/−, mice. With ad libitum feeding for 12 wk, fructose-induced hyperglycemia in wild-type, but not hyperfructosemia in KHK−/− mice, increased HbA1c concentrations. Increasing dietary fructose to 40% intensified the hyperfructosemia of KHK−/− and the fructose-induced hyperglycemia of wild-type mice. Fructose perfusion or feeding in rats also caused duration- and dose-dependent hyperfructosemia and hyperglycemia. Significant levels of blood fructose are maintained independent of dietary fructose, KHK, and GLUT5, probably by endogenous synthesis of fructose. KHK prevents hyperfructosemia and fructose-induced hyperglycemia that would markedly increase HbA1c levels. These findings explain the hyperfructosemia of human hereditary fructosuria as well as the hyperglycemia of fructose-induced metabolic syndrome. PMID:26316589

  10. Functional genomics analysis of low concentration of ethanol in human hepatocellular carcinoma (HepG2) cells. Role of genes involved in transcriptional and translational processes.

    PubMed

    Castaneda, Francisco; Rosin-Steiner, Sigrid; Jung, Klaus

    2006-12-21

    We previously found that ethanol at millimolar level (1 mM) activates the expression of transcription factors with subsequent regulation of apoptotic genes in human hepatocellular carcinoma (HCC) HepG2 cells. However, the role of ethanol on the expression of genes implicated in transcriptional and translational processes remains unknown. Therefore, the aim of this study was to characterize the effect of low concentration of ethanol on gene expression profiling in HepG2 cells using cDNA microarrays with especial interest in genes with transcriptional and translational function. The gene expression pattern observed in the ethanol-treated HepG2 cells revealed a relatively similar pattern to that found in the untreated control cells. The pairwise comparison analysis demonstrated four significantly up-regulated (COBRA1, ITGB4, STAU2, and HMGN3) genes and one down-regulated (ANK3) gene. All these genes exert their function on transcriptional and translational processes and until now none of these genes have been associated with ethanol. This functional genomic analysis demonstrates the reported interaction between ethanol and ethanol-regulated genes. Moreover, it confirms the relationship between ethanol-regulated genes and various signaling pathways associated with ethanol-induced apoptosis. The data presented in this study represents an important contribution toward the understanding of the molecular mechanisms of ethanol at low concentration in HepG2 cells, a HCC-derived cell line.

  11. Functional genomics analysis of low concentration of ethanol in human hepatocellular carcinoma (HepG2) cells. Role of genes involved in transcriptional and translational processes

    PubMed Central

    Castaneda, Francisco; Rosin-Steiner, Sigrid; Jung, Klaus

    2007-01-01

    We previously found that ethanol at millimolar level (1 mM) activates the expression of transcription factors with subsequent regulation of apoptotic genes in human hepatocellular carcinoma (HCC) HepG2 cells. However, the role of ethanol on the expression of genes implicated in transcriptional and translational processes remains unknown. Therefore, the aim of this study was to characterize the effect of low concentration of ethanol on gene expression profiling in HepG2 cells using cDNA microarrays with especial interest in genes with transcriptional and translational function. The gene expression pattern observed in the ethanol-treated HepG2 cells revealed a relatively similar pattern to that found in the untreated control cells. The pairwise comparison analysis demonstrated four significantly up-regulated (COBRA1, ITGB4, STAU2, and HMGN3) genes and one down-regulated (ANK3) gene. All these genes exert their function on transcriptional and translational processes and until now none of these genes have been associated with ethanol. This functional genomic analysis demonstrates the reported interaction between ethanol and ethanol-regulated genes. Moreover, it confirms the relationship between ethanol-regulated genes and various signaling pathways associated with ethanol-induced apoptosis. The data presented in this study represents an important contribution toward the understanding of the molecular mechanisms of ethanol at low concentration in HepG2 cells, a HCC-derived cell line. PMID:17211498

  12. Calcium effects on stomatal movement in Commelina communis L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, A.; Ilan, N.; Grantz, D.A.

    1988-07-01

    Stomatal movements depends on both ion influx and efflux: attainment of steady state apertures reflects modulation of either or both processes. The role of Ca{sup 2+} in those two processes was investigated in isolated epidermal strips of Commelina communis, using the Ca{sup 2+} chelator EGTA to reduce apoplastic (Ca{sup 2+}). The results suggest that a certain concentration of Ca{sup 2+} is an absolute requirement for salt efflux and stomatal closure. EGTA (2 millimolar) increased KCl-dependent stomatal opening in darkness and completely inhibited the dark-induced closure of initially open stomata. Closure was inhibited even in a KCl-free medium. Thus, maintenance ofmore » stomata in the open state does not necessarily depend on continued K{sup +} influx but on the inhibition of salt efflux. Opening in the dark was stimulated by IAA in a concentration-dependent manner, up to 15.4 micrometer without reaching saturation, while the response to EGTA leveled off at 9.2 micrometer. IAA did not inhibit stomatal closure to the extent it stimulated opening. The response to IAA is thus consistent with a primary stimulation of opening, while EGTA can be considered a specific inhibitor of stomatal closing since it inhibits closure to a much larger degree than it stimulates opening. CO{sub 2} causes concentration-dependent reduction in the steady state stomatal aperture. EGTA completely reversed CO{sub 2}-induced closing of open stomata but only partially prevented the inhibition of opening.« less

  13. Distribution and metabolism of quaternary amines in salt marshes

    NASA Technical Reports Server (NTRS)

    King, Gary M.

    1985-01-01

    Quaternary amines such as glycine betaine (GBT) are common osmotically active solutes in much of the marine biota. GBT is accumulated by various bacteria, algae, higher plants, invertebrates, and vertebrates in response to salinity or water stresses; in some species, GBT occurs at tens to hundreds of millimolar concentrations and can account for a significant fraction of total nitrogen. Initial studies suggest that GBT is readily converted to two potential methane precursors, trimethylamine (TMA) and acetate, in anoxic sediments. TMA is apparently the most important methane precursor in surface sediments containing sulfate reducing bacteria. In salt marshes, the bulk of the methane formed may be due to the metabolism of TMA rather than other substrates. Current research is focussed on testing this hypothesis and on determining the role of quaternary amino osmoregulatory solutes in methane fluxes from marine environments. Preliminary studies have dealt with several problems: (1) determination of GBT concentrations in the dominant flora and fauna of salt marshes; (2) synthesis of radiolabelled GBT for metabolic studies; and (3) determination of fates of BGT in marine sediments using radiotracers. Both GC and HPLC techniques have been used to assay GBT concentrations in plant and animal tissues. S. alterniflora is probably the only significant source of GBT (and indirectly of methane) since the biomass and distribution of most other species is limited. Current estimates suggest that S. alterniflora GBT could account for most of the methane efflux from salt marshes.

  14. Escalation of polymerization in a thermal gradient

    PubMed Central

    Mast, Christof B.; Schink, Severin; Gerland, Ulrich; Braun, Dieter

    2013-01-01

    For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10600 compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers. PMID:23630280

  15. Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines

    PubMed Central

    Morales, Diana K.; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E. P.; Jacobs, Nicholas J.; Hogan, Deborah A.

    2013-01-01

    ABSTRACT Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. PMID:23362320

  16. Cationic Antimicrobial Peptide LL-37 Is Effective against both Extra- and Intracellular Staphylococcus aureus

    PubMed Central

    Noore, Jabeen; Noore, Adly

    2013-01-01

    The increasing resistance of bacteria to conventional antibiotics and the challenges posed by intracellular bacteria, which may be responsible for chronic and recurrent infections, have driven the need for advanced antimicrobial drugs for effective elimination of both extra- and intracellular pathogens. The purpose of this study was to determine the killing efficacy of cationic antimicrobial peptide LL-37 compared to conventional antibiotics against extra- and intracellular Staphylococcus aureus. Bacterial killing assays and an infection model of osteoblasts and S. aureus were studied to determine the bacterial killing efficacy of LL-37 and conventional antibiotics against extra- and intracellular S. aureus. We found that LL-37 was effective in killing extracellular S. aureus at nanomolar concentrations, while lactoferricin B was effective at micromolar concentrations and doxycycline and cefazolin at millimolar concentrations. LL-37 was surprisingly more effective in killing the clinical strain than in killing an ATCC strain of S. aureus. Moreover, LL-37 was superior to conventional antibiotics in eliminating intracellular S. aureus. The kinetic studies further revealed that LL-37 was fast in eliminating both extra- and intracellular S. aureus. Therefore, LL-37 was shown to be very potent and prompt in eliminating both extra- and intracellular S. aureus and was more effective in killing extra- and intracellular S. aureus than commonly used conventional antibiotics. LL-37 could potentially be used to treat chronic and recurrent infections due to its effectiveness in eliminating not only extracellular but also intracellular pathogens. PMID:23274662

  17. Inhibition of nitrate transport by anti-nitrate reductase IgG fragments and the identification of plasma membrane associated nitrate reductase in roots of barley seedlings

    NASA Technical Reports Server (NTRS)

    Ward, M. R.; Tischner, R.; Huffaker, R. C.

    1988-01-01

    Membrane associated nitrate reductase (NR) was detected in plasma membrane (PM) fractions isolated by aqueous two-phase partitioning from barley (Hordeum vulgare L. var CM 72) roots. The PM associated NR was not removed by washing vesicles with 500 millimolar NaCl and 1 millimolar EDTA and represented up to 4% of the total root NR activity. PM associated NR was stimulated up to 20-fold by Triton X-100 whereas soluble NR was only increased 1.7-fold. The latency was a function of the solubilization of NR from the membrane. NR, solubilized from the PM fraction by Triton X-100 was inactivated by antiserum to Chlorella sorokiniana NR. Anti-NR immunoglobulin G fragments purified from the anti-NR serum inhibited NO3- uptake by more than 90% but had no effect on NO2- uptake. The inhibitory effect was only partially reversible; uptake recovered to 50% of the control after thorough rinsing of roots. Preimmune serum immunoglobulin G fragments inhibited NO3- uptake 36% but the effect was completely reversible by rinsing. Intact NR antiserum had no effect on NO3- uptake. The results present the possibility that NO3- uptake and NO3- reduction in the PM of barley roots may be related.

  18. Purification and characterization of soluble (cytosolic) and bound (cell wall) isoforms of invertases in barley (Hordeum vulgare) elongating stem tissue

    NASA Technical Reports Server (NTRS)

    Karuppiah, N.; Vadlamudi, B.; Kaufman, P. B.

    1989-01-01

    Three different isoforms of invertases have been detected in the developing internodes of barley (Hordeum vulgare). Based on substrate specificities, the isoforms have been identified to be invertases (beta-fructosidases EC 3.2.1.26). The soluble (cytosolic) invertase isoform can be purified to apparent homogeneity by diethylaminoethyl cellulose, Concanavalin-A Sepharose, organo-mercurial Sepharose, and Sephacryl S-300 chromatography. A bound (cell wall) invertase isoform can be released by 1 molar salt and purified further by the same procedures as above except omitting the organo-mercurial Sepharose affinity chromatography step. A third isoform of invertase, which is apparently tightly associated with the cell wall, cannot be isolated yet. The soluble and bound invertase isoforms were purified by factors of 60- and 7-fold, respectively. The native enzymes have an apparent molecular weight of 120 kilodaltons as estimated by gel filtration. They have been identified to be dimers under denaturing and nondenaturing conditions. The soluble enzyme has a pH optimum of 5.5, Km of 12 millimolar, and a Vmax of 80 micromole per minute per milligram of protein compared with cell wall isozyme which has a pH optimum of 4.5, Km of millimolar, and a Vmax of 9 micromole per minute per milligram of protein.

  19. Three-dimensional structure and dynamics of wine tannin-saliva protein complexes. A multitechnique approach.

    PubMed

    Simon, Cécile; Barathieu, Karine; Laguerre, Michel; Schmitter, Jean-Marie; Fouquet, Eric; Pianet, Isabelle; Dufourc, Erick J

    2003-09-09

    The interactions between the B3 (catechin-4alpha,8-catechin) red wine tannin and the human salivary protein fragment IB7(14) (SPPGKPQGPPPQGG) were monitored by (1)H magic angle spinning NMR, circular dichroism, electrospray ionization mass spectrometry, and molecular modeling. It is found that the secondary structure of IB7(14) is made of a type II helix (collagen helix) and random coil. The central glycine 8 appears to act as a flexible rotula separating two helix II regions. Three tannin molecules tightly complex the peptide, without modifying its secondary structure, but seem to reduce its conformational dynamics. The binding dissociation constant is in the millimolar range. B3 tannins with a "tweezers" conformation bind to the hydrophilic side of the saliva peptide, suggesting that the principal driving forces toward association are governed by hydrogen bonding between the carbonyl functions of proline residues and both the phenol and catechol OH groups. These findings are further discussed in the frame of an astringency phenomenon.

  20. Aluminum and temperature alteration of cell membrane permeability of Quercus rubra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junping Chen; Sucoff, E.I.; Stadelmann, E.J.

    1991-06-01

    Al toxicity is the major factor limiting plant growth in acid soils. This report extends research on Al-induced changes in membrane behavior of intact root cortex cells of Northern red oak (Quercus rubra). Membrane permeability was determined by the plasmometric method for individual intact cells at temperatures from 2 or 4 to 35 C. Al (0.37 millimolar) significantly increased membrane permeability to urea and monoethyl urea and decreased permeability to water. Al significantly altered the activation energy required to transport water (+ 32%), urea (+ 9%), and monoethyl urea ({minus}7%) across cell membranes. Above 9 C, Al increased the lipidmore » partiality of the cell membranes; below 7 C, Al decreased it. Al narrowed by 6 C the temperature range over which plasmolysis occurred without membrane damage. These changes in membrane behavior are explainable if Al reduced membrane lipid fluidity and kink frequency and increases packing density and the occurrence of straight lipid chains.« less

  1. Transport of Stachyose and Sucrose by Vacuoles of Japanese Artichoke (Stachys sieboldii) Tubers 1

    PubMed Central

    Keller, Felix

    1992-01-01

    Vacuoles are the stores for large amounts of stachyose [αgal (1,6) αgal (1,6) αglc (1,2) βfru] in tubers of Japanese artichoke (Stachys sieboldii). The uptake of stachyose by these vacuoles was examined and compared with that of sucrose. The uptake mechanisms of both sugars were quite similar. The kinetics showed a single saturable response to increasing external concentrations of 14C-sugars with similar apparent Km values of about 50 and 30 millimolar for stachyose and sucrose, respectively. The uptake rates, however, were always higher for stachyose than for sucrose. Stachyose and sucrose uptake was inhibited by fructose and raffinose, and, reciprocally, by sucrose and stachyose, but not by glucose or galactose. The main structural feature common to all sugars recognized by the uptake systems seems to be a terminal fructosyl residue. The uptake of both sugars was stimulated by Mg-ATP and inorganic pyrophosphate, suggesting a proton-sugar antiport system. The possibility that stachyose and sucrose might be transported by the same carrier is discussed. PMID:16668659

  2. A New Class of Quorum Quenching Molecules from Staphylococcus Species Affects Communication and Growth of Gram-Negative Bacteria

    PubMed Central

    Chu, Ya-Yun; Nega, Mulugeta; Wölfle, Martina; Plener, Laure; Grond, Stephanie; Jung, Kirsten; Götz, Friedrich

    2013-01-01

    The knowledge that many pathogens rely on cell-to-cell communication mechanisms known as quorum sensing, opens a new disease control strategy: quorum quenching. Here we report on one of the rare examples where Gram-positive bacteria, the ‘Staphylococcus intermedius group’ of zoonotic pathogens, excrete two compounds in millimolar concentrations that suppress the quorum sensing signaling and inhibit the growth of a broad spectrum of Gram-negative beta- and gamma-proteobacteria. These compounds were isolated from Staphylococcus delphini. They represent a new class of quorum quenchers with the chemical formula N-[2-(1H-indol-3-yl)ethyl]-urea and N-(2-phenethyl)-urea, which we named yayurea A and B, respectively. In vitro studies with the N-acyl homoserine lactone (AHL) responding receptor LuxN of V. harveyi indicated that both compounds caused opposite effects on phosphorylation to those caused by AHL. This explains the quorum quenching activity. Staphylococcal strains producing yayurea A and B clearly benefit from an increased competitiveness in a mixed community. PMID:24098134

  3. Distribution and Properties of a Potassium-dependent Asparaginase Isolated from Developing Seeds of Pisum sativum and Other Plants 1

    PubMed Central

    Sodek, Ladaslav; Lea, Peter J.; Miflin, Benjamin J.

    1980-01-01

    Asparaginase (EC 3.5.1.1) was isolated from the developing seed of Pisum sativum. The enzyme is dependent upon the presence of K+ for activity, although Na+ and Rb+ may substitute to a lesser extent. Maximum activity was obtained at K+ concentrations above 20 millimolar. Potassium ions protected the enzyme against heat denaturation. The enzyme has a molecular weight of 68,300. Asparaginase activity developed initially in the testa, with maximum activity (3.6 micromoles per hour per seed) being present 13 days after flowering. Maximum activity (1.2 micromoles per hour per seed) did not develop in the cotyledon until 21 days after flowering. Glutamine synthetase and glutamate dehydrogenase were also present in the testae and cotyledons but maximum activity developed later than that of asparaginase. Potassium-dependent asparaginase activity was also detected in the developing seeds of Vicia faba, Phaseolus multiflorus, Zea mays, Hordeum vulgare, and two Lupinus varieties. No stimulation of activity was detected with the enzyme isolated from Lupinus polyphyllus, which has previously been shown to contain a K+-independent enzyme. PMID:16661136

  4. Phenylpyrrolidine structural mimics of pirfenidone lacking antifibrotic activity: A new tool for mechanism of action studies.

    PubMed

    Haak, Andrew J; Girtman, Megan A; Ali, Mohamed F; Carmona, Eva M; Limper, Andrew H; Tschumperlin, Daniel J

    2017-09-15

    Pirfenidone recently received FDA approval as one of the first two drugs designed to treat idiopathic pulmonary fibrosis. While the clinical data continues to support the efficacy of pirfenidone, the specific molecular mechanism of action of this drug has not been fully defined. From a chemical perspective the comparatively simple and lipophilic structure of pirfenidone combined with its administration at high doses, both experimentally and clinically, complicates some of the basic tenants of drug action and drug design. Our objective here was to identify a commercially available structural mimic of pirfenidone which retains key aspects of its physical chemical properties but does not display any of its antifibrotic effects. We tested these molecules using lung fibroblasts derived from patients with idiopathic pulmonary fibrosis and found phenylpyrrolidine based analogs of pirfenidone that were non-toxic and lacked antifibrotic activity even when applied at millimolar concentrations. Based on our findings, these molecules represent pharmacological tools for future studies delineating pirfenidone's mechanism of action. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Sinorhizobium meliloti chemotaxis to quaternary ammonium compounds is mediated by the chemoreceptor McpX.

    PubMed

    Webb, Benjamin A; Karl Compton, K; Castañeda Saldaña, Rafael; Arapov, Timofey D; Keith Ray, W; Helm, Richard F; Scharf, Birgit E

    2017-01-01

    The bacterium Sinorhizobium meliloti is attracted to seed exudates of its host plant alfalfa (Medicago sativa). Since quaternary ammonium compounds (QACs) are exuded by germinating seeds, we assayed chemotaxis of S. meliloti towards betonicine, choline, glycine betaine, stachydrine and trigonelline. The wild type displayed a positive response to all QACs. Using LC-MS, we determined that each germinating alfalfa seed exuded QACs in the nanogram range. Compared to the closely related nonhost species, spotted medic (Medicago arabica), unique profiles were released. Further assessments of single chemoreceptor deletion strains revealed that an mcpX deletion strain displayed little to no response to these compounds. Differential scanning fluorimetry showed interaction of the isolated periplasmic region of McpX (McpX PR and McpX 34-306 ) with QACs. Isothermal titration calorimetry experiments revealed tight binding to McpX PR with dissociation constants (K d ) in the nanomolar range for choline and glycine betaine, micromolar K d for stachydrine and trigonelline and a K d in the millimolar range for betonicine. Our discovery of S. meliloti chemotaxis to plant-derived QACs adds another role to this group of compounds, which are known to serve as nutrient sources, osmoprotectants and cell-to-cell signalling molecules. This is the first report of a chemoreceptor that mediates QACs taxis through direct binding. © 2016 John Wiley & Sons Ltd.

  6. Biosensor Technology Reveals the Disruption of the Endothelial Barrier Function and the Subsequent Death of Blood Brain Barrier Endothelial Cells to Sodium Azide and Its Gaseous Products.

    PubMed

    Kho, Dan T; Johnson, Rebecca H; O'Carroll, Simon J; Angel, Catherine E; Graham, E Scott

    2017-09-21

    Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB) endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies). Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS) biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.

  7. The mechanism of photosystem-II inactivation during sulphur deprivation-induced H2 production in Chlamydomonas reinhardtii.

    PubMed

    Nagy, Valéria; Vidal-Meireles, André; Podmaniczki, Anna; Szentmihályi, Klára; Rákhely, Gábor; Zsigmond, Laura; Kovács, László; Tóth, Szilvia Z

    2018-05-01

    Sulphur limitation may restrain cell growth and viability. In the green alga Chlamydomonas reinhardtii, sulphur limitation may induce H 2 production lasting for several days, which can be exploited as a renewable energy source. Sulphur limitation causes a large number of physiological changes, including the inactivation of photosystem II (PSII), leading to the establishment of hypoxia, essential for the increase in hydrogenase expression and activity. The inactivation of PSII has long been assumed to be caused by the sulphur-limited turnover of its reaction center protein PsbA. Here we reinvestigated this issue in detail and show that: (i) upon transferring Chlamydomonas cells to sulphur-free media, the cellular sulphur content decreases only by about 25%; (ii) as demonstrated by lincomycin treatments, PsbA has a significant turnover, and other photosynthetic subunits, namely RbcL and CP43, are degraded more rapidly than PsbA. On the other hand, sulphur limitation imposes oxidative stress early on, most probably involving the formation of singlet oxygen in PSII, which leads to an increase in the expression of GDP-L-galactose phosphorylase, playing an essential role in ascorbate biosynthesis. When accumulated to the millimolar concentration range, ascorbate may inactivate the oxygen-evolving complex and provide electrons to PSII, albeit at a low rate. In the absence of a functional donor side and sufficient electron transport, PSII reaction centers are inactivated and degraded. We therefore demonstrate that the inactivation of PSII is a complex and multistep process, which may serve to mitigate the damaging effects of sulphur limitation. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  8. Resonance Raman studies of Escherichia coli cytochrome bd oxidase. Selective enhancement of the three heme chromophores of the "as-isolated" enzyme and characterization of the cyanide adduct.

    PubMed

    Sun, J; Osborne, J P; Kahlow, M A; Kaysser, T M; Hil, J J; Gennis, R B; Loehr, T M

    1995-09-26

    Cytochrome bd oxidase is a terminal bacterial oxidase containing three cofactors: a low-spin heme (b558), a high-spin heme (b595), and a chlorin d. The center of dioxygen reduction has been proposed to be at a dinuclear b595/d site, whereas b558 is mainly involved in transferring electrons from ubiquinone. One of the unique functional features of this enzyme is its resistance to high concentrations of cyanide (Ki in the millimolar range). With the appropriate selection of laser lines, the ligation and spin states of the b558, b595, and d hemes can be probed selectively by resonance Raman (rR) spectroscopy. Wavelengths between 400 and 500 nm predominantly excite the rR spectra of the b558 and b595 chromophores. Spectra obtained within this interval show a mixed population of spin and ligation states arising from b558 and b595, with the former more strongly enhanced at higher energy. Red excitation wavelengths (590-650 nm) generate rR spectra characteristic of chlorins, indicating the selective enhancement of the d heme. These rR results reveal that cytochrome bd oxidase "as isolated" contains the b558 heme in a six-coordinate low-spin ferric state, the b595 heme in a five-coordinate high-spin (5cHS) ferric state, and the d heme in a mixture of oxygenated (FeIIO2 <--> FeIIIO2-; d650) and ferryl-oxo (FeIV = O; d680) states. However, the rR spectra of these two chlorin species indicate that they are both in the 5cHS state, suggesting that the d heme is lacking a strongly coordinated sixth ligand.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Glyphosate Inhibition of 5-Enolpyruvylshikimate 3-Phosphate Synthase from Suspension-Cultured Cells of Nicotiana silvestris.

    PubMed

    Rubin, J L; Gaines, C G; Jensen, R A

    1984-07-01

    Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg. et Comes with glyphosate (N-[phosphonomethyl]glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatase activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pK(a) values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COO(-)CH(2)NH(2) (+)CH(2)PO(3) (2-), and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (K(i) = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (K(i)' = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an [enzyme:shikimate-3-P] complex and ultimately forms the dead-end complex of [enzyme:shikimate-3-P:glyphosate].

  10. Sperm chemotaxis in siphonophores. II. Calcium-dependent asymmetrical movement of spermatozoa induced by the attractant.

    PubMed

    Cosson, M P; Carré, D; Cosson, J

    1984-06-01

    Spermatozoa from siphonophores have been shown to be attracted towards an extracellular structure, the cupule, which covers the predetermined site of fertilization of the egg. Observations on sperm behaviour during the chemotactic response show that spermatozoa describe trajectories of large diameter (700-1000 micron) while far from the cupule, and of smaller diameter (200 micron) in the cupule area. The transition between the two types of swimming occurs progressively when spermatozoa cross a 3 mm wide area around the cupule. After a few minutes 99% of the spermatozoa keep swimming around the attractant source, following circular paths 150-200 micron in diameter. In the absence of the attractant, comparable modifications of sperm trajectories are observed in the presence of the ionophore A23187 and high calcium concentrations. In the presence of 10(-2) M calcium ions, A23187-treated spermatozoa describe trajectories 200 micron in diameter, which increase up to 800 micron at lower calcium concentrations (10(-6) M). In the absence of calcium ions, spermatozoa swim across the cupule area without modification of their trajectories and no sperm accumulation can be detected. This requirement of the chemotactic response for calcium ions is observed either with fresh cupules stuck on the eggs, with cupules separated from the eggs, or with cupule extracts. Moreover, a soluble component fractionated from the cupule induces, when diluted in sea water, a reduction in the size of the sperm trajectories and this also requires calcium ions. The present data show that the chemotactic response of siphonophore sperm, which requires millimolar concentrations of calcium ions, occurs through a non-transient induction of increased asymmetry of the flagellar waveform. It is proposed that the natural attractant operates to produce an increase in the intraaxonemal calcium concentration.

  11. (-)-Terpinen-4-ol changes intracellular Ca2+ handling and induces pacing disturbance in rat hearts.

    PubMed

    Gondim, Antonio Nei Santana; Lara, Aline; Santos-Miranda, Artur; Roman-Campos, Danilo; Lauton-Santos, Sandra; Menezes-Filho, José Evaldo Rodrigues; de Vasconcelos, Carla Maria Lins; Conde-Garcia, Eduardo Antonio; Guatimosim, Silvia; Cruz, Jader S

    2017-07-15

    (-)-Terpinen-4-ol is a naturally occurring plant monoterpene and has been shown to have a plethora of biological activities. The objective of this study was to investigate the effects of (-)-terpinen-4-ol on the rat heart, a key player in the control and maintenance of arterial blood pressure. The effects of (-)-terpinen-4-ol on the rat heart were investigated using isolated left atrium isometric force measurements, in vivo electrocardiogram (ECG) recordings, patch clamp technique, and confocal microscopy. It was observed that (-)-terpinen-4-ol reduced contraction force in an isolated left atrium at millimolar concentrations. Conversely, it induced a positive inotropic effect and extrasystoles at micromolar concentrations, suggesting that (-)-terpinen-4-ol may have arrhythmogenic activity on cardiac tissue. In anaesthetized animals, (-)-terpinen-4-ol also elicited rhythm disturbance, such as supraventricular tachycardia and atrioventricular block. To investigate the cellular mechanism underlying the dual effect of (-)-terpinen-4-ol on heart muscle, experiments were performed on isolated ventricular cardiomyocytes to determine the effect of (-)-terpinen-4-ol on L-type Ca 2+ currents, Ca 2+ sparks, and Ca 2+ transients. The arrhythmogenic activity of (-)-terpinen-4-ol in vitro and in vivo may be explained by its effect on intracellular Ca 2+ handling. Taken together, our data suggest that (-)-terpinen-4-ol has cardiac arrhythmogenic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The FAQUIRE Approach: FAst, QUantitative, hIghly Resolved and sEnsitivity Enhanced 1H, 13C Data.

    PubMed

    Farjon, Jonathan; Milande, Clément; Martineau, Estelle; Akoka, Serge; Giraudeau, Patrick

    2018-02-06

    The targeted analysis of metabolites in complex mixtures is a challenging issue. NMR is one of the major tools in this field, but there is a strong need for more sensitive, better-resolved, and faster quantitative methods. In this framework, we introduce the concept of FAst, QUantitative, hIghly Resolved and sEnsitivity enhanced (FAQUIRE) NMR to push forward the limits of metabolite NMR analysis. 2D 1 H, 13 C 2D quantitative maps are promising alternatives for enhancing the spectral resolution but are highly time-consuming because of (i) the intrinsic nature of 2D, (ii) the longer recycling times required for quantitative conditions, and (iii) the higher number of scans needed to reduce the level of detection/quantification to access low concentrated metabolites. To reach this aim, speeding up the recently developed QUantItative Perfected and pUre shifted HSQC (QUIPU HSQC) is an interesting attempt to develop the FAQUIRE concept. Thanks to the combination of spectral aliasing, nonuniform sampling, and variable repetition time, the acquisition time of 2D quantitative maps is reduced by a factor 6 to 9, while conserving a high spectral resolution thanks to a pure shift approach. The analytical potential of the new Quick QUIPU HSQC (Q QUIPU HSQC) is evaluated on a model metabolite sample, and its potential is shown on breast-cell extracts embedding metabolites at millimolar to submillimolar concentrations.

  13. Transport and retention of zinc oxide nanoparticles in porous media: effects of natural organic matter versus natural organic ligands at circumneutral pH.

    PubMed

    Jones, Edward H; Su, Chunming

    2014-06-30

    The potential toxicity of nanoparticles (NPs) has received considerable attention, but there is little knowledge relating to the fate and transport of engineered ZnO NPs in the environment. Column experiments were performed at pH 7.3-7.6 to generate effluent concentrations and retention profiles for assessing the fate and transport of ZnO NPs (PZC=9.3, nominal size 20 nm) in saturated quartz sands (256 μm) in the presence of low natural organic matter (NOM) concentrations (1 mg/L humic and fulvic acids) and millimolar natural organic ligands (NOL) levels (formic, oxalic, and citric acids). At circumneutral pHs, ZnO NPs were positively charged and immobile in sand. The presence of NOM decreased the attachment efficiency facilitating ZnO transport through sand columns. Conversely, ZnO transport in the presence of formic and oxalic acids was only slightly improved when compared to ZnO in DI water; whereas, citric acid showed no improvement. The distinct difference between NOM and NOL may have important implications with regard to ZnO transport in the subsurface environment. Experimental results suggested the presence of both favorable and unfavorable nanoparticle interactions causes significant deviations from classical colloid filtration theory (CFT). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    PubMed

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care. Copyright © 2010 Wiley-Liss, Inc.

  15. Diffusion Limitations in Root Uptake of Cadmium and Zinc, But Not Nickel, and Resulting Bias in the Michaelis Constant1[W][OA

    PubMed Central

    Degryse, Fien; Shahbazi, Afsaneh; Verheyen, Liesbeth; Smolders, Erik

    2012-01-01

    It has long been recognized that diffusive boundary layers affect the determination of active transport parameters, but this has been largely overlooked in plant physiological research. We studied the short-term uptake of cadmium (Cd), zinc (Zn), and nickel (Ni) by spinach (Spinacia oleracea) and tomato (Lycopersicon esculentum) in solutions with or without metal complexes. At same free ion concentration, the presence of complexes, which enhance the diffusion flux, increased the uptake of Cd and Zn, whereas Ni uptake was unaffected. Competition effects of protons on Cd and Zn uptake were observed only at a very large degree of buffering, while competition of magnesium ions on Ni uptake was observed even in unbuffered solutions. These results strongly suggest that uptake of Cd and Zn is limited by diffusion of the free ion to the roots, except at very high degree of solution buffering, whereas Ni uptake is generally internalization limited. All results could be well described by a model that combined a diffusion equation with a competitive Michaelis-Menten equation. Direct uptake of the complex was estimated to be a major contribution only at millimolar concentrations of the complex or at very large ratios of complex to free ion concentration. The true Km for uptake of Cd2+ and Zn2+ was estimated at <5 nm, three orders of magnitude smaller than the Km measured in unbuffered solutions. Published Michaelis constants for plant uptake of Cd and Zn likely strongly overestimate physiological ones and should not be interpreted as an indicator of transporter affinity. PMID:22864584

  16. Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria

    USGS Publications Warehouse

    Oremland, R.S.; Blum, J.S.; Bindi, A.B.; Dowdle, P.R.; Herbel, M.; Stolz, J.F.

    1999-01-01

    Washed-cell suspensions of Sulfurospirillum barnesii reduced selenate [Se(VI)] when cells were cultured with nitrate, thiosulfate, arsenate, or fumarate as the electron acceptor. When the concentration of the electron donor was limiting, Se(VI) reduction in whole cells was approximately fourfold greater in Se(VI)-grown cells than was observed in nitrate-grown cells; correspondingly, nitrate reduction was ~11-fold higher in nitrate-grown cells than in Se(VI)-grown cells. However, a simultaneous reduction of nitrate and Se(VI) was observed in both cases. At nonlimiting electron donor concentrations, nitrate- grown cells suspended with equimolar nitrate and selenate achieved a complete reductive removal of nitrogen and selenium oxyanions, with the bulk of nitrate reduction preceding that of selenate reduction. Chloramphenicol did not inhibit these reductions. The Se(VI)-respiring haloalkaliphile Bacillus arsenicoselenatis gave similar results, but its Se(VI) reductase was not constitutive in nitrate-grown cells. No reduction of Se(VI) was noted for Bacillus selenitireducens, which respires selenite. The results of kinetic experiments with cell membrane preparations of S. barnesii suggest the presence of constitutive selenate and nitrate reduction, as well as an inducible, high- affinity nitrate reductase in nitrate-grown cells which also has a low affinity for selenate. The simultaneous reduction of micromolar Se(VI) in the presence of millimolar nitrate indicates that these organisms may have a functional use in bioremediating nitrate-rich, seleniferous agricultural wastewaters. Results with 75Se-selenate tracer show that these organisms can lower ambient Se(VI) concentrations to levels in compliance with new regulations proposed for release of selenium oxyanions into the environment.

  17. Extracellular Ca2+ Is Required for Fertilization in the African Clawed Frog, Xenopus laevis

    PubMed Central

    Duray, Alexis M.; Tembo, Maiwase; Beleny, David O.; Napolitano, Marc A.; Sauer, Monica L.; Wisner, Bennett W.

    2017-01-01

    Background The necessity of extracellular Ca2+ for fertilization and early embryonic development in the African clawed frog, Xenopus laevis, is controversial. Ca2+ entry into X. laevis sperm is reportedly required for the acrosome reaction, yet fertilization and embryonic development have been documented to occur in high concentrations of the Ca2+ chelator BAPTA. Here we sought to resolve this controversy. Methodology/principal finding Using the appearance of cleavage furrows as an indicator of embryonic development, we found that X. laevis eggs inseminated in a solution lacking added divalent cations developed normally. By contrast, eggs inseminated in millimolar concentrations of BAPTA or EGTA failed to develop. Transferring embryos to varying solutions after sperm addition, we found that extracellular Ca2+ is specifically required for events occurring within the first 30 minutes after sperm addition, but not after. We found that the fluorescently stained sperm were not able to penetrate the envelope of eggs inseminated in high BAPTA, whereas several had penetrated the vitelline envelope of eggs inseminated without a Ca2+ chelator, or with BAPTA and saturating CaCl2. Together these results indicate that fertilization does not occur in high concentrations of Ca2+ chelators. Finally, we found that the jelly coat includes >5 mM of readily diffusible Ca2+. Conclusions/Significance Taken together, these data are consistent with requirement of extracellular Ca2+ for fertilization. Based on our findings, we hypothesize that the jelly coat surrounding the egg acts as a reserve of readily available Ca2+ ions to foster fertilization in changing extracellular milieu. PMID:28114360

  18. Cell wall invertase in tobacco crown gall cells : enzyme properties and regulation by auxin.

    PubMed

    Weil, M; Rausch, T

    1990-12-01

    The cell wall invertase from an Agrobacterium tumefaciens-transformed Nicotiana tabacum cell line (SR1-C58) was purified. The heterogeneously glycosylated enzyme has the following properties: M(r) 63,000, pH optimum at 4.7, K(m sucrose) 0.6 millimolar (at pH 4.7), pl 9.5. Enzyme activity is inhibited by micromolar concentrations of HgCl(2) but is insensitive to H(2)O(2), N-ethylmaleimide and dithiothreitol. Upon transfer of transformed cells from the stationary phase to fresh medium, a cycloheximide- and tunicamycin-sensitive de novo formation of cell wall invertase is demonstrated in the absence or presence of sucrose. While in an auxin mutant (lacking gene 1;SR1-3845) 1 micromolar 1-naphthaleneacetic acid led to a further increased activity, the wild-type transformed cell line (SR1-C58) responded with a decreased activity compared to the control. An analysis of cell wall invertase in and around tumors initiated with Agrobacterium tumefaciens (strain C58) on Nicotiana tabacum stem and Kalanchoë daigremontiana leaves revealed gradients of activity. The results indicate that the auxin-stimulated cell wall invertase is essential for the establishment of the tumor sink.

  19. Combination of nutrients in a mammalian cell culture medium kills cryptococci.

    PubMed

    Granger, Donald L; Call, Donna M

    2018-06-06

    We found that a large inoculum of Cryptococcus gattii cells, when plated on Dulbecco's modified eagle's medium (DMEM) incorporated into agar, died within a few hours provided that DMEM agar plates had been stored in darkness for approximately 3 days after preparation. Standard conditions were developed for quantification of killing. The medium lost its fungicidal activity when exposed to visible light of wave length ∼400 nm. The amount of energy required was estimated at 5.8 × 104 joules @ 550 nm. Liquid DMEM conditioned by incubation over DMEM agar plates stored in darkness was fungicidal. We found that fungicidal activity was heat-stable (100°C). Dialysis tubing with MWC0 < 100 Daltons retained fungicidal activity. Neutral pH was required. Strains of Cryptococcus were uniformly sensitive, but some Candida species were resistant. Components of DMEM required for killing were pyridoxal and cystine. Micromolar amounts of iron shortened the time required for DMEM agar plates to become fungicidal when stored in the dark. Organic and inorganic compounds bearing reduced sulfur atoms at millimolar concentrations inhibited fungicidal activity. Our results point to a light-sensitive antifungal compound formed by reaction of pyridoxal with cystine possibly by Schiff base formation.

  20. Ceramic microsystem incorporating a microreactor with immobilized biocatalyst for enzymatic spectrophotometric assays.

    PubMed

    Baeza, Mireia; López, Carmen; Alonso, Julián; López-Santín, Josep; Alvaro, Gregorio

    2010-02-01

    Low-temperature cofired ceramics (LTCC) technology is a versatile fabrication technique used to construct microflow systems. It permits the integration of several unitary operations (pretreatment, separation, (bio)chemical reaction, and detection stage) of an analytical process in a modular or monolithic way. Moreover, because of its compatibility with biological material, LTCC is adequate for analytical applications based on enzymatic reactions. Here we present the design, construction, and evaluation of a LTCC microfluidic system that integrates a microreactor (internal volume, 24.28 microL) with an immobilized beta-galactosidase from Escherichia coli (0.479 activity units) and an optical flow cell to measure the product of the enzymatic reaction. The enzyme was immobilized on a glyoxal-agarose support, maintaining its activity along the time of the study. As a proof of concept, the LTCC-beta-galactosidase system was tested by measuring the conversion of ortho-nitrophenyl beta-D-galactopyranoside, the substrate usually employed for activity determinations. Once packed in a monolithically integrated microcolumn, the miniaturized flow system was characterized, the operational conditions optimized (flow rate and injection volume), and its performance successfully evaluated by determining the beta-galactosidase substrate concentration at the millimolar level.

  1. Dissimilatory arsenate reductase activity and arsenate-respiring bacteria in bovine rumen fluid, hamster feces, and the termite hindgut

    USGS Publications Warehouse

    Herbel, M.J.; Switzer, Blum J.; Hoeft, S.E.; Cohen, S.M.; Arnold, L.L.; Lisak, J.; Stolz, J.F.; Oremland, R.S.

    2002-01-01

    Bovine rumen fluid and slurried hamster feces completely reduced millimolar levels of arsenate to arsenite upon incubation under anoxic conditions. This activity was strongly inhibited by autoclaving or aerobic conditions, and partially inhibited by tungstate or chloramphenicol. The rate of arsenate reduction was faster in feces from a population of arsenate-watered (100 ppm) hamsters compared to a control group watered without arsenate. Using radioisotope methods, arsenate reductase activity in hamster feces was also detected at very low concentrations of added arsenate (???10 ??M). Bacterial cultures were isolated from these materials, as well as from the termite hindgut, that grew using H2 as their electron donor, acetate as their carbon source, and arsenate as their respiratory electron acceptor. The three cultures aligned phylogenetically either with well-established enteric bacteria, or with an organism associated with feedlot fecal wastes. Because arsenite is transported across the gut epithelium more readily than arsenate, microbial dissimilatory reduction of arsenate in the gut may promote the body's absorption of arsenic and hence potentiate its toxicity. ?? 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

  2. One-electron oxidation of ergothioneine and analogues investigated by pulse radiolysis: redox reaction involving ergothioneine and vitamin C.

    PubMed Central

    Asmus, K D; Bensasson, R V; Bernier, J L; Houssin, R; Land, E J

    1996-01-01

    Redox reactions of endogenous and exogenous sulphur-containing compounds are involved in protection against oxidative damage arising from the incidence and/or treatment of many diseases, including cancer. We have investigated, via pulse radiolysis, the one-electron oxidation of ergothioneine, a molecule with antioxidant properties which is detected at millimolar concentrations in certain tissues and fluids subject to oxidative stress, including erythrocytes and plasma. The spectrum of the transient species, assigned to the product of one-electron oxidation, observed after reaction of ergothioneine with the oxidizing radicals OH., N3. and CCl3O2. has a maximum absorption at 520 nm and is very similar to that obtained by oxidation of analogous molecules such as 2-mercaptoimidazole, 1-methyl-2-mercaptoimidazole, S-methyl- and S,N-dimethyl-ergothioneine. In the presence of vitamin C, the oxidized form of ergothioneine is repaired by a rapid reduction (k = 6.3 x 10(8) M(-1).s(-1)) producing ascorbyl radicals. This co-operative interaction between ergothionine and ascorbate, similar to that previously observed between vitamin E and ascorbate, may contribute to essential biological redox protection. PMID:8615839

  3. Proline accumulation and its implication in cold tolerance of regenerable maize callus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, D.R.; Widholm, J.M.

    1987-03-01

    Embryogenic callus of maize (Zea mays L.) inbreds B37wx, H99, H99/sup 3/H95, Mo17, and Pa91 accumulated proline to levels 2.1 to 2.5 times that of control callus when subjected to mannitol-induced water stress, cool temperatures (19/sup 0/C) and abscisic acid (ABA). A combination of 0.53 molar mannitol plus 0.1 millimolar ABA induced a proline accumulation to about 4.5 times that of control callus, equivalent to approximately 0.18 millimoles proline per gram fresh weight of callus. Proline accumulation was directly related to the level of mannitol in the medium. Levels of ABA greater than 1.0 micromolar were required in the mediummore » to induce proline accumulation comparable to that induced by mannitol. Mannitol and ABA levels that induced maximum accumulation of proline also inhibited callus growth and increased tolerance to cold. Proline (12 millimolar) added to culture media also increased the tolerance of callus to 4/sup 0/C. The increased cold tolerance induced by the combination of mannitol and ABA has permitted the storage of the maize inbreds A632, A634Ht, B37wx, C103DTrf, Fr27rhm, H99, Pa91, Va35, and W117Ht at 4/sup 0/C for 90 days which is more than double the typical survival time of callus. These studies show that proline accumulation increase the cold tolerance of regenerable maize callus.« less

  4. Functional reconstitution of an ATP-driven Ca sup 2+ -transport system from the plasma membrane of Commelina communis L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graef, P.; Weiler, E.W.

    1990-10-01

    The protein(s) that constitute(s) the ATP-driven Ca{sup 2+}-translocator of plasma membrane enriched vesicles obtained by aqueous two-phase partitioning from leaves of Commelina communis L. has/have been solubilized and reincorporated into tightly sealed liposomes. The reconstituted Ca{sup 2+}-transport system was studied using ATP-driven {sup 45}Ca{sup 2+} import into the proteoliposomes as a measure of activity. The detergent, 3- ((3-cholamidopropyl) dimethylammonio) -1-propane-sulfonate proved to be the most suitable and was used at 10 millimolar concentration, i.e. just above its critical micellar concentration. The presence of additional phospholipid and ATP improved the solubilization and/or reconstitution. The characteristics of the reconstituted system were similarmore » to those of the plasma membrane-bound activity, including the apparent K{sub m} for Ca{sup 2+} inhibition by relatively high levels of vanadate and lacking response to added calmodulin. The reconstituted transport system was very strongly inhibited by erythrosine B and had a low apparent K{sub m} for ATP levels of the Ca{sup 2+}-ionophore A 23187 instantaneously discharged 90% of the Ca{sup 2+} associated with the vesicles, proving that it had been accumulated in the intravesicular volume in soluble, freely exchangeable form. Ca{sup 2+}-transport in the reconstituted system was thus primary active, through a Ca{sup 2+}-translocating ATPase.« less

  5. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model.

    PubMed

    Scaini, Giselli; Comim, Clarissa M; Oliveira, Giovanna M T; Pasquali, Matheus A B; Quevedo, João; Gelain, Daniel P; Moreira, José Cláudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Bogo, Maurício R; Streck, Emilio L

    2013-09-01

    Maple syrup urine disease (MSUD) is a neurometabolic disorder that leads to the accumulation of branched-chain amino acids (BCAAs) and their α-keto branched-chain by-products. Because the neurotoxic mechanisms of MSUD are poorly understood, this study aimed to evaluate the effects of chronic administration of a BCAA pool (leucine, isoleucine and valine). This study examined the effects of BCAA administration on spatial memory and the levels of brain-derived neurotrophic factor (BNDF). We examined both pro-BDNF and bdnf mRNA expression levels after administration of BCAAs. Furthermore, this study examined whether antioxidant treatment prevented the alterations induced by BCAA administration. Our results demonstrated an increase in BDNF in the hippocampus and cerebral cortex, accompanied by memory impairment in spatial memory tasks. Additionally, chronic administration of BCAAs did not induce a detectable change in pro-BDNF levels. Treatment with N-acetylcysteine and deferoxamine prevented both the memory deficit and the increase in the BDNF levels induced by BCAA administration. In conclusion, these results suggest that when the brain is chronically exposed to high concentrations of BCAA (at millimolar concentrations) an increase in BDNF levels occurs. This increase in BDNF may be related to the impairment of spatial memory. In addition, we demonstrated that antioxidant treatment prevented the negative consequences related to BCAA administration, suggesting that oxidative stress might be involved in the pathophysiological mechanism(s) underlying the brain damage observed in MSUD.

  6. Degradation of S-nitrosocysteine in vascular tissue homogenates: role of divalent ions.

    PubMed

    Kostka, P; Xu, B; Skiles, E H

    1999-04-01

    The objective of the study was to inquire about the mechanism(s) involved in the catabolism of S-nitrosothiols by vascular tissue under in vitro conditions. Incubations of S-nitrosocysteine (CYSNO) or S-nitrosoglutathione (GSNO) with homogenates isolated from porcine aortic smooth muscle resulted in only a marginal depletion of S-nitrosothiols from the reaction mixtures, which became statistically significant at relatively high concentrations of homogenate (> or =300 microg of protein/ml). Degradation of CYSNO (but not GSNO) was found to be potentiated several-fold by millimolar concentrations of either Mg2+ or Ca2+ ions. Under such conditions, the degradation of CYSNO was significantly suppressed by the removal of proteins by ultrafiltration (>80% inhibition) and eliminated completely by the alkylation of thiol groups with 1 mM N-ethylmaleimide. The potentiating effect of divalent ions on the degradation of CYSNO was insensitive to 0.1 mM neocuproine (selective chelator of Cu+ ions), although it was enhanced in the presence of 0.1 mM o-phenanthroline (selective chelator of Fe2+ ions). It is concluded that the degradation of CYSNO by tissue homogenate involves the interaction with protein-bound sulfhydryl groups, which is stimulated by Mg2+ or Ca2+ ions. The potentiating effect of o-phenanthroline suggests that the liberation of the nitrosonium moiety in such a process may be accompanied by its transfer to sulfur center(s) by transient formation of dinitrosyl-iron complexes.

  7. Laboratory-scale photoredox catalysis using hydrated electrons sustainably generated with a single green laser.

    PubMed

    Naumann, Robert; Kerzig, Christoph; Goez, Martin

    2017-11-01

    The ruthenium-tris-bipyridyl dication as catalyst combined with the ascorbate dianion as bioavailable sacrificial donor provides the first regenerative source of hydrated electrons for chemical syntheses on millimolar scales. This electron generator is operated simply by illumination with a frequency-doubled Nd:YAG laser (532 nm) running at its normal repetition rate. Much more detailed information than by product studies alone was obtained by photokinetical characterization from submicroseconds (time-resolved laser flash photolysis) up to one hour (preparative photolysis). The experiments on short timescales established a reaction mechanism more complex than previously thought, and proved the catalytic action by unchanged concentration traces of the key transients over a number of flashes so large that the accumulated electron total surpassed the catalyst concentration many times. Preparative photolyses revealed that the sacrificial donor greatly enhances the catalyst stability through quenching the initial metal-to-ligand charge-transfer state before destructive dd states can be populated from it, such that the efficiency of this electron generator is no longer limited by catalyst decomposition but by electron scavenging by the accumulating oxidation products of the ascorbate. Applications covered dechlorinations of selected aliphatic and aromatic chlorides and the reduction of a model ketone. All these substrates are impervious to photoredox catalysts exhibiting lower reducing power than the hydrated electron, but the combination of an extremely negative standard potential and a long unquenched life allowed turnover numbers up to 1400 with our method.

  8. Redox artifacts in electrophysiological recordings

    PubMed Central

    Berman, Jonathan M.

    2013-01-01

    Electrophysiological techniques make use of Ag/AgCl electrodes that are in direct contact with cells or bath. In the bath, electrodes are exposed to numerous experimental conditions and chemical reagents that can modify electrode voltage. We examined voltage offsets created in Ag/AgCl electrodes by exposure to redox reagents used in electrophysiological studies. Voltage offsets were measured in reference to an electrode separated from the solution by an agar bridge. The reducing reagents Tris-2-carboxyethly-phosphine, dithiothreitol (DTT), and glutathione, as well as the oxidizing agent H2O2 used at experimentally relevant concentrations reacted with Ag in the electrodes to produce voltage offsets. Chloride ions and strong acids and bases produced offsets at millimolar concentrations. Electrolytic depletion of the AgCl layer, to replicate voltage clamp and sustained use, resulted in increased sensitivity to flow and DTT. Offsets were sensitive to electrode silver purity and to the amount and method of chloride deposition. For example, exposure to 10 μM DTT produced a voltage offset between 10 and 284 mV depending on the chloride deposition method. Currents generated by these offsets are significant and dependent on membrane conductance and by extension the expression of ion channels and may therefore appear to be biological in origin. These data demonstrate a new source of artifacts in electrophysiological recordings that can affect measurements obtained from a variety of experimental techniques from patch clamp to two-electrode voltage clamp. PMID:23344161

  9. Changes in the Polypeptide Patterns of Barley Seedlings Exposed to Jasmonic Acid and Salinity 1

    PubMed Central

    Maslenkova, Liliana Todorova; Miteva, Tania Simeonova; Popova, Losanka P.

    1992-01-01

    Soluble and thylakoid membrane proteins of jasmonic acid (JA)-treated and salt-stressed barley (Hordeum vulgare L.) seedlings were investigated using 15% sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. High JA concentrations induced marked quantitative and qualitative changes in polypeptide profiles concerning mainly the proteins with approximately equal mobility, as in NaCl-stressed plants. The most obvious increase in thylakoid polypeptide band intensity was at 55 to 57 kilodaltons (kD). The relative share of some polypeptides with apparent molecular masses above 66 kD and of polypeptides with lower molecular masses in the region of 20.5 to 15 kD was enhanced. At the same time, one new band at 31 to 31.5 kD was well expressed at 25 and 250 micromolar JA concentrations and became discernible in the 100 micromolar NaCl-treated plants. The intensity of some polypeptides of soluble proteins (molecular masses of 60, 47, 37, 30, and 23.4 kD) increased with increasing JA concentration, whereas the intensities of other polypeptide bands (55, 21.4, and 15 kD) decreased. Enhanced levels of 60-, 47-, 34-, and 30-kD polypeptides and reduced levels of 55- and 15-kD polypeptides were present in NaCl-treated plants. The appearance of one new polypeptide, of 25.1 kD, was observed only in NaCl-treated plants. At 100 millimolar NaCl, an eightfold increase in proline content was observed while at 250 micromolar JA, the proline content was threefold over the control. It is hypothesized that exogenously applied jasmonates act as stress agents. As such, they provoke alterations in the proline content and they can modulate typical stress responses by induction of stress proteins. ImagesFigure 1Figure 4Figure 5 PMID:16668698

  10. Articular chondrocyte metabolism and osteoarthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leipold, H.R.

    The three main objectives of this study were: (1) to determine if depletion of proteoglycans from the cartilage matrix that occurs during osteoarthritis causes a measurable increase of cartilage proteoglycan components in the synovial fluid and sera, (2) to observe what effect intracellular cAMP has on the expression of matrix components by chondrocytes, and (3) to determine if freshly isolated chondrocytes contain detectable levels of mRNA for fibronectin. Canine serum keratan sulfate and hyaluronate were measured to determine if there was an elevation of these serum glycosaminoglycans in a canine model of osteoarthritis. A single intra-articular injection of chymopapain intomore » a shoulder joint increased serum keratan sulfate 10 fold and hyaluronate less than 2 fold in 24 hours. Keratan sulfate concentrations in synovial fluids of dogs about one year old were unrelated to the presence of spontaneous cartilage degeneration in the joints. High keratan sulfate in synovial fluids correlated with higher keratan sulfate in serum. The mean keratan sulfate concentration in sera of older dogs with osteoarthritis was 37% higher than disease-free controls, but the difference between the groups was not statistically significant. Treatment of chondrocytes with 0.5 millimolar (mM) dibutyryl cAMP (DBcAMP) caused the cells to adopt a more rounded morphology. There was no difference between the amount of proteins synthesized by cultures treated with DBcAMP and controls. The amount of fibronectin (FN) in the media of DBcAMP treated cultures detected by an ELISA was specifically reduced, and the amount of {sup 35}S-FN purified by gelatin affinity chromatography decreased. Moreover, the percentage of FN containing the extra domain. A sequence was reduced. Concomitant with the decrease in FN there was an increase in the concentration of keratan sulfate.« less

  11. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen

    USGS Publications Warehouse

    Kiene, R.P.; Oremland, Ronald S.; Catena, Anthony; Miller, Laurence G.; Capone, D.G.

    1986-01-01

    Addition of dimethylsulfide (DMS), dimethyldisulfide (DMDS), or methane thiol (MSH) to a diversity of anoxic aquatic sediments (e.g., fresh water, estuarine, alkaline/hypersaline) stimulated methane production. The yield of methane recovered from DMS was often 52 to 63%, although high concentrations of DMS (as well as MSH and DMDS) inhibited methanogenesis in some types of sediments. Production of methane from these reduced methylated sulfur compounds was blocked by 2-bromoethanesulfonic acid. Sulfate did not influence the metabolism of millimolar levels of DMS, DMDS, or MSH added to sediments. However, when DMS was added at ∼2-μM levels as [14C]DMS, metabolism by sediments resulted in a 14CH4/14CO2 ratio of only 0.06. Addition of molybdate increased the ratio to 1.8, while 2-bromoethanesulfonic acid decreased it to 0, but did not block 14CO2 production. These results indicate the methanogens and sulfate reducers compete for DMS when it is present at low concentrations; however, at high concentrations, DMS is a “noncompetitive” substrate for methanogens. Metabolism of DMS by sediments resulted in the appearance of MSH as a transient intermediate. A pure culture of an obligately methylotrophic estuarine methanogen was isolated which was capable of growth on DMS. Metabolism of DMS by the culture also resulted in the transient appearance of MSH, but the organism could grow on neither MSH nor DMDS. The culture metabolized [14C]-DMS to yield a 14CH4/14CO2 ratio of ∼2.8. Reduced methylated sulfur compounds represent a new class of substrates for methanogens and may be potential precursors of methane in a variety of aquatic habitats.

  12. Ammonium nitrate and iron nutrition effects on some nitrogen assimilation enzymes and metabolites in Spirulina platensis.

    PubMed

    Esen, Merve; Ozturk Urek, Raziye

    2015-01-01

    The effect of various concentrations of ammonium nitrate (5-60 mM), an economical nitrogen source, on the growth, nitrate-ammonium uptake rates, production of some pigments and metabolites, and some nitrogen assimilation enzymes such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in Spirulina platensis (Gamont) Geitler was investigated. Ten millimolars of ammonium nitrate stimulated the growth, production of pigments and the other metabolites, and enzyme activities, whereas 30 and 60 mM ammonium nitrate caused inhibition. In the presence of 10 mM ammonium nitrate, different concentrations of iron were tried in the growth media of S. platensis. After achieving the best growth, levels of metabolite and pigment production, and enzyme activities in the presence of 10 mM ammonium nitrate as a nitrogen source, different iron concentrations (10-100 µM) were tried in the growth medium of S. platensis. The highest growth, pigment and metabolite levels, and enzyme activities were determined in the medium containing 50 µM iron and 10 mM ammonium nitrate. In this optimum condition, the highest dry biomass level, chlorophyll a, and pyruvate contents were obtained as 55.42 ± 3.8 mg mL(-1) , 93.114 ± 7.9 µg g(-1) , and 212.5 ± 18.7 µg g(-1) , respectively. The highest NR, NiR, GS, and GOGAT activities were 67.16 ± 5.1, 777.92 ± 52, 0.141 ± 0.01, and 44.45 ± 3.6, respectively. Additionally, 10 mM ammonium nitrate is an economical and efficient nitrogen source for nitrogen assimilation of S. platensis, and 50 µM iron is optimum for the growth of S. platensis. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  13. On the nature of the Cu-rich aggregates in brain astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Brendan; Robison, Gregory; Osborn, Jenna

    Fulfilling a bevy of biological roles, copper is an essential metal for healthy brain function. Cu dyshomeostasis has been demonstrated to be involved in some neurological conditions including Menkes and Alzheimer’s diseases. We have previously reported localized Cu-rich aggregates in astrocytes of the subventricular zone (SVZ) in rodent brains with Cu concentrations in the hundreds of millimolar. Metallothionein, a cysteine-rich protein critical to metal homeostasis and known to participate in a variety of neuroprotective and neuroregenerative processes, was proposed as a binding protein. Here, we present an analysis of metallothionein(1,2) knockout (MTKO) mice and age-matched controls using X-ray fluorescence microscopy.more » In large structures such as the corpus callosum, cortex, and striatum, there is no significant difference in Cu, Fe, or Zn concentrations in MTKO mice compared to age-matched controls. In the astrocyte-rich subventricular zone where Cu-rich aggregates reside, approximately 1/3 as many Cu-rich aggregates persist in MTKO mice resulting in a decrease in periventricular Cu concentration. Aggregates in both wild-type and MTKO mice show XANES spectra characteristic of CuxSy multimetallic clusters and have similar [S]/[Cu] ratios. Consistent with assignment as a CuxSy multimetallic cluster, the astrocyte-rich SVZ of both MTKO and wild-type mice exhibit autofluorescent bodies, though MTKO mice exhibit fewer. Furthermore, XRF imaging of Au-labeled lysosomes and ubiquitin demonstrates a lack of co-localization with Cu-rich aggregates suggesting they are not involved in a degradation pathway. Overall, these data suggest that Cu in aggregates is bound by either metallothionein-3 or a yet unknown protein similar to metallothionein.« less

  14. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.

    PubMed

    Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G

    1999-11-01

    The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.

  15. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.

    PubMed

    Markin, Craig J; Spyracopoulos, Leo

    2012-12-01

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K ( D )) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K ( D ) value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of (1)H-(15)N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k ( off )). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k ( off ) ~ 3,000 s(-1) in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k ( off ) from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k ( off ) values over a wide range, from 100 to 15,000 s(-1). The validity of line shape analysis for k ( off ) values approaching intermediate exchange (~100 s(-1)), may be facilitated by more accurate K ( D ) measurements from NMR-monitored chemical shift titrations, for which the dependence of K ( D ) on the chemical shift difference (Δω) between free and bound states is extrapolated to Δω = 0. The demonstrated accuracy and precision for k ( off ) will be valuable for the interpretation of biological kinetics in weakly interacting protein-protein networks, where a small change in the magnitude of the underlying kinetics of a given pathway may lead to large changes in the associated downstream signaling cascade.

  16. Anion inhibition profiles of the γ-carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei responsible of melioidosis and highly drug resistant to common antibiotics.

    PubMed

    Del Prete, Sonia; Vullo, Daniela; Di Fonzo, Pietro; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2017-01-15

    Burkholderia pseudomallei is a Gram-negative saprophytic bacterium responsible of melioidosis, an endemic disease of tropical and sub-tropical regions of the world. A recombinant γ-CA (BpsγCA) identified in the genome of this bacterium was cloned and purified. Its catalytic activity and anion inhibition profiles were investigated. The enzyme was an efficient catalyst for the CO 2 hydration showing a k cat of 5.3×10 5 s -1 and k cat /K m of 2.5×10 7 M -1 ×s -1 . The best BpsγCA inhibitors were sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid, which showed K I in the range of 49-83μM (these inhibitors showed millimolar inhibition constant against hCA II), followed by diethyldithiocarbamate, selenate, tellurate, perrhenate, selenocyanate, trithiocarbonate, tetraborato, pyrophosphate, stannate, carbonate, bicarbonate, azide, cyanide, thiocyanate and cyanate with K I s in the range of 0.55-9.1mM. In our laboratories, work is in progress to resolve the X-ray crystal structures of BpsγCA, which may allow the development of small molecule inhibitors with desired properties for targeting and inhibiting specifically the bacterial over the human CAs, considering the fact that B. pseudomallei is involved in a serious bacterial disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Honeybees Produce Millimolar Concentrations of Non-Neuronal Acetylcholine for Breeding: Possible Adverse Effects of Neonicotinoids.

    PubMed

    Wessler, Ignaz; Gärtner, Hedwig-Annabel; Michel-Schmidt, Rosmarie; Brochhausen, Christoph; Schmitz, Luise; Anspach, Laura; Grünewald, Bernd; Kirkpatrick, Charles James

    2016-01-01

    The worldwide use of neonicotinoid pesticides has caused concern on account of their involvement in the decline of bee populations, which are key pollinators in most ecosystems. Here we describe a role of non-neuronal acetylcholine (ACh) for breeding of Apis mellifera carnica and a so far unknown effect of neonicotinoids on non-target insects. Royal jelly or larval food are produced by the hypopharyngeal gland of nursing bees and contain unusually high ACh concentrations (4-8 mM). ACh is extremely well conserved in royal jelly or brood food because of the acidic pH of 4.0. This condition protects ACh from degradation thus ensuring delivery of intact ACh to larvae. Raising the pH to ≥5.5 and applying cholinesterase reduced the content of ACh substantially (by 75-90%) in larval food. When this manipulated brood was tested in artificial larval breeding experiments, the survival rate was higher with food supplemented by 100% with ACh (6 mM) than with food not supplemented with ACh. ACh release from the hypopharyngeal gland and its content in brood food declined by 80%, when honeybee colonies were exposed for 4 weeks to high concentrations of the neonicotinoids clothianidin (100 parts per billion [ppb]) or thiacloprid (8,800 ppb). Under these conditions the secretory cells of the gland were markedly damaged and brood development was severely compromised. Even field-relevant low concentrations of thiacloprid (200 ppb) or clothianidin (1 and 10 ppb) reduced ACh level in the brood food and showed initial adverse effects on brood development. Our findings indicate a hitherto unknown target of neonicotinoids to induce adverse effects on non-neuronal ACh which should be considered when re-assessing the environmental risks of these compounds. To our knowledge this is a new biological mechanism, and we suggest that, in addition to their well documented neurotoxic effects, neonicotinoids may contribute to honeybee colony losses consecutive to a reduction of the ACh content in the brood food.

  18. Sugar Efflux from Maize (Zea mays L.) Pedicel Tissue 1

    PubMed Central

    Porter, Gregory A.; Knievel, Daniel P.; Shannon, Jack C.

    1985-01-01

    Sugar release from the pedicel tissue of maize (Zea mays L.) kernels was studied by removing the distal portion of the kernel and the lower endosperm, followed by replacement of the endosperm with an agar solute trap. Sugars were unloaded into the apoplast of the pedicel and accumulated in the agar trap while the ear remained attached to the maize plant. The kinetics of 14C-assimilate movement into treated versus intact kernels were comparable. The rate of unloading declined with time, but sugar efflux from the pedicel continued for at least 6 hours and in most experiments the unloading rates approximated those necessary to support normal kernel growth rates. The unloading process was challenged with a variety of buffers, inhibitors, and solutes in order to characterize sugar unloading from this tissue. Unloading was not affected by apoplastic pH or a variety of metabolic inhibitors. Although p-chloromercuribenzene sulfonic acid (PCMBS), a nonpenetrating sulfhydryl group reagent, did not affect sugar unloading, it effectively inhibited extracellular acid invertase. When the pedicel cups were pretreated with PCMBS, at least 60% of sugars unloaded from the pedicel could be identified as sucrose. Unloading was inhibited up to 70% by 10 millimolar CaCl2. Unloading was stimulated by 15 millimolar ethyleneglycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid which partially reversed the inhibitory effects of Ca2+. Based on these results, we suggest that passive efflux of sucrose occurs from the maize pedicel symplast followed by extracellular hydrolysis to hexoses. Images Fig. 1 Fig. 2 PMID:16664091

  19. Simultaneous interaction with base and phosphate moieties modulates the phosphodiester cleavage of dinucleoside 3',5'-monophosphates by dinuclear Zn2+ complexes of di(azacrown) ligands.

    PubMed

    Wang, Qi; Lönnberg, Harri

    2006-08-23

    Five dinucleating ligands (1-5) and one trinucleating ligand (6) incorporating 1,5,9-triazacyclododecan-3-yloxy groups attached to an aromatic scaffold have been synthesized. The ability of the Zn(2+) complexes of these ligands to promote the transesterification of dinucleoside 3',5'-monophosphates to a 2',3'-cyclic phosphate derived from the 3'-linked nucleoside by release of the 5'-linked nucleoside has been studied over a narrow pH range, from pH 5.8 to 7.2, at 90 degrees C. The dinuclear complexes show marked base moiety selectivity. Among the four dinucleotide 3',5'-phosphates studied, viz. adenylyl-3',5'-adenosine (ApA), adenylyl-3',5'-uridine (ApU), uridylyl-3',5'-adenosine (UpA), and uridylyl-3',5'-uridine (UpU), the dimers containing one uracil base (ApU and UpA) are cleaved up to 2 orders of magnitude more readily than those containing either two uracil bases (UpU) or two adenine bases (ApA). The trinuclear complex (6), however, cleaves UpU as readily as ApU and UpA, while the cleavage of ApA remains slow. UV spectrophotometric and (1)H NMR spectroscopic studies with one of the dinucleating ligands (3) verify binding to the bases of UpU and ApU at less than millimolar concentrations, while no interaction with the base moieties of ApA is observed. With ApU and UpA, one of the Zn(2+)-azacrown moieties in all likelihood anchors the cleaving agent to the uracil base of the substrate, while the other azacrown moiety serves as a catalyst for the phosphodiester transesterification. With UpU, two azacrown moieties are engaged in the base moiety binding. The catalytic activity is, hence, lost, but it can be restored by addition of a third azacrown group on the cleaving agent.

  20. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthease from suspension-cultured cells of Nicotiana silvestris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, J.L.; Gaines, C.G.; Jensen, R.A.

    1984-07-01

    Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg, et Comes with glyphosate (N-(phosphonomethyl)glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatasemore » activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pK/sub a/ values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COO/sup -/CH/sub 2/NH/sub 2//sup +/CH/sub 2/PO/sub 3//sup 2 -/, and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (K/sub i/ = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (K/sub i/ = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an (enzyme:shikimate-3-P) complex and ultimately forms the dead-end complex of (enzyme:shikimate-3-P:glyphosate). 36 references, 8 figures, 1 table.« less

  1. Multidrug resistance protein MdtM adds to the repertoire of antiporters involved in alkaline pH homeostasis in Escherichia coli

    PubMed Central

    2013-01-01

    Background In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. Results Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. Conclusions Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli. PMID:23701827

  2. Multidrug resistance protein MdtM adds to the repertoire of antiporters involved in alkaline pH homeostasis in Escherichia coli.

    PubMed

    Holdsworth, Scarlett R; Law, Christopher J

    2013-05-23

    In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli.

  3. Identification, Biochemical Characterization, and Subcellular Localization of Allantoate Amidohydrolases from Arabidopsis and Soybean1[W

    PubMed Central

    Werner, Andrea K.; Sparkes, Imogen A.; Romeis, Tina; Witte, Claus-Peter

    2008-01-01

    Allantoate amidohydrolases (AAHs) hydrolize the ureide allantoate to ureidoglycolate, CO2, and two molecules of ammonium. Allantoate degradation is required to recycle purine-ring nitrogen in all plants. Tropical legumes additionally transport fixed nitrogen via allantoin and allantoate into the shoot, where it serves as a general nitrogen source. AAHs from Arabidopsis (Arabidopsis thaliana; AtAAH) and from soybean (Glycine max; GmAAH) were cloned, expressed in planta as StrepII-tagged variants, and highly purified from leaf extracts. Both proteins form homodimers and release 2 mol ammonium/mol allantoate. Therefore, they can truly be classified as AAHs. The kinetic constants determined and the half-maximal activation by 2 to 3 μm manganese are consistent with allantoate being the in vivo substrate of manganese-loaded AAHs. The enzymes were strongly inhibited by micromolar concentrations of fluoride as well as by borate, and by millimolar concentrations of l-asparagine and l-aspartate but not d-asparagine. l-Asparagine likely functions as competitive inhibitor. An Ataah T-DNA mutant, unable to grow on allantoin as sole nitrogen source, is rescued by the expression of StrepII-tagged variants of AtAAH and GmAAH, demonstrating that both proteins are functional in vivo. Similarly, an allantoinase (aln) mutant is rescued by a tagged AtAln variant. Fluorescent fusion proteins of allantoinase and both AAHs localize to the endoplasmic reticulum after transient expression and in transgenic plants. These findings demonstrate that after the generation of allantoin in the peroxisome, plant purine degradation continues in the endoplasmic reticulum. PMID:18065556

  4. Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay.

    PubMed

    Kasar, Sharayu; Kumar, Sumit; Bajpai, R K; Tomar, B S

    2016-01-01

    Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay, proposed as a backfill material in the Indian geological repository, was studied using the out-diffusion method. Radiotracers (22)Na, (137)Cs, (85)Sr and (154)Eu were used; the first three are carrier-free enabling experimental work at sub-micromolar metal ion concentration, and Eu(III) tracer (154)Eu was used at sub millimolar concentration. An out-diffusion methodology, wherein a thin planar source of radioactivity placed between two clay columns diffuses out, was used to obtain the apparent diffusion coefficient (Da) values. This methodology enabled determination of diffusion coefficient even for strongly sorbing (154)Eu. Da values for (22)Na, (137)Cs, (85)Sr and (154)Eu were 2.35 (±0.14) × 10(-11), 2.65 (±0.09) × 10(-12), 3.32 (±0.15) × 10(-11) and 1.23 (±0.15) × 10(-13) m(2) s(-1), respectively. Da values were found to be in fair agreement with literature data reported for similar mineralogical sediments. Sorption of radionuclides on the clay was also determined in the present study and differences in Da values were rationalized on the basis of sorption data. Distribution ratios (Kd) for Cs(I) and Eu(III) were higher than that for Sr(II), which in turn was higher than that for Na(I). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Hydroxylamine derivatives for regulation of spermine and spermidine metabolism.

    PubMed

    Khomutov, M A; Weisell, J; Hyvönen, M; Keinänen, T A; Vepsäläinen, J; Alhonen, L; Khomutov, A R; Kochetkov, S N

    2013-12-01

    The biogenic polyamines spermine, spermidine, and their precursor putrescine are present in micro-to-millimolar concentrations in all cell types and are vitally important for their normal growth. High intracellular content of spermine and spermidine determines the multiplicity of the cellular functions of the polyamines. Many of these functions are not well characterized at the molecular level, ensuring the ongoing development of this field of biochemistry. Tumor cells have elevated polyamine level if compared with normal cells, and this greatly stimulates the search for new opportunities to deplete the intracellular pool of spermine and spermidine resulting in decrease in cell growth and even cell death. O-Substituted hydroxylamines occupy their own place among chemical regulators of the activity of the enzymes of polyamine metabolism. Varying the structure of the alkyl substituent made it possible to obtain within one class of chemical compounds highly effective inhibitors and regulators of the activity of all the enzymes of putrescine, spermine and spermidine metabolism (with the exception of FAD-dependent spermine oxidase and acetylpolyamine oxidase), effectors of the polyamine transport system, and even actively transported in cells "proinhibitor" of ornithine decarboxylase. Some principles for the design of specific inhibitors of these enzymes as well as the peculiarities of cellular effects of corresponding O-substituted hydroxylamines are discussed.

  6. Triclosan is a Mitochondrial Uncoupler in Live Zebrafish

    PubMed Central

    Shim, Juyoung; Weatherly, Lisa M.; Luc, Richard H.; Dorman, Maxwell T.; Neilson, Andy; Ng, Ryan; Kim, Carol H.; Millard, Paul J.; Gosse, Julie A.

    2016-01-01

    Triclosan (TCS) is a synthetic antimicrobial agent used in many consumer goods at millimolar concentrations. As a result of exposure, TCS has been detected widely in humans. We have recently discovered that TCS is a proton ionophore mitochondrial uncoupler in multiple types of living cells. Here we present novel data indicating that TCS is also a mitochondrial uncoupler in a living organism: 24 hour post fertilization zebrafish embryos. These experiments were conducted using a Seahorse Bioscience XFe 96 Extracellular Flux Analyzer modified for bidirectional temperature control, using the XF96 spheroid plate to position and measure one zebrafish embryo per well. Using this method, following acute exposure to TCS, basal oxygen consumption rate (OCR) increases, without a decrease in survival or heartbeat rate. TCS also decreases ATP-linked respiration and spare respiratory capacity and increases proton leak: all indicators of mitochondrial uncoupling. Our data indicate, that TCS is a mitochondrial uncoupler in vivo, which should be taken into consideration when assessing the toxicity and/or pharmaceutical uses of TCS. This is the first example of usage of a Seahorse Extracellular Flux Analyzer to measure bioenergetic flux of a single zebrafish embryo per well in a 96 well assay format. The method developed in this study provides a high-throughput tool to identify previously-unknown mitochondrial uncouplers in a living organism. PMID:27111768

  7. Assessing the potential of atomistic molecular dynamics simulations to probe reversible protein-protein recognition and binding

    PubMed Central

    Abriata, Luciano A.; Dal Peraro, Matteo

    2015-01-01

    Protein-protein recognition and binding are governed by diffusion, noncovalent forces and conformational flexibility, entangled in a way that only molecular dynamics simulations can dissect at high resolution. Here we exploited ubiquitin’s noncovalent dimerization equilibrium to assess the potential of atomistic simulations to reproduce reversible protein-protein binding, by running submicrosecond simulations of systems with multiple copies of the protein at millimolar concentrations. The simulations essentially fail because they lead to aggregates, yet they reproduce some specificity in the binding interfaces as observed in known covalent and noncovalent ubiquitin dimers. Following similar observations in literature we hint at electrostatics and water descriptions as the main liable force field elements, and propose that their optimization should consider observables relevant to multi-protein systems and unfolded proteins. Within limitations, analysis of binding events suggests salient features of protein-protein recognition and binding, to be retested with improved force fields. Among them, that specific configurations of relative direction and orientation seem to trigger fast binding of two molecules, even over 50 Å distances; that conformational selection can take place within surface-to-surface distances of 10 to 40 Å i.e. well before actual intermolecular contact; and that establishment of contacts between molecules further locks their conformations and relative orientations. PMID:26023027

  8. Effect of salicylhydroxamic acid on endosperm strength and embryo growth of Lactuca sativa L. cv Waldmann's Green seeds

    NASA Technical Reports Server (NTRS)

    Brooks, C. A.; Mitchell, C. A.

    1988-01-01

    Salicylhydroxamic acid (SHAM) stimulated germination of photosensitive lettuce (Lactuca sativa L. cv Waldmann's Green) seeds in darkness. To determine whether SHAM acts on the embryo or the endosperm, we investigated separately effects of SHAM on growth potential of isolated embryos as well as on endosperm strength. Embryo growth potential was quantified by incubating decoated embryos in various concentrations of osmoticum and measuring subsequent radicle elongation. Growth potential of embryos isolated from seeds pretreated with 4 millimolar SHAM was equal to that of untreated controls. Rupture strength of endosperm tissue excised from seeds pretreated with SHAM was 33% less than that of controls in the micropylar region. To determine if the embryo must be in contact with the endosperm of SHAM to weaken the endosperm, some endosperms were incubated with SHAM only after dissection from seeds. Rupture strength of SHAM-treated, isolated endosperms in the micropylar region was 25% less than that of untreated controls. There was no difference in rupture strength in the cotyledonary region of endosperm isolated from seeds treated with SHAM in buffer or buffer alone. SHAM therefore stimulates germination not by enhancing embryo growth potential, but by weakening the micropylar region of the endosperm enclosing the embryo.

  9. Disruption of the Mouse μ-Calpain Gene Reveals an Essential Role in Platelet Function

    PubMed Central

    Azam, Mohammad; Andrabi, Shaida S.; Sahr, Kenneth E.; Kamath, Lakshmi; Kuliopulos, Athan; Chishti, Athar H.

    2001-01-01

    Conventional calpains are ubiquitous calcium-regulated cysteine proteases that have been implicated in cytoskeletal organization, cell proliferation, apoptosis, cell motility, and hemostasis. There are two forms of conventional calpains: the μ-calpain, or calpain I, which requires micromolar calcium for half-maximal activation, and the m-calpain, or calpain II, which functions at millimolar calcium concentrations. We evaluated the functional role of the 80-kDa catalytic subunit of μ-calpain by genetic inactivation using homologous recombination in embryonic stem cells. The μ-calpain-deficient mice are viable and fertile. The complete deficiency of μ-calpain causes significant reduction in platelet aggregation and clot retraction but surprisingly the mutant mice display normal bleeding times. No detectable differences were observed in the cleavage pattern and kinetics of calpain substrates such as the β3 subunit of αIIbβ3 integrin, talin, and ABP-280 (filamin). However, μ-calpain null platelets exhibit impaired tyrosine phosphorylation of several proteins including the β3 subunit of αIIbβ3 integrin, correlating with the agonist-induced reduction in platelet aggregation. These results provide the first direct evidence that μ-calpain is essential for normal platelet function, not by affecting the cleavage of cytoskeletal proteins but by potentially regulating the state of tyrosine phosphorylation of the platelet proteins. PMID:11238954

  10. Relationship between Salt Tolerance and Resistance to Polyethylene Glycol-Induced Water Stress in Cultured Citrus Cells 1

    PubMed Central

    Ben-Hayyim, Gozal

    1987-01-01

    Salt-tolerant selected cells of Shamouti orange (Citrus sinensis) and Sour orange (Citrus aurantium) grew considerably better than nonselected cells at any NaCl concentration tested up to 200 millimolar. Also, the growth response of each treatment was identical in the two species. However, the performance of cells of the two species under osmotic stress induced by polyethylene glycol (PEG), which is presumably a nonabsorbed osmoticum, was significantly different. The nonselected Shamouti cell lines were significantly more sensitive to osmotic stress than the selected cells. The salt adapted Shamouti cells were apparently also adapted to osmotic stress induced by PEG. In Sour orange, however, the selected lines had no advantage over the nonselected line in response to osmotic stress induced by PEG. This response was also similar quantitatively to the response of the selected salt-tolerant Shamouti cell line. It seems that the tolerance to salt in Shamouti, a partial salt excluder, involves an osmotic adaptation, whereas in Sour orange, a salt accumulator, such an adaptation apparently does not occur. PEG-induced osmotic stress causes an increase in the percent dry weight of salt-sensitive and salt-tolerant cells of both species. No such increase was found under salt stress. The size of control and stressed cells is not significantly different. PMID:16665715

  11. The calcium carbonate saturation state in cyanobacterial mats throughout Earth’s history

    NASA Astrophysics Data System (ADS)

    Aloisi, Giovanni

    2008-12-01

    Through early lithification, cyanobacterial mats produced vast amounts of CaCO 3 on Precambrian carbonate platforms (before 540 Myr ago). The superposition of lithified cyanobacterial mats forms internally laminated, macroscopic structures known as stromatolites. Similar structures can be important constituents of Phanerozoic carbonate platforms (540 Myr to present). Early lithification in modern marine cyanobacterial mats is thought to be driven by a metabolically-induced increase of the CaCO 3 saturation state ( Ω) in the mat. However, it is uncertain which microbial processes produce the Ω increase and to which extent similar Ω shifts were possible in Precambrian oceans whose chemistry differed from that of the modern ocean. I developed a numerical model that calculates Ω in cyanobacterial mats and used it to tackle these questions. The model is first applied to simulate Ω in modern calcifying cyanobacterial mats forming at Highborne Cay (Bahamas); it shows that while cyanobacterial photosynthesis increases Ω considerably, sulphate reduction has a small and opposite effect on mat Ω because it is coupled to H 2S oxidation with O 2 which produces acidity. Numerical experiments show that the magnitude of the Ω increase is proportional to DIC in DIC-limited waters (DIC < 3-10 mM), is proportional to pH when ambient water DIC is not limiting and always proportional to the concentration of Ca 2+ in ambient waters. With oceanic Ca 2+ concentrations greater than a few millimolar, an appreciable increase in Ω occurs in mats under a wide range of environmental conditions, including those supposed to exist in the oceans of the past 2.8 Gyr. The likely lithological expression is the formation of the microsparitic stromatolite microtexture—indicative of CaCO 3 precipitation within the mats under the control of microbial activity—which is found in carbonate rocks spanning from the Precambrian to recent. The model highlights the potential for an increase in the magnitude of the Ω shift in cyanobacterial mats throughout Earth's history produced by a decrease in salinity and temperature of the ocean, a decrease in atmospheric pCO 2 and an increase in solar irradiance. Such a trend would explain how the formation of the microsparitic stromatolite microtexture was possible as the Ω of the ocean decreased from the Paleoproterozoic to the Phanerozoic.

  12. Intracellular calcium buffering capacity in isolated squid axons

    PubMed Central

    Brinley, FJ; Tiffert, T; Scarpa, A; Mullins, LJ

    1977-01-01

    Changes in ionized calcium were studied in axons isolated from living squid by measuring absorbance of the Ca binding dye Arsenazo III using multiwavelength differential absorption spectroscopy. Absorption changes measured in situ were calibrated in vitro with media of ionic composition similar to axoplasm containing CaEGTA buffers. Calcium loads of 50-2,500 μmol/kg axoplasm were induced by microinjection, by stimulation in 112 mM Ca seawater, or by soaking in choline saline with 1-10 mM Ca. Over this range of calcium loading of intact axoplasm, the ionized calcium in the axoplasm rose about 0.6 nM/μM load. Similar loading in axons preteated with carbonyl cyanide 4- trifluoromethoxyphenylhydrazone (FCCP) to inhibit the mitochondrial proton gradient increased ionized calcium by 5-7 percent of the imposed load, i.e. 93-95 percent of the calcium load was buffered by a process insensitive to FCCP. This FCCP- insensitive buffer system was not saturated by the largest calcium loads imposed, indicating a capacity of at least several millimolar. Treatment of previously loaded axons with FCCP or apyrase plus cyanide produced rises in ionized calcium which could be correlated with the extent of the load. Analysis of results indicated that, whereas only 6 percent of the endogenous calcium in fresh axons is stored in the FCCP-sensitive (presumably mitochondrial) buffer system, about 30 percent of an imposed exogenous load in the range of 50-2,500 μM is taken up by this system. PMID:894260

  13. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    NASA Technical Reports Server (NTRS)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the vertebrate neuromuscular junction. The major differences between these two synapses are the neurotransmitters and the higher resting release rate and higher sensitivity of release to increased K+ concentrations of the hair cells over that of motor nerve terminals. These differences reflect the functional roles of the two synapses: the motor nerve terminal response in an all-or-nothing signal consequent from action potential invasion, while the hair cell releases transmitter in a graded fashion, proportionate to the extent of stereocilial deflection. Despite these differences between the two junctions, the similar actions of these elemental cations upon synaptic function at each implies that these ions may participate similarly in the operations of other synapses, independent of the neurotransmitter type.(ABSTRACT TRUNCATED AT 400 WORDS).

  14. Influence of NaCl on Growth, Proline, and Phosphoenolpyruvate Carboxylase Levels in Mesembryanthemum crystallinum Suspension Cultures 1

    PubMed Central

    Thomas, John C.; De Armond, Richard L.; Bohnert, Hans J.

    1992-01-01

    The facultative halophyte Mesembryanthemum crystallinum responds to salt stress by increasing the levels of phosphoenolpyruvate carboxylase (PEPCase) and other enzymes associated with Crassulacean acid metabolism. A more common response to salt stress in sensitive and tolerant species, including M. crystallinum, is the accumulation of proline. We have established M. crystallinum suspension cultures to investigate whether both these salt-induced responses occur at the cellular level. Leaf-and root-derived cultures maintain 5% of the total soluble amino acids as proline. Cell culture growth slows upon addition of 400 millimolar NaCl, and proline levels increase to 40% of the total soluble amino acids. These results suggest a functional salt-stress and response program in Mesembryanthemum cells. Suspension cultures grown with or without 400 millimolar NaCl have PEPCase levels that compare with those from roots and unstressed leaves. The predominant protein cross-reacting with an anti-PEPCase antibody corresponds to 105 kilodaltons (apparent molecular mass), whereas a second species of approximately 110 kilodaltons is present at low levels. In salt-stressed leaves, the 110 kilodalton protein is more prevalent. Levels of mRNA for both ppc1 (salt stress induced in leaves) and ppc2 (constitutive) genes in salt-treated suspensions cultures are equal to unstressed leaves, and only twice the levels found in untreated suspension cultures. Whereas cells accumulate proline in response to NaCl, PEPCase protein amounts remain similar in salt-treated and untreated cultures. The induction upon salt stress of the 110 kilodalton PEPCase protein and other Crassulacean acid metabolism enzymes in organized tissues is not observed in cell culture and may depend on tissue-dependent or photoautotrophy-dependent programs. ImagesFigure 4Figure 5 PMID:16668687

  15. Nonproteinogenic D-amino acids at millimolar concentrations are a toxin for anaerobic microorganisms relevant to early Earth and other anoxic planets.

    PubMed

    Nixon, Sophie L; Cockell, Charles S

    2015-03-01

    The delivery of extraterrestrial organics to early Earth provided a potentially important source of carbon and energy for microbial life. Optically active organic compounds of extraterrestrial origin exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. Although D-enantiomers of proteinogenic amino acids are known to inhibit aerobic microorganisms, the role of concentrated nonproteinogenic meteoritic D-amino acids on anaerobic metabolisms relevant to early Earth and other anoxic planets such as Mars is unknown. Here, we test the inhibitory effect of D-enantiomers of two nonproteinogenic amino acids common to carbonaceous chondrites, norvaline and α-aminobutyric acid, on microbial iron reduction. Three pure strains (Geobacter bemidjiensis, Geobacter metallireducens, Geopsychrobacter electrodiphilus) and an iron-reducing enrichment culture were grown in the presence of 10 mM D-enantiomers of both amino acids. Further tests were conducted to assess the inhibitory effect of these D-amino acids at 1 and 0.1 mM. The presence of 10 mM D-norvaline and D-α-aminobutyric acid inhibited microbial iron reduction by all pure strains and the enrichment. G. bemidjiensis was not inhibited by either amino acid at 0.1 mM, but D-α-aminobutyric acid still inhibited at 1 mM. Calculations using published meteorite accumulation rates to the martian surface indicate D-α-aminobutyric acid may have reached inhibitory concentrations in little over 1000 years during peak infall. These data show that, on a young anoxic planet, the use of one enantiomer over another may render the nonbiological enantiomer an environmental toxin. Processes that generate racemic amino acids in the environment, such as meteoritic infall or impact synthesis, would have been toxic processes and could have been a selection pressure for the evolution of early racemases.

  16. Preparation and biological evaluation of conformationally constrained BACE1 inhibitors.

    PubMed

    Winneroski, Leonard L; Schiffler, Matthew A; Erickson, Jon A; May, Patrick C; Monk, Scott A; Timm, David E; Audia, James E; Beck, James P; Boggs, Leonard N; Borders, Anthony R; Boyer, Robert D; Brier, Richard A; Hudziak, Kevin J; Klimkowski, Valentine J; Garcia Losada, Pablo; Mathes, Brian M; Stout, Stephanie L; Watson, Brian M; Mergott, Dustin J

    2015-07-01

    The BACE1 enzyme is a key target for Alzheimer's disease. During our BACE1 research efforts, fragment screening revealed that bicyclic thiazine 3 had low millimolar activity against BACE1. Analysis of the co-crystal structure of 3 suggested that potency could be increased through extension toward the S3 pocket and through conformational constraint of the thiazine core. Pursuit of S3-binding groups produced low micromolar inhibitor 6, which informed the S3-design for constrained analogs 7 and 8, themselves prepared via independent, multi-step synthetic routes. Biological characterization of BACE inhibitors 6-8 is described. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Hydroxychalcone inhibitors of Streptococcus mutans glucosyl transferases and biofilms as potential anticaries agents.

    PubMed

    Nijampatnam, Bhavitavya; Casals, Luke; Zheng, Ruowen; Wu, Hui; Velu, Sadanandan E

    2016-08-01

    Streptococcus mutans has been implicated as the major etiological agent in the initiation and the development of dental caries due to its robust capacity to form tenacious biofilms. Ideal therapeutics for this disease will aim to selectively inhibit the biofilm formation process while preserving the natural bacterial flora of the mouth. Several studies have demonstrated the efficacies of flavonols on S. mutans biofilms and have suggested the mechanism of action through their effect on S. mutans glucosyltransferases (Gtfs). These enzymes metabolize sucrose into water insoluble and soluble glucans, which are an integral measure of the dental caries pathogenesis. Numerous studies have shown that flavonols and polyphenols can inhibit Gtf and biofilm formation at millimolar concentrations. We have screened a group of 14 hydroxychalcones, synthetic precursors of flavonols, in an S. mutans biofilm assay. Several of these compounds emerged to be biofilm inhibitors at low micro-molar concentrations. Chalcones that contained a 3-OH group on ring A exhibited selectivity for biofilm inhibition. Moreover, we synthesized 6 additional analogs of the lead compound and evaluated their potential activity and selectivity against S. mutans biofilms. The most active compound identified from these studies had an IC50 value of 44μM against biofilm and MIC50 value of 468μM against growth displaying >10-fold selectivity inhibition towards biofilm. The lead compound displayed a dose dependent inhibition of S. mutans Gtfs. The lead compound also did not affect the growth of two commensal species (Streptococcus sanguinis and Streptococcus gordonii) at least up to 200μM, indicating that it can selectively inhibit cariogenic biofilms, while leaving commensal and/or beneficial microbes intact. Thus non-toxic compounds have the potential utility in public oral health regimes. Copyright © 2016. Published by Elsevier Ltd.

  18. Investigation of a calcium-responsive contrast agent in cellular model systems: feasibility for use as a smart molecular probe in functional MRI.

    PubMed

    Angelovski, Goran; Gottschalk, Sven; Milošević, Milena; Engelmann, Jörn; Hagberg, Gisela E; Kadjane, Pascal; Andjus, Pavle; Logothetis, Nikos K

    2014-05-21

    Responsive or smart contrast agents (SCAs) represent a promising direction for development of novel functional MRI (fMRI) methods for the eventual noninvasive assessment of brain function. In particular, SCAs that respond to Ca(2+) may allow tracking neuronal activity independent of brain vasculature, thus avoiding the characteristic limitations of current fMRI techniques. Here we report an in vitro proof-of-principle study with a Ca(2+)-sensitive, Gd(3+)-based SCA in an attempt to validate its potential use as a functional in vivo marker. First, we quantified its relaxometric response in a complex 3D cell culture model. Subsequently, we examined potential changes in the functionality of primary glial cells following administration of this SCA. Monitoring intracellular Ca(2+) showed that, despite a reduction in the Ca(2+) level, transport of Ca(2+) through the plasma membrane remained unaffected, while stimulation with ATP induced Ca(2+)-transients suggested normal cellular signaling in the presence of low millimolar SCA concentrations. SCAs merely lowered the intracellular Ca(2+) level. Finally, we estimated the longitudinal relaxation times (T1) for an idealized in vivo fMRI experiment with SCA, for extracellular Ca(2+) concentration level changes expected during intense neuronal activity which takes place upon repetitive stimulation. The values we obtained indicate changes in T1 of around 1-6%, sufficient to be robustly detectable using modern MRI methods in high field scanners. Our results encourage further attempts to develop even more potent SCAs and appropriate fMRI protocols. This would result in novel methods that allow monitoring of essential physiological processes at the cellular and molecular level.

  19. Identification and Quantitation of Malonic Acid Biomarkers of In-Born Error Metabolism by Targeted Metabolomics

    NASA Astrophysics Data System (ADS)

    Ambati, Chandra Shekar R.; Yuan, Furong; Abu-Elheiga, Lutfi A.; Zhang, Yiqing; Shetty, Vivekananda

    2017-05-01

    Malonic acid (MA), methylmalonic acid (MMA), and ethylmalonic acid (EMA) metabolites are implicated in various non-cancer disorders that are associated with inborn-error metabolism. In this study, we have slightly modified the published 3-nitrophenylhydrazine (3NPH) derivatization method and applied it to derivatize MA, MMA, and EMA to their hydrazone derivatives, which were amenable for liquid chromatography- mass spectrometry (LC-MS) quantitation. 3NPH was used to derivatize MA, MMA, and EMA, and multiple reaction monitoring (MRM) transitions of the corresponding derivatives were determined by product-ion experiments. Data normalization and absolute quantitation were achieved by using 3NPH derivatized isotopic labeled compounds 13C2-MA, MMA-D3, and EMA-D3. The detection limits were found to be at nanomolar concentrations and a good linearity was achieved from nanomolar to millimolar concentrations. As a proof of concept study, we have investigated the levels of malonic acids in mouse plasma with malonyl-CoA decarboxylase deficiency (MCD-D), and we have successfully applied 3NPH method to identify and quantitate all three malonic acids in wild type (WT) and MCD-D plasma with high accuracy. The results of this method were compared with that of underivatized malonic acid standards experiments that were performed using hydrophilic interaction liquid chromatography (HILIC)-MRM. Compared with HILIC method, 3NPH derivatization strategy was found to be very efficient to identify these molecules as it greatly improved the sensitivity, quantitation accuracy, as well as peak shape and resolution. Furthermore, there was no matrix effect in LC-MS analysis and the derivatized metabolites were found to be very stable for longer time.

  20. Cholinergic modulation of neuronal excitability in the rat suprachiasmatic nucleus.

    PubMed

    Yang, Jyh-Jeen; Wang, Yu-Ting; Cheng, Pi-Cheng; Kuo, Yeh-Jung; Huang, Rong-Chi

    2010-03-01

    The central cholinergic system regulates both the circadian clock and sleep-wake cycle and may participate in the feedback control of vigilance states on neural excitability in the suprachiasmatic nucleus (SCN) that houses the circadian clock. Here we investigate the mechanisms for cholinergic modulation of SCN neuron excitability. Cell-attached recordings indicate that the nonspecific cholinergic agonist carbachol (CCh) inhibited 55% and excited 21% SCN neurons, leaving 24% nonresponsive. Similar response proportions were produced by two muscarinic receptor [muscarinic acetylcholine receptor (mAChR)] agonists, muscarine and McN-A-343 (M1/4 agonist), but not by two nicotinic receptor (nAChR) agonists, nicotine and choline (alpha7-nAChR agonist), which, however, produced similar response proportions. Whole cell and perforated-patch recordings indicate that CCh inhibition of firing was mediated by membrane hyperpolarization due to activation of background K(+) currents, which were sensitive to submillimolar concentrations of Ba(2+) and to millimolar concentrations of TEA. RT-PCR analysis demonstrated the presence of mRNA for M1 to M5 mAChRs in SCN. The CCh-induced hyperpolarization and activation of background K(+) currents were blocked by M4 antagonists and to a lesser degree by M1 antagonists but were insensitive to the antagonists for M2 or M3, suggesting the involvement of M4 and M1 mAChRs in mediating CCh inhibition of firing. CCh enhancement of firing was mediated by membrane depolarization, as a result of postsynaptic inhibition of background K(+) currents. The multiple actions of cholinergic modulation via multiple receptors and ion channels may allow acetylcholine to finely control SCN neuron excitability in different physiological settings.

  1. SABRE hyperpolarization enables high-sensitivity 1H and 13C benchtop NMR spectroscopy.

    PubMed

    Richardson, Peter M; Parrott, Andrew J; Semenova, Olga; Nordon, Alison; Duckett, Simon B; Halse, Meghan E

    2018-06-19

    Benchtop NMR spectrometers operating with low magnetic fields of 1-2 T at sub-ppm resolution show great promise as analytical platforms that can be used outside the traditional laboratory environment for industrial process monitoring. One current limitation that reduces the uptake of benchtop NMR is associated with the detection fields' reduced sensitivity. Here we demonstrate how para-hydrogen (p-H2) based signal amplification by reversible exchange (SABRE), a simple to achieve hyperpolarization technique, enhances agent detectability within the environment of a benchtop (1 T) NMR spectrometer so that informative 1H and 13C NMR spectra can be readily recorded for low-concentration analytes. SABRE-derived 1H NMR signal enhancements of up to 17 000-fold, corresponding to 1H polarization levels of P = 5.9%, were achieved for 26 mM pyridine in d4-methanol in a matter of seconds. Comparable enhancement levels can be achieved in both deuterated and protio solvents but now the SABRE-enhanced analyte signals dominate due to the comparatively weak thermally-polarized solvent response. The SABRE approach also enables the acquisition of 13C NMR spectra of analytes at natural isotopic abundance in a single scan as evidenced by hyperpolarized 13C NMR spectra of tens of millimolar concentrations of 4-methylpyridine. Now the associated signal enhancement factors are up to 45 500 fold (P = 4.0%) and achieved in just 15 s. Integration of an automated SABRE polarization system with the benchtop NMR spectrometer framework produces renewable and reproducible NMR signal enhancements that can be exploited for the collection of multi-dimensional NMR spectra, exemplified here by a SABRE-enhanced 2D COSY NMR spectrum.

  2. Influence of calcium on ceramide-1-phosphate monolayers

    PubMed Central

    Brezesinski, Gerald; Hill, Alexandra; Gericke, Arne

    2016-01-01

    Summary Ceramide-1-phosphate (C1P) plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM), infrared reflection–absorption spectroscopy (IRRAS) and grazing incidence X-ray diffraction (GIXD). The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P. PMID:26977381

  3. Mutation of a Zinc-Binding Residue in the Glycine Receptor α1 Subunit Changes Ethanol Sensitivity In Vitro and Alcohol Consumption In Vivo

    PubMed Central

    McCracken, Lindsay M.; Blednov, Yuri A.; Trudell, James R.; Benavidez, Jillian M.; Betz, Heinrich

    2013-01-01

    Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs. PMID:23230213

  4. Versatile peroxidase of Bjerkandera fumosa: substrate and inhibitor specificity.

    PubMed

    Pozdnyakova, Natalia; Makarov, Oleg; Chernyshova, Marina; Turkovskaya, Olga; Jarosz-Wilkolazka, Anna

    2013-01-10

    The inhibitor and substrate specificities of versatile peroxidase from Bjerkandera fumosa (VPBF) were studied. Two different effects were found: NaN(3), Tween-80, anthracene, and fluorene decreased the activity of VPBF, but p-aminobenzoic acid increased it. A mixed mechanism of effector influence on the activity of this enzyme was shown. The catalytic properties of VPBF in the oxidation of mono- and polycyclic aromatic compounds were studied also. 2,7-Diaminofluorene, ABTS, veratryl alcohol, and syringaldazine can be oxidized by VPBF in two ways: either directly by the enzyme or by diffusible chelated Mn(3+) as an oxidizing agent. During VPBF oxidation of 2,7-diaminofluorene, both with and without Mn(2+), biphasic kinetics with apparent saturation in both micromolar and millimolar ranges were obtained. In the case of ABTS, inhibition of VPBF activity by an excess of substrate was observed. Direct oxidation of p-aminobenzoic acid by versatile peroxidase was found for the first time. The oxidation of three- and four-ring PAHs by VPBF was investigated, and the oxidation of anthracene, phenanthrene, fluorene, pyrene, chrysene, and fluoranthene was shown. The products of PAH oxidation (9,10-anthraquinone, 9,10-phenanthrenequinone, and 9-fluorenone) catalyzed by VPBF were identified. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. TcPho91 is a contractile vacuole phosphate sodium symporter that regulates phosphate and polyphosphate metabolism in Trypanosoma cruzi

    PubMed Central

    Jimenez, Veronica; Docampo, Roberto

    2015-01-01

    Summary We have identified a phosphate transporter (TcPho91) localized to the bladder of the contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease. TcPho91 has 12 transmembrane domains, an N-terminal regulatory SPX domain and an anion permease domain. Functional expression in Xenopus laevis oocytes followed by two-electrode voltage clamp showed that TcPho91 is a low affinity transporter with a Km for Pi in the millimolar range, and sodium-dependency. Epimastigotes overexpressing TcPho91-GFP have significantly higher levels of pyrophosphate (PPi) and short chain polyphosphate (polyP), suggesting accumulation of Pi in these cells. Moreover, when overexpressing parasites were maintained in a medium with low Pi, they grew at higher rates than control parasites. Only one allele of TcPho91 in the CL strain encodes for the complete open reading frame, while the other one is truncated encoding for only the N-terminal domain. Taking advantage of this characteristic, knockdown experiments were performed resulting in cells with reduced growth rate as well as a reduction in PPi and short-chain polyP levels. Our results indicate that TcPho91 is a phosphate sodium symporter involved in Pi homeostasis in T. cruzi. PMID:26031800

  6. HIGH-AFFINITY T CELL RECEPTOR DIFFERENTIATES COGNATE PEPTIDE-MHC AND ALTERED PEPTIDE LIGANDS WITH DISTINCT KINETICS AND THERMODYNAMICS

    PubMed Central

    Persaud, Stephen P.; Donermeyer, David L.; Weber, K. Scott; Kranz, David M.; Allen, Paul M.

    2010-01-01

    Interactions between the T cell receptor and cognate peptide-MHC are crucial initiating events in the adaptive immune response. These binding events are highly specific yet occur with micromolar affinity. Even weaker interactions between TCR and self-pMHC complexes play critical regulatory roles in T cell development, maintenance and coagonist activity. Due to their low affinity, the kinetics and thermodynamics of such weak interactions are difficult to study. In this work, we used M15, a high-affinity TCR engineered from the 3.L2 TCR system, to study the binding properties, thermodynamics, and specificity of two altered peptide ligands (APLs). Our affinity measurements of the high-affinity TCR support the view that the wild type TCR binds these APLs in the millimolar affinity range, and hence very low affinities can still elicit biological functions. Finally, single methylene differences among the APLs gave rise to strikingly different binding thermodynamics. These minor changes in the pMHC antigen were associated with significant and unpredictable changes in both the entropy and enthalpy of the reaction. As the identical TCR was analyzed with several structurally similar ligands, the distinct thermodynamic binding profiles provide a mechanistic perspective on how exquisite antigen specificity is achieved by the T cell receptor. PMID:20334923

  7. Lack of formic acid production in rat hepatocytes and human renal proximal tubule cells exposed to chloral hydrate or trichloroacetic acid

    PubMed Central

    Lock, Edward A; Reed, Celia J; McMillan, JoEllyn M; Oatis, John R; Schnellmann, Rick G

    2007-01-01

    The industrial solvent trichloroethylene (TCE) and its major metabolites have been shown to cause formic aciduria in male rats. We have examined whether chloral hydrate (CH) and trichloroacetic acid (TCA), known metabolites of TCE, produce an increase in formic acid in vitro in cultures of rat hepatocytes or human renal proximal tubule cells (HRPTC). The metabolism and cytotoxicity of CH was also examined to establish that the cells were metabolically active and not compromised by toxicity. Rat hepatocytes and HRPTC were cultured in serum-free medium and then treated with 0.3–3mM CH for 3 days or 0.03–3mM CH for 10 days respectively and formic acid production, metabolism to trichloroethanol (TCE-OH) and TCA and cytotoxicity determined. No increase in formic acid production in rat hepatocytes or HRPTC exposed to CH was observed over and above that due to chemical degradation, neither was formic acid production observed in rat hepatocytes exposed to TCA. HRPTC metabolised CH to TCE-OH and TCA with a 12-fold greater capacity to form TCE-OH versus TCA. Rat hepatocytes exhibited a 1.6-fold and 3-fold greater capacity than HRPTC to form TCE-OH and TCA respectively. CH and TCA were not cytotoxic to rat hepatocytes at concentrations up to 3mM/day for 3 days. With HRPTC, one sample showed no cytotoxicity to CH at concentrations up to 3mM/day for 10 days, while in another cytotoxicity was seen at 1mM/day for 3 days. In summary, increased formic acid production was not observed in rat hepatocytes or HRPTC exposed to TCE metabolites, suggesting that the in vivo response cannot be modelled in vitro. CH was toxic to HRPTC at millimolar concentrations/day over 10 days, while glutathione derived metabolites of TCE were toxic at micromolar concentrations/day over 10 days (Lock et al., 2006) supporting the view that glutathione derived metabolites are likely to be responsible for nephrotoxicity. PMID:17161896

  8. Photosynthesis Involvement in the Mechanism of Action of Diphenyl Ether Herbicides 1

    PubMed Central

    Ensminger, Michael P.; Hess, F. Dan

    1985-01-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity. PMID:16664206

  9. Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides.

    PubMed

    Ensminger, M P; Hess, F D

    1985-05-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity.

  10. Abiotic Synthesis of Nucleic Acids: Hypochromicity and Future Research

    NASA Technical Reports Server (NTRS)

    Glass, K.; Oye, M.; Deamer, D.; Vercoutere, W.

    2017-01-01

    The earliest forms of life would likely have a protocellular form, with a membrane encapsulating some form of linear charged polymer. These polymers could have enzymatic as well as genetic properties. We can simulate plausible prebiotic conditions in the laboratory to test hypotheses related to this concept. In earlier work we have shown that mononucleotides organized within a multilamellar lipid matrix can produce oligomers in the anhydrous phase of dehydration- rehydration cycles (Rajamani, 2008). If mononucleotides are in solution at millimolar concentrations, then oligomers resembling RNA are synthesized and exist in a steady state with their monomers DeGuzman, 2014). We have used conventional and novel techniques to demonstrate that secondary structures stabilized by hydrogen bonds may be present in the condensation products produced in dehydration- rehydration cycles that simulate hydrothermal fields that were present on the early Earth. Gel electrophoresis data corroborates the presence of up to 200-base pair length RNA fragments in products of Hydration-Dehydration experiments. Furthermore, hypochromicity measurements demonstrate a degree of hypochromicity found in single RNA strand of known sequence, as well as results that indicate this is true also for a sample of complementary strands of RNA. Analysis of ionic current signatures of known RNA hairpin molecule as measured using a nanopore detector indicate a significant variability in pattern, different from the signatures produced by DNA hairpin molecules. This informs how we may interpret nanopore data gathered from prebiotic simulations.

  11. Acarbose, a Pseudooligosaccharide, Is Transported but Not Metabolized by the Maltose-Maltodextrin System of Escherichia coli

    PubMed Central

    Brunkhorst, Claudia; Andersen, Christian; Schneider, Erwin

    1999-01-01

    The pseudooligosaccharide acarbose is a potent inhibitor of amylases, glucosidases, and cyclodextrin glycosyltransferase and is clinically used for the treatment of so-called type II or insulin-independent diabetes. The compound consists of an unsaturated aminocyclitol, a deoxyhexose, and a maltose. The unsaturated aminocyclitol moiety (also called valienamine) is primarily responsible for the inhibition of glucosidases. Due to its structural similarity to maltotetraose, we have investigated whether acarbose is recognized as a substrate by the maltose/maltodextrin system of Escherichia coli. Acarbose at millimolar concentrations specifically affected the growth of E. coli K-12 on maltose as the sole source of carbon and energy. Uptake of radiolabeled maltose was competitively inhibited by acarbose, with a Ki of 1.1 μM. Maltose-grown cells transported radiolabeled acarbose, indicating that the compound is recognized as a substrate. Studying the interaction of acarbose with purified maltoporin in black lipid membranes revealed that the kinetics of acarbose binding to LamB is asymmetric. The on-rate of acarbose is approximately 30 times lower when the molecule enters the pore from the extracellular side than when it enters from the periplasmic side. Acarbose could not be utilized as a carbon source since the compound alone was not a substrate of amylomaltase (MalQ) and was only poorly attacked by maltodextrin glucosidase (MalZ). PMID:10198028

  12. Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp.

    PubMed

    Palomo, Alejandro; Jane Fowler, S; Gülay, Arda; Rasmussen, Simon; Sicheritz-Ponten, Thomas; Smets, Barth F

    2016-11-01

    Rapid gravity sand filtration is a drinking water production technology widely used around the world. Microbially catalyzed processes dominate the oxidative transformation of ammonia, reduced manganese and iron, methane and hydrogen sulfide, which may all be present at millimolar concentrations when groundwater is the source water. In this study, six metagenomes from various locations within a groundwater-fed rapid sand filter (RSF) were analyzed. The community gene catalog contained most genes of the nitrogen cycle, with particular abundance in genes of the nitrification pathway. Genes involved in different carbon fixation pathways were also abundant, with the reverse tricarboxylic acid cycle pathway most abundant, consistent with an observed Nitrospira dominance. From the metagenomic data set, 14 near-complete genomes were reconstructed and functionally characterized. On the basis of their genetic content, a metabolic and geochemical model was proposed. The organisms represented by draft genomes had the capability to oxidize ammonium, nitrite, hydrogen sulfide, methane, potentially iron and manganese as well as to assimilate organic compounds. A composite Nitrospira genome was recovered, and amo-containing Nitrospira genome contigs were identified. This finding, together with the high Nitrospira abundance, and the abundance of atypical amo and hao genes, suggests the potential for complete ammonium oxidation by Nitrospira, and a major role of Nitrospira in the investigated RSFs and potentially other nitrifying environments.

  13. Taurine in pediatric nutrition: review and update.

    PubMed

    Gaull, G E

    1989-03-01

    Taurine was long considered an end product of the metabolism of the sulfur-containing amino acids, methionine and cyst(e)ine. Its only clearly recognized biochemical role had been as a substrate in the conjugation of bile acids. Taurine is found free in millimolar concentrations in animal tissues, particularly those that are excitable, rich in membranes, and generate oxidants. Various lines of evidence suggest one major nutritional role as protecting cell membranes by attenuating toxic substances and/or by acting as an osmoregulator. The totality of evidence suggests that taurine is nonessential in the rodent, it is an essential amino acid in the cat, and it is conditionally essential in man and monkey. Absence from the diet of a conditionally essential nutrient does not produce immediate deficiency disease but, in the long term, can cause problems. Taurine is now added to many infant formulas as a measure of prudence to provide improved nourishment with the same margin of safety for its newly identified physiologic functions as that found in human milk. Such supplementation can be justified by the finding of improved fat absorption in preterm infants and in children with cystic fibrosis, as well as by salutary effects on auditory brainstem-evoked responses in preterm infants. Experimental findings in animal models and in human cell models provide further justification for taurine supplementation of infant formulas.

  14. Geochemical Effects of Millimolar Hydrogen Concentrations in Groundwater: An Experimental Study in the Context of Subsurface Hydrogen Storage.

    PubMed

    Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Schäfer, Dirk; Dahmke, Andreas

    2018-04-17

    Hydrogen storage in geological formations is one of the most promising technologies for balancing major fluctuations between energy supply from renewable energy plants and energy demand of customers. If hydrogen gas is stored in a porous medium or if it leaks into a shallow aquifer, redox reactions can oxidize hydrogen and reduce electron acceptors such as nitrate, Fe III and Mn IV (hydro)oxides, sulfate, and carbonate. These reactions are of key significance, because they can cause unintentional losses in hydrogen stored in porous media and they also can cause unwanted changes in the composition of protected potable groundwater. To represent an aquifer environment enclosing a hydrogen plume, laboratory experiments using sediment-filled columns were constructed and percolated by groundwater in equilibrium with high (2-15 bar) hydrogen partial pressures. Here, we show that hydrogen is consumed rapidly in these experiments via sulfate reduction (18 ± 5 μM h -1 ) and acetate production (0.030 ± 0.006 h -1 ), while no methanogenesis took place. The observed reaction rates were independent from the partial pressure of hydrogen and hydrogen consumption only stopped in supplemental microcosm experiments where salinity was increased above 35 g L -1 . The outcomes presented here are implemented for planning the sustainable use of the subsurface space within the ANGUS+ project.

  15. Cadmium uptake by Pinus resinosa Ait. pollen and the effect on cation release and membrane permeability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickland, R.C.; Chaney, W.R.; Lamoreaux, R.J.

    Cadmium uptake by red pine (Pinus resinosa Ait.) pollen from a graded series of Cd/sup 2 +/ solutions (0 to 2.88 microequivalents per 50 milligrams pollen) and its effect on membrane integrity were examined by atomic absorption spectroscopy. Uptake was strongly dependent on Cd/sup 2 +/ concentration and was limited to adsorption and cation exchange in pollen walls during a 3-hour measurement period. Good correlation between measured Cd/sup 2 +/ uptake and that predicted by the Langmuir and Freundlich isotherm equations indicated the adsorptive nature of Cd/sup 2 +/ uptake. While substantial quantities of Ca/sup 2 +/ and Mg/sup 2more » +/ were released by exchange mechanisms concurrent with Cd/sup 2 +/ uptake, there was no evidence for leakage of cations due to membrane impairment as indicated by a poor correlation between Cd/sup 2 +/ uptake and K/sup +/ efflux. Virtually all Cd/sup 2 +/ removed from solution was freely exchangeable with 0.5 millimolar CaCl/sub 2/ and demonstrated that Cd/sup 2 +/ did not readily enter pine pollen but was adsorbed on the pollen wall. Ultraviolet transmission spectra of treatment solutions and analyses of phosphate and reducing sugar efflux also indicated that the potent toxicity of Cd/sup 2 +/ to pollen germination and germ tube elongation was not the result of membrane damage.« less

  16. Triclosan is a mitochondrial uncoupler in live zebrafish.

    PubMed

    Shim, Juyoung; Weatherly, Lisa M; Luc, Richard H; Dorman, Maxwell T; Neilson, Andy; Ng, Ryan; Kim, Carol H; Millard, Paul J; Gosse, Julie A

    2016-12-01

    Triclosan (TCS) is a synthetic antimicrobial agent used in many consumer goods at millimolar concentrations. As a result of exposure, TCS has been detected widely in humans. We have recently discovered that TCS is a proton ionophore mitochondrial uncoupler in multiple types of living cells. Here, we present novel data indicating that TCS is also a mitochondrial uncoupler in a living organism: 24-hour post-fertilization (hpf) zebrafish embryos. These experiments were conducted using a Seahorse Bioscience XF e 96 Extracellular Flux Analyzer modified for bidirectional temperature control, using the XF96 spheroid plate to position and measure one zebrafish embryo per well. Using this method, after acute exposure to TCS, the basal oxygen consumption rate (OCR) increases, without a decrease in survival or heartbeat rate. TCS also decreases ATP-linked respiration and spare respiratory capacity and increases proton leak: all indicators of mitochondrial uncoupling. Our data indicate, that TCS is a mitochondrial uncoupler in vivo, which should be taken into consideration when assessing the toxicity and/or pharmaceutical uses of TCS. This is the first example of usage of a Seahorse Extracellular Flux Analyzer to measure bioenergetic flux of a single zebrafish embryo per well in a 96-well assay format. The method developed in this study provides a high-throughput tool to identify previously unknown mitochondrial uncouplers in a living organism. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. MRI and (31)P magnetic resonance spectroscopy hardware for axillary lymph node investigation at 7T.

    PubMed

    Rivera, Debra S; Wijnen, Jannie P; van der Kemp, Wybe J M; Raaijmakers, Alexander J; Luijten, Peter R; Klomp, Dennis W J

    2015-05-01

    Neoadjuvant treatment response in lymph nodes predicts patient outcome, but existing methods do not track response during therapy accurately. In this study, specialized hardware was used to adapt high-field (7T) (31) P magnetic resonance spectroscopy (MRS), which has been shown to track treatment response in small breast tumors, to monitor axillary lymph nodes. A dual-tuned quadrature coil that is a (31) P (120 MHz) transceiver and a (1) H (300 MHz) receiver was designed using a novel detune circuit. The transceiver/receiver coil in the axilla is used with a fractionated dipole antenna on the back of the subject and the conventional breast coil for transmit. The novel circuit detuned the (1) H resonance without disturbing the (31) P resonance. In vivo demonstrations included: >80% homogeneous B1 (+) for (1) H over the axilla, identification of a small (3-mm diameter) lymph node, and (31) P MR spectra from a single healthy lymph node. The setup can detect <2 millimolar concentrations of metabolites from a 2-mL voxel. The first (31) P MR spectrum from an in vivo lymph node indicates that the presented design may be sufficiently sensitive to detect metabolic response to neoadjuvant therapy. Multinuclei MRS of the lymph nodes at 7T is possible through combining lightweight antenna elements with dual-tuned transceiver/receive-only coils. © 2014 Wiley Periodicals, Inc.

  18. Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.

    1992-01-01

    Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.

  19. Metabolism of Mannose in Cultured Primary Rat Neurons.

    PubMed

    Rastedt, Wiebke; Blumrich, Eva-Maria; Dringen, Ralf

    2017-08-01

    Glucose is the main peripheral substrate for energy production in the brain. However, as other hexoses are present in blood and cerebrospinal fluid, we have investigated whether neurons have the potential to metabolize, in addition to glucose, also the hexoses mannose, fructose or galactose. Incubation of primary cerebellar granule neurons in the absence of glucose caused severe cell toxicity within 24 h, which could not be prevented by application of galactose or fructose, while the cells remained viable during incubation in the presence of either mannose or glucose. In addition, cultured neurons produced substantial and almost identical amounts of lactate after exposure to either glucose or mannose, while lactate production was low in the presence of fructose and hardly detectable during incubations without hexoses or with galactose as carbon source. Determination of the K M values of hexokinase in lysates of cultured neurons for the hexoses revealed values in the micromolar range for mannose (32 ± 2 µM) and glucose (59 ± 10 µM) and in the millimolar range for fructose (4.4 ± 2.3 mM), demonstrating that mannose is efficiently phosphorylated by neuronal hexokinase. Finally, cultured neurons contained reasonable specific activity of the enzyme phosphomannose isomerase, which is required for isomerization of the hexokinase product mannose-6-phosphate into the glycolysis intermediate fructose-6-phosphate. These data demonstrate that cultured cerebellar granule neurons have the potential and express the required enzymes to efficiently metabolize mannose, while galactose and fructose serve at best poorly as extracellular carbon sources for neurons.

  20. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum.

    PubMed Central

    Arispe, N; Rojas, E; Pollard, H B

    1993-01-01

    Amyloid beta protein (A beta P) is the 40- to 42-residue polypeptide implicated in the pathogenesis of Alzheimer disease. We have incorporated this peptide into phosphatidylserine liposomes and then fused the liposomes with a planar bilayer. When incorporated into bilayers the A beta P forms channels, which generate linear current-voltage relationships in symmetrical solutions. A permeability ratio, PK/PCl, of 11 for the open A beta P channel was estimated from the reversal potential of the channel current in asymmetrical KCl solutions. The permeability sequence for different cations, estimated from the reversal potential of the A beta P-channel current for each system of asymmetrical solutions, is Pcs > PLi > PCa > or = PK > PNa. A beta P-channel current (either CS+ or Ca2+ as charge carriers) is blocked reversibly by tromethamine (millimolar range) and irreversibly by Al3+ (micromolar range). The inhibition of the A beta P-channel current by these two substances depends on transmembrane potential, suggesting that the mechanism of blockade involves direct interaction between tromethamine (or Al3+) and sites within the A beta P channel. Hitherto, A beta P has been presumed to be neurotoxic. On the basis of the present data we suggest that the channel activity of the polypeptide may be responsible for some or all of its neurotoxic effects. We further propose that a useful strategy for drug discovery for treatment of Alzheimer disease may include screening compounds for their ability to block or otherwise modify A beta P channels. PMID:8380642

  1. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments.

    PubMed

    Janssen, Paul J; Van Houdt, Rob; Moors, Hugo; Monsieurs, Pieter; Morin, Nicolas; Michaux, Arlette; Benotmane, Mohammed A; Leys, Natalie; Vallaeys, Tatiana; Lapidus, Alla; Monchy, Sébastien; Médigue, Claudine; Taghavi, Safiyh; McCorkle, Sean; Dunn, John; van der Lelie, Daniël; Mergeay, Max

    2010-05-05

    Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals.

  2. The Complete Genome Sequence of Cupriavidus metallidurans Strain CH34, a Master Survivalist in Harsh and Anthropogenic Environments

    PubMed Central

    Janssen, Paul J.; Van Houdt, Rob; Moors, Hugo; Monsieurs, Pieter; Morin, Nicolas; Michaux, Arlette; Benotmane, Mohammed A.; Leys, Natalie; Vallaeys, Tatiana; Lapidus, Alla; Monchy, Sébastien; Médigue, Claudine; Taghavi, Safiyh; McCorkle, Sean; Dunn, John; van der Lelie, Daniël; Mergeay, Max

    2010-01-01

    Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals. PMID:20463976

  3. Selection of clc, cba, and fcb Chlorobenzoate-Catabolic Genotypes from Groundwater and Surface Waters Adjacent to the Hyde Park, Niagara Falls, Chemical Landfill

    PubMed Central

    Peel, Michelle C.; Wyndham, R. Campbell

    1999-01-01

    The frequency of isolation of three nonhomologous chlorobenzoate catabolic genotypes (clc, cba, and fcb) was determined for 464 isolates from freshwater sediments and groundwater in the vicinity of the Hyde Park industrial landfill site in the Niagara watershed. Samples were collected from both contaminated and noncontaminated sites during spring, summer, and fall and enriched at 4, 22, or 32°C with micromolar to millimolar concentrations of chlorobenzoates and 3-chlorobiphenyl (M. C. Peel and R. C. Wyndham, Microb. Ecol: 33:59–68, 1997). Hybridization at moderate stringency to restriction-digested genomic DNA with DNA probes revealed the chlorocatechol 1,2-dioxygenase operon (clcABD), the 3-chlorobenzoate 3,4-(4,5)-dioxygenase operon (cbaABC), and the 4-chlorobenzoate dehalogenase (fcbB) gene in isolates enriched from all contaminated sites in the vicinity of the industrial landfill. Nevertheless, the known genes were found in less than 10% of the isolates from the contaminated sites, indicating a high level of genetic diversity in the microbial community. The known genotypes were not enriched from the noncontaminated control sites nearby. The clc, cba, and fcb isolates were distributed across five phenotypically distinct groups based on Biolog carbon source utilization, with the breadth of the host range decreasing in the order clc > cba > fcb. Restriction fragment length polymorphism (RFLP) patterns showed that the cba genes were conserved in all isolates whereas the clc and fcb genes exhibited variation in RFLP patterns. These observations are consistent with the recent spread of the cba genes by horizontal transfer as part of transposon Tn5271 in response to contaminant exposure at Hyde Park. Consistent with this hypothesis, IS1071, the flanking element in Tn5271, was found in all isolates that carried the cba genes. Interestingly, IS1071 was also found in a high proportion of isolates from Hyde Park carrying the clc and fcb genes, as well as in type strains carrying the clcABD operon and the biphenyl (bph) catabolic genes. PMID:10103260

  4. TcPho91 is a contractile vacuole phosphate sodium symporter that regulates phosphate and polyphosphate metabolism in Trypanosoma cruzi.

    PubMed

    Jimenez, Veronica; Docampo, Roberto

    2015-09-01

    We have identified a phosphate transporter (TcPho91) localized to the bladder of the contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease. TcPho91 has 12 transmembrane domains, an N-terminal regulatory SPX (named after SYG1, Pho81 and XPR1) domain and an anion permease domain. Functional expression in Xenopus laevis oocytes followed by two-electrode voltage clamp showed that TcPho91 is a low-affinity transporter with a Km for Pi in the millimolar range, and sodium-dependency. Epimastigotes overexpressing TcPho91-green fluorescent protein have significantly higher levels of pyrophosphate (PPi ) and short-chain polyphosphate (polyP), suggesting accumulation of Pi in these cells. Moreover, when overexpressing parasites were maintained in a medium with low Pi , they grew at higher rates than control parasites. Only one allele of TcPho91 in the CL strain encodes for the complete open reading frame, while the other one is truncated encoding for only the N-terminal domain. Taking advantage of this characteristic, knockdown experiments were performed resulting in cells with reduced growth rate as well as a reduction in PPi and short-chain polyP levels. Our results indicate that TcPho91 is a phosphate sodium symporter involved in Pi homeostasis in T. cruzi. © 2015 John Wiley & Sons Ltd.

  5. Biophysical characterization and structural determination of the potent cytotoxic Psathyrella asperospora lectin.

    PubMed

    Ribeiro, João P; Ali Abol Hassan, Mohamed; Rouf, Razina; Tiralongo, Evelin; May, Tom W; Day, Christopher J; Imberty, Anne; Tiralongo, Joe; Varrot, Annabelle

    2017-05-01

    A lectin with strong cytotoxic effect on human colon cancer HT29 and monkey kidney VERO cells was recently identified from the Australian indigenous mushroom Psathyrella asperospora and named PAL. We herein present its biochemical and structural analysis using a multidisciplinary approach. Glycan arrays revealed binding preference towards N-acetylglucosamine (GlcNAc) and, to a lesser extent, towards sialic acid (Neu5Ac). Submicromolar and millimolar affinity was measured by surface plasmon resonance for GlcNAc and NeuAc, respectively. The structure of PAL was resolved by X-ray crystallography, elucidating both the protein's amino acid sequence as well as the molecular basis rationalizing its binding specificity. Proteins 2017; 85:969-975. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Phosphatidylethanolamine Synthesis by Castor Bean Endosperm 1

    PubMed Central

    Shin, Sungho; Moore, Thomas S.

    1990-01-01

    A base exchange reaction for synthesis of phosphatidylethanolamine by the endoplasmic reticulum of castor bean (Ricinus comminus L. var Hale) endosperm has been examined. The calculated Michaelis-Menten constant of the enzyme for ethanolamine was 5 micromolar and the optimal pH was 7.8 in the presence of 2 millimolar CaCl2. l-Serine, N-methylethanolamine and N,N-dimethylethanolamine all reduced ethanolamine incorporation, while d-serine and myo-inositol had little effect. These inhibitions of ethanolamine incorporation were found to be noncompetitive and ethanolamine also noncompetitively inhibited l-serine incorporation by exchange. The activity of the ethanolamine base exchange enzyme was affected by several detergents, with the best activity being obtained with the zwitterionic defjtergent 3-3-cholamidopropyl) dimethylammonio-2-hydroxyl-1-propanesulfonate. PMID:16667427

  7. Molecular Cloning and Functional Analysis of a Na+-Insensitive K+ Transporter of Capsicum chinense Jacq

    PubMed Central

    Ruiz-Lau, Nancy; Bojórquez-Quintal, Emanuel; Benito, Begoña; Echevarría-Machado, Ileana; Sánchez-Cach, Lucila A.; Medina-Lara, María de Fátima; Martínez-Estévez, Manuel

    2016-01-01

    High-affinity K+ (HAK) transporters are encoded by a large family of genes and are ubiquitous in the plant kingdom. These HAK-type transporters participate in low- and high-affinity potassium (K+) uptake and are crucial for the maintenance of K+ homeostasis under hostile conditions. In this study, the full-length cDNA of CcHAK1 gene was isolated from roots of the habanero pepper (Capsicum chinense). CcHAK1 expression was positively regulated by K+ starvation in roots and was not inhibited in the presence of NaCl. Phylogenetic analysis placed the CcHAK1 transporter in group I of the HAK K+ transporters, showing that it is closely related to Capsicum annuum CaHAK1 and Solanum lycopersicum LeHAK5. Characterization of the protein in a yeast mutant deficient in high-affinity K+ uptake (WΔ3) suggested that CcHAK1 function is associated with high-affinity K+ uptake, with Km and Vmax for Rb of 50 μM and 0.52 nmol mg−1 min−1, respectively. K+ uptake in yeast expressing the CcHAK1 transporter was inhibited by millimolar concentrations of the cations ammonium (NH4+) and cesium (Cs+) but not by sodium (Na+). The results presented in this study suggest that the CcHAK1 transporter may contribute to the maintenance of K+ homeostasis in root cells in C. chinense plants undergoing K+-deficiency and salt stress. PMID:28083010

  8. BID links ferroptosis to mitochondrial cell death pathways.

    PubMed

    Neitemeier, Sandra; Jelinek, Anja; Laino, Vincenzo; Hoffmann, Lena; Eisenbach, Ina; Eying, Roman; Ganjam, Goutham K; Dolga, Amalia M; Oppermann, Sina; Culmsee, Carsten

    2017-08-01

    Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the X c - system or inhibition of glutathione peroxidase 4 (Gpx4) to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation. In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by X c - inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Limit dextrinase from germinating barley has endotransglycosylase activity, which explains its activation by maltodextrins.

    PubMed

    McDougall, Gordon J; Ross, Heather A; Swanston, J Stuart; Davies, Howard V

    2004-02-01

    Limit dextrinase (EC 3.2.1.41) from germinating barley (Hordeum vulgare L) can be activated by millimolar concentrations of linear maltodextrins with a degree of polymerisation > or = 2. The activation was assay-dependent; it was detected using assays based on the solubilisation of cross-linked dyed pullulan but not in assays that directly measured cleavage events such as the formation of new reducing termini. This strongly suggested that maltodextrins did not increase the catalytic rate of limit dextrinase i.e. this is not a true activation. On the other hand, considerable activation was noted in assays that measured pullulan degradation by reduction in viscosity. Taken together, this suggested that maltodextrins altered the mode of action of limit dextrinase, causing more rapid decreases in viscosity or greater solubilisation of dye-linked pullulan fragments per cleavage event. The proposed mechanism of activation by alteration in action pattern was reminiscent of initial work in the discovery of xyloglucan endotransglycosylase. Therefore, the ability of limit dextrinase to catalyse transglycosylation reactions into pullulan was tested and confirmed by an assay based on the incorporation of a fluorescently labelled maltotriose derivative into higher-molecular-weight products. The transglycosylation reaction was dependent on limit dextrinase activity and was enhanced in more highly purified preparations of limit dextrinase. Transglycosylation was inhibited by unlabelled maltotriose. How transglycosylation accounts for the apparent activation of limit dextrinase by maltodextrins and the physiological relevance of this novel reaction are discussed.

  10. Entropic benefit of a cross-link in protein association.

    PubMed

    Zaman, Muhammad H; Berry, R Stephen; Sosnick, Tobin R

    2002-08-01

    We introduce a method to estimate the loss of configurational entropy upon insertion of a cross-link to a dimeric system. First, a clear distinction is established between the loss of entropy upon tethering and binding, two quantities that are often considered to be equivalent. By comparing the probability distribution of the center-to-center distances for untethered and cross-linked versions, we are able to calculate the loss of translational entropy upon cross-linking. The distribution function for the untethered helices is calculated from the probability that a given helix is closer to its partner than to all other helices, the "Nearest Neighbor" method. This method requires no assumptions about the nature of the solvent, and hence resolves difficulties normally associated with calculations for systems in liquids. Analysis of the restriction of angular freedom upon tethering indicates that the loss of rotational entropy is negligible. The method is applied in the context of the folding of a ten turn helical coiled coil with the tether modeled as a Gaussian chain or a flexible amino acid chain. After correcting for loop closure entropy in the docked state, we estimate the introduction of a six-residue tether in the coiled coil results in an effective concentration of the chain to be about 4 or 100 mM, depending upon whether the helices are denatured or pre-folded prior to their association. Thus, tethering results in significant stabilization for systems with millimolar or stronger dissociation constants. Copyright 2002 Wiley-Liss, Inc.

  11. Impact of taurine depletion on glucose control and insulin secretion in mice.

    PubMed

    Ito, Takashi; Yoshikawa, Natsumi; Ito, Hiromi; Schaffer, Stephen W

    2015-09-01

    Taurine, an endogenous sulfur-containing amino acid, is found in millimolar concentrations in mammalian tissue, and its tissue content is altered by diet, disease and aging. The effectiveness of taurine administration against obesity and its related diseases, including type 2 diabetes, has been well documented. However, the impact of taurine depletion on glucose metabolism and fat deposition has not been elucidated. In this study, we investigated the effect of taurine depletion (in the taurine transporter (TauT) knockout mouse model) on blood glucose control and high fat diet-induced obesity. TauT-knockout (TauTKO) mice exhibited lower body weight and abdominal fat mass when maintained on normal chow than wild-type (WT) mice. Blood glucose disposal after an intraperitoneal glucose injection was faster in TauTKO mice than in WT mice despite lower serum insulin levels. Islet beta-cells (insulin positive area) were also decreased in TauTKO mice compared to WT mice. Meanwhile, overnutrition by high fat (60% fat)-diet could lead to obesity in TauTKO mice despite lower body weight under normal chow diet condition, indicating nutrition in normal diet is not enough for TauTKO mice to maintain body weight comparable to WT mice. In conclusion, taurine depletion causes enhanced glucose disposal despite lowering insulin levels and lower body weight, implying deterioration in tissue energy metabolism. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  12. Comparison of solid-state and submerged-state fermentation for the bioprocessing of switchgrass to ethanol and acetate by Clostridium phytofermentans.

    PubMed

    Jain, Abhiney; Morlok, Charles K; Henson, J Michael

    2013-01-01

    The conversion of sustainable energy crops using microbiological fermentation to biofuels and bioproducts typically uses submerged-state processes. Alternatively, solid-state fermentation processes have several advantages when compared to the typical submerged-state processes. This study compares the use of solid-state versus submerged-state fermentation using the mesophilic anaerobic bacterium Clostridium phytofermentans in the conversion of switchgrass to the end products of ethanol, acetate, and hydrogen. A shift in the ratio of metabolic products towards more acetate and hydrogen production than ethanol production was observed when C. phytofermentans was grown under solid-state conditions as compared to submerged-state conditions. Results indicated that the end product concentrations (in millimolar) obtained using solid-state fermentation were higher than using submerged-state fermentation. In contrast, the total fermentation products (in weight of product per weight of carbohydrates consumed) and switchgrass conversion were higher for submerged-state fermentation. The conversion of xylan was greater than glucan conversion under both fermentation conditions. An initial pH of 7 and moisture content of 80 % resulted in maximum end products formation. Scanning electron microscopy study showed the presence of biofilm formed by C. phytofermentans growing on switchgrass under submerged-state fermentation whereas bacterial cells attached to surface and no apparent biofilm was observed when grown under solid-state fermentation. To our knowledge, this is the first study reporting consolidated bioprocessing of a lignocellulosic substrate by a mesophilic anaerobic bacterium under solid-state fermentation conditions.

  13. The N-Terminal Domain of the Flo1 Flocculation Protein from Saccharomyces cerevisiae Binds Specifically to Mannose Carbohydrates ▿

    PubMed Central

    Goossens, Katty V. Y.; Stassen, Catherine; Stals, Ingeborg; Donohue, Dagmara S.; Devreese, Bart; De Greve, Henri; Willaert, Ronnie G.

    2011-01-01

    Saccharomyces cerevisiae cells possess a remarkable capacity to adhere to other yeast cells, which is called flocculation. Flocculation is defined as the phenomenon wherein yeast cells adhere in clumps and sediment rapidly from the medium in which they are suspended. These cell-cell interactions are mediated by a class of specific cell wall proteins, called flocculins, that stick out of the cell walls of flocculent cells. The N-terminal part of the three-domain protein is responsible for carbohydrate binding. We studied the N-terminal domain of the Flo1 protein (N-Flo1p), which is the most important flocculin responsible for flocculation of yeast cells. It was shown that this domain is both O and N glycosylated and is structurally composed mainly of β-sheets. The binding of N-Flo1p to d-mannose, α-methyl-d-mannoside, various dimannoses, and mannan confirmed that the N-terminal domain of Flo1p is indeed responsible for the sugar-binding activity of the protein. Moreover, fluorescence spectroscopy data suggest that N-Flo1p contains two mannose carbohydrate binding sites with different affinities. The carbohydrate dissociation constants show that the affinity of N-Flo1p for mono- and dimannoses is in the millimolar range for the binding site with low affinity and in the micromolar range for the binding site with high affinity. The high-affinity binding site has a higher affinity for low-molecular-weight (low-MW) mannose carbohydrates and no affinity for mannan. However, mannan as well as low-MW mannose carbohydrates can bind to the low-affinity binding site. These results extend the cellular flocculation model on the molecular level. PMID:21076009

  14. Calcium-dependent disorder-to-order transitions are central to the secretion and folding of the CyaA toxin of Bordetella pertussis, the causative agent of whooping cough.

    PubMed

    O'Brien, Darragh P; Perez, Ana Cristina Sotomayor; Karst, Johanna; Cannella, Sara E; Enguéné, Véronique Yvette Ntsogo; Hessel, Audrey; Raoux-Barbot, Dorothée; Voegele, Alexis; Subrini, Orso; Davi, Marilyne; Guijarro, J Inaki; Raynal, Bertrand; Baron, Bruno; England, Patrick; Hernandez, Belen; Ghomi, Mahmoud; Hourdel, Véronique; Malosse, Christian; Chamot-Rooke, Julia; Vachette, Patrice; Durand, Dominique; Brier, Sébastien; Ladant, Daniel; Chenal, Alexandre

    2018-07-01

    The adenylate cyclase toxin (CyaA) plays an essential role in the early stages of respiratory tract colonization by Bordetella pertussis, the causative agent of whooping cough. Once secreted, CyaA invades eukaryotic cells, leading to cell death. The cell intoxication process involves a unique mechanism of translocation of the CyaA catalytic domain directly across the plasma membrane of the target cell. Herein, we review our recent results describing how calcium is involved in several steps of this intoxication process. In conditions mimicking the low calcium environment of the crowded bacterial cytosol, we show that the C-terminal, calcium-binding Repeat-in-ToXin (RTX) domain of CyaA, RD, is an extended, intrinsically disordered polypeptide chain with a significant level of local, secondary structure elements, appropriately sized for transport through the narrow channel of the secretion system. Upon secretion, the high calcium concentration in the extracellular milieu induces the refolding of RD, which likely acts as a scaffold to favor the refolding of the upstream domains of the full-length protein. Due to the presence of hydrophobic regions, CyaA is prone to aggregate into multimeric forms in vitro, in the absence of a chaotropic agent. We have recently defined the experimental conditions required for CyaA folding, comprising both calcium binding and molecular confinement. These parameters are critical for CyaA folding into a stable, monomeric and functional form. The monomeric, calcium-loaded (holo) toxin exhibits efficient liposome permeabilization and hemolytic activities in vitro, even in a fully calcium-free environment. By contrast, the toxin requires sub-millimolar calcium concentrations in solution to translocate its catalytic domain across the plasma membrane, indicating that free calcium in solution is actively involved in the CyaA toxin translocation process. Overall, this data demonstrates the remarkable adaptation of bacterial RTX toxins to the diversity of calcium concentrations it is exposed to in the successive environments encountered in the course of the intoxication process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effect of the rooster semen enrichment with oleic acid on the quality of semen during chilled storage.

    PubMed

    Eslami, M; Ghaniei, A; Mirzaei Rad, H

    2016-06-01

    Liquid storage of avian spermatozoa is currently being employed in programs utilizing the artificial insemination to optimize the management of genetically superior males. It is mandatory to use efficient semen storage techniques in order to prevent the reduction of the fertilizing ability of stored semen. The present study was designated to evaluate the effect of oleic acid on rooster semen quality stored at 4°C for 48 h. Semen was collected from 10 roosters twice a week. Good quality ejaculates were pooled and after dilution, the semen was enriched with 0 (control), 0.125 (O 0.125), 0.25 (O 0.25), 0.5 (O 0.5), and 1 (O1) millimolar oleate. Forward progressive motility and viability of spermatozoa were evaluated at 0, 24, and 48 h. Moreover, malondialdehyde (MDA) and total antioxidant activity (AOA) levels were measured in seminal plasma and spermatozoa at the mentioned time points. Motility was 80.33 ± 1.45, 80.00 ± 2.08, and 66.00 ± 2.30% at 24 h and 56.33 ± 1.45, 57.33 ± 2.18, and 41.33 ± 2.02% at 48 h in O 0.125, O 0.25, and control, respectively (P < 0.001). Total AOA concentrations of seminal plasma were significantly higher in oleate treated groups than the control at 24 and 48 h (P < 0.03). Moreover, concentrations of AOA in spermatozoa revealed that oleate treated group showed higher AOA values compared to the control group at 24 and 48 h (P < 0.001). MDA concentrations of seminal plasma and spermatozoa were lower in oleate treated groups in comparison with control group at 24 and 48 h (P < 0.05). In conclusion, rooster semen enrichment with low doses of oleate would exert beneficial effects on the quality of semen during cooled storage. © 2016 Poultry Science Association Inc.

  16. Specificity of the high-mannose recognition site between Enterobacter cloacae pili adhesin and HT-29 cell membranes.

    PubMed Central

    Pan, Y T; Xu, B; Rice, K; Smith, S; Jackson, R; Elbein, A D

    1997-01-01

    Enterobacter cloacae has been implicated as one of the causative agents in neonatal infection and causes a septicemia thought to be initiated via the gastrointestinal tract. The adhesion of radiolabeled E. cloacae to HT-29 cells was concentration and temperature dependent and was effectively blocked by unlabeled bacteria or by millimolar concentrations of alpha-mannosides and micromolar concentrations of high-mannose oligosaccharides. A variety of well-characterized mannose oligosaccharides were tested as inhibitors of adhesion. The best inhibitor was the Man9(GlcNAc)2-tyrosinamide, which was considerably better than other tyrosinamide-linked oligosaccharides such as Man7(GlcNAc)2, Man6(GlcNAc)2 or Man5(GlcNAc)2. Further evidence that the bacteria preferred Man9(GlcNAc)2 structures was obtained by growing HT-29 cells in the presence of glycoprotein processing inhibitors that block mannosidase I and increase the amount of protein-bound Man9(GlcNAc)2 at the cell surface. Such cells bound 1.5- to 2-fold more bacteria than did control cells. The adhesin involved in binding to high-mannose structures was purified from isolated pili. On sodium dodecyl sulfate-gels, a 35-kDa protein was identified by its specific binding to a mannose-containing biotinylated albumin. The amino acid sequences of several peptides from the 35-kDa subunit showed over 85% identity to FimH, the mannose-specific adhesin of Salmonella typhimurium. Pili were labeled with 125I and examined for the ability to bind to HT-29 cells. Binding showed saturation kinetics and was inhibited by the addition of Man9(GlcNAc)2-tyrosinamide but not by oligosaccharides with fewer mannose residues. Polyclonal antibody against this 35-kDa protein also effectively blocked adhesion of pili or E. cloacae, but no effect was observed with nonspecific antibody. These studies demonstrate that the 35-kDa pilus subunit is a lectin whose specificity is directed toward Man, (GlcNAc)2 oligosaccharides. PMID:9317027

  17. Protonation Dynamics on Lipid Nanodiscs: Influence of the Membrane Surface Area and External Buffers.

    PubMed

    Xu, Lei; Öjemyr, Linda Näsvik; Bergstrand, Jan; Brzezinski, Peter; Widengren, Jerker

    2016-05-10

    Lipid membrane surfaces can act as proton-collecting antennae, accelerating proton uptake by membrane-bound proton transporters. We investigated this phenomenon in lipid nanodiscs (NDs) at equilibrium on a local scale, analyzing fluorescence fluctuations of individual pH-sensitive fluorophores at the membrane surface by fluorescence correlation spectroscopy (FCS). The protonation rate of the fluorophores was ∼100-fold higher when located at 9- and 12-nm diameter NDs, compared to when in solution, indicating that the proton-collecting antenna effect is maximal already for a membrane area of ∼60 nm(2). Fluorophore-labeled cytochrome c oxidase displayed a similar increase when reconstituted in 12 nm NDs, but not in 9 nm NDs, i.e., an acceleration of the protonation rate at the surface of cytochrome c oxidase is found when the lipid area surrounding the protein is larger than 80 nm(2), but not when below 30 nm(2). We also investigated the effect of external buffers on the fluorophore proton exchange rates at the ND membrane-water interfaces. With increasing buffer concentrations, the proton exchange rates were found to first decrease and then, at millimolar buffer concentrations, to increase. Monte Carlo simulations, based on a simple kinetic model of the proton exchange at the membrane-water interface, and using rate parameter values determined in our FCS experiments, could reconstruct both the observed membrane-size and the external buffer dependence. The FCS data in combination with the simulations indicate that the local proton diffusion coefficient along a membrane is ∼100 times slower than that observed over submillimeter distances by proton-pulse experiments (Ds ∼ 10(-5)cm(2)/s), and support recent theoretical studies showing that proton diffusion along membrane surfaces is time- and length-scale dependent. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. TLR agonists stimulate Nlrp3-dependent IL-1β production independently of the purinergic P2X7 receptor in dendritic cells and in vivo.

    PubMed

    He, Yuan; Franchi, Luigi; Núñez, Gabriel

    2013-01-01

    On the basis of studies in mouse macrophages, activation of the nucleotide-binding oligomerization domain-like receptor (NLR) pyrin domain-containing 3 (Nlrp3) inflammasome is thought to require two signals. The first signal is provided by TLR stimulation and triggers the synthesis of the IL-1β precursor and Nlrp3. The second signal can be mediated by stimulation of the purinergic receptor P2X ligand-gated ion channel 7 (P2X7) by millimolar concentrations of ATP. However, these high concentrations of ATP are not found normally in the in vivo extracellular milieu, raising concern about the physiological relevance of the ATP-P2X7 pathway of inflammasome activation. In this article, we show that unlike macrophages, murine bone marrow-derived and splenic dendritic cells (DCs) can secrete substantial amounts of mature IL-1β upon stimulation with TLR ligands in the absence of ATP stimulation. The differential ability of DCs to release IL-1β and activate caspase-1 was associated with increased expression of Nlrp3 under steady-state conditions and of pro-IL-1β and Nlrp3 after stimulation with TLR agonists. IL-1β secretion from stimulated DCs was largely dependent on the Nlrp3 inflammasome, but independent of P2X7 and unaffected by incubation with apyrase. More importantly, i.p. administration of LPS induced IL-1β production in serum, which was abrogated in Nlrp3-null mice but was unaffected in P2X7-deficient mice. These results demonstrate differential regulation of the Nlrp3 inflammasome in macrophages and DCs. Furthermore, they challenge the idea that the ATP-P2X7 axis is critical for TLR-induced IL-1β production via the Nlrp3 inflammasome in vivo.

  19. Functional characterization of a ClC transporter by solid-supported membrane electrophysiology

    PubMed Central

    Garcia-Celma, Juan; Szydelko, Adrian

    2013-01-01

    EcClC, a prokaryotic member of the ClC family of chloride channels and transporters, works as coupled H+/Cl− exchanger. With a known structure and the possibility of investigating its behavior with different biochemical and biophysical techniques, the protein has become an important model system for the family. Although many aspects of its function have been previously characterized, it was difficult to measure transport on the same sample under different environmental conditions. To overcome this experimental limitation, we have studied EcClC by solid-supported membrane electrophysiology. The large transport-related transient currents and a simple way of relating transport rates to the measured signal have allowed a thorough investigation of ion selectivity, inhibition, and the dependence of transport on changes in ion concentration and pH. Our results confirm that the protein transports larger anions with about similar rates, whereas the smaller fluoride is not a substrate. We also show that 4,4′-diisothiocyano-2,2’-stilbenedisulfonic acid (DIDS), a known inhibitor of other anion transport protein, irreversibly inhibits EcClC from the intracellular side. The chloride dependence shows an apparent saturation at millimolar concentrations that resembles a similar behavior in eukaryotic ClC channels. Our experiments have also allowed us to quantify the pH dependence of transport. EcClC shows a strong activation at low pH with an apparent pKa of 4.6. The pronounced pH dependence is lost by the mutation of a conserved glutamate facing the extracellular solution that was previously shown to be an acceptor for transported protons, whereas it is largely retained by the mutation of an equivalent residue at the intracellular side. Our results have provided a quantitative basis for the transport behavior of EcClC, and they will serve as a reference for future investigations of novel electrogenic transporters with still-uncharacterized properties. PMID:23478993

  20. Detection of Chemicals Inhibiting Photorespiratory Senescence in a Large Scale Survival Chamber

    PubMed Central

    Manning, David T.; Campbell, Andrew J.; Chen, Tsong Meng; Tolbert, N. E.; Smith, E. Wayne

    1984-01-01

    A large scale survival chamber was developed as a screen for detecting chemical treatments that extend the survival time of illuminated soybean seedlings at CO2 concentrations below the compensation point. In theory, extended survival should indicate potential for improved crop performance via decreased photorespiration and increased photosynthetic efficiency. An automated control system regulated CO2 concentrations, temperature and plant watering during a continuous CO2-removal photoperiod of 72 hours. An endogenously controlled circadian rhythm of net photosynthesis occurred throughout the continuous light treatment. Spray applications of 3.49 millimolar 2-(4-chlorophenoxy)-2-methylpropanoic acid (CPMP) significantly decreased leaf chlorophyll loss, compared with the control, after 72 hours of subcompensation-point stress. Treatment with CPMP also consistently increased leaf chlorophyll per unit area under nonstress greenhouse conditions. These effects may be due to increases in specific leaf weight produced by CPMP although the compound did not consistently act as a height retardant. The compound, 3-butyl-2-hydroxy-4H-pyrido[1,2-a]pyrimidin-4-one (BHPP), inhibited senescence under low CO2 conditions but did not decrease leaf light transmission at ambient CO2 levels. The cytokinin N6-benzyladenine (BA) retarded low CO2 stress senescence although greening effects were not observed. Neither 2-hydroxy-3-butynoic acid (HBA) nor its butyl ester, inhibitors of glycolate oxidase, influenced low CO2 survival. Cyclohexanecarboxylic acid (CHCA) and sodium naphthenate had no effect upon subcompensation-point senescence. Antisenescence effects of CPMP, BHPP, and BA do not appear to be directly attributable to effects upon the competing carbon paths of photosynthesis and photorespiration. Protection against low CO2 stress and increased chlorophyll synthesis under nonstress conditions may represent separate effects upon plastids by some of the compounds. This screen will identify compounds which inhibit photorespiratory senescence without decreasing the CO2 compensation point. Images Fig. 1 PMID:16663949

  1. Role of Vitamin C in the Function of the Vascular Endothelium

    PubMed Central

    Harrison, Fiona E.

    2013-01-01

    Abstract Significance: Vitamin C, or ascorbic acid, has long been known to participate in several important functions in the vascular bed in support of endothelial cells. These functions include increasing the synthesis and deposition of type IV collagen in the basement membrane, stimulating endothelial proliferation, inhibiting apoptosis, scavenging radical species, and sparing endothelial cell-derived nitric oxide to help modulate blood flow. Although ascorbate may not be able to reverse inflammatory vascular diseases such as atherosclerosis, it may well play a role in preventing the endothelial dysfunction that is the earliest sign of many such diseases. Recent Advances: Beyond simply preventing scurvy, evidence is mounting that ascorbate is required for optimal function of many dioxygenase enzymes in addition to those involved in collagen synthesis. Several of these enzymes regulate the transcription of proteins involved in endothelial function, proliferation, and survival, including hypoxia-inducible factor-1α and histone and DNA demethylases. More recently, ascorbate has been found to acutely tighten the endothelial permeability barrier and, thus, may modulate access of ascorbate and other molecules into tissues and organs. Critical Issues: The issue of the optimal cellular content of ascorbate remains unresolved, but it appears that low millimolar ascorbate concentrations are normal in most animal tissues, in human leukocytes, and probably in the endothelium. Although there may be little benefit of increasing near maximal cellular ascorbate concentrations in normal people, many diseases and conditions have either systemic or localized cellular ascorbate deficiency as a cause for endothelial dysfunction, including early atherosclerosis, sepsis, smoking, and diabetes. Future Directions: A key focus for future studies of ascorbate and the vascular endothelium will likely be to determine the mechanisms and clinical relevance of ascorbate effects on endothelial function, permeability, and survival in diseases that cause endothelial dysfunction. Antioxid. Redox Signal. 19, 2068–2083. PMID:23581713

  2. Quantitation of the calcium and membrane binding properties of the C2 domains of dysferlin.

    PubMed

    Abdullah, Nazish; Padmanarayana, Murugesh; Marty, Naomi J; Johnson, Colin P

    2014-01-21

    Dysferlin is a large membrane protein involved in calcium-triggered resealing of the sarcolemma after injury. Although it is generally accepted that dysferlin is Ca(2+) sensitive, the Ca(2+) binding properties of dysferlin have not been characterized. In this study, we report an analysis of the Ca(2+) and membrane binding properties of all seven C2 domains of dysferlin as well as a multi-C2 domain construct. Isothermal titration calorimetry measurements indicate that all seven dysferlin C2 domains interact with Ca(2+) with a wide range of binding affinities. The C2A and C2C domains were determined to be the most sensitive, with Kd values in the tens of micromolar, whereas the C2D domain was least sensitive, with a near millimolar Kd value. Mutagenesis of C2A demonstrates the requirement for negatively charged residues in the loop regions for divalent ion binding. Furthermore, dysferlin displayed significantly lower binding affinity for the divalent cations magnesium and strontium. Measurement of a multidomain construct indicates that the solution binding affinity does not change when C2 domains are linked. Finally, sedimentation assays suggest all seven C2 domains bind lipid membranes, and that Ca(2+) enhances but is not required for interaction. This report reveals for the first time, to our knowledge, that all dysferlin domains bind Ca(2+) albeit with varying affinity and stoichiometry. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Synthesis of β-arabinofuranoside glycolipids, studies of their binding to surfactant protein-A and effect on sliding motilities of M. smegmatis.

    PubMed

    Naresh, Kottari; Avaji, Prakash Gouda; Maiti, Krishnagopal; Bharati, Binod K; Syal, Kirtimaan; Chatterji, Dipankar; Jayaraman, Narayanaswamy

    2012-04-01

    Surfactant protein A (SP-A), which is a lung innate immune system component, is known to bind glycolipids present at the cell surface of a mycobacterial pathogen. Lipoarabinomannan (LAM), a component of mycobacterial thick, waxy cell wall, is one of the glycolipid ligands for SP-A. In order to assess binding of synthetic glycolipids with SP-A and the glycosidic linkage preferences for the interaction, β-arabinofuranoside trisaccharide glycolipids constituted with β-(1→2), β-(1→3) and β-(1→2), β-(1→5) linkages relevant to LAM were synthesized through chemical glycosylations. The efficacies of synthetic glycolipids to interact with SP-A were assessed by using the surface plasmon resonance (SPR) technique, from which association-dissociation rate constants and equilibrium binding constants were derived. The equilibrium binding constants of the interaction of two constitutionally varying β-arabinofuranoside glycolipids with SP-A were found to be in the millimolar range. A comparison of the results with few α-anomeric arabinofuranoside glycolipids showed that glycolipids with β-anomeric linkages were having relatively lower equilibrium binding constants than those with α-anomeric linkages in binding to the protein, whereas oligosaccharides alone, without lipidic chains, exhibited higher equilibrium binding constants. Further, the synthetic compounds inhibited the growth of mycobacteria and affected sliding motilities of the bacteria, although to an extent relatively lesser than that of synthetic compounds constituted with α-anomeric linkages.

  4. Fullerenol Cytotoxicity in Kidney Cells is Associated with Cytoskeleton Disruption, Autophagic Vacuole Accumulation, and Mitochondrial Dysfunction

    PubMed Central

    Johnson-Lyles, Denise N.; Peifley, Kimberly; Lockett, Stephen; Neun, Barry W.; Hansen, Matthew; Clogston, Jeffrey; Stern, Stephan T.; McNeil, Scott E.

    2010-01-01

    Water soluble fullerenes, such as the hydroxylated fullerene, fullerenol (C60OHx), are currently under development for diagnostic and therapeutic biomedical applications in the field of nanotechnology. These molecules have been shown to undergo urinary clearance, yet there is limited data available on their renal biocompatibility. Here we examine the biological responses of renal proximal tubule cells (LLC-PK1) exposed to fullerenol. Fullerenol was found to be cytotoxic in the millimolar range, with viability assessed by the sulforhodamine B and trypan blue assays. Fullerenol-induced cell death was associated with cytoskeleton disruption and autophagic vacuole accumulation. Interaction with the autophagy pathway was evaluated in vitro by Lysotracker Red dye uptake, LC3-II marker expression and TEM. Fullerenol treatment also resulted in coincident loss of cellular mitochondrial membrane potential and ATP depletion, as measured by the Mitotracker Red dye and the luciferin-luciferase assays, respectively. Fullerenol-induced ATP depletion and loss of mitochondrial potential were partially ameliorated by co-treatment with the autophagy inhibitor, 3-methyladenine. In vitro fullerenol treatment did not result in appreciable oxidative stress, as measured by lipid peroxide and glutathione content. Based on these data, it is hypothesized that cytoskeleton disruption may be an initiating event in fullerenol cytotoxicity, leading to subsequent autophagy dysfunction and loss of mitochondrial capacity. As nanoparticle-induced cytoskeleton disruption, autophagic vacuole accumulation and mitochondrial dysfunction are commonly reported in the literature, the proposed mechanism may be relevant for a variety of nanomaterials. PMID:20713077

  5. Pyrroline-5-Carboxylate Reductase in Chlorella autotrophica and Chlorella saccharophila in Relation to Osmoregulation 1

    PubMed Central

    Laliberté, Gilles; Hellebust, Johan A.

    1989-01-01

    Pyrroline-5-carboxylate (P5C) reductase (EC 1.5.1.2), which catalyzes the reduction of P5C to proline, was partially purified from two Chlorella species; Chlorella autotrophica, a euryhaline marine alga that responds to increases in salinity by accumulating proline and ions, and Chlorella saccharophila, which does not accumulate proline for osmoregulation. From the elution profile of this enzyme from an anion exchange column in Tris-HCl buffer (pH 7.6), containing sorbitol and glycine betaine, it was shown that P5C reductase from C. autotrophica was a neutral protein whereas the enzyme from C. saccharophila was negatively charged. The kinetic mechanisms of the reductase was characteristic of a ping-pong mechanism with double competitive substrate inhibition. Both enzymes showed high specificity for NADH as cofactor. The affinities of the reductases for their substrates did not change when the cells were grown at different salinities. In both algae, the apparent Km values of the reductase for P5C and NADH were 0.17 and 0.10 millimolar, respectively. A fourfold increase in maximal velocity of the reductase was observed when C. autotrophica was transferred from 50 to 150% artificial sea water. Even though the reductase was inhibited by NaCl, KCl, and proline, it still showed appreciable activity in the presence of these compounds at molar concentrations. A possible role for the regulation of proline synthesis at the step catalyzed by P5C reductase is discussed in relation to the specificity of P5C reductase for NADH and its responses to salt treatments. PMID:16667157

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, B.; Cousot, D.; Trzeciak, A.

    The platelet glycoprotein IIb-IIIa complex (GP IIb-IIIa) is a member of the integrin receptor family that recognizes adhesive proteins containing the Arg-Gly-Asp (RGD) sequence. In the present study the binding characteristics of the synthetic hexapeptide Tyr-Asn-Arg-Gly-Asp-Ser (YNRGDS, a sequence present in the fibrinogen alpha-chain at position 570-575) to purified GP IIb-IIIa were determined by equilibrium dialysis. The binding of 125I-YNRGDS to GP IIb-IIIa was specific, saturable, and reversible. The apparent dissociation constant was 1.0 +/- 0.2 microM, and the maximal binding capacity was 0.92 +/- 0.02 mol of 125I-YNRGDS/mol of GP IIb-IIIa, indicating that GP IIb-IIIa contains a single bindingmore » site for RGD peptides. The binding of 125I-YNRGDS to purified GP IIb-IIIa showed many of the characteristics of fibrinogen binding to activated platelets: the binding was inhibited by fibrinogen, by the monoclonal antibody A2A9, and by the dodecapeptide from the C terminus of the fibrinogen gamma-chain. In addition, the binding of 125I-YNRGDS to GP IIb-IIIa was divalent cation-dependent. Our data suggest that two divalent cation binding sites must be occupied for YNRGDS to bind: one site is specific for calcium and is saturated at 1 microM free Ca2+, whereas the other site is less specific and reaches saturation at millimolar concentrations of either Ca2+ or Mg2+. The results of the present study support the hypothesis that the RGD domains within the adhesive proteins are responsible for their binding to GP IIb-IIIa.« less

  7. Virtual Screening of Peptide and Peptidomimetic Fragments Targeted to Inhibit Bacterial Dithiol Oxidase DsbA.

    PubMed

    Duprez, Wilko; Bachu, Prabhakar; Stoermer, Martin J; Tay, Stephanie; McMahon, Róisín M; Fairlie, David P; Martin, Jennifer L

    2015-01-01

    Antibacterial drugs with novel scaffolds and new mechanisms of action are desperately needed to address the growing problem of antibiotic resistance. The periplasmic oxidative folding system in Gram-negative bacteria represents a possible target for anti-virulence antibacterials. By targeting virulence rather than viability, development of resistance and side effects (through killing host native microbiota) might be minimized. Here, we undertook the design of peptidomimetic inhibitors targeting the interaction between the two key enzymes of oxidative folding, DsbA and DsbB, with the ultimate goal of preventing virulence factor assembly. Structures of DsbB--or peptides--complexed with DsbA revealed key interactions with the DsbA active site cysteine, and with a hydrophobic groove adjacent to the active site. The present work aimed to discover peptidomimetics that target the hydrophobic groove to generate non-covalent DsbA inhibitors. The previously reported structure of a Proteus mirabilis DsbA active site cysteine mutant, in a non-covalent complex with the heptapeptide PWATCDS, was used as an in silico template for virtual screening of a peptidomimetic fragment library. The highest scoring fragment compound and nine derivatives were synthesized and evaluated for DsbA binding and inhibition. These experiments discovered peptidomimetic fragments with inhibitory activity at millimolar concentrations. Although only weakly potent relative to larger covalent peptide inhibitors that interact through the active site cysteine, these fragments offer new opportunities as templates to build non-covalent inhibitors. The results suggest that non-covalent peptidomimetics may need to interact with sites beyond the hydrophobic groove in order to produce potent DsbA inhibitors.

  8. Defense through sensory inactivation: sea hare ink reduces sensory and motor responses of spiny lobsters to food odors.

    PubMed

    Love-Chezem, Tiffany; Aggio, Juan F; Derby, Charles D

    2013-04-15

    Antipredator defenses are ubiquitous and diverse. Ink secretion of sea hares (Aplysia) is an antipredator defense acting through the chemical senses of predators by different mechanisms. The most common mechanism is ink acting as an unpalatable repellent. Less common is ink secretion acting as a decoy (phagomimic) that misdirects predators' attacks. In this study, we tested another possible mechanism--sensory inactivation--in which ink inactivates the predator's reception of food odors associated with would-be prey. We tested this hypothesis using spiny lobsters, Panulirus argus, as model predators. Ink secretion is composed of two glandular products, one being opaline, a viscous substance containing concentrations of hundreds of millimolar of total free amino acids. Opaline sticks to antennules, mouthparts and other chemosensory appendages of lobsters, physically blocking access of food odors to the predator's chemosensors, or over-stimulating (short term) and adapting (long term) the chemosensors. We tested the sensory inactivation hypotheses by treating the antennules with opaline and mimics of its physical and/or chemical properties. We compared the effects of these treatments on responses to a food odor for chemoreceptor neurons in isolated antennules, as a measure of effect on chemosensory input, and for antennular motor responses of intact lobsters, as a measure of effect on chemically driven motor behavior. Our results indicate that opaline reduces the output of chemosensors by physically blocking reception of and response to food odors, and this has an impact on motor responses of lobsters. This is the first experimental demonstration of inactivation of peripheral sensors as an antipredatory defense.

  9. Mechanism of inhibition of net ion transport across frog corneal epithelium by calcium channel antagonists.

    PubMed

    Huff, J W; Reinach, P S

    1985-01-01

    In the isolated bullfrog cornea, three calcium channel antagonists had dose-dependent inhibitory effects on the Cl-originated short-circuit current (SCC). Their order of decreasing potency was bepridil, verapamil and diltiazem. One millimolar diltiazem inhibited the SCC by 98% and subsequent incubation with the calcium ionophore A23187 had no restorative effect. Increasing the bathing solution Ca concentration from 0.05 to 15 mM, however, decreased diltiazem's inhibitory efficacy. This antagonist depolarized the intracellular potential difference Vsc from -54 to -18 mV (tear:reference) and the voltage divider ratio FRo decreased from 0.58 to 0.30, suggesting an increase in basolateral membrane electrical resistance. Additional indication of a basolateral membrane effect by the drug was that preincubation with 10(-5) M amphotericin B in Cl-free Ringer's did not eliminate the inhibitory effect of the drug on the Na- and K-elicited SCC. In the absence of amphotericin B in Cl-free Ringer's (SCC = 0), 1 X 10(-3) M diltiazem depolarized the Vsc from -78 to -9 mV suggesting that the increase in basolateral membrane resistance was due to K channel blockade. Diltiazem (1 X 10(-3) M) significantly decreased cyclic AMP content; however, isoproterenol in the presence of the drug increased cyclic AMP fourfold without having any restorative effect on the inhibited SCC. Therefore, the inhibition of the Cl-originated SCC resulting from an increase in basolateral membrane K resistance is not caused by a decline in cyclic AMP content.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Characterization of the Raf kinase inhibitory protein (RKIP) binding pocket: NMR-based screening identifies small-molecule ligands.

    PubMed

    Shemon, Anne N; Heil, Gary L; Granovsky, Alexey E; Clark, Mathew M; McElheny, Dan; Chimon, Alexander; Rosner, Marsha R; Koide, Shohei

    2010-05-05

    Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  11. Nitrate-Dependent O2 Evolution in Intact Leaves 1

    PubMed Central

    de la Torre, Angel; Delgado, Begoña; Lara, Catalina

    1991-01-01

    Evolution of O2 by illuminated intact detached leaves from barley (Hordeum vulgare L. cv Athos) and pea (Pisum sativum L. cv Lincoln) in a CO2-saturating atmosphere was enhanced when KNO3 (1-2.5 millimolar) had been previously supplied through the transpiration stream. The extra O2 evolution observed after feeding KNO3 increased with the light intensity, being maximal at near saturating photon flux densities and resulting in no changes in the initial slope of the O2 versus light-intensity curve. No stimulation of O2 evolution was otherwise observed after feeding KCl or NH4Cl. The data indicate that nitrate assimilation uses photosynthetically generated reductant and stimulates the rate of non-cyclic electron flow by acting as a second electron-accepting assimilatory process in addition to CO2 fixation. PMID:16668272

  12. Comparison between micro- and nanosized copper oxide and water soluble copper chloride: interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells.

    PubMed

    Strauch, Bettina Maria; Niemand, Rebecca Katharina; Winkelbeiner, Nicola Lisa; Hartwig, Andrea

    2017-08-01

    Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl 2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl 2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl 2 . Moreover, CuCl 2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl 2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent copper accumulation in the cytoplasm and the nucleus. Modulation of gene expression by CuO NP appeared to be primarily oxidative stress-related and was more pronounced in redox-sensitive BEAS-2B cells. Regarding CuCl 2 , relevant modulations of gene expression were restricted to cytotoxic concentrations provoking impaired copper homoeostasis.

  13. Characteristics of injury and recovery of net NO3- transport of barley seedlings from treatments of NaCl

    NASA Technical Reports Server (NTRS)

    Klobus, G.; Ward, M. R.; Huffaker, R. C.

    1988-01-01

    The nature of the injury and recovery of nitrate uptake (net uptake) from NaCl stress in young barley (Hordeum vulgare L, var CM 72) seedlings was investigated. Nitrate uptake was inhibited rapidly by NaCl, within 1 minute after exposure to 200 millimolar NaCl. The duration of exposure to saline conditions determined the time of recovery of NO3- uptake from NaCl stress. Recovery was dependent on the presence of NO3- and was inhibited by cycloheximide, 6-methylpurine, and cerulenin, respective inhibitors of protein, RNA, and sterol/fatty acid synthesis. These inhibitors also prevented the induction of the NO3- uptake system in uninduced seedlings. Uninduced seedlings exhibited endogenous NO3- transport activity that appeared to be constitutive. This constitutive activity was also inhibited by NaCl. Recovery of constitutive NO3- uptake did not require the presence of NO3-.

  14. Oxidative removal of Mn(II) from solution catalysed by the γ-FeOOH (lepidocrocite) surface

    NASA Astrophysics Data System (ADS)

    Sung, Windsor; Morgan, James J.

    1981-12-01

    A laboratory study was undertaken to ascertain the role of surface catalysis in Mn(II) oxidative removal. γ-FeOOH, a ferric oxyhydroxide formed by O2 oxidation of ferrous iron in solution, was studied in the following ways: surface charge characteristics by acid base titration, adsorption of Mn(II) and surface oxidation of Mn(II). A rate law was formulated to account for the effects of pH and the amount of surface on the surface oxidation rate of Mn(II). The presence of milli-molar levels of γ-FeOOH was shown to reduce significantly the half-life of Mn(II) in 0.7 M NaCl from hundreds of hours to hours. The numerical values of the surface rate constants for the γ-FeOOH and that reported for colloidal MnO2 are comparable in order of magnitude.

  15. Optical enhanced luminescent measurements and sequential reagent mixing on a centrifugal microfluidic device for multi-analyte point-of-care applications

    NASA Astrophysics Data System (ADS)

    Bartholomeusz, Daniel A.; Davies, Rupert H.; Andrade, Joseph D.

    2006-02-01

    A centrifugal-based microfluidic device1 was built with lyophilized bioluminescent reagents for measuring multiple metabolites from a sample of less than 15 μL. Microfluidic channels, reaction wells, and valves were cut in adhesive vinyl film using a knife plotter with features down to 30 μm and transferred to metalized polycarbonate compact disks (CDs). The fabrication method was simple enough to test over 100 prototypes within a few months. It also allowed enzymes to be packaged in microchannels without exposure to heat or chemicals. The valves were rendered hydrophobic using liquid phase deposition. Microchannels were patterned using soft lithography to make them hydrophilic. Reagents and calibration standards were deposited and lyophilized in different wells before being covered with another adhesive film. Sample delivery was controlled by a modified CD ROM. The CD was capable of distributing 200 nL sample aliquots to 36 channels, each with a different set of reagents that mixed with the sample before initiating the luminescent reactions. Reflection of light from the metalized layer and lens configuration allowed for 20% of the available light to be collected from each channel. ATP was detected down to 0.1 μM. Creatinine, glucose, and galactose were also measured in micro and milliMolar ranges. Other optical-based analytical assays can easily be incorporated into the device design. The minimal sample size needed and expandability of the device make it easier to simultaneously measure a variety of clinically relevant analytes in point-of-care settings.

  16. Oxygen Transport and Root Respiration of Maize Seedlings

    PubMed Central

    Saglio, Pierre H.; Raymond, Philippe; Pradet, Alain

    1983-01-01

    Oxygen uptake and ATP/ADP ratio were simultaneously monitored during incubation of excised maize (Zea mays L. INRA 508) root tips under varying O2 partial pressure. Both variables were independent of O2 tension until a critical O2 pressure was reached. Below this pressure, ATP/ADP ratio and respiratory rate declined. However, in tissues having a high glycolytic capacity, the correlation between the ATP/ADP ratio and the respiratory rate breaks down as O2 tension decreases, due to the increasing contribution of fermentative processes. In presence of 2 millimolar NaF, the ATP/ADP ratio varied solely as a function of the O2 tension, without interference by fermentative activity, and a close correlation links the ATP/ADP ratio and the respiratory rate of excised maize root tips over the whole range of O2 tensions tested. Using this correlation, a method is proposed for the quantitative determination of the relative cellular respiratory rate permitted by O2 transport from the aerial part of young maize seedlings along the seminal root placed in an anoxic environment. Data are presented which demonstrate the preeminent part played by the cortical air spaces in O2 transport. Their contribution to respiration was high in the first few centimeters nearest the seed and decreased rapidly as the distance from the aerated source increased. It is concluded that O2 transport might contribute to the survival or to adaptive responses of root tissues in flooded soils but that the ventilation of the apical growing zone was inadequate to sustain the growth. PMID:16663116

  17. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications

    PubMed Central

    Xie, Zhengzhi; Baba, Shahid P.; Sweeney, Brooke R.; Barski, Oleg A.

    2015-01-01

    Aldehydes are generated by oxidized lipids and carbohydrates at increased levels under conditions of metabolic imbalance and oxidative stress during atherosclerosis, myocardial and cerebral ischemia, diabetes, neurodegenerative diseases and trauma. In most tissues, aldehydes are detoxified by oxidoreductases that catalyze the oxidation or the reduction of aldehydes or enzymatic and nonenzymatic conjugation with low molecular weight thiols and amines, such as glutathione and histidine dipeptides. Histidine dipeptides are present in micromolar to millimolar range in the tissues of vertebrates, where they are involved in a variety of physiological functions such as pH buffering, metal chelation, oxidant and aldehyde scavenging. Histidine dipeptides such as carnosine form Michael adducts with lipid-derived unsaturated aldehydes, and react with carbohydrate-derived oxo- and hydroxy- aldehydes forming products of unknown structure. Although these peptides react with electrophilic molecules at lower rate than glutathione, they can protect glutathione from modification by oxidant and they may be important for aldehyde quenching in glutathione-depleted cells or extracellular space where glutathione is scarce. Consistent with in vitro findings, treatment with carnosine has been shown to diminish ischemic injury, improve glucose control, ameliorate the development of complications in animal models of diabetes and obesity, promote wound healing and decrease atherosclerosis. The protective effects of carnosine have been linked to its anti-oxidant properties, it ability to promote glycolysis, detoxify reactive aldehydes and enhance histamine levels. Thus, treatment with carnosine and related histidine dipeptides may be a promising strategy for the prevention and treatment of diseases associated with high carbonyl load. PMID:23313711

  18. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications.

    PubMed

    Xie, Zhengzhi; Baba, Shahid P; Sweeney, Brooke R; Barski, Oleg A

    2013-02-25

    Aldehydes are generated by oxidized lipids and carbohydrates at increased levels under conditions of metabolic imbalance and oxidative stress during atherosclerosis, myocardial and cerebral ischemia, diabetes, neurodegenerative diseases and trauma. In most tissues, aldehydes are detoxified by oxidoreductases that catalyze the oxidation or the reduction of aldehydes or enzymatic and nonenzymatic conjugation with low molecular weight thiols and amines, such as glutathione and histidine dipeptides. Histidine dipeptides are present in micromolar to millimolar range in the tissues of vertebrates, where they are involved in a variety of physiological functions such as pH buffering, metal chelation, oxidant and aldehyde scavenging. Histidine dipeptides such as carnosine form Michael adducts with lipid-derived unsaturated aldehydes, and react with carbohydrate-derived oxo- and hydroxy-aldehydes forming products of unknown structure. Although these peptides react with electrophilic molecules at lower rate than glutathione, they can protect glutathione from modification by oxidant and they may be important for aldehyde quenching in glutathione-depleted cells or extracellular space where glutathione is scarce. Consistent with in vitro findings, treatment with carnosine has been shown to diminish ischemic injury, improve glucose control, ameliorate the development of complications in animal models of diabetes and obesity, promote wound healing and decrease atherosclerosis. The protective effects of carnosine have been linked to its anti-oxidant properties, its ability to promote glycolysis, detoxify reactive aldehydes and enhance histamine levels. Thus, treatment with carnosine and related histidine dipeptides may be a promising strategy for the prevention and treatment of diseases associated with high carbonyl load. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  20. Multiple Roles of Soluble Sugars in the Establishment of Gunnera-Nostoc Endosymbiosis1[OA

    PubMed Central

    Khamar, Hima J.; Breathwaite, Erick K.; Prasse, Christine E.; Fraley, Elizabeth R.; Secor, Craig R.; Chibane, Fairouz L.; Elhai, Jeff; Chiu, Wan-Ling

    2010-01-01

    Gunnera plants have the unique ability to form endosymbioses with N2-fixing cyanobacteria, primarily Nostoc. Cyanobacteria enter Gunnera through transiently active mucilage-secreting glands on stems. We took advantage of the nitrogen (N)-limitation-induced gland development in Gunnera manicata to identify factors that may enable plant tissue to attract and maintain cyanobacteria colonies. Cortical cells in stems of N-stressed Gunnera plants were found to accumulate a copious amount of starch, while starch in the neighboring mature glands was nearly undetectable. Instead, mature glands accumulated millimolar concentrations of glucose (Glc) and fructose (Fru). Successful colonization by Nostoc drastically reduced sugar accumulation in the surrounding tissue. Consistent with the abundance of Glc and Fru in the gland prior to Nostoc colonization, genes encoding key enzymes for sucrose and starch hydrolysis (e.g. cell wall invertase, α-amylase, and starch phosphorylase) were expressed at higher levels in stem segments with glands than those without. In contrast, soluble sugars were barely detectable in mucilage freshly secreted from glands. Different sugars affected Nostoc’s ability to differentiate motile hormogonia in a manner consistent with their locations. Galactose and arabinose, the predominant constituents of polysaccharides in the mucilage, had little or no inhibitory effect on hormogonia differentiation. On the other hand, soluble sugars that accumulated in gland tissue, namely sucrose, Glc, and Fru, inhibited hormogonia differentiation and enhanced vegetative growth. Results from this study suggest that, in an N-limited environment, mature Gunnera stem glands may employ different soluble sugars to attract Nostoc and, once the cyanobacteria are internalized, to maintain them in the N2-fixing vegetative state. PMID:20833727

  1. The Cholangiocyte Glycocalyx Stabilizes the 'Biliary HCO3 Umbrella': An Integrated Line of Defense against Toxic Bile Acids.

    PubMed

    Maillette de Buy Wenniger, Lucas J; Hohenester, Simon; Maroni, Luca; van Vliet, Sandra J; Oude Elferink, Ronald P; Beuers, Ulrich

    2015-01-01

    Destruction of cholangiocytes is the hallmark of chronic cholangiopathies such as primary biliary cirrhosis. Under physiologic conditions, cholangiocytes display a striking resistance to the high, millimolar concentrations of toxic bile salts present in bile. We recently showed that a 'biliary HCO3(-) umbrella', i.e. apical cholangiocellular HCO3(-) secretion, prevents cholangiotoxicity of bile acids, and speculated on a role for extracellular membrane-bound glycans in the stabilization of this protective layer. This paper summarizes published and thus far unpublished evidence supporting the role of the glycocalyx in stabilizing the 'biliary HCO3(-) umbrella' and thus preventing cholangiotoxicity of bile acids. The apical glycocalyx of a human cholangiocyte cell line and mouse liver sections were visualized by electron microscopy. FACS analysis was used to characterize the surface glycan profile of cultured human cholangiocytes. Using enzymatic digestion with neuraminidase the cholangiocyte glycocalyx was desialylated to test its protective function. Using lectin assays, we demonstrated that the main N-glycans in human and mouse cholangiocytes were sialylated biantennary structures, accompanied by high expression of the H-antigen (α1-2 fucose). Apical neuraminidase treatment induced desialylation without affecting cell viability, but lowered cholangiocellular resistance to bile acid-induced toxicity: both glycochenodeoxycholate and chenodeoxycholate (pKa ≥4), but not taurochenodeoxycholate (pKa <2), displayed cholangiotoxic effects after desialylation. A 24-hour reconstitution period allowed cholangiocytes to recover to a pretreatment bile salt susceptibility pattern. Experimental evidence indicates that an apical cholangiocyte glycocalyx with glycosylated mucins and other glycan-bearing membrane glycoproteins stabilizes the 'biliary HCO3(-) umbrella', thus aiding in the protection of human cholangiocytes against bile acid toxicity. 2015 S. Karger AG, Basel.

  2. Modulation of nitric oxide-mediated metal release from metallothionein by the redox state of glutathione in vitro.

    PubMed

    Khatai, Leila; Goessler, Walter; Lorencova, Helena; Zangger, Klaus

    2004-06-01

    Metallothioneins (MTs) release bound metals when exposed to nitric oxide. At inflammatory sites, both metallothionein and inducible nitric oxide synthase (iNOS) are induced by the same factors and the zinc released from metallothionein by NO suppresses both the induction and activity of iNOS. In a search for a possible modulatory mechanism of this coexpression of counteracting proteins, we investigated the role of the glutathione redox state in vitro because the oxidation state of thiols is involved in the metal binding in Cd-S or Zn-S clusters found in metallothioneins, and NO also binds to reduced glutathione via S-nitrosation. Using a variety of techniques, we found that NO and also ONOO(-)-mediated metal release from purified MTs is suppressed by reduced glutathione (GSH), but not by oxidized glutathione. Considering the millimolar concentrations of GSH present in mammalian cells, the metal release from MTs by NO should play no role in living systems. Therefore, the fact that it has been observed in vivo points to a hitherto unknown mechanism or additional compound(s) being involved in this physiologically relevant reaction and as long as this additional factor is not found experimental results on the MT-NO interaction should be treated with caution. Contrary to the peroxynitrite-induced activation of guanylyl cyclase, where GSH is needed, we found that the metal release from metallothionein by peroxynitrite is not enhanced, but also suppressed by reduced glutathione. In addition, we show that zinc, the major natural metal ligand in mammalian MTs and suppressor of iNOS, is released more readily under the influence of NO than cadmium, but in contrast to the MT isoform 1, the amount of metal released from the beta-domain of MT-2 is comparable to that from the alpha-domain.

  3. Glucosamine prevents in vitro collagen degradation in chondrocytes by inhibiting advanced lipoxidation reactions and protein oxidation

    PubMed Central

    Tiku, Moti L; Narla, Haritha; Jain, Mohit; Yalamanchili, Praveen

    2007-01-01

    Osteoarthritis (OA) affects a large segment of the aging population and is a major cause of pain and disability. At present, there is no specific treatment available to prevent or retard the cartilage destruction that occurs in OA. Recently, glucosamine sulfate has received attention as a putative agent that may retard cartilage degradation in OA. The precise mechanism of action of glucosamine is not known. We investigated the effect of glucosamine in an in vitro model of cartilage collagen degradation in which collagen degradation induced by activated chondrocytes is mediated by lipid peroxidation reaction. Lipid peroxidation in chondrocytes was measured by conjugated diene formation. Protein oxidation and aldehydic adduct formation were studied by immunoblot assays. Antioxidant effect of glucosamine was also tested on malondialdehyde (thiobarbituric acid-reactive substances [TBARS]) formation on purified lipoprotein oxidation for comparison. Glucosamine sulfate and glucosamine hydrochloride in millimolar (0.1 to 50) concentrations specifically and significantly inhibited collagen degradation induced by calcium ionophore-activated chondrocytes. Glucosamine hydrochloride did not inhibit lipid peroxidation reaction in either activated chondrocytes or in copper-induced oxidation of purified lipoproteins as measured by conjugated diene formation. Glucosamine hydrochloride, in a dose-dependent manner, inhibited malondialdehyde (TBARS) formation by oxidized lipoproteins. Moreover, we show that glucosamine hydrochloride prevents lipoprotein protein oxidation and inhibits malondialdehyde adduct formation in chondrocyte cell matrix, suggesting that it inhibits advanced lipoxidation reactions. Together, the data suggest that the mechanism of decreasing collagen degradation in this in vitro model system by glucosamine may be mediated by the inhibition of advanced lipoxidation reaction, preventing the oxidation and loss of collagen matrix from labeled chondrocyte matrix. Further studies are needed to relate these in vitro findings to the retardation of cartilage degradation reported in OA trials investigating glucosamine. PMID:17686167

  4. Investigation of Antihyperglycaemic Activity of Banana (Musa sp. Var. Nanjangud rasa bale) Flower in Normal and Diabetic Rats.

    PubMed

    Ramu, Ramith; Shirahatti, Prithvi S; Dhanabal, S P; Zameer, Farhan; Dhananjaya, B L; Nagendra Prasad, M N

    2017-10-01

    The vital enzymes of starch digestion and absorption are intestinal α-glucosidases and their inhibition improves postprandial hyperglycaemia, constituting an effective mode of therapy in diabetes. The present study was designed to assess the inhibitory potential of ethanol extract of banana flower (EF) on mammalian α-glucosidases and its pharmacological effects on postprandial hyperglycaemia in normal and alloxan-induced diabetic rats. EF was evaluated for its inhibitory potential and mode of inhibition on mammalian α-glucosidases. Further, the role of EF and its constituents Umbelliferone (C1) and Lupeol (C2) on glucose uptake using isolated rat hemi-diaphragm and insulinotropic activity using RINm5F (rat insulinoma) cell lines were determined. The phytocomponents in EF were also evaluated using GC-MS. EF illustrated a dose-dependent inhibition for rat intestinal sucrase, maltase and p -nitrophenyl-α-D-glucopyranoside (pNPG) hydrolysis (IC 50 values: 18.76±0.22, 25.54±0.10 and 76.42±1.12 µg/ml, respectively) and the mode of inhibition was non-competitive with low Ki values. Oral administration (100-200 mg/kg b.wt.) of EF significantly improved the maltose/glucose-induced postprandial hyperglycaemia in normal and alloxan-induced diabetic rats. EF, C1 and C2 exhibited stimulation of glucose uptake and a dose-dependent glucose-induced insulin secretion at both 4.5 and 16.7 mM glucose concentrations. Further, GC-MS analysis revealed significant levels of steroids (25.61%), diazoprogesterone (21.31%), sesquiterpene (11.78%) and other phytocomponents. EF inhibited α-glucosidases besides promoting glucose uptake and insulin secretion, resulting in antihyperglycaemic effect determining EF as a potent anti-diabetic agent. Abbreviations used: mg/dl: milligramsper deciliter, mM: millimolar, b.wt.: body weight.

  5. Gravitropism in Higher Plant Shoots 1

    PubMed Central

    Wheeler, Raymond M.; White, Rosemary G.; Salisbury, Frank B.

    1986-01-01

    Ethylene at 1.0 and 10.0 cubic centimeters per cubic meter decreased the rate of gravitropic bending in stems of cocklebur (Xanthium strumarium L.) and tomato (Lycopersicon esculentum Mill), but 0.1 cubic centimeter per cubic meter ethylene had little effect. Treating cocklebur plants with 1.0 millimolar aminoethoxyvinylglycine (AVG) (ethylene synthesis inhibitor) delayed stem bending compared with controls, but adding 0.1 cubic centimeter per cubic meter ethylene in the surrounding atmosphere (or applying 0.1% ethephon solution) partially restored the rate of bending of AVG-treated plants. Ethylene increases in bending stems, and AVG inhibits this. Virtually all newly synthesized ethylene appeared in bottom halves of horizontal stems, where ethylene concentrations were as much as 100 times those in upright stems or in top halves of horizontal stems. This was especially true when horizontal stems were physically restrained from bending. Ethylene might promote cell elongation in bottom tissues of a horizontal stem or indicate other factors there (e.g. a large amount of `functioning' auxin). Or top and bottom tissues may become differentially sensitive to ethylene. Auxin applied to one side of a vertical stem caused extreme bending away from that side; gibberellic acid, kinetin, and abscisic acid were without effect. Acidic ethephon solutions applied to one side of young seedlings of cocklebur, tomato, sunflower (Helianthus annuus L.), and soybean (Glycine max [L.] Merr.) caused bending away from that side, but neutral ethephon solutions did not cause bending. Buffered or unbuffered acid (HCl) caused similar bending. Neutral ethephon solutions produced typical ethylene symptoms (i.e. epinasty, inhibition of stem elongation). HCl or acidic ethephon applied to the top of horizontal stems caused downward bending, but these substances applied to the bottom of such stems inhibited growth and upward bending—an unexpected result. PMID:11539089

  6. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    PubMed

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-06

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Purified ryanodine receptor from rabbit skeletal muscle is the calcium- release channel of sarcoplasmic reticulum

    PubMed Central

    1988-01-01

    The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS- solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we show that the purified receptor forms cationic channels selective for divalent ions. Ryanodine receptor channels were identical to the Ca-release channels described in native sarcoplasmic reticulum using the same techniques. In the present work, four criteria were used to establish this identity: (a) activation of channels by micromolar Ca and millimolar ATP and inhibition by micromolar ruthenium red, (b) a main channel conductance of 110 +/- 10 pS in 54 mM trans Ca, (c) a long- term open state of lower unitary conductance induced by ryanodine concentrations as low as 20 nM, and (d) a permeability ratio PCa/PTris approximately equal to 14. In addition, we show that the purified ryanodine receptor channel displays a saturable conductance in both monovalent and divalent cation solutions (gamma max for K and Ca = 1 nS and 172 pS, respectively). In the absence of Ca, channels had a broad selectivity for monovalent cations, but in the presence of Ca, they were selectively permeable to Ca against K by a permeability ratio PCa/PK approximately equal to 6. Receptor channels displayed several equivalent conductance levels, which suggest an oligomeric pore structure. We conclude that the 450,000-dalton polypeptide ryanodine receptor is the Ca-release channel of the sarcoplasmic reticulum and is the target site of ruthenium red and ryanodine. PMID:2459298

  8. Sinorhizobium meliloti Chemoreceptor McpU Mediates Chemotaxis toward Host Plant Exudates through Direct Proline Sensing

    PubMed Central

    Webb, Benjamin A.; Hildreth, Sherry; Helm, Richard F.

    2014-01-01

    Bacterial chemotaxis is an important attribute that aids in establishing symbiosis between rhizobia and their legume hosts. Plant roots and seeds exude a spectrum of molecules into the soil to attract their bacterial symbionts. The alfalfa symbiont Sinorhizobium meliloti possesses eight chemoreceptors to sense its environment and mediate chemotaxis toward its host. The methyl accepting chemotaxis protein McpU is one of the more abundant S. meliloti chemoreceptors and an important sensor for the potent attractant proline. We established a dominant role of McpU in sensing molecules exuded by alfalfa seeds. Mass spectrometry analysis determined that a single germinating seed exudes 3.72 nmol of proline, producing a millimolar concentration near the seed surface which can be detected by the chemosensory system of S. meliloti. Complementation analysis of the mcpU deletion strain verified McpU as the key proline sensor. A structure-based homology search identified tandem Cache (calcium channels and chemotaxis receptors) domains in the periplasmic region of McpU. Conserved residues Asp-155 and Asp-182 of the N-terminal Cache domain were determined to be important for proline sensing by evaluating mutant strains in capillary and swim plate assays. Differential scanning fluorimetry revealed interaction of the isolated periplasmic region of McpU (McpU40-284) with proline and the importance of Asp-182 in this interaction. Using isothermal titration calorimetry, we determined that proline binds with a Kd (dissociation constant) of 104 μM to McpU40-284, while binding was abolished when Asp-182 was substituted by Glu. Our results show that McpU is mediating chemotaxis toward host plants by direct proline sensing. PMID:24657863

  9. Silver baits for the "miraculous draught" of amphiphilic lanthanide helicates.

    PubMed

    Terazzi, Emmanuel; Guénée, Laure; Varin, Johan; Bocquet, Bernard; Lemonnier, Jean-François; Emery, Daniel; Mareda, Jiri; Piguet, Claude

    2011-01-03

    The axial connection of flexible thioalkyls chains of variable length (n=1-12) within the segmental bis-tridentate 2-benzimidazole-8-hydroxyquinoline ligands [L12(Cn) -2 H](2-) provides amphiphilic receptors designed for the synthesis of neutral dinuclear lanthanides helicates. However, the stoichiometric mixing of metals and ligands in basic media only yields intricate mixtures of poorly soluble aggregates. The addition of Ag(I) in solution restores classical helicate architectures for n=3, with the quantitative formation of the discrete D(3) -symmetrical [Ln(2) Ag2(L12(C3) -2 H)(3) ](2+) complexes at millimolar concentration (Ln=La, Eu, Lu). The X-ray crystal structure supports the formation of [La(2) Ag(2) (L12(C3) -2 H)(3) ][OTf](2) , which exists in the solid state as infinite linear polymers bridged by S-Ag-S bonds. In contrast, molecular dynamics (MD) simulations in the gas phase and in solution confirm the experimental diffusion measurements, which imply the formation of discrete molecular entities in these media, in which the sulfur atoms of each lipophilic ligand are rapidly exchanged within the Ag(I) coordination sphere. Turned as a predictive tool, MD suggests that this Ag(I) templating effect is efficient only for n=1-3, while for n>3 very loose interactions occur between Ag(I) and the thioalkyl residues. The subsequent experimental demonstration that only 25 % of the total ligand speciation contributes to the formation of [Ln(2) Ag(2) (L12(C12) -2 H)(3) ](2+) in solution puts the bases for a rational approach for the design of amphiphilic helical complexes with predetermined molecular interfaces. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterization of the Raf Kinase Inhibitory Protein (RKIP) Binding Pocket: NMR-Based Screening Identifies Small-Molecule Ligands

    PubMed Central

    Granovsky, Alexey E.; Clark, Mathew M.; McElheny, Dan; Chimon, Alexander; Rosner, Marsha R.; Koide, Shohei

    2010-01-01

    Background Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. Methods/Findings In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. Conclusions/Significance This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential. PMID:20463977

  11. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells*

    PubMed Central

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E.; Ziegler, Mathias; Nikiforov, Andrey

    2015-01-01

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. PMID:26385918

  12. Amphiphilic interactions of ionic liquids with lipid biomembranes: a molecular simulation study.

    PubMed

    Yoo, Brian; Shah, Jindal K; Zhu, Yingxi; Maginn, Edward J

    2014-11-21

    Current bottlenecks in the large-scale commercial use of many ionic liquids (ILs) include their high costs, low biodegradability, and often unknown toxicities. As a proactive effort to better understand the molecular mechanisms of ionic liquid toxicities, the work herein presents a comprehensive molecular simulation study on the interactions of 1-n-alkyl-3-methylimidazolium-based ILs with a phosphatidylcholine (PC) lipid bilayer. We explore the effects of increasing alkyl chain length (n = 4, 8, and 12) in the cation and anion hydrophobicity on the interactions with the lipid bilayer. Bulk atomistic molecular dynamics (MD) simulations performed at millimolar (mM) IL concentrations show spontaneous insertion of cations into the lipid bilayer regardless of the alkyl chain length and a favorable orientational preference once a cation is inserted. Cations also exhibit the ability to "flip" inside the lipid bilayer (as is common for amphiphiles) if partially inserted with an unfavorable orientation. Moreover, structural analysis of the lipid bilayer show that cationic insertion induces roughening of the bilayer surface, which may be a precursor to bilayer disruption. To overcome the limitation in the timescale of our simulations, free energies for a single IL cation and anion insertion have been determined based on potential of mean force calculations. These results show a decrease in free energy in response to both short and long alkyl chain IL cation insertion, and likewise for a single hydrophobic anion insertion, but an increase in free energy for the insertion of a hydrophilic chloride anion. Both bulk MD simulations and free energy calculations suggest that toxicity mechanisms toward biological systems are likely caused by ILs behaving as ionic surfactants. [Yoo et al., Soft Matter, 2014].

  13. Single-domain angiotensin I converting enzyme (kininase II): characterization and properties.

    PubMed

    Deddish, P A; Wang, L X; Jackman, H L; Michel, B; Wang, J; Skidgel, R A; Erdös, E G

    1996-12-01

    Somatic angiotensin I converting enzyme (ACE; kininase II) has two active sites, in two (N and C) domains. We studied the active centers with separate N-domain ACE (N-ACE), testicular C-domain ACE (germinal ACE) and, as control, renal somatic ACE. Germinal ACE cleaved the nonapeptide bradykinin about two times faster than N-ACE in 20 mM Cl-. Bradykinin1-7 was hydrolyzed further to bradykinin1-5 by N-ACE four times faster in the absence of Cl-, but at 300 mM Cl- the C-domain hydrolyzed it twice as fast. The hematopoietic system regulatory peptide acetyl-Ser-Asp-Lys-Pro was split to two dipeptides by N-ACE, depending on the chloride concentration, 8 to 24 times faster than by germinal ACE; at 100 mM Cl-, the Kcat with N-ACE was eight times higher. One millimolar 1-fluoro-2,4-dinitrobenzene inhibited germinal ACE 96% but it inhibited N-ACE by only 31%. [3H]Ramiprilat was displaced by other unlabeled ACE inhibitors to establish their relative affinities. Captopril had the lowest IC50 (0.5 nM) with N-ACE and the highest IC50 (8.3 nM) with the germinal ACE. The IC50 values of ramiprilat and quinaprilat were about the same with both active sites. The association and dissociation constants of [3H]ramiprilat indicated faster association with and faster dissociation from N-ACE than from germinal ACE. After exposure to alkali or moderate heat, somatic ACE was cleaved by plasmin and kallikrein, releasing N-ACE and apparently inactivating the C-domain. These studies affirm the differences in the activity, stability and inhibition of the two active sites of ACE.

  14. Mechanisms of anabolic androgenic steroid inhibition of mammalian ɛ-subunit-containing GABAA receptors

    PubMed Central

    Jones, Brian L; Whiting, Paul J; Henderson, Leslie P

    2006-01-01

    GABAergic transmission regulates the activity of gonadotrophin-releasing hormone (GnRH) neurons in the preoptic area/hypothalamus that control the onset of puberty and the expression of reproductive behaviours. One of the hallmarks of illicit use of anabolic androgenic steroids (AAS) is disruption of behaviours under neuroendocrine control. GnRH neurons are among a limited population of cells that express high levels of the ɛ-subunit of the GABAA receptor. To better understand the actions of AAS on neuroendocrine mechanisms, we have characterized modulation of GABAA receptor-mediated currents in mouse native GnRH neurons and in heterologous cells expressing recombinant α2β3ɛ-receptors. GnRH neurons exhibited robust currents in response to millimolar concentrations of GABA and a picrotoxin (PTX)-sensitive, bicuculline-insensitive current that probably arises from spontaneous openings of GABAA receptors. The AAS 17α-methyltestosterone (17α-MeT) inhibited spontaneous and GABA-evoked currents in GnRH neurons. For recombinant α2β3ɛ-receptors, 17α-MeT inhibited phasic and tonic GABA-elicited responses, accelerated desensitization and slowed paired pulse response recovery. Single channel analysis indicated that GABA-evoked events could be described by three open dwell components and that 17α-MeT enhanced residence in the intermediate dwell state. This AAS also inhibited a PTX-sensitive, spontaneous current (open probability, ∼0.15–0.2) in a concentration-dependent fashion (IC50 ≈ 9 μm). Kinetic modelling indicated that the inhibition induced by 17α-MeT occurs by an allosteric block in which the AAS interacts preferentially with a closed state and promotes accumulation in that state. Finally, studies with a G302S mutant ɛ-subunit suggest that this residue within the transmembrane domain TM2 plays a role in mediating AAS binding and modulation. In sum, our results indicate that inclusion of the ɛ-subunit significantly alters the profile of AAS modulation and that this allosteric inhibition of native GnRH neurons should be considered with regard to AAS disruption of neuroendocrine control. PMID:16543268

  15. P2X7 ionotropic receptor is functionally expressed in rabbit articular chondrocytes and mediates extracellular ATP cytotoxicity.

    PubMed

    Tanigawa, Hitoshi; Toyoda, Futoshi; Kumagai, Kosuke; Okumura, Noriaki; Maeda, Tsutomu; Matsuura, Hiroshi; Imai, Shinji

    2018-05-29

    Extracellular ATP regulates various cellular functions by engaging multiple subtypes of P2 purinergic receptors. In many cell types, the ionotropic P2X7 receptor mediates pathological events such as inflammation and cell death. However, the importance of this receptor in chondrocytes remains largely unexplored. Here, we report the functional identification of P2X7 receptor in articular chondrocytes and investigate the involvement of P2X7 receptors in ATP-induced cytotoxicity. Chondrocytes were isolated from rabbit articular cartilage, and P2X7 receptor currents were examined using the whole-cell patch-clamp technique. ATP-induced cytotoxicity was evaluated by measuring caspase-3/7 activity, lactate dehydrogenase (LDH) leakage, and prostagrandin E 2 (PGE 2 ) release using microscopic and fluorimetric/colorimetric evaluation. Extracellular ATP readily evoked a cationic current without obvious desensitization. This ATP-activated current was dose related, but required millimolar concentrations. A more potent P2X7 receptor agonist, BzATP, also activated this current but at 100-fold lower concentrations. ATP-induced currents were largely abolished by selective P2X7 antagonists, suggesting a predominant role for the P2X7 receptor. RT-PCR confirmed the presence of P2X7 in chondrocytes. Heterologous expression of a rabbit P2X7 clone successfully reproduced the ATP-induced current. Exposure of chondrocytes to ATP increased caspase-3/7 activities, an effect that was totally abrogated by P2X7 receptor antagonists. Extracellular ATP also enhanced LDH release, which was partially attenuated by the P2X7 inhibitor. The P2X7 receptor-mediated elevation in apoptotic caspase signaling was accompanied by increased PGE 2 release and was attenuated by inhibition of either phospholipase A 2 or cyclooxygenase-2. This study provides direct evidence for the presence of functional P2X7 receptors in articular chondrocytes. Our results suggest that the P2X7 receptor is a potential therapeutic target in chondrocyte death associated with cartilage injury and disorders including osteoarthritis.

  16. Survey of minerals and fat-soluble vitamins in captive black and white ruffed lemurs (Varecia variegata).

    PubMed

    Crawford, Graham C; Puschner, Birgit; Dierenfeld, Ellen S; Dunker, Freeland

    2009-12-01

    Serum and whole blood samples from 64 clinically normal captive black and white ruffed lemurs (Varecia variegata), aged 6 mo to 32 yr, were analyzed to survey mineral and fat-soluble vitamin concentrations. All animals were fed a commercial primate food and a wide range of fruits and vegetables. Specific commercial diet information was available for 52 animals that were fed one of 10 different diets. Data analysis showed no differences in the analytes attributable to sex or access to natural ultraviolet light. Serum phosphorus (range: 1.4-3.1 mmol/L) was significantly higher and retinol (range: 0.38-1.23 micromol/L) was significantly lower in young animals (< or =4 yr). Iron (range: 17.2-77.0 micromol/L) and copper (range: 10.7-53.3 micromol/L) were much higher than concentrations reported in other free-ranging lemur species, and in some animals were at levels considered potentially toxic in domestic animals. Magnesium (range: 0.66-2.04 mmol/L), sodium (range: 111-201 mmol/L), and potassium (range: 2.0-6.8 mmol/L) ranged both lower and higher than concentrations considered adequate for a mammal, but were similar to concentrations reported in wild red ruffed lemurs (Varecia rubra), a closely related species. Selenium (range: 3.5-7.7 micromol/L) was within the range expected for a mammal, but higher than concentrations reported in wild V rubra. Zinc (range: 9.2-62.7 micromol/L) was similar to concentrations reported in V. rubra. Calcidiol (range: <12.5-144.8 nmol/L) and retinol (range: 0.38-2.95 micromol/L) were both lower and higher than concentrations reported in V. rubra. Lower serum calcidiol concentration correlated with lower commercial dietary vitamin D3. Alpha-tocopherol (range: 1.2-17.6 micromol/L) and y-tocopherol (range: 0.3-3.9 micromol/L) were within a range expected in a captive frugivorous primate but higher than concentrations found in wild V. rubra.

  17. Anaerobic Killing of Oral Streptococci by Reduced, Transition Metal Cations

    PubMed Central

    Dunning, J. C.; Ma, Y.; Marquis, R. E.

    1998-01-01

    Reduced, transition metal cations commonly enhance oxidative damage to cells caused by hydroperoxides formed as a result of oxygen metabolism or added externally. As expected, the cations Fe2+ and Cu+ enhanced killing of Streptococcus mutans GS-5 by hydroperoxides. However, unexpectedly, they also induced lethal damage under fully anaerobic conditions in a glove box with no exposure to O2 or hydroperoxides from initial treatment with the cations. Sensitivities to anaerobic killing by Fe2+ varied among the organisms tested. The oral streptococci Streptococcus gordonii ATCC 10558, Streptococcus rattus FA-1, and Streptococcus sanguis NCTC 10904 were approximately as sensitive as S. mutans GS-5. Enterococcus hirae ATCC 9790, Actinomyces viscosus OMZ105E, and Actinomyces naeslundii WVU45 had intermediate sensitivity, while Lactobacillus casei ATCC 4646 and Escherichia coli B were insensitive. Killing of S. mutans GS-5 in response to millimolar levels of added Fe2+ occurred over a wide range of temperatures and pH. The organism was able to take up ferrous iron, but ferric reductase activity could not be detected. Chelators, uric acid, and thiocyanate were not effective inhibitors of the lethal damage. Sulfhydryl compounds, ferricyanide, and ferrocyanide were protective if added prior to Fe2+ exposure. Fe2+, but not Fe3+, acted to reduce the acid tolerance of glycolysis by intact cells of S. mutans. The reduction in acid tolerance appeared to be related directly to Fe2+ inhibition of F-ATPase, which could be assayed with permeabilized cells, isolated membranes, or F1 enzyme separated from membranes. Cu+ and Cu2+ also inhibited F-ATPase and sensitized glycolysis by intact cells to acid. All of these damaging actions occurred anaerobically and thus did not appear to involve reactive oxygen species. PMID:9435058

  18. Interaction between S100P and the anti-allergy drug cromolyn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penumutchu, Srinivasa R.; Chou, Ruey-Hwang; Department of Biotechnology, Asia University, Taichung 413, Taiwan

    2014-11-21

    Highlights: • The interaction between S100P–cromolyn was investigated by fluorescence spectroscopy. • The interfacial residues on S100P and cromolyn contact surface were mapped by {sup 1}H-{sup 15}N HSQC experiments. • S100P–cromolyn complex model was generated from NMR restraints using HADDOCK program. • The stability of the S100P–cromolyn complex was studied using molecular dynamics simulations. - Abstract: The S100P protein has been known to mediate cell proliferation by binding the receptor for advanced glycation end products (RAGE) to activate signaling pathways, such as the extracellular regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. S100P/RAGE signaling ismore » involved in a variety of diseases, such as cancer, metastasis, and diabetes. Cromolyn is an anti-allergy drug that binds S100P to block the interaction between S100P and RAGE. In the present study, we characterized the properties of the binding between cromolyn and calcium-bound S100P using various biophysical techniques. The binding affinity for S100P and cromolyn was measured to be in the millimolar range by fluorescence spectroscopy. NMR-HSQC titration experiments and HADDOCK modeling was employed to determine the spatial structure of the proposed heterotetramer model of the S100P–cromolyn complex. Additional MD simulation results revealed the important properties in the complex stability and conformational flexibility of the S100P–cromolyn complex. This proposed model has provided an understanding of the molecular level interactions of S100P–cromolyn complex.« less

  19. L-selectin-carbohydrate interactions: relevant modifications of the Lewis x trisaccharide.

    PubMed

    Sanders, W J; Katsumoto, T R; Bertozzi, C R; Rosen, S D; Kiessling, L L

    1996-11-26

    Protein-carbohydrate interactions are known to mediate cell-cell recognition and adhesion events. Specifically, three carbohydrate binding proteins termed selectins (E-, P-, and L-selectin) have been shown to be essential for leukocyte rolling along the vascular endothelium, the first step in the recruitment of leukocytes from the blood into inflammatory sites or into secondary lymphoid organs. Although this phenomenon is well-established, little is known about the molecular-level interactions on which it depends. All three selectins recognize sulfated and sialylated derivatives of the Lewis x [Le(x):Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc] and Lewis a [Le(a): Gal beta 1-->3(Fuc alpha 1-->4)GlcNAc] trisaccharide cores with affinities in the millimolar range, and it is believed that variants of these structures are the carbohydrate determinants of selectin recognition. Recently it was shown that the mucin GlyCAM-1, a secreted physiological ligand for L-selectin, is capped with sulfated derivatives of sialyl Lewis x [sLe(x): Sia alpha 2-->3Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc] and that sulfation is required for the high-affinity interaction between GlyCAM-1 and L-selectin. To elucidate the important sites of sulfation on Le(x) with respect to L-selectin recognition, we have synthesized six sulfated Le(x) analogs and determined their abilities to block binding of a recombinant L-selectin-Ig chimera to immobilized GlyCAM-1. Our results suggest that 6-sulfo sLe(x) binds to L-selectin with higher affinity than does sLe(x) or 6'-sulfo sLe(x) and that sulfation of sLe(x) capping groups on GlyCAM-1 at the 6-position is important for L-selectin recognition.

  20. Quantal amplitude and quantal variance of strontium-induced asynchronous EPSCs in rat dentate granule neurons

    PubMed Central

    Bekkers, John M; Clements, John D

    1999-01-01

    Excitatory postsynaptic currents (EPSCs) were recorded from granule cells of the dentate gyrus in acute slices of 17- to 21-day-old rats (22-25 °C) using tissue cuts and minimal extracellular stimulation to selectively activate a small number of synaptic contacts.Adding millimolar Sr2+ to the external solution produced asynchronous EPSCs (aEPSCs) lasting for several hundred milliseconds after the stimulus. Minimally stimulated aEPSCs resembled miniature EPSCs (mEPSCs) recorded in the same cell but differed from them in ways expected from the greater range of dendritic filtering experienced by mEPSCs. aEPSCs had the same stimulus threshold as the synchronous EPSCs (sEPSCs) that followed the stimulus with a brief latency. aEPSCs following stimulation of distal inputs had a slower mean rise time than those following stimulation of proximal inputs. These results suggest that aEPSCs arose from the same synapses that generated sEPSCs.Proximally elicited aEPSCs had a mean amplitude of 6.7 ± 2.2 pA (± s.d., n = 23 cells) at -70 mV and an amplitude coefficient of variation of 0.46 ± 0.08.The amplitude distributions of sEPSCs never exhibited distinct peaks.Monte Carlo modelling of the shapes of aEPSC amplitude distributions indicated that our data were best explained by an intrasite model of quantal variance.It is concluded that Sr2+-evoked aEPSCs are uniquantal events arising at synaptic terminals that were recently invaded by an action potential, and so provide direct information about the quantal amplitude and quantal variance at those terminals. The large quantal variance obscures quantization of the amplitudes of evoked sEPSCs at this class of excitatory synapse. PMID:10066937

  1. Optical microsensor for continuous glucose measurements in interstitial fluid

    NASA Astrophysics Data System (ADS)

    Olesberg, Jonathon T.; Cao, Chuanshun; Yager, Jeffrey R.; Prineas, John P.; Coretsopoulos, Chris; Arnold, Mark A.; Olafsen, Linda J.; Santilli, Michael

    2006-02-01

    Tight control of blood glucose levels has been shown to dramatically reduce the long-term complications of diabetes. Current invasive technology for monitoring glucose levels is effective but underutilized by people with diabetes because of the pain of repeated finger-sticks, the inconvenience of handling samples of blood, and the cost of reagent strips. A continuous glucose sensor coupled with an insulin delivery system could provide closed-loop glucose control without the need for discrete sampling or user intervention. We describe an optical glucose microsensor based on absorption spectroscopy in interstitial fluid that can potentially be implanted to provide continuous glucose readings. Light from a GaInAsSb LED in the 2.2-2.4 μm wavelength range is passed through a sample of interstitial fluid and a linear variable filter before being detected by an uncooled, 32-element GaInAsSb detector array. Spectral resolution is provided by the linear variable filter, which has a 10 nm band pass and a center wavelength that varies from 2.18-2.38 μm (4600-4200 cm -1) over the length of the detector array. The sensor assembly is a monolithic design requiring no coupling optics. In the present system, the LED running with 100 mA of drive current delivers 20 nW of power to each of the detector pixels, which have a noise-equivalent-power of 3 pW/Hz 1/2. This is sufficient to provide a signal-to-noise ratio of 4500 Hz 1/2 under detector-noise limited conditions. This signal-to-noise ratio corresponds to a spectral noise level less than 10 μAU for a five minute integration, which should be sufficient for sub-millimolar glucose detection.

  2. Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda

    NASA Astrophysics Data System (ADS)

    Green, William J.; Canfield, Donald E.

    1984-12-01

    The Onyx River (Wright Valley, Antarctica) is a dilute meltwater stream originating in the vicinity of the Wright Lower Glacier. It acquires a significant fraction of its salt content when glacial meltwaters contact Wright Valley soils at Lake Brownworth and the concentrations of all ions increase with distance along the 28-km channel down to Lake Vanda. Average millimolar concentrations of major ions at the Vanda weir during the 1980-1981 flow season were: Ca = 0.119; Mg = 0.061; Na = 0.212; K = 0.033; Q = 0.212; SO4 = 0.045; HCO3 = 0.295; and SiO2 = 0.049. Based on the flow measurements of Chinn (1982), this amounts to an annual flux (in moles) to Lake Vanda of: Ca = 0.238 × 10 6; Mg = 0.122 × 10 6; Na = 0.424 × 10 6; K = 0.066 × 10 6; Cl = 0.424 × 10 6; SO4 = 0.09 × 10 6; HCO3 = 0.59 × 10 6; SiO2 = 0.098 × 10 6. In spite of the large salt input from this source, equilibrium evaporation of Onyx River water would have resulted in early calcite deposition and in the formation of a Na-Mg-Cl-HCO 3 brine rather than in the Ca-Na-Mg-Cl waters observed in Lake Vanda. The river alone could not have produced a brine having the qualitative geochemical features of the lower saline waters of Lake Vanda. It is proposed that the Vanda brine is instead the result of past ( > 1200 yrs BP) mixing events between Onyx River inflows and calcium chloride-rich deep groundwaters derived from the Don Juan Basin. The mixing model presented here shows that the Onyx River is the major contributor of K, HCO 3, SO 4, and (possibly) Mg found in the lake and a significant contributor (approximately one half) of the observed Na. Calcium and Cl, on the other hand, came largely from deep groundwater sources in the Don Juan Basin. All concentrations except Mg are well predicted by this model. The chemical composition of the geologically recent upper lake is explained in terms of ionic diffusion from the pre-formed brine, coupled with Onyx River inflow. Ionic ratios calculated from this latter model are in very good agreement with those observed in the lake at 35 meters.

  3. Distribution and abundance of organic thiols

    NASA Technical Reports Server (NTRS)

    Fahey, R.

    1985-01-01

    The role of glutathione (GSH) in protecting against the toxicity of oxygen and oxygen by products is well established for all eukaryotes studied except Entamoeba histolytica which lacks mitochrondria, chloroplasts, and microtubules. The GSH is not universal among prokaryotes. Entamoeba histolytica does not produce GSH or key enzymes of GSH metabolism. A general method of thiol analysis based upon fluorescent labeling with monobromobimane and HPLC separation of the resulting thiol derivatives was developed to determine the occurrence of GSH and other low molecular weight thiols in bacteria. Glutathione is the major thiol in cyanobacteria and in most bacteria closely related to the purple photosynthetic bacteria, but GSH was not found in archaebacteria, green bacteria, or GRAM positive bacteria. It suggested that glutathione metabolism was incorporated into eukaryotes at the time that mitochondria and chloroplasts were acquired by endosymbiosis. In Gram positive aerobes, coenzyme A occurs at millimolar levels and CoA disulfide reductases are identified. The CoA, rather than glutathione, may function in the oxygen detoxification processes of these organisms.

  4. Avoiding Thiol Compound Interference: A Nanoplatform Based on High-Fidelity Au-Se Bonds for Biological Applications.

    PubMed

    Hu, Bo; Kong, Fanpeng; Gao, Xiaonan; Jiang, Lulu; Li, Xiaofeng; Gao, Wen; Xu, Kehua; Tang, Bo

    2018-05-04

    Gold nanoparticles (Au NPs) assembled through Au-S covalent bonds have been widely used in biomolecule-sensing technologies. However, during the process, detection distortions caused by high levels of thiol compounds can still significantly influence the result and this problem has not really been solved. Based on the higher stability of Au-Se bonds compared to Au-S bonds, we prepared selenol-modified Au NPs as an Au-Se nanoplatform (NPF). Compared with the Au-S NPF, the Au-Se NPF exhibits excellent anti-interference properties in the presence of millimolar levels of glutathione (GSH). Such an Au-Se NPF that can effectively avoid detection distortions caused by high levels of thiols thus offers a new perspective in future nanomaterial design, as well as a novel platform with higher stability and selectivity for the in vivo application of chemical sensing and clinical therapies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. PEPCase Transcript Levels in Mesembryanthemum crystallinum Decline Rapidly upon Relief from Salt Stress 1

    PubMed Central

    Vernon, Daniel M.; Ostrem, James A.; Schmitt, Juergen M.; Bohnert, Hans J.

    1988-01-01

    Mesembryanthemum crystallinum plants respond to water stress by changing their pathway of carbon assimilation from C3 to Crassulacean acid metabolism (CAM). Stressed plants are characterized by elevated levels of phosphoenolpyruvate carboxylase (PEPCase) mRNA, protein, and enzyme activity. We wanted to determine whether CAM is a reversible response to environmental conditions or a developmentally programmed adaptation that is irreversibly expressed once induced. Plants were osmotically stressed by irrigation with 500 millimolar NaCl for 12 days to elicit CAM. Salt was then thoroughly flushed from the soil and PEPCase protein and transcript levels were monitored. PEPCase mRNA levels dropped by 77% within 2.5 hours after salt removal. PEPCase activity and polypeptide levels declined more slowly, with a half-life of 2 to 3 days. These results show that PEPCase expression in M. crystallinum is a reversible response to stress that is regulated at the level of transcription or stability of the PEPCase mRNA. Images Fig. 2 Fig. 3 PMID:16666021

  6. Osmotic Stress-Induced Polyamine Accumulation in Cereal Leaves 1

    PubMed Central

    Flores, Hector E.; Galston, Arthur W.

    1984-01-01

    Arginine decarboxylase activity increases 2- to 3-fold in osmotically stressed oat leaves in both light and dark, but putrescine accumulation in the dark is only one-third to one-half of that in light-stressed leaves. If arginine or ornithine are supplied to dark-stressed leaves, putrescine rises to levels comparable to those obtained by incubation under light. Thus, precursor amino acid availability is limiting to the stress response. Amino acid levels change rapidly upon osmotic treatment; notably, glutamic acid decreases with a corresponding rise in glutamine. Difluoromethylarginine (0.01-0.1 millimolar), the enzyme-activated irreversible inhibitor of arginine decarboxylase, prevents the stress-induced putrescine rise, as well as the incorporation of label from [14C]arginine, with the expected accumulation of free arginine, but has no effect on the rest of the amino acid pool. The use of specific inhibitors such as α-difluoromethylarginine is suggested as probes for the physiological significance of stress responses by plant cells. PMID:16663552

  7. Effect of dacarbazine on CD44 in live melanoma cells as measured by atomic force microscopy-based nanoscopy.

    PubMed

    Huang, Xun; He, Jiexiang; Zhang, Huan-Tian; Sun, Kai; Yang, Jie; Wang, Huajun; Zhang, Hongxin; Guo, Zhenzhao; Zha, Zhen-Gang; Zhou, Changren

    2017-01-01

    CD44 ligand-receptor interactions are known to be involved in regulating cell migration and tumor cell metastasis. High expression levels of CD44 correlate with a poor prognosis of melanoma patients. In order to understand not only the mechanistic basis for dacarbazine (DTIC)-based melanoma treatment but also the reason for the poor prognosis of melanoma patients treated with DTIC, dynamic force spectroscopy was used to structurally map single native CD44-coupled receptors on the surface of melanoma cells. The effect of DTIC treatment was quantified by the dynamic binding strength and the ligand-binding free-energy landscape. The results demonstrated no obvious effect of DTIC on the unbinding force between CD44 ligand and its receptor, even when the CD44 nanodomains were reduced significantly. However, DTIC did perturb the kinetic and thermodynamic interactions of the CD44 ligand-receptor, with a resultant greater dissociation rate, lower affinity, lower binding free energy, and a narrower energy valley for the free-energy landscape. For cells treated with 25 and 75 μg/mL DTIC for 24 hours, the dissociation constant for CD44 increased 9- and 70-fold, respectively. The CD44 ligand binding free energy decreased from 9.94 for untreated cells to 8.65 and 7.39 kcal/mol for DTIC-treated cells, which indicated that the CD44 ligand-receptor complexes on DTIC-treated melanoma cells were less stable than on untreated cells. However, affinity remained in the micromolar range, rather than the millimolar range associated with nonaffinity ligands. Hence, the CD44 receptor could still be activated, resulting in intracellular signaling that could trigger a cellular response. These results demonstrate DTIC perturbs, but not completely inhibits, the binding of CD44 ligand to membrane receptors, suggesting a basis for the poor prognosis associated with DTIC treatment of melanoma. Overall, atomic force microscopy-based nanoscopic methods offer thermodynamic and kinetic insight into the effect of DTIC on the CD44 ligand-binding process.

  8. Effect of dacarbazine on CD44 in live melanoma cells as measured by atomic force microscopy-based nanoscopy

    PubMed Central

    Huang, Xun; He, Jiexiang; Zhang, Huan-tian; Sun, Kai; Yang, Jie; Wang, Huajun; Zhang, Hongxin; Guo, Zhenzhao; Zha, Zhen-gang; Zhou, Changren

    2017-01-01

    CD44 ligand–receptor interactions are known to be involved in regulating cell migration and tumor cell metastasis. High expression levels of CD44 correlate with a poor prognosis of melanoma patients. In order to understand not only the mechanistic basis for dacarbazine (DTIC)-based melanoma treatment but also the reason for the poor prognosis of melanoma patients treated with DTIC, dynamic force spectroscopy was used to structurally map single native CD44-coupled receptors on the surface of melanoma cells. The effect of DTIC treatment was quantified by the dynamic binding strength and the ligand-binding free-energy landscape. The results demonstrated no obvious effect of DTIC on the unbinding force between CD44 ligand and its receptor, even when the CD44 nanodomains were reduced significantly. However, DTIC did perturb the kinetic and thermodynamic interactions of the CD44 ligand–receptor, with a resultant greater dissociation rate, lower affinity, lower binding free energy, and a narrower energy valley for the free-energy landscape. For cells treated with 25 and 75 μg/mL DTIC for 24 hours, the dissociation constant for CD44 increased 9- and 70-fold, respectively. The CD44 ligand binding free energy decreased from 9.94 for untreated cells to 8.65 and 7.39 kcal/mol for DTIC-treated cells, which indicated that the CD44 ligand–receptor complexes on DTIC-treated melanoma cells were less stable than on untreated cells. However, affinity remained in the micromolar range, rather than the millimolar range associated with nonaffinity ligands. Hence, the CD44 receptor could still be activated, resulting in intracellular signaling that could trigger a cellular response. These results demonstrate DTIC perturbs, but not completely inhibits, the binding of CD44 ligand to membrane receptors, suggesting a basis for the poor prognosis associated with DTIC treatment of melanoma. Overall, atomic force microscopy-based nanoscopic methods offer thermodynamic and kinetic insight into the effect of DTIC on the CD44 ligand-binding process. PMID:29296081

  9. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Lower Rio Grande Valley and Laguna Atascosa National Wildlife Refuge, Texas, 1986-87

    USGS Publications Warehouse

    Wells, Frank C.; Jackson, Gerry A.; Rogers, William J.

    1988-01-01

    Toxaphene was detected in 11 fish samples; detectable concentrations ranged from 0.98 to 5.1 micrograms per gram, wet weight. DOT also was detected in 11 fish samples with concentrations ranging from 0.021 to 0.066 micrograms per gram, wet weight. ODD was detected in 21 fish samples; concentrations ranged from 0.015 to 0.16 micrograms per gram, wet weight. DDE was detected in all 22 fish samples, and concentrations ranged from 0.36 to 9.9 micrograms per gram, wet weight. The maximum concentrations of DOT and ODD exceeded the 1980-81 baseline concentrations. The median and maximum concentrations of toxaphene and DDE exceeded the 1980-81 baseline concentrations. The largest concentrations of toxaphene, ODD, and DDE in fish were all measured in samples collected at the Main Floodway near Progreso.

  10. Fe²⁺ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for non-transferrin-mediated Fe²⁺ influx.

    PubMed

    Lopin, Kyle V; Gray, I Patrick; Obejero-Paz, Carlos A; Thévenod, Frank; Jones, Stephen W

    2012-12-01

    Iron is a biologically essential metal, but excess iron can cause damage to the cardiovascular and nervous systems. We examined the effects of extracellular Fe²⁺ on permeation and gating of Ca(V)3.1 channels stably transfected in HEK293 cells, by using whole-cell recording. Precautions were taken to maintain iron in the Fe²⁺ state (e.g., use of extracellular ascorbate). With the use of instantaneous I-V currents (measured after strong depolarization) to isolate the effects on permeation, extracellular Fe²⁺ rapidly blocked currents with 2 mM extracellular Ca²⁺ in a voltage-dependent manner, as described by a Woodhull model with K(D) = 2.5 mM at 0 mV and apparent electrical distance δ = 0.17. Extracellular Fe²⁺ also shifted activation to more-depolarized voltages (by ∼10 mV with 1.8 mM extracellular Fe²⁺) somewhat more strongly than did extracellular Ca²⁺ or Mg²⁺, which is consistent with a Gouy-Chapman-Stern model with surface charge density σ = 1 e(-)/98 Ų and K(Fe) = 4.5 M⁻¹ for extracellular Fe²⁺. In the absence of extracellular Ca²⁺ (and with extracellular Na⁺ replaced by TEA), Fe²⁺ carried detectable, whole-cell, inward currents at millimolar concentrations (73 ± 7 pA at -60 mV with 10 mM extracellular Fe²⁺). With a two-site/three-barrier Eyring model for permeation of Ca(V)3.1 channels, we estimated a transport rate for Fe²⁺ of ∼20 ions/s for each open channel at -60 mV and pH 7.2, with 1 μM extracellular Fe²⁺ (with 2 mM extracellular Ca²⁺). Because Ca(V)3.1 channels exhibit a significant "window current" at that voltage (open probability, ∼1%), Ca(V)3.1 channels represent a likely pathway for Fe²⁺ entry into cells with clinically relevant concentrations of extracellular Fe²⁺.

  11. Appraisal of water-quality conditions, lower Black River, Windsor County, Vermont

    USGS Publications Warehouse

    Toppin, K.W.

    1983-01-01

    Six hydroelectric power dams are planned along a 22-mile reach of the lower Black River in southeastern Windsor County, Vermont. Data were collected at 10 stations, during water years 1977-81, to appraise quality conditions before construction. Average specific conductance of Black River is 101 micromhos indicating low concentrations of dissolved solids. Concentrations of common constituents and minor elements were generally low and within safe levels for aquatic life. Near-saturated dissolved oxygen concentrations and relatively low mean total organic carbon concentrations indicate little oxygen-consuming substances in Black River. Mean total nitrogen concentrations ranged from 0.31 mg/L (milligrams per liter) to 0.61 mg/L. The highest concentrations were most likely due to secondary waste discharges entering the river. Nitrate was the primary form of inorganic nitrogen, mean concentrations ranged from 0.13 to 0.27 mg/L. Concentrations seem high enough to promote excessive algal growth in the proposed Hawks Mountain Reservoir. Mean concentrations of total phosphorus ranged from 0.014 to 0.112 mg/L as P. Maximum concentrations at all stations generally exceeded U.S. Environmental Protection Agency suggested levels for water entering lakes and reservoirs. Mean orthophosphorus concentrations ranged from 0.005 to 0.029 mg/L, suggesting a potential for nuisance algal conditions to develop in the proposed reservoir. Mean algal growth potential concentrations ranged from 1.3 to 8.8 mg/L, falling within the moderately high to high productivity range. No pesticides and polychlorinated biphenyls were detected. (USGS)

  12. Minimum urine flow rate during water deprivation: importance of the nonurea versus total osmolality in the inner medulla.

    PubMed

    Soroka, S D; Chayaraks, S; Cheema-Dhadli, S; Myers, J A; Rubin, S; Sonnenberg, H; Halperin, M L

    1997-06-01

    Antidiuretic hormone leads to an increase in the permeability for water and urea in the inner medullary collecting duct. Hence, urea may not be an "effective" osmole in the inner medulla during maximal renal water conservation. Accordingly, the purpose of this study was to evaluate whether differences in the rate of urea excretion would influence maximum renal water conservation in humans. In water-deprived rats, the concentration of urea and total osmolality were somewhat higher in the urine exiting the inner medullary collecting duct than in interstitial fluid obtained from the entire papillary tip. Nevertheless, the "nonurea" (total osmolality minus urea in millimolar terms) osmolality was virtually identical in both locations. Chronically fasted human subjects that were water-deprived for 16 h had a lower rate of urea excretion (71 +/- 7 versus 225 +/- 14 mumol/min) and a somewhat lower urine osmolality (745 +/- 53 versus 918 +/- 20 mosmol/kg H2O). Nevertheless, they had identical urine flow rates (0.5 +/- 0.01 and 0.5 +/- 0.02 ml/min, respectively), and their nonurea osmolality also was similar (587 +/- 25 and 475 +/- 14 mosmol/kg H2O, respectively) to the water-deprived normal subjects. The composition of their urine differed in that the principal nonurea osmoles became NH4+ and beta-hydroxybutyrate rather than Na and C1. During water deprivation in normal subjects, the ingestion of urea caused a twofold rise in urine flow rate, a fall in the nonurea osmolality, and a rise in the rate of excretion of nonurea osmoles. The nonurea osmolality of the urine, and presumably the medullary interstitial fluid as well, was inversely related to the urea excretion rate. In chronic fasting, the nature, but not the quantity, of nonurea osmoles changed. The similar minimum urine volume was predictable from an analysis based on nonurea osmole considerations.

  13. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    PubMed

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P < 0.01). When analyzed by real-time polymerase chain reaction, PdxR deficiency was found to drastically reduce expression of an apparent operon encoding a pyridoxal kinase (SMU865) and a pyridoxal permease (SMU866) of the salvage pathway of vitamin B6 biosynthesis. In addition, PdxR deficiency also altered the expression of genes for ClpL protease, glucosyltransferase B and adhesin SpaP, which are known to play important roles in stress tolerance and biofilm formation. Consistently, PdxR-deficiency affected the growth of the deficient mutant when grown in defined medium with and without vitamin B6 . Further studies revealed that although S. mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Proton MR spectroscopy of lesion evolution in multiple sclerosis: Steady-state metabolism and its relationship to conventional imaging.

    PubMed

    Kirov, Ivan I; Liu, Shu; Tal, Assaf; Wu, William E; Davitz, Matthew S; Babb, James S; Rusinek, Henry; Herbert, Joseph; Gonen, Oded

    2017-08-01

    Although MRI assessment of white matter lesions is essential for the clinical management of multiple sclerosis, the processes leading to the formation of lesions and underlying their subsequent MRI appearance are incompletely understood. We used proton MR spectroscopy to study the evolution of N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho), and myo-inositol (mI) in pre-lesional tissue, persistent and transient new lesions, as well as in chronic lesions, and related the results to quantitative MRI measures of T1-hypointensity and T2-volume. Within 10 patients with relapsing-remitting course, there were 180 regions-of-interest consisting of up to seven semi-annual follow-ups of normal-appearing white matter (NAWM, n = 10), pre-lesional tissue giving rise to acute lesions which resolved (n = 3) or persisted (n = 3), and of moderately (n = 9) and severely hypointense (n = 6) chronic lesions. Compared with NAWM, pre-lesional tissue had higher Cr and Cho, while compared with lesions, pre-lesional tissue had higher NAA. Resolving acute lesions showed similar NAA levels pre- and post-formation, suggesting no long-term axonal damage. In chronic lesions, there was an increase in mI, suggesting accumulating astrogliosis. Lesion volume was a better predictor of axonal health than T1-hypointensity, with lesions larger than 1.5 cm 3 uniformly exhibiting very low (<4.5 millimolar) NAA concentrations. A positive correlation between longitudinal changes in Cho and in lesion volume in moderately hypointense lesions implied that lesion size is mediated by chronic inflammation. These and other results are integrated in a discussion on the steady-state metabolism of lesion evolution in multiple sclerosis, viewed in the context of conventional MRI measures. Hum Brain Mapp 38:4047-4063, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Treatment of industrial effluents by electrochemical generation of H2O2 using an RVC cathode in a parallel plate reactor.

    PubMed

    Bustos, Yaneth A; Rangel-Peraza, Jesús Gabriel; Rojas-Valencia, Ma Neftalí; Bandala, Erick R; Álvarez-Gallegos, Alberto; Vargas-Estrada, Laura

    2016-01-01

    Electrochemical techniques have been used for the discolouration of synthetic textile industrial wastewater by Fenton's process using a parallel plate reactor with a reticulated vitreous carbon (RVC) cathode. It has been shown that RVC is capable of electro-generating and activating H2O2 in the presence of Fe(2+) added as catalyst and using a stainless steel mesh as anode material. A catholyte comprising 0.05 M Na2SO4, 0.001 M FeSO4.7H2O, 0.01 M H2SO4 and fed with oxygen was used to activate H2O2.The anolyte contained only 0.8 M H2SO4. The operating experimental conditions were 170 mA (2.0 V < ΔECell < 3.0 V) to generate 5.3 mM H2O2. Synthetic effluents containing various concentrations (millimolar - mM) of three different dyes, Blue Basic 9 (BB9), Reactive Black 5 (RB5) and Acid Orange 7 (AO7), were evaluated for discolouration using the electro-assisted Fenton reaction. Water discolouration was measured by UV-VIS absorbance reduction. Dye removal by electrolysis was a function of time: 90% discolouration of 0.08, 0.04 and 0.02 mM BB9 was obtained at 14, 10 and 6 min, respectively. In the same way, 90% discolouration of 0.063, 0.031 and 0.016 mM RB5 was achieved at 90, 60 and 30 min, respectively. Finally, 90% discolouration of 0.14, 0.07 and 0.035 mM AO7 was achieved at 70, 40 and 20 min, respectively. The experimental results confirmed the effectiveness of electro-assisted Fenton reaction as a strong oxidizing process in water discolouration and the ability of RVC cathode to electro-generate and activate H2O2 in situ.

  16. The Role of Short-Chain Fatty Acids, Produced by Anaerobic Bacteria, in the Cystic Fibrosis Airway.

    PubMed

    Mirković, Bojana; Murray, Michelle A; Lavelle, Gillian M; Molloy, Kevin; Azim, Ahmed Abdul; Gunaratnam, Cedric; Healy, Fiona; Slattery, Dubhfeasa; McNally, Paul; Hatch, Joe; Wolfgang, Matthew; Tunney, Michael M; Muhlebach, Marianne S; Devery, Rosaleen; Greene, Catherine M; McElvaney, Noel G

    2015-12-01

    Anaerobic bacteria are present in large numbers in the airways of people with cystic fibrosis (PWCF). In the gut, anaerobes produce short-chain fatty acids (SCFAs) that modulate immune and inflammatory processes. To investigate the capacity of anaerobes to contribute to cystic fibrosis (CF) airway pathogenesis via SCFAs. Samples of 109 PWCF were processed using anaerobic microbiological culture with bacteria present identified by 16S RNA sequencing. SCFA levels in anaerobic supernatants and bronchoalveolar lavage (BAL) were determined by gas chromatography. The mRNA and/or protein expression of two SCFA receptors, GPR41 and GPR43, in CF and non-CF bronchial brushings and 16HBE14o(-) and CFBE41o(-) cells were evaluated using reverse transcription polymerase chain reaction, Western blot analysis, laser scanning cytometry, and confocal microscopy. SCFA-induced IL-8 secretion was monitored by ELISA. Fifty-seven (52.3%) of 109 PWCF were anaerobe positive. Prevalence increased with age, from 33.3% to 57.7% in PWCF younger (n = 24) and older (n = 85) than 6 years of age. All evaluated anaerobes produced millimolar concentrations of SCFAs, including acetic, propionic, and butyric acids. SCFA levels were higher in BAL samples of adults than in those of children. GPR41 levels were elevated in CFBE41o(-) versus 16HBE14o(-) cells; CF versus non-CF bronchial brushings; and 16HBE14o(-) cells after treatment with cystic fibrosis transmembrane conductance regulator inhibitor CFTR(inh)-172, CF BAL, or inducers of endoplasmic reticulum stress. SCFAs induced a dose-dependent and pertussis toxin-sensitive IL-8 response in bronchial epithelial cells, with a higher production of IL-8 in CFBE41o(-) than in 16HBE14o(-) cells. This study illustrates that SCFAs contribute to excessive production of IL-8 in CF airways colonized with anaerobes via up-regulated GPR41.

  17. The Role of Short-Chain Fatty Acids, Produced by Anaerobic Bacteria, in the Cystic Fibrosis Airway

    PubMed Central

    Murray, Michelle A.; Lavelle, Gillian M.; Molloy, Kevin; Azim, Ahmed Abdul; Gunaratnam, Cedric; Healy, Fiona; Slattery, Dubhfeasa; McNally, Paul; Hatch, Joe; Wolfgang, Matthew; Tunney, Michael M.; Muhlebach, Marianne S.; Devery, Rosaleen; Greene, Catherine M.; McElvaney, Noel G.

    2015-01-01

    Rationale: Anaerobic bacteria are present in large numbers in the airways of people with cystic fibrosis (PWCF). In the gut, anaerobes produce short-chain fatty acids (SCFAs) that modulate immune and inflammatory processes. Objectives: To investigate the capacity of anaerobes to contribute to cystic fibrosis (CF) airway pathogenesis via SCFAs. Methods: Samples of 109 PWCF were processed using anaerobic microbiological culture with bacteria present identified by 16S RNA sequencing. SCFA levels in anaerobic supernatants and bronchoalveolar lavage (BAL) were determined by gas chromatography. The mRNA and/or protein expression of two SCFA receptors, GPR41 and GPR43, in CF and non-CF bronchial brushings and 16HBE14o− and CFBE41o− cells were evaluated using reverse transcription polymerase chain reaction, Western blot analysis, laser scanning cytometry, and confocal microscopy. SCFA-induced IL-8 secretion was monitored by ELISA. Measurements and Main Results: Fifty-seven (52.3%) of 109 PWCF were anaerobe positive. Prevalence increased with age, from 33.3% to 57.7% in PWCF younger (n = 24) and older (n = 85) than 6 years of age. All evaluated anaerobes produced millimolar concentrations of SCFAs, including acetic, propionic, and butyric acids. SCFA levels were higher in BAL samples of adults than in those of children. GPR41 levels were elevated in CFBE41o− versus 16HBE14o− cells; CF versus non-CF bronchial brushings; and 16HBE14o− cells after treatment with cystic fibrosis transmembrane conductance regulator inhibitor CFTR(inh)-172, CF BAL, or inducers of endoplasmic reticulum stress. SCFAs induced a dose-dependent and pertussis toxin–sensitive IL-8 response in bronchial epithelial cells, with a higher production of IL-8 in CFBE41o− than in 16HBE14o− cells. Conclusions: This study illustrates that SCFAs contribute to excessive production of IL-8 in CF airways colonized with anaerobes via up-regulated GPR41. PMID:26266556

  18. Aluminum ions induce oat protoplasts to produce an extracellular (1 yields 3). beta. -D-glucan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, H.J.; Walton, J.D.

    1990-09-01

    Aluminum chloride induced mesophyll protoplasts of oat (Avena sativa) to produce an extracellular polysaccharide (EPS). EPS induced by AlCl{sub 3} appeared identical to that produced in response to the phytotoxin victorin. Al ions at 1 millimolar were toxic to protoplasts, but maximum EPS production occurred at a sublethal concentration of 200 micromolar, assayed at pH 6.0. As measured by incorporation of ({sup 14}C)glucose, AlCl{sub 3} stimulated EPS production 10- to 15-fold. Pretreatment of protoplasts with cycloheximide prevented EPS production but not cell death in response to AlCl{sub 3}, indicating that protein synthesis was necessary for EPS production but not formore » the phytotoxicity of Al ions. The trivalent salts of Y, Yb, Gd, and In also induced EPS production but those of Sc, Fe, Ga, Cr, and La did not. Mesophyll protoplasts from an acid-soil tolerant oat cultivar produced less EPS in response to AlCl{sub 3} than the acid-soil sensitive cultivar Fla 501. EPS was also produced by wheat (Triticum aestivum) and barley (Hordeum vulgare) protoplasts in response to AlCl{sub 3}. An Al-tolerant cultivar of wheat, Atlas, produced less EPS than an Al-sensitive cultivar, Scout, but an Al-tolerant cultivar of barley, Dayton, produced more than the Al-sensitive cultivar Kearney. Therefore, production of EPS by protoplasts in response to Al ions did not appear to be related to Al ion tolerance at the level of whole plants. EPS fluoresced in the presence of Calcofluor and Sirofluor and was degraded by purified laminarinase ((1{yields}3){beta}-D-glucanase) but did not pectinase (polygalacturonase). EPS was composed solely of glucose in 1{yields}3 linkages; hence it is a (1{yields}3){beta}-D-glucan (callose).« less

  19. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks

    USGS Publications Warehouse

    Tangalos, G.E.; Beard, B.L.; Johnson, C.M.; Alpers, Charles N.; Shelobolina, E.S.; Xu, H.; Konishi, H.; Roden, E.E.

    2012-01-01

    The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)am] that allow dissimilatory iron reduction (DIR) to predominate over Fe–S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. δ56Fe values for bulk HCl- and HF-extractable Fe were ≈ 0. These near-zero bulk δ56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero δ56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (δ56Fe ≈ -1.5 to -0.5‰) aqueous Fe(II) coupled to partial reduction of Fe(III)am by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)am are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)am of approximately -2‰. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-δ56Fe minerals during BIF genesis.

  20. Serum fructosamine concentrations in dogs with hypothyroidism.

    PubMed

    Reusch, C E; Gerber, B; Boretti, F S

    2002-10-01

    Serum fructosamine concentrations were measured in 11 untreated hypothyroid dogs with normal serum glucose and serum protein concentrations. The fructosamine level ranged between 276 and 441 micromol/L (median 376 micromol/L; reference range 207-340 micromol/L). Nine of the 11 dogs had fructosamine levels above the reference range. The fructosamine levels decreased significantly during treatment with levothyroxine. It is suggested that serum fructosamine concentrations may be high in hypothyroid dogs because of decelerated protein turnover, independent of the blood glucose concentration.

  1. Impact of particle concentration and out-of-range sizes on the measurements of the LISST

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Boufadel, Michel C.; King, Thomas; Robinson, Brian; Conmy, Robyn; Lee, Kenneth

    2018-05-01

    The instrument LISST (laser in situ scattering and transmissiometry) has been widely used for measuring the size of oil droplets in relation to oil spills and sediment particles. Major concerns associated with using the instrument include the impact of high concentrations and/or out-of-range particle (droplet) sizes on the LISST reading. These were evaluated experimentally in this study using monosized microsphere particles. The key findings include: (1) When high particle concentration reduced the optical transmission (OT) to below 30%, the measured peak value tended to underestimate the true peak value, and the accuracy of the LISST decreased by ~8% to ~28%. The maximum concentration to reach the 30% OT was about 50% of the theoretical values, suggesting a lower concentration level should be considered during the instrument deployment. (2) The out-of-range sizes of particles affected the LISST measurements when the sizes were close to the LISST measurement range. Fine below-range sizes primarily affected the data in the lowest two bins of the LISST with  >75% of the volume at the smallest bin. Large out-of-range particles affected the sizes of the largest 8–10 bins only when very high concentration was present. The out-of-range particles slightly changed the size distribution of the in-range particles, but their concentration was conserved. An approach to interpret and quantify the effects of the out-of-range particles on the LISST measurement was proposed.

  2. Time and size resolved Measurement of Mass Concentration at an Urban Site

    NASA Astrophysics Data System (ADS)

    Karg, E.; Ferron, G. A.; Heyder, J.

    2003-04-01

    Time- and size-resolved measurements of ambient particles are necessary for modelling of atmospheric particle transport, the interpretation of particulate pollution events and the estimation of particle deposition in the human lungs. In the size range 0.01 - 2 µm time- and size-resolved data are obtained from differential mobility and optical particle counter measurements and from gravimetric filter analyses on a daily basis (PM2.5). By comparison of the time averaged and size integrated particle volume concentration with PM2.5 data, an average density of ambient particles can be estimated. Using this density, the number concentration data can be converted in time- and size-resolved mass concentration. Such measurements were carried out at a Munich downtown crossroads. The spectra were integrated in the size ranges 10 - 100 nm, 100 - 500 nm and 500 - 2000 nm. Particles in these ranges are named ultrafine, fine and coarse particles. These ranges roughly represent freshly emitted particles, aged/accumulated particles and particles entrained by erosive processes. An average number concentration of 80000 1/cm3 (s.d. 67%), a particle volume concentration of 53 µm3/cm3 (s.d. 76%) and a PM2.5 mass concentration of 27 µg/m3 was found. These particle volume- and PM2.5 data imply an average density of 0.51 g/cm3. Average number concentration showed 95.3%, 4.7% and 0.006% of the total particle concentration in the size ranges mentioned above. Mass concentration was 14.7%, 80.2% and 5.1% of the total, assuming the average density to be valid for all particles. The variability in mass concentration was 94%, 75% and 33% for the three size ranges. Nearly all ambient particles were in the ultrafine size range, whereas most of the mass concentration was in the fine size range. However, a considerable mass fraction of nearly 15% was found in the ultrafine size range. As the sampling site was close to the road and traffic emissions were the major source of the particles, 1) the density was very low due to agglomerated and porous structures of freshly emitted combustion particles and 2) the variability was highest in the ultrafine range, obviously correlated to traffic activity and lowest in the micron size range. In conclusion, almost all ambient particles were ultrafine particles, whereas most of the particle mass was associated with fine particles. Nevertheless, a considerable mass fraction was found in the ultrafine size range. These particles had a very low density so that they can be considered as agglomerated and porous particles emitted from vehicles passing the crossroads. Therefore they showed a much higher variation in mass concentration than the fine and coarse particles.

  3. Urban-air-toxics Monitoring Program carbonyl results, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-07-01

    The report summarizes the results of sampling ambient air for selected carbonyl containing compounds in 12 urban centers in the contiguous United States as part of the Urban Air Toxics Monitoring Program (UATMP). Formaldehyde, acetaldehyde, and acetone concentrations were measured using 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges to collect the carbonyls for subsequent analysis. Sampling and analysis followed guidance provided in U.S. Environmental Protection Agency (EPA) compendium method TO-11. Formaldehyde concentrations ranged from 0.42 to 34.5 ppbv with an average concentration for all sites of 4.2 ppbv. Site average formaldehyde concentrations ranged from 1.5 ppbv for Houston, TX (H1TX) to 7.9 formore » Washington, DC (W2DC). Acetaldehyde concentrations ranged from 0.37 to 9.5 ppbv, averaging 1.7 ppbv over all 1990 UATMP sites. Site average acetaldehyde concentrations ranged from 0.76 ppbv at Houston, TX (H1TX) to 2.5 ppbv at Baton Rouge, LA (BRLA). Acetone concentrations ranged from 0.37 to 10.8 ppbv and averaged 1.8 ppbv over all sites. Site average acetone concentrations ranged from 0.68 ppbv at Houston, TX (H1TX) to 2.9 ppbv at Chicago, IL (C4IL).« less

  4. Mercury data from small lakes in Voyageurs National Park, northern Minnesota, 2000-02

    USGS Publications Warehouse

    Goldstein, Robert M.; Brigham, Mark E.; Steuwe, Luke; Menheer, Michael A.

    2003-01-01

    Mercury contamination of aquatic ecosystems is a resource concern in Voyageurs National Park. High concentrations of mercury in fish pose a potential risk to organisms that consume large amounts of those fish. During 2000–02, the U.S. Geological Survey measured mercury in water collected from 20 lakes in Voyageurs National Park. Those lakes span a gradient in fish-mercury concentrations, and also span gradients in other environmental variables that are thought to influence mercury cycling. During 2001, near surface methylmercury concentrations ranged from below the method detection limit of 0.04 nanograms per liter (ng/L) to 0.41 ng/L. Near surface total mercury concentrations ranged from 0.34 ng/L to 3.74 ng/L. Hypolimnetic methylmercury ranged from below detection to 2.69 ng/L, and hypolimnetic total mercury concentrations ranged from 0.34 ng/L to 7.16 ng/L. During 2002, near surface methylmercury concentrations ranged from below the method detection limit to 0.46 ng/L, and near surface total mercury ranged from 0.34 ng/L to 4.81 ng/L.

  5. Contents and leachability of heavy metals (Pb, Cu, Sb, Zn, As) in soil at the Pantex firing range, Amarillo, Texas.

    PubMed

    Basunia, S; Landsberger, S

    2001-10-01

    Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched approximately 6 times more than the usual soil concentration levels. Toxicity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be approximately 12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.

  6. Synthesis and evaluation of conformationally restricted inhibitors of aspartate semialdehyde dehydrogenase.

    PubMed

    Evitt, Andrew S; Cox, Russell J

    2011-05-01

    Inhibitors of the enzyme aspartate semialdehyde dehydrogenase, a key biological target for the generation of a new class of antibiotic compounds, have been developed. To investigate improvements to binding within an inhibitor series, the lowering of the entropic barrier to binding through conformational restriction was investigated. A library of linear and cyclic substrate analogues was generated and computational docking used to aid in structure selection. The cyclic phosphonate inhibitor 18 was thus identified as complimentary to the enzyme active-site. Synthesis and in vitro inhibition assay revealed a K(i) of 3.8 mM against natural substrate, where the linear analogue of 18, compound 15, had previously shown no inhibitory activity. Two further inhibitors, phosphate analogue diastereoisomers 17a and 17b, were synthesised and also found to have low millimolar K(i) values. As a result of the computational docking investigations, a novel substrate binding interaction was discovered: hydrogen bonding between the substrate (phosphate hydroxy-group as the hydrogen bond donor) and the NADPH cofactor (2'-oxygen as the hydrogen bond acceptor).

  7. Polyamines in plant physiology

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Sawhney, R. K.

    1990-01-01

    The diamine putrescine, the triamine spermidine, and the tetramine spermine are ubiquitous in plant cells, while other polyamines are of more limited occurrence. Their chemistry and pathways of biosynthesis and metabolism are well characterized. They occur in the free form as cations, but are often conjugated to small molecules like phenolic acids and also to various macromolecules. Their titer varies from approximately micromolar to more than millimolar, and depends greatly on environmental conditions, especially stress. In cereals, the activity of one of the major polyamine biosynthetic enzymes, arginine decarboxylase, is rapidly and dramatically increased by almost every studied external stress, leading to 50-fold or greater increases in putrescine titer within a few hours. The physiological significance of this increase is not yet clear, although most recent work suggests an adaptive, protective role. Polyamines produced through the action of ornithine decarboxylase, by contrast, seem essential for DNA replication and cell division. The application of exogenous polyamines produces effects on patterns of senescence and morphogenesis, suggesting but not proving a regulatory role for polyamines in these processes. The evidence for such a regulatory role is growing.

  8. Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus.

    PubMed

    Owen, C David; Tailford, Louise E; Monaco, Serena; Šuligoj, Tanja; Vaux, Laura; Lallement, Romane; Khedri, Zahra; Yu, Hai; Lecointe, Karine; Walshaw, John; Tribolo, Sandra; Horrex, Marc; Bell, Andrew; Chen, Xi; Taylor, Gary L; Varki, Ajit; Angulo, Jesus; Juge, Nathalie

    2017-12-19

    Ruminococcus gnavus is a human gut symbiont wherein the ability to degrade mucins is mediated by an intramolecular trans-sialidase (RgNanH). RgNanH comprises a GH33 catalytic domain and a sialic acid-binding carbohydrate-binding module (CBM40). Here we used glycan arrays, STD NMR, X-ray crystallography, mutagenesis and binding assays to determine the structure and function of RgNanH_CBM40 (RgCBM40). RgCBM40 displays the canonical CBM40 β-sandwich fold and broad specificity towards sialoglycans with millimolar binding affinity towards α2,3- or α2,6-sialyllactose. RgCBM40 binds to mucus produced by goblet cells and to purified mucins, providing direct evidence for a CBM40 as a novel bacterial mucus adhesin. Bioinformatics data show that RgCBM40 canonical type domains are widespread among Firmicutes. Furthermore, binding of R. gnavus ATCC 29149 to intestinal mucus is sialic acid mediated. Together, this study reveals novel features of CBMs which may contribute to the biogeography of symbiotic bacteria in the gut.

  9. Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1989-01-01

    When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.

  10. Metabolic reconfigurations aimed at the detoxification of a multi-metal stress in Pseudomonas fluorescens: implications for the bioremediation of metal pollutants.

    PubMed

    Alhasawi, Azhar; Costanzi, Jacob; Auger, Christopher; Appanna, Nishma D; Appanna, Vasu D

    2015-04-20

    Although the ability of microbial systems to adapt to the toxic challenge posed by numerous metal pollutants individually has been well documented, there is little detailed information on how bacteria survive in a multiple-metal environment. Here we describe the metabolic reconfiguration invoked by the soil microbe Pseudomonas fluorescens in a medium with millimolar amounts of aluminum (Al), iron (Fe), gallium (Ga), calcium (Ca), and zinc (Zn). While enzymes involved in the production of NADH were decreased, there was a marked increase in enzymatic activities dedicated to NADPH formation. A modified tricarboxylic acid (TCA) cycle coupled to an alternate glyoxylate shunt mediated the synthesis of adenosine triphosphate (ATP) with the concomitant generation of oxalate. This dicarboxylic acid was a key ingredient in the sequestration of the metals that were detoxified as a lipid complex. It appears that the microbe favors this strategy as opposed to a detoxification process aimed at each metal separately. These findings have interesting implications for bioremediation technologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Kinetic studies on the control of the bean rust fungus (Uromyces phaseoli L.) by an inhibitor of polyamine biosynthesis

    NASA Technical Reports Server (NTRS)

    Rajam, M. V.; Weinstein, L. H.; Galston, A. W.

    1986-01-01

    alpha-Difluoromethylornithine (DFMO), a specific and irreversible inhibitor of the polyamine biosynthetic enzyme ornithine decarboxylase, effectively inhibits mycelial growth of several phytopathogenic fungi on defined media in vitro and provides systemic protection of bean plants against infection by Uromyces phaseoli L. race 0 (MV Rajam, AW Galston 1985 Plant Cell Physiol 26: 683-692; MV Rajam et al. 1985 Proc Natl Acad Sci USA 82: 6874-6878). We now find that application of 0.5 millimolar DFMO to unifoliolate leaves of Pinto beans up to 3 days after inoculation with uredospores of U. phaseoli completely inhibits the growth of the pathogen, while application 4 or 5 days after inoculation results in partial protection against the pathogen. Spores do not germinate on the surface of unifoliolate leaves treated with DFMO 1 day before infection, but addition of spermidine to the DFMO treatments partially reverses the inhibitory effect. The titer of polyamines in bean plants did not decline after DFMO treatment; rather, putrescine and spermidine contents actually rose, probably due to the known but paradoxical stimulation of arginine decarboxylase activity by DFMO.

  12. Effect of ethephon on protein degradation and the accumulation of pathogensis-related (PR) proteins in tomato leaf discs. [Lycopersicon esculentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vera, P.; Conejero, V.

    The effect of ethephon (2-chloroetylphosphonic acid) on the degradation of proteins and on the induction of Lycopersicon esculentum pathogenesis-related (PR) proteins was studied in tomato leaf discs. The rate of ribulose, -1,5-bisphosphate carboxylase/oxygenase (Rubisco) degradation was maximal in discs after 48 hours of incubation with 1 millimolar ethephon, leading to complete disappearance of Rubisco after 96 hours. This effect was correlated with an increase in PR protein synthesis and the induction of the previously reported alkaline proteolytic enzyme PR-P69. In vivo pulse-chase experiments demonstrated that ethephon not only affected Rubisco content but that of many other {sup 35}S-labeled proteins asmore » well, indicating that ethylene activates a general and nonspecific mechanism of protein degradation. This effect was partially inhibited in vivo by the action of pCMB, a selective inhibitor of cysteine-proteinases such as P69. These data reinforce the hypothesis that P69 and perhaps other PR proteins are involved in the mechanism of accelerated protein degradation activated by ethylene.« less

  13. Pathways of nitrogen assimilation in cowpea nodules studied using /sup 15/N/sub 2/ and allopurinol. [Vigna unguiculata L. Walp. cv Vita

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkins, C.A.; Storer, P.J.; Pate, J.S.

    1988-01-01

    In the presence of 0.5 millimolar allopurinol (4-hydroxypyrazolo (3,4-d)pyrimidine), an inhibitor of NAD:xanthine oxidoreductase (EC 1.2.3.2), intact attached nodules of cowpea (vigna unguiculata L. Walp. cv Vita 3) formed (/sup 15/N)xanthine from /sup 15/N/sub 2/ at rates equivalent to those of ureide synthesis, confirming the direct assimilation of fixed nitrogen into purines. Xanthine accumulated in nodules and was exported in increasing amounts in xylem of allopurinol-treated plants. Other intermediates of purine oxidation, de novo purine synthesis, and ammonia assimilation did not increase and, over the time course of experiments (4 hours), allopurinol had no effect on nitrogenase (EC 1.87.99.2) activity.more » Negligible /sup 15/N -labeling of asparagine from /sup 15/N/sub 2/ was observed, suggesting that the significant pool (up to 14 micromoles per gram of nodule fresh weight) of this amide in cowpea nodules was not formed directly from fixation but may have accumulated as a consequence of phloem delivery.« less

  14. Antiurolithiatic Potential of Neeri against Calcium-Oxalate Stones by Crystallization Inhibition, Free Radicals Scavenging, and NRK-52E Cell Protection from Oxalate Injury.

    PubMed

    Goyal, Parveen Kumar; Verma, Santosh Kumar; Sharma, Anil Kumar

    2017-10-01

    Neeri is a well-established polyherbal formulation prescribed for renal stones by the physicians but has not been experimentally evaluated for its antiurolithiatic potential using cell-lines. This study is aimed to scientifically substantiate the antiurolithiatic effect of Neeri extract (NRE) through calcium oxalate (CaOx) crystallization inhibition, scavenging of free radicals, and protection of renal tubular epithelial NRK-52E cells from oxalate-induced injury. The crystallization inhibition was studied by turbidimetric assay while the free radical scavenging potential was determined for superoxide and nitric oxide (NO) radicals. The cytoprotective effect against oxalate-induced injury was assessed by estimating lactate dehydrogenase (LDH) leakage and determining cell viability using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. NRE significantly inhibited the CaOx crystallization in a concentration-dependent manner and also scavenged superoxide (IC 50 302.88 μg/ml) and NO (IC 50 300.45 μg/ml) free radicals. It did not show any significant cytotoxicity for NRK-52E cells till the highest dose (500 μg/ml) and found to be safe. When NRK-52E cells, injured by exposing to oxalate crystals for 24 h, were treated with NRE, it appreciably prevented the cell injury in a dose-dependent manner. It significantly decreased the elevated LDH leakage toward normal range and improved renal cell viability (82.37% ± 0.87%), hence, prevented growth and retention of crystals. The experimental findings concluded that Neeri is a potent antiurolithiatic formulation that inhibited CaOx crystallization and prevented tubular retention of crystals by protecting the renal cells against oxalate-induced injury as well as reducing the oxidative stress by scavenging free radicals. Neeri extract significantly ( P < 0.001) inhibited the in vitro crystallization (88.11% ± 7.70%) of calcium oxalateIt reduced oxidative stress by scavenging superoxide and nitric oxide free radicalsIt significantly ( P < 0.001) improved the cell viability by inhibiting the leakage of lactate dehydrogenase in a dose-dependent manner. Abbreviations used: A c : Absorbance of control, A t : Absorbance of test, ANOVA: Analysis of variance, CaOx: Calcium oxalate, DMEM: Dulbecco's Modified Eagle's Medium, DMSO: Dimethyl sulfoxide, EDTA: Ethylenediaminetetraacetic acid, FBS: Fetal bovine serum, INT: Iodonitrotetrazolium, LDH: Lactate dehydrogenase, M: Molar, ml: Milliliter, mM: Millimolar, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, NAD: Nicotinamide adenine dinucleotide, NADPH: Nicotinamide adenine dinucleotide phosphate, NBT: Nitro blue tetrazolium, nm: Nanometer, NO: Nitric oxide, NRE: Neeri extract, PMS: Phenazine methosulfate, ROS: Reactive oxygen species, S c : Slope of the graph of control, SEM: Standard error of mean, S i : Slope of the graph with inhibitor, U/I: International unit, mg: Microgram, ml: Microliter.

  15. Lead accumulation in woodchucks (Marmota monax) at small arms and skeet ranges.

    PubMed

    Johnson, Mark S; Major, Michael A; Casteel, Stan W

    2004-10-01

    Increasing concern regarding the stewardship of US Army lands requires a proactive program to evaluate sites of potential risk. Small arms and upland skeet ranges are a potentially significant source of lead exposure for burrowing mammals. Woodchucks (Marmota monax) were evaluated for lead exposure in a previously used upland skeet range and a small arms range, respective to animals collected at two nearby reference locations. Soil lead concentrations collected at burrow entrances on the firing ranges were compared with blood, bone, kidney, liver, and fecal concentrations of woodchucks collected from the reference areas. No statistical differences were found in the lead concentrations in tissue between woodchucks in reference and firing ranges; concentrations of lead in liver and kidney were below detection limits. Levels in bone, blood, and feces suggest the bioavailability of lead at these various sites, although other factors (e.g., differences in foraging areas, age structure, habitat preferences, and environmental conditions) were also likely to influence exposure. Blood levels were below that which suggests toxicity. Further analysis of other ranges with higher lead concentrations and of small mammal species with smaller home ranges is recommended to further elucidate trends that could be extrapolated to other sites.

  16. Nonlinear optical studies of aqueous interfaces, polymers, and nanowires

    NASA Astrophysics Data System (ADS)

    Onorato, Robert Michael

    Understanding the structure and composition of aqueous interfaces is one of the most important current problems in modern science. Aqueous interfaces are ubiquitous in Nature, ranging from aerosols to cellular structures. Aerosol chemistry is presently the most significant unknown factor in predicting climate change, and an understanding of the chemistry that occurs at aerosol interfaces would significantly improve climate models. Similarly, the nature of aqueous biological interfaces has a profound effect on the structure and function of proteins and other biological structures. Despite the importance of these problems, aqueous interfaces remain incompletely understood due to the challenges of experimentally probing them. Recent experimental and theoretical results have firmly established the existence of enhanced concentrations of selected ions at the air/water interface. In this dissertation, I use an interface-specific technique, UV second harmonic generation (SHG), to further investigate the adsorption of ions to the air/water interface and to extend the study of ion adsorption towards more biologically relevant systems, alcohol/water interfaces. In Chapter 2, I describe resonant UV-SHG studies of the strongly chaotropic thiocyanate ion adsorbed to the interface formed by water and a monolayer of dodecanol, wherein the Gibbs free energy of adsorption was determined to be -6.7 +/- 1.1 and -6.3 +/- 1.8 kJ/mol for sodium and potassium thiocyanate, respectively, coincident with the value determined for thiocyanate at the air/water interface. Interestingly, at concentrations near and above 4 M, the resonant SHG signal increases discontinuously, indicating a structural change in the interfacial region. Recent experimental and theoretical work has demonstrated that the adsorption of bromide is particularly important for chemical reactions on atmospheric aerosols, including the depletion of ozone. In Chapter 3, UV-SHG resonant with the bromide charge-transfer-to-solvent band and a Langmuir adsorption model are used to determine the affinity of bromide for both the air/water and dodecanol/water interfaces in the molar concentration regime. The Gibbs free energy of adsorption for the former is determined to be -1.4 kJ/mol with a lower 90% confidence limit of -4.1 kJ/mol. For the dodecanol/water interface the data are best fit with a Gibbs free energy of +8 kJ/mol with an estimated a lower limit of -4 kJ/mol. Adsorption of ions to the air/water interface in the millimolar regime is a particularly interesting phenomenon. In Chapter 4, the affinity of sodium chloride and sodium bromide to the air/water interface is probed by UV-SHG. Both salts exhibit a strong adsorption, with free energies greater than -20 kJ/mol. Interestingly, sodium chloride exhibits a stronger affinity for the interface than does sodium iodide, which was previously studied by Poul Peterson. This is counter to both experimental and theoretical results for higher concentrations. It has been predicted that ion adsorption is dictated by strong and opposing electrostatic and entropic forces. The change in order of ion interfacial affinity can be explained by relatively small changes in these forces at different concentrations and ionic strengths. In Chapters 5 and 6, other work using nonlinear optical techniques is described. Coherent anti-Stokes Raman scattering microscopy is a promising tool for chemically selective imaging based on molecular vibrations. While CARS is currently used as a biological imaging tool, many variations are still being developed, perhaps the most important being multiplex CARS microscopy. Multiplex CARS has the advantage of comparing images based on different molecular vibrations without changing the excitation wavelengths. In Chapter 5, I demonstrate both high spectral and spatial resolution multiplex CARS imaging of polymer films using a simple scheme for chirped CARS with a spectral bandwidth of 300 cm-1. In Chapter 6, the nonlinear optical properties of KNbO3 nanowires are studied. Using SHG and sum frequency generation, efficient nonlinear optical frequency conversion is demonstrated in single KNbO3 nanowires that act as optical waveguides, yielding a coherent tunable subwavelength light source.

  17. Water quality of Somerville Lake, south-central Texas

    USGS Publications Warehouse

    McPherson, Emma; Mendieta, H.B.

    1983-01-01

    The concentration of dissolved solids ranged from 139 to 292 milligrams per liter and averaged about 220 milligrams per liter. Dissolved chloride concentrations ranged from 20 to 68 milligrams per liter and averaged 43 milligrams per liter. Dissolved sulfate concentrations ranged from 30 to 130 milligrams per liter and averaged 63 milligrams per liter. The total hardness of the water ranged from 75 to 140 milligrams per liter, expressed as calcium carbonate, placing it in the moderately hard to hard (61 to 180 milligrams per liter) classification. The concentrations of principal dissolved constituents indicate that Somerville Lake is an excellent source of water for municipal, industrial, or agricultural use.

  18. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    NASA Astrophysics Data System (ADS)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  19. A hybrid model for predicting carbon monoxide from vehicular exhausts in urban environments

    NASA Astrophysics Data System (ADS)

    Gokhale, Sharad; Khare, Mukesh

    Several deterministic-based air quality models evaluate and predict the frequently occurring pollutant concentration well but, in general, are incapable of predicting the 'extreme' concentrations. In contrast, the statistical distribution models overcome the above limitation of the deterministic models and predict the 'extreme' concentrations. However, the environmental damages are caused by both extremes as well as by the sustained average concentration of pollutants. Hence, the model should predict not only 'extreme' ranges but also the 'middle' ranges of pollutant concentrations, i.e. the entire range. Hybrid modelling is one of the techniques that estimates/predicts the 'entire range' of the distribution of pollutant concentrations by combining the deterministic based models with suitable statistical distribution models ( Jakeman, et al., 1988). In the present paper, a hybrid model has been developed to predict the carbon monoxide (CO) concentration distributions at one of the traffic intersections, Income Tax Office (ITO), in the Delhi city, where the traffic is heterogeneous in nature and meteorology is 'tropical'. The model combines the general finite line source model (GFLSM) as its deterministic, and log logistic distribution (LLD) model, as its statistical components. The hybrid (GFLSM-LLD) model is then applied at the ITO intersection. The results show that the hybrid model predictions match with that of the observed CO concentration data within the 5-99 percentiles range. The model is further validated at different street location, i.e. Sirifort roadway. The validation results show that the model predicts CO concentrations fairly well ( d=0.91) in 10-95 percentiles range. The regulatory compliance is also developed to estimate the probability of exceedance of hourly CO concentration beyond the National Ambient Air Quality Standards (NAAQS) of India. It consists of light vehicles, heavy vehicles, three- wheelers (auto rickshaws) and two-wheelers (scooters, motorcycles, etc).

  20. Cholesterol values in free-ranging gorillas (Gorilla gorilla gorilla and Gorilla beringei) and Bornean orangutans (Pongo pygmaeus).

    PubMed

    Schmidt, Debra A; Ellersieck, Mark R; Cranfield, Michael R; Karesh, William B

    2006-09-01

    Cholesterol concentrations in captive gorillas and orangutans vary widely within species and average approximately 244 mg/dl for gorillas and 169 mg/dl for orangutans as published previously. The International Species Inventory System reports higher concentrations of 275 and 199 mg/dl for gorillas and orangutans, respectively. It is unknown whether these values were typical, influenced by captive management, or both. To answer this question, banked serum samples from free-ranging mountain gorillas (Gorilla beringei), western lowland gorillas (Gorilla gorilla gorilla), and Bornean orangutans (Pongo pygmaeus) were analyzed for total cholesterol, triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol concentrations. Mountain gorillas did not differ significantly from free-ranging western lowland gorillas in cholesterol, triglyceride, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol concentrations, indicating mountain gorilla values could be a model for western lowland gorillas. Captive gorilla total cholesterol and low-density lipoprotein cholesterol concentrations were significantly higher (P < 0.05) than in free-ranging groups. Triglyceride concentrations for captive gorillas were significantly higher (P < 0.05) than the male mountain and western lowland gorillas, but they were not significantly different from the female mountain gorillas. Captive orangutan total cholesterol concentrations were only higher (P < 0.05) than the free-ranging female orangutans, whereas captive orangutan low-density lipoprotein cholesterol concentrations were significantly higher (P < 0.05) than both free-ranging male and female orangutans. Calculated and measured low-density lipoprotein cholesterol concentrations were compared for all free-ranging animals and were significantly different (P < 0.05) for all groups, indicating Friedewald's equation for calculating low-density lipoprotein cholesterol is not appropriate for use with nonfasted apes. The higher total cholesterol and low-density lipoprotein cholesterol concentrations in captive apes may predispose them to cardiovascular disease and might be attributed to diets, limited energy expenditure, and genetics.

  1. Water quality in the Bear River Basin of Utah, Idaho, and Wyoming prior to and following snowmelt runoff in 2001

    USGS Publications Warehouse

    Gerner, Steven J.; Spangler, Lawrence E.

    2006-01-01

    Water-quality samples were collected from the Bear River during two base-flow periods in 2001: March 11 to 21, prior to snowmelt runoff, and July 30 to August 9, following snowmelt runoff. The samples were collected from 65 sites along the Bear River and selected tributaries and analyzed for dissolved solids and major ions, suspended sediment, nutrients, pesticides, and periphyton chlorophyll a.On the main stem of the Bear River during March, dissolved-solids concentrations ranged from 116 milligrams per liter (mg/L) near the Utah-Wyoming Stateline to 672 mg/L near Corinne, Utah. During July-August, dissolved-solid concentrations ranged from 117 mg/L near the Utah-Wyoming Stateline to 2,540 mg/L near Corinne and were heavily influenced by outflow from irrigation diversions. High concentrations of dissolved solids near Corinne result largely from inflow of mineralized spring water.Suspended-sediment concentrations in the Bear River in March ranged from 2 to 98 mg/L and generally decreased below reservoirs. Tributary concentrations were much higher, as high as 861 mg/L in water from Battle Creek. Streams with high sediment concentrations in March included Whiskey Creek, Otter Creek, and the Malad River. Sediment concentrations in tributaries in July-August generally were lower than in March.The concentrations of most dissolved and suspended forms of nitrogen generally were higher in March than in July-August. Dissolved ammonia concentrations in the Bear River and its tributaries in March ranged from less than 0.021 mg/L to as much as 1.43 mg/L, and dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.1 mg/L to 2.4 mg/L. Spring Creek is the only site where the concentrations of all ammonia species exceeded 1.0 mg/L. In samples collected during March, tributary concentrations of dissolved nitrite plus nitrate ranged from 0.042 mg/L to 5.28 mg/L. In samples collected from tributaries during July-August, concentrations ranged from less than 0.23 mg/L to 3.06 mg/L. Concentrations of nitrite plus nitrate were highest in samples collected from the Whiskey Creek and Spring Creek drainage basins and from main-stem sites below Cutler Reservoir near Collinston (March) and Corinne (July-August).Concentrations of total phosphorus at main-stem sites were fairly similar during both base-flow periods, ranging from less than 0.02 to 0.49 mg/L during March and less than 0.02 to 0.287 mg/L during July-August. In March, concentrations of total phosphorus in the Bear River generally increased from upstream to downstream. Total phosphorus concentrations in tributaries generally were higher in March than in July-August.Concentrations of selected pesticides in samples collected from 20 sites in the Bear River basin in either March or July-August were less than 0.1 microgram per liter. Of the 12 pesticides detected, the most frequently detected insecticide was malathion, and prometon and atrazine were the most frequently detected herbicides.Periphyton samples were collected at 14 sites on the Bear River during August. Chlorophyll a concentrations ranged from 21 milligrams per square meter to 416 milligrams per square meter, with highest concentrations occurring below reservoirs. Samples from 8 of the 14 sites had concentrations of chlorophyll a that exceeded 100 milligrams per square meter, indicating that algal abundance at these sites may represent a nuisance condition.

  2. Stability of nitrate-ion concentrations in simulated deposition samples used for quality-assurance activities by the U.S. Geological Survey

    USGS Publications Warehouse

    Willoughby, T.C.; See, R.B.; Schroder, L.J.

    1989-01-01

    Three experiments were conducted to determine the stability of nitrate-ion concentrations in simulated deposition samples. In the four experiment-A solutions, nitric acid provided nitrate-ion concentrations ranging from 0.6 to 10.0 mg/L and that had pH values ranging from 3.8 to 5.0. In the five experiment-B solutions, sodium nitrate provided nitrate-ion concentrations ranging from 0.5 to 3.0 mg/L. The pH was adjusted to about 4.5 for each of the solutions by addition of sulfuric acid. In the four experiment-C solutions, nitric acid provided nitrate-ion concentrations ranging from 0.5 to 3.0 mg/L. Major cation and anion concentrations were added to each solution to simulate natural deposition. Aliquots were removed from the 13 original solutions and analyzed by ion chromatography about once a week for 100 days to determine if any changes occurred in nitrate-ion concentrations throughout the study period. No substantial changes were observed in the nitrate-ion concentrations in solutions that had initial concentrations below 4.0 mg/L in experiments A and B, although most of the measured nitrate-ion concentrations for the 100-day study were below the initial concentrations. In experiment C, changes in nitrate-ion concentrations were much more pronounced; the measured nitrate-ion concentrations for the study period were less than the initial concentrations for 62 of the 67 analyses. (USGS)

  3. Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China.

    PubMed

    Mai, Bi-Xian; Fu, Jia-Mo; Sheng, Guo-Ying; Kang, Yue-Hui; Lin, Zheng; Zhang, Gan; Min, Yu-Shuan; Zeng, Eddy Y

    2002-01-01

    Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and polycyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6-1658 ng/g, while concentrations of PCBs are in the range 10-339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812 ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic condition, and land erosion due to urbanization processes. The composition of PAHs is investigated and used to assess petrogenic, combustion and naturally derived PAHs of the sediment samples of the Pearl River Delta. In addition, the concentrations of a number of organic compounds of the Pearl River Delta samples indicate that sediments of the Zhujiang river and Macao harbor are most likely to pose biological impairment.

  4. EPA Region 6 Laboratory Method Specific Analytical Capabilities with Sample Concentration Range

    EPA Pesticide Factsheets

    EPA Region 6 Environmental Services Branch (ESB) Laboratory is capable of analyzing a wide range of samples with concentrations ranging for low part-per trillion (ppt) to low percent () levels, depending on the sample matrix.

  5. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells

    PubMed Central

    Freitas, Hercules R.; Ferraz, Gabriel; Ferreira, Gustavo C.; Ribeiro-Resende, Victor T.; Chiarini, Luciana B.; do Nascimento, José Luiz M.; Matos Oliveira, Karen Renata H.; Pereira, Tiago de Lima; Ferreira, Leonardo G. B.; Kubrusly, Regina C.; Faria, Robson X.

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1–10mM) showed that 5–10mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50mM KCl (labeled as βIII tubulin positive cells). BBG 100nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70μM and MK-801 20μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  6. Calcium transport in tonoplast and endoplasmic reticulum vesicles isolated from cultured carrot cells. [Daucus carota Danvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, D.R.; Sze, H.

    1986-02-01

    Two active calcium (Ca/sup 2 +/) transport systems have been identified and partially characterized in membrane vesicles isolated from cultured carrot cells (Daucus carota Danvers). Both transport systems required MgATP for activity and were enhanced by 10 millimolar oxalate. Ca/sup 2 +/ transport in membrane vesicles derived from isolated vacuoles equilibrated at 1.10 grams per cubic centimeter and comigrated with Cl/sup -/-stimulated, NO/sub 3//sup -/-inhibited ATPase activity on sucrose density gradients. Ca/sup 2 +/ transport in this system was insensitive to vanadate, but was inhibited by nitrate, carbonyl cyanide-m-chlorophenylhydrazone (CCCP), N,N'-dicyclohexylcarbodiimide (DCCD), and 4,4-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS). The K/sub m/more » for MgATP and Ca/sup 2 +/ were 0.1 mM and 21 micromolar, respectively. The predominant Ca/sup 2 +/ transport system detectable in microsomal membrane preparations equilibrated at a density of 1.13 grams per cubic centimeter and comigrated with the endoplasmic reticulum (ER) marker, antimycin A-insensitive NADH-dependent cytochrome c reductase. Ca/sup 2 +/ transport activity and the ER marker also shifted in parallel in ER shifting experiments. This transport system was inhibited by vanadate (I/sub 50/ = 12 micromolar) and was insensitive to nitrate, CCCP, DCCD, and DIDS. Transport exhibited cooperative MgATP dependent kinetics. Ca/sup 2 +/ dependent kinetics were complex with an apparent K/sub m/ ranging from 0.7 to 2 micromolar. We conclude that the vacuolar-derived system is a Ca/sup 2 +//H/sup +/ antiport located on the tonoplast and that the microsomal transport system is a Ca,Mg-ATPase enriched on the ER. These two Ca/sup 2 +/ transport systems are proposed to restore and maintain cytoplasmic Ca/sup 2 +/ homeostasis under changing cellular and environmental conditions.« less

  7. Synthesis and Characterization of thermo/pH-responsive Supramolecular G-Quadruplexes for the Construction of Supramolecular Hacky Sacks for Biorelevant Applications

    NASA Astrophysics Data System (ADS)

    Negron Rios, Luis M.

    The impact of size, shape, and distribution of lipophilic regions on the surfaces of nanoscopic objects that are amphiphilic or patchy (such as proteins) are yet to be fully understood. One of the reasons for this is the lack of an appropriate model systems in which to probe this question. Our group has previously reported 2'-deoxyguanosine (8ArG) derivatives that self-assemble in aqueous media into discrete supramolecular hexadecamers that show the lower critical solution temperature (LCST) phenomenon. The LCST phenomenon is a convenient and rigorous strategy to measure the hydrophobicity of a system. Although these SGQs are potentially attractive for biomedical applications like drug-delivery, the narrow window of physiological temperatures complicates their implementation. This moved us to redesign the constituent 8ArG subunits to incorporate imidazole moieties that would lead to pH-responsive SGQs, working isothermally. Upon reaching a threshold temperature (Lower Critical Solution Temperature, LCST) at pH 7, these dual-responsive SGQs further self-assemble to form nano/micro hydrogel globules that we called them supramolecular hacky sacks (SHS). However, we can isolate kinetically stable versions of these SHS by lowering the ionic strength of the medium (i.e., from the molar to the millimolar range) in a process that we term "fixing the SHS", in which these SHS maintain their integrity (size and shape) and stability without the requirement of crosslinking agents. After structural characterization and in vitro studies of SHS, we performed encapsulation studies of DOX, rhodamine, dsDNA (F26T), thrombin binding aptamer (TBA) and dextran (3 kDa) Texas Red conjugate. Then we performed in vivo studies of cell internalization and drug delivery with neuroblastoma SY-SH5Y. The performed studies will bring new approaches for the development of new biotechnology for fundamental applications and the emerging of novel therapeutic agents for biomedical applications.

  8. ATP transport through VDAC and the VDAC-tubulin complex probed by equilibrium and nonequilibrium MD simulations.

    PubMed

    Noskov, Sergei Yu; Rostovtseva, Tatiana K; Bezrukov, Sergey M

    2013-12-23

    Voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane, serves as a principal pathway for ATP, ADP, and other respiratory substrates across this membrane. Using umbrella-sampling simulations, we established the thermodynamic and kinetic components governing ATP transport across the VDAC1 channel. We found that there are several low-affinity binding sites for ATP along the translocation pathway and that the main barrier for ATP transport is located around the center of the channel and is formed predominantly by residues in the N-terminus. The binding affinity of ATP to an open channel was found to be in the millimolar to micromolar range. However, we show that this weak binding increases the ATP translocation probability by about 10-fold compared with the VDAC pore in which attractive interactions were artificially removed. Recently, it was found that free dimeric tubulin induces a highly efficient, reversible blockage of VDAC reconstituted into planar lipid membranes. It was proposed that by blocking VDAC permeability for ATP/ADP and other mitochondrial respiratory substrates tubulin controls mitochondrial respiration. Using the Rosetta protein-protein docking algorithm, we established a tentative structure of the VDAC-tubulin complex. An extensive set of equilibrium and nonequilibrium (under applied electric field) molecular dynamics (MD) simulations was used to establish the conductance of the open and blocked channel. It was found that the presence of the unstructured C-terminal tail of tubulin in the VDAC pore decreases its conductance by more than 40% and switches its selectivity from anionic to cationic. The subsequent 1D potential of mean force (PMF) computations for the VDAC-tubulin complex show that the state renders ATP transport virtually impossible. A number of residues pivotal for tubulin binding to the channel were identified that help to clarify the molecular details of VDAC-tubulin interaction and to provide new insight into the mechanism of the control of mitochondria respiration by VDAC.

  9. Water-quality conditions and streamflow gain and loss of the South Prong of Spavinaw Creek basin, Benton County, Arkansas

    USGS Publications Warehouse

    Joseph, Robert L.; Green, W. Reed

    1994-01-01

    A study of the South Prong of Spavinaw Creek Basin conducted baween July 14 and July 23. 1993. described the surface- and ground-water quality of the basin and the streamflow gain and loss. Water samples were collected from 10 sites on the mainstem of the South Prong of Spavinaw Creek and from 4 sites on tributaries during periods of low to moderate streamflow (less than 11 cubic feet per second). Water samples were collected from 4 wells and 10 springs located in the basin. In 14 surface-water samples, nitrite plus nitrate concentrations ranged from 0.75 to 4.2 milligrams per liter as nitrogen (mg/L). Orthophosphorus concentrations ranged from 0 03 to O. 15 mg/L as phosphorus. Fecal coliform bacteria counts ranged from 61 to 1,400 colonies per 100 milliliters (col/lOO mL), with a median of 120 col/100 mL. Fecal streptococci bacteria counts ranged from 70 to greater than 2,000 col/100 mL with a median of 185 col/lOO mL. Analysis for selected metals collected at one surface-water sites indicates that concentrations were usually below the reporting limit. Diel dissolved oxygen concentrations and temperatures were measured at an upstream and downstream site on the mainstem of the stream. At the upstream site, dissolved oxygen concentrations ranged from 7.2 to 83 mg/L and temperatures ranged from 15.5 to 17.0 C. Dissolved oxygen concentrations were higher and temperature values were lower at lhe upstream site, which is located close to two springs that produce all of the flow at that site. Dissolved nitrite plus nitrate was present in all four wells sampled in the basin with concentrations ranging from 0.04 to 3.5 mg/L as nitrogen. Orthophosphorus was present in concentrations ranging from less than 0.01 to 0.07 mg/L as phosphorus. Volatile organic compound analyses in two wells indicate that toluene was present in both wells and chloroform was present in one well. All other volatile organic compounds were found to be below the reporting limits. Analysis for common constituents and selected metals indicated that fluoride concentrations in one well exceeded the U.S. Environmental Protection Agency's primary maximum contamination levels for drinking water. Analyses of water samples collected from springs indicate that nitrite plus nitrate concen- trations ranged from 0.43 to 3.9 mg/L as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.20 to 0.64 mg/L as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.20 to 0.64 mg/L at nitrogen. Orthophosphorus concentrations ranged from 0.02 to 0.09 mg/L as phosphorus. Fecal coliform bacteria counts ranged from less than 3 to more than 2,000 col/100 mL, with a median of 370 col/100 mL. Fecal streptococci bacteria counts ranged from less than 4 to greater than 2,000 col/100 mL with a median of 435 col/100 mL. Streamflow in nine reaches of the mainstream increased an average of 20 percent. Six losing reaches were identified during the study, one located on the mainstem and the other five located on tributaries to the mainstem.

  10. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...

  11. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...

  12. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...

  13. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...

  14. Validation of a novel high-sensitivity radioimmunoassay procedure for measurement of total thyroxine concentration in psittacine birds and snakes.

    PubMed

    Greenacre, C B; Young, D W; Behrend, E N; Wilson, G H

    2001-11-01

    To validate a novel high-sensitivity radioimmunoassay (RIA) procedure developed to accurately measure the relatively low serum total thyroxine (T4) concentrations of birds and reptiles and to establish initial reference ranges forT4 concentration in selected species of psittacine birds and snakes. 56 healthy nonmolting adult psittacine birds representing 6 species and 42 captive snakes representing 4 species. A solid-phase RIA designed to measure free T4 concentrations in dialysates of human serum samples was used without dialysis to evaluate total T4 concentration in treated samples obtained from birds and reptiles. Serum T4 binding components were removed to allow assay of undialyzed samples. Assay validation was assessed by determining recovery of expected amounts of T4 in treated samples that were serially diluted or to which T4 was added. Intra- and interassay coefficient of variation (CV) was determined. Mean recovery of T4 added at 4 concentrations ranged from 84.9 to 115.0% and 95.8 to 119.4% in snakes and birds, respectively. Intra- and interassay CV was 3.8 and 11.3%, respectively. Serum total T4 concentrations for 5 species of birds ranged from 2.02 to 768 nmol/L but ranged from 3.17 to 142 nmol/L for blue-fronted Amazon parrots; concentrations ranged from 0.21 to 6.06 nmol/L for the 4 species of snakes. This new RIA method provides a commercially available, accurate, and sensitive method for measurement of the relatively low serum T4 concentrations of birds and snakes. Initial ranges for the species evaluated were established.

  15. Postmortem Tissue Distribution of Acetyl Fentanyl, Fentanyl and their Respective Nor-Metabolites Analyzed by Ultrahigh Performance Liquid Chromatography with Tandem Mass Spectrometry

    PubMed Central

    Poklis, Justin; Poklis, Alphonse; Wolf, Carl; Mainland, Mary; Hair, Laura; Devers, Kelly; Chrostowski, Leszek; Arbefeville, Elise; Merves, Michele; Pearson, Julia

    2015-01-01

    In the last two years, an epidemic of fatal narcotic overdose cases has occurred in the Tampa area of Florida. Fourteen of these deaths involved fentanyl and/or the new designer drug, acetyl fentanyl. Victim demographics, case histories, toxicology findings and causes and manners of death, as well as, disposition of fentanyl derivatives and their nor-metabolites in postmortem heart blood, peripheral blood, bile, brain, liver, urine and vitreous humor are presented. In the cases involving only acetyl fentanyl (without fentanyl, n=4), the average peripheral blood acetyl fentanyl concentration was 0.467 mg/L (range 0.31 to .60 mg/L) and average acetyl norfentanyl concentration was 0.053 mg/L (range 0.002 to 0.086 mg/L). In the cases involving fentanyl (without acetyl fentanyl, n=7), the average peripheral blood fentanyl concentration was 0.012 mg/L (range 0.004 to 0.027 mg/L) and average norfentanyl blood concentration was 0.001 mg/L (range 0.0002 to 0.003 mg/L). In the cases involving both acetyl fentanyl and fentanyl (n=3), the average peripheral blood acetyl fentanyl concentration was 0.008 mg/L (range 0.006 to 0.012 mg/L), the average peripheral blood acetyl norfentanyl concentration was 0.001 mg/L (range 0.001 to 0.002 mg/L), the average peripheral blood fentanyl concentration was 0.018 mg/L (range 0.015 to 0.021 mg/L) and the average peripheral blood norfentanyl concentration was 0.002 mg/L (range 0.001 mg/L to 0.003 mg/L). Based on the toxicology results, it is evident that when fentanyl and/or acetyl fentanyl were present, they contributed to the cause of death. A novel ultrahigh performance liquid chromatography (UPLC) tandem mass spectrometry (MS/MS) method to identify and quantify acetyl fentanyl, acetyl norfentanyl, fentanyl and norfentanyl in postmortem fluids and tissues is also presented. PMID:26583960

  16. Determination of polychlorinated biphenyls, selected persistent organochlorine pesticides, and polybrominated flame retardants in fillets of fishes from the 2006 Missouri Department of Conservation Monitoring Programs

    USGS Publications Warehouse

    Gale, Robert W.; May, Thomas W.; Orazio, Carl E.; McKee, Michael J.

    2008-01-01

    This report presents the results of a study to determine polychlorinated biphenyl, organochlorine pesticide, and polybrominated diphenyl ether flame retardant concentrations in selected fishes from lakes and streams across Missouri. Fillets were collected from each fish sample, and after homogenization, compositing, and preparation, analyte concentrations were determined with dual column capillary gas chromatography-electron-capture detection. Total concentrations of polychlorinated biphenyls in samples ranged from background levels of about 20 to 1,200 nanograms per gram. Chlordanes and DDT-related chemicals constituted the primary classes of pesticides present at elevated concentrations in most samples, and ranged from 5 to 340 nanograms per gram. Total concentrations of polybrominated diphenyl ethers in samples ranged from background levels of about 5 to about 410 nanograms per gram. Concentrations of total technical chlordane ranged from less than 5 to 260 nanograms per gram. Concentrations of polychlorinated biphenyls, chlordanes, DDT-related compounds, and polybrominated diphenyl ethers were all greatest in samples of blue catfish from Cape Girardeau and Weldon Spring.

  17. The refractive index of human hemoglobin in the visible range.

    PubMed

    Zhernovaya, O; Sydoruk, O; Tuchin, V; Douplik, A

    2011-07-07

    Because the refractive index of hemoglobin in the visible range is sensitive to the hemoglobin concentration, optical investigations of hemoglobin are important for medical diagnostics and treatment. Direct measurements of the refractive index are, however, challenging; few such measurements have previously been reported, especially in a wide wavelength range. We directly measured the refractive index of human deoxygenated and oxygenated hemoglobin for nine wavelengths between 400 and 700 nm for the hemoglobin concentrations up to 140 g l(-1). This paper analyzes the results and suggests a set of model functions to calculate the refractive index depending on the concentration. At all wavelengths, the measured values of the refractive index depended on the concentration linearly. Analyzing the slope of the lines, we determined the specific refraction increments, derived a set of model functions for the refractive index depending on the concentration, and compared our results with those available in the literature. Based on the model functions, we further calculated the refractive index at the physiological concentration within the erythrocytes of 320 g l(-1). The results can be used to calculate the refractive index in the visible range for arbitrary concentrations provided that the refractive indices depend on the concentration linearly.

  18. Concentrations of fecal coliform bacteria in creeks, Anchorage, Alaska, August and September 1998

    USGS Publications Warehouse

    Dorava, Joseph M.; Love, Andra

    1999-01-01

    Water samples were collected from five creeks in undeveloped, semi-developed, and developed areas of Anchorage, Alaska, during August and September 1998 to determine concentrations of fecal coliform bacteria. In undeveloped areas of Ship, Chester, and Campbell Creeks, and the semi-developed area of Rabbit Creek, concentrations of fecal coliform bacteria ranged from less than 1 to 16 colonies per 100 milliliters of water. In the semi-developed area of Little Rabbit Creek, concentrations ranged from 30 to 860 colonies per 100 milliliters of water. In developed areas of the creeks, concentrations of fecal coliform bacteria ranged from 6 to 80 colonies per 100 milliliters of water.

  19. Indirect spectrophotometric determination of traces of bromide in water

    USGS Publications Warehouse

    Fishman, M. J.; Skougstad, M.W.

    1963-01-01

    A rapid, accurate, and sensitive indirect spectrophotometric method for the determination of bromide in natural waters is based on the catalytic effect of bromide on the oxidation of iodine to iodate by potassium permanganate in sulfuric acid solution. The method is applicable to concentrations ranging from 1 to 100 ??g. of bromide per liter, but may be modified to extend the concentration range. Most ions commonly occurring in water do not interfere. The standard deviation is 2.9 at bromide concentrations of 100 ??g. per liter and less at lower concentrations. The determination of bromide in samples containing known added amounts gave values ranging from 99 to 105% of the concentration calculated to be present.

  20. The impact of production type and region on polychlorinated biphenyl (PCB), polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) concentrations in Canadian chicken egg yolks.

    PubMed

    Rawn, Dorothea F K; Sadler, Amy R; Quade, Sue C; Sun, Wing-Fung; Kosarac, Ivana; Hayward, Stephen; Ryan, J Jake

    2012-11-01

    Chicken eggs from five different production types (conventional, omega-3 enriched, free range, organic and free run) were collected, when available, from three regions (west, central and east) of Canada to determine persistent organic pollutant (POP) concentrations. Total polychlorinated biphenyl (PCB) concentrations (∑37 congeners) in yolks from the eggs ranged from 0.162 ng g(-1) lipid to 24.8 ng g(-1) lipid (median 1.25 ng g(-1) lipid) while the concentration of the sum of the 6 indicator PCBs ranged from 0.100 ng g(-1) lipid to 9.33 ng g(-1) lipid (median 0.495 ng g(-1) lipid). Total polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F) concentrations ranged from 2.37 pg g(-1) lipid to 382 pg g(-1) lipid (median 9.53 pg g(-1) lipid). The 2005 WHO toxic equivalency (TEQ) ranged from 0.089 pg TEQ(PCDD/F+dioxin-like[DL]-PCB) g(-1) lipid to 12.8 pg TEQ(PCDD/F+DL-PCB) g(-1) lipid (median 0.342 pg TEQ(PCDD/F+DL-PCB) g(-1) lipid). PCB and PCDD/F concentrations were significantly different (p<0.001) in egg yolks from different regions of collection. In contrast to observations in Europe, PCB and PCDD/F concentrations in Canadian egg yolks were not impacted solely by the production type (e.g., conventional, free range, organic, etc.) used to maintain the laying chickens. Additionally, only one Canadian free range yolk from western Canada (12.8 pg TEQ(PCDD/F+DL-PCB) g(-1) lipid) exceeded the European toxic equivalent concentration limits for eggs (5 pg TEQ(PCDD/F+DL-PCB) g(-1) lipid). This differs from observations in Europe where free range/home produced eggs frequently have higher POP concentrations than eggs from other production types. Median PCB dietary intake estimates based on consumption of eggs were less than 10 ng d(-1) while median PCDD/F intakes were less than 45 pg d(-1). Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  1. Fat-soluble vitamin and mineral comparisons between zoo-based and free-ranging koalas (Phascolarctos cinereus).

    PubMed

    Schmidt, Debra A; Pye, Geoffrey W; Hamlin-Andrus, Chris C; Ellis, William A; Bercovitch, Fred B; Ellersieck, Mark R; Chen, Tai C; Holick, Michael F

    2013-12-01

    As part of a health investigation on koalas at San Diego Zoo, serum samples were analyzed from 18 free-ranging and 22 zoo-based koalas, Phascolarctos cinereus. Serum concentrations of calcium, chloride, cobalt, copper, iron, magnesium, manganese, molybdenum, phosphorus, potassium, selenium, sodium, zinc, and vitamins A, E, and 25(OH)D3 were quantified. Calcium, chloride, molybdenum, selenium, and vitamin E concentrations were significantly higher in zoo-based koalas than in free-ranging koalas, whereas magnesium, manganese, phosphorus, and zinc concentrations were significantly higher in the free-ranging koalas. No significant differences were found between genders. The results from this study will help to establish a starting point for determining target circulating nutrient concentrations in koalas.

  2. Evaluation of the thyroid status of Basenji dogs in Australia.

    PubMed

    Seavers, A; Snow, D H; Mason, K V; Malik, R

    2008-11-01

    To determine the thyroid status of Basenji dogs in Australia. Jugular or cephalic venipuncture blood samples were taken from 113 Basenji, comprising 47 males, 5 castrates, 48 entire and 13 spayed bitches, and sent on ice in plain and EDTA tubes to a single laboratory to determine haematocrit and serum concentrations of total thyroid hormone (thyroxine, TT4), thyroid-stimulating hormone (TSH) and cholesterol. In a subgroup of 8 dogs with abnormal elevated TSH concentrations and subnormal TT4 concentrations, 5 were further examined by dynamic endocrine testing using recombinant human (rh) TSH (54 microg). Ages ranged from 1 to 14 years and weight range was 6.5 to 14.0 kg. TT4 concentrations (nmol/L) ranged from 2 to 27, with a median of 13 and a mean +/- SD of 13.0 +/- 5.7. Importantly, 85/113 (75%) of TT4 values were lower than the normal laboratory reference range (17-37). TSH concentrations (ng/mL) ranged from 0.05 to 5.37, with a median of 0.16 and a mean +/- SD of 0.3 +/- 0.6. Basenji have a similar reference range for serum TSH, but a considerably lower reference range for TT4 (2-27 nmol/L) than most breeds and crossbreds, resembling the sight hounds in this respect. Given the difficulty of accurately measuring TT4 concentrations that are so low, concomitant serial TSH determinations are essential to properly asses thyroid function. Taken alone, TT4 determinations are only of use when the value is within the reference range, in which case a diagnosis of hypothyroidism is likely excluded.

  3. Water and sediment quality of the Lake Andes and Choteau Creek basins, South Dakota, 1983-2000

    USGS Publications Warehouse

    Sando, Steven Kent; Neitzert, Kathleen M.

    2003-01-01

    The Bureau of Reclamation has proposed construction of the Lake Andes/Wagner Irrigation Demonstration Project to investigate environmental effects of irrigation of glacial till soils substantially derived from marine shales. During 1983-2000, the U.S. Geological Survey collected hydrologic, water-quality, and sediment data in the Lake Andes and Choteau Creek Basins, and on the Missouri River upstream and downstream from Choteau Creek, to provide baseline information in support of the proposed demonstration project. Lake Andes has a drainage area of about 230 mi2 (square miles). Tributaries to Lake Andes are ephemeral. Water-level fluctuations in Lake Andes can be large, and the lake has been completely dry on several occasions. The outlet aqueduct from Lake Andes feeds into Garden Creek, which enters Lake Francis Case just upstream from Fort Randall Dam on the Missouri River. For Lake Andes tributary stations, calcium, magnesium, and sodium are approximately codominant among the cations, and sulfate is the dominant anion. Dissolved-solids concentrations typically range from about 1,000 mg/L (milligrams per liter) to about 1,700 mg/L. Major-ion concentrations for Lake Andes tend to be higher than the tributaries and generally increase downstream in Lake Andes. Proportions of major ions are similar among the different lake units (with the exception of Owens Bay), with calcium, magnesium, and sodium being approximately codominant among cations, and sulfate being the dominant anion. Owens Bay is characterized by a calcium sulfate water type. Dissolved-solids concentrations for Lake Andes typically range from about 1,400 to 2,000 mg/L. Whole-water nitrogen and phosphorus concentrations are similar among the Lake Andes tributaries, with median whole-water nitrogen concentrations ranging from about 1.6 to 2.4 mg/L, and median whole-water phosphorus concentrations ranging from about 0.5 to 0.7 mg/L. Whole-water nitrogen concentrations in Lake Andes are similar among the different units, with medians that range from about 2.4 to 4.0 mg/L. Median whole-water phosphorus concentrations for the different Lake Andes units range from 0.2 to 0.5 mg/L, and decrease downstream through Lake Andes. Median selenium concentrations are substantially lower for Andes Creek (3 ?g/L (micrograms per liter)) than for the other tributary stations (34, 18, and 7 ?g/L). Median selenium concentrations for the lake stations (ranging from less than 1 to 2 ?g/L) are substantially lower than tributary stations. The pesticides 2,4-D and atrazine were the most commonly detected pesticides in Lake Andes. Median concentrations for 2,4-D for Lake Andes range from 0.07 to 0.11 ?g/L; the median concentration for Owens Bay is 0.04 ?g/L. Median concentrations for atrazine for Lake Andes range from 0.2 to 0.4 ?g/L; the median concentration for Owens Bay is less than 0.1 ?g/L. Concentrations of both 2,4-D and atrazine are largest for the most upstream part of Lake Andes that is most influenced by tributary inflow. Median suspended-sediment concentrations for Lake Andes tributaries range from 22 to 56 mg/L. Most of the suspended sediment transported in the Lake Andes tributaries consists of particles less than 63 ?m (micrometers) in diameter. Concentrations of most constituents in bottom sediments generally had similar ranges and medians for the Lake Andes tributaries. However, Andes Creek generally had lower concentrations of several metals. For Lake Andes, medians and ranges for most constituents generally were similar among the different units. However, selenium concentrations tended to be higher in the upstream part of the lake, and generally decreased downstream. Results of vertical sediment cores collected from a single site in the South Unit of Lake Andes in October 2000 indicate that selenium loading to Lake Andes increased during the period 1952 through 2000. Choteau Creek has a drainage area of 619 mi2. In the upstream part of the basin, Chotea

  4. Evaluation of Emerging Contaminants of Concern at the South District Wastewater Treatment Plant Based on Seasonal Events, Miami-Dade County, Florida, 2004

    USGS Publications Warehouse

    Lietz, Arthur C.; Meyer, Michael T.

    2006-01-01

    The Comprehensive Everglades Restoration Plan has identified highly treated wastewater as a possible water source for the restoration of natural water flows and hydroperiods in selected coastal areas, including the Biscayne Bay coastal wetlands. One potential source of reclaimed wastewater for the Biscayne Bay coastal wetlands is the effluent from the South District Wastewater Treatment Plant in southern Miami-Dade County. The U.S. Geological Survey, in cooperation with the Comprehensive Everglades Restoration Plan Wastewater Reuse Technology Pilot Project Delivery Team, initiated a study to assess the presence of emerging contaminants of concern in the South District Wastewater Treatment Plant influent and effluent using current wastewater-treatment methods. As part of the study, 24-hour composite and discrete samples were collected at six locations (influent at plants 1 and 2, effluent pump, reuse train, chlorine dioxide unit, and ultraviolet pilot unit) at the plant during: (1) a dry-season, low-flow event on March 2-3, 2004, with an average inflow rate of 83.7 million gallons per day; (2) a wet-season, average-flow event on July 20-21, 2004, with an average inflow rate of 89.7 million gallons per day; and (3) high-rate disinfection tests on October 5 and 20, 2004, with average flow rates of 84.1 and 119.6 million gallons per day, respectively. During these four sampling events, 26, 27, 29, and 35 constituents were detected, respectively. The following transformations in concentration were determined in the waste stream: -100 to 180 percent at the effluent pump and -100 to 85 percent at the reuse train on March 2-3, 2004, and -100 to 1,609 percent at the effluent pump and -100 to 832 percent at the reuse train on July 20-21, 2004; -100 to -37 percent at the effluent pump, -100 to -62 percent at the reuse train, -100 to -56 percent at the chlorine dioxide unit, and -100 to -40 percent at the ultraviolet pilot unit on October 5, 2004; and -100 to -4 percent at the effluent pump, -100 to 17 percent at the reuse train, -100 to -40 percent at the chlorine dioxide unit, and -100 to -14 percent at the ultraviolet pilot unit on October 20, 2004. Samples were tested for detection of household and industrial (organic) wastewater compounds, pharmaceutical compounds, antibiotic compounds, and hormones in influent. Two 'known' endocrine disrupting compounds?17 beta-estradiol (E2) and diethoxynonylphenol? and four 'suspected' endocrine-disrupting compounds?1,4-dichlorobenzene, benzophenone, tris(2-chloroethyl) phosphate, and tris(dichloroisopropyl) phosphate?were detected during these sampling events. Phenanthrene and indole showed the greatest concentration ranges and highest concentrations for the organic wastewater compounds. Acetaminophen showed the greatest concentration range and highest concentration, and warfarin showed the smallest concentration range for the pharmaceutical compounds. Sulfamethoxazole (a sulfonamide) showed the greatest concentration range and highest concentration, and sulfathiozole (also a sulfonamide) showed the smallest concentration range for the antibiotic compounds. Two hormones, 17 beta-estradiol (E2) and estrone (E1), were detected in influent. Samples were also tested for detection of organic wastewater compounds, pharmaceutical compounds, antibiotic compounds, and hormones in effluent. Indole showed the greatest concentration range and highest concentration, and triphenyl phosphate showed the smallest concentration range for the organic wastewater compounds. Dehydronifedipine showed the greatest concentration range and highest concentration, and warfarin had the smallest concentration range for the pharmaceutical compounds. Anhydro-erythromycin (a macrolide degradation product) showed the greatest concentration range, and sulfadiazine (a sulfonamide) and tetracycline showed the lowest concentration ranges for the antibiotic compounds. One hormone, 17 beta-estradiol (E2), was det

  5. Uptake of 40K and 137Cs in native plants of the Marshall Islands.

    PubMed

    Simon, S L; Graham, J C; Terp, S D

    2002-01-01

    Uptake of 137Cs and 40K was studied in seven native plant species of the Marshall Islands. Plant and soil samples were obtained across a broad range of soil 137Cs concentrations (0.08-3900 Bq/kg) and a narrower range of 40K soil concentrations (2.3-55 Bq/kg), but with no systematic variation of 40K relative to 137Cs. Potassium-40 concentrations in plants varied little within the range of 40K soil concentrations observed. Unlike the case for 40K, 137Cs concentrations increased in plants with increasing 137Cs soil concentrations though not precisely in a proportionate manner. The best-fit relationship between soil and plant concentrations was P = aSb where a and b are regression coefficients and P and S are plant and soil concentrations, respectively. The exponent b for 40K was zero, implying plant concentrations were a single value, while b for 137Cs varied between 0.51 and 0.82, depending on the species. For both 40K and 137Cs, we observed a decreasing concentration ratio (where concentration ratio=plant concentration/soil concentration) with increasing soil concentrations. For the CR values, the best-fit relationship was of the form CR = aSb/S = aSb(-1). For the 40K CR functions, the exponent b - 1 was close to - 1 for all species. For the 137Cs CR functions, the exponent b - 1 varied from -0.19 to -0.48. The findings presented here, aswell as those by other investigators, collectively argue against the usefulness of simplistic ratio models to accurately predict uptake of either 40K or 137Cs in plants over wide ranges of soil concentration.

  6. Effect of increasing Helicobacter pylori ammonia production by urea infusion on plasma gastrin concentrations.

    PubMed Central

    Chittajallu, R S; Neithercut, W D; Macdonald, A M; McColl, K E

    1991-01-01

    It has been proposed that the hypergastrinaemia in subjects with Helicobacter pylori infection is caused by the action of the ammonia produced by the organism's urease activity on the antral G cells. To investigate this hypothesis we examined the effect on plasma gastrin of increasing the bacterium's ammonia production by infusing urea intragastrically to eight H pylori positive duodenal ulcer patients. After a 60 minute control intragastric infusion of dextrose solution at 2 ml/minute, a similar infusion containing urea (50 mmol/l) was continued for four hours. During the urea infusion, the median gastric juice urea concentration rose from 1.1 mmol/l (range 0.3-1.6) to 15.5 mmol/l (range 7.9-21.3) and this resulted in an increase in the ammonium concentration from 2.3 mmol/l (range 1.3-5.9) to 6.1 mmol/l (range 4.2-11.9) (p less than 0.01). This appreciable rise in ammonia production did not result in any change in the plasma gastrin concentration. The experiment was repeated one month after eradication of H pylori, at which time the median basal gastrin was 20 ng/l (range 15-25), significantly less than the value before eradication (30 ng/l range 15-60) (p less than 0.05). On this occasion, the gastric juice ammonium concentration was considerably reduced at 0.4 mmol/l (range 0.1-0.9) and the urea infusion did not raise the ammonium concentration or change the plasma gastrin concentration. In conclusion, augmenting H pylori ammonia production does not cause any early change in plasma gastrin. PMID:1991633

  7. High extracellular concentration of excitatory amino acids glutamate and aspartate in human brain abscess.

    PubMed

    Dahlberg, Daniel; Ivanovic, Jugoslav; Hassel, Bjørnar

    2014-04-01

    Brain abscesses often cause symptoms of brain dysfunction, including seizures, suggesting interference with normal neurotransmission. We determined the concentration of extracellular neuroactive amino acids in brain abscesses from 16 human patients. Glutamate was present at 3.6 mmol/L (median value, range 0.5-10.8), aspartate at 1.0 mmol/L (range 0.09-6.8). For comparison, in cerebroventricular fluid glutamate was ∼0.6 μmol/L, and aspartate was not different from zero. The total concentration of amino acids was higher in eight patients with seizures: 66 mmol/L (median value, range 19-109) vs. 21 mmol/L (range 4-52) in eight patients without seizures (p=0.026). The concentration of aspartate and essential amino acids tryptophan, phenylalanine, tyrosine, leucine, and isoleucine was higher in pus from patients with seizures (p⩽0.040), whereas that of glutamate was not (p=0.095). The median concentration of the non-proteinogenic, inhibitory amino acid taurine was similar in the two groups, 0.7-0.8 mmol/L (range 0.1-6.1). GABA could not be detected in pus. The patient groups did not differ with respect to abscess volume, the cerebral lobe affected, age, or time from symptom onset to surgery. Seven patients with extracerebral, intracranial abscesses had significantly lower pus concentration of glutamate (352 μmol/L, range 83-1368) and aspartate (71 μmol/L, range 22-330) than intracerebral abscesses (p<0.001). We conclude that excitatory amino acids glutamate and aspartate may reach very high concentrations in brain abscesses, probably contributing to symptoms through activation of glutamate receptors in the surrounding brain tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Measurement of variation in soil solute tracer concentration across a range of effective pore sizes

    USGS Publications Warehouse

    Harvey, Judson W.

    1993-01-01

    Solute transport concepts in soil are based on speculation that solutes are distributed nonuniformly within large and small pores. Solute concentrations have not previously been measured across a range of pore sizes and examined in relation to soil hydrological properties. For this study, modified pressure cells were used to measure variation in concentration of a solute tracer across a range of pore sizes. Intact cores were removed from the site of a field tracer experiment, and soil water was eluted from 10 or more discrete classes of pore size. Simultaneous changes in water content and unsaturated hydraulic conductivity were determined on cores using standard pressure cell techniques. Bromide tracer concentration varied by as much as 100% across the range of pore sizes sampled. Immediately following application of the bromide tracer on field plots, bromide was most concentrated in the largest pores; concentrations were lower in pores of progressively smaller sizes. After 27 days, bromide was most dilute in the largest pores and concentrations were higher in the smaller pores. A sharp, threefold decrease in specific water capacity during elution indicated separation of two major pore size classes at a pressure of 47 cm H2O and a corresponding effective pore diameter of 70 μm. Variation in tracer concentration, on the other hand, was spread across the entire range of pore sizes investigated in this study. A two-porosity characterization of the transport domain, based on water retention criteria, only broadly characterized the pattern of variation in tracer concentration across pore size classes during transport through a macroporous soil.

  9. Suspected hypoglycaemia in out patient practice: accuracy of dried blood spot analysis.

    PubMed

    Parker, D R; Bargiota, A; Cowan, F J; Corrall, R J

    1997-12-01

    The assay of dried blood spots on filter paper to determine blood glucose concentration has been used to detect hypoglycaemia in out patients. We assessed the accuracy of this approach in assaying blood glucose concentrations in the hypoglycaemic range. Volunteers were rendered hypoglycaemic by intravenous infusion of insulin. The glucose concentration in simultaneously taken blood samples was measured either fresh or after drying on filter paper. Twenty-four healthy young volunteers and 9 patients with insulin-dependent diabetes were studied. Plasma glucose concentrations were measured using a standard auto analyser glucose oxidase method. Whole blood taken simultaneously was placed on prepared filter paper and allowed to dry; glucose concentration was then measured using a well-established technique. A correction factor was applied to convert the glucose concentration of plasma to that of whole blood. The relationship between glucose concentrations measured by the two methods was determined by regression coefficient. In the unequivocally hypoglycaemic range (plasma < or = 2.5 mmol/l), corrected dried blood spot glucose concentrations significantly correlated with standard plasma glucose concentrations (r = 0.81; P < 0.001). The dried blood spot method had a sensitivity of 91%. In the range designated probable hypoglycaemia (plasma < or = 3.3 mmol/l), there was also significant correlation (r = 0.90; P < 0.001) and the sensitivity was 96%. The specificity of the dried blood spot method was 100% in both ranges. Measurement of glucose concentrations in dried blood spots is specific and sensitive in the hypoglycaemic range. The present study indicates that hypoglycaemia may be excluded or confirmed respectively when levels in excess of 3.7 or below 2.8 mmol/l are found in uncorrected dried blood spot analysis.

  10. Normal lactate concentration range in the neonatal brain.

    PubMed

    Tomiyasu, Moyoko; Aida, Noriko; Shibasaki, Jun; Tachibana, Yasuhiko; Endo, Mamiko; Nozawa, Kumiko; Shimizu, Eiji; Tsuji, Hiroshi; Obata, Takayuki

    2016-11-01

    Lactate peaks are occasionally observed during in vivo magnetic resonance spectroscopy (MRS) scans of the neonatal brain, even in healthy patients. The purpose of this study was to investigate the normal range of neonatal brain lactate concentration, as a definitive normal range would be clinically valuable. Using a clinical 3T scanner (echo/repetition times, 30/5000ms), single-voxel MRS data were obtained from the basal ganglia (BG) and centrum semiovale (CS) in 48 healthy neonates (postconceptional age (PCA), 30-43weeks), nine infants (age, 1-12months old), and 20 children (age, 4-15years). Lactate concentrations were calculated using an MRS signal quantification program, LCModel. Correlations between regional lactate concentration and PCA (neonates), or age (all subjects) were investigated. Absolute lactate concentrations of the BG and CS were as follows: neonates, 0.77mM (0-2.02) [median (range)] and 0.77 (0-1.42), respectively; infants, 0.38 (0-0.79) and 0.49 (0.17-1.17); and children, 0.17 (0-0.76) and 0.22 (0-0.80). Overall, subjects' lactate concentrations decreased significantly with age (Spearman: BG, n=61, ρ=-0.38, p=0.003; CS, n=68, ρ=-0.57, p<0.001). However, during the neonatal period no correlations were detected between lactate concentration in either region and PCA. We determined normal ranges of neonatal lactate concentration, which may prove useful for diagnostic purposes. Further studies regarding changes in brain lactate concentration during development would help clarify the reasons for higher concentrations observed during the neonatal period, and contribute to improvements in diagnoses. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Plasma concentrations of midazolam during continuous subcutaneous administration in palliative care.

    PubMed

    Bleasel, M D; Peterson, G M; Dunne, P F

    1994-01-01

    We have investigated the steady-state plasma concentrations of midazolam during continuous subcutaneous administration in palliative care. Using a sensitive gas chromatography with electron capture detector assay, plasma concentrations of midazolam were measured in 11 patients (median age 68 years; range 47-82 years; six females) receiving the drug by continuous subcutaneous infusion (median rate 20 mg/day; range 10-60 mg/day). While not significant, the infusion rate tended to decrease with increasing age of the patient (Spearman's p = -0.51; p = 0.11). The steady-state plasma concentration range was 10-147 ng/ml, with a median of 30 ng/ml. Infusion rates and plasma concentrations of midazolam were correlated (Spearman's p = 0.71; p < 0.05). No other significant relationships were found between plasma concentrations and the variables of age, sex and liver function.

  12. The clinical pattern of nephrotic syndrome in children has no effect on the concentration of soluble urokinase receptor (suPAR) in serum and urine.

    PubMed

    Ochocińska, Agnieszka; Jarmużek, Wioletta; Janas, Roman

    2018-04-23

    Concentration of soluble urokinase receptor (suPAR) was regarded as viable marker to differentiate the focal segmental glomerulosclerosis (FSGS) from other glomerulopathies and also as predictive parameter for progression of renal disease. The aim of this study was to evaluate serum and urine (s)(u)suPAR concentration in steroid-sensitive and steroid-resistant nephrotic children treated with different (double and triple-drug) regimens. Overall 43 children were evaluated including 14 patients with steroid-resistant nephrotic syndrome (SRNS) aged 9±6 years and 29 with steroid-sensitive nephrotic syndrome (SSNS) aged 9±5 years, as well as control group (n=59). The concentration of suPAR was measured with ELISA kit (R∧D Systems Inc.). There was no difference in serum suPAR level between SRNS (6404, range: 4613-9575 pg/mL) and SSNS (5745, range: 4666-8246 pg/mL) patients, and also in urinary suPAR: SRNS (2877, range: 847- 19121 pg/mL) and SSNS (2854, range: 328-7434 pg/mL), respectively. There was no statistically significant difference in serum biomarker concentrations between patients with severe course of the disease, in combination therapy, with three drugs: CsA + MMF + Pred (5968, range: 4613-9575 pg/mL) in comparison with patients receiving double therapy: CsA + Pred or MMF + Pred (5449, range: 4666-6623 pg/mL, 5905, range: 5102-6730 pg/mL, respectively). SuPAR concentration in the urine of patients treated with Pred + MMF was lower (1493, range: 328-4444 pg/mL) than in patients receiving Pred + CsA (3193, range: 629-7434 pg/mL), as well as lower than in patients with triple combination of drugs (3318, range: 448-5570 pg/mL), however the difference was not statistically significant. Serum and urine concentration of suPAR did not different between different clinical patterns of nephrotic syndrome in children, regardless the immunosuppressive treatment used. © 2018 MEDPRESS.

  13. Relation of concentration and exposure time to the efficacy of niclosamide against larval sea lampreys (Petromyzon marinus)

    USGS Publications Warehouse

    Scholefield, R.J.; Bergstedt, R.A.; Bills, T.D.

    2003-01-01

    The efficacy of 2’, 5-dichloro-4’-nitrosalicylanilide (niclosamide) at various concentrations and exposure times was tested against free-swimming larval sea lampreys (Petromyzon marinus) at 12°C and 17°C in Lake Huron water. Concentrations of niclosamide in test solutions ranged from 0.46 to 4.7 mg/L with pH 7.8 to 8.3, total alkalinity 78 to 88 mg/L as CaCO3, and total hardness 95 to 105 mg/L as CaCO3. In each test, six groups of larvae were exposed to a single concentration of niclosamide for times ranging from 30 s to 30 min. Exposure time was treated as the dose and, for each concentration tested, the exposure time necessary to kill 50 and 99.9% of larvae (ET50 and ET99.9) was determined. Linear regressions of the log10-transformed ET50 and ET99.9 on the log10-transformed niclosamide concentrations were significant at both temperatures with r2ranging from 0.94 to 0.98. The predicted ET50 ranged from 58 sec to 21.7 min and the ET99.9 ranged from 2.5 to 43.5 min across the concentrations and temperatures tested. Niclosamide required a significantly longer time to kill larvae at 12°C than at 17°C.

  14. Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zellmer, S.D.; Schneider, J.F.

    1993-05-01

    Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm andmore » soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.« less

  15. The relationship of nitrate concentrations in streams to row crop land use in Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Libra, R.D.

    2000-01-01

    The relationship between row crop land use and nitrate N concentrations in surface water was evaluated for 15 Iowa watersheds ranging from 1002 to 2774 km2 and 10 smaller watersheds ranging from 47 to 775 km2 for the period 1996 to 1998. The percentage of land in row crop varied from 24 to >87% in the 15 large watersheds, and mean annual NO3-N concentrations ranged from 0.5 to 10.8 mg/L. In the small watersheds, row crop percentage varied from 28 to 87% and mean annual NO3-N concentrations ranged from 3.0 to 10.5 mg/L. In both cases, nitrate N concentrations were directly related to the percentage of row crop in the watershed (p 87% in the 15 large watersheds, and mean annual NO3-N concentrations ranged from 0.5 to 10.8 mg/L. In the small watersheds, row crop percentage varied from 28 to 87% and mean annual NO3-N concentrations ranged from 3.0 to 10.5 mg/L. In both cases, nitrate N concentrations were directly related to the percentage of row crop in the watershed (p<0.0003). Linear regression showed similar slope for both sets of watersheds (0.11) suggesting that average annual surface water nitrate concentrations in Iowa, and possibly similar agricultural areas in the midwestern USA, can be approximated by multiplying a watershed's row crop percentage by 0.1. Comparing the Iowa watershed data with similar data collected at a subwatershed scale in Iowa (0.1 to 8.1 km2) and a larger midcontinent scale (7300 to 237 100 km2) suggests that watershed scale affects the relationship of nitrate concentration and land use. The slope of nitrate concentration versus row crop percentage decreases with increasing watershed size.Mean nitrate concentrations and row crop land use were summarized for 15 larger and ten smaller watersheds in Iowa, and the relationship between NO3 concentration and land use was examined. Linear regression of mean NO3 concentration and percent row crop was highly significant for both sets of watershed data, but a stronger correlation was noted in the small-watershed data. Both data sets suggested that mean annual surface-water NO3 concentrations in the state could be approximated by multiplying the watershed's percent row crop by 0.1. The slope of NO3 concentration versus row crop percentage appeared to decrease with increasing watershed size.

  16. Metolachlor and its metabolites in tile drain and stream runoff in the canajoharie creek watershed

    USGS Publications Warehouse

    Phillips, P.J.; Wall, G.R.; Thurman, E.M.; Eckhardt, D.A.; Vanhoesen, J.

    1999-01-01

    Water samples collected during April-November 1997 from tile drains beneath cultivated fields in central New York indicate that two metabolites of the herbicide metolachlor-metolachlor ESA (ethanesulfonic acid) and OA (oxanilic acid) can persist in agricultural soils for 4 or more years after application and that fine-grained soils favor the transport of metolachlor ESA over metolachlor and metolachlor OA. Concentrations of metolachlor ESA from the tile drains ranged from 3.27 to 23.4 ??g/L (200 1800 times higher than those of metolachlor), metolachlor OA concentrations ranged from 1.14 to 13.5 ??g/L, and metolachlor concentrations ranged from less than 0.01 to 0.1 ??g/L. In the receiving stream, concentrations of metolachlor ESA were always below 0.6 ??g/L except during a November storm, when concentrations reached 0.85 ??g/L. Concentrations of metolachlor ESA in the stream were 2 45 times higher than those of metolachlor, reflecting the greater relative concentrations of metolachlor in surface water runoff than in tile drain runoff. These results are consistent with findings in other studies that acetanilide herbicide degredates are found in much higher concentrations than parent compounds in both surface water and groundwater.Water samples collected during April-November 1997 from tile drains beneath cultivated fields in central New York indicate that two metabolites of the herbicide metolachlor-metolachlor ESA (ethanesulfonic acid) and OA (oxanilic acid)-can persist in agricultural soils for 4 or more years after application and that fine-grained soils favor the transport of metolachlor ESA over metolachlor and metolachlor OA. Concentrations of metolachlor ESA from the tile drains ranged from 3.27 to 23.4 ??g/L (200-1800 times higher than those of metolachlor), metolachlor OA concentrations ranged from 1.14 to 13.5 ??g/L, and metolachlor concentrations ranged from less than 0.01 to 0.1 ??g/L. In the receiving stream, concentrations of metolachlor ESA were always below 0.6 ??g/L except during a November storm, when concentrations reached 0.85 ??g/L. Concentrations of metolachlor ESA in the stream were 2-45 times higher than those of metolachlor, reflecting the greater relative concentrations of metolachlor in surface water runoff than in tile drain runoff. These results are consistent with findings in other studies that acetanilide herbicide degredates are found in much higher concentrations than parent compounds in both surface water and groundwater.

  17. Serum chemistry comparisons between captive and free-ranging giraffes (Giraffa camelopardalis).

    PubMed

    Schmidt, Debra A; Barbiers, Robyn B; Ellersieck, Mark R; Ball, Ray L; Koutsos, Elizabeth A; Griffin, Mark E; Grobler, Douw; Citino, Scott B; Bush, Mitchell

    2011-03-01

    Serum chemistry analyses were compared between captive and free-ranging giraffes (Giraffa camelopardalis) in an attempt to better understand some of the medical issues seen with captive giraffes. Illnesses, including peracute mortality, energy malnutrition, pancreatic disease, urolithiasis, hoof disease, and severe intestinal parasitism, may be related to zoo nutrition and management issues. Serum samples were collected from 20 captive giraffes at 10 United States institutions. Thirteen of the captive animal samples were collected from animals trained for blood collection; seven were banked samples obtained from a previous serum collection. These samples were compared with serum samples collected from 24 free-ranging giraffes in South Africa. Differences between captive and free-ranging giraffes, males and females, and adults and subadults were analyzed by using a 2 x 2 x 2 factorial and Fisher's least significant difference for mean separation; when necessary variables were ranked and analyzed via analysis of variance. Potassium and bilirubin concentrations and alanine aminotransferase (ALT) activities were different between captive and free-ranging giraffes, but all fell within normal bovid reference ranges. The average glucose concentration was significantly elevated in free-ranging giraffes (161 mg/dl) compared with captive giraffes (113 mg/dl). All giraffes in this study had glucose concentrations higher than bovine (42-75 mg/ dl) and caprine (48-76 mg/dl) reference ranges. Differences were also seen in lipase, chloride, and magnesium though these findings are likely not clinically significant. There were no differences detected between sexes. Adults had higher concentrations of potassium, total protein, globulins, and chloride and higher gamma glutamyltransferase activities, whereas subadults had higher concentrations of phosphorus. Within the captive group, nonimmobilized animals had higher concentrations of total protein and globulins. Captive giraffe diets need further investigation to determine if the differences seen in this study, especially glucose and bilirubin concentrations and ALT activities, may result in some health problems often seen in captive giraffes.

  18. Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration.

    PubMed

    Friebel, Moritz; Meinke, Martina

    2006-04-20

    The real part of the complex refractive index of oxygenated native hemoglobin solutions dependent on concentration was determined in the wavelength range 250 to 1100 nm by Fresnel reflectance measurements. The hemoglobin solution was produced by physical hemolysis of human erythrocytes followed by ultracentrifugation and filtration. A model function is presented for calculating the refractive index of hemoglobin solutions depending on concentration in the wavelength range 250 to 1100 nm.

  19. Correlation and toxicological inference of trace elements in tissues from stranded and free-ranging bottlenose dolphins (Tursiops truncatus).

    PubMed

    Stavros, Hui-Chen W; Stolen, Megan; Durden, Wendy Noke; McFee, Wayne; Bossart, Gregory D; Fair, Patricia A

    2011-03-01

    The significance of metal concentrations in marine mammals is not well understood and relating concentrations between stranded and free-ranging populations has been difficult. In order to predict liver concentrations in free-ranging dolphins, we examined concentrations of trace elements (Al, As, Ba, Be, Cd, Co, Cu, Fe, Li, Mn, Ni, Pb, Sb, Se, Sn, total Hg (THg), V, Zn) in skin and liver of stranded bottlenose dolphins (Tursiops truncatus) from the South Carolina (SC) coast and the Indian River Lagoon, Florida (FL) during 2000-2008. Significantly higher concentrations of Zn, Fe, Se, Al, Cu and THg were found in skin while liver exhibited significantly higher Cu, Fe, Mn and THg concentrations for both study sites. Mean skin concentrations of Cu and Mn were significantly higher in SC dolphins while higher concentrations of THg and V were found in FL dolphins. In addition, liver tissues in SC dolphins exhibited significantly higher As concentrations while higher Fe, Pb, Se, THg, and V levels were found in FL dolphins. Two elements (Cu and THg) showed significant age-related correlations with skin concentration while five elements (Cu, Se, THg, Zn and V) showed age-related correlations with liver concentrations. Geographic location influenced age-related accumulation of several trace elements and age-related accumulation of THg in hepatic tissue was observed for both sites to have the highest correlations (r² = 0.90SC; r² = 0.69FL). Mean THg concentration in liver was about 10 times higher in FL dolphins (330 μg g⁻¹ dw) than those samples from SC dolphins (34.3 μg g⁻¹ dw). The mean molar ratio of Hg to Se was 0.93 ± 0.32 and 1.08 ± 0.38 for SC and FL dolphins, respectively. However, the Hg:Se ratio varied with age as much lower ratios (0.2-0.4) were found in younger animals. Of the 18 measured elements, only THg was significantly correlated in skin and liver of stranded dolphins and skin of free-ranging dolphins from both sites suggesting that skin may be useful in predicting Hg concentrations in liver tissue of free-ranging dolphins. Results indicate that 33% of the stranded and 15% of the free-ranging dolphins from FL exceed the minimum 100 μg g⁻¹ wet weight (ww) (~ 400 dw) Hg threshold for hepatic damage while none from SC reached this level. Hepatic concentrations of As in SC dolphins and V in FL dolphins were also highly correlated with skin concentrations which may have some regional specificity predictive value. The present study provides the first application of trace element concentrations derived from stranded bottlenose dolphins to predict liver concentrations in free-ranging populations. Copyright © 2010. Published by Elsevier Ltd.

  20. Tritium Separation from High Volume Dilute Aqueous Streams- Milestone Report for M3FT-15OR0302092

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhave, Ramesh R.; Jubin, Robert Thomas; Spencer, Barry B.

    2016-02-29

    This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. Several silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized and characterized with gas and vapor permeation measurements. The pervaporation process performance was evaluated for the separation and concentration of tritiated water. Experiments were performed over a range of tritiated water concentration covering the range of concentration anticipated in nuclear fuel processing where potentially both acid and water streams are recycled. The permeate was recovered under vacuum. The tritium concentration ranged from 0.5 to 1more » mCi/mL which is about 0.1 mg/L or 0.1 ppm. The HTO concentration was three orders of magnitude lower than experiments performed with simulated feed containing HDO (>100 ppm) using deuterated water where high separation factors (>10) were obtained using SAPO membranes. Separation factor calculated from the measured tritium concentrations ranged from 0.83-0.98. Although the membrane performance characterization results were lower than expected, they can be explained on the basis of low feed volume and three orders of magnitude lower HTO concentration compared to HDO concentration in deuterated water. We have identified several new approaches, such as tuning the diffusion coefficient of HTO, that may help achieve preferential transport of tritium (HTO) resulting in a substantially more concentrated permeate.« less

  1. Measurement of late-night salivary cortisol with an automated immunoassay system.

    PubMed

    Vogeser, Michael; Durner, Jürgen; Seliger, Ewald; Auernhammer, Christoph

    2006-01-01

    Measurement of late-night salivary cortisol concentrations is increasingly used as a screening test in suspected Cushing's syndrome. Cortisol concentrations are typically extremely low in late-night samples and discordant assay-specific reference ranges have been reported. Therefore, the aim of our study was to assess the analytical performance of the first automated cortisol immunoassay specified for salivary measurements and to establish late-night sampling reference-range data for this test. Salivary cortisol was measured using the Roche Cobas Cortisol assay (Roche Diagnostics). Five salivary pools in different concentration ranges were used to assess the inter-assay imprecision of this test in a two-centre evaluation protocol including two reagent lots. Linearity was tested by serial dilution. Salivary samples were obtained at 23:00 h from 100 apparently healthy volunteers using a commercially available salivary sampling device (Salivette, Sarstedt). A subset of 20 samples was used for method comparison with isotope dilution liquid chromatography-tandem mass spectrometry. Inter-assay coefficients of variation (n=20) between 11.6% and 40.4% were found for mean cortisol concentrations between 12.9 and 2.6 nmol/L, with an estimated functional sensitivity of approximately 5.0 nmol/L. The test also gave linear results in the lowest concentration range between 1.0 and 8.3 nmol/L. Mean late-night salivary cortisol of 5.0 nmol/L was found for healthy individuals; the absolute range was 1.4-16.7 nmol/L, and the 95th percentile was 8.9 nmol/L. Substantially lower concentrations were found with isotope dilution LC-MS/MS compared to immunoassay results (mean concentrations 1.8 and 4.4 nmol/L, respectively). The automated assay investigated was found to offer acceptable analytical performance in the very low concentration range required for late-night salivary cortisol, despite a very short turn-around time. Using this assay, late-night salivary cortisol concentrations below 8.9 nmol/L are typically found in healthy volunteers.

  2. Structural properties of the intrinsically disordered, multiple calcium ion-binding otolith matrix macromolecule-64 (OMM-64).

    PubMed

    Poznar, Monika; Hołubowicz, Rafał; Wojtas, Magdalena; Gapiński, Jacek; Banachowicz, Ewa; Patkowski, Adam; Ożyhar, Andrzej; Dobryszycki, Piotr

    2017-11-01

    Fish otoliths are calcium carbonate biominerals that are involved in hearing and balance sensing. An organic matrix plays a crucial role in their formation. Otolith matrix macromolecule-64 (OMM-64) is a highly acidic, calcium-binding protein (CBP) found in rainbow trout otoliths. It is a component of high-molecular-weight aggregates, which influence the size, shape and polymorph of calcium carbonate in vitro. In this study, a protocol for the efficient expression and purification of OMM-64 was developed. For the first time, the complete structural characteristics of OMM-64 were described. Various biophysical methods were combined to show that OMM-64 occurs as an intrinsically disordered monomer. Under denaturing conditions (pH, temperature) OMM-64 exhibits folding propensity. It was determined that OMM-64 binds approximately 61 calcium ions with millimolar affinity. The folding-unfolding experiments showed that calcium ions induced the collapse of OMM-64. The effect of other counter ions present in trout endolymph on OMM-64 conformational changes was studied. The significance of disordered properties of OMM-64 and the possible function of this protein is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Confocal mosaicing microscopy of basal-cell carcinomas ex vivo: progress in digital staining to simulate histology-like appearance

    NASA Astrophysics Data System (ADS)

    Bini, Jason; Spain, James; Nehal, Kishwer; Hazelwood, Vikki; DiMarzio, Charles; Rajadhyaksha, Milind

    2011-03-01

    Confocal mosaicing microscopy enables rapid imaging of large areas of fresh tissue, without the processing that is necessary for conventional histology. Using acridine orange (1 milliMolar, 20 seconds) to stain nuclei, basal cell carcinomas were detected in fluorescence confocal mosaics of Mohs surgical excisions with sensitivity of 96.6% and specificity of 89.2%. A possible barrier toward clinical acceptance is that confocal mosaics are based on a single mode of contrast and appear in grayscale, whereas histology is based on two (hematoxylin for nuclei, eosin for cellular cytoplasm and dermis) and appears purple-and-pink. Toward addressing this barrier, we report progress in developing a multispectral analytical model for digital staining: fluorescence confocal mosaics, which show only nuclei, are digitally stained purple and overlaid on reflectance confocal mosaics, which show only cellular cytoplasm and dermis, and digitally stained pink, to mimic the appearance of histology. Comparison of digitally stained confocal mosaics by our Mohs surgeon to the corresponding Mohs histology shows good correlation for normal and tumor detail. Digitally stained confocal mosaicing microscopy may allow direct examination of freshly excised tissue and serve as an adjunct for rapid pathology at-the-bedside.

  4. Regulation of Ribulose-1,5-Bisphosphate Carboxylase Activity by the Activase System in Lysed Spinach Chloroplasts

    PubMed Central

    Parry, Martin A. J.; Keys, Alfred J.; Foyer, Christine H.; Furbank, Robert T.; Walker, David A.

    1988-01-01

    Ribulose-1,5-bisphosphate (RuBP) carboxylase in lysed spinach (Spinacia oleracea L. cv virtuosa) chloroplasts that had been partly inactivated at low CO2 and Mg2+ by incubating in darkness with 4 millimolar partially purified RuBP was reactivated by light. If purified RuBP was used to inhibit dark activation of the enzyme, reactivation by light was not observed unless fructose-1,6-bisphosphate, ATP, or ADP plus inorganic phosphate were also added. Presumably, ADP plus inorganic phosphate acted as an ATP-generating system with a requirement for the generation of ΔpH across the thylakoid membrane. When the RuBP obtained from Sigma Chemical Co. was used, light did not reactivate the enzyme. There was no direct correlation between ΔpH and activation. Therefore, thylakoids are required in the ribulose-1,5-bisphosphate carboxylase activase system largely to synthesize ATP. Inactivation of RuBP carboxylase in isolated chloroplasts or in the lysed chloroplast system was not promoted simply by a transition from light to dark conditions but was caused by low CO2 and Mg2+. PMID:16666184

  5. Exposure assessment in Beijing, China: biological agents, ultrafine particles, and lead.

    PubMed

    Dong, Shuofei; Yao, Maosheng

    2010-11-01

    In this study, air samples were taken using a BioSampler and gelatin filters from six sites in Beijing: office, hospital, student dormitory, train station, subway, and a commercial street. Dust samples were also collected using a surface sampler from the same environments. Limulus amoebocyte lysate (LAL) and Glucatell assays were used to quantify sample endotoxin and (1,3)-β-d-glucan concentration levels, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to measure the dust mite allergens (Der p 1 and Der f 1). Ultrafine particle and lead concentrations in these sampling sites were also measured using P-Trak and atomic absorption spectrometer, respectively. Analysis of variance (ANOVA) and linear regression analysis were used to analyze the concentration data. Higher culturable bacteria (12,639 CFU/m3) and fungi (1,806 CFU/m3) concentrations were observed for the train station and the subway system, respectively. For the rest of sampling sites, their concentrations were comparable to those found in western countries, ranging from 990 to 2,276 CFU/m3 for bacteria, and from 119 to 269 CFU/m3 for fungi. ANOVA analysis indicated that there were statistically significant differences between the culturable bacterial and fungal concentration levels obtained for different sites (p value=0.0001 and 0.0047). As for dust allergens, endotoxin, and (1,3)-β-D-glucan, their concentrations also seemed to be comparable to those found in the developed countries. Airborne allergen concentrations ranged from 16 to 68 ng/m3. The dust-borne allergen concentration was observed to range from 0.063 to 0.327 ng/mg. As for endotoxin, the highest airborne concentration of 25.24 ng/m3 was observed for the commercial street, and others ranged from 0.0427 to 0.1259 ng/m3. And dust-borne endotoxin concentration ranged from 58.83 to 6,427.4 ng/mg. For (1,3)-β-D-glucan, the airborne concentration ranged from 0.02 to 1.2 ng/m3. Linear regression analyses showed that there existed poor correlations between those in airborne and dust-borne states (R2=0.002~0.43). In our study, the lowest ultrafine particle concentration about 5,203 pt/cm3 was observed in office and the highest was observed at the train station, up to 32,783 pt/cm3. Lead concentration was shown to range from 80 to 170 ng/mg with the highest also observed at the train station. The information provided in this work can be used to learn the general situation of relevant health risks in Beijing. And the results here suggested that when characterizing exposure both airborne and dust-borne as well as the environments should be considered.

  6. Effect of parvoviral enteritis on plasma citrulline concentration in dogs.

    PubMed

    Dossin, O; Rupassara, S I; Weng, H-Y; Williams, D A; Garlick, P J; Schoeman, J P

    2011-01-01

    Plasma citrulline concentration is a reliable marker of global enterocyte mass in humans and is markedly decreased in diffuse small intestinal diseases. However, the relationship between acute intestinal damage and plasma citrulline concentration in dogs has never been documented. That dogs with parvoviral enteritis have a lower plasma citrulline concentration than healthy dogs and that plasma citrulline concentration is a predictor of death in puppies with parvoviral enteritis. Sixty-one dogs with spontaneous parvoviral enteritis and 14 healthy age-matched control dogs. Observational cohort study. Plasma citrulline concentration was measured by liquid chromatography and tandem mass spectrometry in blood samples collected at admission and each day until death or discharge from the hospital. Parvovirus enteritis was confirmed by electron microscopy on a fecal sample. Median (interquartile range) plasma citrulline concentrations at admission were 2.8 μmol/L (range: 0.3, 49.0; P < .001 versus controls) in survivors (n = 49), 2.1 μmol/L (range: 0.5, 6.4, P < .001 versus controls) in nonsurvivors (n = 12) and 38.6 μmol/L (range: 11.4, 96.1) in controls (n = 14), respectively. There was no significant difference in plasma citrulline concentration between survivors and nonsurvivors within the parvovirus-infected puppies, and plasma citrulline concentration was not significantly associated with outcome in parvoviral enteritis. There were no significant changes in plasma citrulline concentration over the 8-day follow-up period. Parvovirus enteritis is associated with a severe decrease in plasma citrulline concentration that does not appear to have any significant prognostic value. Copyright © 2011 by the American College of Veterinary Internal Medicine.

  7. Vacancy–Vacancy Interaction Induced Oxygen Diffusivity Enhancement in Undoped Nonstoichiometric Ceria

    DOE PAGES

    Yuan, Fenglin; Zhang, Yanwen; Weber, William J.

    2015-05-19

    In this paper, molecular dynamics simulations and molecular static calculations have been used to systematically study oxygen vacancy transport in undoped nonstoichiometric ceria. A strong oxygen diffusivity enhancement appears in the vacancy concentration range of 2–4% over the temperature range from 1000 to 2000 K. An Arrhenius ion diffusion mechanism by vacancy hopping along the (100) direction is unambiguously identified, and an increasing trend of both the oxygen migration barrier and the prefactor with increasing vacancy concentration is observed. Within the framework of classical diffusion theory, a weak concentration dependence of the prefactor in oxygen vacancy migration is shown tomore » be crucial for explaining the unusual fast oxygen ion migration in the low concentration range and consequently the appearance of a maximum in oxygen diffusivity. Finally, a representative (100) direction interaction model is constructed to identify long-range vacancy–vacancy interaction as the structural origin of the positive correlation between oxygen migration barrier and vacancy concentration.« less

  8. Different thresholds for detection and discrimination of odors in the honey bee (Apis mellifera).

    PubMed

    Wright, Geraldine A; Smith, Brian H

    2004-02-01

    Naturally occurring odors used by animals for mate recognition, food identification and other purposes must be detected at concentrations that vary across several orders of magnitude. Olfactory systems must therefore have the capacity to represent odors over a large range of concentrations regardless of dramatic changes in the salience, or perceived intensity, of a stimulus. The stability of the representation of an odor relative to other odors across concentration has not been extensively evaluated. We tested the ability of honey bees to discriminate pure odorants across a range of concentrations at and above their detection threshold. Our study showed that pure odorant compounds became progressively easier for honey bees to discriminate with increasing concentration. Discrimination is, therefore, a function of odorant concentration. We hypothesize that the recruitment of sensory cell populations across a range of concentrations may be important for odor coding, perhaps by changing its perceptual qualities or by increasing its salience against background stimuli, and that this mechanism is a general property of olfactory systems.

  9. Darunavir concentrations in cerebrospinal fluid and blood in HIV-1-infected individuals.

    PubMed

    Yilmaz, Aylin; Izadkhashti, Arash; Price, Richard W; Mallon, Patrick W; De Meulder, Marc; Timmerman, Philip; Gisslén, Magnus

    2009-04-01

    Darunavir is the most recently licensed protease inhibitor currently used in treatment-experienced HIV-infected individuals. Our objective was to determine darunavir concentrations in cerebrospinal fluid (CSF) and plasma in subjects receiving antiretroviral treatment regimens containing ritonavir-boosted darunavir. Darunavir concentrations were determined by liquid chromatography tandem mass spectrometry in 14 paired CSF and plasma samples from eight HIV-1-infected individuals. The lower limit of quantification was 5.0 ng/ml. All of the 14 CSF samples had detectable darunavir concentrations with a median darunavir concentration of 34.2 ng/ml (range 15.9-212.0 ng/ml). The median (range) plasma darunavir concentration was 3930 (1800-12900) ng/ml. All CSF samples had detectable darunavir concentrations. Most of them exceeded or were in the same range as levels needed to inhibit replication of wild type virus, making it probable that darunavir, at least to some extent, contributes to the suppression of HIV replication in the central nervous system.

  10. Environmental 238U and 232Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia.

    PubMed

    Ramli, A Termizi; Hussein, A Wahab M A; Wood, A Khalik

    2005-01-01

    Concentrations of uranium-238 and thorium-232 in soil, water, grass, moss and oil-palm fruit samples collected from an area of high background radiation were determined using neutron activation analysis (NAA). U-238 concentration in soil ranged from 4.9 mg kg(-1) (58.8 Bq kg(-1)) to 40.4 mg kg(-1) (484.8 Bq kg(-1)), Th-232 concentration ranged from 14.9 mg kg(-1) (59.6 Bq kg(-1)) to 301.0 mg kg(-1) (1204 Bq kg(-1)). The concentration of U-238 in grass samples ranged from below the detection limit to 0.076 mg kg(-1) (912 mBq kg(-1)), and Th-232 ranged from 0.008 mg kg(-1) (32 mBq kg(-1)) to 0.343 mg kg(-1) (1.372 Bq kg(-1)). U-238 content in water samples ranged from 0.33 mg kg(-1) (4.0 Bq L(-1)) to 1.40 mg kg(-1) (16.8 Bq L(-1)), and Th-232 ranged from 0.19 mg kg(-1) (0.76 Bq L(-1)) to 0.66 mg kg(-1) (2.64 Bq L(-1)). It can be said that the concentrations of environmental U-238 and Th-232 in grass and water samples in the study area are insignificant. Mosses were found to be possible bio-radiological indicators due to their high absorption of the heavy radioelements from the environment.

  11. Distribution of radium in oil and gas industry wastes from Malaysia.

    PubMed

    Omar, M; Ali, H M; Abu, M P; Kontol, K M; Ahmad, Z; Ahmad, S H S S; Sulaiman, I; Hamzah, R

    2004-05-01

    Radium concentrations in 470 samples of the various types of waste from oil and gas industries were analysed using gamma spectrometers. The results showed that the radium concentration varied within a wide range. The highest mean 226Ra and 228Ra concentrations of 114,300 and 130,120 Bq/kg, respectively, were measured in scales. Overall, 75% of the waste, mostly sludge and extraction residue lies within the normal range of radium concentration in soils of Malaysia. However, some platform sludge can have radium concentration up to 560 Bq/kg.

  12. Comparison of two-concentration with multi-concentration linear regressions: Retrospective data analysis of multiple regulated LC-MS bioanalytical projects.

    PubMed

    Musuku, Adrien; Tan, Aimin; Awaiye, Kayode; Trabelsi, Fethi

    2013-09-01

    Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore, examples are given as how to evaluate the linearity over the entire concentration range when only two concentration levels are used for linear regression. To conclude, two-concentration linear regression is accurate and robust enough for routine use in regulated LC-MS bioanalysis and it significantly saves time and cost as well. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. 222Rn and 220Rn concentrations in soil gas of Karkonosze-Izera Block (Sudetes, Poland).

    PubMed

    Malczewski, Dariusz; Zaba, Jerzy

    2007-01-01

    Soil gas 222Rn and 220Rn concentrations were measured at 18 locations in the Karkonosze-Izera Block area in southwestern Poland. Measurements were carried out in surface air and at sampling depths of 10, 40 and 80 cm. Surface air 222Rn concentrations ranged from 4 to 2160 Bq m(-3) and 220Rn ranged from 4 to 228 Bq m(-3). The concentrations for 10 and 40 cm varied from 142 Bq m(-3) to 801 kBq m(-3) and 102 Bq m(-3) to 64 kBq m(-3) for 222Rn and 220Rn, respectively. At 80 cm 222Rn concentrations ranged from 94 Bq m(-3) to >1 MBq m(-3). The 220Rn concentrations at 80 cm varied from 45 Bq m(-3) to 48 kBq m(-3). The concentration versus depth profiles for 222Rn differed for soils developed on fault zones, uranium deposits or both. Atmospheric air temperature and soil gas 222Rn and 220Rn were negatively correlated. At sampling sites with steep slopes, 220Rn concentrations decreased with depth.

  14. High glutamate attenuates S100B and LDH outputs from rat cortical slices enhanced by either oxygen-glucose deprivation or menadione.

    PubMed

    Demircan, Celaleddin; Gül, Zülfiye; Büyükuysal, R Levent

    2014-07-01

    One hour incubation of rat cortical slices in a medium without oxygen and glucose (oxygen-glucose deprivation, OGD) increased S100B release to 6.53 ± 0.3 ng/ml/mg protein from its control value of 3.61 ± 0.2 ng/ml/mg protein. When these slices were then transferred to a medium containing oxygen and glucose (reoxygenation, REO), S100B release rose to 344 % of its control value. REO also caused 192 % increase in lactate dehydrogenase (LDH) leakage. Glutamate added at millimolar concentration into the medium decreased OGD or REO-induced S100B release and REO-induced LDH leakage. Alpha-ketoglutarate, a metabolic product of glutamate, was found to be as effective as glutamate in decreasing the S100B and LDH outputs. Similarly lactate, 2-ketobutyrate and ethyl pyruvate, a lipophilic derivative of pyruvate, also exerted a glutamate-like effect on S100B and LDH outputs. Preincubation with menadione, which produces H2O2 intracellularly, significantly increased S100B and LDH levels in normoxic medium. All drugs tested in the present study, with the exception of pyruvate, showed a complete protection against menadione preincubation. Additionally, each OGD-REO, menadione or H2O2-induced mitochondrial energy impairments determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining and OGD-REO or menadione-induced increases in reactive oxygen substances (ROS) determined by 2,7-dichlorofluorescin diacetate (DCFH-DA) were also recovered by glutamate. Interestingly, H2O2-induced increase in fluorescence intensity derived from DCFH-DA in a slice-free physiological medium was attenuated significantly by glutamate and alpha-keto acids. All these drug actions support the conclusion that high glutamate, such as alpha-ketoglutarate and other keto acids, protects the slices against OGD- and REO-induced S100B and LDH outputs probably by scavenging ROS in addition to its energy substrate metabolite property.

  15. Effect of high-dose intravenous vitamin C on inflammation in cancer patients.

    PubMed

    Mikirova, Nina; Casciari, Joseph; Rogers, Andrea; Taylor, Paul

    2012-09-11

    An inflammatory component is present in the microenvironment of most neoplastic tissues. Inflammation and elevated C-reactive protein (CRP) are associated with poor prognosis and decreased survival in many types of cancer.Vitamin C has been suggested as having both a preventative and therapeutic role in a number of pathologies when administered at much higher-than-recommended dietary allowance levels.Since in vitro studies demonstrated inhibition of pro-inflammatory pathways by millimolar concentrations of vitamin C, we decided to analyze the effects of high dose IVC therapy in suppression of inflammation in cancer patients. 45 patients with prostate cancer, breast cancer, bladder cancer, pancreatic cancer, lung cancer, thyroid cancer, skin cancer and B-cell lymphoma were treated at the Riordan Clinic by high doses of vitamin C (7.5 g -50 g) after standard treatments by conventional methods.CRP and tumor markers were measured in serum or heparin-plasma as a routine analysis. In addition, serum samples were collected before and after the IVCs for the cytokine kit tests. According to our data positive response to treatment, which was demonstrated by measurements of C- reactive protein, was found in 75% of patients and progression of the inflammation in 25% of patients. IVC treatments on all aggressive stage cancer patients showed the poor response of treatment.There was correlation between tumor markers (PSA, CEA, CA27.29 and CA15-3) and changes in the levels of C-reactive protein.Our test of the effect of IVC on pro-inflammatory cytokines demonstrated that inflammation cytokines IL-1α, IL-2, IL-8, TNF-α, chemokine eotaxin and CRP were reduced significantly after treatments. The high dose intravenous ascorbic acid therapy affects C-reactive protein levels and pro-inflammation cytokines in cancer patients. In our study, we found that modulation of inflammation by IVC correlated with decreases in tumor marker levels.In summary, our data support the hypothesis that high dose intravenous ascorbate treatments may reduce inflammation in cancer patients. Our results suggest that further investigations into the use of IVC to reduce inflammation in diseases where inflammation is relevant are warranted.

  16. Energy utilization and gluconeogenesis in isolated leech segmental ganglia: Quantitative studies on the control and cellular localization of endogenous glycogen.

    PubMed

    Pennington, A J; Pentreath, V W

    1988-01-01

    The isolated segmental ganglia of the horse leech Haemopis sanguisuga were used as a model system to study the utilization and control of glycogen stores within nervous tissue. The glycogen in the ganglia was extracted and assayed fluorimentrically and its cellular localization and turnover studied by autoradiography in conjunction with [(3)H]glucose. We measured the glycogen after various periods of electrical stimulation and after incubation with K(+), Ca(2+), ouabain and glucose. The results for each experimental ganglion were compared to a paired control ganglion and the results analysed by paired t-tests. Electrical stimulation caused sequential changes in glycogen levels: a reduction of up to 67% (5-10 min); followed by an increase of up to 124% (between 15-50 min); followed by a reduction of up to 63% (60-90 min). Values were calculated for glucose utilization (e.g. 0.53 ?mol glucose/gm wet weight/min after 90 min) and estimates derived for glucose consumption per action potential per neuron (e.g. 0.12 fmol at 90 min). Glucose (1.5-10 mM) increased the amount of glycogen (1.5 mM by 30% at 60 min) and attenuated the effects of electrical stimulation. Ouabain (1 mM) blocked the effect of 5 min electrical stimulation. Nine millimolar K(+) increased glycogen by 27% after 10 min and decreased glycogen by 34% after 60 min; 3 mM Ca(2+) had no effect after 10 or 20 min and decreased glycogen by 29% after 60 min. Other concentrations of K(+) and Ca(2+) reduced glycogen after 60 min. Autoradiographic analysis demonstrated that the effects of elevated K(+) were principally within the glial cells. We conclude that (i) the glycogen stores in the glial cells of leech segmental ganglia provide an endogenous energy source which can support sustained neuronal activity, (ii) both electrical stimulation and elevated K(+) can induce gluconeogenesis within the ganglia, (iii) that electrical activation of neurons produces changes in the glycogen in the glial cells which are controlled in part by changes in K(+).

  17. Genetic and Metabolomic Dissection of the Ergothioneine and Selenoneine Biosynthetic Pathway in the Fission Yeast, S. pombe, and Construction of an Overproduction System

    PubMed Central

    Pluskal, Tomáš; Ueno, Masaru; Yanagida, Mitsuhiro

    2014-01-01

    Ergothioneine is a small, sulfur-containing metabolite (229 Da) synthesized by various species of bacteria and fungi, which can accumulate to millimolar levels in tissues or cells (e.g. erythrocytes) of higher eukaryotes. It is commonly marketed as a dietary supplement due to its proposed protective and antioxidative functions. In this study we report the genes forming the two-step ergothioneine biosynthetic pathway in the fission yeast, Schizosaccharomyces pombe. We identified the first gene, egt1+ (SPBC1604.01), by sequence homology to previously published genes from Neurospora crassa and Mycobacterium smegmatis. We showed, using metabolomic analysis, that the Δegt1 deletion mutant completely lacked ergothioneine and its precursors (trimethyl histidine/hercynine and hercynylcysteine sulfoxide). Since the second step of ergothioneine biosynthesis has not been characterized in eukaryotes, we examined four putative homologs (Nfs1/SPBC21D10.11c, SPAC11D3.10, SPCC777.03c, and SPBC660.12c) of the corresponding mycobacterial enzyme EgtE. Among deletion mutants of these genes, only one (ΔSPBC660.12c, designated Δegt2) showed a substantial decrease in ergothioneine, accompanied by accumulation of its immediate precursor, hercynylcysteine sulfoxide. Ergothioneine-deficient strains exhibited no phenotypic defects during vegetative growth or quiescence. To effectively study the role of ergothioneine, we constructed an egt1+ overexpression system by replacing its native promoter with the nmt1+ promoter, which is inducible in the absence of thiamine. We employed three versions of the nmt1 promoter with increasing strength of expression and confirmed corresponding accumulations of ergothioneine. We quantified the intracellular concentration of ergothioneine in S. pombe (0.3, 157.4, 41.6, and up to 1606.3 µM in vegetative, nitrogen-starved, glucose-starved, and egt1+-overexpressing cells, respectively) and described its gradual accumulation under long-term quiescence. Finally, we demonstrated that the ergothioneine pathway can also synthesize selenoneine, a selenium-containing derivative of ergothioneine, when the culture medium is supplemented with selenium. We further found that selenoneine biosynthesis involves a novel intermediate compound, hercynylselenocysteine. PMID:24828577

  18. Effect of high-dose intravenous vitamin C on inflammation in cancer patients

    PubMed Central

    2012-01-01

    Background An inflammatory component is present in the microenvironment of most neoplastic tissues. Inflammation and elevated C-reactive protein (CRP) are associated with poor prognosis and decreased survival in many types of cancer. Vitamin C has been suggested as having both a preventative and therapeutic role in a number of pathologies when administered at much higher-than-recommended dietary allowance levels. Since in vitro studies demonstrated inhibition of pro-inflammatory pathways by millimolar concentrations of vitamin C, we decided to analyze the effects of high dose IVC therapy in suppression of inflammation in cancer patients. Methods 45 patients with prostate cancer, breast cancer, bladder cancer, pancreatic cancer, lung cancer, thyroid cancer, skin cancer and B-cell lymphoma were treated at the Riordan Clinic by high doses of vitamin C (7.5 g -50 g) after standard treatments by conventional methods. CRP and tumor markers were measured in serum or heparin-plasma as a routine analysis. In addition, serum samples were collected before and after the IVCs for the cytokine kit tests. Results According to our data positive response to treatment, which was demonstrated by measurements of C- reactive protein, was found in 75% of patients and progression of the inflammation in 25% of patients. IVC treatments on all aggressive stage cancer patients showed the poor response of treatment. There was correlation between tumor markers (PSA, CEA, CA27.29 and CA15-3) and changes in the levels of C-reactive protein. Our test of the effect of IVC on pro-inflammatory cytokines demonstrated that inflammation cytokines IL-1α, IL-2, IL-8, TNF-α, chemokine eotaxin and CRP were reduced significantly after treatments. Conclusions The high dose intravenous ascorbic acid therapy affects C-reactive protein levels and pro-inflammation cytokines in cancer patients. In our study, we found that modulation of inflammation by IVC correlated with decreases in tumor marker levels. In summary, our data support the hypothesis that high dose intravenous ascorbate treatments may reduce inflammation in cancer patients. Our results suggest that further investigations into the use of IVC to reduce inflammation in diseases where inflammation is relevant are warranted. PMID:22963460

  19. Planetary Sources for Reducing Sulfur Compounds for Cyanosulfidic Origins of Life Chemistry

    NASA Astrophysics Data System (ADS)

    Ranjan, S.; Todd, Z. R.; Sutherland, J.; Sasselov, D. D.

    2017-12-01

    A key challenge in origin-of-life studies is understanding the chemistry that lead to the origin of the key biomolecules of life, such as the components of nucleic acids, sugars, lipids, and proteins. Prebiotic reaction networks based upon reductive homologation of nitriles (e.g., Patel et al. 2015), are building a tantalizing picture of sustained abiotic synthesis of activated ribonucleotides, amino acids and lipid precursors under environmental conditions thought to have been available on early Earth. Sulfidic anions in aqueous solution (e.g., HS-, HSO3-) under near-UV irradiation play important roles in these chemical pathways. However, the sources and availability of these anions on early Earth have not yet been quantitatively constrained. Here, we evaluate the potential for the atmosphere to serve as a source of sulfidic anions, via dissolution of volcanically-outgassed SO2 and H2S into water reservoirs. We combine photochemical modeling from the literature (Hu et al. 2013) with equilibrium chemistry calculations to place constraints on the partial pressures of SO2 and H2S required to reach the elevated concentrations of sulfidic anions (≥1 μM) thought to be necessary for prebiotic chemistry. We find that micromolar levels of SO2-derived anions (HSO3-, SO3(2-)) are possible through simple exposure of aqueous reservoirs like shallow lakes to the atmosphere, assuming total sulfur emission flux comparable to today. Millimolar levels of these compounds are available during the epochs of elevated volcanism, due to elevated sulfur emission flux. Radiative transfer modeling suggests the atmospheric sulfur will not block the near-UV radiation also required for the cyanosulfidic chemistry. However, H2S-derived anions (e.g., HS-) reach only sub-micromolar levels from atmospheric sources, meaning that prebiotic chemistry invoking such molecules must invoke specialized, local sources. Prebiotic chemistry invoking SO2-derived anions may be considered more robust than chemistry invoking H2S-derived anions. In general, epochs of moderately high volcanism may have been especially conducive to cyanosulfidic prebiotic chemistry.

  20. Concentrations and cycling of DMS, DMSP, and DMSO in coastal and offshore waters of the Subarctic Pacific during summer, 2010-2011

    NASA Astrophysics Data System (ADS)

    Asher, Elizabeth; Dacey, John W.; Ianson, Debby; Peña, Angelica; Tortell, Philippe D.

    2017-04-01

    Concentrations of dimethylsulfide (DMS), measured in the Subarctic Pacific during summer 2010 and 2011, ranged from ˜1 to 40 nM, while dissolved dimethylsulfoxide (DMSO) concentrations (range 13-23 nM) exceeded those of dissolved dimethyl sulfoniopropionate (DMSP) (range 1.3-8.8 nM). Particulate DMSP dominated the reduced sulfur pool, reaching maximum concentrations of 100 nM. Coastal and off shore waters exhibited similar overall DMS concentration ranges, but sea-air DMS fluxes were lower in the oceanic waters due to lower wind speeds. Surface DMS concentrations showed statistically significant correlations with various hydrographic variables including the upwelling intensity (r2 = 0.52, p < 0.001) and the Chlorophyll a/mixed layer depth ratio (r2 = 0.52, p < 0.001), but these relationships provided little predictive power at small scales. Stable isotope tracer experiments indicated that the DMSP cleavage pathway always exceeded the DMSO reduction pathway as a DMS source, leading to at least 85% more DMS production in each experiment. Gross DMS production rates were positively correlated with the upwelling intensity, while net rates of DMS production were significantly correlated to surface water DMS concentrations. This latter result suggests that our measurements captured dominant processes driving surface DMS accumulation across a coastal-oceanic gradient.

  1. Biological and associated water-quality data for lower Olmos Creek and upper San Antonio River, San Antonio, Texas, April - September 1989

    USGS Publications Warehouse

    Taylor, R. Lynn; Ferreira, Rodger F.

    1995-01-01

    Biological and associated water-quality data were collected from lower Olmos Creek and upper San Antonio River in San Antonio, Texas, during April-September 1989. Benthic macroinvertebrate, periphyton, and phytoplankton communities were sampled at three sites along the Olmos Creek/San Antonio River system. Total mean densities of benthic macroinvertebrates for the three sites ranged from 670 to 10,000 organisms per square meter. The most abundant macroinvertebrates were the class Insecta (insects). Total densities of periphyton ranged from 2,900 to 110,000 cells per square millimeter. Cyanophyta (blue-green algae) and Bacillariophyta (diatoms) were the predominant periphyton organisms. Total densities of phyto- plankton ranged from 5,000 to 47,000 cells per square milliliter. Blue-green algae accounted for more than one- half of the phytoplankton in each sample. Hardness ranged from 160 to 250 milligrams per liter as calcium carbonate, and alkalinity ranged from 130 to 220 milligrams per liter as calcium carbonate. The largest dissolved nitrite concentration was 0.038 milligram per liter. The largest total phosphorus concentration was 0.150 milligram per liter, over one-half of which was dissolved orthophosphate. Total aluminum and total iron were the only trace elements in water to exceed the reporting threshold by large concen- trations. Total aluminum concentrations ranged from 70 to 280 micrograms per liter, and total iron concentrations ranged from 70 to 340 micrograms per liter. Lead was the most prominent trace element in bottom-material samples, with concentrations ranging from 30 to 230 micrograms per gram.

  2. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, Robert C.; Schubert, W. Kent

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  3. Background hydrologic information in potential lignite mining areas in north-central Mississippi, August 1984

    USGS Publications Warehouse

    Kalkhoff, S.J.

    1985-01-01

    The U.S. Geological Survey, in cooperation with the Mississippi Department of Natural Resources, Bureau of Geology, is conducting a hydrologic data collection program in potential lignite-producing areas in Mississippi. During the last two weeks of August 1984, hydrologic data were collected at 15 stream sites that drain potential lignite mining areas in Lafayette, Calhoun, and Yalobusha Counties. Main channel widths ranged from approximately 60 feet at three streams (Coon Creek near Toccopula, Muckaloon Creek near Tula, and Hurricane Creek near Velma) to approximately 120 feet at two streams (Potlockney Creek near Tula, and Savannah Creek near Bruce). Maximum water depths ranged from less than 1.0 foot at most streams to over 5.0 feet at sites on Potlockney Creek near Tula and McGill Creek near Sarepta. Stream discharge ranged from 0.32 cubic feet per second in Persimmon Creek near Bruce to 18.5 cubic feet per second in Puskus Creek near Etta. The specific conductance of stream water ranged from 25 to 160 microsiemens and dissolved solids concentrations ranged from 22 to 91 mg/L (milligrams per liter). Most major ion concentrations were less than 10 mg/L with the exception of calcium (11 mg/L), sodium (12 mg/L) and sulfate (18 mg/L) in the water of Persimmon Creek near Bruce. Dissolved oxygen concentrations were greater than 5.0 mg/L at all but one site. Turbidity values were generally less than 50 units. Nitrate plus nitrite concentrations were equal to or less than 0.10 mg/L in all streams except in Potlockney Creek near Tula where the concentration was 0.11 mg/L. Copper and selenium concentrations in the water at all sampling sites ranged from below the detection limits (1 microgram/g) to 4 micrograms/g (micrograms per gram) and mercury concentrations in bottom material samples ranged from less than 0.01 microgram/g to 0.15 microgram/g. (USGS)

  4. Plasma concentrations of fentanyl with subcutaneous infusion in palliative care patients.

    PubMed

    Miller, R S; Peterson, G M; Abbott, F; Maddocks, I; Parker, D; McLean, S

    1995-12-01

    1. Plasma concentrations of fentanyl were measured by g.c. in 20 patients (median age: 75 years and range: 54-86 years; eight females) in palliative care receiving the drug by continuous s.c. infusion (median rate: 1200 micrograms day-1 and range: 100-5000 micrograms day-1). 2. The infusion rate was significantly related to the duration of therapy (Spearman rho = 0.56, P < 0.05). The total steady-state plasma concentrations of fentanyl ranged between 0.1 and 9 ng ml-1, with a median of 1 ng ml-1. The unbound fraction of fentanyl in the plasma ranged from 17.8 to 44.4%, with a median value of 33.6%. Infusion rates and both total and unbound plasma concentrations of fentanyl were correlated (Spearman rho = 0.92, P < 0.05 in each case). Even with standardization for dosage, there was an eightfold variation in total plasma concentrations and 3.5-fold variation in unbound plasma concentrations of fentanyl. 3. There is considerable inter-patient variability in the pharmacokinetics of fentanyl with s.c. infusion in the palliative care setting, which necessitates careful titration of dosage according to individual clinical response.

  5. Mercury and selenium concentrations in biofilm, macroinvertebrates, and fish collected in the Yankee Fork of the Salmon River, Idaho, USA, and their potential effects on fish health.

    PubMed

    Rhea, Darren T; Farag, Aïda M; Harper, David D; McConnell, Elizabeth; Brumbaugh, William G

    2013-01-01

    The Yankee Fork is a large tributary of the Salmon River located in central Idaho, USA, with an extensive history of placer and dredge-mining activities. Concentrations of selenium (Se) and mercury (Hg) in various aquatic trophic levels were measured in the Yankee Fork during 2001 and 2002. Various measurements of fish health were also performed. Sites included four on the mainstem of the Yankee Fork and two off-channel sites in partially reclaimed dredge pools used as rearing habitat for cultured salmonid eggs and fry. Hg concentrations in whole mountain whitefish and shorthead sculpin ranged from 0.28 to 0.56 μg/g dry weight (dw), concentrations that are generally less than those reported to have significant impacts on fish. Biofilm and invertebrates ranged from 0.05 to 0.43 μg Hg/g dw. Se concentrations measured in biota samples from the Yankee Fork were greater than many representative samples collected in the Snake and Columbia watersheds and often exceeded literature-based toxic thresholds. Biofilm and invertebrates ranged from 0.58 to 4.66 μg Se/g dw. Whole fish ranged from 3.92 to 7.10 μg Se/g dw, and gonads ranged from 6.91 to 31.84 μg Se/g dw. Whole-body Se concentrations exceeded reported toxicological thresholds at three of four sites and concentrations in liver samples were mostly greater than concentrations shown to have negative impacts on fish health. Histological examinations performed during this study noted liver abnormalities, especially in shorthead sculpin, a bottom-dwelling species.

  6. Mercury and selenium concentrations in biofilm, macroinvertebrates, and fish collected in the Yankee Fork of the Salmon River, Idaho, USA, and their potential effects on fish health

    USGS Publications Warehouse

    Rhea, Darren T.; Farag, Aïda M.; Harper, David D.; McConnell, Elizabeth; Brumbaugh, William G.

    2013-01-01

    The Yankee Fork is a large tributary of the Salmon River located in central Idaho, USA, with an extensive history of placer and dredge-mining activities. Concentrations of selenium (Se) and mercury (Hg) in various aquatic trophic levels were measured in the Yankee Fork during 2001 and 2002. Various measurements of fish health were also performed. Sites included four on the mainstem of the Yankee Fork and two off-channel sites in partially reclaimed dredge pools used as rearing habitat for cultured salmonid eggs and fry. Hg concentrations in whole mountain whitefish and shorthead sculpin ranged from 0.28 to 0.56 μg/g dry weight (dw), concentrations that are generally less than those reported to have significant impacts on fish. Biofilm and invertebrates ranged from 0.05 to 0.43 μg Hg/g dw. Se concentrations measured in biota samples from the Yankee Fork were greater than many representative samples collected in the Snake and Columbia watersheds and often exceeded literature-based toxic thresholds. Biofilm and invertebrates ranged from 0.58 to 4.66 μg Se/g dw. Whole fish ranged from 3.92 to 7.10 μg Se/g dw, and gonads ranged from 6.91 to 31.84 μg Se/g dw. Whole-body Se concentrations exceeded reported toxicological thresholds at three of four sites and concentrations in liver samples were mostly greater than concentrations shown to have negative impacts on fish health. Histological examinations performed during this study noted liver abnormalities, especially in shorthead sculpin, a bottom-dwelling species.

  7. Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals.

    PubMed

    Salam, Mir Md Abdus; Kaipiainen, Erik; Mohsin, Muhammad; Villa, Aki; Kuittinen, Suvi; Pulkkinen, Pertti; Pelkonen, Paavo; Mehtätalo, Lauri; Pappinen, Ari

    2016-12-01

    Salix schwerinii was tested in a pot experiment to assess plant growth performance i.e., relative height and dry biomass and the potential for heavy metal uptake in soils polluted with chromium, zinc, copper, nickel and total petroleum hydrocarbons. The soil used in the pot experiment was collected from a landfill area in Finland. Peat soil was added at different quantities to the polluted soil to stimulate plant growth. The plants were irrigated with tap water or processed water (municipal waste water) to further investigate the effects of nutrient loading on plant biomass growth. The soil was treated at two pH levels (4 and 6). The results showed that the addition of 40-70% peat soil at pH 6 to a polluted soil, and irrigation with processed water accelerated plant growth and phytoextraction efficiency. In the pot experiment, Salix grown in chromium, zinc, copper, nickel and total petroleum hydrocarbons -contaminated field soil for 141 days were unaffected by the contaminated soil and took up excess nutrients from the soil and water. Total mean chromium concentration in the plant organs ranged from 17.05 to 250.45 mg kg -1 , mean zinc concentration ranged from 142.32 to 1616.59 mg kg -1 , mean copper concentration ranged from 12.11 to 223.74 mg kg -1 and mean nickel concentration ranged from 10.11 to 75.90 mg kg -1 . Mean chromium concentration in the plant organs ranged from 46 to 94%, mean zinc concentration ranged from 44 to 76%, mean copper concentration ranged from 19 to 54% and mean nickel concentration ranged from 8 to 21% across all treatments. Under the different treatments, chromium was taken up by Salix in the largest quantities, followed by zinc, copper and nickel respectively. Salix also produced a moderate reduction in total petroleum total petroleum hydrocarbons in the polluted soil. The results from the pot experiment suggest that Salix schwerinii has the potential to accumulate significant amounts of chromium, zinc, copper and nickel. However, long term research is needed to verify the phytoextraction abilities of Salix observed in the pot experiment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Crystal chemistry of pyrochlore from the Mesozoic Panda Hill carbonatite deposit, western Tanzania

    NASA Astrophysics Data System (ADS)

    Boniface, Nelson

    2017-02-01

    The Mesozoic Panda Hill carbonatite deposit in western Tanzania hosts pyrochlore, an ore and source of niobium. This study was conducted to establish the contents of radioactive elements (uranium and thorium) in pyrochlore along with the concentration of niobium in the ore. The pyrochlore is mainly hosted in sövite and is structurally controlled by NW-SE (SW dipping) or NE-SW (NW dipping) magmatic flow bands with dip angles of between 60° and 90°. Higher concentrations of pyrochlore are associated with magnetite, apatite and/or phlogopite rich flow bands. Electron microprobe analyses on single crystals of pyrochlore yield very low UO2 concentrations that range between 0 and 0.09 wt% (equivalent to 0 atoms per formula unit: a.p.f.u.) and ThO2 between 0.55 and 1.05 wt% (equivalent to 0.1 a.p.f.u.). The analyses reveal high concentrations of Nb2O5 (ranging between 57.13 and 65.50 wt%, equivalent to a.p.f.u. ranging between 1.33 and 1.43) and therefore the Panda Hill Nb-oxide is classified as pyrochlore sensu stricto. These data point to a non radioactive pyrochlore and a deposit rich in Nb at Panda Hill. The Panda Hill pyrochlore has low concentrations of REEs as displayed by La2O3 that range between 0.10 and 0.49 wt% (equivalent to a.p.f.u. ranging between 0 and 0.01) and Ce2O3 ranging between 0.86 and 1.80 wt% (equivalent to a.p.f.u. ranging between 0.02 and 0.03), Pr2O3 concentrations range between 0 and 0.23 wt% (equivalent to 0 a.p.f.u.), and Y2O3 is 0 wt% (equivalent to 0 a.p.f.u.). The abundance of the REEs in pyroclore at the Panda Hill Carbonatite deposit is of no economic significance.

  9. Ecological role of reindeer summer browsing in the mountain birch (Betula pubescens ssp. czerepanovii) forests: effects on plant defense, litter decomposition, and soil nutrient cycling.

    PubMed

    Stark, Sari; Julkunen-Tiitto, Riitta; Kumpula, Jouko

    2007-03-01

    Mammalian herbivores commonly alter the concentrations of secondary compounds in plants and, by this mechanism, have indirect effects on litter decomposition and soil carbon and nutrient cycling. In northernmost Fennoscandia, the subarctic mountain birch (Betula pubescens ssp. czerepanovii) forests are important pasture for the semidomestic reindeer (Rangifer tarandus). In the summer ranges, mountain birches are intensively browsed, whereas in the winter ranges, reindeer feed on ground lichens, and the mountain birches remain intact. We analyzed the effect of summer browsing on the concentrations of secondary substances, litter decomposition, and soil nutrient pools in areas that had been separated as summer or winter ranges for at least 20 years, and we predicted that summer browsing may reduce levels of secondary compounds in the mountain birch and, by this mechanism, have an indirect effect on the decomposition of mountain birch leaf litter and soil nutrient cycling. The effect of browsing on the concentration of secondary substances in the mountain birch leaves varied between different years and management districts, but in some cases, the concentration of condensed tannins was lower in the summer than in the winter ranges. In a reciprocal litter decomposition trial, both litter origin and emplacement significantly affected the litter decomposition rate. Decomposition rates were faster for the litter originating from and placed into the summer range. Soil inorganic nitrogen (N) concentrations were higher in the summer than in the winter ranges, which indicates that reindeer summer browsing may enhance the soil nutrient cycling. There was a tight inverse relationship between soil N and foliar tannin concentrations in the winter range but not in the summer range. This suggests that in these strongly nutrient-limited ecosystems, soil N availability regulates the patterns of resource allocation to condensed tannins in the absence but not in the presence of browsing.

  10. The effect of pasteurization on transforming growth factor alpha and transforming growth factor beta 2 concentrations in human milk.

    PubMed

    McPherson, R J; Wagner, C L

    2001-01-01

    Transforming growth factor alpha (TGF-alpha) and beta 2 (TGF-beta2) are present in human milk and are involved in growth differentiation and repair of neonatal intestinal epithelia. Heat treatment at 56 degrees C has been shown effective for providing safe banked donor milk, with good retention of other biologically active factors. The purpose of our study was to determine the effect of heat sterilization on TGF-alpha and TGF-beta2 concentrations in human milk. Twenty milk samples were collected from 20 lactating mothers in polypropylene containers and frozen at -20 degrees C for transport or storage. Before heat treatment by holder pasteurization, the frozen milk was thawed and divided into 1-mL aliquots. All samples were heated in an accurately regulated water bath until a holding temperature was achieved, then held for 30 minutes using constant agitation. Holding temperature ranged from 56.5 degrees C to 56.9 degrees C. The milk was then stored at 4 degrees C overnight for analysis the following day. The concentration of TGF-alpha was measured by radioimmunoassay. Mean concentration +/- SD of TGF-alpha in raw milk samples was 119+/-50 pg/mL, range 57 to 234. The mean concentration +/- SD of TGF-alpha in heat treated samples was 113+/-50 pg/mL, range 51 to 227. TGF-alpha concentration was minimally affected by pasteurization, with an overall loss of 6.1%. Of 19 samples, 4 had increased and 15 had decreased concentrations after pasteurization (mean percent SEM: 94%+/-7% of raw milk, range 72%+/-107%). The concentration of acid-activated TGF-beta2 was measured by enzyme-linked immunosorbent assay. Mean concentration +/- SD of TGF-beta2 in raw milk samples was 5624+/-5038 pg/mL, range 195 to 15480. The mean concentration +/- SD of TGF-beta2 in heat-treated samples was 5073+/-4646 pg/mL, range 181 to 15140. TGF-beta2 survived with relatively little loss (0.6%): of 18 samples, 11 had increased and 7 had decreased concentrations after pasteurization (mean percent +/- SEM: 99.4+/-6.7% of raw milk, range 79%-120%). In conclusion, both TGF-alpha and TGF-beta2 were well-preserved in whole milk after holder pasteurization at 56.5 degrees C. The relative increase in growth factor concentration in some of the samples may be attributable to the release of that factor from the cellular and/or fat compartments into the aqueous fraction of human milk. These findings have implications regarding use of donor milk as an alternate source of growth factors and cytokines for the newborn gut when mother's milk is unavailable.

  11. Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Nichols, P. D.

    1986-01-01

    The sterol and fatty acid concentrations for M. capsulatus grown in fed-batch cultures over a wide range of oxygen tensions (0.1-10.6 percent) and at a constant methane level are evaluated. The analyses reveal that the biomass decreases as oxygen levels are lowered; the sterol concentration increases when the oxygen range is between 0.5-1.1 percent and decreases when the oxygen range is below 0.5 percent; and the amount of monounsaturated C16 decreases and the concentration of cyclopropane fatty acids increases after oxygen is reduced. It is noted that growth and membrane synthesis occur at low oxygen concentrations and that the synthesis of membrane lipids responds to growth conditions.

  12. A novel instrumentation circuit for electrochemical measurements.

    PubMed

    Yin, Li-Te; Wang, Hung-Yu; Lin, Yang-Chiuan; Huang, Wen-Chung

    2012-01-01

    In this paper, a novel signal processing circuit which can be used for the measurement of H(+) ion and urea concentration is presented. A potentiometric method is used to detect the concentrations of H(+) ions and urea by using H(+) ion-selective electrodes and urea electrodes, respectively. The experimental data shows that this measuring structure has a linear pH response for the concentration range within pH 2 and 12, and the dynamic range for urea concentration measurement is in the range of 0.25 to 64 mg/dL. The designed instrumentation circuit possesses a calibration function and it can be applied to different sensing electrodes for electrochemical analysis. It possesses the advantageous properties of being multi-purpose, easy calibration and low cost.

  13. Tributyltin distribution and producing androgenic activity in water, sediment, and fish muscle.

    PubMed

    Shue, Meei-Fang; Chen, Ting-Chien; Bellotindos, Luzvisminda M; Lu, Ming-Chun

    2014-01-01

    This study investigated the concentrations of Tributyltin (TBT) in water, sediment, and fish muscle samples taken from Kaohsiung Harbor and Kaoping River estuary, Taiwan. TBT concentrations in water and sediment samples ranged from less than 18.5 to 34.1 ng Sn L(-1) and from 2.44 to 29.7 ng Sn g(-1) weight per weight (w/w), respectively. Concentrations in the TBT-contaminated fish muscle samples ranged from 10.8 to 79.6 ng Sn g(-1) w/w. The TBT concentrations in fish muscle were higher than those in water and sediment samples. The fish muscle/water TBT bioconcentration factor (BCF) ranged from 590 to 3363 L kg(-1). Additionally, the water samples were assessed for androgenic activity with an MCF7-AR1 human breast cancer cell line. The androgenic activity ranged from 0.94 to 3.1 ng-dihydrotestosterone per litre water (ng-DHT L(-1)). Higher concentrations of TBT in water and sediment samples occurred in the dry season, but the androgenic activity had higher values in the rainy season.

  14. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  15. [Pollutants produced in municipal refuse container during transfer process].

    PubMed

    Wang, Xiao-Yuan; Liu, Yin-Hua; Wang, Fei; Huang, Chang-Ying; Lu, Feng; Xie, Bing

    2014-05-01

    The generation and variation of the secondary pollutants in containers during seasons of a year were investigated in a municipal refuse transfer station of Shanghai. The results showed that the primary odors, the concentration of H2S was in a range of 0.3-10.3 mg.m-3, CH4 was in a range of 0.02% -2.97% and NH3 was in a range of 0.7-4.5 mg m-3, and their concentrations all reached the peak in the summer. The pH of the leachate was in a range of 5.4-6. 3, COD was 41 633-84 060 mgL- 1, and BOD, was 18 116-34 130 mg.L , the concentration of pollutants were all higher in winter than that in summer. The ammonia concentration of leachate was in a range of 537-1222 mg.L'', while the TP fluctuated acutely in a range of 17.98-296 mg L-1, exhibiting the relationship with seasonal variation. Extreme temperatures especially the high temperature in summer significantly affected air pollution producing, which indicated that containers should be kept against high temperature exposure and long residence time in order to prevent flammable gases and other pollutants generated largely.

  16. Distributions of polycyclic aromatic hydrocarbons and alkylated polycyclic aromatic hydrocarbons in Osaka Bay, Japan.

    PubMed

    Miki, Shizuho; Uno, Seiichi; Ito, Kazuki; Koyama, Jiro; Tanaka, Hiroyuki

    2014-08-30

    Contaminations in sediments by polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs were investigated at 44 sites in Osaka Bay, Japan. Concentrations of total PAHs and alkylated PAHs were in the range 6.40-7800 ng/g dry weights and 13.7-1700 ng/g dry weights, respectively. The PAH concentrations tended to be higher along the shoreline in the vicinities of big ports, industrialized areas, and densely populated regions such as the cities of Osaka and Kobe. The major sources appeared to be pyrogenic or both pyrogenic and petrogenic at most of the sites. PAH concentrations were remarkably high at a site near Kobe, where the concentrations of dibenzo(a,h)anthracene and benzo(g,h,i)perylene exceeded the effects-range-medium concentration and eight PAHs were above the corresponding effects-range-low concentrations. Those PAHs may have been derived from the great fire associated with the large earthquake in 1995. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Determination of acetone and methyl ethyl ketone in water

    USGS Publications Warehouse

    Tai, D.Y.

    1978-01-01

    Analytical procedures for the determination of acetone and methyl ethyl ketone in water samples were developed. Concentrations in the milligram-per-liter range were determined by injecting an aqueous sample into the analysis system through an injection port, trapping the organics on Tenax-GC at room temperature, and thermally desorbing the organics into a gas chromatograph with a flame ionization detector for analysis. Concentrations in the microgram-per-liter range were determined by sweeping the headspace vapors over a water sample at 50C, trapping on Tenax-GC, and thermally desorbing the organics into the gas chromatograph. The precision for two operators of the milligram-per-liter concentration procedure, expressed as the coefficient of variation, was generally less than 2 percent for concentrations ranging from 16 to 160 milligrams per liter. The precision from two operators of the microgram-per-liter concentration procedure was between 2 and 4 percent for concentrations of 20 and 60 micrograms per liter. (Woodard-USGS)

  18. Nutrient, sediment, and pesticide data collected at four small agricultural basins in the Beaver Creek watershed, West Tennessee, 1990-1995

    USGS Publications Warehouse

    Williams, Shannon D.; Harris, Robin M.

    1996-01-01

    In 1989, the U.S. Geological Survey began a cooperative study with the Tennessee Department of Agriculture to assess the impact of agricultural activities on water quality in the Beaver Creek watershed in West Tennessee. Quantification of the transport of nutrients, sediment, and pesticides from agricultural fields was one of the objectives of the study. This report presents nutrient, sediment, and pesticide data collected during selected storm events from 1990 through 1995 at four relatively small, agricultural basins (28 to 422 acres) in the Beaver Creek watershed. Approximately 3,000 water samples (500 to 1,000 at each site) were analyzed for nitrogen and phosphorus species. Total nitrogen (N) concentrations ranged from 0.2 to 41.2 milligrams per liter (mg/L). Median concentrations for samples from each site ranged from 2.0 to 2.7 mg/L for total nitrogen, 1.2 to 1.9 mg/L for organic nitrogen, 0.05 to 0.14 mg/L for ammonia (measured as N), and 0.2 to 0.8 mg/L for nitrate plus nitrite (measured as N). Total phosphorus (P) concentrations ranged from 0.03 to 16.0 mg/L. Median concentrations for samples from each site ranged from 0.80 to 1.2 mg/L for total phosphorus and 0.15 to 0.72 for orthophosphate (measured as P). Approximately 6,000 water samples (1,300 to 1,800 at each site) were analyzed for suspended sediment. Suspended-sediment concentrations ranged from 8.0 to 98,353 mg/L. Concentrations exceeded 1,000 mg/L in 33 percent of the samples collected and exceeded 10,000 mg/L in 6 percent of the samples. Median concentrations ranged from 347 to 713 mg/L at the four sites. Several herbicides and insecticides were detected in water samples. Maximum concentrations detected were 37 micrograms per liter for metolachlor, 3.2 for trifluralin, 150 for fluometuron, and 430 for aldicarb. Aldicarb metabolites were also detected in several samples. The maximum aldicarb sulfoxide and aldicarb sulfone concentrations detected were 68.4 and 14.3 micrograms per liter, respectively.

  19. Investigation of absolute and relative response for three different liquid chromatography/tandem mass spectrometry systems; the impact of ionization and detection saturation.

    PubMed

    Nilsson, Lars B; Skansen, Patrik

    2012-06-30

    The investigations in this article were triggered by two observations in the laboratory; for some liquid chromatography/tandem mass spectrometry (LC/MS/MS) systems it was possible to obtain linear calibration curves for extreme concentration ranges and for some systems seemingly linear calibration curves gave good accuracy at low concentrations only when using a quadratic regression function. The absolute and relative responses were tested for three different LC/MS/MS systems by injecting solutions of a model compound and a stable isotope labeled internal standard. The analyte concentration range for the solutions was 0.00391 to 500 μM (128,000×), giving overload of the chromatographic column at the highest concentrations. The stable isotope labeled internal standard concentration was 0.667 μM in all samples. The absolute response per concentration unit decreased rapidly as higher concentrations were injected. The relative response, the ratio for the analyte peak area to the internal standard peak area, per concentration unit was calculated. For system 1, the ionization process was found to limit the response and the relative response per concentration unit was constant. For systems 2 and 3, the ion detection process was the limiting factor resulting in decreasing relative response at increasing concentrations. For systems behaving like system 1, simple linear regression can be used for any concentration range while, for systems behaving like systems 2 and 3, non-linear regression is recommended for all concentration ranges. Another consequence is that the ionization capacity limited systems will be insensitive to matrix ion suppression when an ideal internal standard is used while the detection capacity limited systems are at risk of giving erroneous results at high concentrations if the matrix ion suppression varies for different samples in a run. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Evaluation of aqueous and ethanol extract of bioactive medicinal plant, Cassia didymobotrya (Fresenius) Irwin & Barneby against immature stages of filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae).

    PubMed

    Nagappan, Raja

    2012-09-01

    To evaluate aqueous and ethanol extract of Cassia didymobotrya leaves against immature stages of Culex quinquefasciatus. The mortality rate of immature mosquitoes was tested in wide and narrow range concentration of the plant extract based on WHO standard protocol. The wide range concentration tested in the present study was 10 000, 1 000, 100, 10 and 1 mg/L and narrow range concentration was 50, 100, 150, 200 and 250 mg/L. 2nd instar larvae exposed to 100 mg/L and above concentration of ethanol extract showed 100% mortality. Remaining stages such as 3rd, 4th and pupa, 100% mortality was observed at 1 000 mg/L and above concentration after 24 h exposure period. In aqueous extract all the stages 100% mortality was recorded at 1 000 mg/L and above concentration. In narrow range concentration 2nd instar larvae 100% mortality was observed at 150 mg/L and above concentration of ethanol extract. The remaining stages 100% mortality was recorded at 250 mg/L. In aqueous extract all the tested immature stages 100% mortality was observed at 250 mg/L concentration after 24 h exposure period. The results clearly indicate that the rate of mortality was based dose of the plant extract and stage of the mosquitoes. From this study it is confirmed and concluded that Cassia didymobotrya is having active principle which is responsible for controlling Culex quinquefasciatus. The isolation of bioactive molecules and development of simple formulation technique is important for large scale implementation.

  1. Effects of Copper Pollution on the Phenolic Compound Content, Color, and Antioxidant Activity of Wine.

    PubMed

    Sun, Xiangyu; Ma, Tingting; Han, Luyang; Huang, Weidong; Zhan, Jicheng

    2017-05-03

    The effects of copper pollution on the polyphenol content, color, and antioxidant activity of wine, as well as correlations among these factors, were investigated. Copper had clear influences on wine polyphenol content. At low copper concentrations, the concentrations of nearly all polyphenols increased, and the antioxidant activity values of the wine also increased. When the copper concentration reached the lowest level of the medium copper range (9.6~16 mg/L), most of the indices also improved. When the copper concentrations reached the latter part of the medium copper range (19.2 and 22.4 mg/L), many of the tested indices began to decrease. Furthermore, when the copper concentration reached the high ranges (32, 64, and 96 mg/L), the polyphenol content, CIELAB color parameters, and antioxidant activity of wine were substantially decreased, indicating the need to control increasing copper content in grape must.

  2. Perils of categorical thinking: "Oxic/anoxic" conceptual model in environmental remediation

    USGS Publications Warehouse

    Bradley, Paul M.

    2012-01-01

    Given ambient atmospheric oxygen concentrations of about 21 percent (by volume), the lower limit for reliable quantitation of dissolved oxygen concentrations in groundwater samples is in the range of 0.1–0.5 mg/L. Frameworks for assessing in situ redox condition are often applied using a simple two-category (oxic/anoxic) model of oxygen condition. The "oxic" category defines the environmental range in which dissolved oxygen concentrations are clearly expected to impact contaminant biodegradation, either by supporting aerobic biodegradation of electron-donor contaminants like petroleum hydrocarbons or by inhibiting anaerobic biodegradation of electron-acceptor contaminants like chloroethenes. The tendency to label the second category "anoxic" leads to an invalid assumption that oxygen is insignificant when, in fact, the dissolved oxygen concentration is less than detection but otherwise unknown. Expressing dissolved oxygen concentrations as numbers of molecules per volume, dissolved oxygen concentrations that fall below the 0.1 mg/L field detection limit range from 1 to 1017 molecules/L. In light of recent demonstrations of substantial oxygen-linked biodegradation of chloroethene contaminants at dissolved oxygen concentrations well below the 0.1–0.5 mg/L field detection limit, characterizing "less than detection" oxygen concentrations as "insignificant" is invalid.

  3. Emission of polybrominated diphenyl ethers (PBDEs) in use of electric/electronic equipment and recycling of e-waste in Korea.

    PubMed

    Park, Jong-Eun; Kang, Young-Yeul; Kim, Woo-Il; Jeon, Tae-Wan; Shin, Sun-Kyoung; Jeong, Mi-Jeong; Kim, Jong-Guk

    2014-02-01

    The emission rates of polybrominated diphenyl ethers (PBDEs) from electric/electronic products during their use and disposal were estimated. E-wastes, including televisions and refrigerators, gathered at recycling centers were also analyzed to estimate their emissions. The average concentrations of PBDEs in TV rear covers produced before and after the year 2000 were 145,027 mg/kg and 14,049 mg/kg, respectively. The PBDEs concentration in TV front covers was lower than the concentration in TV rear covers. The concentration in the components of the refrigerator samples ranged from ND to 445 mg/kg. We estimated the atmospheric emissions of PBDEs based on the concentrations. The annual emissions from TV rear covers produced before 2000 were calculated to be approximately 162.1 kg and after 2000, the annual emissions were 18.7 kg. Refrigerators showed the lowest annual emissions of PBDEs (0.7 kg). The atmospheric concentrations were also measured to calculate emissions generated during the recycling process. The highest concentration was 16.86 ng/m(3) emitted from the TV sets during the dismantling process. The concentrations of PBDEs generated in the plastic processing field ranged from 2.05 to 5.43 ng/m(3) depending on the products, and ambient air in open-air yards showed concentrations in the range of 0.32 to 5.55 ng/m(3). Emission factors for the recycling process were calculated using the observed concentrations. The estimated emissions according to the emission factors ranged from 0.3×10(-1) to 90.3 kg/year for open-air yards and from 0.1×10(-1) to 292.7 kg/year for the dismantling and crushing processes of TV set, depending on the production year. © 2013 Elsevier B.V. All rights reserved.

  4. Selenium in soil, water, sediment, and biota of the lower Sun River area, West-Central Montana

    USGS Publications Warehouse

    Nimick, David A.; Lambing, John H.; Palawski, Donald U.

    1993-01-01

    A U.S. Department of the Interior study started in 1990 examined the source, movement, fate, and possible biological effects of selenium associated with irrigation drainage from the Sun River Irrigation Project in west-central Montana. Concentrations of total selenium in soil samples ranged from 0.1 to 8.5 micrograms per gram; the maximum concentrations were measured in nonirrigated areas overlying geologic formations containing seleniferous shale. In irrigated areas, concentrations of dissolved selenium in ground water flowing toward Freezeout Lake ranged from less than 1 to 18 micrograms per liter (??g/L) in terrace gravel and from 1 to 190 ??g/L in glacial deposits derived from seleniferous shale. Concentrations of total selenium ranged from less than 1 to 180 ??g/L in surface irrigation drainage, and from less than 1 to 1,000 ??g/L in natural flows from nonirrigated land. Selenium concentrations in water from lakes generally were less than the aquatic-life criterion for chronic toxicity. The range of selenium concentrations in bottom sediment of lakes was similar to that of local soils. However, biological samples indicate that selenium is accumulating through the aquatic food chain. Selenium concentrations indicative of biological risk were exceeded in at least 80 percent of the freshwater-invertebrate, bird-egg, and bird-liver samples collected from all wetland sites.

  5. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Haverland, Pamela S.; Brunson, Eric L.; Canfield, Timothy J.; Dwyer, F. James; Henke, Chris; Kemble, Nile E.; Mount, David R.; Fox, Richard G.

    1996-01-01

    Procedures are described for calculating and evaluating sediment effect concentrations (SECs) using laboratory data on the toxicity of contaminants associated with field-collected sediment to the amphipod Hyalella azteca and the midge Chironomus riparius. SECs are defined as the concentrations of individual contaminants in sediment below which toxicity is rarely observed and above which toxicity is frequently observed. The objective of the present study was to develop SECs to classify toxicity data for Great Lake sediment samples tested with Hyalella azteca and Chironomus riparius. This SEC database included samples from additional sites across the United States in order to make the database as robust as possible. Three types of SECs were calculated from these data: (1) Effect Range Low (ERL) and Effect Range Median (ERM), (2) Threshold Effect Level (TEL) and Probable Effect Level (PEL), and (3) No Effect Concentration (NEC). We were able to calculate SECs primarily for total metals, simultaneously extracted metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The ranges of concentrations in sediment were too narrow in our database to adequately evaluate SECs for butyltins, methyl mercury, polychlorinated dioxins and furans, or chlorinated pesticides. About 60 to 80% of the sediment samples in the database are correctly classified as toxic or not toxic depending on type of SEC evaluated. ERMs and ERLs are generally as reliable as paired PELs and TELs at classifying both toxic and non-toxic samples in our database. Reliability of the SECs in terms of correctly classifying sediment samples is similar between ERMs and NECs; however, ERMs minimize Type I error (false positives) relative to ERLs and minimize Type II error (false negatives) relative to NECs. Correct classification of samples can be improved by using only the most reliable individual SECs for chemicals (i.e., those with a higher percentage of correct classification). SECs calculated using sediment concentrations normalized to total organic carbon (TOC) concentrations did not improve the reliability compared to SECs calculated using dry-weight concentrations. The range of TOC concentrations in our database was relatively narrow compared to the ranges of contaminant concentrations. Therefore, normalizing dry-weight concentrations to a relatively narrow range of TOC concentrations had little influence on relative concentra of contaminants among samples. When SECs are used to conduct a preliminary screening to predict the potential for toxicity in the absence of actual toxicity testing, a low number of SEC exceedances should be used to minimize the potential for false negatives; however, the risk of accepting higher false positives is increased.

  6. Calcium and Phosphor Status of Beef Cattle in Upland and Lowland of Jratunseluna River Basin in Central Java

    NASA Astrophysics Data System (ADS)

    Sutrisno; Subrata, A.; Surahmanto; Christiyanto, M.; Surono; Achmadi, J.; Wahyono, F.; Pangestu, E.

    2018-02-01

    The study was aimed to obtain information regarding feed given and mineralstatus (Ca, P) in fodder and beef cattle in Jratunseluna river basin. Feed and drinking water given by farmers identified for 14 days and extracted sampling for mineralanalysis, t-test was used to compare mineral status in upland and lowland. Results of the research showed that feed given by farmers were varying. The ratio of forage/concentrates in lowland and upland areas was different, i.e. 67: 33 and 30: 70, respectivelly. Ca content on forage given in upland areas ranged from 0.17 to 0.74%, and concentrates from 0.002 to 0.49%, while Ca content on forage given in lowland areas ranged from 0.33 to 0.52%, and concentrates ranged from 0.38 to 0.49%. P content on forage in upland areas ranged from 0.02 to 0.04%, concentrates ranged from 0.018 to 0.09%,while P content on forage in lowland areas ranged from 0.03 to 0.07%, and concentrates ranged from 0.04 to 0.07% . Ca and P consumption in upland areas were 301.06 and 54.73 g, and 391.92 and 65.70 g in lowland.Caand P content of beef cattle’s hair in upland were 0.14 and 0.01%, while in lowland areas were 0.11 and 0.03%.It can be concluded that Ca and P intakeof beef cattle in Jratunseluna river basin were less and mineral status of Ca and P in marginal condition.

  7. An isotherm-based thermodynamic model of multicomponent aqueous solutions, applicable over the entire concentration range.

    PubMed

    Dutcher, Cari S; Ge, Xinlei; Wexler, Anthony S; Clegg, Simon L

    2013-04-18

    In previous studies (Dutcher et al. J. Phys. Chem. C 2011, 115, 16474-16487; 2012, 116, 1850-1864), we derived equations for the Gibbs energy, solvent and solute activities, and solute concentrations in multicomponent liquid mixtures, based upon expressions for adsorption isotherms that include arbitrary numbers of hydration layers on each solute. In this work, the long-range electrostatic interactions that dominate in dilute solutions are added to the Gibbs energy expression, thus extending the range of concentrations for which the model can be used from pure liquid solute(s) to infinite dilution in the solvent, water. An equation for the conversion of the reference state for solute activity coefficients to infinite dilution in water has been derived. A number of simplifications are identified, notably the equivalence of the sorption site parameters r and the stoichiometric coefficients of the solutes, resulting in a reduction in the number of model parameters. Solute concentrations in mixtures conform to a modified Zdanovskii-Stokes-Robinson mixing rule, and solute activity coefficients to a modified McKay-Perring relation, when the effects of the long-range (Debye-Hückel) term in the equations are taken into account. Practical applications of the equations to osmotic and activity coefficients of pure aqueous electrolyte solutions and mixtures show both satisfactory accuracy from low to high concentrations, together with a thermodynamically reasonable extrapolation (beyond the range of measurements) to extreme concentration and to the pure liquid solute(s).

  8. Trends in the short-term release of fission products and actinides to aqueous solution from used CANDU fuels at elevated temperature

    NASA Astrophysics Data System (ADS)

    Stroes-Gascoyne, S.

    1992-08-01

    A large number of short-term leaching experiments has been performed to determine fission product and actinide release from used CANDU (CANada Deuterium Uranium) fuels and to establish which factors affect release. Results are reported after30 ± 10 d leaching at 100-150°C under oxidizing (air) or reducing (Ar-3% H 2 or Ar) conditions, in various synthetic groundwaters. Cesium-137 release (0.007-6%) was positively correlated with increases in fuel power, leachant temperature and ionic strength. Strontium-90 release (0.0003-0.3%) generally increased with ionic strength, higher temperature and redox conditions. Actinide and Tc concentrations were compared to ranges calculated with a thermodynamic equilibrium model, that accounts for the uncertain geochemical parameters of a nuclear waste vault by calculating concentration ranges based on 40000 hypothetical cases. Experimental U concentrations (10 -8.5 to 10 -3 mol/kg) were higher than the model range, probably because of higher redox potentials in the experiments. Measured Pu concentrations (10 -12.5 to 10 -7 mol/kg) were at the low end of the calculated range. Americium and Cm concentrations (10 -12.5 to 10 -7 and 10 -15 to 10 -9 mol/kg, respectively) were highest under oxidizing conditions and higher temperatures. Technetium-99 concentrations (10 -5.5 to 10 -10.5 mol/kg) covered a much narrower range than calculated by the model.

  9. [Measurements of vancomycin concentrations in the blood - a method of personalization the antibiotic therapy in patients with chronic kidney disease].

    PubMed

    Pondel, Joanna; Krajewski, Piotr; Królikowska, Natalia; Tobiasz, Aleksandra; Augustyniak-Bartosik, Hanna; Hurkacz, Magdalena

    2017-04-21

    Therapeutic Drug Monitoring is a recognized method of personalizing treatment, having particular application in patients with chronic kidney disease who have frequent infections, requiring administration of vancomycin. International guidelines indicate the need to adjust the dose of the drug to the state of renal function. The recommended therapeutic ranges of minimum and maximum levels should be achieved in order to increase the effectiveness and safety of treatment. The aim of this study was to evaluate the usefulness of measuring the concentration of vancomycin in patients with chronic kidney disease due to bacterial infection. The study included 96 adult patients with chronic kidney disease of varying severity treated with vancomycin Patients were divided into 3 groups: treated by haemodialysis (hd), after renal transplantations (ktx), do not require renal replacement therapy (nef). In subjects were examined the minimum and maximum concentrations of vancomycin in steady-state and were compared with recommended therapeutic ranges. Statistically significant decrease of inflammatory markers was observed only in patients treated with dialysis. In the other groups not significant changes in values of inflammatory parameters were confirmed. Trough concentrations of vancomycin marked in patients were consistent with the recommendation of EUCAST, but exceeded the value recommended by the manufacturers of the drug. Considering absolute values of the minimum concentrations, only about 50% of patients achieved the therapeutic range (58% for recommendation EUCAST and 36% for the manufacturer's instructions). Peak concentration values indicated in dialyzed patients were below the prescribed range of 20-50 mg/l and averaged 17.7 mg / l. In the other subgroups they were correct. The rating of the absolute values of the peak concentrations of vancomycin also showed that only 46% (64% in the ktx, 30% - hd and 53% - nef) was within the recommended range, while 50% were classified as concentrations of sub-therapeutic (36% in the ktx, 42% of the nef group and 65% in hd). Vancomycin concentrations measured in patients with chronic kidney disease, both minimum and maximum, were not fully comply with the recommended therapeutic ranges, despite the use of doses determined based on a calculation of glomerular filtration rate. This points to the need for particularly careful monitoring of therapy and analysis of antibiotic concentrations to improve the effectiveness and reduce the incidence of undesirable consequences of treatment.

  10. Theory and design of line-to-point focus solar concentrators with tracking secondary optics.

    PubMed

    Cooper, Thomas; Ambrosetti, Gianluca; Pedretti, Andrea; Steinfeld, Aldo

    2013-12-10

    The two-stage line-to-point focus solar concentrator with tracking secondary optics is introduced. Its design aims to reduce the cost per m(2) of collecting aperture by maintaining a one-axis tracking trough as the primary concentrator, while allowing the thermodynamic limit of concentration in 2D of 215× to be significantly surpassed by the implementation of a tracking secondary stage. The limits of overall geometric concentration are found to exceed 4000× when hollow secondary concentrators are used, and 6000× when the receiver is immersed in a dielectric material of refractive index n=1.5. Three exemplary collectors, with geometric concentrations in the range of 500-1500× are explored and their geometric performance is ascertained by Monte Carlo ray-tracing. The proposed solar concentrator design is well-suited for large-scale applications with discrete, flat receivers requiring concentration ratios in the range 500-2000×.

  11. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  12. Effect of Temperature and Nutrient Manipulations on eelgrass ...

    EPA Pesticide Factsheets

    Global climate change will have a large impact on the three predominate drivers of estuarine seagrass productivity, temperature, light and nutrients. I experimentally evaluate the response of Pacific Northwest Z. marina to interactive effects of temperature and nutrient conditions. Experimental manipulations were conducted hydroponically in acrylic chambers and spanned a range of temperatures and nutrient concentrations. Preliminary single factor experiments were conducted to evaluate physiological tolerances to temperature and nitrogen concentrations. Eelgrass exhibited a linear increase in specific growth with increasing NH4 concentration (range from 10 to 1000 µM); in contrast, there was no significant relationship between specific growth rate and increasing NO3 concentration over the same concentration range. Leaf growth metrics all exhibited strong linear relationships with increasing water temperature (temperature range 4-25 ºC). In the factorial experiment, plants were exposed to 3 temperatures (10, 18 and 25 ºC) and 3 nitrate concentrations (10, 30 and 100 µM) with 3 replicate chambers per treatment combination. Most metrics (leaf elongation, growth, specific growth, wasting index) exhibited a significant temperature effect indicating the importance of temperature on metabolic rates. Tissue stable isotope ratios and C:N values exhibited a significant nutrient effect and in some cases a significant temperature effect. Whole plant non structur

  13. Characteristics of cabin air quality in school buses in Central Texas

    NASA Astrophysics Data System (ADS)

    Rim, Donghyun; Siegel, Jeffrey; Spinhirne, Jarett; Webb, Alba; McDonald-Buller, Elena

    This study assessed in-cabin concentrations of diesel-associated air pollutants in six school buses with diesel engines during a typical route in suburban Austin, Texas. Air exchange rates measured by SF 6 decay were 2.60-4.55 h -1. In-cabin concentrations of all pollutants measured exhibited substantial variability across the range of tests even between buses of similar age, mileage, and engine type. In-cabin NO x concentrations ranged from 44.7 to 148 ppb and were 1.3-10 times higher than roadway NO x concentrations. Mean in-cabin PM 2.5 concentrations were 7-20 μg m -3 and were generally lower than roadway levels. In-cabin concentrations exhibited higher variability during cruising mode than frequent stops. Mean in-cabin ultrafine PM number concentrations were 6100-32,000 particles cm -3 and were generally lower than roadway levels. Comparison of median concentrations indicated that in-cabin ultrafine PM number concentrations were higher than or approximately the same as the roadway concentrations, which implied that, by excluding the bias caused by local traffic, ultrafine PM levels were higher in the bus cabin than outside of the bus. Cabin pollutant concentrations on three buses were measured prior to and following the phased installation of a Donaldson Spiracle Crankcase Filtration System and a Diesel Oxidation Catalyst. Following installation of the Spiracle, the Diesel Oxidation Catalyst provided negligible or small additional reductions of in-cabin pollutant levels. In-cabin concentration decreases with the Spiracle alone ranged from 24 to 37% for NO x and 26 to 62% and 6.6 to 43% for PM 2.5 and ultrafine PM, respectively. Comparison of the ranges of PM 2.5 and ultrafine PM variations between repetitive tests suggested that retrofit installation could not always be conclusively linked to the decrease of pollutant levels in the bus cabin.

  14. Post-mortem quetiapine concentrations in hair segments of psychiatric patients - Correlation between hair concentration, dose and concentration in blood.

    PubMed

    Günther, Kamilla Nyborg; Johansen, Sys Stybe; Nielsen, Marie Katrine Klose; Wicktor, Petra; Banner, Jytte; Linnet, Kristian

    2018-04-01

    Drug analysis in hair is useful when seeking to establish drug intake over a period of months to years. Segmental hair analysis can also document whether psychiatric patients are receiving a stable intake of antipsychotics. This study describes segmental analysis of the antipsychotic drug quetiapine in post-mortem hair samples from long-term quetiapine users by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The aim was to obtain more knowledge on quetiapine concentrations in hair and to relate the concentration in hair to the administered dose and the post-mortem concentration in femoral blood. We analyzed hair samples from 22 deceased quetiapine-treated individuals, who were divided into two groups: natural hair colour and dyed/bleached hair. Two to six 1cm long segments were analyzed per individual, depending on the length of the hair, with 6cm corresponding to the last six months before death. The average daily quetiapine dose and average concentration in hair for the last six months prior to death were examined for potential correlation. Estimated doses ranged from 45 to 1040mg quetiapine daily over the period, and the average concentration in hair ranged from 0.18 to 13ng/mg. A significant positive correlation was observed between estimated daily dosage of quetiapine and average concentration in hair for individuals with natural hair colour (p=0.00005), but statistical significance was not reached for individuals with dyed/bleached hair (p=0.31). The individual coefficient of variation (CV) of the quetiapine concentrations between segments ranged from 3 to 34% for individuals with natural hair colour and 22-62% for individuals with dyed/bleached hair. Dose-adjusted concentrations in hair were significantly lower in females with dyed/bleached hair than in individuals with natural hair colour. The quetiapine concentrations in post-mortem femoral blood and in the proximal hair segment, segment 1 (S1), representing the last month before death were also investigated for correlation. A significant positive correlation was observed between quetiapine concentrations in blood at the time of death and concentrations in S1 for individuals with natural hair colour (p=0.003) but not for individuals with dyed/bleached hair (p=0.31). The blood concentrations of quetiapine ranged from 0.006 to 1.9mg/kg, and the quetiapine concentrations in S1 ranged from 0.22 to 24ng/mg. The results of this study suggest a positive correlation of quetiapine between both concentrations in hair and doses, and between proximal hair (S1) and blood concentrations, when conditions such as hair treatments are taken into consideration. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Preliminary observations on the concentration of marine bacteriophages in the water around Helgoland

    NASA Astrophysics Data System (ADS)

    Moebus, K.

    1991-12-01

    In a preliminary survey, conducted between August 28 and October 9, 1990, the concentration of bacteriophages in seawater sampled at intervals of 1 to 4 days near Helgoland (station Kabeltonne) was determined by using indicator bacteria which had been isolated from seawater sampled only some weeks before. With a number of bacterial strains, phage concentrations ranging between 2 and 7×102ml-1 were found. However, during the course of this investigation maximal concentrations lasted for a few days only. With most indicator bacteria employed, the concentration of plaque-forming units (PFU) varied in the range of <1 and 20 30 PFU ml-1.

  16. Calculating osmotic pressure of glucose solutions according to ASOG model and measuring it with air humidity osmometry.

    PubMed

    Wei, Guocui; Zhan, Tingting; Zhan, Xiancheng; Yu, Lan; Wang, Xiaolan; Tan, Xiaoying; Li, Chengrong

    2016-09-01

    The osmotic pressure of glucose solution at a wide concentration range was calculated using ASOG model and experimentally determined by our newly reported air humidity osmometry. The measurements from air humidity osmometry were compared with the well-established freezing point osmometry and ASOG model calculations at low concentrations and with only ASOG model calculations at high concentrations where no standard experimental method could serve as a reference for comparison. Results indicate that air humidity osmometry measurements are comparable to ASOG model calculations at a wide concentration range, while at low concentrations freezing point osmometry measurements provide better comparability with ASOG model calculations.

  17. Direct and quantitative AFM measurements of the concentration and temperature dependence of the hydrophobic force law at nanoscopic contacts.

    PubMed

    Stock, Philipp; Utzig, Thomas; Valtiner, Markus

    2015-05-15

    By virtue of its importance for self-organization of biological matter the hydrophobic force law and the range of hydrophobic interactions (HI) have been debated extensively over the last 40 years. Here, we directly measure and quantify the hydrophobic force-distance law over large temperature and concentration ranges. In particular, we study the HI between molecularly smooth hydrophobic self-assembled monolayers, and similarly modified gold-coated AFM tips (radii∼8-50 nm). We present quantitative and direct evidence that the hydrophobic force is both long-ranged and exponential down to distances of about 1-2 nm. Therefore, we introduce a self-consistent radius-normalization for atomic force microscopy data. This approach allows quantitative data fitting of AFM-based experimental data to the recently proposed Hydra-model. With a statistical significance of r(2)⩾0.96 our fitting and data directly reveal an exponential HI decay length of 7.2±1.2 Å that is independent of the salt concentration up to 750 mM. As such, electrostatic screening does not have a significant influence on the HI in electrolyte concentrations ranging from 1 mM to 750 mM. In 1 M solutions the observed instability during approach shifts to longer distances, indicating ion correlation/adsorption effects at high salt concentrations. With increasing temperature the magnitude of HI decreases monotonically, while the range increases slightly. We compare our results to the large body of available literature, and shed new light into range and magnitude of hydrophobic interactions at very close distances and over wide temperature and concentration regimes. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Six orders of magnitude dynamic range in capillary electrophoresis with ultrasensitive laser-induced fluorescence detection

    PubMed Central

    Whitmore, Colin D.; Essaka, David; Dovichi, Norman J.

    2009-01-01

    An ultrasensitive laser-induced fluorescence detector was used with capillary electrophoresis for the study of 5-carboxy-tetramethylrhodamine. The raw signal from the detector provided roughly three orders of magnitude dynamic range. The signal saturated at high analyte concentrations due to the dead time associated with the single-photon counting avalanche photodiode employed in the detector. The signal can be corrected for the detector dead time, providing an additional order of magnitude dynamic range. To further increase dynamic range, two fiber-optic beam-splitters were cascaded to generate a primary signal and two attenuated signals, each monitored by a single-photon counting avalanche photodiode. The combined signals from the three photodiodes are reasonably linear from the concentration detection limit of 3 pM to 10 μM, the maximum concentration investigated, a range of 3,000,000. Mass detection limits were 150 yoctomoles injected onto the capillary. PMID:19836546

  19. Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass

    DOE PAGES

    Gammer, C.; Escher, B.; Ebner, C.; ...

    2017-03-21

    Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less

  20. Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gammer, C.; Escher, B.; Ebner, C.

    Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less

  1. Cure of tuberculosis despite serum concentrations of antituberculosis drugs below published reference ranges.

    PubMed

    Meloni, Monica; Corti, Natascia; Müller, Daniel; Henning, Lars; Gutteck, Ursula; von Braun, Amrei; Weber, Rainer; Fehr, Jan

    2015-01-01

    Therapeutic target serum concentrations of first-line antituberculosis drugs have not been well defined in clinical studies in tuberculosis (TB) patients. We retrospectively investigated the estimated maximum serum concentrations (eC max) of antituberculosis drugs and clinical outcome of TB patients with therapeutic drug monitoring performed between 2010-2012 at our institution, and follow-up until March 2014. The eC max was defined as the highest serum concentration during a sampling period (2, 4 and 6 hours after drug ingestion). We compared the results with published eC max values, and categorised them as either "within reference range", "low eC max", or "very low eC max".Low/very low eC max-levels were defined as follows: isoniazid 2-3/<2 mg/l, rifampicin 4-8/<4 mg/l, rifabutin 0.2-0.3/<0.2 mg/l, ethambutol 1-2/<0.1 mg/l and pyrazinamide <20 mg/l. Concentrations of antituberculosis drugs in 175 serum samples of 17 patients with TB were analysed. In 12 (71%) patients, multiple therapeutic drug monitoring samples were collected over time, in 5 (29%) patients only one sample was available for therapeutic drug monitoring. Overall, 94% of all patients had at least one low antituberculosis drug concentration. Overall, 64% of all eC max levels were classified as "low" or "very low". The eC max was below the relevant reference range in 80% of isoniazid, 95% of rifampicin, 30% of pyrazinamide, and 30% of ethambutol measurements. All but one patient were cured of tuberculosis. Although many antituberculosis drug serum concentrations were below the widely used reference ranges, 16 of 17 patients were cured of tuberculosis. These results challenge the use of the published reference ranges for therapeutic drug monitoring.

  2. Chemicals of emerging concern in water and bottom sediment in the Great Lakes Basin, 2012: collection methods, analytical methods, quality assurance, and study data

    USGS Publications Warehouse

    Lee, Kathy E.; Langer, Susan K.; Menheer, Michael A.; Hansen, Donald S.; Foreman, William T.; Furlong, Edward T.; Jorgenson, Zachary G.; Choy, Steven J.; Moore, Jeremy N.; Banda, JoAnn; Gefell, Daniel J.

    2015-01-01

    During this study, 53 environmental samples, 4 field duplicate samples, and 8 field spike samples of bottom sediment and laboratory matrix-spike samples were analyzed for a wide variety of CECs at the USGS National Water Quality Laboratory using laboratory schedule 5433 for wastewater indicators; research method 6434 for steroid hormones, sterols, and bisphenol A; and research method 9008 for human-use pharmaceuticals and antidepressants. Forty of the 57 chemicals analyzed using laboratory schedule 5433 had detectable concentrations ranging from 1 to 49,000 micrograms per kilogram. Fourteen of the 20 chemicals analyzed using research method 6434 had detectable concentrations ranging from 0.04 to 24,940 nanograms per gram. Ten of the 20 chemicals analyzed using research method 9008 had detectable concentrations ranging from 0.59 to 197.5 micrograms per kilogram. Five of the 11 chemicals analyzed using research method 9008 had detectable concentrations ranging from 1.16 to 25.0 micrograms per kilogram.

  3. Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS

    USGS Publications Warehouse

    Schultz, M.M.; Furlong, E.T.

    2008-01-01

    Treated wastewater effluent is a potential environmental point source for antidepressant pharmaceuticals. A quantitative method was developed for the determination of trace levels of antidepressants in environmental aquatic matrixes using solid-phase extraction coupled with liquid chromatography- electrospray ionization tandem mass spectrometry. Recoveries of parent antidepressants from matrix spiking experiments for the individual antidepressants ranged from 72 to 118% at low concentrations (0.5 ng/L) and 70 to 118% at high concentrations (100 ng/L) for the solid-phase extraction method. Method detection limits for the individual antidepressant compounds ranged from 0.19 to 0.45 ng/L. The method was applied to wastewater effluent and samples collected from a wastewater-dominated stream. Venlafaxine was the predominant antidepressant observed in wastewater and river water samples. Individual antidepressant concentrations found in the wastewater effluent ranged from 3 (duloxetine) to 2190 ng/L (venlafaxine), whereas individual concentrations in the waste-dominated stream ranged from 0.72 (norfluoxetine) to 1310 ng/L (venlafaxine). ?? 2008 American Chemical Society.

  4. Application of Acoustic and Optic Methods for Estimating Suspended-Solids Concentrations in the St. Lucie River Estuary, Florida

    USGS Publications Warehouse

    Patino, Eduardo; Byrne, Michael J.

    2004-01-01

    Acoustic and optic methods were applied to estimate suspended-solids concentrations in the St. Lucie River Estuary, southeastern Florida. Acoustic Doppler velocity meters were installed at the North Fork, Speedy Point, and Steele Point sites within the estuary. These sites provide varying flow, salinity, water-quality, and channel cross-sectional characteristics. The monitoring site at Steele Point was not used in the analyses because repeated instrument relocations (due to bridge construction) prevented a sufficient number of samples from being collected at the various locations. Acoustic and optic instruments were installed to collect water velocity, acoustic backscatter strength (ABS), and turbidity data that were used to assess the feasibility of estimating suspended-solids concentrations in the estuary. Other data collected at the monitoring sites include tidal stage, salinity, temperature, and periodic discharge measurements. Regression analyses were used to determine the relations of suspended-solids concentration to ABS and suspended-solids concentration to turbidity at the North Fork and Speedy Point sites. For samples used in regression analyses, measured suspended-solids concentrations at the North Fork and Speedy Point sites ranged from 3 to 37 milligrams per liter, and organic content ranged from 50 to 83 percent. Corresponding salinity for these samples ranged from 0.12 to 22.7 parts per thousand, and corresponding temperature ranged from 19.4 to 31.8 ?C. Relations determined using this technique are site specific and only describe suspended-solids concentrations at locations where data were collected. The suspended-solids concentration to ABS relation resulted in correlation coefficients of 0.78 and 0.63 at the North Fork and Speedy Point sites, respectively. The suspended-solids concentration to turbidity relation resulted in correlation coefficients of 0.73 and 0.89 at the North Fork and Speedy Point sites, respectively. The adequacy of the empirical equations seems to be limited by the number and distribution of suspended-solids samples collected throughout the expected concentration range at the North Fork and Speedy Point sites. Additionally, the ABS relations for both sites seem to overestimate at the low end and underestimate at the high end of the concentration range. Based on the sensitivity analysis, temperature had a greater effect than salinity on estimated suspended-solids concentrations. Temperature also appeared to affect ABS data, perhaps by changing the absorptive and reflective characteristics of the suspended material. Salinity and temperature had no observed effects on the turbidity relation at the North Fork and Speedy Point sites. Estimates of suspended-solids concentrations using ABS data were less 'erratic' than estimates using turbidity data. Combining ABS and turbidity data into one equation did not improve the accuracy of results, and therefore, was not considered.

  5. Investigation of dioxin concentrations in the lower Roanoke River basin, North Carolina, February 26-March 7, 2001

    USGS Publications Warehouse

    Miller, K.F.; Walters, D.A.

    2001-01-01

    Dioxin is a toxic chemical that, when present in the environment, can cause cancer and birth defects in humans. Dioxin is of particular concern because concentrations of dioxin that were released into the environment many years ago remain a contributing factor to current exposure. Dioxin exposure often occurs in surface-water systems downstream from contaminated sites and is detrimental to aquatic life. For these reasons and because the U.S. Geological Survey has expertise in conducting high-volume dioxin sampling, the U.S. Environmental Protection Agency and the State of North Carolina asked the U.S. Geological Survey to collect water samples in the lower Roanoke River to be analyzed for the presence of dioxin. Water quality of the lower Roanoke River Basin in North Carolina was assessed at eight sites during February 26-March 7, 2001. Water- quality samples were collected for analysis of suspended-sediment and dioxin concentrations; high-volume (750-liter) water samples were collected for dioxin analysis. Discharge measurements were made at or near the high-volume sampling sites. Suspended-sediment sampling and water-quality measurements of specific conductance, pH, water temperature, and dissolved-oxygen concentrations made at each sampling site included multidepth measurements at two cross-section transects and hourly measurements at the point of high-volume sampling. Multidepth measurements were made near the surface, mid-depth, and near the bottom of the water column. These values were averaged for each cross section. During the sampling period, all sites sampled had dioxin concentrations above detection limits (1 part per quintillion) for both suspended and dissolved dioxin. Suspended dioxin ranged from 5.1 to 900 femtograms per liter, and dissolved dioxin values ranged from 0.31 to 41 femtograms per liter. Suspended-sediment concentrations ranged from 1.1 to 14 milligrams per liter. Specific conductance values ranges from 111 to 340 microsiemens per centimeter at 25 degrees Celsius. The range of pH values at the sampling sites was from 6.6 to 7.7. Water temperatures ranged from 8.9 to 13 degrees Celsius. Dissolved-oxygen concentrations ranged from 7.3 to 10.9 milligrams per liter.

  6. Water quality (2000-08) and historical phosphorus concentrations from paleolimnological studies of Swamp and Speckled Trout Lakes, Grand Portage Reservation, northeastern Minnesota

    USGS Publications Warehouse

    Christensen, Victoria G.; Jones, Perry M.; Edlund, Mark B.; Ramstack, Joy M.

    2010-01-01

    A paleolimnological approach was taken to aid the Grand Portage Reservation, in northeastern Minnesota, in determining reference conditions for lakes on the reservation. The U.S. Geological Survey, in cooperation with the Grand Portage Band of Chippewa Indians and the Science Museum of Minnesota, conducted a study to describe water quality (2000-08) and historical total phosphorus concentrations (approximately 1781-2006) for Swamp and Speckled Trout Lakes. Results from this study may be used as a guide in establishing nutrient criteria in these and other lakes on the Grand Portage Reservation. Historical phosphorus concentrations were inferred through paleolimnological reconstruction methods involving diatom analysis and lead-210 dating of lake-sediment cores. Historical diatom-inferred total phosphorus concentrations in Swamp Lake ranged from 0.017 to 0.025 milligrams per liter (mg/L) based on diatom assemblages in sediment samples dated 1781-2005. Historical diatom-inferred total phosphorus concentrations in Speckled Trout Lake ranged from 0.008 to 0.014 mg/L based on diatom assemblages in sediment samples dated 1825-2006. In both lakes, historical changes in diatom-inferred total phosphorus concentrations did not exceed model error estimates, indicating that there has been minimal change in total phosphorus concentrations in the two lakes over about two centuries. Nutrient concentrations in monthly water samples collected May through October during 2000, 2002, 2004, 2006, and 2008 were compared to the diatom-inferred total phosphorus concentrations. Total phosphorus concentrations from water samples collected from Swamp Lake during 2000-08 ranged from less than 0.002 to 0.160 mg/L (median= 0.023 mg/L) compared to diatom-inferred total phosphorus concentrations of 0.018 to 0.020 mg/L for 2002 to 2005. Total phosphorus concentrations in water samples collected from Speckled Trout Lake during 2000-08 were similar to those of Swamp Lake, ranging from less than 0.002 to 0.147 mg/L (median=0.012 mg/L), whereas the diatom-inferred total phosphorus concentrations were smaller, ranging from 0.009 to 0.010 mg/L for 2003 to 2006. Differences in total phosphorus concentrations between the two lakes may be because of differences in watershed characteristics, particularly the number of wetlands in the two watersheds. Similarities between recent total phosphorus concentrations in water-quality samples and diatom-inferred total phosphorus indicate that diatom-inferred phosphorus reconstructions might be used to help establish reference conditions. Nutrient criteria for Grand Portage Reservation lakes may be established when a sampling program is designed to ensure representative phosphorus concentrations in water samples are comparable to diatom-inferred concentrations.

  7. Activity concentration, transfer factors and resultant radiological risk of 226Ra, 232Th, and 40K in soil and some vegetables consumed in Selangor, Malaysia

    NASA Astrophysics Data System (ADS)

    Solehah, A. R.; Yasir, M. S.; Samat, S. B.

    2016-11-01

    The activity concentrations of the natural radionuclides 226Ra, 232Th, and 40K were determined in vegetable crops consumed by Malaysian people in Sungai Besar, Selangor. Sample of vegetables and the soil where the crops were cultivated and collected at five different location. The activity concentrations in Bq/kg of 226Ra, 232Th, and 40K were measured by the gamma-ray spectroscopy using the high purity germanium detector. The range activity concentration in soil is between 51.81 and 71.84 Bq/kg, 64.18 and 78.00 Bq/kg, and 210.49 and 244.29 Bq/kg for 226Ra, 232Th, and 40K, respectively. The activity concentration of 226Ra, 232Th, and 40K in vegetables were found to be in the range of 2.06 to 5.44 Bq/kg, Not Detectable to 0.61 Bq/kg, and 101.00 to 1223.09 Bq/kg, respectively. The activity concentration in both soil and vegetables were all less than lower limit stated by UNSCEAR. The Transfer Factors range value for 226Ra, 232Th, and 40K varied from 0.02 to 0.06, 0.003 to 0.008, and 1.79 to 5.19 respectively. Radium equivalent for soil range from 165.57 to 194.84 Bq/kg. It was within the international accepted value (370 Bq/kg). Absorb dose rate for soil range between 73.5 to 86.40 nGyh-1, in safe range from limit of international accepted value (55nGyh-1). Effective dose rate is found to be in range of 0.09 to 0.11 mSvy-1 for soil which is less than 2.4 mSv/y. External and Internal Hazard indices of soil was all below 1, within agreement of other researcher and UNSCEAR. The estimation of the consequent radiological risk due to the presence of those radionuclides is significantly low.

  8. Evaluation of serum haptoglobin and C-reactive protein in dogs with mammary tumors.

    PubMed

    Planellas, Marta; Bassols, Anna; Siracusa, Carlo; Saco, Yolanda; Giménez, Mercè; Pato, Raquel; Pastor, Josep

    2009-09-01

    In veterinary medicine, there is increasing interest in measuring acute phase proteins as a tool in the diagnosis and monitoring of neoplastic diseases. Although mammary neoplasms are the most common type of cancer in dogs, acute phase proteins have not been extensively evaluated in dogs with mammary tumors. The aim of this study was to evaluate serum haptoglobin (Hp) and C-reactive protein (CRP) concentrations in the dogs with mammary tumors and assess their potential association with malignancy. A retrospective study of dogs with mammary tumors was performed. Serum concentrations of CRP and Hp were determined in healthy control dogs (n=20) and dogs with mammary tumors before surgery (n=41). Mammary tumors were grouped as carcinomas (n=24), fibrosarcoma (n=1), malignant mixed tumors (n=7), benign mixed tumors (n=6), and adenomas (n=3). CRP and Hp concentrations were compared in dogs with different tumor types and were also compared based on tumor size, lymph node infiltration, skin ulceration, fixation to underlying tissue, and time between tumor identification and removal. Hp concentration was significantly (P<.043) higher in dogs with mammary tumors (median 2.03 g/L, range 0.09-2.94 g/L) compared with controls (1.38 g/L, range 0.08-3.00 g/L), but the range of values overlapped considerably. CRP concentration was higher in dogs with carcinomas (4.70 mg/L, range 0.63-128.96 mg/L) vs controls (2.11 mg/L, range 0.25-6.57 mg/L) (P=.0008) and in dogs with ulcerated skin (14.8 mg/L, range 5.7-128.9 mg/L, n=3) compared with those without ulceration (2.4 mg/L, range 0.11-30.3 mg/L, n=38) (P=.048). Serum Hp and CRP do not appear to have value in diagnosing or predicting malignancy of mammary tumors in dogs. Higher CRP concentrations in dogs with mammary carcinoma suggest a role for inflammation in this tumor type.

  9. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    PubMed

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of subjects provides new data regarding breath acetone in diabetes (T1D and T2D) and suggests that an elevated mean breath acetone concentration also exists in T2D.

  10. Seasonal Variation of Arsenic Concentration in Natural Water of the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Yu, C.; Wen, L.; Yu, Z.

    2017-12-01

    Seasonal variation in the arsenic (As) concentration of natural water has been studied the first time in the source area of the Yellow River (SAYR) in Tibet, China. Samples were collected in the lake, river and spring across the whole area in April (spring) and July (summer), 2014. In April the average values of arsenic concentration in SAYR from high to low were: lake (38.1μg/L, n=47, range 8.6-131.0μg/L) > river (24.3μg/L, n=83, range 4.3-77.1μg/L) > spring (19.1μg/L, n=12, range 12.0-29.4μg/L). In July the same order of the average values of arsenic concentration in SAYR was found: lake (14.1μg/L, n=57, range 5.8-68.5μg/L) > river (7.3μg/L, n=106, range 3.6-22.9μg/L)> spring (6.7μg/L, n=9, range 4.8-8.2μg/L).The average arsenic concentrations in April were almost three times higher than those in July. In both season, the higher concentrations of arsenic were distributed in the upper reaches above the two biggest lakes of Gyaring and Ngoring Lakes in SAYR. The two big lakes buffered the naturally generated arsenic concentration in surface water, suggesting the important ecological role of the lakes. Generally, the lower concentrations in July probably were due to 1. the dilution effect of the precipitation; 2 the change of water sources. In April when the permafrost and mountain snow started to thaw and melt, ground water with high arsenic concentration was the main water source with high concentration of arsenic; but in July, with the increase of the temperature, mountain snow, permafrost would contribute more than in April, in addition, the main arsenic contributor groundwater was diluted by the precipitation recharge. Since in spring, lake and river water arsenic concentration decreased with almost the same magnitude., assuming the dilution effect dominant. The exported arsenic from SAYR in April (903.4Kg) were twice more than it in July (449.1Kg), because the flowrates were similar in the two months, the water source of the runoff components was grandly different in April and July. The seasonal variation of arsenic is obvious and further investigation is needed.

  11. [Gustometry usefulness for the evaluation of taste sense efficiency. Part I. The range of taste substances concentrations and the result of gustometry examination].

    PubMed

    Klimacka-Nawrot, Ewa; Suchecka, Wanda; Błońska-Fajfrowska, Barbara

    2007-01-01

    There are various methods of taste substances application in gustometry examination. The Polish Committee of Standards (Polski Komitet Normalizacyjny--PKN) recommends the performance of sensitivity taste examinations with the use of method based on rinsing out the mouth with water solutions of taste substances (sip-and-spit method) at their growing concentrations. The aim of the present research was to assess the usefulness of taste substances dilutions, whose concentrations were consistent with guidelines of the PKN for the evaluation of the results of examination of sweet, salty and sour taste sensitivity. 795 volunteers, i.e. 473 women and 322 men, aged 18-66, were the subject of study. The range of concentrations in sucrose solutions (0.34-12.00 g/l) as well as in sodium chloride solutions (0.16-2.00 g/l) were proper for examination in order to recognize taste threshold with the most volunteers. However, the use of concentrations in citric acid solutions (in the range 0.13-0.60 g/l) did not enable to investigate the taste sensitivity by reason of the large percentage of persons (85.2%) who correctly recognized the sour taste of the solution with the lowest citric acid concentration. The range of citric acid concentration (0.0036-0.2000 g/l) appeared to be more proper for examination of the sour taste sensitivity. The concentrations of sucrose and sodium chloride solutions recommended by PKN are proper for the examination of sweet and salty taste sensitivity with the use of sip-and-spit method however concentrations of citric acid solutions should be lower than recommended.

  12. Distributions of nutrients, dissolved organic carbon and carbohydrates in the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Deli; Henrichs, Susan M.; Guo, Laodong

    2006-09-01

    Seawater samples were collected from stations along a transect across the shelf-basin interface in the western Arctic Ocean during September 2002, and analyzed for nutrients, dissolved organic carbon (DOC), and total dissolved carbohydrate (TDCHO) constituents, including monosaccharides (MCHO) and polysaccharides (PCHO). Nutrients (nitrate, ammonium, phosphate and dissolved silica) were depleted at the surface, especially nitrate. Their concentrations increased with increasing depth, with maxima centered at ˜125 m depth within the halocline layer, then decreased with increasing depth below the maxima. Both ammonium and phosphate concentrations were elevated in shelf bottom waters, indicating a possible nutrient source from sediments, and in a plume that extended into the upper halocline waters offshore. Concentrations of DOC ranged from 45 to 85 μM and had an inverse correlation with salinity, indicating that mixing is a control on DOC concentrations. Concentrations of TDCHO ranged from 2.5 to 19 μM-C, comprising 13-20% of the bulk DOC. Higher DOC concentrations were found in the upper water column over the shelf along with higher TDCHO concentrations. Within the TDCHO pool, the concentrations of MCHO ranged from 0.4 to 8.6 μM-C, comprising 20-50% of TDCHO, while PCHO concentrations ranged from 0.5 to 13.6 μM-C, comprising 50-80% of the TDCHO. The MCHO/TDCHO ratio was low in the upper 25 m of the water column, followed by a high MCHO/TDCHO ratio between 25 and 100 m, and a low MCHO/TDCHO ratio again below 100 m. The high MCHO/TDCHO ratio within the halocline layer likely resulted from particle decomposition and associated release of MCHO, whereas the low MCHO/TDCHO (or high PCHO/TDCHO) ratio below the halocline layer could have resulted from slow decomposition and additional particulate CHO sources.

  13. Chromium concentrations in ruminant feed ingredients.

    PubMed

    Spears, J W; Lloyd, K E; Krafka, K

    2017-05-01

    Chromium (Cr), in the form of Cr propionate, has been permitted for supplementation to cattle diets in the United States at levels up to 0.50 mg of Cr/kg of DM since 2009. Little is known regarding Cr concentrations naturally present in practical feed ingredients. The present study was conducted to determine Cr concentrations in feed ingredients commonly fed to ruminants. Feed ingredients were collected from dairy farms, feed mills, grain bins, and university research farms. Mean Cr concentrations in whole cereal grains ranged from 0.025 mg/kg of DM for oats to 0.041 mg/kg of DM for wheat. Grinding whole samples of corn, soybeans, and wheat through a stainless steel Wiley mill screen greatly increased analyzed Cr concentrations. Harvested forages had greater Cr concentrations than concentrates, and alfalfa hay or haylage had greater Cr concentrations than grass hay or corn silage. Chromium in alfalfa hay or haylage (n = 13) averaged 0.522 mg/kg of DM, with a range of 0.199 to 0.889 mg/kg of DM. Corn silage (n = 21) averaged 0.220 mg of Cr/kg of DM with a range of 0.105 to 0.441 mg of Cr/kg of DM. By-product feeds ranged from 0.040 mg of Cr/kg of DM for cottonseed hulls to 1.222 mg of Cr/kg of DM for beet pulp. Of the feed ingredients analyzed, feed grade phosphate sources had the greatest Cr concentration (135.0 mg/kg). Most ruminant feedstuffs and feed ingredients had less than 0.50 mg of Cr/kg of DM. Much of the analyzed total Cr in feed ingredients appears to be due to Cr contamination from soil or metal contact during harvesting, processing, or both. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Elvitegravir concentrations in seminal plasma in HIV-1-infected men.

    PubMed

    Imaz, A; Niubó, J; Kashuba, A D; Ferrer, E; Sykes, C; Rozas, N; Acerete, L; Vila, A; Podzamczer, D

    2017-03-01

    The aim of the study was to quantify elvitegravir (EVG) concentrations in the semen of HIV-1-infected men receiving antiretroviral therapy (ART) consisting of an elvitegravir/cobicistat/emtricitabine/tenofovir (EVG/COBI/FTC/TDF) single-tablet regimen. A phase IV, cross-sectional study was carried out including HIV-1-infected male adults with suppressed plasma HIV-1 RNA who switched ART to EVG/COBI/FTC/TDF. Total EVG concentrations at the end of the dosing interval (C 24 h ) and HIV-1 RNA were measured in paired seminal plasma (SP) and blood plasma (BP) samples 4 weeks after switching to EVG/COBI/FTC/TDF. Validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify EVG concentrations, and HIV-1 RNA was determined by real-time polymerase chain reaction (PCR). Ten men were included. Their median age was 40 years (range 24-47 years), the median time on ART was 50 months (range 10-186 months), the median time with plasma HIV-1 RNA < 40 copies/mL was 37 months (range 7-113 months), and the median CD4 count was 737 cells/μL (range 190-1122 cells/μL). Four weeks after switching to EVG/COBI/FTC/TDF, all subjects had HIV-1 RNA < 40 copies/mL in both BP and SP. Median EVG C 24 h was 277 ng/mL (range 64.8-1790 ng/mL) in BP and 169 ng/mL (range 12.8-792 ng/mL) in SP. A significant correlation was observed between BP and SP EVG concentrations (Spearman rho 0.952; P < 0.001). The median SP:BP EVG concentration ratio was 0.39 (range 0.20-0.92). EVG C 24 h in SP was at least 23-fold the in vitro protein-unbound 50% effective response (EC 50 ) of HIV-1 clinical isolates (0.04-0.55 ng/mL). In all but one individual, EVG C 24 h in SP was also higher than the blood plasma protein binding-adjusted 95% inhibitory concentration (IC 95 ) of wild-type HIV-1 (45 ng/mL). Seminal EVG concentrations in HIV-infected men treated with EVG/COBI/FTC/TDF sufficed to contribute to maintaining HIV-1 RNA suppression in this compartment. © 2016 British HIV Association.

  15. DNA electrophoresis in agarose gels: effects of field and gel concentration on the exponential dependence of reciprocal mobility on DNA length.

    PubMed

    Rill, Randolph L; Beheshti, Afshin; Van Winkle, David H

    2002-08-01

    Electrophoretic mobilities of DNA molecules ranging in length from 200 to 48 502 base pairs (bp) were measured in agarose gels with concentrations T = 0.5% to 1.3% at electric fields from E = 0.71 to 5.0 V/cm. This broad data set determines a range of conditions over which the new interpolation equation nu(L) = (beta+alpha(1+exp(-L/gamma))(-1) can be used to relate mobility to length with high accuracy. Mobility data were fit with chi(2) > 0.999 for all gel concentrations and fields ranging from 2.5 to 5 V/cm, and for lower fields at low gel concentrations. Analyses using so-called reptation plots (Rousseau, J., Drouin, G., Slater, G. W., Phys. Rev. Lett. 1997, 79, 1945-1948) indicate that this simple exponential relation is obeyed well when there is a smooth transition from the Ogston sieving regime to the reptation regime with increasing DNA length. Deviations from this equation occur when DNA migration is hindered, apparently by entropic-trapping, which is favored at low fields and high gel concentrations in the ranges examined.

  16. Endometrial protein PP14 and CA-125 in recurrent miscarriage patients; correlation with pregnancy outcome.

    PubMed

    Dalton, C F; Laird, S M; Estdale, S E; Saravelos, H G; Li, T C

    1998-11-01

    The concentrations of endometrial proteins PP14 and CA-125 were measured in uterine flushings taken on days LH+10 and LH+12 (10 and 12 days after luteinizing hormone surge) of the menstrual cycle from 15 normal, fertile women and 49 women who suffered recurrent miscarriage. The concentration of PP14 was significantly lower in the flushings from the recurrent miscarriage patients than in those from fertile controls on both day LH+10 (median: 1300, range: 3-10 300 ng/ml versus median: 13 933, range: 2174-40 404 ng/ml; P < 0.01) and LH+12 (median: 1560, range: 820-12 100 ng/ml versus median: 14 047, range 1402-62 108 ng/ml; P < 0.05). Similarly concentrations of CA-125 were significantly lower in flushings from recurrent miscarriage women compared to controls on both day LH + 10 (median: 1555, range: 47-6710 U/ml versus median: 6385.5, range 2884-27 731 U/ml, P < 0.01) and LH+12 (median: 2892, range: 956-9974 U/ml versus median: 7127.5, range: 1591-21 343 U/ml; P < 0.05). In contrast there was no significant difference in the concentration of PP14 in plasma samples taken on the same days as the flushings from recurrent miscarriage patients and fertile controls. The concentrations of PP14 in uterine flushings obtained on day LH + 10 or LH + 12 from recurrent miscarriage women during a pre-pregnancy investigative cycle were significantly lower (P < 0.05) in patients who went on to miscarry (median: 1000, range: 9-2900 ng/ml) than those who went on to have a live birth (median: 1440, range: 4-12 100 ng/ml) during a subsequent pregnancy. In contrast there was no significant difference in uterine CA-125 or plasma PP14 concentrations between these two groups of recurrent miscarriage patients. The results suggest that measurements of uterine PP14 and CA-125 may be useful in the assessment of endometrial development in recurrent miscarriage patients and suggest the importance of PP14 in preparing the endometrium for embryo implantation. In addition pre-pregnancy uterine PP14 measurements may be useful in predicting subsequent pregnancy outcome.

  17. Raman and Brillouin scattering of LiClO4 complexed in poly(propylene-glycol)

    NASA Astrophysics Data System (ADS)

    Schantz, S.; Torell, L. M.; Stevens, J. R.

    1988-08-01

    Raman spectra of LiClO4 complexed in poly(propylene-glycol) (PPG) have been obtained for concentrations of the monomer to salt ratio (ether oxygen):Li in the range 30:1-5:1. Splitting of the symmetric stretching mode of the ClO4- anion was observed with an intensity profile that varied with salt concentration. This phenomenon indicates a changing environment about the anion. A two-component band analysis leads to the identification of dissociated ions on one hand and solvent-separated ion pairs on the other. The concentration of ion pairs is relatively low compared to that of the dissociated ions, which are predominant for all concentrations. Despite the observed increase in the absolute number of dissociated ions at higher salt concentration, the electrical conductivity is reported to decrease in the same range. This indicates that the number of ``free'' charge carriers is of less importance for the conductivity than the mobility, which is damped in this concentration range. Frequency shifts of the disordered longitudinal-acoustic mode and increased hypersonic velocities, measured with Raman and Brillouin scattering techniques, respectively, indicate increased stiffness of the polymer matrix for increasing salt concentration, which probably results in decreased ion mobility.

  18. Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico.

    PubMed

    Báez, Armando; Padilla, Hugo; García, Rocío; Torres, Ma del Carmen; Rosas, Irma; Belmont, Raúl

    2003-01-20

    Carbonyl compounds in air were measured at two houses, three museums, and two offices. All sites lacked air-conditioning systems. Although indoor and outdoor air was measured simultaneously at each site, the sites themselves were sampled in different dates. Mean concentrations were higher in indoor air. Outdoor means concentrations of acetone were the highest in all sites, ranging from 12 to 60 microg m(-3). In general, formaldehyde and acetaldehyde had similar mean concentrations, ranging from 4 to 32 and 6 to 28 microg m(-3), respectively. Formaldehyde and acetone mean indoor concentrations were the highest, ranging from 11 to 97 and 17 to 89 microg m(-3), respectively, followed by acetaldehyde with 5 to 47 microg m(-3). Formaldehyde and acetaldehyde had the highest mean concentration in the offices where there were smokers. Propionaldehyde and butyraldehyde concentrations did not show definite differences between indoor and outdoor air. In general, the highest outdoor and indoor hourly concentrations were observed from 10:00 to 15:00 h. Mean indoor/outdoor ratios of carbonyls exceeded 1. Formaldehyde and acetaldehyde risks were higher in smoking environments. Copyright 2002 Elsevier Science B.V.

  19. Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Wu, Zhijun; Augustin-Bauditz, Stefanie; Grawe, Sarah; Hartmann, Markus; Pei, Xiangyu; Liu, Zirui; Ji, Dongsheng; Wex, Heike

    2018-03-01

    Exceedingly high levels of PM2.5 with complex chemical composition occur frequently in China. It has been speculated whether anthropogenic PM2.5 may significantly contribute to ice-nucleating particles (INP). However, few studies have focused on the ice-nucleating properties of urban particles. In this work, two ice-nucleating droplet arrays have been used to determine the atmospheric number concentration of INP (NINP) in the range from -6 to -25 °C in Beijing. No correlations between NINP and either PM2.5 or black carbon mass concentrations were found, although both varied by more than a factor of 30 during the sampling period. Similarly, there were no correlations between NINP and either total particle number concentration or number concentrations for particles with diameters > 500 nm. Furthermore, there was no clear difference between day and night samples. All these results indicate that Beijing air pollution did not increase or decrease INP concentrations in the examined temperature range above values observed in nonurban areas; hence, the background INP concentrations might not be anthropogenically influenced as far as urban air pollution is concerned, at least in the examined temperature range.

  20. Flow Characteristics and Robustness of an Inclined Quad-vortex Range Hood

    PubMed Central

    CHEN, Jia-Kun; HUANG, Rong Fung

    2014-01-01

    A novel design of range hood, which was termed the inclined quad-vortex (IQV) range hood, was examined for its flow and containment leakage characteristics under the influence of a plate sweeping across the hood face. A flow visualization technique was used to unveil the flow behavior. Three characteristic flow modes were observed: convex, straight, and concave modes. A tracer gas detection method using sulfur hexafluoride (SF6) was employed to measure the containment leakage levels. The results were compared with the test data reported previously in the literature for a conventional range hood and an inclined air curtain (IAC) range hood. The leakage SF6 concentration of the IQV range hood under the influence of the plate sweeping was 0.039 ppm at a suction flow rate of 9.4 m3/min. The leakage concentration of the conventional range hood was 0.768 ppm at a suction flow rate of 15.0 m3/min. For the IAC range hood, the leakage concentration was 0.326 ppm at a suction flow rate of 10.9 m3/min. The IQV range hood presented a significantly lower leakage level at a smaller suction flow rate than the conventional and IAC range hoods due to its aerodynamic design for flow behavior. PMID:24583513

Top