Science.gov

Sample records for millisecond pulsar xte

  1. ACCRETION TORQUES AND MOTION OF THE HOT SPOT ON THE ACCRETING MILLISECOND PULSAR XTE J1807-294

    SciTech Connect

    Patruno, Alessandro; Wijnands, R.; Van der Klis, Michiel; Hartman, Jacob M.; Chakrabarty, Deepto

    2010-07-10

    We present a coherent timing analysis of the 2003 outburst of the accreting millisecond pulsar (AMXP) XTE J1807-294. We find a 95% confidence interval for the pulse frequency derivative of (+0.7, + 4.7) x 10{sup -14} Hz s{sup -1} and (-0.6, + 3.8) x 10{sup -14} Hz s{sup -1} for the fundamental and second harmonics, respectively. The sinusoidal fractional amplitudes of the pulsations are the highest observed among AMXPs and can reach values of up to 27% (2.5-30 keV). The pulse arrival time residuals of the fundamental frequency follow a linear anti-correlation with the fractional amplitudes that suggests hot spot motion both in longitude and latitude over the surface of the neutron star. An anti-correlation between residuals and X-ray flux suggests an influence of the accretion rate on pulse phase and casts doubts on the interpretation of pulse frequency derivatives in terms of changes of spin rates and torques on the neutron star.

  2. Analysis of variability in the burst oscillations of the accreting millisecond pulsar XTE J1814-338

    NASA Technical Reports Server (NTRS)

    Watts, Anna L.; Strohmayer, Tod E.; Markwardt, Craig B.

    2005-01-01

    The accreting millisecond pulsar XTE J1814-338 exhibits oscillations at the known spin frequency during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. We present an analysis of the variability of the burst oscillations of this source, focusing on three characteristics: fractional amplitude, harmonic content and frequency. Fractional amplitude and harmonic content constrain the size, shape and position of the emitting region, whilst variations in frequency indicate motion of the emitting region on the neutron star surface. We examine both long-term variability over the course of the outburst, and short-term variability during the bursts. For most of the bursts, fractional amplitude is consistent with that of the accretion pulsations, implying a low degree of fuel spread. There is however a population of bursts whose fractional amplitudes are substantially lower, implying a higher degree of fuel spread, possibly forced by the explosive burning front of a precursor burst. For the first harmonic, substantial differences between the burst and accretion pulsations suggest that hotspot geometry is not the only mechanism giving rise to harmonic content in the latter. Fractional amplitude variability during the bursts is low; we can only rule out the hypothesis that the fractional amplitude remains constant at the l(sigma) level for bursts that do not exhibit photospheric radius expansion (PRE). There are no significant variations in frequency in any of the bursts except for the one burst that exhibits PRE. This burst exhibits a highly significant but small (= 0.1Hz) drop in frequency in the burst rise. The timescale of the frequency shift is slower than simple burning layer expansion models predict, suggesting that other mechanisms may be at work.

  3. String theories and millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Sanchez, N.; Signore, M.

    1988-11-01

    We discuss the two ways of connecting string theories (cosmic, fundamental and the connection between them) to the observational reality: (i) radioastronomy observations (millisecond pulsar timing), and (ii) elementary particle phenomenology (compactification schemes). We study the limits imposed on the string parameter Gμ by recent millisecond pulsar timings. Cosmic strings derived from GUTs agree with (i). For cosmic strings derived from fundamental strings themselves there is contradiction between (i) and (ii). One of these scenarios connecting string theory to reality must be revised (or the transition from fundamental into cosmic strings rejected). Meanwhile, millisecond pulsar can select one scenario, or reject both of them. UA 336 Laboratoire Associé au CNRS, Observatoire de Meudon et Ecole Normale Supérieure, 24 rue Lhomond, F-75231 Paris Cedex 05, France.

  4. Millisecond radio pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Verbunt, Frank; Lewin, Walter H. G.; Van Paradijs, Jan

    1989-01-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  5. Birth of millisecond pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Bailyn, C. D.

    1988-01-01

    It is argued here that accretion-induced collapse of white dwarfs in binaries can form millisecond pulsars directly without requiring a precursor low-mass X-ray binary stage. Ablation of the precollapse binary companion by the millisecond pulsar's radiation field, a process invoked to explain some of the characteristics of the recently discovered eclipsing millisecond pulsar, can then yield isolated neutron stars witout requiring an additional stellar encounter.

  6. The Disturbance of a Millisecond Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Shannon, R. M.; Lentati, L. T.; Kerr, M.; Bailes, M.; Bhat, N. D. R.; Coles, W. A.; Dai, S.; Dempsey, J.; Hobbs, G.; Keith, M. J.; Lasky, P. D.; Levin, Y.; Manchester, R. N.; Osłowski, S.; Ravi, V.; Reardon, D. J.; Rosado, P. A.; Spiewak, R.; van Straten, W.; Toomey, L.; Wang, J.-B.; Wen, L.; You, X.-P.; Zhu, X.-J.

    2016-09-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643-1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  7. The Disturbance of a Millisecond Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Shannon, R. M.; Lentati, L. T.; Kerr, M.; Bailes, M.; Bhat, N. D. R.; Coles, W. A.; Dai, S.; Dempsey, J.; Hobbs, G.; Keith, M. J.; Lasky, P. D.; Levin, Y.; Manchester, R. N.; Osłowski, S.; Ravi, V.; Reardon, D. J.; Rosado, P. A.; Spiewak, R.; van Straten, W.; Toomey, L.; Wang, J.-B.; Wen, L.; You, X.-P.; Zhu, X.-J.

    2016-09-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643‑1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  8. Millisecond pulsars - Nature's most stable clocks

    NASA Astrophysics Data System (ADS)

    Taylor, Joseph H., Jr.

    1991-07-01

    The author describes the role pulsars might play in time and frequency technology. Millisecond pulsars are rapidly rotating neutron stars: spherical flywheels some 20 km in diameter, 1.4 times as massive as the Sun, and spinning as fast as several thousand radians per second. Radio noise generated in a pulsar's magnetosphere by a highly beamed process is detectable over interstellar distances, as a periodic sequence of pulses similar to the ticks of an excellent clock. High-precision comparisons between pulsar time and terrestrial atomic time show that over intervals of several years, some millisecond pulsars have fractional stabilities comparable to those of the best atomic clocks. The author briefly reviews the physics of pulsars, discusses the techniques of pulsar timing measurements, and summarizes the results of careful studies of pulsar stabilities.

  9. Discovery of a Second Millesecond Accreting Pulsar: XTE J1751-305

    NASA Technical Reports Server (NTRS)

    Markwardt, C. B.; Swank, J. H.; Strohmayer, T. E.; intZand, J. J. M.; Marshall, F. E.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the discovery by the RXTE PCA of a second transient accreting millisecond pulsar, XTE J1751-305, during regular monitoring observations of the galactic bulge region. The pulsar has a spin frequency of 435 Hz, making it one of the fastest pulsars. The pulsations contain the signature of orbital Doppler modulation, which implies an orbital period of 42 minutes, the shortest orbital period of any known radio or X-ray millisecond pulsar. The mass function, f(sub x) = (1.278 +/- 0.003) x 10 (exp -6) solar mass, yields a minimum mass for the companion of between 0.013 and 0.0017 solar mass depending on the mass of the neutron star. No eclipses were detected. A previous X-ray outburst in June, 1998, was discovered in archival All-Sky Monitor data. Assuming mass transfer in this binary system is driven by gravitational radiation, we constrain the orbital inclination to be in the range 30 deg-85 deg and the companion mass to be 0.013-0.035 solar mass. The companion is most likely a heated helium dwarf. We also present results from the Chandra HRC-S observations which provide the best known position of XTE J1751-305.

  10. The Mass of a Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Jacoby, B. A.; Hotan, A. W.; Bailes, M.; Ord, S. M.; Kulkarni, S. R.

    2005-12-01

    We report on two years of timing observations of the low-mass binary millisecond pulsar PSR J1909-3744 with the Caltech-Parkes-Swinburne Recorder II (CPSR2), a new instrument that gives unprecedented timing precision. Daily observations give a weighted rms residual of 74 ns. Since their discovery, the masses of the rapidly rotating millisecond pulsars have remained a mystery, with the recycling hypothesis arguing for heavy objects, and the accretion-induced collapse of a white dwarf more consistent with neutron stars less than the Chandrashkar limit. Our data have allowed the measurement of Shapiro delay in this edge-on system, giving the first precise determination of a millisecond pulsar mass, 1.438 ± 0.024 solar masses. The mass of PSR J1909-3744 is at the upper edge of the range observed in mildly recycled pulsars in double neutron star systems, consistent with the the recycling hypothesis. It appears that the production of millisecond pulsars is possible with the accretion of less than 0.2 solar masses.

  11. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; van Straten, Willem; Yardley, Daniel Roger Billing; Burke, Sarah; Oslowski, Stefan; Hotan, Aidan; Champion, David

    2010-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband system (APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision, with four pulsars having rms residuals of less than or about 100 ns and 13 less than 1 microsecond. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project.

  12. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Manchester, Dick; Sarkissian, John; Hobbs, George; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; van Straten, Willem; Yardley, Daniel Roger Billing; Champion, David; Burke, Sarah; Oslowski, Stefan; Hotan, Aidan

    2009-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision, with three pulsars having rms residuals of less than or about 100 ns and more than half less than 1 microsecond. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project.

  13. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Manchester, Dick; Sarkissian, John; Hobbs, George; Bailes, Matthew; Bhat, Ramesh; Hotan, Aidan; Jenet, Rick; van Straten, Willem; Yardley, Daniel Roger Billing; Champion, David; You, Xiaopeng; Burke, Sarah

    2009-04-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision, with three pulsars having rms residuals of less than or about 100 ns and more than half less than 1 microsecond. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project.

  14. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Manchester, Dick; Verbiest, Joris P. W.; Sarkissian, John; Hobbs, George; Bailes, Matthew; Bhat, Ramesh; Hotan, Aidan; Jenet, Rick; Burke-Spolaor, Sarah; van Straten, Willem; Yardley, Daniel Roger Billing; You, Xiaopeng

    2008-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB2, PDFB3) and the baseband systems (CPSR2; APSR soon) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we are getting the world's best pulsar timing precision, with four pulsars having rms residuals of less than 200 ns and more than half less than 1 microsecond. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project.

  15. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Manchester, Dick; Sarkissian, John; Hobbs, George; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; van Straten, Willem; Yardley, Daniel Roger Billing; Burke, Sarah; Oslowski, Stefan; Hotan, Aidan; Champion, David

    2010-04-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision, with four pulsars having rms residuals of less than or about 100 ns and 13 less than 1 microsecond. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project.

  16. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Verbiest, Joris P. W.; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Yardley, Daniel Roger Billing; Ravi, Vikram; Oslowski, Stefan; Hotan, Aidan; Champion, David; Khoo, Jonathan; Shannon, Ryan; Chaudhary, Ankur

    2012-04-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  17. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Keith, Michael; Burke-Spolaor, Sarah; Coles, William; van Straten, Willem; Ravi, Vikram; Oslowski, Stefan; Khoo, Jonathan; Shannon, Ryan; Wang, Jingbo; Levin, Yuri

    2013-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  18. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Verbiest, Joris P. W.; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Yardley, Daniel Roger Billing; Ravi, Vikram; Oslowski, Stefan; Hotan, Aidan; Champion, David; Khoo, Jonathan; Shannon, Ryan; Chaudhary, Ankur

    2011-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  19. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Keith, Michael; Burke-Spolaor, Sarah; Coles, William; van Straten, Willem; Yardley, Daniel Roger Billing; Ravi, Vikram; Oslowski, Stefan; Khoo, Jonathan; Shannon, Ryan; Wang, Jingbo; Levin, Yuri

    2013-04-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  20. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Verbiest, Joris P. W.; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Ravi, Vikram; Oslowski, Stefan; Hotan, Aidan; Champion, David; Khoo, Jonathan; Shannon, Ryan; Chaudhary, Ankur

    2012-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CASPSR; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  1. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Verbiest, Joris P. W.; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Yardley, Daniel Roger Billing; Oslowski, Stefan; Hotan, Aidan; Champion, David; Khoo, Jonathan; Shannon, Ryan; Chaudhary, Ankur

    2011-04-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  2. The Mass of a Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Jacoby, B. A.; Hotan, A.; Bailes, M.; Ord, S.; Kulkarni, S. R.

    2005-08-01

    We report on nearly 2 years of timing observations of the low-mass binary millisecond pulsar PSR J1909-3744 with the Caltech-Parkes-Swinburne Recorder II, a new instrument that gives unprecedented timing precision. Daily observations give a weighted rms residual of 74 ns, indicating an extremely low level of systematic error. We have greatly improved on the previous parallax and proper motion measurements of PSR J1909-3744, yielding a distance of 1.14+0.04-0.03 kpc and transverse velocity of 200+7-6 km s-1. The system's orbital eccentricity is just (1.35+/-12)×10-7, the smallest yet recorded. Since their discovery, the masses of the rapidly rotating millisecond pulsars have remained a mystery, with the recycling hypothesis arguing for heavy objects, and the accretion-induced collapse of a white dwarf more consistent with neutron stars less than the Chandrashkar limit. Fortuitously, PSR J1909-3744 is an edge-on system, and our data have allowed the measurement of the range and shape of the Shapiro delay to high accuracy, giving the first precise determination of a millisecond pulsar mass to date, mp=1.438+/-0.024 Msolar. The mass of PSR J1909-3744 is at the upper edge of the range observed in mildly recycled pulsars in double neutron star systems, consistent with the recycling hypothesis. It appears that the production of millisecond pulsars is possible with the accretion of <0.2 Msolar.

  3. High-Energy Emission From Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Usov, Vladimir V.; Muslimov, Alex G.

    2004-01-01

    The X-ray and gamma-ray spectrum of rotation-powered millisecond pulsars is investigated in a model for acceleration and pair cascades on open field lines above the polar caps. Although these pulsars have low surface magnetic fields, their short periods allow them to have large magnetospheric potential drops, but the majority do not produce sufficient pairs to completely screen the accelerating electric field. In these sources, the primary and secondary electrons continue to accelerate to high altitude and their Lorentz factors are limited by curvature and synchrotron radiation reaction. The accelerating particles maintain high Lorentz factors and undergo cyclotron resonant absorption of radio emission, that produces and maintains a large pitch angle, resulting in a strong synchrotron component. The resulting spectra consist of several distinct components: curvature radiation from primary electrons dominating from 1 - 100 GeV, synchrotron radiation from primary and secondary electrons dominating up to about 100 MeV, and much weaker inverse-Compton radiation from primary electrons a t 0.1 - 1 TeV. We find that the relative size of these components depends on pulsar period, period derivative, and neutron star mass and radius with the level of the synchrotron component also depending sensitively on the radio emission properties. This model is successful in describing the observed X-ray and gamma-ray spectrum of PSR J0218+4232 as synchrotron radiation, peaking around 100 MeV and extending up to a turnover around several GeV. The predicted curvature radiation components from a number of millisecond pulsars, as well as the collective emission from the millisecond pulsars in globular clusters, should be detectable with AGILE and GLAST. We also discuss a hidden population of X-ray-quiet and radio-quiet millisecond pulsars which have evolved below the pair death line, some of which may be detectable by telescopes sensitive above 1 GeV. Subject headings: pulsars: general

  4. A LOFAR census of millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Kondratiev, V. I.; Verbiest, J. P. W.; Hessels, J. W. T.; Bilous, A. V.; Stappers, B. W.; Kramer, M.; Keane, E. F.; Noutsos, A.; Osłowski, S.; Breton, R. P.; Hassall, T. E.; Alexov, A.; Cooper, S.; Falcke, H.; Grießmeier, J.-M.; Karastergiou, A.; Kuniyoshi, M.; Pilia, M.; Sobey, C.; ter Veen, S.; van Leeuwen, J.; Weltevrede, P.; Bell, M. E.; Broderick, J. W.; Corbel, S.; Eislöffel, J.; Markoff, S.; Rowlinson, A.; Swinbank, J. D.; Wijers, R. A. M. J.; Wijnands, R.; Zarka, P.

    2016-01-01

    We report the detection of 48 millisecond pulsars (MSPs) out of 75 observed thus far using the LOw-Frequency ARray (LOFAR) in the frequency range 110-188 MHz. We have also detected three MSPs out of nine observed in the frequency range 38-77 MHz. This is the largest sample of MSPs ever observed at these low frequencies, and half of the detected MSPs were observed for the first time atfrequencies below 200 MHz. We present the average pulse profiles of the detected MSPs, their effective pulse widths, and flux densities and compare these with higher observing frequencies. The flux-calibrated, multifrequency LOFAR pulse profiles are publicly available via the European Pulsar Network Database of Pulsar Profiles. We also present average values of dispersion measures (DM) and discuss DM and profile variations. About 35% of the MSPs show strong narrow profiles, another 25% exhibit scattered profiles, and the rest are only weakly detected. A qualitative comparison of the LOFAR MSP profiles with those at higher radio frequencies shows constant separation between profile components. Similarly, the profile widths are consistent with those observed at higher frequencies, unless scattering dominates at the lowest frequencies. This is very different from what is observed for normal pulsars and suggests a compact emission region in the MSP magnetosphere. The amplitude ratio of the profile components, on the other hand, can dramatically change towards low frequencies, often with the trailing component becoming dominant. As previously demonstrated this can be caused by aberration and retardation. This data set enables high-precision studies of pulse profile evolution with frequency, dispersion, Faraday rotation, and scattering in the interstellar medium. Characterising and correcting these systematic effects may improve pulsar-timing precision at higher observing frequencies, where pulsar timing array projects aim to directly detect gravitational waves.

  5. Observations of the Eclipsing Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Bookbinder, Jay

    1990-12-01

    FRUCHTER et al. (1988a) HAVE RECENTLY DISCOVERED a 1.6 MSEC PULSAR (PSR 1957+20) IN A 9.2 HOUR ECLIPSING BINARY SYSTEM. THE UNUSUAL BEHAVIOR OF THE DISPERSION MEASURE AS A FUNCTION OF ORBITAL PHASE, AND THE DISAPPEARANCE OF THE PULSAR SIGNAL FOR 50 MINUTES DURING EACH ORBIT, IMPLIES THAT THE ECLIPSES ARE DUE TO A PULSAR-INDUCED WIND FLOWING OFF OF THE COMPANION. THE OPTICAL COUNTERPART IS A 21ST MAGNITUDE OBJECT WHICH VARIES IN INTENSITY OVER THE BINARY PERIOD; ACCURATE GROUND-BASED OBSERVATIONS ARE PREVENTED BY THE PROXIMITY (0.7") OF A 20TH MAGNITUDE K DWARF. WE PROPOSE TO OBSERVE THE OPTICAL COUNTERPART IN A TWO-PART STUDY. FIRST, THE WF/PC WILL PROVIDE ACCURATE MULTICOLOR PHOTOMETRY, ENABLING US TO DETERMINE UNCONTAMINATED MAGNITUDES AND COLORS BOTH AT MAXIMUM (ANTI-ECLIPSE) AS WELL AS AT MINIMUM (ECLIPSE). SECOND, WE PROPOSE TO OBSERVE THE EXPECTED UV LINE EMISSION WITH FOS, ALLOWING FOR AN INTIAL DETERMINATION OF THE TEMPERATURE AND DENSITY STRUCTURE AND ABUNDANCES OF THE WIND THAT IS BEING ABLATED FROM THE COMPANION. STUDY OF THIS UNIQUE SYSTEM HOLDS ENORMOUS POTENTIAL FOR THE UNDERSTANDING OF THE RADIATION FIELD OF A MILLISECOND PULSAR AND THE EVOLUTION OF LMXRBs AND MSPs IN GENERAL. WE EXPECT THESE OBSERVATIONS TO PLACE VERY SIGNIFICANT CONTRAINTS ON MODELS OF THIS UNIQUE OBJECT.

  6. COHERENTLY DEDISPERSED GATED IMAGING OF MILLISECOND PULSARS

    SciTech Connect

    Roy, Jayanta; Bhattacharyya, Bhaswati

    2013-03-10

    Motivated by the need for rapid localization of newly discovered faint millisecond pulsars (MSPs), we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with a best-fit topocentric rotational model derived from a periodicity search in a simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localize five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of {+-}1''. Immediate knowledge of such a precise position enables the use of sensitive coherent beams of array telescopes for follow-up timing observations which substantially reduces the use of telescope time ({approx}20 Multiplication-Sign for the GMRT). In addition, a precise a priori astrometric position reduces the effect of large covariances in the timing fit (with discovery position, pulsar period derivative, and an unknown binary model), which in-turn accelerates the convergence to the initial timing model. For example, while fitting with the precise a priori position ({+-}1''), the timing model converges in about 100 days, accounting for the effect of covariance between the position and pulsar period derivative. Moreover, such accurate positions allow for rapid identification of pulsar counterparts at other wave bands. We also report a new methodology of in-beam phase calibration using the on-off gated image of the target pulsar, which provides optimal sensitivity of the coherent array removing possible temporal and spacial decoherences.

  7. Genesis stories for the millisecond pulsar

    NASA Technical Reports Server (NTRS)

    Ruderman, M. A.; Shaham, J.

    1983-01-01

    Theoretical models proposed to explain the origin of the millisecond pulsar (MP) PSR 1937+214 are reviewed, examining their ability to explain its low surface dipole magnetic field (B), its low birth temperature (less than 10 to the 8th K), the absence of a companion or remnant, and its low velocity perpendicular to the Galactic plane. The models discussed are a single isolated explosion forming a rapidly spinning neutron star, spin-up of a dead pulsar by accretion from a companion, collapse of an accreting spinning white dwarf, and fusion of a tight binary composed of two old neutron stars. Although all of the models have difficulties in explaining one or more of the MP characteristics, the second model is found to be most probable in the light of present knowledge. The lack of a companion is explained by its tidal disruption after it had fed the accreting pre-pulsar for 1 Gyr or more and its mass had decreased to about 0.01 solar mass. Neutron stars accreting in this way have been observed in Galactic-bulge X-ray sources.

  8. Electromagnetic Spindown of a Transient Accreting Millisecond Pulsar During Quiescence

    NASA Astrophysics Data System (ADS)

    Melatos, A.; Mastrano, A.

    2016-02-01

    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751-305, SAX J1808.4-3658, and Swift J1756.9-2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  9. XMM-Newton observations of two transient millisecond X-ray pulsars in quiescence

    NASA Astrophysics Data System (ADS)

    Campana, S.; Ferrari, N.; Stella, L.; Israel, G. L.

    2005-05-01

    We report on XMM-Newton observations of two X-ray transient millisecond pulsars (XRTMSPs). We detected XTE J0929-314 with an unabsorbed luminosity of ˜ 7× 1031 erg s-1 (0.5-10 keV) at a fiducial distance of 10 kpc. The quiescent spectrum is consistent with a simple power law spectrum. The upper limit on the flux from a cooling neutron star atmosphere is about 20% of the total flux. XTE J1807-294 instead was not detected. We can put an upper limit on the source quiescent 0.5-10 keV unabsorbed luminosity ⪉ 4×1031 erg s-1 at 8 kpc. These observations strenghten the idea that XRTMSPs have quiescent luminosities significantly lower than classical neutron star transients.

  10. Search for Millisecond Pulsars for the Pulsar Timing Array project

    NASA Astrophysics Data System (ADS)

    Milia, S.

    2012-03-01

    Pulsars are rapidly rotating highly magnetised neutron stars (i.e. ultra dense stars, where about one solar mass is concentrated in a sphere with a radius of ~ 10 km), which irradiate radio beams in a fashion similar to a lighthouse. As a consequence, whenever the beams cut our line of sight we perceive a radio pulses, one (or two) per pulsar rotation, with a frequency up to hundred of times a second. Owing to their compact nature, rapid spin and high inertia, pulsars are in general fairly stable rotators, hence the Times of Arrival (TOAs) of the pulses at a radio telescope can be used as the ticks of a clock. This holds true in particular for the sub­class of the millisecond pulsars (MSPs), having a spin period smaller than the conventional limit of 30 ms, whose very rapid rotation and relatively older age provide better rotational stability than the ordinary pulsars. Indeed, some MSPs rotate so regularly that they can rival the best atomic clocks on Earth over timespan of few months or years.This feature allows us to use MSPs as tools in a cosmic laboratory, by exploiting a procedure called timing, which consists in the repeated and regular measurement of the TOAs from a pulsar and then in the search for trends in the series of the TOAs over various timespans, from fraction of seconds to decades.For example the study of pulsars in binary systems has already provided the most stringent tests to date of General Relativity in strong gravitational fields and has unambiguously showed the occurrence of the emission of gravitational waves from a binary system comprising two massive bodies in a close orbit. In last decades a new exciting perspective has been opened, i.e. to use pulsars also for a direct detection of the so far elusive gravitational waves and thereby applying the pulsar timing for cosmological studies. In fact, the gravitational waves (GWs) going across our Galaxy pass over all the Galactic pulsars and the Earth, perturbing the space­time at the

  11. A glitch in the millisecond pulsar J0613-0200

    NASA Astrophysics Data System (ADS)

    McKee, J. W.; Janssen, G. H.; Stappers, B. W.; Lyne, A. G.; Caballero, R. N.; Lentati, L.; Desvignes, G.; Jessner, A.; Jordan, C. A.; Karuppusamy, R.; Kramer, M.; Cognard, I.; Champion, D. J.; Graikou, E.; Lazarus, P.; Osłowski, S.; Perrodin, D.; Shaifullah, G.; Tiburzi, C.; Verbiest, J. P. W.

    2016-09-01

    We present evidence for a small glitch in the spin evolution of the millisecond pulsar J0613-0200, using the EPTA Data Release 1.0, combined with Jodrell Bank analogue filterbank times of arrival (TOAs) recorded with the Lovell telescope and Effelsberg Pulsar Observing System TOAs. A spin frequency step of 0.82(3) nHz and frequency derivative step of -1.6(39) × 10-19 Hz s-1 are measured at the epoch of MJD 50888(30). After PSR B1821-24A, this is only the second glitch ever observed in a millisecond pulsar, with a fractional size in frequency of Δν/ν = 2.5(1) × 10-12, which is several times smaller than the previous smallest glitch. PSR J0613-0200 is used in gravitational wave searches with pulsar timing arrays, and is to date only the second such pulsar to have experienced a glitch in a combined 886 pulsar-years of observations. We find that accurately modelling the glitch does not impact the timing precision for pulsar timing array applications. We estimate that for the current set of millisecond pulsars included in the International Pulsar Timing Array, there is a probability of ˜50 per cent that another glitch will be observed in a timing array pulsar within 10 years.

  12. Spin-down of radio millisecond pulsars at genesis.

    PubMed

    Tauris, Thomas M

    2012-02-01

    Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions. PMID:22301314

  13. Spin-down of radio millisecond pulsars at genesis.

    PubMed

    Tauris, Thomas M

    2012-02-01

    Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.

  14. Binary millisecond pulsar discovery via gamma-ray pulsations.

    PubMed

    Pletsch, H J; Guillemot, L; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; den Hartog, P R; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Jóhannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Saz Parkinson, P M; Schulz, A; Sgrò, C; do Couto e Silva, E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2012-12-01

    Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  15. Binary millisecond pulsar discovery via gamma-ray pulsations.

    PubMed

    Pletsch, H J; Guillemot, L; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; den Hartog, P R; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Jóhannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Saz Parkinson, P M; Schulz, A; Sgrò, C; do Couto e Silva, E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2012-12-01

    Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found. PMID:23112297

  16. An eccentric binary millisecond pulsar in the galactic plane.

    PubMed

    Champion, David J; Ransom, Scott M; Lazarus, Patrick; Camilo, Fernando; Bassa, Cees; Kaspi, Victoria M; Nice, David J; Freire, Paulo C C; Stairs, Ingrid H; van Leeuwen, Joeri; Stappers, Ben W; Cordes, James M; Hessels, Jason W T; Lorimer, Duncan R; Arzoumanian, Zaven; Backer, Don C; Bhat, N D Ramesh; Chatterjee, Shami; Cognard, Ismaël; Deneva, Julia S; Faucher-Giguère, Claude-André; Gaensler, Bryan M; Han, Jinlin; Jenet, Fredrick A; Kasian, Laura; Kondratiev, Vlad I; Kramer, Michael; Lazio, Joseph; McLaughlin, Maura A; Venkataraman, Arun; Vlemmings, Wouter

    2008-06-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M(middle dot in circle)) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 M solar symbol, an unusually high value.

  17. An Eccentric Binary Millisecond Pulsar in the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Bassa, Cess; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Stairs, Ingrid H.; vanLeeuwen, Joeri; Stappers, Ben W.; Cordes, James M.; Hessels, Jason W. T.; Lorimer, Duncan R.; Arzoumanian, Zaven; Backer, Don C.; Bhat, N. D. Ramesh; Chatterjee, Shami; Cognard, Ismael; Deneva, Julia S.; Faucher-Giguere, Claude-Andre; Gaensler, Bryan M.; Han, JinLin; Jenet, Fredrick A.; Kasian, Laura

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M.) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 Solar Mass, an unusually high value.

  18. An eccentric binary millisecond pulsar in the galactic plane.

    PubMed

    Champion, David J; Ransom, Scott M; Lazarus, Patrick; Camilo, Fernando; Bassa, Cees; Kaspi, Victoria M; Nice, David J; Freire, Paulo C C; Stairs, Ingrid H; van Leeuwen, Joeri; Stappers, Ben W; Cordes, James M; Hessels, Jason W T; Lorimer, Duncan R; Arzoumanian, Zaven; Backer, Don C; Bhat, N D Ramesh; Chatterjee, Shami; Cognard, Ismaël; Deneva, Julia S; Faucher-Giguère, Claude-André; Gaensler, Bryan M; Han, Jinlin; Jenet, Fredrick A; Kasian, Laura; Kondratiev, Vlad I; Kramer, Michael; Lazio, Joseph; McLaughlin, Maura A; Venkataraman, Arun; Vlemmings, Wouter

    2008-06-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M(middle dot in circle)) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 M solar symbol, an unusually high value. PMID:18483399

  19. X-Ray States of Redback Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Linares, M.

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as "redbacks," constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L X), between (6-9) × 1032 erg s-1 (disk-passive state) and (3-5) × 1033 erg s-1 (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L X in the pulsar state (>1032 erg s-1).

  20. Application of Millisecond Pulsar Timing to the Long-Term Stability of Clock Ensembles

    NASA Technical Reports Server (NTRS)

    Foster, Roger S.; Matsakis, Demetrios N.

    1996-01-01

    We review the application of millisecond pulsars to define a precise long-term standard and positional reference system in a nearly inertial reference frame. We quantify the current timing precision of the best millisecond pulsars and define the required precise time and time interval (PTTI) accuracy and stability to enable time transfer via pulsars. Pulsars may prove useful as independent standards to examine decade-long timing stability and provide an independent natural system within which to calibrate any new, perhaps vastly improved atomic time scale. Since pulsar stability appears to be related to the lifetime of the pulsar, the new millisecond pulsar J173+0747 is projected to have a 100-day accuracy equivalent to a single HP5071 cesium standard. Over the last five years, dozens of new millisecond pulsars have been discovered. A few of the new millisecond pulsars may have even better timing properties.

  1. A millisecond pulsar in an extremely wide binary system

    NASA Astrophysics Data System (ADS)

    Bassa, C. G.; Janssen, G. H.; Stappers, B. W.; Tauris, T. M.; Wevers, T.; Jonker, P. G.; Lentati, L.; Verbiest, J. P. W.; Desvignes, G.; Graikou, E.; Guillemot, L.; Freire, P. C. C.; Lazarus, P.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Jessner, A.; Jordan, C.; Karuppusamy, R.; Kramer, M.; Lazaridis, K.; Lee, K. J.; Liu, K.; Lyne, A. G.; McKee, J.; Osłowski, S.; Perrodin, D.; Sanidas, S.; Shaifullah, G.; Smits, R.; Theureau, G.; Tiburzi, C.; Zhu, W. W.

    2016-08-01

    We report on 22 yr of radio timing observations of the millisecond pulsar J1024-0719 by the telescopes participating in the European Pulsar Timing Array (EPTA). These observations reveal a significant second derivative of the pulsar spin frequency and confirm the discrepancy between the parallax and Shklovskii distances that has been reported earlier. We also present optical astrometry, photometry and spectroscopy of 2MASS J10243869-0719190. We find that it is a low-metallicity main-sequence star (K7V spectral type, [M/H] = -1.0, Teff = 4050 ± 50 K) and that its position, proper motion and distance are consistent with those of PSR J1024-0719. We conclude that PSR J1024-0719 and 2MASS J10243869-0719190 form a common proper motion pair and are gravitationally bound. The gravitational interaction between the main-sequence star and the pulsar accounts for the spin frequency derivatives, which in turn resolves the distance discrepancy. Our observations suggest that the pulsar and main-sequence star are in an extremely wide (Pb > 200 yr) orbit. Combining the radial velocity of the companion and proper motion of the pulsar, we find that the binary system has a high spatial velocity of 384 ± 45 km s-1 with respect to the local standard of rest and has a Galactic orbit consistent with halo objects. Since the observed main-sequence companion star cannot have recycled the pulsar to millisecond spin periods, an exotic formation scenario is required. We demonstrate that this extremely wide-orbit binary could have evolved from a triple system that underwent an asymmetric supernova explosion, though find that significant fine-tuning during the explosion is required. Finally, we discuss the implications of the long period orbit on the timing stability of PSR J1024-0719 in light of its inclusion in pulsar timing arrays.

  2. Ten Years Timing of Millisecond Pulsars at Kalyazin

    NASA Astrophysics Data System (ADS)

    Ilyasov, Yu. P.; Oreshko, V. V.

    2006-08-01

    Precise timing of millisecond binary pulsars has been started at Kalyazin radio astronomical observatory since 1995. (Tver' region, Russia). Binary pulsars: J0613-02, J1020+10, J1640+22, J1643-12, J1713+07, J2145-07 and isolated millisecond pulsar B1937+21 have been included among the Kalayazin Pulsar Timing Array (KPTA). The Backer's pulsar B1937+21 is being monitored at Kalyazin observatory (0.6 GHz) and Kashima space research centre of the National Institute of Communication Technology (NICT, Japan) (2.2 GHz) simultaneously from 1996, as well. .At Kalyazin pulsars are observed at 0.6 GHz by a full steerable 64-m dish radio telescope RT-64 of the Special Research Bureau of the Moscow Power Engineering Institute. Filter-bank receiver of PRAO Lebedev Physical Institute is used for observations in two circular polarizations by 80 channels per each. Bandwidth per channel is 40 kHz, so total band is 3.2 MHz and time resolution is about 10 μs per channel. Now a perfect data base of pulses Time of Arrival (TOA) are collected with refer to the Solar system barycenter for about 10 years period. Main aim is: a) to study Pulsar Time and to establish a long-term standard of time based on pulsars ensemble as space long life clock alternative to atomic standards; b) to detect gravitational waves extremely low frequency belong to the Gravity Wave Background - GWB. After ten years monitoring of B1937+21 its timing noise is looking as "white phase noise" with RMS about 1.8 μs.( Fractional instability is about 6.10^-15). After these data and timing results of binary pulsar J1640+22 gravitational natural GWB upper limit should be reduced till to less than Ω[g]h^2 <10^-7-10^ -9 . Secular changes of DM toward millisecond pulsar B1937+21 was revealed after long time two frequency timing observations (Kalyazin -0,6 and Kashima -2.3).

  3. X-ray states of redback millisecond pulsars

    SciTech Connect

    Linares, M.

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as 'redbacks', constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L {sub X}), between (6-9) × 10{sup 32} erg s{sup –1} (disk-passive state) and (3-5) × 10{sup 33} erg s{sup –1} (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L {sub X} in the pulsar state (>10{sup 32} erg s{sup –1}).

  4. ON DETECTING MILLISECOND PULSARS AT THE GALACTIC CENTER

    SciTech Connect

    Macquart, Jean-Pierre

    2015-06-01

    The lack of detected pulsars at the Galactic Center (GC) region is a long-standing mystery. We argue that the high stellar density in the central parsec around the GC is likely to result in a pulsar population dominated by millisecond pulsars (MSPs), similar to the situation in globular cluster environments. Earlier GC pulsar searches have been largely insensitive to such an MSP population, accounting for the lack of pulsar detections. We estimate the best search frequency for such an MSP population with present and upcoming broad-band radio telescopes for two possible scattering scenarios, the “weak-scattering” case suggested by the recent detection of a magnetar close to the GC, and the “strong-scattering” case, with the scattering screen located close to the GC. The optimal search frequencies are ≈8 GHz (weak-scattering) and ≈25 GHz (strong-scattering), for pulsars with periods 1–20 ms, assuming that GC pulsars have a luminosity distribution similar to that those in the rest of the Milky Way. We find that 10–30 hr integrations with the Very Large Array and the Green Bank Telescope would be sufficient to detect MSPs at the GC distance in the weak-scattering case. However, if the strong-scattering case is indeed applicable to the GC, observations with the full Square Kilometre Array would be needed to detect the putative MSP population.

  5. XMM-Newton Observations of Four Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Zavlin, Vyacheslav E.

    2005-01-01

    I present an analysis of the XMM-Newton observations of four millisecond pulsars, J0437-4715, J2124-3358, J1024-0719, and J0034-0534. The new data provide strong evidence of thermal emission in the X-ray flux detected from the first three objects. This thermal component is best interpreted as radiation from pulsar polar caps covered with a nonmagnetic hydrogen atmosphere. A nonthermal power-law component, dominating at energies E greater than or equal to 3 keV, can also be present in the detected X-ray emission. For PSR J0437-4715, the timing analysis reveals that the shape and pulsed fraction of the pulsar light curves are energy dependent. This, together with the results obtained from the phase-resolved spectroscopy, supports the two-component (thermal plus nonthermal) interpretation of the pulsar's X-ray radiation. Highly significant pulsations have been found in the X-ray flux of PSRs 52124-3358 and 51024-0719. For PSR 50034-0534, a possible X-ray counterpart of the radio pulsar has been suggested. The inferred properties of the detected thermal emission are compared with predictions of radio pulsar models.

  6. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    NASA Technical Reports Server (NTRS)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; Cognard, I.; Lyne, A. G.; Stappers, B. W.; Freire, P. C. C.; Grove, J. E.; Abdo, A. A.; Desvignes, G.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Guillemot, L.; Gwon, C.; Johnston, S.; Harding, A. K.; Thompson, D. J.

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<= 2 kpc) MSPs. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  7. THREE MILLISECOND PULSARS IN FERMI LAT UNASSOCIATED BRIGHT SOURCES

    SciTech Connect

    Ransom, S. M.; Ray, P. S.; Wolff, M. T.; Grove, J. E.; Camilo, F.; Roberts, M. S. E.; Celik, Oe.; DeCesar, M. E.; Ferrara, E. C.; Gehrels, N.; Cheung, C. C.; Abdo, A. A.; Kerr, M.; Pennucci, T.; Cognard, I.; Freire, P. C. C.; Desvignes, G.; Donato, D. E-mail: Paul.Ray@nrl.navy.mil

    2011-01-20

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and {gamma}-ray millisecond pulsars (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind {gamma}-ray pulsation searches. They seem to be relatively normal, nearby ({<=}2 kpc) MSPs. These observations, in combination with the Fermi detection of {gamma}-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient {gamma}-ray producers. The {gamma}-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few GeV, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of {approx}10{sup 30}-10{sup 31} erg s{sup -1} are typical of the rare radio MSPs seen in X-rays.

  8. On neutron star structure and the millisecond pulsar

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1983-01-01

    The recently discovered millisecond pulsar (PSR1937-214) is observed to be rotating close to the limit of dynamical instability for a neutron star. Despite its extremely rapid rotation, measurements of the period derivative put a stringent upper limit on the energy loss from gravitational radiation, thus requiring that the quadrupole moment be quite small. The pulsar must also be rotating below the critical frequency at which its equilibrium configuration would become non-axisymmetric, since the lifetime of this configuration against decay by gravitational radiation is very short. This critical frequency, given by the theory of rotating ellipsoids, imposes a restriction on the rotation rate more severe than the break-up frequency and may be used to set a lower limit, rho 2 x 10 to the 14th power g/cu cm, on the density of the star. If the mass is 0.5 - 1.5 solar mass, several of the stiffer neutron star equations of state may be ruled out, and the radius should be less than 16 km. The condition for axisymmetry also imposes an upper limit on the rotation rate to which neutron stars may be spun up by accretion disks in binary systems, a model recently proposed for the evolution of the millisecond pulsar.

  9. On neutron star structure and the millisecond pulsar

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1983-01-01

    The millisecond pulsar is the first observed example of a neutron star spinning rapidly enough to approach the Jacobi bifurcation point and thus affords the possibility of constraining neutron star physics. The pulsar must be rotating below the critical frequency at which its equilibrium configuration would become nonaxisymmetric, since the lifetime of this configuration against decay by gravitational radiation is very short. This critical frequency may be used to set a lower limit of 2 x 10 to the 14th g/cu cm on the density of the star. If the mass is 0.5-1.5 solar mass, several of the stiffer neutron star equations of state may be ruled out, and the radius should be less than 16 km. The condition for axisymmetry also imposes an upper limit on the rotation rate to which neutron stars may be spun up by accretion disks in binary systems.

  10. High-Energy Emission at Shocks in Millisecond Pulsar Binaries

    NASA Astrophysics Data System (ADS)

    Kust Harding, Alice; Wadiasingh, Zorawar; Venter, Christo; Boettcher, Markus

    2016-04-01

    A large number of new Black Widow (BW) and Redback (RB) energetic millisecond pulsars have been discovered through radio searches of unidentified Fermi sources, increasing the known number of these systems from 4 to 28. We model the high-energy emission components from particles accelerated to several TeV in intrabinary shocks in BW and RB systems, and their predicted modulation at the binary orbital period. Synchrotron emission is expected at X-ray energies and such modulated emission has already been detected by Chandra and XMM. Inverse Compton emission from accelerated particles scattering the UV emission from the radiated companion star is expected in the Fermi and TeV bands. Detections or constraints on this emission will probe the unknown physics of pulsar winds.

  11. Catching the rebirth of a radio millisecond pulsar

    NASA Astrophysics Data System (ADS)

    Patruno, Alessandro

    2012-09-01

    On 2013 Dec 10 we have discovered with a Swift/XRT observation, that the low mass X-ray binary (LMXB) XSS J12270-4859 has recently changed state from a quiescent-LMXB into a new anomalous faint state with no signatures of accretion (ATel #5647). An NTT optical observation suggests a transition around December 2012 in the opposite direction to that of the "missing link" PSR J1023+0038 (that switched from a radio millisecond pulsar (MSP), into an LMXB, Stappers et al.2013, Patruno et al. 2013). A MSP may therefore be now active in XSS J12270. We are currently completing the analysis of Parkes data to search for the putative MSP. The Swift/XRT shows a faint source (1e32-1e33 erg/s). We want now to characterize the spectral behaviour with a 30 ks Chandra pointing. If we do not detect radio pulsations Chandra can potentially tell us if the pulsar (and pulsar wind) are on even if the radio pulsar is undetectable (as our preliminary Parkes analysis seems to suggest).

  12. A millisecond pulsar in a stellar triple system.

    PubMed

    Ransom, S M; Stairs, I H; Archibald, A M; Hessels, J W T; Kaplan, D L; van Kerkwijk, M H; Boyles, J; Deller, A T; Chatterjee, S; Schechtman-Rook, A; Berndsen, A; Lynch, R S; Lorimer, D R; Karako-Argaman, C; Kaspi, V M; Kondratiev, V I; McLaughlin, M A; van Leeuwen, J; Rosen, R; Roberts, M S E; Stovall, K

    2014-01-23

    Gravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, PSR B1620-26 (refs 7, 8; with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multiwavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar M[Symbol: see text](1.4378(13), where M[Symbol: see text]is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15)M[Symbol: see text] and 0.4101(3))M[Symbol: see text], as well as the inclinations of the orbits (both about 39.2°). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity. PMID:24390352

  13. A millisecond pulsar in a stellar triple system.

    PubMed

    Ransom, S M; Stairs, I H; Archibald, A M; Hessels, J W T; Kaplan, D L; van Kerkwijk, M H; Boyles, J; Deller, A T; Chatterjee, S; Schechtman-Rook, A; Berndsen, A; Lynch, R S; Lorimer, D R; Karako-Argaman, C; Kaspi, V M; Kondratiev, V I; McLaughlin, M A; van Leeuwen, J; Rosen, R; Roberts, M S E; Stovall, K

    2014-01-23

    Gravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, PSR B1620-26 (refs 7, 8; with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multiwavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar M[Symbol: see text](1.4378(13), where M[Symbol: see text]is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15)M[Symbol: see text] and 0.4101(3))M[Symbol: see text], as well as the inclinations of the orbits (both about 39.2°). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity.

  14. A Survey for Millisecond Pulsars and Fast Transients in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Crawford, Fronefield; Lorimer, D.; Ridley, J.; Madden, J.

    2013-01-01

    We report on a new survey for radio pulsars in the Large Magellanic Cloud (LMC) using the Parkes 64-m telescope. The survey uses the 1400 MHz multibeam receiver and the Berkeley Parkes Swinburne Recorder (BPSR) high-resolution backend. This survey has unprecedented sensitivity to millisecond pulsars and short-duration transients in the LMC. The goals of the survey include discovering new source populations (including the first extragalactic millisecond pulsar), probing the high-end of the pulsar luminosity function, and investigating how star formation differences between the LMC and the Milky Way affect the LMC pulsar population. To date about 20% of the survey area has been observed, and those data have been searched for single pulses and partially searched for accelerated pulsars over a wide range of trial dispersions. We have discovered three new pulsars in the survey so far, and we have several new millisecond pulsar candidates and transient sources that await confirmation.

  15. Challenges in explaining the Galactic Center gamma-ray excess with millisecond pulsars

    SciTech Connect

    Cholis, Ilias; Hooper, Dan; Linden, Tim E-mail: dhooper@fnal.gov

    2015-06-01

    Millisecond pulsars have been discussed as a possible source of the gamma-ray excess observed from the region surrounding the Galactic Center. With this in mind, we use the observed population of bright low-mass X-ray binaries to estimate the number of millisecond pulsars in the Inner Galaxy. This calculation suggests that only ∼ 1–5% of the excess is produced by millisecond pulsars. We also use the luminosity function derived from local measurements of millisecond pulsars, along with the number of point sources resolved by Fermi, to calculate an upper limit for the diffuse emission from such a population. While this limit is compatible with the millisecond pulsar population implied by the number of low-mass X-ray binaries, it strongly excludes the possibility that most of the excess originates from such objects.

  16. RADIO AND GAMMA-RAY PULSED EMISSION FROM MILLISECOND PULSARS

    SciTech Connect

    Du, Y. J.; Chen, D.; Qiao, G. J.

    2013-01-20

    Pulsed {gamma}-ray emission from millisecond pulsars (MSPs) has been detected by the sensitive Fermi space telescope, which sheds light on studies of the emission region and its mechanism. In particular, the specific patterns of radio and {gamma}-ray emission from PSR J0101-6422 challenge the popular pulsar models, e.g., outer gap and two-pole caustic models. Using the three-dimensional annular gap model, we have jointly simulated radio and {gamma}-ray light curves for three representative MSPs (PSR J0034-0534, PSR J0101-6422, and PSR J0437-4715) with distinct radio phase lags, and present the best simulated results for these MSPs, particularly for PSR J0101-6422 with complex radio and {gamma}-ray pulse profiles, and for PSR J0437-4715 with a radio interpulse. We have found that both the {gamma}-ray and radio emission originate from the annular gap region located in only one magnetic pole, and the radio emission region is not primarily lower than the {gamma}-ray region in most cases. In addition, the annular gap model with a small magnetic inclination angle instead of an 'orthogonal rotator' can account for the MSPs' radio interpulse with a large phase separation from the main pulse. The annular gap model is a self-consistent model not only for young pulsars but also MSPs, and multi-wavelength light curves can be fundamentally explained using this model.

  17. Cool white dwarf companions to four millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Bassa, C. G.; Antoniadis, J.; Camilo, F.; Cognard, I.; Koester, D.; Kramer, M.; Ransom, S. R.; Stappers, B. W.

    2016-02-01

    We report on photometric and spectroscopic observations of white dwarf companions to four binary radio millisecond pulsars, leading to the discovery of companions to PSRs J0614-3329, J1231-1411 and J2017+0603. We place limits on the brightness of the companion to PSR J0613-0200. Optical spectroscopy of the companion to PSR J0614-3329 identifies it as a DA-type white dwarf with a temperature of Teff = 6460 ± 80 K, a surface gravity log g = 7.0 ± 0.2 cgs and a mass of MWD = 0.24 ± 0.04 M⊙. We find that the distance to PSR J0614-3329 is smaller than previously estimated, removing the need for the pulsar to have an unrealistically high γ-ray efficiency. Comparing the photometry with predictions from white dwarf cooling models allows us to estimate temperatures and cooling ages of the companions to PSRs J0613-0200, J1231-1411 and J2017+0603. We find that the white dwarfs in these systems are cool Teff < 4000 K and old ≳ 5 Gyr. Thin hydrogen envelopes are required for these white dwarfs to cool to the observed temperatures, and we suggest that besides hydrogen shell flashes, irradiation driven mass loss by the pulsar may have been important.

  18. Cyclic spectroscopy of the millisecond pulsar, B1937+21

    SciTech Connect

    Walker, Mark A.; Van Straten, Willem E-mail: pdemores@nrao.edu

    2013-12-20

    Cyclic spectroscopy is a signal processing technique that was originally developed for engineering applications and has recently been introduced into the field of pulsar astronomy. It is a powerful technique with many attractive features, not least of which is the explicit rendering of information about the relative phases in any filtering imposed on the signal, thus making holography a more straightforward proposition. Here we present methods for determining optimum estimates of both the filter itself and the statistics of the unfiltered signal, starting from a measured cyclic spectrum. In the context of radio pulsars these quantities tell us the impulse response of the interstellar medium (ISM) and the intrinsic pulse profile. We demonstrate our techniques by application to 428 MHz Arecibo data on the millisecond pulsar B1937+21, obtaining the pulse profile free from the effects of interstellar scattering. As expected, the intrinsic profile exhibits main- and inter-pulse components that are narrower than they appear in the scattered profile; it also manifests some weak, but sharp, features that are revealed for the first time at low frequency. We determine the structure of the received electric field envelope as a function of delay and Doppler shift. Our delay Doppler image has a high dynamic range and displays some pronounced, low-level power concentrations at large delays. These concentrations imply strong clumpiness in the ionized ISM, on AU-size scales, which must adversely affect the timing of B1937+21.

  19. High-energy emission of the first millisecond pulsar

    SciTech Connect

    Ng, C.-Y.; Takata, J.; Leung, G. C. K.; Cheng, K. S.; Philippopoulos, P.

    2014-06-01

    We report on X-ray and gamma-ray observations of the millisecond pulsar (MSP) B1937+21 taken with the Chandra X-ray Observatory, XMM-Newton, and the Fermi Large Area Telescope. The pulsar X-ray emission shows a purely non-thermal spectrum with a hard photon index of 0.9 ± 0.1, and is nearly 100% pulsed. We found no evidence of varying pulse profile with energy as previously claimed. We also analyzed 5.5 yr of Fermi survey data and obtained much improved constraints on the pulsar's timing and spectral properties in gamma-rays. The pulsed spectrum is adequately fitted by a simple power-law with a photon index of 2.38 ± 0.07. Both the gamma-ray and X-ray pulse profiles show similar two-peak structure and generally align with the radio peaks. We found that the aligned profiles and the hard spectrum in X-rays seem to be common properties among MSPs with high magnetic fields at the light cylinder. We discuss a possible physical scenario that could give rise to these features.

  20. SEARCHES FOR MILLISECOND PULSAR CANDIDATES AMONG THE UNIDENTIFIED FERMI OBJECTS

    SciTech Connect

    Hui, C. Y.; Park, S. M.; Hu, C. P.; Lin, L. C. C.; Li, K. L.; Kong, A. K. H.; Jin, Ruolan; Yen, T.-C.; Tam, P. H. T.; Takata, J.; Cheng, K. S.; Kim, Chunglee

    2015-08-10

    Here we report the results of searching millisecond pulsar (MSP) candidates from the Fermi LAT second source catalog (2FGL). Seven unassociated γ-ray sources in this catalog are identified as promising MSP candidates based on their γ-ray properties. Through the X-ray analysis, we have detected possible X-ray counterparts, localized to an arcsecond accuracy. We have systematically estimated their X-ray fluxes and compared them with the corresponding γ-ray fluxes. The X-ray to γ-ray flux ratios for 2FGL J1653.6-0159 and 2FGL J1946.4-5402 are comparable with the typical value for pulsars. For 2FGL J1625.2-0020, 2FGL J1653.6-0159, and 2FGL J1946.4-5402, their candidate X-ray counterparts are bright enough to perform a detailed spectral and temporal analysis to discriminate their thermal/non-thermal nature and search for the periodic signal. We have also searched for possible optical/IR counterparts at the X-ray positions. For the optical/IR source coincident with the brightest X-ray object associated with 2FGL J1120.0-2204, its spectral energy distribution is comparable with a late-type star. Evidence for the variability has also been found by examining its optical light curve. All the aforementioned 2FGL sources resemble a pulsar in one or more aspects, making them promising targets for follow-up investigations.

  1. ASSESSING THE ROLE OF SPIN NOISE IN THE PRECISION TIMING OF MILLISECOND PULSARS

    SciTech Connect

    Shannon, Ryan M.; Cordes, James M. E-mail: cordes@astro.cornell.ed

    2010-12-20

    We investigate rotational spin noise (referred to as timing noise) in non-accreting pulsars: millisecond pulsars, canonical pulsars, and magnetars. Particular attention is placed on quantifying the strength and non-stationarity of timing noise in millisecond pulsars because the long-term stability of these objects is required to detect nanohertz gravitational radiation. We show that a single scaling law is sufficient to characterize timing noise in millisecond and canonical pulsars while the same scaling law underestimates the levels of timing noise in magnetars. The scaling law, along with a detailed study of the millisecond pulsar B1937+21, leads us to conclude that timing noise is latent in most millisecond pulsars and will be measurable in many objects when better arrival time estimates are obtained over long data spans. The sensitivity of a pulsar timing array to gravitational radiation is strongly affected by any timing noise. We conclude that detection of proposed gravitational wave backgrounds will require the analysis of more objects than previously suggested over data spans that depend on the spectra of both the gravitational wave background and of the timing noise. It is imperative to find additional millisecond pulsars in current and future surveys in order to reduce the effects of timing noise.

  2. Millisecond newly born pulsars as efficient accelerators of electrons.

    PubMed

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-01-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 10(18) eV for parameters characteristic of a young star.

  3. Millisecond newly born pulsars as efficient accelerators of electrons

    NASA Astrophysics Data System (ADS)

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-09-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 1018 eV for parameters characteristic of a young star.

  4. Millisecond newly born pulsars as efficient accelerators of electrons

    PubMed Central

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-01-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 1018 eV for parameters characteristic of a young star. PMID:26403155

  5. Millisecond newly born pulsars as efficient accelerators of electrons.

    PubMed

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-01-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 10(18) eV for parameters characteristic of a young star. PMID:26403155

  6. The Fading of Transient Anomalous X-Ray Pulsar XTE J1810-197

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Gotthelf, E. V.

    2005-01-01

    Three observations of the 5.54 s transient anomalous X-ray pulsar XTE J1810-197 obtained over 6 months with the Newton X-ray Multi-Mirror (XMM-Newton) mission are used to study its spectrum and pulsed light curve as the source fades from outburst. The decay is consistent with an exponential of time constant ~300 days but not a power law as predicted in some models of sudden deep crustal heating events. All spectra are well fitted by a blackbody plus a steep power law, a problematic model that is commonly fitted to anomalous X-ray pulsars (AXPs). A two-temperature blackbody fit is also acceptable and better motivated physically in view of the faint optical/IR fluxes, the X-ray pulse shapes that weakly depend on energy in XTE J1810-197, and the inferred emitting areas that are less than or equal to the surface area of a neutron star. The fitted temperatures remained the same while the flux declined by 46%, which can be interpreted as a decrease in area of the emitting regions. The pulsar continues to spin down, albeit at a reduced rate of (5.1+/-1.6)×10-12 s s-1. The inferred characteristic age τc≡P/2P~17,000 yr, magnetic field strength Bs~1.7×1014 G, and outburst properties are consistent with both the outburst and quiescent X-ray luminosities being powered by magnetic field decay, i.e., XTE J1810-197 is a magnetar.

  7. Corrected Name for 5.54 s Pulsar: XTE J1810-197

    NASA Astrophysics Data System (ADS)

    Swank, J. H.; Markwardt, C. B.; Ibrahim, A. I.

    2003-07-01

    In ATEL 167, we reported the position of a new source as R.A. = 18h10.9m, Decl. = -19o42' (equinox 2000.0) , with estimated 99% confidence semi-major axes of 5' in R.A. and 7' in Decl. We designated the new pulsar as XTE J1811-197. The same name appeared in CBET 36. It was brought to our attention by Dr. Marion Schmitz, head of the IAU Working Group on Designations, that the name did not follow the specifications of the IAU, which can be found at: http://cdsweb.u-strasbg.fr/iau-spec.html.

  8. What is causing the eclipse in the millisecond binary pulsar

    SciTech Connect

    Rasio, F.A.; Shapiro, S.L.; Teukolsky, S.A. )

    1989-07-01

    Possible physical mechanisms for explaining the radio eclipses in the millisecond binary pulsar PSR 1957 + 20 are discussed. If, as recent observations suggest, the duration of the eclipses depends on the observing frequency, a plausible mechanism is free-free absorption of the radio pulses by a low-density ionized wind surrounding the companion. Detailed numerical calculations are performed for this case, and it is found that all of the observations made at 430 MHz can be reliably reproduced, including the asymmetry in the excess time delay of the pulses. The model leads to definite predictions for the duration of the eclipse at other observing frequencies, as well as the radio intensity and excess time delay of the pulses as a function of orbital phase. If the duration of the eclipses were found to be independent of frequency, then the likely mechanism would be reflection of the radio signal at a contact discontinuity between a high-density wind and the pulsar radiation. In this case, however, it is difficult to explain the observed symmetry of the eclipse. 12 refs.

  9. Millisecond Pulsars: The Gifts that Keep on Giving

    NASA Astrophysics Data System (ADS)

    Ransom, Scott M.

    2011-01-01

    There are about 2000 pulsars known, and while all of them as neutron stars are fascinating objects, the best and most exciting science comes from a very small percentage ( 1%) of exotic objects, most of which are millisecond pulsars (MSPs). These systems are notoriously hard to detect, yet their numbers have bloomed in the past 5-6 years via surveys using the world's largest radio telescopes and the Fermi Gamma-ray Space Telescope. Timing observations of these new MSPs as well as much improved monitoring of previously known MSPs are providing a wealth of science. In this talk I'll briefly cover 3 main areas in basic physics where systems like these are making an impact: strong-field tests of general relativity, the nature of matter at supra-nuclear densities, and the direct detection of gravitational waves (e.g. NANOGrav). In addition, several of the systems exhibit some very interesting astrophysics as well, including a transition from X-ray binary to MSP and a likely triple system that turned into an eccentric MSP binary.

  10. MILLISECOND PULSAR SCINTILLATION STUDIES WITH LOFAR: INITIAL RESULTS

    SciTech Connect

    Archibald, Anne M.; Kondratiev, Vladislav I.; Hessels, Jason W. T.; Stinebring, Daniel R. E-mail: kondratiev@astron.nl E-mail: dan.stinebring@oberlin.edu

    2014-08-01

    High-precision timing of millisecond pulsars (MSPs) over years to decades is a promising technique for direct detection of gravitational waves at nanohertz frequencies. Time-variable, multi-path scattering in the interstellar medium is a significant source of noise for this detector, particularly as timing precision approaches 10 ns or better for MSPs in the pulsar timing array. For many MSPs, the scattering delay above 1 GHz is at the limit of detectability; therefore, we study it at lower frequencies. Using the LOw-Frequency ARray (LOFAR) radio telescope, we have analyzed short (5-20 minutes) observations of 3 MSPs in order to estimate the scattering delay at 110-190 MHz, where the number of scintles is large and, hence, the statistical uncertainty in the scattering delay is small. We used cyclic spectroscopy, still relatively novel in radio astronomy, on baseband-sampled data to achieve unprecedented frequency resolution while retaining adequate pulse-phase resolution. We detected scintillation structure in the spectra of the MSPs PSR B1257+12, PSR J1810+1744, and PSR J2317+1439 with diffractive bandwidths of 6 ± 3, 2.0 ± 0.3, and ∼7 kHz, respectively, where the estimate for PSR J2317+1439 is reliable to about a factor of two. For the brightest of the three pulsars, PSR J1810+1744, we found that the diffractive bandwidth has a power-law behavior Δν{sub d}∝ν{sup α}, where ν is the observing frequency and α = 4.5 ± 0.5, consistent with a Kolmogorov inhomogeneity spectrum. We conclude that this technique holds promise for monitoring the scattering delay of MSPs with LOFAR and other high-sensitivity, low-frequency arrays like the low-frequency component of the Square Kilometre Array.

  11. Millisecond Pulsar Scintillation Studies with LOFAR: Initial Results

    NASA Astrophysics Data System (ADS)

    Archibald, Anne M.; Kondratiev, Vladislav I.; Hessels, Jason W. T.; Stinebring, Daniel R.

    2014-08-01

    High-precision timing of millisecond pulsars (MSPs) over years to decades is a promising technique for direct detection of gravitational waves at nanohertz frequencies. Time-variable, multi-path scattering in the interstellar medium is a significant source of noise for this detector, particularly as timing precision approaches 10 ns or better for MSPs in the pulsar timing array. For many MSPs, the scattering delay above 1 GHz is at the limit of detectability; therefore, we study it at lower frequencies. Using the LOw-Frequency ARray (LOFAR) radio telescope, we have analyzed short (5-20 minutes) observations of 3 MSPs in order to estimate the scattering delay at 110-190 MHz, where the number of scintles is large and, hence, the statistical uncertainty in the scattering delay is small. We used cyclic spectroscopy, still relatively novel in radio astronomy, on baseband-sampled data to achieve unprecedented frequency resolution while retaining adequate pulse-phase resolution. We detected scintillation structure in the spectra of the MSPs PSR B1257+12, PSR J1810+1744, and PSR J2317+1439 with diffractive bandwidths of 6 ± 3, 2.0 ± 0.3, and ~7 kHz, respectively, where the estimate for PSR J2317+1439 is reliable to about a factor of two. For the brightest of the three pulsars, PSR J1810+1744, we found that the diffractive bandwidth has a power-law behavior Δνdvpropνα, where ν is the observing frequency and α = 4.5 ± 0.5, consistent with a Kolmogorov inhomogeneity spectrum. We conclude that this technique holds promise for monitoring the scattering delay of MSPs with LOFAR and other high-sensitivity, low-frequency arrays like the low-frequency component of the Square Kilometre Array.

  12. High-precision baseband timing of 15 millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Hotan, A. W.; Bailes, M.; Ord, S. M.

    2006-07-01

    We describe extremely precise timing experiments performed on five solitary and 10 binary millisecond pulsars during the past 3 yr, with the Caltech Parkes Swinburne Recorder (CPSR2) coherent dedispersion system at the Parkes 64-m radio telescope. 12 of our sources have rms timing residuals below 1.5μs and four are below 200ns. The quality of our data allows us to measure eight parallaxes and nine proper motions, from which we conclude that models of galactic electron density still have limited predictive power for individual objects. We derive a mean transverse velocity of 87+31/-14kms-1 for these pulsars, in good agreement with previous authors. We demonstrate that unless multifrequency observations are made, typical variations in dispersion measure (DM) could introduce an additional drift in arrival times of ~1μs per year at 20-cm wavelengths. Our high timing precision means that Shapiro delay can be used to constrain the inclination angles and component masses of all but two of the selected binary systems. The signature of annual orbital parallax is detected in the timing of PSR J0437-4715 and PSR J1713+0747, providing additional geometric constraints. The timing of PSR J1909-3744 is used to demonstrate that the DE405 ephemeris is a better model of the Solar system than the earlier DE200. In addition, we show that pulsar astrometric parameters measured using DE200 and DE405 often differ significantly. In order to use pulsars to search for a cosmological gravitational wave background, it is desirable to time them against each other to eliminate Earth-based time standards. We demonstrate that PSR J1909-3744 can be used as a reference against which we obtain a very small rms residual of 133ns for PSR J1713+0747. Although the gain of the Parkes antenna is small compared to other telescopes involved in precision timing, we obtain some of the lowest rms residuals ever measured, highlighting the importance of good instrumentation such as CPSR2 and good analysis

  13. Microarcsecond VLBI Pulsar Astrometry with PSRπ. I. Two Binary Millisecond Pulsars with White Dwarf Companions

    NASA Astrophysics Data System (ADS)

    Deller, A. T.; Vigeland, S. J.; Kaplan, D. L.; Goss, W. M.; Brisken, W. F.; Chatterjee, S.; Cordes, J. M.; Janssen, G. H.; Lazio, T. J. W.; Petrov, L.; Stappers, B. W.; Lyne, A.

    2016-09-01

    Model-independent distance constraints to binary millisecond pulsars (MSPs) are of great value to both the timing observations of the radio pulsars and multiwavelength observations of their companion stars. Astrometry using very long baseline interferometry (VLBI) can be employed to provide these model-independent distances with very high precision via the detection of annual geometric parallax. Using the Very Long Baseline Array, we have observed two binary MSPs, PSR J1022+1001 and J2145–0750, over a two-year period and measured their distances to be {700}-10+14 pc and {613}-14+16 pc respectively. We use the well-calibrated distance in conjunction with revised analysis of optical photometry to tightly constrain the nature of their massive (M˜ 0.85 {M}ȯ ) white dwarf companions. Finally, we show that several measurements of the parallax and proper motion of PSR J1022+1001 and PSR J2145–0750 obtained by pulsar timing array projects are incorrect, differing from the more precise VLBI values by up to 5σ. We investigate possible causes for the discrepancy, and find that imperfect modeling of the solar wind is a likely candidate for the errors in the timing model given the low ecliptic latitude of these two pulsars.

  14. Microarcsecond VLBI Pulsar Astrometry with PSRπ. I. Two Binary Millisecond Pulsars with White Dwarf Companions

    NASA Astrophysics Data System (ADS)

    Deller, A. T.; Vigeland, S. J.; Kaplan, D. L.; Goss, W. M.; Brisken, W. F.; Chatterjee, S.; Cordes, J. M.; Janssen, G. H.; Lazio, T. J. W.; Petrov, L.; Stappers, B. W.; Lyne, A.

    2016-09-01

    Model-independent distance constraints to binary millisecond pulsars (MSPs) are of great value to both the timing observations of the radio pulsars and multiwavelength observations of their companion stars. Astrometry using very long baseline interferometry (VLBI) can be employed to provide these model-independent distances with very high precision via the detection of annual geometric parallax. Using the Very Long Baseline Array, we have observed two binary MSPs, PSR J1022+1001 and J2145-0750, over a two-year period and measured their distances to be {700}-10+14 pc and {613}-14+16 pc respectively. We use the well-calibrated distance in conjunction with revised analysis of optical photometry to tightly constrain the nature of their massive (M˜ 0.85 {M}⊙ ) white dwarf companions. Finally, we show that several measurements of the parallax and proper motion of PSR J1022+1001 and PSR J2145-0750 obtained by pulsar timing array projects are incorrect, differing from the more precise VLBI values by up to 5σ. We investigate possible causes for the discrepancy, and find that imperfect modeling of the solar wind is a likely candidate for the errors in the timing model given the low ecliptic latitude of these two pulsars.

  15. Search for millisecond pulsars at the GMRT and the exotic discoveries

    NASA Astrophysics Data System (ADS)

    Bhaswati Bhattacharyya, Bhaswati

    There are, arguably, no other astronomical object whose discovery and subsequent studies provides more insight in such a rich variety of physics and astrophysics than the millisecond pulsars (MSPs). MSPs are a small sub-class of pulsars, rotating with periods of only a few milliseconds and due to their extraordinary rotational stability, MSPs can be considered as astrophysical clocks. The search for such exotic objects will not only enhance the MSP population, but will also allow much wider probe to explore their evolutionary history. We have discovered six MSPs with much diverse characteristics at the positions of Fermi LAT unassociated sources using the GMRT. Being the first galactic disk millisecond pulsars discovered at the GMRT, these discoveries are very important scientific achievement from India and illustrate the importance of low-frequency search for nearby millisecond pulsars. The discovery of these precise astrophysical clocks demands much finer grid in search phase space, which is completely driven by the number crunching capability of the High Performance Compute engine. The discoveries of binary MSPs in exotic evolutionary phases demands complete 3-D search. For example, 7.5 Tflops of compute power is used for the discovery of a very compact binary MSP, a Black Widow pulsar. This pulsar eclipses for about 13% of its orbit by a very low-mass companion (0.017 M_{⊙}). Such Black Widow pulsars are missing link between the isolated and fully recycled pulsars, where the pulsar is ablating its companion creating significant amount of intra-binary material to obscure the pulsar emission. Radio timing ephemeris allowed us to detect the gamma-ray pulsations from this millisecond pulsar. The details of the GMRT discoveries, the interesting results from our observations and the possible scientific impact of the discoveries of such exotic systems will be illustrated in this presentation.

  16. Search for Gamma-Ray Millisecond Pulsars with the Fermi LAT

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2009-01-01

    Prior to the launch of Fermi, only weak gamma-ray pulsations from a single millisecond pulsar, PSR J0218+4232, had been reported. A firm detection of gamma rays from a member of this class of pulsar having periods near neutron star break-up and magnetic dipole moments well below those of normal pulsars would provide new insights into pulsar acceleration and emission. Using accurate ephemerides obtained from several radio telescopes as well as the unprecedented accuracy of the GPS-derived clocks used by Fermi and the LAT, we have searched for gamma-ray pulsations from known pulsars over a broad range of timing parameters. We will present some results from our search for pulsed gamma rays from millisecond pulsars.

  17. Identification of candidate millisecond pulsars from Fermi LAT observations

    NASA Astrophysics Data System (ADS)

    Dai, Xue-Jie; Wang, Zhong-Xiang; Vadakkumthani, Jithesh; Xing, Yi

    2016-06-01

    We report our detailed data analysis of 39 γ-ray sources selected from the 992 unassociated sources in the third Fermi Large Area Telescope Third Source Catalog. The selection criteria, which were set for finding candidate millisecond pulsars (MSPs), are non-variables with curved spectra and >5° Galactic latitudes. From our analysis, 24 sources were found to be point-like sources not contaminated by background or nearby unknown sources. Three of them, J1544.6–1125, J1625.1–0021 and J1653.6–0158, have been previously studied, indicating that they are likely MSPs. The spectra of J0318.1+0252 and J2053.9+2922 do not have properties similar to known γ-ray MSPs, and we thus suggest that they are not MSPs. Analysis of archival X-ray data for most of the 24 sources was also conducted. Four sources were found with X-ray objects in their error circles, and 16 with no detection. The ratios between the γ-ray fluxes and X-ray fluxes or flux upper limits are generally lower than those of known γ-ray MSPs, suggesting that if the γ-ray sources are MSPs, none of the X-ray objects are their counterparts. Deep X-ray or radio observations of these sources are needed in order to identify their MSP nature.

  18. Durability of the accretion disk of millisecond pulsars.

    PubMed

    Michel, F C; Dessler, A J

    1985-05-24

    Pulsars with pulsation periods in the millisecond range are thought to be neutron stars that have acquired an extraordinarily short spin period through the accretion of stellar material spiraling down onto the neutron star from a nearby companion. Nearly all the angular momentum and most of the mass of the companion star is transferred to the neutron star. During this process, wherein the neutron star consumes its companion, it is required that a disk of stellar material be formed around the neutron star. In conventional models it is supposed that the disk is somehow lost when the accretion phase is finished, so that only the rapidly spinning neutron star remains. However, it is possible that, after the accretion phase, a residual disk remains in stable orbit around the neutron star. The end result of such an accretion process is an object that looks much like a miniature (about 100 kilometers), heavy version of Saturn: a central object (the neutron star) surrounded by a durable disk. PMID:17797665

  19. Swings between rotation and accretion power in a binary millisecond pulsar.

    PubMed

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  20. Swings between rotation and accretion power in a binary millisecond pulsar.

    PubMed

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales. PMID:24067710

  1. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array

    NASA Astrophysics Data System (ADS)

    Desvignes, G.; Caballero, R. N.; Lentati, L.; Verbiest, J. P. W.; Champion, D. J.; Stappers, B. W.; Janssen, G. H.; Lazarus, P.; Osłowski, S.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Cognard, I.; Gair, J. R.; Graikou, E.; Guillemot, L.; Hessels, J. W. T.; Jessner, A.; Jordan, C.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazaridis, K.; Lee, K. J.; Liu, K.; Lyne, A. G.; McKee, J.; Mingarelli, C. M. F.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S.; Sesana, A.; Shaifullah, G.; Smits, R.; Taylor, S. R.; Theureau, G.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.

    2016-05-01

    We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 yr. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TEMPONEST yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semimajor axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler. However, we measure an average uncertainty of 80 per cent (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600-3053 and J1918-0642, implying pulsar and companion masses m_p=1.22_{-0.35}^{+0.5} M_{⊙}, m_c = 0.21_{-0.04}^{+0.06} M_{⊙} and m_p=1.25_{-0.4}^{+0.6} M_{⊙}, m_c = 0.23_{-0.05}^{+0.07} M_{⊙}, respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012+5307 and J1909-3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600-3053 and J1909-3744.

  2. Discovery of the optical counterparts to four energetic Fermi millisecond pulsars

    SciTech Connect

    Breton, R. P.; Van Kerkwijk, M. H.; Roberts, M. S. E.; Hessels, J. W. T.; Camilo, F.; McLaughlin, M. A.; Ransom, S. M.; Ray, P. S.; Stairs, I. H.

    2013-06-01

    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified γ-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modeling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10%-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irradiated pulsar binaries and offers insights about the energetics of the pulsar wind and the production of γ-ray emission. In addition, this provides a simple way of estimating the brightness of irradiated pulsar companions given the pulsar spin-down luminosity. Our analysis also suggests that two of the four new irradiated pulsar companions are only partially filling their Roche lobe. Some of these sources are relatively bright and represent good targets for spectroscopic follow-up. These measurements could enable, among other things, mass determination of the neutron stars in these systems.

  3. A population of gamma-ray millisecond pulsars seen with the Fermi Large Area Telescope.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Camilo, F; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbet, R; Cutini, S; Dermer, C D; Desvignes, G; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Freire, P C C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hobbs, G; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Johnston, S; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kramer, M; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Manchester, R N; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; McLaughlin, M A; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ransom, S M; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Starck, J L; Striani, E; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Theureau, G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Venter, C; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Watters, K; Webb, N; Weltevrede, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    Pulsars are born with subsecond spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface.

  4. A population of gamma-ray millisecond pulsars seen with the Fermi Large Area Telescope.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Camilo, F; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbet, R; Cutini, S; Dermer, C D; Desvignes, G; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Freire, P C C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hobbs, G; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Johnston, S; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kramer, M; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Manchester, R N; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; McLaughlin, M A; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ransom, S M; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Starck, J L; Striani, E; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Theureau, G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Venter, C; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Watters, K; Webb, N; Weltevrede, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    Pulsars are born with subsecond spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface. PMID:19574349

  5. DETECTION AND FLUX DENSITY MEASUREMENTS OF THE MILLISECOND PULSAR J2145–0750 BELOW 100 MHz

    SciTech Connect

    Dowell, J.; Taylor, G. B.; Craig, J.; Henning, P. A.; Schinzel, F.; Ray, P. S.; Blythe, J. N.; Clarke, T.; Helmboldt, J. F.; Ellingson, S. W.; Wolfe, C. N.; Lazio, T. J. W.; Stovall, K.

    2013-09-20

    We present flux density measurements and pulse profiles for the millisecond pulsar PSR J2145–0750 spanning 37 to 81 MHz using data obtained from the first station of the Long Wavelength Array. These measurements represent the lowest frequency detection of pulsed emission from a millisecond pulsar to date. We find that the pulse profile is similar to that observed at 102 MHz. We also find that the flux density spectrum between ≈40 MHz to 5 GHz is suggestive of a break and may be better fit by a model that includes spectral curvature with a rollover around 730 MHz rather than a single power law.

  6. Neutron stars and millisecond pulsars from accretion-induced collapse in globular clusters

    NASA Technical Reports Server (NTRS)

    Bailyn, Charles D.; Grindlay, Jonathan E.

    1990-01-01

    This paper examines the limits on the number of millisecond pulsars which could be formed in globular clusters by the generally accepted scenario (in which a neutron star is created by the supernova of an initially massive star and subsequently captures a companion to form a low-mass X-ray binary which eventually becomes a millisecond pulsar). It is found that, while the number of observed low-mass X-ray binaries can be adequately explained in this way, the reasonable assumption that the pulsar luminosity function in clusters extends below the current observational limits down to the luminosity of the faintest millisecond pulsars in the field suggests a cluster population of millisecond pulsars which is substantially larger than the standard model can produce. Alleviating this problem by postulating much shorter lifetimes for the X-ray binaries requires massive star populations sufficiently large that the mass loss resulting from their evolution would be likely to unbind the cluster. It is argued that neutron star formation in globular clusters by accretion-induced collapse of white dwarfs may resolve the discrepancy in birthrates.

  7. Rotochemical heating of millisecond and classical pulsars with anisotropic and density-dependent superfluid gap models

    NASA Astrophysics Data System (ADS)

    González-Jiménez, Nicolás; Petrovich, Cristobal; Reisenegger, Andreas

    2015-03-01

    When a rotating neutron star loses angular momentum, the progressive reduction of the centrifugal force makes it contract. This perturbs each fluid element, raising the local pressure and originating deviations from beta equilibrium, inducing reactions that release heat (`rotochemical heating'). This effect has previously been studied by Fernández & Reisenegger for non-superfluid neutron stars and by Petrovich & Reisenegger for superfluid millisecond pulsars. Both studies found that pulsars reach a quasi-steady state in which the compression driving the matter out of beta equilibrium is balanced by the reactions trying to restore the equilibrium. We extend previous studies by considering the effect of density-dependence and anisotropy of the superfluid energy gaps, for the case in which the dominant reactions are the modified Urca processes, the protons are non-superconducting, and the neutron superfluidity is parametrized by models proposed in the literature. By comparing our predictions with the surface temperature of the millisecond pulsar PSR J0437-4715 and upper limits for 21 classical pulsars, we find the millisecond pulsar can be only explained by the models with the effectively largest energy gaps (type B models), the classical pulsars require with the gap models that vanish for some angle (type C) and two different envelope compositions. Thus, no single model for neutron superfluidity can simultaneously account for the thermal emission of all available observations of non-accreting neutron stars, possibly due to our neglect of proton superconductivity.

  8. What the timing of millisecond pulsars can teach us about their interior.

    PubMed

    Alford, Mark G; Schwenzer, Kai

    2014-12-19

    The cores of compact stars reach the highest densities in nature and therefore could consist of novel phases of matter. We demonstrate via a detailed analysis of pulsar evolution that precise pulsar timing data can constrain the star's composition, through unstable global oscillations (r modes) whose damping is determined by microscopic properties of the interior. If not efficiently damped, these modes emit gravitational waves that quickly spin down a millisecond pulsar. As a first application of this general method, we find that ungapped interacting quark matter is consistent with both the observed radio and x-ray data, whereas for ordinary nuclear matter some additional enhanced damping mechanism is required. PMID:25554870

  9. Discovery of near-ultraviolet counterparts to millisecond pulsars in the globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Rivera Sandoval, Liliana E.

    2016-07-01

    Up to date 144 radio millisecond pulsars have been found in Galactic globular clusters, of which about two-thirds are in a binary. However, until recently only for 10 of those binary millisecond pulsars the companion has been firmly identified at optical wavelengths. We present the discovery of 2 likely He white dwarf companions to millisecond pulsars in the globular cluster 47 Tucanae, as well as the confirmation of 2 tentative identifications in the same cluster, using near-ultraviolet images obtained with the Hubble Space Telescope. This represents an important contribution to the total number of optical counterparts known in Galactic globular clusters so far. We have also analyzed optical observations taken with Hubble. From these images, we obtained H_α results for some of the counterparts. Based on our UV photometry and He WD cooling models we derived the ages, the masses and the bolometric luminosities for all the He WD companions. I will discuss our results and their implications in the context of the standard millisecond pulsar formation scenario.

  10. Transformation of a star into a planet in a millisecond pulsar binary.

    PubMed

    Bailes, M; Bates, S D; Bhalerao, V; Bhat, N D R; Burgay, M; Burke-Spolaor, S; D'Amico, N; Johnston, S; Keith, M J; Kramer, M; Kulkarni, S R; Levin, L; Lyne, A G; Milia, S; Possenti, A; Spitler, L; Stappers, B; van Straten, W

    2011-09-23

    Millisecond pulsars are thought to be neutron stars that have been spun-up by accretion of matter from a binary companion. Although most are in binary systems, some 30% are solitary, and their origin is therefore mysterious. PSR J1719-1438, a 5.7-millisecond pulsar, was detected in a recent survey with the Parkes 64-meter radio telescope. We show that this pulsar is in a binary system with an orbital period of 2.2 hours. The mass of its companion is near that of Jupiter, but its minimum density of 23 grams per cubic centimeter suggests that it may be an ultralow-mass carbon white dwarf. This system may thus have once been an ultracompact low-mass x-ray binary, where the companion narrowly avoided complete destruction. PMID:21868629

  11. Transformation of a star into a planet in a millisecond pulsar binary.

    PubMed

    Bailes, M; Bates, S D; Bhalerao, V; Bhat, N D R; Burgay, M; Burke-Spolaor, S; D'Amico, N; Johnston, S; Keith, M J; Kramer, M; Kulkarni, S R; Levin, L; Lyne, A G; Milia, S; Possenti, A; Spitler, L; Stappers, B; van Straten, W

    2011-09-23

    Millisecond pulsars are thought to be neutron stars that have been spun-up by accretion of matter from a binary companion. Although most are in binary systems, some 30% are solitary, and their origin is therefore mysterious. PSR J1719-1438, a 5.7-millisecond pulsar, was detected in a recent survey with the Parkes 64-meter radio telescope. We show that this pulsar is in a binary system with an orbital period of 2.2 hours. The mass of its companion is near that of Jupiter, but its minimum density of 23 grams per cubic centimeter suggests that it may be an ultralow-mass carbon white dwarf. This system may thus have once been an ultracompact low-mass x-ray binary, where the companion narrowly avoided complete destruction.

  12. A New High-Frequency Search for Galactic Center Millisecond Pulsars using DSS-43

    NASA Astrophysics Data System (ADS)

    Lemley, Cameron; Prince, Thomas Allen; Majid, Walid A.; Murchikova, Elena

    2016-01-01

    The primary 70-meter Deep Space Network antenna (DSS-43) in Canberra, Australia was equipped with a new high-frequency (18-28 GHz) receiver system in May 2015 for use in a search for Galactic Center (GC) millisecond pulsars. The primary motivation for this search is that a pulsar in the Galactic Center region (especially one that is gravitationally bound to the massive black hole at the GC) would provide unprecedented tests of gravity in the strong-field regime and would offer an entirely new tool for probing the characteristics of the Galactic Center region. Preparation for the GC pulsar search has involved the development of a single-pulse search pipeline that integrates tools from both Fortran and Python as well as the implementation of this pipeline on high performance CPUs. The original version of the search pipeline was developed using Vela Pulsar data from DSS-43, and a more refined version that relies upon chi-squared fitting techniques was ultimately developed using Crab Pulsar data. Future work will involve continued testing of the single-pulse search pipeline using data from the rotating radio transient (RRAT) J1819-1458, the characterization of RRAT pulses using high time resolution data from the new receiver system on DSS-43, and ultimately the analysis of high-frequency data using the existing pipeline to search for millisecond pulsars in the Galactic Center.

  13. A search for millisecond pulsars at high galactic latitude

    NASA Astrophysics Data System (ADS)

    Jacoby, B.; Bailes, M.; Ord, S.; Kulkarni, S.; Anderson, S.

    2002-05-01

    We are conducting a search for radio pulsars using the Parkes 64 m telescope, covering the galactic latitude range 15o < | b | < 25o from l=260o to l=50o. Each pointing is observed for 265 s with the 13-beam multibeam system at a frequency of 1374 MHz. The signal from each beam is processed by a 2 x 96 channel filterbank sampled every 125 μ s, with a bandwidth of 288 MHz. These observing parameters afford rapid sky coverage and good sensitivity to pulsars with periods as short as ~1 ms, whose existence would constrain the neutron star equation of state. Data are analyzed offline using the workstation cluster at the Swinburne Centre for Astrophysics and Supercomputing. Analysis of ~2200 square degrees of the survey has been completed, yielding twenty new pulsars including four binary recycled pulsars. Three of these objects have great potential for ultra high precision timing experiments, and one has an unusual massive white dwarf companion. We present the current status of survey observations and analysis as well as follow-up observations of the newly discovered pulsars.

  14. Low-Frequency Variability of - for Timing of Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Blandford, R.; Narayan, R.

    Rickett, Coles and Bourgois (1984) have argued that long-term (months to years) variation in pulsar flux is caused by fluctuations in the interstellar electron density on length scales ≡1013-16cm. In this paper the authors show that there should then be correlated fluctuations in the pulse arrival time, pulse width, and angular size. PSR 1937+21 is suitable for detecting some of the new effects. The timing noise and pulse width variation in this pulsar is estimated assuming a power-law spectrum for the electron density fluctuations, normalized using scintillation data.

  15. On the progenitors of millisecond pulsars by the recycling evolutionary channel

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Min; Chen, Wen-Cong

    2011-09-01

    The recycling model suggested that low-mass X-ray binaries (LMXBs) could evolve into binary millisecond pulsars (BMSPs). In this work, we attempt to investigate the progenitor properties of BMSPs formed by the recycling evolutionary channel, and if submillisecond pulsars can be produced by this channel. Using Eggleton's stellar evolution code, considering that the dead pulsars can be spun up to a short spin period by the accreting material and angular momentum from the donor star, we have calculated the evolution of close binaries consisting of a neutron star (NS) and a low-mass main-sequence donor star, and the spin evolution of NSs. In the calculation, some physical processes, such as the thermal and viscous instability of an accretion disc, propeller effect and magnetic braking, are included. Our calculated results indicate that all LMXBs with a low-mass donor star of 1.0-2.0 M⊙ and a short orbital period (≲ 3-4 d) can form millisecond pulsars with a spin period less than 10 ms. However, it is difficult to produce submillisecond pulsars by this evolutionary channel. In addition, our evolutionary scenario cannot account for the existence of BMSPs with a long orbital period (Porb≳ 70-80 d).

  16. AN ASTEROID BELT INTERPRETATION FOR THE TIMING VARIATIONS OF THE MILLISECOND PULSAR B1937+21

    SciTech Connect

    Shannon, R. M.; Cordes, J. M.; Metcalfe, T. S.; Lazio, T. J. W.; Jessner, A.; Kramer, M.; Lazaridis, K. E-mail: cordes@astro.cornell.edu

    2013-03-20

    Pulsar timing observations have revealed companions to neutron stars that include other neutron stars, white dwarfs, main-sequence stars, and planets. We demonstrate that the correlated and apparently stochastic residual times of arrival from the millisecond pulsar B1937+21 are consistent with the signature of an asteroid belt having a total mass {approx}< 0.05 M{sub Circled-Plus }. Unlike the solar system's asteroid belt, the best fit pulsar asteroid belt extends over a wide range of radii, consistent with the absence of any shepherding companions. We suggest that any pulsar that has undergone accretion-driven spin-up and subsequently evaporated its companion may harbor orbiting asteroid mass objects. The resulting timing variations may fundamentally limit the timing precision of some of the other millisecond pulsars. Observational tests of the asteroid belt model include identifying periodicities from individual asteroids, which are difficult; testing for statistical stationarity, which becomes possible when observations are conducted over a longer observing span; and searching for reflected radio emission.

  17. Millisecond Pulsars at Gamma-Ray Energies: Fermi Detections and Implications

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the discovery of new populations of radio quiet and millisecond gamma-ray pulsars. The Fermi Large Area Telescope has so far discovered approx.20 new gamma-ray millisecond pulsars (MSPs) by both folding at periods of known radio MSPs or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -30 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. Many of the newly discovered MSPs may be suitable for addition to the collection of very stable MSPs used for gravitational wave detection. Detection of such a large number of MSPs was surprising, given that most have relatively low spin-down luminosity and surface field strength. I will discuss their properties and the implications for pulsar particle acceleration and emission, as well as their potential contribution to gamma-ray backgrounds and Galactic cosmic rays.

  18. Twenty-one millisecond pulsars in Terzan 5 using the Green Bank Telescope.

    PubMed

    Ransom, Scott M; Hessels, Jason W T; Stairs, Ingrid H; Freire, Paulo C C; Camilo, Fernando; Kaspi, Victoria M; Kaplan, David L

    2005-02-11

    We have identified 21 millisecond pulsars (MSPs) in globular cluster Terzan 5 by using the Green Bank Telescope, bringing the total of known MSPs in Terzan 5 to 24. These discoveries confirm fundamental predictions of globular cluster and binary system evolution. Thirteen of the new MSPs are in binaries, of which two show eclipses and two have highly eccentric orbits. The relativistic periastron advance for the two eccentric systems indicates that at least one of these pulsars has a mass 1.68 times greater than the mass of the Sun at 95% confidence. Such large neutron star masses constrain the equation of state of matter at or beyond the nuclear equilibrium density.

  19. Astrometry of the Planetary-System Millisecond Pulsar B1257+12

    NASA Astrophysics Data System (ADS)

    Nunes, N. V.; Bartel, N.

    We present the VLBI determined position of the millisecond pulsar PSR B1257+12 which has been shown to have a planetary system (Wolszczan & Frail 1992). The position determination for epoch June 20, 1992 is: alphaJ2000 = \\ra[13 0 3.05005](5), deltaJ2000 = + \\dec[12 40 56.7043] (34). We indicate how the combination of such pulsar observations along with timing observations can be used to directly tie the solar-system dynamic reference frames and the extragalactic reference frame.

  20. Discovery of an Unidentified Fermi Object as a Black Widow-Like Millisecond Pulsar

    NASA Technical Reports Server (NTRS)

    Kong, A. K. H.; Huang, R. H. H.; Cheng, K. S.; Takata, J.; Yatsu, Y.; Cheung, C. C.; Donato, D.; Lin, L. C. C.; Kataoka, J.; Takahashi, Y.; Maeda, K.; Hui, C. Y.; Tam, P. H. T.

    2012-01-01

    The Fermi Gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a radio-quiet" gamma-ray emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63-hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a approx. 0.1 Stellar Mass late-type companion star. Based on the profile of the optical and X-ray light-curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intra-binary shock. No radio detection of the source has been reported yet and although no gamma-ray/radio pulsation has been found, we estimated that the spin period of the MSP is approx. 3-5 ms based on the inferred gamma-ray luminosity.

  1. DISCOVERY OF AN UNIDENTIFIED FERMI OBJECT AS A BLACK WIDOW-LIKE MILLISECOND PULSAR

    SciTech Connect

    Kong, A. K. H.; Huang, R. H. H.; Tam, P. H. T.; Cheng, K. S.; Takata, J.; Yatsu, Y.; Cheung, C. C.; Donato, D.; Kataoka, J.; Takahashi, Y.; Maeda, K.; Hui, C. Y.

    2012-03-15

    The Fermi {gamma}-ray Space Telescope has revolutionized our knowledge of the {gamma}-ray pulsar population, leading to the discovery of almost 100 {gamma}-ray pulsars and dozens of {gamma}-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and {gamma}-ray pulsars, until now all of the known {gamma}-ray MSPs have been visible in the radio. Here we report the discovery of a 'radio-quiet' {gamma}-ray-emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and {gamma}-ray properties of the source are consistent with known {gamma}-ray pulsars. We also found a 4.63 hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a {approx}0.1 M{sub Sun} late-type companion star. Based on the profile of the optical and X-ray light curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intrabinary shock. No radio detection of the source has been reported yet, and although no {gamma}-ray/radio pulsation has been found we estimate that the spin period of the MSP is {approx}3-5 ms based on the inferred {gamma}-ray luminosity.

  2. The spin period formation of millisecond pulsar by the torques of accretion and gravitational wave emission

    NASA Astrophysics Data System (ADS)

    Guo, Y. Q.; Zhang, C. M.; Pan, Y. Y.

    2016-11-01

    We investigated the spin period evolution of the accreting neutron star (NS) in binary systems, based on the accretion-induced magnetic decay model, while both the accretion spin-up torque and the gravitational wave (GW) emission induced spin-down torque are taken into account. We found that the spin period of millisecond pulsar (MSP) can stop at the value of several milliseconds, if the accretion spin-up torque balances the spin-down torque by the GW radiation. Furthermore, we obtained the minimum spin period of MSP and its relation to the deformation ellipticity of NS that accounts for the NS mass quadrupole moment. The comparisons between the pulsar observations and the model results are discussed in the diagram of magnetic field versus spin period, and the consistency can be obtained.

  3. Discovery of millisecond pulsars in radio searches of southern Fermi Large Area Telescope sources

    NASA Astrophysics Data System (ADS)

    Keith, M. J.; Johnston, S.; Ray, P. S.; Ferrara, E. C.; Saz Parkinson, P. M.; Çelik, Ö.; Belfiore, A.; Donato, D.; Cheung, C. C.; Abdo, A. A.; Camilo, F.; Freire, P. C. C.; Guillemot, L.; Harding, A. K.; Kramer, M.; Michelson, P. F.; Ransom, S. M.; Romani, R. W.; Smith, D. A.; Thompson, D. J.; Weltevrede, P.; Wood, K. S.

    2011-06-01

    Using the Parkes Radio Telescope, we have carried out deep observations of 11 unassociated gamma-ray sources. Periodicity searches of these data have discovered two millisecond pulsars, PSR J1103-5403 (1FGL J1103.9-5355) and PSR J2241-5236 (1FGL J2241.9-5236), and a long-period pulsar, PSR J1604-44 (1FGL J1604.7-4443). In addition, we searched for but did not detect any radio pulsations from six gamma-ray pulsars discovered by the Fermi satellite to a level of ˜0.04 mJy (for pulsars with a 10 per cent duty cycle). The timing of the millisecond pulsar PSR J1103-5403 has shown that its position is 9 arcmin from the centroid of the gamma-ray source. Since these observations were carried out, independent evidence has shown that 1FGL J1103.9-5355 is associated with the flat spectrum radio source PKS 1101-536. It appears certain that the pulsar is not associated with the gamma-ray source, despite the seemingly low probability of a chance detection of a radio millisecond pulsar. We consider that PSR J1604-44 is a chance discovery of a weak, long-period pulsar and is unlikely to be associated with 1FGL J1604.7-4443. PSR J2241-5236 has a spin period of 2.2 ms and orbits a very low mass companion with a 3.5-h orbital period. The relatively high flux density and low dispersion measure of PSR J2241-5236 make it an excellent candidate for high precision timing experiments. The gamma rays of 1FGL J2241.9-5236 have a spectrum that is well modelled by a power law with an exponential cut-off, and phase binning with the radio ephemeris results in a multipeaked gamma-ray pulse profile. Observations with Chandra have identified a coincident X-ray source within 0.1 arcsec of the position of the pulsar obtained by radio timing.

  4. Orbit Solution for the Millisecond Pulsar IGR J00291+5934

    NASA Astrophysics Data System (ADS)

    Markwardt, C. B.; Galloway, D. K.; Chakrabarty, D.; Morgan, E. H.; Strohmayer, T. E.

    2004-12-01

    The INTEGRAL Transient IGR J00291+5934 (ATEL #352), now known to be a 1.67 millisecond X-ray pulsar (ATEL #353), was observed by the RXTE PCA on Dec 5 and 6. The source has decayed to approximately 27 mCrab (2-10 keV). The data were barycentered using the Fox & Kulkarni optical counterpart position (ATEL #354). Pulsations with a sinusoidal frequency modulation are clearly detected in each observation.

  5. The implications of a companion enhanced wind on millisecond pulsar production

    NASA Astrophysics Data System (ADS)

    Smedley, Sarah L.; Tout, Christopher A.; Ferrario, Lilia; Wickramasinghe, Dayal T.

    2016-09-01

    The most frequently seen binary companions to millisecond pulsars (MSPs) are helium white dwarfs (He WDs). The standard rejuvenation mechanism, in which a low- to intermediate-mass companion to a neutron star fills its Roche lobe between central hydrogen exhaustion and core helium ignition, is the most plausible formation mechanism. We have investigated whether the observed population can realistically be formed via this mechanism. We used the Cambridge STARS code to make models of Case B RLOF with Reimers' mass loss from the donor. We find that the range of initial orbital periods required to produce the currently observed range of orbital periods of MSPs is extremely narrow. To reduce this fine tuning, we introduce a companion enhanced wind (CEW) that strips the donor of its envelope more quickly so that systems can detach at shorter periods. Our models indicate that the fine tuning can be significantly reduced if a CEW is active. Because significant mass is lost owing to a CEW we expect some binary pulsars to accrete less than the 0.1 M_{⊙} needed to spin them up to millisecond periods. This can account for mildly recycled pulsars present along the entire Mc-Porb relation. Systems with P_spin > 30 ms are consistent with this but too few of these mildly recycled pulsars have yet been observed to make a significant comparison.

  6. On the magnetization and origin of the millisecond pulsar 1937 + 214

    NASA Astrophysics Data System (ADS)

    Arons, J.

    1983-03-01

    The structure of the millisecond pulsar PSR1937 + 214 is shown to include a magnetosphere compatible with other radio pulsars, although no synchrotron radiation-emitting bright nebula has been observed. It is suggested that interstellar extinction lowers the nebular energy to below the detection threshold level for the Einstein Observatory. Constraints on the pulsars magnetic dipole moment indicate a minimum spin-down rate of 10 to the -19th. The low magnetization detected may arise from initially low magnetic fields or field decay. Models of an expanding gas bubble are described for the case of supersonic expansion if the object is less than 1000 yr old and subsonic expansion if older. A scenario of a groupe of short period, weakly magnetized neutron stars is discussed.

  7. New Neighbours: Modelling the Growing Population of gamma-ray Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Venter, C.; Harding, A. K.; Johnson, T. J.

    2010-01-01

    The Fermi Large Area Telescope, in collaboration with several groups from the radio community. have had marvelous success at uncovering new gamma-ray millisecond pulsars (MSPs). In fact, MSPs now make up a sizable fraction of the total number of known gamma-ray pulsars. The MSP population is characterized by a variety of pulse profile shapes, peak separations, and radio-to-gamma phase lags, with some members exhibiting nearly phase-aligned radio and gamma-ray light curves (LCs). The MSPs' short spin periods underline the importance of including special relativistic effects in LC calculations, even for emission originating from near the stellar surface. We present results on modelling and classification of MSP LCs using standard pulsar model geometries.

  8. IDENTIFICATION OF THE OPTICAL COUNTERPART OF FERMI BLACK WIDOW MILLISECOND PULSAR PSR J1544+4937

    SciTech Connect

    Tang, Sumin; Phinney, E. Sterl; Prince, Thomas A.; Bellm, Eric; Cao, Yi; Perley, Daniel A.; Kaplan, David L.; Breton, Rene P.; Bildsten, Lars; Kong, Albert K. H.; Yen, T.-C.; Sesar, Branimir; Wolf, William M.

    2014-08-10

    We report the optical identification of the companion to the Fermi black widow millisecond pulsar PSR J1544+4937. We find a highly variable source on Keck Low Resolution Imaging Spectrometer images at the nominal pulsar position, with 2 mag variations over orbital period in the B, g, R, and I bands. The nearly achromatic light curves are difficult to explain with a simply irradiated hemisphere model, and suggest that the optical emission is dominated by a nearly isothermal hot patch on the surface of the companion facing the pulsar. We roughly constrain the distance to PSR J1544+4937 to be between 2 and 5 kpc. A more reliable distance measurement is needed in order to constrain the composition of the companion.

  9. Why are millisecond pulsar magnetic fields low and how do their X-rays arise?

    NASA Astrophysics Data System (ADS)

    Webb, Natalie

    2006-10-01

    Binary millisecond pulsars (MSPs) found in the field are thought to be recycled from accreting pulsars. These MSPs have short periods, low spindown rates (Pdot) and consequently low surface magnetic fields (Bs) as Bs is proportional to (Pdot P)^0.5. It is unclear, however, how the MSP surface magnetic field can evolve from the high fields observed in pulsars to the low MSP values. Two models have been proposed to explain this. Also, the origin of the high energy emission is unclear as too few MSP X-ray observations have been made to differentiate between competing models. With these XMM-Newton observations of four MSPs previously unobserved in X-rays, we will discriminate between differing models describing the magnetic field evolution and the high energy emission origin.

  10. ON THE FORMATION OF ECCENTRIC MILLISECOND PULSARS WITH HELIUM WHITE-DWARF COMPANIONS

    SciTech Connect

    Antoniadis, John

    2014-12-20

    Millisecond pulsars (MSPs) orbiting helium white dwarfs (WDs) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire and Tauris recently proposed that these binary MSPs may instead form from the rotationally delayed accretion-induced collapse of a massive WD. However, their hypothesis predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities—in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (10{sup 4}-10{sup 5} yr) disk can result in eccentricities of e ≅ 0.01-0.15 for orbital periods between 15 and 50 days. Finally, I propose that, more generally, the disk hypothesis may explain the lack of circular binary pulsars for the aforementioned orbital-period range.

  11. On the Formation of Eccentric Millisecond Pulsars with Helium White-dwarf Companions

    NASA Astrophysics Data System (ADS)

    Antoniadis, John

    2014-12-01

    Millisecond pulsars (MSPs) orbiting helium white dwarfs (WDs) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire & Tauris recently proposed that these binary MSPs may instead form from the rotationally delayed accretion-induced collapse of a massive WD. However, their hypothesis predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities—in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (104-105 yr) disk can result in eccentricities of e ~= 0.01-0.15 for orbital periods between 15 and 50 days. Finally, I propose that, more generally, the disk hypothesis may explain the lack of circular binary pulsars for the aforementioned orbital-period range.

  12. MILLISECOND PULSAR AGES: IMPLICATIONS OF BINARY EVOLUTION AND A MAXIMUM SPIN LIMIT

    SciTech Connect

    Kiziltan, Buelent; Thorsett, Stephen E.

    2010-05-20

    In the absence of constraints from the binary companion or supernova remnant, the standard method for estimating pulsar ages is to infer an age from the rate of spin-down. While the generic spin-down age may give realistic estimates for normal pulsars, it can fail for pulsars with very short periods. Details of the spin-up process during the low-mass X-ray binary (LMXB) phase pose additional constraints on the period (P) and spin-down rates ( P-dot ) that may consequently affect the age estimate. Here, we propose a new recipe to estimate millisecond pulsar (MSP) ages that parametrically incorporates constraints arising from binary evolution and limiting physics. We show that the standard method can be improved by this approach to achieve age estimates closer to the true age while the standard spin-down age may overestimate or underestimate the age of the pulsar by more than a factor of {approx}10 in the millisecond regime. We use this approach to analyze the population on a broader scale. For instance, in order to understand the dominant energy loss mechanism after the onset of radio emission, we test for a range of plausible braking indices. We find that a braking index of n = 3 is consistent with the observed MSP population. We demonstrate the existence and quantify the potential contributions of two main sources of age corruption: the previously known 'age bias' due to secular acceleration and 'age contamination' driven by sub-Eddington progenitor accretion rates. We explicitly show that descendants of LMXBs that have accreted at very low rates ( m-dot << M-dot{sub Edd}) will exhibit ages that appear older than the age of the Galaxy. We further elaborate on this technique, the implications and potential solutions it offers regarding MSP evolution, the underlying age distribution, and the post-accretion energy loss mechanism.

  13. PSR J1723–2837: AN ECLIPSING BINARY RADIO MILLISECOND PULSAR

    SciTech Connect

    Crawford, Fronefield; Lyne, Andrew G.; Stairs, Ingrid H.; Kaplan, David L.; McLaughlin, Maura A.; Lorimer, Duncan R.; Freire, Paulo C. C.; Kramer, Michael; Burgay, Marta; D'Amico, Nichi; Possenti, Andrea; Camilo, Fernando; Faulkner, Andrew; Manchester, Richard N.; Steeghs, Danny

    2013-10-10

    We present a study of PSR J1723–2837, an eclipsing, 1.86 ms millisecond binary radio pulsar discovered in the Parkes Multibeam survey. Radio timing indicates that the pulsar has a circular orbit with a 15 hr orbital period, a low-mass companion, and a measurable orbital period derivative. The eclipse fraction of ∼15% during the pulsar's orbit is twice the Roche lobe size inferred for the companion. The timing behavior is significantly affected by unmodeled systematics of astrophysical origin, and higher-order orbital period derivatives are needed in the timing solution to account for these variations. We have identified the pulsar's (non-degenerate) companion using archival ultraviolet, optical, and infrared survey data and new optical photometry. Doppler shifts from optical spectroscopy confirm the star's association with the pulsar and indicate a pulsar-to-companion mass ratio of 3.3 ± 0.5, corresponding to a companion mass range of 0.4 to 0.7 M{sub ☉} and an orbital inclination angle range of between 30° and 41°, assuming a pulsar mass range of 1.4-2.0 M{sub ☉}. Spectroscopy indicates a spectral type of G for the companion and an inferred Roche-lobe-filling distance that is consistent with the distance estimated from radio dispersion. The features of PSR J1723–2837 indicate that it is likely a 'redback' system. Unlike the five other Galactic redbacks discovered to date, PSR J1723–2837 has not been detected as a γ-ray source with Fermi. This may be due to an intrinsic spin-down luminosity that is much smaller than the measured value if the unmeasured contribution from proper motion is large.

  14. Detection of Pulsed Emission from the Millisecond Pulsar PSR J2145-0750 Below 100 MHz

    NASA Astrophysics Data System (ADS)

    Taylor, Gregory B.; Dowell, J.; Wavelength Array, Long

    2014-01-01

    Millisecond pulsars (MPSs) are distinguished from normal pulsars by faster rotation periods, weaker magnetic fields, and flux density spectra that are well fit by a single power law down to 100 MHz. Below 100 MHz some MSPs show a break in the power law, however, additional observations, particularly of the pulse profile, are needed in this frequency range to provide better constraints on emission mechanisms. The first station of the Long Wavelength Array, LWA1, is a low frequency telescope that is ideally suited to address these questions. We present recent results from LWA1 on the millisecond pulsar PSR J2145-0750. Using coherent dedispersion we detected pulsed emission between 37 and 85 MHz. From this we derive flux densities and pulse profiles at 41, 57, 65, 73, and 81 MHz. We find that the flux density spectrum of PSR J2145-0750 appears to flatten below 100 MHz relative to the spectral index of ~-1.6 found in the literature. We also find that the pulse profile shows little evolution over this frequency range and is similar to profiles found at 102 MHz. We also discuss the prospects for precision dispersion measure monitoring at these frequencies. Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C-0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST-1139974 of the University Radio Observatory program.

  15. A PARALLAX DISTANCE AND MASS ESTIMATE FOR THE TRANSITIONAL MILLISECOND PULSAR SYSTEM J1023+0038

    SciTech Connect

    Deller, A. T.; Archibald, A. M.; Kaspi, V. M.; Brisken, W. F.; Chatterjee, S.; Janssen, G. H.; Lyne, A. G.; Stappers, B.; Lorimer, D.; McLaughlin, M. A.; Ransom, S.; Stairs, I. H.

    2012-09-10

    The recently discovered transitional millisecond pulsar system J1023+0038 exposes a crucial evolutionary phase of recycled neutron stars for multiwavelength study. The system, comprising the neutron star itself, its stellar companion, and the surrounding medium, is visible across the electromagnetic spectrum from the radio to X-ray/gamma-ray regimes and offers insight into the recycling phase of millisecond pulsar evolution. Here, we report on multiple-epoch astrometric observations with the Very Long Baseline Array (VLBA) which give a system parallax of 0.731 {+-} 0.022 milliarcseconds (mas) and a proper motion of 17.98 {+-} 0.05 mas yr{sup -1}. By combining our results with previous optical observations, we are able to use the parallax distance of 1368{sup +42}{sub -{sub 39}} pc to estimate the mass of the pulsar to be 1.71 {+-} 0.16 M{sub Sun }, and we are also able to measure the three-dimensional space velocity of the system to be 126 {+-} 5 km s{sup -1}. Despite the precise nature of the VLBA measurements, the remaining {approx}3% distance uncertainty dominates the 0.16 M{sub Sun} error on our mass estimate.

  16. Strong Support for the Millisecond Pulsar Origin of the Galactic Center GeV Excess.

    PubMed

    Bartels, Richard; Krishnamurthy, Suraj; Weniger, Christoph

    2016-02-01

    Using γ-ray data from the Fermi Large Area Telescope, various groups have identified a clear excess emission in the Inner Galaxy, at energies around a few GeV. This excess resembles remarkably well a signal from dark-matter annihilation. One of the most compelling astrophysical interpretations is that the excess is caused by the combined effect of a previously undetected population of dim γ-ray sources. Because of their spectral similarity, the best candidates are millisecond pulsars. Here, we search for this hypothetical source population, using a novel approach based on wavelet decomposition of the γ-ray sky and the statistics of Gaussian random fields. Using almost seven years of Fermi-LAT data, we detect a clustering of photons as predicted for the hypothetical population of millisecond pulsar, with a statistical significance of 10.0σ. For plausible values of the luminosity function, this population explains 100% of the observed excess emission. We argue that other extragalactic or Galactic sources, a mismodeling of Galactic diffuse emission, or the thick-disk population of pulsars are unlikely to account for this observation.

  17. Strong Support for the Millisecond Pulsar Origin of the Galactic Center GeV Excess.

    PubMed

    Bartels, Richard; Krishnamurthy, Suraj; Weniger, Christoph

    2016-02-01

    Using γ-ray data from the Fermi Large Area Telescope, various groups have identified a clear excess emission in the Inner Galaxy, at energies around a few GeV. This excess resembles remarkably well a signal from dark-matter annihilation. One of the most compelling astrophysical interpretations is that the excess is caused by the combined effect of a previously undetected population of dim γ-ray sources. Because of their spectral similarity, the best candidates are millisecond pulsars. Here, we search for this hypothetical source population, using a novel approach based on wavelet decomposition of the γ-ray sky and the statistics of Gaussian random fields. Using almost seven years of Fermi-LAT data, we detect a clustering of photons as predicted for the hypothetical population of millisecond pulsar, with a statistical significance of 10.0σ. For plausible values of the luminosity function, this population explains 100% of the observed excess emission. We argue that other extragalactic or Galactic sources, a mismodeling of Galactic diffuse emission, or the thick-disk population of pulsars are unlikely to account for this observation. PMID:26894696

  18. RXTE and BeppoSAX Observations of the Transient X-ray Pulsar XTE J 18591+083

    NASA Technical Reports Server (NTRS)

    Corbet, R. H. D.; intZand, J. J. M.; Levine, A. M.; Marshall, F. E.

    2008-01-01

    We present observations of the 9.8 s X-ray pulsar XTE J159+083 made with the All-Sky Monitor (ASM) and Proportional Counter Array (PCA) on board the Rossi X-ray Timing Explorer (RXTE), and the Wide Field Cameras (WFC) on board BeppoSAX. The ASM data cover a 12 year time interval and show that an extended outburst occurred between approximately MJD50, 250, and 50, 460 (1996 June 16 to 1997 January 12). The ASM data excluding this outburst interval suggest a possible 61 day modulation. Eighteen sets of PCA observations were obtained over an approx. one month interval in 1999. The flux variability measured with the PCA appears consistent with the possible period found with the ASM. The PCA measurements of the pulse period showed it to decrease non-monotonically and then to increase significantly. Doppler shifts due to orbital motion rather than accretion torques appear to be better able to explain the pulse period changes. Observations with the WFC during the extended outburst give an error box which is consistent with a previously determined PCA error box but is significantly smaller. The transient nature of XTE J1859+083 and the length of its pulse period are consistent with it being a Be/neutral star binary. The possible 61 day orbital period would be of the expected length for a Be star system with a 9.8 s pulse period.

  19. Twenty-one millisecond pulsars in Terzan 5 using the Green Bank Telescope.

    PubMed

    Ransom, Scott M; Hessels, Jason W T; Stairs, Ingrid H; Freire, Paulo C C; Camilo, Fernando; Kaspi, Victoria M; Kaplan, David L

    2005-02-11

    We have identified 21 millisecond pulsars (MSPs) in globular cluster Terzan 5 by using the Green Bank Telescope, bringing the total of known MSPs in Terzan 5 to 24. These discoveries confirm fundamental predictions of globular cluster and binary system evolution. Thirteen of the new MSPs are in binaries, of which two show eclipses and two have highly eccentric orbits. The relativistic periastron advance for the two eccentric systems indicates that at least one of these pulsars has a mass 1.68 times greater than the mass of the Sun at 95% confidence. Such large neutron star masses constrain the equation of state of matter at or beyond the nuclear equilibrium density. PMID:15653465

  20. Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257 + 12.

    PubMed

    Wolszczan, A

    1994-04-22

    The discovery of two Earth-mass planets orbiting an old ( approximately 10(9) years), rapidly spinning neutron star, the 6.2-millisecond radio pulsar PSR B1257+12, was announced in early 1992. It was soon pointed out that the approximately 3:2 ratio of the planets' orbital periods should lead to accurately predictable and possibly measurable gravitational perturbations of their orbits. The unambiguous detection of this effect, after 3 years of systematic timing observations of PSR B1257+12 with the 305-meter Arecibo radiotelescope, as well as the discovery of another, moon-mass object in orbit around the pulsar, constitutes irrefutable evidence that the first planetary system around a star other than the sun has been identified.

  1. PSR J1024–0719: A Millisecond Pulsar in an Unusual Long-period Orbit

    NASA Astrophysics Data System (ADS)

    Kaplan, David L.; Kupfer, Thomas; Nice, David J.; Irrgang, Andreas; Heber, Ulrich; Arzoumanian, Zaven; Beklen, Elif; Crowter, Kathryn; DeCesar, Megan E.; Demorest, Paul B.; Dolch, Timothy; Ellis, Justin A.; Ferdman, Robert D.; Ferrara, Elizabeth C.; Fonseca, Emmanuel; Gentile, Peter A.; Jones, Glenn; Jones, Megan L.; Kreuzer, Simon; Lam, Michael T.; Levin, Lina; Lorimer, Duncan R.; Lynch, Ryan S.; McLaughlin, Maura A.; Miller, Adam A.; Ng, Cherry; Pennucci, Timothy T.; Prince, Tom A.; Ransom, Scott M.; Ray, Paul S.; Spiewak, Renee; Stairs, Ingrid H.; Stovall, Kevin; Swiggum, Joseph; Zhu, Weiwei

    2016-07-01

    PSR J1024–0719 is a millisecond pulsar that was long thought to be isolated. However, puzzling results concerning its velocity, distance, and low rotational period derivative have led to a reexamination of its properties. We present updated radio timing observations along with new and archival optical data which show that PSR J1024–0719 is most likely in a long-period (2–20 kyr) binary system with a low-mass (≈ 0.4 {M}ȯ ), low-metallicity (Z≈ -0.9 dex) main-sequence star. Such a system can explain most of the anomalous properties of this pulsar. We suggest that this system formed through a dynamical exchange in a globular cluster that ejected it into a halo orbit, which is consistent with the low observed metallicity for the stellar companion. Further astrometric and radio timing observations such as measurement of the third period derivative could strongly constrain the range of orbital parameters.

  2. Constraints on the R-mode oscillations from surface temperatures of millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Guver, Tolga; Schwenzer, Kai

    2016-07-01

    r-modes are toroidal oscillation modes expected to occur in neutron stars and carry away energy and angular momentum in the form of gravitational waves. These modes can be unstable as long as the gravitational wave emission drives the oscillation faster than viscosity damps it. Unstable r-modes have to be saturated by a non-linear dissipative mechanism which could strongly heat the star and result in observable X-ray signatures. Using the existing spin frequency and surface temperature measurements or limits of millisecond pulsars we present our initial results constraining the physics of the r-mode oscillations.

  3. Magnetic fields generated by r-modes in accreting millisecond pulsars

    SciTech Connect

    Cuofano, Carmine; Drago, Alessandro

    2010-10-15

    In rotating neutron stars the existence of the Coriolis force allows the presence of the so-called Rossby oscillations (r-modes) which are known to be unstable to emission of gravitational waves. Here, for the first time, we introduce the magnetic damping rate in the evolution equations of r-modes. We show that r-modes can generate very strong toroidal fields in the core of accreting millisecond pulsars by inducing differential rotation. We shortly discuss the instabilities of the generated magnetic field and its long time-scale evolution in order to clarify how the generated magnetic field can stabilize the star.

  4. Predictions of Gamma-ray Emission from Globular Cluster Millisecond Pulsars Above 100 MeV

    NASA Technical Reports Server (NTRS)

    Venter, C.; de Jaker, O.C.; Clapson, A.C.

    2009-01-01

    The recent Fermi detection of the globular cluster (GC) 47 Tucanae highlighted the importance of modeling collective gamma-ray emission of millisecond pulsars (MSPs) in GCs. Steady flux from such populations is also expected in the very high energy (VHE) domain covered by ground-based Cherenkov telescopes. We present pulsed curvature radiation (CR) as well as unpulsed inverse Compton (IC) calculations for an ensemble of MSPs in the GCs 47 Tucanae and Terzan 5. We demonstrate that the CR from these GCs should be easily detectable for Fermi, while constraints on the total number of MSps and the nebular B-field may be derived using the IC flux components.

  5. A CHANDRA X-RAY OBSERVATION OF THE BINARY MILLISECOND PULSAR PSR J1023+0038

    SciTech Connect

    Bogdanov, Slavko; Archibald, Anne M.; Kaspi, Victoria M.; Hessels, Jason W. T.; Lorimer, Duncan; McLaughlin, Maura A.; Ransom, Scott M.; Stairs, Ingrid H.

    2011-12-01

    We present a Chandra X-Ray Observatory ACIS-S variability, spectroscopy, and imaging study of the peculiar binary containing the millisecond pulsar J1023+0038. The X-ray emission from the system exhibits highly significant (12.5{sigma}) large-amplitude (factor of two to three) orbital variability over the five consecutive orbits covered by the observation, with a pronounced decline in the flux at all energies at superior conjunction. This can be naturally explained by a partial geometric occultation by the secondary star of an X-ray-emitting intrabinary shock, produced by the interaction of outflows from the two stars. The depth and duration of the eclipse imply that the intrabinary shock is localized near or at the surface of the companion star and close to the inner Lagrangian point. The energetics of the shock favor a magnetically dominated pulsar wind that is focused into the orbital plane, requiring close alignment of the pulsar spin and orbital angular momentum axes. The X-ray spectrum consists of a dominant non-thermal component and at least one thermal component, likely originating from the heated pulsar polar caps, although a portion of this emission may be from an optically thin 'corona'. We find no evidence for extended emission due to a pulsar wind nebula or bow shock down to a limiting luminosity of L{sub X} {approx}< 3.6 Multiplication-Sign 10{sup 29} erg s{sup -1} (0.3-8 keV), {approx}< 7 Multiplication-Sign 10{sup -6} of the pulsar spin-down luminosity, for a distance of 1.3 kpc and an assumed power-law spectrum with photon index {Gamma} = 1.5.

  6. HIGH-FIDELITY RADIO ASTRONOMICAL POLARIMETRY USING A MILLISECOND PULSAR AS A POLARIZED REFERENCE SOURCE

    SciTech Connect

    Van Straten, W.

    2013-01-15

    A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long timescales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two times smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semimajor axis, the precession of periastron, and the Shapiro delay; it also places PSR J1022+1001 among the 10 best pulsars regularly observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is shown that the timing accuracy of a large fraction of the pulsars in the PPTA is currently limited by the systematic timing error due to instrumental polarization artifacts. More importantly, long-term variations of systematic error are correlated between different pulsars, which adversely affects the primary objectives of any pulsar timing array experiment. These limitations may be overcome by adopting the techniques presented in this work, which relax the demand for instrumental polarization purity and thereby have the potential to reduce the development cost of next-generation telescopes such as the Square Kilometre Array.

  7. A massive neutron star in the millisecond pulsar PSR J2215+5135

    NASA Astrophysics Data System (ADS)

    Shahbaz, Tariq

    2016-07-01

    Binary evolution may increase neutron masses via accretion. Hence the most massive neutron stars (NSs) are expected to be located amongst the binary millisecond pulsars (MSPs) spun-up within X-ray binaries. Most MSPs are found with brown dwarf lookalikes or ˜0.2 M stars in systems called "black widows" and "redbacks", respectively, because these companions are ablated by the pulsar wind. These systems offer some advantages over white dwarf-pulsar binaries: they are typically brighter, they present strongly irradiated hemispheres, and they fill significant fractions of their Roche lobes. As a result, their optical light curves exhibit variability due to a combination of their ellipsoidal shape and irradiation, which can be modelled in order to determine orbital parameters such as the mass ratio and inclination. Combining these with optical spectroscopy and/or pulsar timing enables one to determine a reliable NS masses. Here we present the results of our detailed modelling of the optical lightcurves and radial velocity curves of J2215+5135, which allows us to determine various ystem parameters, including the NS mass.

  8. FORMATION OF BLACK WIDOWS AND REDBACKS—TWO DISTINCT POPULATIONS OF ECLIPSING BINARY MILLISECOND PULSARS

    SciTech Connect

    Chen, Hai-Liang; Chen, Xuefei; Han, Zhanwen; Tauris, Thomas M.

    2013-09-20

    Eclipsing binary millisecond pulsars (MSPs; the so-called black widows and redbacks) can provide important information about accretion history, pulsar irradiation of their companion stars, and the evolutionary link between accreting X-ray pulsars and isolated MSPs. However, the formation of such systems is not well understood, nor the difference in progenitor evolution between the two populations of black widows and redbacks. Whereas both populations have orbital periods between 0.1 and 1.0 days, their companion masses differ by an order of magnitude. In this paper, we investigate the formation of these systems via the evolution of converging low-mass X-ray binaries by employing the MESA stellar evolution code. Our results confirm that one can explain the formation of most of these eclipsing binary MSPs using this scenario. More notably, we find that the determining factor for producing either black widows or redbacks is the efficiency of the irradiation process, such that the redbacks absorb a larger fraction of the emitted spin-down energy of the radio pulsar (resulting in more efficient mass loss via evaporation) compared to that of the black widow systems. We argue that geometric effects (beaming) are responsible for the strong bimodality of these two populations. Finally, we conclude that redback systems do not evolve into black widow systems with time.

  9. The Contribution of Millisecond Pulsars to the Local Electron / Positron Spectrum

    NASA Astrophysics Data System (ADS)

    Venter, Christo; Buesching, Ingo; Harding, Alice; Kopp, Andreas; Gonthier, Peter

    The high energies of gamma-ray photons (as well as the presence of lower-energy photons) coupled with the intense magnetic fields characterizing younger pulsars enable formation of electron-positron pair cascades which fills the pulsar magnetosphere with plasma and also feeds an outflowing particle wind that may create a surrounding pulsar wind nebula (PWN). Although this scenario was originally thought to be unique to the younger pulsar population, Fermi LAT demonstrated that the light curves of millisecond pulsars (MSPs) are generally very similar to those of younger pulsars, requiring copious pair production even for this older class with much lower surface magnetic fields and spin-down power. These pair cascades may thus be a primary source of Galactic electrons and positrons, and may present an astrophysical explanation for the observed enhancement in positron flux in the high-energy band. We investigate Galactic MSPs contribution to the flux of local cosmic-ray electrons and positrons. We use a population synthesis code to predict the source properties (number, position, and power) of the present-day Galactic MSPs, taking into account the latest Fermi observations to calibrate the model output. Next, we simulate pair cascade spectra from these MSPs using a model that invokes an offset-dipole magnetic field, as this increases the pair production rate relative to a standard dipole field geometry. The model source pair spectra may extend to several TeV, depending on pulsar properties, neutron star equation of state, and magnetic polar cap offset. Since MSPs are not surrounded by PWNe or supernova shells, we can assume that the pairs escape from the pulsar environment without energy loss and undergo losses only in the intergalactic medium. We lastly compute the spectrum of the transported electrons and positrons at Earth, following their diffusion and energy loss through the Galaxy. We will compare our results with the observed local interstellar spectrum and

  10. The gamma-ray millisecond pulsar deathline, revisited. New velocity and distance measurements

    NASA Astrophysics Data System (ADS)

    Guillemot, L.; Smith, D. A.; Laffon, H.; Janssen, G. H.; Cognard, I.; Theureau, G.; Desvignes, G.; Ferrara, E. C.; Ray, P. S.

    2016-03-01

    Context. Millisecond pulsars (MSPs) represent nearly half of the more than 160 currently known γ-ray pulsars detected by the Large Area Telescope on the Fermi satellite, and a third of all known MSPs are seen in γ rays. The least energetic γ-ray MSPs enable us to probe the so-called deathline for high-energy emission, i.e., the spin-down luminosity limit under which pulsars (PSRs) cease to produce detectable high-energy radiation. Characterizing the MSP luminosity distribution helps to determine their contribution to the Galactic diffuse γ-ray emission. Aims: Because of the Shklovskii effect, precise proper motion and distance measurements are key ingredients for determining the spin-down luminosities of MSPs accurately. Our aim is to obtain new measurements of these parameters for γ-ray MSPs when possible, and clarify the relationship between the γ-ray luminosity of pulsars and their spin-down luminosity. Detecting low spin-down luminosity pulsars in γ rays and characterizing their spin properties is also particularly interesting for constraining the deathline for high-energy emission. Methods: We made use of the high-quality pulsar timing data recorded at the Nançay Radio Telescope over several years to characterize the properties of a selection of MSPs. For one of the pulsars, the dataset was complemented with Westerbork Synthesis Radio Telescope observations. The rotation ephemerides derived from this analysis were also used to search the LAT data for new γ-ray MSPs. Results: For the MSPs considered in this study, we obtained new transverse proper motion measurements or updated the existing ones, and placed new distance constraints for some of them, with four new timing parallax measurements. We discovered significant GeV γ-ray signals from four MSPs, i.e., PSRs J0740+6620, J0931-1902, J1455-3330, and J1730-2304. The latter is now the least energetic γ-ray pulsar found to date. Despite the improved Ė and Lγ estimates, the relationship between these

  11. Properties and Evolution of the Redback Millisecond Pulsar Binary PSR J2129-0429

    NASA Astrophysics Data System (ADS)

    Bellm, Eric C.; Kaplan, David L.; Breton, Rene P.; Phinney, E. Sterl; Bhalerao, Varun B.; Camilo, Fernando; Dahal, Sumit; Djorgovski, S. G.; Drake, Andrew J.; Hessels, J. W. T.; Laher, Russ R.; Levitan, David B.; Lewis, Fraser; Mahabal, Ashish A.; Ofek, Eran O.; Prince, Thomas A.; Ransom, Scott M.; Roberts, Mallory S. E.; Russell, David M.; Sesar, Branimir; Surace, Jason A.; Tang, Sumin

    2016-01-01

    PSR J2129‑0429 is a “redback” eclipsing millisecond pulsar binary with an unusually long 15.2 hr orbit. It was discovered by the Green Bank Telescope in a targeted search of unidentified Fermi gamma-ray sources. The pulsar companion is optically bright (mean mR = 16.6 mag), allowing us to construct the longest baseline photometric data set available for such a system. We present 10 years of archival and new photometry of the companion from the Lincoln Near-Earth Asteroid Research Survey, the Catalina Real-time Transient Survey, the Palomar Transient Factory, the Palomar 60 inch, and the Las Cumbres Observatory Global Telescope. Radial velocity spectroscopy using the Double-Beam Spectrograph on the Palomar 200 inch indicates that the pulsar is massive: 1.74 ± 0.18 {M}ȯ . The G-type pulsar companion has mass 0.44 ± 0.04 {M}ȯ , one of the heaviest known redback companions. It is currently 95 ± 1% Roche-lobe filling and only mildly irradiated by the pulsar. We identify a clear 13.1 mmag yr‑1 secular decline in the mean magnitude of the companion as well as smaller-scale variations in the optical light curve shape. This behavior may indicate that the companion is cooling. Binary evolution calculations indicate that PSR J2129‑0429 has an orbital period almost exactly at the bifurcation period between systems that converge into tighter orbits as black widows and redbacks and those that diverge into wider pulsar–white dwarf binaries. Its eventual fate may depend on whether it undergoes future episodes of mass transfer and increased irradiation.

  12. Probing Millisecond Pulsar Emission Geometry Using Light Curves From the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Venter, Christo; Harding, Alice; Guillemot, L.

    2009-01-01

    An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of 13-field lines, in the geometric context of polar cap (PC), slot gap (SG), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by SG and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or SG / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor f(_, _, P) for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.

  13. Long-Term Spectral and Temporal Evolution of Anomalous X-Ray Pulsar XTE J1810-197

    NASA Astrophysics Data System (ADS)

    Vurgun, Eda; Gogus, Ersin; Chakraborty, Manoneeta; Guver, Tolga

    2016-07-01

    We present spectral and timing studies of the first transient Anomalous X-ray Pulsar XTE J1810-197, a 5.54 s pulsar discovered in 2003, when its X-ray luminosity increased ~100 fold. We investigate the long-term behaviour of the surface temperature,emitting area, and the pulsed fraction. X-ray spectra are well fitted by a two-component blackbody model in which the cool component is most likely arising from the whole surface of star and the hot component is arising from a relatively small hot spot on it. The spectral analysis has also shown evidence for the presence of an absorbtion line feature around 1.2 keV in almost all observations. We fit this absorption feature with an asymmetric gaussian component since it shows an asymmetric structure. The pulse fraction exhibits slightly different temporal evolution in higher and lower energy bands. We will discuss correlative behaviour between the spectral and timing parameters in order to constrain magnetar cooling models.

  14. Constraints on the Emission and Viewing Geometry of the Transient Anomalous X-ray Pulsar XTE J1810-197

    NASA Technical Reports Server (NTRS)

    Perna, Rosalba; Gotthelf, E. V.

    2008-01-01

    The temporal decay of the flux components of the transient anomalous X-ray pulsar XTE J1 810-197 following its 2002 outburst presents a unique opportunity to probe the emission geometry of a magnetar. Toward this goal, we model the magnitude of the pulsar's modulation in narrow spectral bands over time. Following previous work, we assume that the postoutburst flux is produced in two distinct thermal components arising from a hot spot and a warm concentric ring. We include general relativistic effects on the blackbody spectra due to gravitational redshift and light bending near the stellar surface, which strongly depend on radius. This affects the model fits for the temperature and size of the emission regions. For the hot spot, the observed temporal and energy-dependent pulse modulation is found to require an anisotropic, pencil-beamed radiation pattern. We are able to constrain an allowed range for the angles that the line of sight (psi) and the hot spot pole (xi) make with respect to the spin axis. Within errors, this is defined by the locus of points in the xi-psi plane that lie along the line [xi + beta(R)] [psi + [beta(R)] = const, where beta(R) is a function of the radius R of the star. For a canonical value of R = 12 km, the viewing parameters range from psi = xi = 37deg to (psi, xi) = (85deg, 15deg). We discuss our results in the context of magnetar emission models.

  15. Observing and Modeling the Optical Counterparts of Short-Period Binary Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Schroeder, Joshua

    In this dissertation, I explore the subject of short-period binary millisecond pulsars discovered by the Fermi Gamma-ray Space Telescope and radio follow-up teams, and present observations of fields containing eight recently discovered short-period (Porb < 1 d) binary millisecond pulsars using the telescopes at MDM Observatory. The goal of these observations was to detect the optical counterparts of the binaries and, for the best-suited counterparts detected, to observe the photometric variation of the companion that happens over the course of the orbit in various filters. The hope was to then use the light curves to model the systems and obtain constraints on the mass of the neutron stars which are likely to be some of the most massive neutron stars in the galaxy. Optical counterparts to four of these systems are detected, one of which, PSR J2214+3000, is a novel detection. Additionally, I present the fully orbital phase-resolved B, V , and R light curves of the optical counterparts to two objects, PSR J1810+1744 and PSR J2215+5135, for which I employ the ELC model of Orosz & Hauschildt (2000) to measure the unknown system parameters. For PSR J1810+1744 I find that the system parameters cannot be fit even assuming that 100% of the spin-down luminosity of the pulsar is irradiating the secondary, and so radial velocity measurements of this object will be required for the complete solution. However, PSR J2215+5135 exhibits light curves that are extremely well constrained using the ELC model and we find that the mass of the neutron star is constrained by these and the radio observations to be MNS > 1.75 solar masses; at the 3-sigma level. I also find a discrepancy between the model temperature and the measured colors of this object which I interpret as possible evidence for an additional high-temperature source such as a quiescent disk. Given this and the fact that PSR J2215+5135 contains a relatively high mass companion (Mc > 0.1 solar masses), I propose that similar

  16. Population synthesis of radio and gamma-ray millisecond pulsars using Markov Chain Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Gonthier, Peter L.; Koh, Yew-Meng; Kust Harding, Alice

    2016-04-01

    We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and gamma-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of thirteen radio surveys as well as the MSP birth rate in the Galaxy and the number of MSPs detected by Fermi. We explore various high-energy emission geometries like the slot gap, outer gap, two pole caustic and pair starved polar cap models. The parameters associated with the birth distributions for the mass accretion rate, magnetic field, and period distributions are well constrained. With the set of four free parameters, we employ Markov Chain Monte Carlo simulations to explore the model parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and gamma-ray pulsar characteristics. We estimate the contribution of MSPs to the diffuse gamma-ray background with a special focus on the Galactic Center.We express our gratitude for the generous support of the National Science Foundation (RUI: AST-1009731), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program (NNX09AQ71G).

  17. TWO MILLISECOND PULSARS DISCOVERED BY THE PALFA SURVEY AND A SHAPIRO DELAY MEASUREMENT

    SciTech Connect

    Deneva, J. S.; Camilo, F.; Freire, P. C. C.; Champion, D. J.; Desvignes, G.; Cordes, J. M.; Brazier, A.; Chatterjee, S.; Lyne, A. G.; Ransom, S. M.; Cognard, I.; Nice, D. J.; Stairs, I. H.; Allen, B.; Bhat, N. D. R.; Bogdanov, S.; Crawford, F.; Hessels, J. W. T.; Jenet, F. A.; Kaspi, V. M.; and others

    2012-09-20

    We present two millisecond pulsar discoveries from the PALFA survey of the Galactic plane with the Arecibo telescope. PSR J1955+2527 is an isolated pulsar with a period of 4.87 ms, and PSR J1949+3106 has a period of 13.14 ms and is in a 1.9 day binary system with a massive companion. Their timing solutions, based on 4 years of timing measurements with the Arecibo, Green Bank, Nancay, and Jodrell Bank telescopes, allow precise determination of spin and astrometric parameters, including precise determinations of their proper motions. For PSR J1949+3106, we can clearly detect the Shapiro delay. From this we measure the pulsar mass to be 1.47{sup +0.43}{sub -0.31} M{sub Sun }, the companion mass to be 0.85{sup +0.14}{sub -0.11} M{sub Sun }, and the orbital inclination to be i = 79.9{sup -1.9}{sub +1.6} deg, where uncertainties correspond to {+-}1{sigma} confidence levels. With continued timing, we expect to also be able to detect the advance of periastron for the J1949+3106 system. This effect, combined with the Shapiro delay, will eventually provide very precise mass measurements for this system and a test of general relativity.

  18. EVOLUTION OF TRANSIENT LOW-MASS X-RAY BINARIES TO REDBACK MILLISECOND PULSARS

    SciTech Connect

    Jia, Kun; Li, Xiang-Dong

    2015-11-20

    Redback millisecond pulsars (MSPs; hereafter redbacks) are a subpopulation of eclipsing MSPs in close binaries. The formation processes of these systems are not clear. The three pulsars showing transitions between rotation- and accretion-powered states belong to both redbacks and transient low-mass X-ray binaries (LMXBs), suggesting a possible evolutionary link between them. Through binary evolution calculations, we show that the accretion disks in almost all LMXBs are subject to the thermal-viscous instability during certain evolutionary stages, and the parameter space for the disk instability covers the distribution of known redbacks in the orbital period—companion mass plane. We accordingly suggest that the abrupt reduction of the mass accretion rate during quiescence of transient LMXBs provides a plausible way to switch on the pulsar activity, leading to the formation of redbacks, if the neutron star has been spun up to be an energetic MSP. We investigate the evolution of redbacks, taking into account the evaporation feedback, and discuss its possible influence on the formation of black widow MSPs.

  19. Discovery of the Millisecond Pulsar PSR J2043+1711 in a Fermi Source with the Nancay Radio Telescope

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Freire, P. C. C.; Cognard, I.; Johnson, T. J.; Takahashi, Y.; Kataoka, J.; Desvignes, G.; Camilo, F.; Ferrara, E. C.; Harding, A. K.; Janssen, G. H.; Keith, M.; Kerr, M.; Kramer, M.; Parent, D.; Ransom, S. M.; Ray, P. S.; Saz Parkinson, P. M.; Smith, D. A.; Stappers, W.; Theureau, G.

    2012-01-01

    We report the discovery of the millisecond pulsar PSR J2043+1711 in a search of a Fermi Large Area Telescope (LAT) source with no known associations, with the Nancay Radio Telescope. The new pulsar, confirmed with the Green Bank Telescope, has a spin period of 2.38 ms, is relatively nearby (d approx. < 2 kpc) and is in a 1.48-d orbit around a low-mass companion, probably an He-type white dwarf. Using an ephemeris based on Arecibo, Nancay and Westerbork timing measurements, pulsed gamma-ray emission was detected in the data recorded by the Fermi LAT. The gamma-ray light curve and spectral properties are typical of other gamma-ray millisecond pulsars seen with Fermi. X-ray observations of the pulsar with Suzaku and the Swift X-ray Telescope yielded no detection. At 1.4 GHz, we observe strong flux density variations because of interstellar diffractive scintillation; however, a sharp peak can be observed at this frequency during bright scintillation states. At 327 MHz, the pulsar is detected with a much higher signal-to-noise ratio and its flux density is far more steady. However, at that frequency the Arecibo instrumentation cannot yet fully resolve the pulse profile. Despite that, our pulse time-of-arrival measurements have a post-fit residual rms of 2 micro s. This and the expected stability of this system have made PSR J2043+1711 one of the first new Fermi-selected millisecond pulsars to be added to pulsar gravitational wave timing arrays. It has also allowed a significant measurement of relativistic delays in the times of arrival of the pulses due to the curvature of space-time near the companion, but not yet with enough precision to derive useful masses for the pulsar and the companion. Nevertheless, a mass for the pulsar between 1.7 and 2.0 solar Mass can be derived if a standard millisecond pulsar formation model is assumed. In this paper, we also present a comprehensive summary of pulsar searches in Fermi LAT sources with the Nancay Radio Telescope to date.

  20. The evolutionary link between low-mass X-ray binaries and millisecond radio pulsars

    NASA Astrophysics Data System (ADS)

    Degenaar, Nathalie

    2014-10-01

    Low-mass X-ray binaries (LMXBs) and millisecond radio pulsars (MSRPs) are two different manifestations of neutron stars in binary systems. They are thought to be evolutionary linked, but many questions about their connection remain. Recent discoveries have opened up a new vista to investigate the LMXB/MSRP link. The neutron star XSS J12270-4859 was recently observed to switch between the two different manifestations. Here, we propose to exploit the unique UV capabilities of the HST to search for the presence of a quiescent accretion disk and to test if the neutron star is hot. This will give insight into its accretion history and the mechanism driving its metamorphosis, which will have direct implications for our understanding of the LMXB/MSRP evolutionary link.

  1. The binary millisecond pulsar PSR J1023+0038 during its accretion state - I. Optical variability

    NASA Astrophysics Data System (ADS)

    Shahbaz, T.; Linares, M.; Nevado, S. P.; Rodríguez-Gil, P.; Casares, J.; Dhillon, V. S.; Marsh, T. R.; Littlefair, S.; Leckngam, A.; Poshyachinda, S.

    2015-11-01

    We present time-resolved optical photometry of the binary millisecond `redback' pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ˜20 s with amplitudes of ˜0.1-0.5 mag and additional large flare events on time-scales of ˜5-60 min with amplitudes of ˜0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ˜250 s and a median ingress/egress time of ˜20 s. These rectangular dips are similar to the mode-switching behaviour between disc `active' and `passive' luminosity states, observed in the X-ray light curves of other redback millisecond pulsars. This is the first time that the optical analogue of the X-ray mode-switching has been observed. The properties of the passive- and active-state light curves can be explained in terms of clumpy accretion from a trapped inner accretion disc near the corotation radius, resulting in rectangular, flat-bottomed optical and X-ray light curves.

  2. The Reawakening of the Sleeping X-ray Pulsar XTE J1946+274

    NASA Technical Reports Server (NTRS)

    Mueller, Sebastian; Mueller, Sebastian; Kuechnel, Matthias; Fuerst, Felix; Kreykenbohm, Ingo; Sagredo, Macarena; Obst, Maria; Wilms, Joern; Caballero, Isabel; Potttschmidt, Katja; Ferrigno, Carlo; Rothschild, Richard E.

    2012-01-01

    We report on a series of outbursts of the high mass X-ray binary XTE 11946+274 in 2010/2011 as observed with INTEGRAL, RXTE, and Swift. We discuss possible mechanisms resulting in the extraordinary outburst behavior of this source. The X-ray spectra can be described by standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K alpha fluorescence line at 6.4keV, which are variable in flux and pulse phase. We find possible evidence for the presence of a cyclotron resonance scattering feature at about 25 keV at the 93% level. The presence of a strong cyclotron line at 35 keV seen in data from the source's 1998 outburst and confirmed by a reanalysis of these data can be excluded. This result indicates that the cyclotron line feature in XTE 11946+274 is variable between individual outbursts.

  3. Formation of Millisecond Pulsars with Heavy White Dwarf Companions: Extreme Mass Transfer on Subthermal Timescales.

    PubMed

    Tauris; van Den Heuvel EP; Savonije

    2000-02-20

    We have performed detailed numerical calculations of the nonconservative evolution of close X-ray binary systems with intermediate-mass (2.0-6.0 M middle dot in circle) donor stars and a 1.3 M middle dot in circle accreting neutron star. We calculated the thermal response of the donor star to mass loss in order to determine its stability and follow the evolution of the mass transfer. Under the assumption of the "isotropic reemission model," we demonstrate that in many cases it is possible for the binary to prevent a spiral-in and survive a highly super-Eddington mass transfer phase (1millisecond pulsars with heavy CO white dwarfs and relatively short orbital periods (3-50 days). However, we conclude that to produce a binary pulsar with a O-Ne-Mg white dwarf or Porb approximately 1 day (e.g., PSR B0655+64) the above scenario does not work, and a spiral-in phase is still considered the most plausible scenario for the formation of such a system. PMID:10655173

  4. Multi-wavelength modeling of globular clusters–the millisecond pulsar scenario

    SciTech Connect

    Kopp, A.; Venter, C.; Büsching, I.; De Jager, O. C.

    2013-12-20

    The potentially large number of millisecond pulsars (MSPs) in globular cluster (GC) cores makes these parent objects ideal laboratories for studying the collective properties of an ensemble of MSPs. Such a population is expected to radiate several spectral components in the radio through γ-ray waveband. First, pulsed emission is expected via curvature and synchrotron radiation (CR and SR) and possibly even via inverse Compton (IC) scattering inside the pulsar magnetospheres. Second, unpulsed emission should transpire through the continuous injection of relativistic leptons by the MSPs into the ambient region, which in turn produce SR and IC emission when they encounter the cluster magnetic field, as well as several background photon components. In this paper we continue to develop the MSP scenario for explaining the multi-wavelength properties of GCs by considering the entire modeling chain, including the full transport equation, refined emissivities of stellar and Galactic background photons, integration of the flux along the line of sight, and comparison with observations. As an illustration, we apply the model to Terzan 5, where we can reasonably fit both the (line-of-sight-integrated) X-ray surface flux and spectral energy density data, using the first to constrain the leptonic diffusion coefficient within the GC. We lastly discuss possible future extensions to and applications of this maturing model.

  5. Radio Detection of the Fermi-LAT Blind Search Millisecond Pulsar J1311-3430

    NASA Technical Reports Server (NTRS)

    Ray, P. S.; Ransom, S. M.; Cheung, C. C.; Giroletti, M.; Cognard, I.; Camilo, F.; Bhattacharyya, B.; Roy, J.; Romani, R. W.; Ferrara, E. C.; Guillemot, L.; Johnston, S.; Keith, M.; Kerr, M.; Kramer, M.; Pletsch, H. J.; Parkinson, P. M. Saz

    2013-01-01

    We report the detection of radio emission from PSR J1311.3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for less than 10% of approximately 4.5 hr of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nan cay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311.3430 is not radio quiet and provide additional evidence that radio-quiet MSPs are rare. The radio dispersion measure of 37.8 pc cm(exp -3) provides a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.

  6. RADIO DETECTION OF THE FERMI-LAT BLIND SEARCH MILLISECOND PULSAR J1311-3430

    SciTech Connect

    Ray, P. S.; Wood, K. S.; Ransom, S. M.; Cheung, C. C.; Giroletti, M.; Cognard, I.; Camilo, F.; Bhattacharyya, B.; Roy, J.; Romani, R. W.; Kerr, M.; Ferrara, E. C.; Guillemot, L.; Kramer, M.; Johnston, S.; Keith, M.; Pletsch, H. J.; Saz Parkinson, P. M.

    2013-01-20

    We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for <10% of {approx}4.5 hr of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nancay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311-3430 is not radio quiet and provide additional evidence that radio-quiet MSPs are rare. The radio dispersion measure of 37.8 pc cm{sup -3} provides a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.

  7. OPTICAL IDENTIFICATION OF He WHITE DWARFS ORBITING FOUR MILLISECOND PULSARS IN THE GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect

    Cadelano, M.; Pallanca, C.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B.; Freire, P. C. C.

    2015-10-10

    We used ultra-deep UV observations obtained with the Hubble Space Telescope to search for optical companions to binary millisecond pulsars (MSPs) in the globular cluster 47 Tucanae. We identified four new counterparts (to MSPs 47TucQ, 47TucS, 47TucT, and 47TucY) and confirmed those already known (to MSPs 47TucU and 47TucW). In the color–magnitude diagram, the detected companions are located in a region between the main sequence and the CO white dwarf (WD) cooling sequences, consistent with the cooling tracks of He WDs with masses between 0.15 M{sub ⊙} and 0.20 M{sub ⊙}. For each identified companion, mass, cooling age, temperature, and pulsar mass (as a function of the inclination angle) have been derived and discussed. For 47TucU we also found that the past accretion history likely proceeded at a sub-Eddington rate. The companion to the redback 47TucW is confirmed to be a non-degenerate star, with properties particularly similar to those observed for black widow systems. Two stars have been identified within the 2σ astrometric uncertainty from the radio positions of 47TucH and 47TucI, but the available data prevent us from firmly assessing whether they are the true companions of these two MSPs.

  8. Formation of Millisecond Pulsars with Heavy White Dwarf Companions: Extreme Mass Transfer on Subthermal Timescales.

    PubMed

    Tauris; van Den Heuvel EP; Savonije

    2000-02-20

    We have performed detailed numerical calculations of the nonconservative evolution of close X-ray binary systems with intermediate-mass (2.0-6.0 M middle dot in circle) donor stars and a 1.3 M middle dot in circle accreting neutron star. We calculated the thermal response of the donor star to mass loss in order to determine its stability and follow the evolution of the mass transfer. Under the assumption of the "isotropic reemission model," we demonstrate that in many cases it is possible for the binary to prevent a spiral-in and survive a highly super-Eddington mass transfer phase (1millisecond pulsars with heavy CO white dwarfs and relatively short orbital periods (3-50 days). However, we conclude that to produce a binary pulsar with a O-Ne-Mg white dwarf or Porb approximately 1 day (e.g., PSR B0655+64) the above scenario does not work, and a spiral-in phase is still considered the most plausible scenario for the formation of such a system.

  9. Einstein@Home DISCOVERY OF A PALFA MILLISECOND PULSAR IN AN ECCENTRIC BINARY ORBIT

    SciTech Connect

    Knispel, B.; Allen, B.; Lyne, A. G.; Stappers, B. W.; Freire, P. C. C.; Lazarus, P.; Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H.; Bogdanov, S.; Camilo, F.; Brazier, A.; Chatterjee, S.; Cordes, J. M.; Cardoso, F.; Crawford, F.; Deneva, J. S.; Ferdman, R.; Hessels, J. W. T.; and others

    2015-06-10

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M{sub ⊙} and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.

  10. Multiwavelength observations of the transitional millisecond pulsar binary XSS J12270-4859

    NASA Astrophysics Data System (ADS)

    de Martino, D.; Papitto, A.; Belloni, T.; Burgay, M.; De Ona Wilhelmi, E.; Li, J.; Pellizzoni, A.; Possenti, A.; Rea, N.; Torres, D. F.

    2015-12-01

    We present an analysis of X-ray, ultraviolet and optical/near-IR photometric data of the transitional millisecond pulsar binary XSS J12270-4859, obtained at different epochs after the transition to a rotation-powered radio pulsar state. The observations, while confirming the large-amplitude orbital modulation found in previous studies after the state change, also reveal an energy dependence of the amplitudes as well as variations on time-scale of months. The amplitude variations are anticorrelated in the X-ray and the UV/optical bands. The average X-ray spectrum is described by a power law with Γ index of 1.07(8) without requiring an additional thermal component. The power-law index Γ varies from ˜1.2 to ˜1.0 between superior and inferior conjunction of the neutron star. We interpret the observed X-ray behaviour in terms of synchrotron radiation emitted in an extended intrabinary shock, located between the pulsar and the donor star, which is eclipsed due to the companion orbital motion. The G5-type donor dominates the UV/optical and near-IR emission and is similarly found to be heated up to ˜6500 K as in the disc state. The analysis of optical light curves gives a binary inclination 46° ≲ i ≲ 65° and a mass ratio 0.11 ≲ q ≲ 0.26. The donor mass is found to be 0.15 ≲ M2 ≲ 0.36 M⊙ for a neutron star mass of 1.4 M⊙. The variations in the amplitude of the orbital modulation are interpreted in terms of small changes in the mass-flow rate from the donor star. The spectral energy distribution from radio to gamma-rays is composed by multiple contributions that are different from those observed during the accretion-powered state.

  11. A PROPELLER MODEL FOR THE SUB-LUMINOUS STATE OF THE TRANSITIONAL MILLISECOND PULSAR PSR J1023+0038

    SciTech Connect

    Papitto, A.; Torres, D. F.

    2015-07-01

    The discovery of millisecond pulsars switching between states powered either by the rotation of their magnetic field or by the accretion of matter has recently proved the tight link shared by millisecond radio pulsars and neutron stars in low-mass X-ray binaries. Transitional millisecond pulsars also show an enigmatic intermediate state in which the neutron star is surrounded by an accretion disk and emits coherent X-ray pulsations, but is sub-luminous in X-rays with respect to accreting neutron stars, and is brighter in gamma-rays than millisecond pulsars in the rotation-powered state. Here, we model the X-ray and gamma-ray emission observed from PSR J1023+0038 in such a state based on the assumptions that most of the disk in-flow is propelled away by the rapidly rotating neutron star magnetosphere, and that electrons can be accelerated to energies of a few GeV at the turbulent disk–magnetosphere boundary. We show that the synchrotron and self-synchrotron Compton emission coming from such a region, together with the hard disk emission typical of low states of accreting compact objects, is able to explain the radiation observed in the X-ray and gamma-ray bands. The average emission observed from PSR J1023+0038 is modeled by a disk in-flow with a rate of 1–3 × 10{sup −11} M{sub ⊙} yr{sup −1}, truncated at a radius ranging between 30 and 45 km, compatible with the hypothesis of a propelling magnetosphere. We compare the results we obtained with models that assume that a rotation-powered pulsar is turned on, showing how the spin-down power released in similar scenarios is hardly able to account for the magnitude of the observed emission.

  12. DISCOVERY OF THE OPTICAL/ULTRAVIOLET/GAMMA-RAY COUNTERPART TO THE ECLIPSING MILLISECOND PULSAR J1816+4510

    SciTech Connect

    Kaplan, D. L.; Kotulla, R.; Biwer, C. M.; Day, D. F.; Stovall, K.; Dartez, L.; Ford, A. J.; Garcia, A.; Jenet, F. A.; Ransom, S. M.; Roberts, M. S. E.; Archibald, A. M.; Karako, C.; Kaspi, V. M.; Lynch, R. S.; Boyles, J.; Lorimer, D. R.; McLaughlin, M. A.; Hessels, J. W. T.; Kondratiev, V. I.; and others

    2012-07-10

    The energetic, eclipsing millisecond pulsar J1816+4510 was recently discovered in a low-frequency radio survey with the Green Bank Telescope. With an orbital period of 8.7 hr and a minimum companion mass of 0.16 M{sub Sun }, it appears to belong to an increasingly important class of pulsars that are ablating their low-mass companions. We report the discovery of the {gamma}-ray counterpart to this pulsar and present a likely optical/ultraviolet counterpart as well. Using the radio ephemeris, we detect pulsations in the unclassified {gamma}-ray source 2FGL J1816.5+4511, implying an efficiency of {approx}25% in converting the pulsar's spin-down luminosity into {gamma}-rays and adding PSR J1816+4510 to the large number of millisecond pulsars detected by Fermi. The likely optical/UV counterpart was identified through position coincidence (<0.''1) and unusual colors. Assuming that it is the companion, with R = 18.27 {+-} 0.03 mag and effective temperature {approx}> 15,000 K, it would be among the brightest and hottest of low-mass pulsar companions and appears qualitatively different from other eclipsing pulsar systems. In particular, current data suggest that it is a factor of two larger than most white dwarfs of its mass but a factor of four smaller than its Roche lobe. We discuss possible reasons for its high temperature and odd size, and suggest that it recently underwent a violent episode of mass loss. Regardless of origin, its brightness and the relative unimportance of irradiation make it an ideal target for a mass, and hence a neutron star mass, determination.

  13. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    SciTech Connect

    Johnson, T. J.; Venter, C.; Harding, A. K.; Çelik, Ö.; Ferrara, E. C.; Guillemot, L.; Smith, D. A.; Hou, X.; Den Hartog, P. R.; Lande, J.; Ray, P. S. E-mail: Christo.Venter@nwu.ac.za

    2014-07-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  14. Constraints On the Emission Geometries and Spin Evolution Of Gamma-Ray Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Guillemot, L.; Smith, D. A.; Kramer, M.; Celik, O.; den Hartog, P. R.; Ferrara, E. C.; Hou, X.; Lande, J.; Ray, P. S.

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using amaximum likelihood technique.We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  15. An Eccentric Binary Millisecond Pulsar with a Helium White Dwarf Companion in the Galactic field

    NASA Astrophysics Data System (ADS)

    Antoniadis, John; Kaplan, David L.; Stovall, Kevin; Freire, Paulo C. C.; Deneva, Julia S.; Koester, Detlev; Jenet, Fredrick; Martinez, Jose G.

    2016-10-01

    Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the universe is not old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of an LMWD in an eccentric (e = 0.13) orbit around the millisecond pulsar PSR J2234+0511, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature ({T}{{eff}}=8600+/- 190 K), and peculiar systemic velocity relative to the local standard of rest (≃ 31 km s‑1). We also place model-independent constraints on the WD radius ({R}{{WD}}={0.024}-0.002+0.004 {R}ȯ ) and surface gravity ({log} g={7.11}-0.16+0.08 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavor a dynamic three-body formation channel. In the case of the high eccentricity being the result of a spontaneous phase transition, we infer a mass of ∼1.60 M ⊙ for the pulsar progenitor, which is too low for the quark-nova mechanism proposed by Jiang et al., and too high for the scenario of Freire & Tauris, in which a WD collapses into a neutron star via a rotationally delayed accretion-induced collapse. We find that eccentricity pumping via interaction with a circumbinary disk is consistent with our inferred parameters. Finally, we report tentative evidence for pulsations that, if confirmed, would transform the star into an unprecedented laboratory for WD physics.

  16. A METAL-RICH LOW-GRAVITY COMPANION TO A MASSIVE MILLISECOND PULSAR

    SciTech Connect

    Kaplan, D. L.; Bhalerao, V. B.; Van Kerkwijk, M. H.; Koester, D.; Kulkarni, S. R.; Stovall, K. E-mail: mhvk@astro.utoronto.ca

    2013-03-10

    Most millisecond pulsars with low-mass companions are in systems with either helium-core white dwarfs or non-degenerate (''black widow'' or ''redback'') stars. A candidate counterpart to PSR J1816+4510 was identified by Kaplan et al. whose properties were suggestive of both types of companions although identical to neither. We have assembled optical spectroscopy of the candidate companion and confirm that it is part of the binary system with a radial velocity amplitude of 343 {+-} 7 km s{sup -1}, implying a high pulsar mass, M{sub psr}sin {sup 3} i = 1.84 {+-} 0.11 M{sub Sun }, and a companion mass M{sub c} sin {sup 3} i = 0.193 {+-} 0.012 M{sub Sun }, where i is the inclination of the orbit. The companion appears similar to proto-white dwarfs/sdB stars, with a gravity log{sub 10}(g) = 4.9 {+-} 0.3, and effective temperature 16, 000 {+-} 500 K. The strongest lines in the spectrum are from hydrogen, but numerous lines from helium, calcium, silicon, and magnesium are present as well, with implied abundances of roughly 10 times solar (relative to hydrogen). As such, while from the spectrum the companion to PSR J1816+4510 is superficially most similar to a low-mass white dwarf, it has much lower gravity, is substantially larger, and shows substantial metals. Furthermore, it is able to produce ionized gas eclipses, which had previously been seen only for low-mass, non-degenerate companions in redback or black widow systems. We discuss the companion in relation to other sources, but find that we understand neither its nature nor its origins. Thus, the system is interesting for understanding unusual stellar products of binary evolution, as well as, independent of its nature, for determining neutron-star masses.

  17. Optical Identification of He White Dwarfs Orbiting Four Millisecond Pulsars in the Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Cadelano, M.; Pallanca, C.; Ferraro, F. R.; Salaris, M.; Dalessandro, E.; Lanzoni, B.; Freire, P. C. C.

    2015-10-01

    We used ultra-deep UV observations obtained with the Hubble Space Telescope to search for optical companions to binary millisecond pulsars (MSPs) in the globular cluster 47 Tucanae. We identified four new counterparts (to MSPs 47TucQ, 47TucS, 47TucT, and 47TucY) and confirmed those already known (to MSPs 47TucU and 47TucW). In the color-magnitude diagram, the detected companions are located in a region between the main sequence and the CO white dwarf (WD) cooling sequences, consistent with the cooling tracks of He WDs with masses between 0.15 M⊙ and 0.20 M⊙. For each identified companion, mass, cooling age, temperature, and pulsar mass (as a function of the inclination angle) have been derived and discussed. For 47TucU we also found that the past accretion history likely proceeded at a sub-Eddington rate. The companion to the redback 47TucW is confirmed to be a non-degenerate star, with properties particularly similar to those observed for black widow systems. Two stars have been identified within the 2σ astrometric uncertainty from the radio positions of 47TucH and 47TucI, but the available data prevent us from firmly assessing whether they are the true companions of these two MSPs. Based on observations collected with the NASA/ESA HST (Prop. 12950), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  18. High-energy emission from the nebula around the Black Widow binary system containing millisecond pulsar B1957+20

    NASA Astrophysics Data System (ADS)

    Bednarek, W.; Sitarek, J.

    2013-02-01

    Context. The features of pulsed γ-ray emission from classical and millisecond pulsars indicate that the high energy radiation processes in their inner magnetospheres occur in a similar way. In the past decade several TeV γ-ray nebulae have been discovered around classical pulsars. The above facts suggest that γ-rays should be produced also in the surroundings of millisecond pulsars. Aims: We discuss a model for the bow shock nebula around the well known Black Widow binary system containing the millisecond pulsar B1957+20. This model predicts the existence of a synchrotron X-ray and inverse Compton γ-ray nebula around this system. We want to find out whether γ-ray emission from the nebula around B1957+20 could be detected by the future and present Cherenkov telescopes. Methods: Using the Monte Carlo method we followed the propagation of relativistic electrons in the vicinity of the pulsar. We calculated the very high energy radiation produced by them in the synchrotron process and the inverse Compton scattering of the microwave background radiation and of the infrared radiation from the galactic disk. We also computed the X-ray emission produced by the electrons in the synchrotron process. Results: We show that the hard X-ray tail emission observed from the vicinity of B1957+20 can be explained by our model. Moreover, we predict that the TeV γ-ray emission produced by the electrons in the inverse Compton process should be detectable by the future Cherenkov Telescope Array and possibly by the long term observations with the present Cherenkov arrays such as MAGIC and VERITAS. The γ-ray emission from B1957+20 is expected to be extended, inhomogeneous, and shifted from the present location of the binary system by a distance comparable to the radius of the nebula.

  19. Scintillation Arcs in Low-frequency Observations of the Timing-array Millisecond Pulsar PSR J0437-4715

    NASA Astrophysics Data System (ADS)

    Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.; McSweeney, S. J.; Tingay, S. J.

    2016-02-01

    Low-frequency observations of pulsars provide a powerful means for probing the microstructure in the turbulent interstellar medium (ISM). Here we report on high-resolution dynamic spectral analysis of our observations of the timing-array millisecond pulsar PSR J0437-4715 with the Murchison Widefield Array (MWA), enabled by our recently commissioned tied-array beam processing pipeline for voltage data recorded from the high time resolution mode of the MWA. A secondary spectral analysis reveals faint parabolic arcs akin to those seen in high-frequency observations of pulsars with the Green Bank and Arecibo telescopes. Data from Parkes observations at a higher frequency of 732 MHz reveal a similar parabolic feature with a curvature that scales approximately as the square of the observing wavelength (λ2) to the MWA's frequency of 192 MHz. Our analysis suggests that scattering toward PSR J0437-4715 predominantly arises from a compact region about 115 pc from the Earth, which matches well with the expected location of the edge of the Local Bubble that envelopes the local Solar neighborhood. As well as demonstrating new and improved pulsar science capabilities of the MWA, our analysis underscores the potential of low-frequency pulsar observations for gaining valuable insights into the local ISM and for characterizing the ISM toward timing-array pulsars.

  20. Modulated gamma-ray emission from compact millisecond pulsar binary systems

    NASA Astrophysics Data System (ADS)

    Bednarek, W.

    2014-01-01

    Context. A significant number of the millisecond pulsars (MSPs) have been discovered within binary systems. Tens of these MSPs emit γ-rays that are modulated with the pulsar period since this emission is produced in the inner pulsar magnetosphere. In several such binary systems, the masses of the companion stars have been derived allowing two classes of objects to be distinguished, which are called the black widow and the redback binaries. Pulsars in these binary systems are expected to produce winds that create conditions for acceleration of electrons, when colliding with stellar winds. These electrons should interact with the anisotropic radiation from the companion stars producing γ-ray emission modulated with the orbital period of the binary system, similar to what is observed in the massive TeV γ-ray binary systems. Aims: We consider the interaction of a MSP wind with a very inhomogeneous stellar wind from the companion star within binary systems of the black widow and redback types. Our aim is to determine the features of γ-ray emission produced in the collision region of the winds from a few typical MSP binary systems. Methods: It is expected that the pulsar wind should mix efficiently with the inhomogeneous stellar wind. The mixed winds move outside the binary with relatively low velocity. Electrons accelerated in such mixed, turbulent winds can interact with the magnetic field and strong radiation from the companion star, producing not only synchrotron radiation but also γ-rays in the inverse Compton process, fluxes of which are expected to be modulated on the periods of the binary systems. Applying numerical methods, we calculated the GeV-TeV gamma-ray spectra and the light curves expected from some MSP binary systems. Results: Gamma-ray emission, produced within the binary systems, is compared with the sensitivities of the present and future gamma-ray telescopes. It is concluded that energetic MSP binary systems create a new class of TeV

  1. A STRANGE STAR SCENARIO FOR THE FORMATION OF ECCENTRIC MILLISECOND PULSAR/HELIUM WHITE DWARF BINARIES

    SciTech Connect

    Jiang, Long; Li, Xiang-Dong; Dey, Jishnu; Dey, Mira

    2015-07-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X–1, which also possesses a low-field compact star in an eccentric orbit.

  2. Formation of millisecond pulsars with low-mass helium white dwarf companions in very compact binaries

    SciTech Connect

    Jia, Kun; Li, X.-D.

    2014-08-20

    Binary millisecond pulsars (BMSPs) are thought to have evolved from low-mass X-ray binaries (LMXBs). If the mass transfer in LMXBs is driven by nuclear evolution of the donor star, the final orbital period is predicted to be well correlated with the mass of the white dwarf (WD), which is the degenerate He core of the donor. Here we show that this relation can be extended to very small WD mass (∼0.14-0.17 M {sub ☉}) and narrow orbital period (about a few hours), depending mainly on the metallicities of the donor stars. There is also discontinuity in the relation, which is due to the temporary contraction of the donor when the H-burning shell crosses the hydrogen discontinuity. BMSPs with low-mass He WD companions in very compact binaries can be accounted for if the progenitor binary experienced very late Case A mass transfer. The WD companion of PSR J1738+0333 is likely to evolve from a Pop II star. For PSR J0348+0432, to explain its extreme compact orbit in the Roche-lobe-decoupling phase, even lower metallicity (Z = 0.0001) is required.

  3. DISCOVERY OF AN ULTRACOMPACT GAMMA-RAY MILLISECOND PULSAR BINARY CANDIDATE

    SciTech Connect

    Kong, Albert K. H.; Jin, Ruolan; Yen, T.-C.; Tam, P. H. T.; Lin, L. C. C.; Hu, C.-P.; Hui, C. Y.; Park, S. M.; Takata, J.; Cheng, K. S.; Kim, C. L.

    2014-10-20

    We report multi-wavelength observations of the unidentified Fermi object 2FGL J1653.6-0159. With the help of high-resolution X-ray observations, we have identified an X-ray and optical counterpart to 2FGL J1653.6-0159. The source exhibits a periodic modulation of 75 minutes in the optical and possibly also in the X-ray. We suggest that 2FGL J1653.6-0159 is a compact binary system with an orbital period of 75 minutes. Combining the gamma-ray and X-ray properties, 2FGL J1653.6-0159 is potentially a black-widow-/redback-type gamma-ray millisecond pulsar (MSP). The optical and X-ray light curve profiles show that the companion is mildly heated by the high-energy emission and that the X-rays are from intrabinary shock. Although no radio pulsation has yet been detected, we estimated that the spin period of the MSP is ∼ 2 ms based on a theoretical model. If pulsation can be confirmed in the future, 2FGL J1653.6-0159 will become the first ultracompact rotation-powered MSP.

  4. A 24 hr global campaign to assess precision timing of the millisecond pulsar J1713+0747

    SciTech Connect

    Dolch, T.; Lam, M. T.; Cordes, J.; Chatterjee, S.; Bassa, C.; Hessels, J. W. T.; Janssen, G.; Kondratiev, V.; Bhattacharyya, B.; Jordan, C.; Keith, M.; Champion, D. J.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Cognard, I.; Demorest, P. B.; Jenet, F. A.; Jones, G.; and others

    2014-10-10

    The radio millisecond pulsar J1713+0747 is regarded as one of the highest-precision clocks in the sky and is regularly timed for the purpose of detecting gravitational waves. The International Pulsar Timing Array Collaboration undertook a 24 hr global observation of PSR J1713+0747 in an effort to better quantify sources of timing noise in this pulsar, particularly on intermediate (1-24 hr) timescales. We observed the pulsar continuously over 24 hr with the Arecibo, Effelsberg, GMRT, Green Bank, LOFAR, Lovell, Nançay, Parkes, and WSRT radio telescopes. The combined pulse times-of-arrival presented here provide an estimate of what sources of timing noise, excluding DM variations, would be present as compared to an idealized √N improvement in timing precision, where N is the number of pulses analyzed. In the case of this particular pulsar, we find that intrinsic pulse phase jitter dominates arrival time precision when the signal-to-noise ratio of single pulses exceeds unity, as measured using the eight telescopes that observed at L band/1.4 GHz. We present first results of specific phenomena probed on the unusually long timescale (for a single continuous observing session) of tens of hours, in particular interstellar scintillation, and discuss the degree to which scintillation and profile evolution affect precision timing. This paper presents the data set as a basis for future, deeper studies.

  5. A 24 Hr Global Campaign to Assess Precision Timing of the Millisecond Pulsar J1713+0747

    NASA Astrophysics Data System (ADS)

    Dolch, T.; Lam, M. T.; Cordes, J.; Chatterjee, S.; Bassa, C.; Bhattacharyya, B.; Champion, D. J.; Cognard, I.; Crowter, K.; Demorest, P. B.; Hessels, J. W. T.; Janssen, G.; Jenet, F. A.; Jones, G.; Jordan, C.; Karuppusamy, R.; Keith, M.; Kondratiev, V.; Kramer, M.; Lazarus, P.; Lazio, T. J. W.; Lee, K. J.; McLaughlin, M. A.; Roy, J.; Shannon, R. M.; Stairs, I.; Stovall, K.; Verbiest, J. P. W.; Madison, D. R.; Palliyaguru, N.; Perrodin, D.; Ransom, S.; Stappers, B.; Zhu, W. W.; Dai, S.; Desvignes, G.; Guillemot, L.; Liu, K.; Lyne, A.; Perera, B. B. P.; Petroff, E.; Rankin, J. M.; Smits, R.

    2014-10-01

    The radio millisecond pulsar J1713+0747 is regarded as one of the highest-precision clocks in the sky and is regularly timed for the purpose of detecting gravitational waves. The International Pulsar Timing Array Collaboration undertook a 24 hr global observation of PSR J1713+0747 in an effort to better quantify sources of timing noise in this pulsar, particularly on intermediate (1-24 hr) timescales. We observed the pulsar continuously over 24 hr with the Arecibo, Effelsberg, GMRT, Green Bank, LOFAR, Lovell, Nançay, Parkes, and WSRT radio telescopes. The combined pulse times-of-arrival presented here provide an estimate of what sources of timing noise, excluding DM variations, would be present as compared to an idealized \\sqrt{N} improvement in timing precision, where N is the number of pulses analyzed. In the case of this particular pulsar, we find that intrinsic pulse phase jitter dominates arrival time precision when the signal-to-noise ratio of single pulses exceeds unity, as measured using the eight telescopes that observed at L band/1.4 GHz. We present first results of specific phenomena probed on the unusually long timescale (for a single continuous observing session) of tens of hours, in particular interstellar scintillation, and discuss the degree to which scintillation and profile evolution affect precision timing. This paper presents the data set as a basis for future, deeper studies.

  6. Timing of the accreting millisecond pulsar SAX J1748.9-2021 during its 2015 outburst

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Burderi, L.; Riggio, A.; Pintore, F.; Di Salvo, T.; Gambino, A. F.; Iaria, R.; Matranga, M.; Scarano, F.

    2016-06-01

    We report on the timing analysis of the 2015 outburst of the intermittent accreting millisecond X-ray pulsar SAX J1748.9-2021 observed on March 4 by the X-ray satellite XMM-Newton. By phase connecting the time of arrivals of the observed pulses, we derived the best-fitting orbital solution for the 2015 outburst. We investigated the energy pulse profile dependence finding that the pulse fractional amplitude increases with energy while no significant time lags are detected. Moreover, we investigated the previous outbursts from this source, finding previously undetected pulsations in some intervals during the 2010 outburst of the source. Comparing the updated set of orbital parameters, in particular the value of the time of passage from the ascending node, with the orbital solutions reported from the previous outbursts, we estimated for the first time the orbital period derivative corresponding with dot{P}_{orb}=(1.1± 0.3)× 10^{-10} s s-1. We note that this value is significant at 3.5σ confidence level, because of significant fluctuations with respect to the parabolic trend and more observations are needed in order to confirm the finding. Assuming the reliability of the result, we suggest that the large value of the orbital-period derivative can be explained as a result of a highly non-conservative mass transfer driven by emission of gravitational waves, which implies the ejection of matter from a region close to the inner Lagrangian point. We also discuss possible alternative explanations.

  7. Statistical and polarization properties of giant pulses of the millisecond pulsar B1937+21

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. I.; Popov, M. V.; Soglasnov, V. A.; Kondrat'ev, V. I.; Kovalev, Y. Y.; Bartel, N.; Ghigo, F.

    2013-04-01

    We have studied the statistical and polarization properties of giant pulses (GPs) emitted by the millisecond pulsar B1937+21, with high sensitivity and time resolution. The observations were made in 2005 June with the 100-m Robert C. Byrd Green Bank Telescope at S-band (2052-2116 MHz) using the Mk5A Very Long Baseline Interferometry recording system, with formal time resolution of 16 ns. The total observing time was about 4.5 h; the rate of detection of GPs was about 130 per hour at the average longitudes of the main pulse (MPGPs) and 60 per hour at the interpulse (IPGPs). While the average profile shows well-defined polarization behaviour, with regular evolution of the linear polarization position angle (PA), GPs exhibit random properties, occasionally having high linear or circular polarization. Neither MPGPs nor IPGPs show a preferred PA. The cumulative probability distribution (CPD) of GP pulse energy was constructed down to the level where GPs merge with regular pulses and noise. For both MPGPs and IPGPs, the CPD follows a power law with a break, the power index changing from -2.4 at high energy to -1.6 for low energy. Pulse smearing due to scattering masks the intrinsic shape and duration of the detected GPs. The smearing time varied during the observing session within a range of a few hundred nanoseconds. The measured polarization and statistical properties of GPs impose strong constraints on physical models of GPs. Some of these properties support a model in which GPs are generated by the electric discharge caused by magnetic reconnection of field lines connecting the opposite magnetic poles of a neutron star.

  8. Study of frame tie between planetary ephemerids and ICRF with millisecond and young pulsars

    NASA Astrophysics Data System (ADS)

    Wang, Jingbo; Hobbs, George; Coles, William

    2016-07-01

    The positions of pulsar can be measured by pulsar timing technology and VLBI astrometry with high precision. They can be used to tie between referece frame based on solar system ephemerids and distant quasars with high accuracy. In this paper, we have collect the pulsar positions with VLBI measurement and obtain the pulsar timing position form Nanshan and Parkes data archive. We derive the rotation matrix between JPL DE and ICRF reference frame.

  9. X-ray and γ-ray studies of the millisecond pulsar and possible X-ray binary/radio pulsar transition object PSR J1723-2837

    SciTech Connect

    Bogdanov, Slavko; Esposito, Paolo; Crawford III, Fronefield; Possenti, Andrea; McLaughlin, Maura A.; Freire, Paulo

    2014-01-20

    We present X-ray observations of the 'redback' eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ∼2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is ≲5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  10. A LIKELY MILLISECOND PULSAR BINARY COUNTERPART FOR FERMI SOURCE 2FGL J2039.6–5620

    SciTech Connect

    Romani, Roger W.

    2015-10-20

    We have identified an optical/X-ray binary with an orbital period of P{sub b} = 5.47 hr as the likely counterpart of the Fermi source 2FGL J2039.6−5620. GROND, SOAR, and DES observations provide an accurate orbital period and allow us to compare to the light curve of an archival XMM exposure. Like many short-period optical/X-ray binaries associated with Large Area Telescope sources, this may be an interacting (black widow/redback) millisecond pulsar binary. The X-ray light curve is consistent with the emission associated with an intrabinary shock. The optical light curve shows evidence of companion heating, but has a peculiar asymmetric double peak. The nature of this optical structure is not yet clear; additional optical studies and, in particular, detection of an orbital modulation in a γ-ray pulsar are needed to elucidate the nature of this peculiar source.

  11. How to get the reduced B fields of millisecond pulsars: Flux expulsion by spindown before the LMXB phase

    NASA Astrophysics Data System (ADS)

    Alpar, Mehmet Ali; Gügercinoǧlu, Erbil

    2016-07-01

    The physical interaction between quantized flux lines of the Type II proton superconductor and the quantized vortex lines of the neutron superfluid is re-visited. Srinivasan et al. (1990) had proposed that this interaction led to reduction of the magnetic field to the B ˜10^9 G range as the flux lines were expelled together with vortex lines during the spindown of the neutron star in an early epoch of binary evolution. The model is discussed with reference to spindown by the wind from the companion prior to the Roche lobe filling LMXB phase. An evolutionary model for the magnetic field and the rotation rate is presented, with application to the 11 Hz accreting pulsar in the LMXB IGR J17480-2446 in Terzan 5 (Patruno et al 2012) as well as 'standard' accreting and radio millisecond pulsar evolution.

  12. Modeling and Maximum Likelihood Fitting of Gamma-Ray and Radio Light Curves of Millisecond Pulsars Detected with Fermi

    NASA Technical Reports Server (NTRS)

    Johnson, T. J.; Harding, A. K.; Venter, C.

    2012-01-01

    Pulsed gamma rays have been detected with the Fermi Large Area Telescope (LAT) from more than 20 millisecond pulsars (MSPs), some of which were discovered in radio observations of bright, unassociated LAT sources. We have fit the radio and gamma-ray light curves of 19 LAT-detected MSPs in the context of geometric, outermagnetospheric emission models assuming the retarded vacuum dipole magnetic field using a Markov chain Monte Carlo maximum likelihood technique. We find that, in many cases, the models are able to reproduce the observed light curves well and provide constraints on the viewing geometries that are in agreement with those from radio polarization measurements. Additionally, for some MSPs we constrain the altitudes of both the gamma-ray and radio emission regions. The best-fit magnetic inclination angles are found to cover a broader range than those of non-recycled gamma-ray pulsars.

  13. EGRET upper limits to the high-energy gamma-ray emission from the millisecond pulsars in nearby globular clusters

    NASA Technical Reports Server (NTRS)

    Michelson, P. F.; Bertsch, D. L.; Brazier, K.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Fierro, J.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.

    1994-01-01

    We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.

  14. Multi-wavelength emissions from the millisecond pulsar binary PSR J1023+0038 during an accretion active state

    SciTech Connect

    Takata, J.; Leung, Gene C. K.; Wu, E. M. H.; Cheng, K. S.; Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Hui, C. Y.; Xing, Yi; Wang, Zhongxiang; Cao, Yi; Tang, Sumin E-mail: akong@phys.nthu.edu.tw

    2014-04-20

    Recent observations strongly suggest that the millisecond pulsar binary PSR J1023+0038 has developed an accretion disk since 2013 June. We present a multi-wavelength analysis of PSR J1023+0038, which reveals that (1) its gamma-rays suddenly brightened within a few days in 2013 June/July and has remained at a high gamma-ray state for several months; (2) both UV and X-ray fluxes have increased by roughly an order of magnitude; and (3) the spectral energy distribution has changed significantly after the gamma-ray sudden flux change. Time variabilities associated with UV and X-rays are on the order of 100-500 s and 50-100 s, respectively. Our model suggests that a newly formed accretion disk, due to the sudden increase of the stellar wind, could explain the changes of all these observed features. The increase of UV is emitted from the disk, and a new component in gamma-rays is produced by inverse Compton scattering between the new UV component and pulsar wind. The increase of X-rays results from the enhancement of injection pulsar wind energy into the intra-binary shock due to the increase of the stellar wind. We also predict that the radio pulses may be blocked by the evaporated winds from the disk, and the pulsar is still powered by rotation.

  15. Optical counterparts of two Fermi millisecond pulsars: PSR J1301+0833 and PSR J1628–3205

    SciTech Connect

    Li, Miao; Halpern, Jules P.; Thorstensen, John R.

    2014-11-10

    Using the 1.3 m and 2.4 m Telescopes of the MDM Observatory, we identified the close companions of two eclipsing millisecond radio pulsars that were discovered by the Green Bank Telescope in searches of Fermi Gamma-ray Space Telescope sources, and measured their light curves. PSR J1301+0833 is a black widow pulsar in a 6.5 hr orbit whose companion star is strongly heated on the side facing the pulsar. It varies from R = 21.8 to R > 24 around the orbit. PSR J1628–3205 is a 'redback', a nearly Roche-lobe-filling system in a 5.0 hr orbit whose optical modulation in the range 19.0 < R < 19.4 is dominated by strong ellipsoidal variations, indicating a large orbital inclination angle. PSR J1628–3205 also shows evidence for a long-term variation of about 0.2 mag, and an asymmetric temperature distribution possibly due to either off-center heating by the pulsar wind, or large starspots. Modeling of its light curve restricts the inclination angle to i > 55°, the mass of the companion to 0.16 < M{sub c} < 0.30 M {sub ☉}, and the effective temperature to 3560 < T {sub eff} < 4670 K. As is the case for several redbacks, the companion of PSR J1628–3205 is less dense and hotter than a main-sequence star of the same mass.

  16. Ionization break-out from millisecond pulsar wind nebulae: an X-ray probe of the origin of superluminous supernovae

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Vurm, Indrek; Hascoët, Romain; Beloborodov, Andrei M.

    2014-01-01

    Magnetic spin-down of a rapidly rotating (millisecond) neutron star has been proposed as the power source of hydrogen-poor `superluminous' supernovae (SLSNe-I). However, producing an unambiguous test that can distinguish this model from alternatives, such as circumstellar interaction, has proven challenging. After the supernova explosion, the pulsar wind inflates a hot cavity behind the expanding stellar ejecta: the nascent millisecond pulsar wind nebula. Electron/positron pairs injected by the wind cool through inverse Compton scattering and synchrotron emission, producing a pair cascade and hard X-ray spectrum inside the nebula. These X-rays ionize the inner exposed side of the ejecta, driving an ionization front that propagates outwards with time. Under some conditions this front can breach the ejecta surface within months after the optical supernova peak, allowing ˜0.1-1 keV photons to escape the nebula unattenuated with a characteristic luminosity LX ˜ 1043-1045 erg s-1. This `ionization break-out' may explain the luminous X-ray emission observed from the transient SCP 06F, providing direct evidence that this SLSN was indeed engine powered. Luminous break-out requires a low ejecta mass and that the spin-down time of the pulsar be comparable to the photon diffusion time-scale at optical maximum, the latter condition being similar to that required for a supernova with a high optical fluence. These relatively special requirements may explain why most SLSNe-I are not accompanied by detectable X-ray emission. Global asymmetry of the supernova ejecta increases the likelihood of an early break-out along the direction of lowest density. Atomic states with lower threshold energies are more readily ionized at earlier times near optical maximum, allowing `UV break-out' across a wider range of pulsar and ejecta properties than X-ray break-out, possibly contributing to the blue/UV colours of SLSNe-I.

  17. Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Axelsson, M. Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Battelino, M.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; /more authors..

    2011-11-17

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power {dot E} = 3.5 x 10{sup 33} ergs s{sup -1} is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 {+-} 0.01 and 0.08 {+-} 0.02 wide, separated by 0.44 {+-} 0.02 in phase. The first gamma-ray peak falls 0.15 {+-} 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 {+-} 1.05 {+-} 1.35) x 10{sup -8} cm{sup -2} s{sup -1} with cut-off energy (1.7 {+-} 0.4 {+-} 0.5) GeV. Based on its parallax distance of (300 {+-} 90) pc, we obtain a gamma-ray efficiency L{sub {gamma}}/{dot E} {approx_equal} 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  18. MODELING PHASE-ALIGNED GAMMA-RAY AND RADIO MILLISECOND PULSAR LIGHT CURVES

    SciTech Connect

    Venter, C.; Johnson, T. J.; Harding, A. K.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J0034-0534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of 'altitude-limited' outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario ('low-altitude slot gap' (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere

  19. Modeling Phase-Aligned Gamma-Ray and Radio Millisecond Pulsar Light Curves

    NASA Technical Reports Server (NTRS)

    Venter, C.; Johnson, T.; Harding, A.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J00340534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of altitude-limited outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario (low-altitude slot gap (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere, and

  20. A CHANDRA OBSERVATION OF THE BURSTING MILLISECOND X-RAY PULSAR IGR J17511-3057

    SciTech Connect

    Paizis, A.; Nowak, M. A.; Rodriguez, J.; Chaty, S.; Del Santo, M.; Ubertini, P. E-mail: mnowak@space.mit.edu

    2012-08-10

    IGR J17511-3057 is a low-mass X-ray binary hosting a neutron star and is one of the few accreting millisecond X-ray pulsars with X-ray bursts. We report on a 20 ks Chandra grating observation of IGR J17511-3057, performed on 2009 September 22. We determine the most accurate X-ray position of IGR J17511-3057, {alpha}{sub J2000} = 17{sup h}51{sup m}08.{sup s}66, {delta}{sub J2000} = -30 Degree-Sign 57'41.''0 (90% uncertainty of 0.''6). During the observation, a {approx}54 s long type-I X-ray burst is detected. The persistent (non-burst) emission has an absorbed 0.5-8 keV luminosity of 1.7 Multiplication-Sign 10{sup 36} erg s{sup -1} (at 6.9 kpc) and can be well described by a thermal Comptonization model of soft, {approx}0.6 keV, seed photons upscattered by a hot corona. The type-I X-ray burst spectrum, with average luminosity over the 54 s duration L{sub 0.5-8{sub keV}} = 1.6 Multiplication-Sign 10{sup 37} erg s{sup -1}, can be well described by a blackbody with kT{sub bb} {approx} 1.6 keV and R{sub bb} {approx} 5 km. While an evolution in temperature of the blackbody can be appreciated throughout the burst (average peak kT{sub bb} = 2.5{sup +0.8}{sub -0.4} keV to tail kT{sub bb} = 1.3{sup +0.2}{sub -0.1} keV), the relative emitting surface shows no evolution. The overall persistent and type-I burst properties observed during the Chandra observation are consistent with what was previously reported during the 2009 outburst of IGR J17511-3057.

  1. Partial accretion in the propeller stage of accreting millisecond X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Gungor, Can; Gogus, Ersin; Eksi, Kazim Yavuz; Guver, Tolga

    2016-07-01

    Accreting millisecond X-ray pulsars (AMXPs) are very important objects for studying the stages of disk - magnetosphere interaction as these objects may show different stages in an observable duration. A typical X-ray light curve of an outburst of AMXP has a fast rise and an exponential decay phases. Most of the outbursts have a knee where the flux goes from the slow decay stage to the rapid decay stage. This knee may be linked to the transition from accretion to propeller stage. Since, after the knee, the X-ray luminosity of the source is still higher than its quiescent level, the accretion from inner disc must be continuing in the propeller stage with a lower fraction than in the accretion stage. The X-ray does not only come from accretion onto the poles but the inner parts of the disk may also contribute to the total X-ray luminosity. To infer what fraction (f) of the inflowing matter accretes onto the star the light curve in the propeller stage, one should first separate the emission originating from the disk and obtain a light curve of X-ray emission only from the magnetic poles. We provide a new method to infer from the observational data the fraction of accreting matter onto the neutron star pole to the mass transferring from outer layers of the disc to the inner disc (f), as a function of the fastness parameter (ω_{*}), assuming the knee is due to the transition from accretion to the propeller stage. We transform X-ray luminosities to the mass fraction, f, and the time scale of outburst to fastness parameter, ω_*. It allows us to compare different types of outbursts of an AMXP in f - ω_* space which is universal for a unique system. We analysed the Rossi X-ray Timing Explorer/Proportional Counter Array (RXTE/PCA) observations of the 2000 and the 2011 outbursts and the Swift Gamma-Ray Burst Mission/X-ray Telescope (SWIFT/XRT) data of the 2013 outburst of the most known AMXP, Aql X-1 using a combination of blackbody representing hot spot, disk blackbody

  2. Evidence for a Millisecond Pulsar in 4U 1636-53 During a Superburst

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Markwardt, Craig B.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the discovery with the Proportional Counter Array on board the Rossi X-ray Timing Explorer of highly coherent 582 Hz pulsations during the February 22, 2001 (UT) 'superburst' from 4U 1636-53. The pulsations are detected during an 800 s interval spanning the flux maximum of the burst. Within this interval the barycentric oscillation frequency increases in a monotonic fashion from 581.89 to 581.93 Hz. The predicted orbital motion of the neutron star during this interval is consistent with such an increase as long as optical maximum corresponds roughly with superior conjunction of V801 Arae, the optical companion to the neutron star in 4U 1636-53. We show that a range of circular orbits with 90 < v(sub ns) sin i < 175 km/s and 0.336 > phi(sub 0) > 0.277 for the neutron star can provide an excellent description of the frequency and phase evolution. The brevity of the observed pulse train with respect to the 3.8 hour orbital period unfortunately does not allow more precise constraints. The average pulse profile is sinusoidal and the time averaged pulsation amplitude, as inferred from the half amplitude of the sinusoid is 1%, smaller than typical for burst oscillations observed in normal thermonuclear bursts. We do not detect any higher harmonics nor the putative subharmonic near 290 Hz. The 90% upper limits on signal amplitude at the subharmonic and first harmonic are 0.1 and 0.06%, respectively. The highly coherent pulsation, with a Q = v(sub 0)/delta-v > 4.5 x 10(exp 5) provides compelling evidence for a rapidly rotating neutron star in 4U 1636-53, and further supports the connection of burst oscillation frequencies with the spin frequencies of neutron stars. Our results provide further evidence that some millisecond pulsars are spun up via accretion in LMXBs. We also discuss the implications of our orbital velocity constraint for the masses of the components of 4U 1636-53.

  3. THE NEAREST MILLISECOND PULSAR REVISITED WITH XMM-NEWTON: IMPROVED MASS-RADIUS CONSTRAINTS FOR PSR J0437-4715

    SciTech Connect

    Bogdanov, Slavko

    2013-01-10

    I present an analysis of the deepest X-ray exposure of a radio millisecond pulsar (MSP) to date, an X-ray Multi Mirror-Newton European Photon Imaging Camera spectroscopic and timing observation of the nearest known MSP, PSR J0437-4715. The timing data clearly reveal a secondary broad X-ray pulse offset from the main pulse by {approx}0.55 in rotational phase. In the context of a model of surface thermal emission from the hot polar caps of the neutron star, this can be plausibly explained by a magnetic dipole field that is significantly displaced from the stellar center. Such an offset, if commonplace in MSPs, has important implications for studies of the pulsar population, high energy pulsed emission, and the pulsar contribution to cosmic-ray positrons. The continuum emission shows evidence for at least three thermal components, with the hottest radiation most likely originating from the hot magnetic polar caps and the cooler emission from the bulk of the surface. I present pulse phase-resolved X-ray spectroscopy of PSR J0437-4715, which for the first time properly accounts for the system geometry of a radio pulsar. Such an approach is essential for unbiased measurements of the temperatures and emission areas of polar cap radiation from pulsars. Detailed modeling of the thermal pulses, including relativistic and atmospheric effects, provides a constraint on the redshift-corrected neutron star radius of R > 11.1 km (at 3{sigma} conf.) for the current radio timing mass measurement of 1.76 M {sub Sun }. This limit favors 'stiff' equations of state.

  4. NuSTAR OBSERVATIONS AND BROADBAND SPECTRAL ENERGY DISTRIBUTION MODELING OF THE MILLISECOND PULSAR BINARY PSR J1023+0038

    SciTech Connect

    Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Jin, Ruolan; Takata, J.; Cheng, K. S.; Hui, C. Y. E-mail: akong@phys.nthu.edu.tw

    2014-12-20

    We report the first hard X-ray (3-79 keV) observations of the millisecond pulsar (MSP) binary PSR J1023+0038 using NuSTAR. This system has been shown transiting between a low-mass X-ray binary (LMXB) state and a rotation-powered MSP state. The NuSTAR observations were taken in both LMXB state and rotation-powered state. The source is clearly seen in both states up to ∼79 keV. During the LMXB state, the 3-79 keV flux is about a factor of 10 higher than in the rotation-powered state. The hard X-rays show clear orbital modulation during the X-ray faint rotation-powered state but the X-ray orbital period is not detected in the X-ray bright LMXB state. In addition, the X-ray spectrum changes from a flat power-law spectrum during the rotation-powered state to a steeper power-law spectrum in the LMXB state. We suggest that the hard X-rays are due to the intrabinary shock from the interaction between the pulsar wind and the injected material from the low-mass companion star. During the rotation-powered MSP state, the X-ray orbital modulation is due to Doppler boosting of the shocked pulsar wind. At the LMXB state, the evaporating matter of the accretion disk due to the gamma-ray irradiation from the pulsar stops almost all the pulsar wind, resulting in the disappearance of the X-ray orbital modulation.

  5. The End of Accretion: The X-Ray Binary/Millisecond Pulsar Transition Object PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Archibald, Anne

    2015-04-01

    Millisecond radio pulsars (MSRPs), those spinning hundreds of times per second, have long been understood to be old pulsars that have been spun up by the accretion of matter from a companion in a low-mass X-ray binary (LMXB) phase. Yet the details of this transformation, particularly the end of the accretion process and the birth of a radio pulsar, remain mysterious. I will describe the discovery and detailed study of the first object known to transition between MSRP and LMXB states, PSR J1023+0038. By dint of a multiwavelength campaign of observations in the RMSP state, we are able to measure all the key system parameters and show the existence of an X-ray shock close to the pulsar-facing side of the companion. Since the discovery of PSR J1023+0038, two more objects (XSS J12270-4859 and M28I) have been found to make the same transition, and the study of these transitioning objects has become an active field of research. Most interestingly, PSR J1023+0038 has transitioned back into an LMXB state, with an active accretion disk and a puzzling increase in gamma-ray flux. Our detailed picture of the system allows us to test models of accretion against the phenomena we observe in PSR J1023+0038, and in fact these observations challenge current models: in spite of the low luminosity of the system (and low inferred accretion rate) some material is penetrating the centrifugal barrier and falling on the neutron-star surface. Key evidence for explaining this puzzling behaviour will come when PSR J1023+0038 returns to an MSRP state and we are able to compare pulsar timing models from after the LMXB state with those we obtained in this work.

  6. Observations and modeling of the companions of short period binary millisecond pulsars: evidence for high-mass neutron stars

    SciTech Connect

    Schroeder, Joshua; Halpern, Jules

    2014-10-01

    We present observations of fields containing eight recently discovered binary millisecond pulsars using the telescopes at MDM Observatory. Optical counterparts to four of these systems are detected, one of which, PSR J2214+3000, is a novel detection. Additionally, we present the fully phase-resolved B, V, and R light curves of the optical counterparts to two objects, PSR J1810+1744 and PSR J2215+5135 for which we employ model fitting using the eclipsing light curve (ELC) model of Orosz and Hauschildt to measure the unknown system parameters. For PSR J1810+1744, we find that the system parameters cannot be fit even assuming that 100% of the spin-down luminosity of the pulsar is irradiating the secondary, and so radial velocity measurements of this object will be required for the complete solution. However, PSR J2215+5135 exhibits light curves that are extremely well constrained using the ELC model and we find that the mass of the neutron star is constrained by these and the radio observations to be M {sub NS} > 1.75 M {sub ☉} at the 3σ level. We also find a discrepancy between the model temperature and the measured colors of this object, which we interpret as possible evidence for an additional high-temperature source such as a quiescent disk. Given this and the fact that PSR J2215+5135 contains a relatively high mass companion (M {sub c} > 0.1 M {sub ☉}), we propose that similar to the binary pulsar systems PSR J1023+0038 and IGR J18245–2452, the pulsar may transition between accretion- and rotation-powered modes.

  7. The Temperature and Cooling Age of the White Dwarf Companion to the Millisecond Pulsar PSR B1855+09.

    PubMed

    van Kerkwijk MH; Bell; Kaspi; Kulkarni

    2000-02-10

    We report on Keck and Hubble Space Telescope observations of the binary millisecond pulsar PSR B1855+09. We detect its white dwarf companion and measure mF555W=25.90+/-0.12 and mF814W=24.19+/-0.11 (Vega system). From the reddening-corrected color, (mF555W-mF814W&parr0;0=1.06+/-0.21, we infer a temperature Teff=4800+/-800 K. The white dwarf mass is known accurately from measurements of the Shapiro delay of the pulsar signal, MC=0.258+0.028-0.016 M middle dot in circle. Hence, given a cooling model, one can use the measured temperature to determine the cooling age. The main uncertainty in the cooling models for such low-mass white dwarfs is the amount of residual nuclear burning, which is set by the thickness of the hydrogen layer surrounding the helium core. From the properties of similar systems, it has been inferred that helium white dwarfs form with thick hydrogen layers, with mass greater, similar3x10-3 M middle dot in circle, which leads to significant additional heating. This is consistent with expectations from simple evolutionary models of the preceding binary evolution. For PSR B1855+09, though, such models lead to a cooling age of approximately 10 Gyr, which is twice the spin-down age of the pulsar. It could be that the spin-down age were incorrect, which would call the standard vacuum dipole braking model into question. For two other pulsar companions, however, ages well over 10 Gyr are inferred, indicating that the problem may lie with the cooling models. There is no age discrepancy for models in which the white dwarfs are formed with thinner hydrogen layers ( less, similar3x10-4 M middle dot in circle). PMID:10642200

  8. The gamma-ray luminosity function of millisecond pulsars and implications for the GeV excess

    DOE PAGESBeta

    Hooper, Dan; Mohlabeng, Gopolang

    2016-03-29

    It has been proposed that a large population of unresolved millisecond pulsars (MSPs) could potentially account for the excess of GeV-scale gamma-rays observed from the region surrounding the Galactic Center. The viability of this scenario depends critically on the gamma-ray luminosity function of this source population, which determines how many MSPs Fermi should have already detected as resolved point sources. In this paper, we revisit the gamma-ray luminosity function of MSPs, without relying on uncertain distance measurements. Our determination, based on a comparison of models with the observed characteristics of the MSP population, suggests that Fermi should have already detectedmore » a significant number of sources associated with such a hypothesized Inner Galaxy population. As a result, we cannot rule out a scenario in which the MSPs residing near the Galactic Center are systematically less luminous than those present in the Galactic Plane or within globular clusters.« less

  9. Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

    NASA Astrophysics Data System (ADS)

    Pintore, F.; Sanna, A.; Di Salvo, T.; Del Santo, M.; Riggio, A.; D'Aì, A.; Burderi, L.; Scarano, F.; Iaria, R.

    2016-04-01

    We analysed a 115-ks XMM-Newton observation and the stacking of 8 d of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (˜2 keV) and an additional hard X-ray emission described by a power law (Γ ˜ 2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Comptonization emission coming out of an optically thick plasma region, while the origin of the high-energy tail is still under debate. In addition, a number of broad (σ = 0.1-0.4 keV) emission features likely associated with reflection processes have been observed in the XMM-Newton data. The estimated 1.0-50 keV unabsorbed luminosity of the source is ˜5 × 1037 erg s-1, about 25 per cent of the Eddington limit assuming a 1.4 M⊙ NS. We suggest that the spectral properties of SAX J1748.9-2021 are consistent with a soft state, differently from many other accreting X-ray millisecond pulsars which are usually found in the hard state. Moreover, none of the observed type-I burst reached the Eddington luminosity. Assuming that the burst ignition and emission are produced above the whole NS surface, we estimate an NS radius of ˜7-8 km, consistent with previous results.

  10. THE TRANSIENT ACCRETING X-RAY PULSAR XTE J1946+274: STABILITY OF X-RAY PROPERTIES AT LOW FLUX AND UPDATED ORBITAL SOLUTION

    SciTech Connect

    Marcu-Cheatham, Diana M.; Pottschmidt, Katja; Kühnel, Matthias; Müller, Sebastian; Falkner, Sebastian; Kreykenbohm, Ingo; Caballero, Isabel; Jenke, Peter J.; Wilson-Hodge, Colleen A.; Fürst, Felix; Grinberg, Victoria; Hemphill, Paul B.; Rothschild, Richard E.; Klochkov, Dmitry; Terada, Yukikatsu; and others

    2015-12-10

    We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 days orbit with 2–3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi–Dirac cut-off power-law model along with a narrow Fe Kα line at 6.4 keV and a weak Cyclotron Resonance Scattering Feature (CRSF) at ∼35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the subcritical (non-radiation dominated) state since its pulse profile is stable over all observed luminosities and the energy of the CRSF is approximately the same at the highest (∼5 × 10{sup 37} erg s{sup −1}) and lowest (∼5 × 10{sup 36} erg s{sup −1}) observed 3–60 keV luminosities.

  11. PULSE AMPLITUDE DEPENDS ON kHz QPO FREQUENCY IN THE ACCRETING MILLISECOND PULSAR SAX J1808.4-3658

    SciTech Connect

    Bult, Peter; Van der Klis, Michiel

    2015-01-10

    We study the relation between the 300-700 Hz upper kHz quasi-periodic oscillation (QPO) and the 401 Hz coherent pulsations across all outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658 observed with the Rossi X-ray Timing Explorer. We find that the pulse amplitude systematically changes by a factor of ∼2 when the upper kHz QPO frequency passes through 401 Hz: it halves when the QPO moves to above the spin frequency and doubles again on the way back. This establishes for the first time the existence of a direct effect of kHz QPOs on the millisecond pulsations and provides a new clue to the origin of the upper kHz QPO. We discuss several scenarios and conclude that while more complex explanations can not formally be excluded, our result strongly suggests that the QPO is produced by azimuthal motion at the inner edge of the accretion disk, most likely orbital motion. Depending on whether this azimuthal motion is faster or slower than the spin, the plasma then interacts differently with the neutron-star magnetic field. The most straightforward interpretation involves magnetospheric centrifugal inhibition of the accretion flow that sets in when the upper kHz QPO becomes slower than the spin.

  12. Timing and Fermi LAT Analysis of Four Millisecond Pulsars Discovered in Parkes Radio Searches of Gamma-ray Sources

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Ransom, Scott M.; Camilo, Fernando M.; Kerr, Matthew; Reynolds, John; Sarkissian, John; Freire, Paulo; Thankful Cromartie, H.; Barr, Ewan D.

    2016-01-01

    We present phase-connected timing solutions for four binary millisecond pulsars discovered in searches of Fermi LAT gamma-ray sources using the Parkes radio telescope. Follow-up timing observations of PSRs J0955-6150, J1012-4235, J1036-8317, and J1946-5403 have yielded timing models with precise orbital and astrometric parameters. For each pulsar, we also did a gamma-ray spectral analysis using LAT Pass 8 data and generated photon probabilities for use in a weighted H-test pulsation test. In all 4 cases, we detect significant gamma-ray pulsations, confirming the identification with the gamma-ray source originally targeted in the discovery observations. We describe the results of the pulse timing and gamma-ray spectral and timing analysis and the characteristics of each of the systems. The Fermi-LAT Collaboration acknowledges support for LAT development, operation and data analysis from NASA and DOE (United States), CEA/Irfu and IN2P3/CNRS (France), ASI and INFN (Italy), MEXT, KEK, and JAXA (Japan), and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board (Sweden). Science analysis support in the operations phase from INAF (Italy) and CNES (France) is also gratefully acknowledged. NRL participation was funded by NASA.

  13. THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS

    SciTech Connect

    Arzoumanian, Zaven; Brazier, Adam; Chatterjee, Shami; Cordes, James M.; Dolch, Timothy; Burke-Spolaor, Sarah; Demorest, Paul B.; Chamberlin, Sydney; Christy, Brian; Cornish, Neil; Crowter, Kathryn; Fonseca, Emmanuel; Gonzalez, Marjorie E.; Ellis, Justin A.; Ferdman, Robert D.; Kaspi, Victoria M.; Garver-Daniels, Nathan; Jones, Megan L.; Jenet, Fredrick A.; Jones, Glenn; Collaboration: NANOGrav Collaboration; and others

    2015-11-01

    We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We describe the observational and instrumental setups used to collect the data, and methodology applied for calculating pulse times of arrival; these include novel methods for measuring instrumental offsets and characterizing low signal-to-noise ratio timing results. The time of arrival data are fit to a physical timing model for each source, including terms that characterize time-variable dispersion measure and frequency-dependent pulse shape evolution. In conjunction with the timing model fit, we have performed a Bayesian analysis of a parameterized timing noise model for each source, and detect evidence for excess low-frequency, or “red,” timing noise in 10 of the pulsars. For 5 of these cases this is likely due to interstellar medium propagation effects rather than intrisic spin variations. Subsequent papers in this series will present further analysis of this data set aimed at detecting or limiting the presence of nanohertz-frequency gravitational wave signals.

  14. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; Stappers, B. W.; Harding, A. K.; Camilo, F.; Espinoza, C. M.; Freire, P. C. C.; Gargano, F.; Grove, J. E.; Johnston, S.; Michelson, P. F.; Noutsos, A.; Parent, D.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Smith, D. A.

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  15. PULSED GAMMA RAYS FROM THE ORIGINAL MILLISECOND AND BLACK WIDOW PULSARS: A CASE FOR CAUSTIC RADIO EMISSION?

    SciTech Connect

    Guillemot, L.; Kramer, M.; Freire, P. C. C.; Noutsos, A.; Johnson, T. J.; Harding, A. K.; Venter, C.; Kerr, M.; Michelson, P. F.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Stappers, B. W.; Espinoza, C. M.; Cognard, I.; Camilo, F.; Gargano, F.; Grove, J. E.; Johnston, S. E-mail: tyrel.j.johnson@gmail.com E-mail: kerrm@stanford.edu; and others

    2012-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival Rossi X-ray Timing Explorer and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence ({approx}4{sigma}) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.

  16. Millisecond pulsars and the Galactic Center gamma-ray excess: the importance of luminosity function and secondary emission

    NASA Astrophysics Data System (ADS)

    Petrović, Jovana; Serpico, Pasquale D.; Zaharijas, Gabrijela

    2015-02-01

    Several groups of authors have analyzed Fermi LAT data in a region around the Galactic Center finding an unaccounted gamma-ray excess over diffuse backgrounds in the GeV energy range. It has been argued that it is difficult or even impossible to explain this diffuse emission by the leading astrophysical candidates—millisecond pulsars (MSPs). Here we provide a new estimate of the contribution to the excess by a population of yet unresolved MSP located in the bulge of the Milky Way. We simulate this population with the GALPLOT package by adopting a parametric approach, with the range of free parameters gauged on the MSP characteristics reported by the second pulsar catalogue (2PC). We find that the conclusions strongly depend on the details of the MSP luminosity function (in particular, its high luminosity end) and other explicit or tacit assumptions on the MSP statistical properties, which we discuss. Notably, for the first time we study the importance of the possible secondary emission of the MSPs in the Galactic Center, i.e. the emission via inverse Compton losses of electrons injected in the interstellar medium. Differently from a majority of other authors, we find that within current uncertainties a large if not dominant contribution of MSPs to the excess cannot be excluded. We also show that the sensitivities of future instruments or possibly already of the latest LAT data analysis (Pass 8) provide good perspectives to test this scenario by resolving a significant number of MSPs.

  17. The NANOGrav Nine-year Data Set: Observations, Arrival Time Measurements, and Analysis of 37 Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    The NANOGrav Collaboration; Arzoumanian, Zaven; Brazier, Adam; Burke-Spolaor, Sarah; Chamberlin, Sydney; Chatterjee, Shami; Christy, Brian; Cordes, James M.; Cornish, Neil; Crowter, Kathryn; Demorest, Paul B.; Dolch, Timothy; Ellis, Justin A.; Ferdman, Robert D.; Fonseca, Emmanuel; Garver-Daniels, Nathan; Gonzalez, Marjorie E.; Jenet, Fredrick A.; Jones, Glenn; Jones, Megan L.; Kaspi, Victoria M.; Koop, Michael; Lam, Michael T.; Lazio, T. Joseph W.; Levin, Lina; Lommen, Andrea N.; Lorimer, Duncan R.; Luo, Jing; Lynch, Ryan S.; Madison, Dustin; McLaughlin, Maura A.; McWilliams, Sean T.; Nice, David J.; Palliyaguru, Nipuni; Pennucci, Timothy T.; Ransom, Scott M.; Siemens, Xavier; Stairs, Ingrid H.; Stinebring, Daniel R.; Stovall, Kevin; Swiggum, Joseph K.; Vallisneri, Michele; van Haasteren, Rutger; Wang, Yan; Zhu, Weiwei

    2015-11-01

    We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We describe the observational and instrumental setups used to collect the data, and methodology applied for calculating pulse times of arrival; these include novel methods for measuring instrumental offsets and characterizing low signal-to-noise ratio timing results. The time of arrival data are fit to a physical timing model for each source, including terms that characterize time-variable dispersion measure and frequency-dependent pulse shape evolution. In conjunction with the timing model fit, we have performed a Bayesian analysis of a parameterized timing noise model for each source, and detect evidence for excess low-frequency, or “red,” timing noise in 10 of the pulsars. For 5 of these cases this is likely due to interstellar medium propagation effects rather than intrisic spin variations. Subsequent papers in this series will present further analysis of this data set aimed at detecting or limiting the presence of nanohertz-frequency gravitational wave signals.

  18. Imaging X-Ray, Optical, and Infrared Observations of the Transient Anomalous X-Ray Pulsar XTE J1810-197

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Halpern, J. P.; Buxton, M.; Bailyn, C.

    2004-04-01

    We report X-ray imaging, timing, and spectral studies of XTE J1810-197, a 5.54 s pulsar discovered by Ibrahim and coworkers in recent Rossi X-Ray Timing Explorer (RXTE) observations. In a set of short exposures with the High Resolution Camera on board the Chandra X-Ray Observatory, we detect a strongly modulated signal (55%+/-4% pulsed fraction) with the expected period located at (J2000) 18h09m51s08, -19deg43'51.7", with a uncertainty radius of 0.6" (90% confidence level). Spectra obtained with XMM-Newton are well fitted by a two-component model that typically describes anomalous X-ray pulsars (AXPs), an absorbed blackbody plus power law with parameters kT=0.67+/-0.01 keV, Γ=3.7+/-0.2, NH=(1.05+/-0.05)×1022 cm-2, and FX(0.5-10keV)=3.98×10-11 ergs cm-2 s-1. Alternatively, a two-temperature blackbody fit is just as acceptable. The location of CXOU J180951.0-194351 is consistent with a point source seen in archival Einstein, ROSAT, and ASCA images, when its flux was nearly 2 orders of magnitude fainter, and from which no pulsations are found. The spectrum changed dramatically between the ``quiescent'' and ``active'' states; the former can be modeled as a softer blackbody. Using XMM-Newton timing data, we place an upper limit of 0.03 lt-s on any orbital motion in the period range 10 minutes-8 hr. Optical and infrared images obtained on the SMARTS 1.3 m telescope at the Cerro Tololo Inter-American Observatory (CTIO) show no object in the Chandra error circle to limits V=22.5, I=21.3, J=18.9, and K=17.5. Together, these results argue that CXOU J180951.0-194351 is an isolated neutron star, one most similar to the transient AXP AX J1844.8-0256. Continuing study of XTE J1810-197 in various states of luminosity is important for understanding and possibly unifying a growing class of isolated, young neutron stars that are not powered by rotation.

  19. Multiwavelength Observations of the Redback Millisecond Pulsar J1048+2339

    NASA Astrophysics Data System (ADS)

    Deneva, J. S.; Ray, P. S.; Camilo, F.; Halpern, J. P.; Wood, K.; Cromartie, H. T.; Ferrara, E.; Kerr, M.; Ransom, S. M.; Wolff, M. T.; Chambers, K. C.; Magnier, E. A.

    2016-06-01

    We report on radio timing and multiwavelength observations of the 4.66 ms redback pulsar J1048+2339, which was discovered in an Arecibo search targeting the Fermi-Large Area Telescope source 3FGL J1048.6+2338. Two years of timing allowed us to derive precise astrometric and orbital parameters for the pulsar. PSR J1048+2339 is in a 6 hr binary and exhibits radio eclipses over half the orbital period and rapid orbital period variations. The companion has a minimum mass of 0.3 M ⊙, and we have identified a V ˜ 20 variable optical counterpart in data from several surveys. The phasing of its ˜1 mag modulation at the orbital period suggests highly efficient and asymmetric heating by the pulsar wind, which may be due to an intrabinary shock that is distorted near the companion, or to the companion’s magnetic field channeling the pulsar wind to specific locations on its surface. We also present gamma-ray spectral analysis of the source and preliminary results from searches for gamma-ray pulsations using the radio ephemeris.

  20. Soft x-ray properties of the binary millisecond pulsar J0437-4715

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.

    1995-01-01

    We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0. 27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2-1.5, intervening column density NH = (5-8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1-2. 4 keV band. We also use a bright EUVE/ROSAT source only 4.3 deg from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = lES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, NH less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50-600 m and temperature (1.0-3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4-12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma-ray pulsars may have.

  1. Search for Pulsations from a Nearby Millisecond Pulsar and Wasilewski 49: Mirror for a Hidden Seyfert 1 Nucleus

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1999-01-01

    Five studies are reported in this final report. The recently discovered 5.3 ms pulsar J1012+5307 at a distance of 520 pc is in an area of the sky which is particularly deficient in absorbing gas. The column density along the line of sight is less than 7.5 x 10(exp 19) CM(exp -2) which facilitates soft X-ray observations. Halpern reported a possible ROSAT Position Sensitive Proportional Counter (PSPC) detection of the pulsar in a serendipitous, off-axis observation. We have now confirmed the X-ray emission of PSR J1012+,5307 in a 23 ksec observation with the ROSAT High Resolution Imager (HRI). A point source is detected within 3" of the radio position. Its count rate of 1.6 +/- 0.3 x 10(exp -3) s(exp -1) corresponds to an unabsorbed 0. 1-2.4 keV flux of 6.4 x 10(exp -14) ergs cm(exp -2) s(exp -1), similar to that reported previously. This counts-to-flux conversion is valid for N(sub H) = 5 x 10(exp 19) cm(exp -2), and either a power-law spectrum of photon index 2.5 or a blackbody of kT = 0.1 keV. The implied X-ray luminosity of 2.0 x 10(exp 30) ergs s(exp -1) is 5 X 10(exp -4) of the pulsar's spin-down power dot-E, and similar to that of the nearest millisecond pulsar J0437-4715, which is nearly a twin of J1012+5307 in P dot-E. We subjected the 37 photons (and 13 background counts) within the source region to a pulsar search, but no evidence for pulsation was found. The pulsar apparently emits over a large fraction of its rotation cycle, and the absence of sharp modulation can be taken as evidence for surface thermal emission, as is favored for PSR J0437-4715, rather than magnetospheric X-ray emission which is apparent in the sharp pulses of the much more energetic millisecond pulsar B1821-24. A further test of this interpretation will be made with a longer ROSAT observation, which will increase the number of photons collected by a factor of 5, and permit a more sensitive examination of the light curve for modulation due to emission from heated polar caps. If found

  2. Search for Pulsations from a Nearby Millisecond Pulsar and Wasilewski 49: Mirror for a Hidden Seyfert 1 Nucleus

    NASA Astrophysics Data System (ADS)

    Halpern, Jules P.

    1999-03-01

    Five studies are reported in this final report. The recently discovered 5.3 ms pulsar J1012+5307 at a distance of 520 pc is in an area of the sky which is particularly deficient in absorbing gas. The column density along the line of sight is less than 7.5 x 1019 CM-2 which facilitates soft X-ray observations. Halpern reported a possible ROSAT Position Sensitive Proportional Counter (PSPC) detection of the pulsar in a serendipitous, off-axis observation. We have now confirmed the X-ray emission of PSR J1012+,5307 in a 23 ksec observation with the ROSAT High Resolution Imager (HRI). A point source is detected within 3" of the radio position. Its count rate of 1.6 +/- 0.3 x 10-3 s-1 corresponds to an unabsorbed 0. 1-2.4 keV flux of 6.4 x 10-14 ergs cm-2 s-1, similar to that reported previously. This counts-to-flux conversion is valid for NH = 5 x 1019 cm-2, and either a power-law spectrum of photon index 2.5 or a blackbody of kT = 0.1 keV. The implied X-ray luminosity of 2.0 x 1030 ergs s-1 is 5 X 10-4 of the pulsar's spin-down power dot-E, and similar to that of the nearest millisecond pulsar J0437-4715, which is nearly a twin of J1012+5307 in P dot-E. We subjected the 37 photons (and 13 background counts) within the source region to a pulsar search, but no evidence for pulsation was found. The pulsar apparently emits over a large fraction of its rotation cycle, and the absence of sharp modulation can be taken as evidence for surface thermal emission, as is favored for PSR J0437-4715, rather than magnetospheric X-ray emission which is apparent in the sharp pulses of the much more energetic millisecond pulsar B1821-24. A further test of this interpretation will be made with a longer ROSAT observation, which will increase the number of photons collected by a factor of 5, and permit a more sensitive examination of the light curve for modulation due to emission from heated polar caps. If found, such modulation will be further evidence that surface reheating by the impact

  3. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Tendulkar, Shriharsh P.; Yang, Chengwei; An, Hongjun; Kaspi, Victoria M.; Archibald, Anne M; Bassa, Cees; Bellm, Eric; Bogdanov, Slavko; Harrison, Fiona; Hessels, Jason; Janssen, Gemma H; Lyne, Andrew G; Patruno, Alessandro; Stappers, Benjamin; Stern, Daniel; Tomsick, John; Boggs, Steven E.; Chakrabarty, Deepto; Christensen, Finn; Craig, William W.; Hailey, Charles James; Zhang, William

    2014-08-01

    We report 3-79 keV NuSTAR observations of the remarkable millisecond pulsar-low mass X-ray binary (LMXB) transition system PSR J1023+0038 from June and October 2013, before and after the formation of an accretion disk around the neutron star. Between June 10-12, shortly before the radio disappearance of the pulsar, the 3-79 keV X-ray spectrum was well fit by a simple power law with a photon index of Γ = 1.17±0.08 with a 3-79 keV luminosity of 7.4±0.4×1032 erg/s. Significant orbital modulation was observed with a modulation fraction of 36±10%. During the October 19-21 observation, the spectrum is described by a softer power law (Γ = 1.66±0.06) with an average luminosity of 5.8±0.2×1033 erg/s and a peak luminosity of ≈ 1.2×1034 erg/s observed during a flare. No significant orbital modulation was detected. The spectral observations are consistent with previous and current multi-wavelength observations and show the hard X-ray power law extending to 79 keV without a spectral break. Unusual, sharp edged, flat bottomed ‘dips’ are observed with widths between 30-1000 s and ingress and egress time-scales of 30-60 s. These dips are distinct from dipping activity observed in LMXBs. We compare and contrast these dips to observations of dips and state changes in the similar transition systems PSR J1824-2452I and XSS J1227.0-4859 and discuss possible interpretations based on the transitions in the inner disk.

  4. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Tendulkar, Shriharsh P.; Yang, Chengwei; An, Hongjun; Kaspi, Victoria M.; Archibald, Anne M.; Bassa, Cees; Bellm, Eric; Bogdanov, Slavko; Harrison, Fiona A.; Hessels, Jason W. T.; Janssen, Gemma H.; Lyne, Andrew G.; Patruno, Alessandro; Stappers, Benjamin; Stern, Daniel; Tomsick, John A.; Boggs, Steven E.; Chakrabarty, Deepto; Christensen, Finn E.; Craig, William W.; Hailey, Charles A.; Zhang, William

    2014-08-01

    We report NuSTAR observations of the millisecond pulsar-low-mass X-ray binary (LMXB) transition system PSR J1023+0038 from 2013 June and October, before and after the formation of an accretion disk around the neutron star. Between June 10 and 12, a few days to two weeks before the radio disappearance of the pulsar, the 3-79 keV X-ray spectrum was well fit by a simple power law with a photon index of Γ =1.17+0.08-0.07 (at 90% confidence) with a 3-79 keV luminosity of 7.4 ± 0.4 × 1032 erg s-1. Significant orbital modulation was observed with a modulation fraction of 36% ± 10%. During the October 19-21 observation, the spectrum is described by a softer power law (Γ =1.66+0.06-0.05) with an average luminosity of 5.8 ± 0.2 × 1033 erg s-1 and a peak luminosity of ≈1.2 × 1034 erg s-1 observed during a flare. No significant orbital modulation was detected. The spectral observations are consistent with previous and current multiwavelength observations and show the hard X-ray power law extending to 79 keV without a spectral break. Sharp-edged, flat-bottomed dips are observed with widths between 30 and 1000 s and ingress and egress timescales of 30-60 s. No change in hardness ratio was observed during the dips. Consecutive dip separations are log-normal in distribution with a typical separation of approximately 400 s. These dips are distinct from dipping activity observed in LMXBs. We compare and contrast these dips to observations of dips and state changes in the similar transition systems PSR J1824-2452I and XSS J1227.0-4859 and discuss possible interpretations based on the transitions in the inner disk.

  5. DISCOVERY OF AN ACCRETING MILLISECOND PULSAR IN THE ECLIPSING BINARY SYSTEM SWIFT J1749.4-2807

    SciTech Connect

    Altamirano, D.; Cavecchi, Y.; Patruno, A.; Watts, A.; Degenaar, N.; Kalamkar, M.; Van der Klis, M.; Armas Padilla, M.; Kaur, R.; Yang, Y. J.; Wijnands, R.; Linares, M.; Rea, N.; Casella, P.; Soleri, P.

    2011-01-20

    We report on the discovery and the timing analysis of the first eclipsing accretion-powered millisecond X-ray pulsar (AMXP): SWIFT J1749.4-2807. The neutron star rotates at a frequency of {approx}517.9 Hz and is in a binary system with an orbital period of 8.8 hr and a projected semimajor axis of {approx}1.90 lt-s. Assuming a neutron star between 0.8 and 2.2 M{sub sun} and using the mass function of the system and the eclipse half-angle, we constrain the mass of the companion and the inclination of the system to be in the {approx}0.46-0.81 M{sub sun} and {approx} 74.{sup 0}4-77.{sup 0}3 range, respectively. To date, this is the tightest constraint on the orbital inclination of any AMXP. As in other AMXPs, the pulse profile shows harmonic content up to the third overtone. However, this is the first AMXP to show a first overtone with rms amplitudes between {approx}6% and {approx}23%, which is the strongest ever seen and which can be more than two times stronger than the fundamental. The fact that SWIFT J1749.4-2807 is an eclipsing system that shows uncommonly strong harmonic content suggests that it might be the best source to date to set constraints on neutron star properties including compactness and geometry.

  6. TESTING THE MILLISECOND PULSAR SCENARIO OF THE GALACTIC CENTER GAMMA-RAY EXCESS WITH VERY HIGH ENERGY GAMMA-RAYS

    SciTech Connect

    Yuan, Qiang; Ioka, Kunihito

    2015-04-01

    Recent analyses of Fermi Large Area Telescope data show an extended GeV γ-ray excess on top of the expected diffuse background in the Galactic center region, which can be explained by annihilating dark matter (DM) or a population of millisecond pulsars (MSPs). We propose observations of very high energy (VHE) γ-rays to distinguish the MSP scenario from the DM scenario. GeV γ-ray MSPs should release most of their energy to the relativistic e{sup ±} wind, which will diffuse into the Galaxy and radiate TeV γ-rays through inverse Compton scattering and bremsstrahlung processes. By calculating the spectrum and spatial distribution, we show that such emission is detectable with the next generation VHE γ-ray observatory, the Cherenkov Telescope Array (CTA), under reasonable model parameters. It is essential to search for multi-wavelength counterparts to the GeV γ-ray excess in order to solve this mystery in the high-energy universe.

  7. Five New Millisecond Pulsars from a Radio Survey of 14 Unidentified Fermi-LAT Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Kerr, M.; Camilo, F.; Johnson, T. J.; Ferrara, E. C.; Guillemot, L.; Harding, A. K.; Hessels, J.; Johnson, S.; Keith, M.; Kramer, M.; Ransom, S. M.; Ray, P. S.; Reynolds, J. E.; Sarkissian, J.; Wood, K. S.

    2012-01-01

    We have discovered five millisecond pulsars (MSPs) in a survey of 14 unidentified Ferm;'LAT sources in the southern sky using the Parkes radio telescope. PSRs J0101-6422, J1514-4946, and J1902-5105 reside in binaries, while PSRs J1658-5324 and J1747-4036 are isolated. Using an ephemeris derived from timing observations of PSR JOl01-6422 (P=2.57ms, DH=12pc/cubic cm ), we have detected gamma-ray pulsations and measured its proper motion. Its gamma-ray spectrum (a power law of Gamma = 0.9 with a cutoff at 1.6 GeV) and efficiency are typical of other MSPs, but its radio and gamma-ray light curves challenge simple geometric models of emission. The high success rate of this survey -- enabled by selecting gamma-ray sources based on their detailed spectral characteristics -- and other similarly successful searches indicate that a substantial fraction of the local population of MSPs may soon be known.

  8. A Chandra look at the X-ray faint millisecond pulsars in the globular cluster NGC 6752

    NASA Astrophysics Data System (ADS)

    Forestell, L. M.; Heinke, C. O.; Cohn, H. N.; Lugger, P. M.; Sivakoff, G. R.; Bogdanov, S.; Cool, A. M.; Anderson, J.

    2014-06-01

    We combine new and archival Chandra observations of the globular cluster NGC 6752 to create a deeper X-ray source list, and study the faint radio millisecond pulsars (MSPs) of this cluster. We detect four of the five MSPs in NGC 6752, and present evidence for emission from the fifth. The X-rays from these MSPs are consistent with thermal emission from the neutron star surfaces, with significantly higher fitted blackbody temperatures than other globular cluster MSPs (though we cannot rule out contamination by non-thermal emission or other X-ray sources). NGC 6752 E is one of the lowest-LX MSPs known, with LX(0.3-8 keV) = 1.0^{+0.9}_{-0.5}× 10^{30} erg s-1. We check for optical counterparts of the three isolated MSPs in the core using new Hubble Space Telescope Advanced Camera for Surveys images, finding no plausible counterparts, which is consistent with their lack of binary companions. We compile measurements of LX and spin-down power for radio MSPs from the literature, including errors where feasible. We find no evidence that isolated MSPs have lower LX than MSPs in binary systems, omitting binary MSPs showing emission from intrabinary wind shocks. We find weak evidence for an inverse correlation between the estimated temperature of the MSP X-rays and the known MSP spin period, consistent with the predicted shrinking of the MSP polar cap size with increasing spin period.

  9. DISCOVERY OF ECLIPSES FROM THE ACCRETING MILLISECOND X-RAY PULSAR SWIFT J1749.4-2807

    SciTech Connect

    Markwardt, C. B.; Strohmayer, T. E.

    2010-07-10

    We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 M{sub sun} for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90{sup 0} longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172 {+-} 13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of 'Shapiro' delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 M{sub sun}.

  10. Discovery of Eclipses from the Accreting Millisecond X-Ray Pulsar Swift J1749.4-2807

    NASA Technical Reports Server (NTRS)

    Markwardt, C. B.; Stromhmayer, T. E.

    2010-01-01

    We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 solar mass for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90 longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172+/-13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of "Shapiro" delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 Solar mass .

  11. FORMATION OF BINARY MILLISECOND PULSARS BY ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS UNDER WIND-DRIVEN EVOLUTION

    SciTech Connect

    Ablimit, Iminhaji; Li, Xiang-Dong

    2015-02-20

    Accretion-induced collapse (AIC) of massive white dwarfs (WDs) has been proposed to be an important channel to form binary millisecond pulsars (MSPs). Recent investigations on thermal timescale mass transfer in WD binaries demonstrate that the resultant MSPs are likely to have relatively wide orbit periods (≳ 10 days). Here we calculate the evolution of WD binaries taking into account the excited wind from the companion star induced by X-ray irradiation of the accreting WD, which may drive rapid mass transfer even when the companion star is less massive than the WD. This scenario can naturally explain the formation of the strong-field neutron star in the low-mass X-ray binary 4U 1822–37. After AIC the mass transfer resumes when the companion star refills its Roche lobe, and the neutron star is recycled owing to mass accretion. A large fraction of the binaries will evolve to become binary MSPs with an He WD companion, with the orbital periods distributed between ≳ 0.1 days and ≲ 30 days, while some of them may follow the cataclysmic variable-like evolution toward very short orbits. If we instead assume that the newborn neutron star appears as an MSP and that part of its rotational energy is used to ablate its companion star, the binaries may also evolve to be the redback-like systems.

  12. Optical Observations of the Millisecond Pulsars PSR 1937+214 and PSR 1953+29

    NASA Astrophysics Data System (ADS)

    Loredo, T.; Ricker, G.; Rappaport, S.; Middleditch, J.

    The authors report here the results of photometric and time-resolved optical observations of the fields of the recently discovered ultra-fast radio pulsars, PSR 1937+214 and PSR 1953+29. Deep images of the fields reveal no conspicuous optical counterpart for PSR 1937+214, though a star with mv ≡ 20.5 is coincident with the position of PSR 1953+29. Time-resolved images of the fields of both objects, obtained with a new stroboscopic technique, have yielded upper limits on the pulsed near-infrared emission from each object. The authors briefly discuss constraints on the physical models for these systems derived from their optical studies.

  13. MULTI-WAVELENGTH OBSERVATIONS OF 3FGL J2039.6–5618: A CANDIDATE REDBACK MILLISECOND PULSAR

    SciTech Connect

    Salvetti, D.; Mignani, R. P.; Luca, A. De; Belfiore, A.; Marelli, M.; Pizzocaro, D.; Delvaux, C.; Greiner, J.; Becker, W.; Pallanca, C.; Breeveld, A. A.

    2015-12-01

    We present multi-wavelength observations of the unassociated γ-ray source 3FGL J2039.6−5618 detected by the Fermi Large Area Telescope. The source γ-ray properties suggest that it is a pulsar, most likely a millisecond pulsar, for which neither radio nor γ-ray pulsations have been detected. We observed 3FGL J2039.6−5618 with XMM-Newton and discovered several candidate X-ray counterparts within/close to the γ-ray error box. The brightest of these X-ray sources is variable with a period of 0.2245 ± 0.0081 days. Its X-ray spectrum can be described by a power law with photon index Γ{sub X} = 1.36 ± 0.09, and hydrogen column density N{sub H} < 4 × 10{sup 20} cm{sup −2}, which gives an unabsorbed 0.3–10 keV X-ray flux of 1.02 × 10{sup −13} erg cm{sup −2} s{sup −1}. Observations with the Gamma-Ray Burst Optical/Near-Infrared Detector discovered an optical counterpart to this X-ray source, with a time-averaged magnitude g′ ∼ 19.5. The counterpart features a flux modulation with a period of 0.22748 ± 0.00043 days that coincides, within the errors, with that of the X-ray source, confirming the association based on the positional coincidence. We interpret the observed X-ray/optical periodicity as the orbital period of a close binary system where one of the two members is a neutron star. The light curve profile of the companion star, which has two asymmetric peaks, suggests that the optical emission comes from two regions with different temperatures on its tidally distorted surface. Based upon its X-ray and optical properties, we consider this source as the most likely X-ray counterpart to 3FGL J2039.6−5618, which we propose to be a new redback system.

  14. NuSTAR observations of the state transition of millisecond pulsar binary PSR J1023+0038

    SciTech Connect

    Tendulkar, Shriharsh P.; Bellm, Eric; Harrison, Fiona A.; Yang, Chengwei; An, Hongjun; Kaspi, Victoria M.; Archibald, Anne M.; Bassa, Cees; Hessels, Jason W. T.; Janssen, Gemma H.; Bogdanov, Slavko; Lyne, Andrew G.; Stappers, Benjamin; Patruno, Alessandro; Stern, Daniel; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Chakrabarty, Deepto; Christensen, Finn E.; and others

    2014-08-20

    We report NuSTAR observations of the millisecond pulsar-low-mass X-ray binary (LMXB) transition system PSR J1023+0038 from 2013 June and October, before and after the formation of an accretion disk around the neutron star. Between June 10 and 12, a few days to two weeks before the radio disappearance of the pulsar, the 3-79 keV X-ray spectrum was well fit by a simple power law with a photon index of Γ=1.17{sub −0.07}{sup +0.08} (at 90% confidence) with a 3-79 keV luminosity of 7.4 ± 0.4 × 10{sup 32} erg s{sup –1}. Significant orbital modulation was observed with a modulation fraction of 36% ± 10%. During the October 19-21 observation, the spectrum is described by a softer power law (Γ=1.66{sub −0.05}{sup +0.06}) with an average luminosity of 5.8 ± 0.2 × 10{sup 33} erg s{sup –1} and a peak luminosity of ≈1.2 × 10{sup 34} erg s{sup –1} observed during a flare. No significant orbital modulation was detected. The spectral observations are consistent with previous and current multiwavelength observations and show the hard X-ray power law extending to 79 keV without a spectral break. Sharp-edged, flat-bottomed dips are observed with widths between 30 and 1000 s and ingress and egress timescales of 30-60 s. No change in hardness ratio was observed during the dips. Consecutive dip separations are log-normal in distribution with a typical separation of approximately 400 s. These dips are distinct from dipping activity observed in LMXBs. We compare and contrast these dips to observations of dips and state changes in the similar transition systems PSR J1824–2452I and XSS J1227.0–4859 and discuss possible interpretations based on the transitions in the inner disk.

  15. A NuSTAR Observation of the Gamma-ray-emitting X-ray Binary and Transitional Millisecond Pulsar Candidate 1RXS J154439.4–112820

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-07-01

    I present a 40 ks Nuclear Spectroscopic Telescope Array observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4‑112820, which is associated with the high-energy γ-ray source 3FGL J1544.6‑1125. The system is detected up to ˜30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4‑112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270‑4859 and therefore almost certainly hosts a millisecond pulsar accreting at low luminosity. I also examine the long-term accretion history of 1RXS J154439.4‑112820 based on archival optical, ultraviolet, X-ray, and γ-ray light curves covering approximately the past decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that it has not experienced prolonged episodes of a non-accreting radio pulsar state but may spontaneously undergo such events in the future.

  16. A NuSTAR Observation of the Gamma-ray-emitting X-ray Binary and Transitional Millisecond Pulsar Candidate 1RXS J154439.4-112820

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-07-01

    I present a 40 ks Nuclear Spectroscopic Telescope Array observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4-112820, which is associated with the high-energy γ-ray source 3FGL J1544.6-1125. The system is detected up to ˜30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4-112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270-4859 and therefore almost certainly hosts a millisecond pulsar accreting at low luminosity. I also examine the long-term accretion history of 1RXS J154439.4-112820 based on archival optical, ultraviolet, X-ray, and γ-ray light curves covering approximately the past decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that it has not experienced prolonged episodes of a non-accreting radio pulsar state but may spontaneously undergo such events in the future.

  17. 1 Hz FLARING IN THE ACCRETING MILLISECOND PULSAR NGC 6440 X-2: DISK TRAPPING AND ACCRETION CYCLES

    SciTech Connect

    Patruno, Alessandro; D'Angelo, Caroline

    2013-07-10

    The dynamics of the plasma in the inner regions of an accretion disk around accreting millisecond X-ray pulsars (AMXPs) is controlled by the magnetic field of the neutron star. The interaction between an accretion disk and a strong magnetic field is not well understood, particularly at low accretion rates (the so-called propeller regime). This is due in part to the lack of clear observational diagnostics to constrain the physics of the disk-field interaction. Here, we associate the strong {approx}1 Hz modulation seen in the AMXP NGC 6440 X-2 with an instability that arises when the inner edge of the accretion disk is close to the corotation radius (where the stellar rotation rate matches the Keplerian speed in the disk). A similar modulation has previously been observed in another AMXP (SAX J1808.4-3658) and we suggest that the two phenomena are related and that this may be a common phenomenon among other magnetized systems. Detailed comparisons with theoretical models suggest that when the instability is observed, the interaction region between the disk and the field is very narrow-of the order of 1 km. Modeling further suggests that there is a transition region ({approx}1-10 km) around the corotation radius where the disk-field torque changes sign from spin-up to spin-down. This is the first time that a direct observational constraint has been placed on the width of the disk-magnetosphere interaction region, in the frame of the trapped-disk instability model.

  18. VERY LONG BASELINE INTERFEROMETRY MEASURED PROPER MOTION AND PARALLAX OF THE γ-RAY MILLISECOND PULSAR PSR J0218+4232

    SciTech Connect

    Du, Yuanjie; Chen, Ding; Yang, Jun; Campbell, Robert M.; Janssen, Gemma; Stappers, Ben

    2014-02-20

    PSR J0218+4232 is a millisecond pulsar (MSP) with a flux density ∼0.9 mJy at 1.4 GHz. It is very bright in the high-energy X-ray and γ-ray domains. We conducted an astrometric program using the European VLBI Network (EVN) at 1.6 GHz to measure its proper motion and parallax. A model-independent distance would also help constrain its γ-ray luminosity. We achieved a detection of signal-to-noise ratio S/N >37 for the weak pulsar in all five epochs. Using an extragalactic radio source lying 20 arcmin away from the pulsar, we estimate the pulsar's proper motion to be μ{sub α}cos δ = 5.35 ± 0.05 mas yr{sup –1} and μ{sub δ} = –3.74 ± 0.12 mas yr{sup –1}, and a parallax of π = 0.16 ± 0.09 mas. The very long baseline interferometry (VLBI) proper motion has significantly improved upon the estimates from long-term pulsar timing observations. The VLBI parallax provides the first model-independent distance constraints: d=6.3{sub −2.3}{sup +8.0} kpc, with a corresponding 3σ lower-limit of d = 2.3 kpc. This is the first pulsar trigonometric parallax measurement based solely on EVN observations. Using the derived distance, we believe that PSR J0218+4232 is the most energetic γ-ray MSP known to date. The luminosity based on even our 3σ lower-limit distance is high enough to pose challenges to the conventional outer gap and slot gap models.

  19. Ordinary X-Rays from Three Extraordinary Millisecond Pulsars: XMM-Newton Observations of PSRs J0337+1715, J0636+5129, and J0645+5158

    NASA Astrophysics Data System (ADS)

    Spiewak, Renée; Kaplan, David L.; Archibald, Anne; Gentile, Peter; Hessels, Jason; Lorimer, Duncan; Lynch, Ryan; McLaughlin, Maura; Ransom, Scott; Stairs, Ingrid; Stovall, Kevin

    2016-05-01

    We present the first X-ray observations of three recently discovered millisecond pulsars (MSPs) with interesting characteristics: PSR J0337+1715, PSR J0636+5129, and PSR J0645+5158. PSR J0337+1715 is a fast-spinning, bright, and so-far unique MSP in a hierarchical triple system with two white dwarf companions. PSR J0636+5129 is an MSP in a very tight 96-minute orbit with a low-mass, 8 M J companion. PSR J0645+5158 is a nearby, isolated MSP with a very small duty cycle (1%–2%), which has led to its inclusion in high-precision pulsar timing programs. Using data from XMM-Newton, we have analyzed X-ray spectroscopy for these three objects, as well as optical/ultraviolet photometry for PSR J0337+1715. The X-ray data for each are largely consistent with expectations for most MSPs with regards to the ratios of thermal and non-thermal emission. We discuss the implications of these data on the pulsar population, and prospects for future observations of these pulsars.

  20. Target of Opportunity Positioning of Transient X-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Chakrabarty, Deepto

    2003-01-01

    Our program successfully localized three newly-identified transient X-ray pulsars. XTE J1858+034 is a 221 s pulsar (Takeshima et al. 1998, IAUC 6826), XTE J1946+274 is a 15.8 s pulsar (Takeshima and Chakrabarty 1998, IAUC 7016), and XTE J0111.2-7317 is a 31 s pulsar in the Small Magellanic Cloud (Chakrabarty et al. 1998, IAUC 7048). This last pulsar was a particularly interesting source, and our XTE observations enabled prompt follow-up observations with the ASCA mission (Yokogawa et al. 2000, ApJ. 539, 191).

  1. CORRELATIONS IN HORIZONTAL BRANCH OSCILLATIONS AND BREAK COMPONENTS IN XTE J1701-462 AND GX 17+2

    SciTech Connect

    Bu, Qing-cui; Chen, Li; Zhang, Liang; Li, Zhao-sheng; Qu, Jin-lu; Belloni, T. M. E-mail: chenli@bnu.edu.cn E-mail: tomaso.belloni@brera.inaf.it

    2015-01-20

    We studied the horizontal branch oscillations (HBO) and the band-limited components observed in the power spectra of the transient neutron star low-mass X-ray binary XTE J1701-462 and the persistent ''Sco-like'' Z source GX 17+2. These two components were studied based on the state-resolved spectra. We found that the frequencies of XTE J1701-462 lie on the known correlations (WK and PBK), showing consistency with other types of X-ray binaries (black holes, atoll sources, and millisecond X-ray pulsars). However, GX 17+2 is shifted from the WK correlation like other typical Z sources. We suggest that the WK/PBK main track forms a boundary that separates persistent sources from transient sources. The characteristic frequencies of break and HBO are independent of accretion rate in both sources, though it depends on spectral models. We also report the energy dependence of the HBO and break frequencies in XTE J1701-462 and how the temporal properties change with spectral state in XTE J1701-462 and GX 17+2. We studied the correlation between rms at the break and the HBO frequency. We suggest that HBO and break components for both sources probably arise from a similar physical mechanism: Comptonization emission from the corona. These two components could be caused by the same kind of oscillation in a corona with uneven density, and they could be generated from different areas of the corona. We further suggest that different proportions of the Comptonization component in the total flux cause the different distribution between GX 17+2 and XTE J1701-462 in the rms{sub break}-rms{sub HBO} diagram.

  2. FORMATION OF THE GALACTIC MILLISECOND PULSAR TRIPLE SYSTEM PSR J0337+1715—A NEUTRON STAR WITH TWO ORBITING WHITE DWARFS

    SciTech Connect

    Tauris, T. M.; Van den Heuvel, E. P. J.

    2014-01-20

    The millisecond pulsar in a triple system (PSR J0337+1715, recently discovered by Ransom et al.) is an unusual neutron star with two orbiting white dwarfs. The existence of such a system in the Galactic field poses new challenges to stellar astrophysics for understanding evolution, interactions, and mass transfer in close multiple stellar systems. In addition, this system provides the first precise confirmation for a very wide-orbit system of the white dwarf mass-orbital period relation. Here, we present a self-consistent, semi-analytical solution to the formation of PSR J0337+1715. Our model constrains the peculiar velocity of the system to be less than 160 km s{sup –1} and brings novel insight to, for example, common envelope evolution in a triple system, for which we find evidence for in-spiral of both outer stars. Finally, we briefly discuss our scenario in relation to alternative models.

  3. XSS J12270-4859: A Transformation from an X-ray Binary to a Rotation-Powered Millisecond Pulsar System

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko; Bassa, Cees; Archibald, Anne M; Patruno, Alessandro; Hessels, Jason; Janssen, Gemma H; Stappers, Benjamin; Tendulkar, Shriharsh P.

    2014-08-01

    XSS J12270-4859 has been previously suggested to be a low-mass X-ray binary, and until recently the only such system to be seen at MeV-GeV energies. We present radio, optical and X-ray observations that demonstrate that XSS J12270-4859 has undergone a sudden decline in optical and X-ray brightness and no longer shows evidence for an accretion disk. Along with the recent detection of radio pulsations, these findings indicate that XSS J12270-4859 transformed to a full-fledged eclipsing "redback" system between 2012 November 14 and December 21 and presently hosts an active rotation-powered millisecond pulsar.

  4. TeV gamma rays from millisecond pulsars. [PSR 1937+21; PSR 1953+29; PSR 1855+09; PSR 1957+20; PSR 1516+02 A; PSR 1620-26; PSR 0021-72; PSR 1821-24; Cyg X-3

    SciTech Connect

    Bowden, C.C.G.; Bradbury, S.M.; Brazier, K.T.S.; Carraminana, A.; Chadwick, P.M.; Dipper, N.A.; Edwards, P.J.; Lincoln, E.W.; Mannings, V.G.; McComb, T.J.L.; Orford, K.J.; Rayner, S.M.; Turver, K.E. )

    1991-04-05

    We summarize here the results of the VHE gamma ray study of millisecond pulsars made over seven years by the Durham group. In addition to reporting observations made recently with the Mark III and IV telescopes at Narrabri, Australia, we consider the application of new analysis techniques to earlier data taken using telescopes at Dugway, USA. Pulsed VHE {gamma}-rays have been detected from three of the eight millisecond pulsars observed; we compare our results with the predictions of a theory of VHE emission from millisecond pulsars.

  5. A Day in the Life of Millisecond Pulsar J1713+0747: Limits on Timing Precision Over 24 Hours and Implications for Gravitational Wave Detection

    NASA Astrophysics Data System (ADS)

    Dolch, Timothy; Bailes, M.; Bassa, C.; Bhat, R.; Bhattacharyya, B.; Champion, D.; Chatterjee, S.; Cognard, I.; Cordes, J. M.; Crowter, K.; Demorest, P.; Finn, L. S.; Fonseca, E.; Hessels, J.; Hobbs, G.; Janssen, G.; Jones, G.; Jordan, C.; Karuppusamy, R.; Keith, M.; Kramer, M.; Kraus, A.; Lam, M. T.; Lazarus, P.; Lazio, J.; Lee, K.; Levin, L.; Liu, K.; Lorimer, D.; Manchester, R. N.; McLaughlin, M.; Palliyaguru, N.; Perrodin, D.; Petroff, E.; Rajwade, K.; Rankin, J. M.; Ransom, S. M.; Rosenblum, J.; Roy, J.; Shannon, R.; Stappers, B.; Stinebring, D.; Stovall, K.; Teixeira, M.; van Leeuwen, J.; van Straten, W.; Verbiest, J.; Zhu, W.

    2014-01-01

    A 24-hour global observation of millisecond radio pulsar J1713+0747 was undertaken by the International Pulsar Timing Array (IPTA) collaboration as an effort to better quantify sources of noise in this object, which is regularly timed for the purpose of detecting gravitational waves (GWs). Given an 8-year timing RMS of 30ns, it is regarded as one of the best precision clocks in the PTA. However, sources of timing noise visible on timescales longer than the usual 20-30min biweekly observation may nonetheless be present. Data from the campaign were taken contiguously with the Parkes, Arecibo, Green Bank, GMRT, LOFAR, Effelsberg, WSRT, Lovell, and Nancay radio telescopes. The combined pulse times-of-arrival provide an estimate of the absolute noise floor, in other words, what unaccounted sources of timing noise impede an otherwise simple sqrt(N) improvement in timing precision, where N is the number of pulses in a single observing session. We present first results of specific phenomena probed on the unusual timescale of tens of hours, in particular interstellar scattering (ISS), and discuss the degree to which ISS affects precision timing. Finally, we examine single pulse information during selected portions of the observation and determine the degree to which the pulse jitter of J1713+0747 varies throughout the course of the day-long dataset.

  6. IDENTIFICATION OF THE HIGH-ENERGY GAMMA-RAY SOURCE 3FGL J1544.6–1125 AS A TRANSITIONAL MILLISECOND PULSAR BINARY IN AN ACCRETING STATE

    SciTech Connect

    Bogdanov, Slavko; Halpern, Jules P.

    2015-04-20

    We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4–112820, the most probable counterpart of the unassociated Fermi-LAT source 3FGL J1544.6–1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-rays exhibit large-amplitude variations in the form of fast switching (within ∼10 s) between two distinct flux levels that differ by a factor of ≈10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar (MSP) binaries PSR J1023+0038 and XSS J12270–4859, which are also associated with γ-ray sources. Based on the available observational evidence, we conclude that 1RXS J154439.4–112820 and 3FGL J1544.6–1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto an MSP and the γ-rays originating from an accretion-driven outflow. 1RXS J154439.4–112820 is only the fourth γ-ray-emitting low-mass X-ray binary system to be identified and is likely to sporadically undergo transformations to a non-accreting rotation-powered pulsar system.

  7. Identification of the High-energy Gamma-Ray Source 3FGL J1544.6-1125 as a Transitional Millisecond Pulsar Binary in an Accreting State

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko; Halpern, Jules P.

    2015-04-01

    We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4-112820, the most probable counterpart of the unassociated Fermi-LAT source 3FGL J1544.6-1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-rays exhibit large-amplitude variations in the form of fast switching (within ˜10 s) between two distinct flux levels that differ by a factor of ≈10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar (MSP) binaries PSR J1023+0038 and XSS J12270-4859, which are also associated with γ-ray sources. Based on the available observational evidence, we conclude that 1RXS J154439.4-112820 and 3FGL J1544.6-1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto an MSP and the γ-rays originating from an accretion-driven outflow. 1RXS J154439.4-112820 is only the fourth γ-ray-emitting low-mass X-ray binary system to be identified and is likely to sporadically undergo transformations to a non-accreting rotation-powered pulsar system.

  8. X-ray coherent pulsations during a sub-luminous accretion disc state of the transitional millisecond pulsar XSS J12270-4859

    NASA Astrophysics Data System (ADS)

    Papitto, A.; de Martino, D.; Belloni, T. M.; Burgay, M.; Pellizzoni, A.; Possenti, A.; Torres, D. F.

    2015-04-01

    We present the first detection of X-ray coherent pulsations from the transitional millisecond pulsar XSS J12270-4859, while it was in a sub-luminous accretion disc state characterized by a 0.5-10 keV luminosity of 5 × 1033 erg s-1 (assuming a distance of 1.4 kpc). Pulsations were observed by XMM-Newton at an rms amplitude of (7.7 ± 0.5) per cent with a second harmonic stronger than the fundamental frequency, and were detected when the source is neither flaring nor dipping. The most likely interpretation of this detection is that matter from the accretion disc was channelled by the neutron star magnetosphere and accreted on to its polar caps. According to standard disc accretion theory, for pulsations to be observed the mass inflow rate in the disc was likely larger than the amount of plasma actually reaching the neutron star surface; an outflow launched by the fast rotating magnetosphere then probably took place, in agreement with the observed broad-band spectral energy distribution. We also report about the non-detection of X-ray pulsations during a recent observation performed while the source behaved as a rotationally-powered radio pulsar.

  9. Radio Detection Prospects for a Bulge Population of Millisecond Pulsars as Suggested by Fermi-LAT Observations of the Inner Galaxy

    NASA Astrophysics Data System (ADS)

    Calore, F.; Di Mauro, M.; Donato, F.; Hessels, J. W. T.; Weniger, C.

    2016-08-01

    The dense stellar environment of the Galactic center has been proposed to host a large population of as-yet undetected millisecond pulsars (MSPs). Recently, this hypothesis has found support in an analysis of gamma-rays detected using the Large Area Telescope onboard the Fermi satellite, which revealed an excess of diffuse GeV photons in the inner 15 deg about the Galactic center. The excess can be interpreted as the collective emission of thousands of MSPs in the Galactic bulge, with a spherical distribution strongly peaked toward the Galactic center. In order to fully establish the MSP interpretation, it is essential to find corroborating evidence in multi-wavelength searches, most notably through the detection of radio pulsations from individual bulge MSPs. Based on globular cluster observations and gamma-ray emission from the inner Galaxy, we investigate the prospects for detecting MSPs in the Galactic bulge. While previous pulsar surveys failed to identify this population, we demonstrate that upcoming large-area surveys of this region should lead to the detection of dozens of bulge MSPs. Additionally, we show that deep targeted searches of unassociated Fermi sources should be able to detect the first few MSPs in the bulge. The prospects for these deep searches are enhanced by a tentative gamma-ray/radio correlation that we infer from high-latitude gamma-ray MSPs. Such detections would constitute the first clear discoveries of field MSPs in the Galactic bulge, with far-reaching implications for gamma-ray observations, the formation history of the central Milky Way, and strategy optimization for future deep radio pulsar surveys.

  10. SDSS J102347.6+003841: A MILLISECOND RADIO PULSAR BINARY THAT HAD A HOT DISK DURING 2000-2001

    SciTech Connect

    Wang Zhongxiang; Archibald, Anne M.; Kaspi, Victoria M.; Thorstensen, John R.; Lorimer, Duncan R.; Stairs, Ingrid; Ransom, Scott M.

    2009-10-01

    The Sloan Digital Sky Survey (SDSS) source J102347.6+003841 was recently revealed to be a binary 1.69 ms radio pulsar with a 4.75 hr orbital period and a approx0.2 M {sub sun} companion. Here, we analyze the SDSS spectrum of the source in detail. The spectrum was taken on 2001 February 1, when the source was in a bright state and showed broad, double-peaked hydrogen and helium lines-dramatically different from the G-type absorption spectrum seen from 2002 May onward. The lines are consistent with emission from a disk around the compact primary. We derive properties of the disk by fitting the SDSS continuum with a simple disk model, and find a temperature range of 2000-34,000 K from the outer to inner edge of the disk. The disk inner and outer radii were approximately 10{sup 9} and 5.7x10{sup 10} cm, respectively. These results further emphasize the unique feature of the source: it is a system likely at the end of its transition from an X-ray binary to a recycled radio pulsar. The disk mass is estimated to have been approx10{sup 23} g, most of which would have been lost due to pulsar wind ablation (or due to the propeller effect if the disk had extended inside the light cylinder of the pulsar) before the final disk disruption event. The system could undergo repeated episodes of disk formation. Close monitoring of the source is needed to catch the system in its bright state again, so that this unusual example of a pulsar-disk interaction can be studied in much finer detail.

  11. THE OPTICAL COMPANION TO THE INTERMEDIATE-MASS MILLISECOND PULSAR J1439-5501 IN THE GALACTIC FIELD

    SciTech Connect

    Pallanca, C.; Lanzoni, B.; Dalessandro, E.; Ferraro, F. R.; Salaris, M.

    2013-08-20

    We present the identification of the companion star to the intermediate-mass binary pulsar (PSR) J1439-5501 obtained by means of ground-based deep images in the B, V, and I bands, acquired with FORS2 mounted at the European Southern Observatory (ESO)-Very Large Telescope (VLT). The companion is a massive white dwarf (WD) with B = 23.57 {+-} 0.02, V = 23.21 {+-} 0.01, and I = 22.96 {+-} 0.01, located at only {approx}0.''05 from the pulsar radio position. Comparing the WD location in the (B, B-V) and (V, V-I) color-magnitude diagrams with theoretical cooling sequences, we derived a range of plausible combinations of companion masses (1 M{sub Sun} {approx}< M{sub COM} {approx}< 1.3 M{sub Sun }), distances (d {approx}< 1200 pc), radii ({approx}< 7.810{sup -3} R{sub Sun }), and temperatures (T=31350{sup +21500}{sub -7400}). From the PSR mass function and the estimated mass range we also constrained the inclination angle i {approx}> 55 Degree-Sign and the pulsar mass (M{sub PSR} {approx}< 2.2 M{sub Sun }). The comparison between the WD cooling age and the spin-down age suggests that the latter is overestimated by a factor of about 10.

  12. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    SciTech Connect

    Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Ben; Ray, Paul S.; Wolff, Michael; Wood, Kent S.; Chengalur, Jayaram N.; Deneva, Julia; Camilo, Fernando; Johnson, Tyrel J.; Hessels, Jason W. T.; Bassa, Cees G.; Keane, Evan F.; Ferrara, Elizabeth C.; Harding, Alice K.

    2015-02-10

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm{sup −3} associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M{sub ⊙} suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼10{sup 35} erg s{sup −1}. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  13. Discovery of Psr J1227-4853: A Transition from a Low-mass X-Ray Binary to a Redback Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Roy, Jayanta; Ray, Paul S.; Bhattacharyya, Bhaswati; Stappers, Ben; Chengalur, Jayaram N.; Deneva, Julia; Camilo, Fernando; Johnson, Tyrel J.; Wolff, Michael; Hessels, Jason W. T.; Bassa, Cees G.; Keane, Evan F.; Ferrara, Elizabeth C.; Harding, Alice K.; Wood, Kent S.

    2015-02-01

    XSS J12270-4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9-4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227-4853, at a dispersion measure of 43.4 pc cm-3 associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824-2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227-4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17-0.46 M⊙ suggests that this is a redback system. PSR J1227-4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ˜1035 erg s-1. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  14. Constraining the relative inclinations of the planets B and C of the millisecond pulsar PSR B1257+12

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    2010-09-01

    We investigate on the relative inclination of the planets B and C orbiting the pulsar PSR B1257+12. First, we show that the third Kepler’s law does represent an adequate model for the orbital periods P of the planets, because other Newtonian and Einsteinian corrections are orders of magnitude smaller than the accuracy in measuring P B/C. Then, on the basis of available timing data, we determine the ratio sin i C/ sin i B = 0.92±0.05 of the orbital inclinations i B and i C independently of the pulsar’s mass M. It turns out that coplanarity of the orbits of B and C would imply a violation of the equivalence principle. Adopting a pulsar mass range 1 ≲ M ≲ 3, in solar masses (supported by present-day theoretical and observational bounds for pulsar’s masses), both face-on and edge-on orbital configurations for the orbits of the two planets are ruled out; the acceptable inclinations for B span the range 36 deg ≲ i B ≲ 66 deg, with a corresponding relative inclination range 6 deg ≲ ( i C - i B) ≲ 13 deg.

  15. Possible Twin kHz Quasi-periodic Oscillations in the Accreting Millisecond X-ray Pulsar IGR J17511-3057

    NASA Astrophysics Data System (ADS)

    Kalamkar, Maithili; Altamirano, Diego; van der Klis, M.

    2011-03-01

    We report on the aperiodic X-ray timing and color behavior of the accreting millisecond X-ray pulsar (AMXP) IGR J17511-3057, using all the pointed observations obtained with the Rossi X-Ray Timing Explorer Proportional Counter Array since the source's discovery on 2009 September 12. The source can be classified as an atoll source on the basis of the color and timing characteristics. It was in the hard state during the entire outburst. In the beginning and at the end of the outburst, the source exhibited what appear to be twin kHz quasi-periodic oscillations (QPOs). The separation Δν between the twin QPOs is ~120 Hz. Contrary to expectations for slow rotators, instead of being close to the 244.8 Hz spin frequency, it is close to half the spin frequency. However, identification of the QPOs is not certain as the source does not fit perfectly in the existing scheme of correlations of aperiodic variability frequencies seen in neutron star low-mass X-ray binaries (NS LMXBs), nor can a single shift factor make it fit as has been reported for other AMXPs. These results indicate that IGR J17511-3057 is a unique source differing from other AMXPs and could play a key role in advancing our understanding of not only AMXPs, but also of NS LMXBs in general.

  16. The Quiescent X-Ray Properties of the Accreting Millisecond X-Ray Pulsar and Eclipsing binary Swift J1749.4-2807

    NASA Astrophysics Data System (ADS)

    Degenaar, N.; Patruno, A.; Wijnands, R.

    2012-09-01

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a ~= 105 ks long XMM-Newton observation performed when Swift J1749.4-2807 was in quiescence. We detect the source at a 0.5-10 keV luminosity of sime1 × 1033(D/6.7 kpc)2 erg s-1. The X-ray light curve displays three eclipses that are consistent in orbital phase and duration with the ephemeris derived during outburst. Unlike most quiescent neutron stars, the X-ray spectrum can be adequately described with a simple power law, while a pure-hydrogen atmosphere model does not fit the data. We place an upper limit on the 0.01-100 keV thermal luminosity of the cooling neutron star of <~ 2 × 1033 erg s-1 and constrain its temperature to be <~ 0.1 keV (for an observer at infinity). Timing analysis does not reveal evidence for X-ray pulsations near the known spin frequency of the neutron star or its first overtone with a fractional rms of <~ 34% and <~ 28%, respectively. We discuss the implications of our findings for dynamical mass measurements, the thermal state of the neutron star, and the origin of the quiescent X-ray emission.

  17. THE QUIESCENT X-RAY PROPERTIES OF THE ACCRETING MILLISECOND X-RAY PULSAR AND ECLIPSING BINARY SWIFT J1749.4-2807

    SciTech Connect

    Degenaar, N.; Patruno, A.; Wijnands, R.

    2012-09-10

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a {approx_equal} 105 ks long XMM-Newton observation performed when Swift J1749.4-2807 was in quiescence. We detect the source at a 0.5-10 keV luminosity of {approx_equal}1 Multiplication-Sign 10{sup 33}(D/6.7 kpc){sup 2} erg s{sup -1}. The X-ray light curve displays three eclipses that are consistent in orbital phase and duration with the ephemeris derived during outburst. Unlike most quiescent neutron stars, the X-ray spectrum can be adequately described with a simple power law, while a pure-hydrogen atmosphere model does not fit the data. We place an upper limit on the 0.01-100 keV thermal luminosity of the cooling neutron star of {approx}< 2 Multiplication-Sign 10{sup 33} erg s{sup -1} and constrain its temperature to be {approx}< 0.1 keV (for an observer at infinity). Timing analysis does not reveal evidence for X-ray pulsations near the known spin frequency of the neutron star or its first overtone with a fractional rms of {approx}< 34% and {approx}< 28%, respectively. We discuss the implications of our findings for dynamical mass measurements, the thermal state of the neutron star, and the origin of the quiescent X-ray emission.

  18. Recycled pulsars

    NASA Astrophysics Data System (ADS)

    Jacoby, Bryan Anthony

    2005-11-01

    In a survey of ~4,150 square degrees, we discovered 26 previously unknown pulsars, including 7 "recycled" millisecond or binary pulsars. The most significant discovery of this survey is PSR J1909-3744, a 2.95 ms pulsar in an extremely circular 1.5 d orbit with a low-mass white dwarf companion. Though this system is a fairly typical low-mass binary pulsar (LMBP) system, it has several exceptional qualities: an extremely narrow pulse profile and stable rotation have enabled the most precise long-term timing ever reported, and a nearly edge-on orbit gives rise to a strong Shapiro delay which has allowed the most precise measurement of the mass of a millisecond pulsar: m p = (1.438 +/- 0.024) [Special characters omitted.] . Our accurate parallax distance measurement, d p = ([Special characters omitted.] ) kpc, combined with the mass of the optically-detected companion, m c = (0.2038 +/- 0.022) [Special characters omitted.] , will provide an important calibration for white dwarf models relevant to other LMBP companions. We have detected optical counterparts for two intermediate mass binary pulsar (IMBP) systems; taken together with optical detections and non-detections of several similar systems, our results indicate that the characteristic age t = c P /2 P consistently overestimates the time since the end of mass accretion in these recycled systems. We have measured orbital decay in the double neutron star system PSR B2127+11C in the globular cluster M15. This has allowed an improved measurement of the mass of the pulsar, m p = (1.3584 +/- 0.0097) [Special characters omitted.] , and companion, m c = (1.3544 +/- 0.0097) [Special characters omitted.] , as well as a test of general relativity at the 3% level. We find that the proper motions of this pulsar as well as PSR B2127+11A and PSR B2127+11B are consistent with each other and with one published measurement of the cluster proper motion. We have discovered three binary millisecond pulsars in the globular cluster M62

  19. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  20. Ensemble Pulsar Time Scale

    NASA Astrophysics Data System (ADS)

    Yin, D. S.; Gao, Y. P.; Zhao, S. H.

    2016-05-01

    Millisecond pulsars can generate another type of time scale that is totally independent of the atomic time scale, because the physical mechanisms of the pulsar time scale and the atomic time scale are quite different from each other. Usually the pulsar timing observational data are not evenly sampled, and the internals between data points range from several hours to more than half a month. What's more, these data sets are sparse. And all these make it difficult to generate an ensemble pulsar time scale. Hence, a new algorithm to calculate the ensemble pulsar time scale is proposed. Firstly, we use cubic spline interpolation to densify the data set, and make the intervals between data points even. Then, we employ the Vondrak filter to smooth the data set, and get rid of high-frequency noise, finally adopt the weighted average method to generate the ensemble pulsar time scale. The pulsar timing residuals represent clock difference between the pulsar time and atomic time, and the high precision pulsar timing data mean the clock difference measurement between the pulsar time and atomic time with a high signal to noise ratio, which is fundamental to generate pulsar time. We use the latest released NANOGRAV (North American Nanohertz Observatory for Gravitational Waves) 9-year data set to generate the ensemble pulsar time scale. This data set is from the newest NANOGRAV data release, which includes 9-year observational data of 37 millisecond pulsars using the 100-meter Green Bank telescope and 305-meter Arecibo telescope. We find that the algorithm used in this paper can lower the influence caused by noises in timing residuals, and improve long-term stability of pulsar time. Results show that the long-term (> 1 yr) frequency stability of the pulsar time is better than 3.4×10-15.

  1. Chandra X-Ray Observatory Observations of the Globular Cluster M28 and its Millisecond Pulsar PSR B1821-24

    NASA Technical Reports Server (NTRS)

    Becker, Werner; Swartz, Douglas A.; Pavlov, George G.; Elsner, Ronald F.; Grindlay, Jonathan; Mignani, Roberto; Tennant, Allyn F.; Backer, Don; Weisskopf, Martin C.

    2003-01-01

    We report here the results of the first Chandra X-Ray Observatory observations of the globular cluster M28 (NGC 6626). We detect 46 X-ray sources of which 12 lie within one core radius of the center. We show that the apparently extended X-ray core emission seen with the ROSAT HRI is due to the superposition of multiple discrete sources for which we determine the X-ray luminosity function down to a limit of about 6 x 10(exp 30) erg/s. We measure the radial distribution of the X-ray sources and fit it to a King profile finding a core radius of r(sub c,x) approx. 11 sec. We obtain the best-fit mass of the X-ray sources to be M(sub x) approx. 1.9 solar masses. We measure for the first time the unconfused phase-averaged X-ray spectrum of the 3.05-ms pulsar B1821-24 and find it best described by a power law with photon-index Gamma approx. equal to 1.2. We find marginal evidence of an emission line centered at 3.3 kev in the pulsar spectrum, which could be interpreted as cyclotron emission from a corona above the pulsar's polar cap if the the magnetic field is strongly different from a centered dipole. The unabsorbed pulsar flux in the 0.5-8.0 keV band is approx. 3.5 x 10(exp -13) ergs/s/sq cm. We present spectral analyses of the 5 brightest unidentified sources. Based on the spectral parameters of the brightest of these sources, we suggest that it is a transiently accreting neutron star in a low-mass X-ray binary, in quiescence. Fitting its spectrum with a hydrogen neutron star atmosphere model yields the effective temperature T(sup infinity)(sub eff) = 90(sup +30)(sub -10) eV and the radius R(sup infinity)(sub NS) = 14.5(sup +6.9)(sub -3.8) km. In addition to the resolved sources, we detect fainter, unresolved X-ray emission from the central core. Using the Chandra-derived positions, we also present a preliminary report on the result of searching archival Hubble Space Telescope data for possible optical counterparts.

  2. Torque Enhancement, Spin Equilibrium, and Jet Power from Disk-Induced Opening of Pulsar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.

    2016-05-01

    The interaction of a rotating star’s magnetic field with a surrounding plasma disk lies at the heart of many questions posed by neutron stars in X-ray binaries. We consider the opening of stellar magnetic flux due to differential rotation along field lines coupling the star and disk, using a simple model for the disk-opened flux, the torques exerted on the star by the magnetosphere, and the power extracted by the electromagnetic wind. We examine the conditions under which the system enters an equilibrium spin state, in which the accretion torque is instantaneously balanced by the pulsar wind torque alone. For magnetic moments, spin frequencies, and accretion rates relevant to accreting millisecond pulsars, the spin-down torque from this enhanced pulsar wind can be substantially larger than that predicted by existing models of the disk-magnetosphere interaction, and is in principle capable of maintaining spin equilibrium at frequencies less than 1 kHz. We speculate that this mechanism may account for the non-detection of frequency increases during outbursts of SAX J1808.4-3658 and XTE J1814-338, and may be generally responsible for preventing spin-up to sub-millisecond periods. If the pulsar wind is collimated by the surrounding environment, the resulting jet can satisfy the power requirements of the highly relativistic outflows from Cir X-1 and Sco X-1. In this framework, the jet power scales relatively weakly with accretion rate, {L}{{j}}\\propto {\\dot{M}}4/7, and would be suppressed at high accretion rates only if the stellar magnetic moment is sufficiently low.

  3. Torque Enhancement, Spin Equilibrium, and Jet Power from Disk-Induced Opening of Pulsar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.

    2016-05-01

    The interaction of a rotating star’s magnetic field with a surrounding plasma disk lies at the heart of many questions posed by neutron stars in X-ray binaries. We consider the opening of stellar magnetic flux due to differential rotation along field lines coupling the star and disk, using a simple model for the disk-opened flux, the torques exerted on the star by the magnetosphere, and the power extracted by the electromagnetic wind. We examine the conditions under which the system enters an equilibrium spin state, in which the accretion torque is instantaneously balanced by the pulsar wind torque alone. For magnetic moments, spin frequencies, and accretion rates relevant to accreting millisecond pulsars, the spin-down torque from this enhanced pulsar wind can be substantially larger than that predicted by existing models of the disk–magnetosphere interaction, and is in principle capable of maintaining spin equilibrium at frequencies less than 1 kHz. We speculate that this mechanism may account for the non-detection of frequency increases during outbursts of SAX J1808.4-3658 and XTE J1814-338, and may be generally responsible for preventing spin-up to sub-millisecond periods. If the pulsar wind is collimated by the surrounding environment, the resulting jet can satisfy the power requirements of the highly relativistic outflows from Cir X-1 and Sco X-1. In this framework, the jet power scales relatively weakly with accretion rate, {L}{{j}}\\propto {\\dot{M}}4/7, and would be suppressed at high accretion rates only if the stellar magnetic moment is sufficiently low.

  4. Pulsar-irradiated stars in dense globular clusters

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  5. Distance and luminosity probability distributions derived from parallax and flux with their measurement errors. With application to the millisecond pulsar PSR J0218+4232

    NASA Astrophysics Data System (ADS)

    Igoshev, Andrei; Verbunt, Frank; Cator, Eric

    2016-06-01

    We use a Bayesian approach to derive the distance probability distribution for one object from its parallax with measurement uncertainty for two spatial distribution priors, a homogeneous spherical distribution and a galactocentric distribution - applicable for radio pulsars - observed from Earth. We investigate the dependence on measurement uncertainty, and show that a parallax measurement can underestimate or overestimate the actual distance, depending on the spatial distribution prior. We derive the probability distributions for distance and luminosity combined - and for each separately when a flux with measurement error for the object is also available - and demonstrate the necessity of and dependence on the luminosity function prior. We apply this to estimate the distance and the radio and gamma-ray luminosities of PSR J0218+4232. The use of realistic priors improves the quality of the estimates for distance and luminosity compared to those based on measurement only. Use of the wrong prior, for example a homogeneous spatial distribution without upper bound, may lead to very incorrect results.

  6. Discovery of a Transient Magnetar: XTE J1810-197

    NASA Technical Reports Server (NTRS)

    Ibrahim, Alaa I.; Markwardt, Craig B.; Swank, Jean H.; Ransom, Scott; Roberts, Mallory; Kaspi, Victoria; Woods, Peter M.; Safi-Harb, Samar; Balman, Solen; Parke, William C.

    2004-01-01

    We report the discovery of a new X-ray pulsar, XTE J1810-197, that was serendipitously discovered on 2003 July 15 by the Rossi X-Ray Timing Explorer (RXTE) while observing the soft gamma repeater SGR 1806-20. The pulsar has a 5.54 s spin period, a soft X-ray spectrum (with a photon index of approx. = 4). and is detectable in earlier RXTE observations back to 2003 January but not before. These show that a transient outburst began between 2002 November 17 and 2003 January 23 and that the source's persistent X-ray flux has been declining since then. The pulsar exhibits a high spin-down rate P approx.= l0(exp -11) s/s with no evidence of Doppler shifts due to a binary companion. The rapid spin-down rate and slow spin period imply a supercritical characteristic magnetic field B approx. = 3 x l0(exp 14) G and a young age tau less than or = 7600 yr. Follow-up Chandra observations provided an accurate position of the source. Within its error radius, the 1.5 m Russian-Turkish Optical Telescope found a limiting magnitude R(sub c) = 21.5. All such properties are strikingly similar to those of anomalous X-ray pulsars ad soft gamma repeaters, providing strong evidence that the source is a new magnetar. However, archival ASCA and ROSAT observations found the source nearly 2 orders of magnitude fainter. This transient behavior and the observed long-term flux variability of the source in absence of an observed SGR-like burst activity make it the first confirmed transient magnetar and suggest that other neutron stars that share the properties of XTE 51810- 197 during its inactive phase may be unidentified transient magnetars awaiting detection via a similar activity. This implies a larger population of magnetars than previously surmised and a possible evolutionary connection between magnetars and other neutron star families. Subject headings: pulsars: general -pulsars: individual (XTE 51810- 197) - stars: magnetic fields -

  7. Different twins in the millisecond pulsar recycling scenario: Optical polarimetry of PSR J1023+0038 and XSS J12270-4859

    NASA Astrophysics Data System (ADS)

    Baglio, M. C.; D'Avanzo, P.; Campana, S.; Coti Zelati, F.; Covino, S.; Russell, D. M.

    2016-06-01

    We present the first optical polarimetric study of the two transitional pulsars PSR J1023+0038 and XSS J12270-4859. This work is focused on the search for intrinsically linearly polarised optical emission from the two systems. To this aim, we carried out multiband optical (BVRi) and near-infrared (NIR; JHK) photo-polarimetric observations of the two systems using the ESO New Technology Telescope (NTT) at La Silla (Chile), equipped with the EFOSC2 and the SOFI instruments. The system XSS J12270-4859 was observed during its radio-pulsar state; we did not detect a significant degree of polarisation in any of the bands, with 3σ upper limits, for example, of 1.4% in the R-band. We built the NIR-optical averaged spectral energy distribution (SED) of the system, which could be described well by an irradiated black body with radius R∗ = 0.33 ± 0.03 R⊙ and albedo η = 0.32 ± 0.05, without the need for further components. Thus, we excluded the visible presence of an extended accretion disc and/or of relativistic jets. The case was different for PSR J1023+0038, which was in its accretion phase during our campaign. We measured a linear polarisation of 1.09 ± 0.27% and 0.90 ± 0.17% in the V and R bands, respectively. The phase-resolved polarimetric curve of the source in the R band reveals a hint of a sinusoidal modulation at the source 4.75 h orbital period, peaked at the same orbital phase as the light curve. The measured optical polarisation of PSR J1023+0038 could, in principle, be interpreted as electron scattering with free electrons, which can be found in the accretion disc of the system or even in the hot corona that sorrounds the disc itself, or as synchrotron emission from a jet of relativistic particles or an outflow. However, the NIR-optical SED of the system built from our dataset did not suggest the presence of a jet. We conclude that the optical linear polarisation observed for PSR J1023+0038 is possibly due to Thomson scattering with electrons in the

  8. SEXTANT: A Demonstration of X-ray Pulsar-Based Navigation Using NICER

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Mitchell, Jason W; Winternitz, Luke M; Hasouneh, Monther A; Price, Samuel R; Valdez, Jennifer; Yu, Wayne H; Semper, Sean R; Wood, Kent S.; Wolff, Michael Thomas; Arzoumanian, Zaven; Litchford, Ronald J; Gendreau, Keith

    2014-08-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology-demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray pulsar-based navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. The SEXTANT XNAV demonstration will exploit the large collecting area (>1800 cm^2), low background (<0.2 counts/s), and precise timing (<300 ns) of the NICER X-ray Timing Instrument (XTE). Taking advantage of NICER’s science observations of X-ray emitting millisecond pulsars, which are nature’s most stable clocks, the SEXTANT flight software will demonstrate real-time orbit determination with error less than 10 km in any direction, through measurements made over 2 weeks or less in the highly dynamic low-Earth ISS orbit. The completed technology demonstration will bring the XNAV concept and algorithms to a Technology Readiness Level of 8 and will inform the design and configuration of future practical XNAV implementations.

  9. The Anatomy Of A Magnetar: XMM Monitoring Of Transient AXP XTE J1810-197

    NASA Astrophysics Data System (ADS)

    Gotthelf, Eric V.; Halpern, J. P.; Perna, R.

    2006-09-01

    The transient anomalous X-ray pulsar (TAXP) XTE J1810-197 is a unique object whose remarkable properties offer great promise for deciphering the emission mechanism(s) of magnetars. This 5.54s pulsar was discovered in early 2003 during an outburst that has, as of 2006, faded near to quiescence, based on historic data. TAXP XTE J1810-197 is, most surprisingly, a highly variable radio pulsar with a unusual flat spectrum. This is the first confirmed example of radio flux from an AXP. Herein, we report on our semi-annual XMM monitoring campaign that has followed the pulsar for the last 3 years as its spectrum evolved. Fitting a double blackbody model we find that the component luminosities followed an exponential decay law with κ(BB1) = 870 days and κ(BB2) = 280 days, respectively. The temperatures of these components cooled at a rate of 22% per year from the nearly constant value recorded prior to 2004 March of kT(BB1) = 0.25 keV and kT(BB2) = 0.67 keV, respectively. The latest data show that the luminosity and temperature of the cooler component have effectively returned to their quiescent levels and that its pulsed fraction, which has steadily decreased with time, is now consistent with the previous lack of detected pulsations in quiescence. We use the energy dependence of the fading emission to decouple the pulsed components to solve for the viewing and emitting geometry of XTE J1810-197. Finally, we consider the emission mechanism(s) of XTE J1810-197 in the context of the coronal loop magnetar model of Beloborodov & Thompson (2006). This research is supported by XMM-Newton grant NNG05GJ61G and NASA ADP grant ADP04-0059-0024.

  10. Limits to the Stability of Pulsar Time

    NASA Technical Reports Server (NTRS)

    Petit, Gerard

    1996-01-01

    The regularity of the rotation rate of millisecond pulsars is the underlying hypothesis for using these neutron stars as 'celestial clocks'. Given their remote location in our galaxy and to our lack of precise knowledge on the galactic environment, a number of phenomena effect the apparent rotation rate observed on Earth. This paper reviews these phenomena and estimates the order of magnitude of their effect. It concludes that an ensemble pulsar time based on a number of selected millisecond pulsars should have a fractional frequency stability close to 2 x 10(sup -15) for an averaging time of a few years.

  11. Basic physics and cosmology from pulsar timing data

    NASA Technical Reports Server (NTRS)

    Taylor, J. H.

    1991-01-01

    Radio pulsars provide unparalleled opportunities for making measurements of astrophysically interesting phenomena. The author concentrates on two particular applications of high precision timing observations of pulsars: tests of relativistic gravitation theory using the binary pulsar 1913+16, and tests of cosmological models using timing data from millisecond pulsars. New upper limits are presented for the energy density of a cosmic background of low frequency gravitational radiation.

  12. Pulsar timing and general relativity

    NASA Technical Reports Server (NTRS)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  13. Pulsar lensing geometry

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Pen, Ue-Li; Macquart, J.-P.; Brisken, Walter; Deller, Adam

    2016-05-01

    We test the inclined sheet pulsar scintillation model (Pen & Levin) against archival very long baseline interferometry (VLBI) data on PSR 0834+06 and show that its scintillation properties can be precisely reproduced by a model in which refraction occurs on two distinct lens planes. These data strongly favour a model in which grazing-incidence refraction instead of diffraction off turbulent structures is the primary source of pulsar scattering. This model can reproduce the parameters of the observed diffractive scintillation with an accuracy at the percent level. Comparison with new VLBI proper motion results in a direct measure of the ionized interstellar medium (ISM) screen transverse velocity. The results are consistent with ISM velocities local to the PSR 0834+06 sight-line (through the Galaxy). The simple 1-D structure of the lenses opens up the possibility of using interstellar lenses as precision probes for pulsar lens mapping, precision transverse motions in the ISM, and new opportunities for removing scattering to improve pulsar timing. We describe the parameters and observables of this double screen system. While relative screen distances can in principle be accurately determined, a global conformal distance degeneracy exists that allows a rescaling of the absolute distance scale. For PSR B0834+06, we present VLBI astrometry results that provide (for the first time) a direct measurement of the distance of the pulsar. For most of the recycled millisecond pulsars that are the targets of precision timing observations, the targets where independent distance measurements are not available. The degeneracy presented in the lens modelling could be broken if the pulsar resides in a binary system.

  14. Precision Pulsar Timing at the DSN

    NASA Astrophysics Data System (ADS)

    Majid, Walid A.

    2016-01-01

    Millisecond pulsars are a class of radio pulsars with extremely stable rotations. The excellent timing stability of millisecond pulsars can be used to study a wide variety of astrophysical phenomena. In particular, observations of a large sample of these pulsars can be used to detect the presence of low-frequency gravitational waves. We have developed and are now commissioning a precision pulsar timing backend for the Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to observe and time pulses from an ensemble of millisecond pulsars. The NASA Deep Space Network (DSN) operates clusters of large dish antennas (up to 70-m in diameter), located roughly equi-distant around the Earth, for communication and tracking of deep-space spacecraft. The backend system is capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations scheduled over the next few years.

  15. Precision Pulsar Timing at the DSN

    NASA Astrophysics Data System (ADS)

    Majid, Walid A.

    2015-01-01

    Millisecond pulsars are a class of radio pulsars with extremely stable rotations. The excellent timing stability of millisecond pulsars can be used to study a wide variety of astrophysical phenomena. In particular, observations of a large sample of these pulsars can be used to detect the presence of low-frequency gravitational waves. We have developed a precision pulsar timing backend for the Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to observe and time pulses from an ensemble of millisecond pulsars. The NASA Deep Space Network (DSN) operates clusters of large dish antennas (up to 70-m in diameter), located roughly equi-distant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations scheduled later this year.This research was performed at the Jet Propulsion Laboratory,California Institute of Technology, under the Research and TechnologyDevelopment Program, under a contract with the National Aeronautics andSpace Administration.

  16. Arecibo Pulsar and Transient Surveys Using ALFA

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.

    2008-02-01

    A large scale survey for pulsars and transients is being conducted at the Arecibo Observatory using the Arecibo L-band Feed Array (ALFA). Data acquisition so far has been with correlation spectrometers that analyze a 0.1 GHz bandwidth at 1.4 GHz. The 256 frequency channels limit dispersion smearing to 1.2 ms at DMmax = 103 pc cm-3 while the sampling interval of 64 μs equals the dispersion smearing at DM~54 pc cm-3, providing high sensitivity to millisecond pulsars with standard periods out to implied distances of several kpc at low Galactic latitudes. In early 2008, we will use a new set of polyphase filter bank systems that provide the same time and frequency resolutions but over ALFA's full 0.3 GHz bandwidth. Currently the survey covers sky positions within 5° of the Galactic plane that are reachable with Arecibo. Preliminary results are given for some of the discoveries made so far, which include millisecond pulsars, a relativistic binary pulsar, a likely counterpart of a Compton GRO/EGRET gamma-ray source, and transient pulsars (including `RRATs''). We discuss the methodology of the survey, which includes archival of raw survey data at the Cornell Center for Advanced Computing and processing at distributed sites. The survey and follow up observations, which include timing observations, multiwavelength searches for orbital companions in the case of binary pulsars, etc. are organized through the Pulsar-ALFA (PALFA) Consortium. We expect the Galactic plane survey to continue until at least 2010, most likely involving multiple passes on each sky position to optimize detection of variable sources. The ALFA system will also be used to survey intermediate Galactic latitudes for millisecond pulsars, relativistic binaries with large systemic velocities, and runaway pulsars that will escape the Galaxy.

  17. X-Ray Bursts from the Transient Magnetar Candidate XTE J1810-197

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa; Woods, Peter M.; Gavriil, Fotis P.; Kaspi, Victoria M.; Roberts, Mallory S. E.; Ibrahim, Alaa; Markwardt, Craig B.; Swank, Jean H.; Finger, Mark H.

    2005-01-01

    We have discovered four X-ray bursts, recorded with the Rossi X-ray Timing Explorer Proportional Counter Array between 2003 September and 2004 April, that we show to originate from the transient magnetar candidate XTE 51810-197. The burst morphologies consist of a short spike or multiple spikes lasting approx. 1 s each followed by extended tails of emission where the pulsed flux from XTE 51810-197 is significantly higher. The burst spikes are likely correlated with the pulse maxima, having a chance probability of a random phase distribution of 0.4%. The burst spectra are best fit to a blackbody with temperatures 4-8 keV, considerably harder than the persistent X-ray emission. During the X-ray tails following these bursts, the temperature rapidly cools as the flux declines, maintaining a constant emitting radius after the initial burst peak. The temporal and spectral characteristics of these bursts closely resemble the bursts seen from 1E 1048.1-5937 and a subset of the bursts detected from 1E 2259+586, thus establishing XTE J1810-197 as a magnetar candidate. The bursts detected from these three objects are sufficiently similar to one another, yet si,g&cantly differe2t from those seen from soft gamma repeaters, that they likely represent a new class of bursts from magnetar candidates exclusive (thus far) to the anomalous X-ray pulsar-like sources.

  18. Parkes Observations of Globular Cluster Pulsars

    NASA Astrophysics Data System (ADS)

    Bailes, M.; Zhu, J.; Richter, S.

    2005-07-01

    Follow-up observations of pulsars from the Swinburne intermediate latitude survey with the Parkes radio telescope have caused us to question the association of PSR B1718-19 with the globular cluster NGC 6342 given the proximity of PSR J1721-1939 to the cluster. We have also found that the millisecond pulsar near the core of NGC 6624 has a large period second derivative, which would change the sign of the first derivative in about 6000 years. This is consistent with the pulsar experiencing a large gravitational perturbation from the cluster core.

  19. Serendipitous Detections of XTE J1906+09 with the Rossi X-Ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Gogus, Ersin; Woods, Peter M.; Kouveliotou, Chryssa

    2002-01-01

    The 89 s X-ray pulsar XTE J1906+09 was discovered during Rossi X-Ray Timing Explorer (RXTE) observations of SGR 1900+14 in 1996. Because of monitoring campaigns of SGR 1900+14, XTE J1906+09 was also monitored regularly in 1996 September, 1998 May-June, 1998 August-1999 July, and 2000 March-2001 January. A search for pulsations resulted in detections of only the two previously reported outbursts in 1996 September and 1998 August-September. Pulsed flux upper limits for the rest of the observations show that XTE J1906+09 is a transient X-ray pulsar and likely has a Be star companion. The RXTE all-sky monitor did not reveal XTE J1906+09. Pulse-timing analysis of the second outburst discovered a sinusoidal signature in the pulse frequencies that is likely produced by an orbital periastron passage. Fits to pulse phases using an orbital model and quadratic phase model have chi(exp 2) minima at orbital periods of 26-30 days for fixed mass functions of 5, 10, 15, and 20 solar masses. The pulse shape showed energy- and intensity-dependent variations. Pulse-phase spectroscopy quantified the energy-dependent variations. The phase-averaged spectrum used the pulse minimum spectrum as the background spectrum to eliminate effects from SGR 1900+14 and the Galactic ridge and was well fitted by an absorbed power law with a high-energy cutoff with column density N(sub H) = 6 +/- 1 x 10(exp 22)/sq cm, a photon index of 1.01 +/- 0.08, cutoff energy E(sub cut) = 11 +/- 1 keV, and e-folding energy E(sub fold) = 19 +/- 4 keV. Estimated 2-10 keV peak fluxes, corrected for contributions from the Galactic ridge and SGR 1900+14, are 6 x l0(exp -12) and 1.1 x 10(exp -10) ergs/sq cm/s for the 1996 and 1998 outbursts, respectively. XTE J1906+09 may be part of an unusual class of Be/X-ray binaries that do not lie on the general spin period versus orbital period correlation with the majority of Be/X-ray binaries.

  20. Pulsar Animation

    NASA Video Gallery

    Pulsars are thought to emit relatively narrow radio beams, shown as green in this animation. If these beams don't sweep toward Earth, astronomers cannot detect the radio signals. Pulsar gamma-ray e...

  1. XTE J1908+094

    NASA Technical Reports Server (NTRS)

    Woods, P. M.; Kouveliotou, C.; Finger, M. H.; Gogus, E.; Swank, J.; Markwardt, C.; Strohmayer, T.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Goddard Space Flight Center reports the serendipitous discovery of a new x-ray transient, XTE J1908+094, in RXTE (Rossi X-ray Timing Explorer) PCA (Proportional Counter Array) observations of the soft-gamma-ray repeater SGR 1900+14, triggered following the burst activity on Feb. 17-18 (GCN 1253). These observations failed to detect the 5.2-s SGR pulsations, pointing towards a possible new source as the origin of the high x-ray flux. An RXTE PCA scan of the region around SGR 1900+14 on Feb. 21 was consistent with emission only from known sources (and no new sources). However, the scans required SGR 1900+14 to be 20 times brighter than its quiescent flux level (GCN 1256). A Director's Discretionary Time Chandra observation on Mar. 11 showed that the SGR was quiescent and did not reveal any new source within the Chandra ACIS (Advanced CCD (charge coupled device) Imaging Spectrometer) field-of-view. A subsequent RXTE PCA scan on Mar. 17, taken in combination with the first scan, required that a new source be included in the fit. The best-fit position is R.A. 19h 08m 50s, Decl. = +9 22 deg .5 (equinox J2000.0; estimated 2 deg systematic error radius), or approximately 24 deg away from the SGR source. The source spectrum (2-30 kev) can be best fit with a power-law function including photoelectric absorption (column density N_h = 2.3 x 10(exp 22), photon index = 1.55). Iron line emission is present, but may be due to the Galactic ridge. Between Feb. 19 and Mar. 17, the source flux (2-10 keV) has risen from 26 to 64 mCrab. The power spectrum is flat between 1 mHz and 0.1 Hz, falling approximately as 1/f**0.5 up to 1 Hz. At 1 Hz is seen a broad quasiperiodic oscillation peak and a break to a 1/f**2 power law, which continues to 4 Hz. The fractional rms (root mean square) amplitude from 1 mHz to 4 Hz is 43 percent. No coherent pulsations are seen between 0.001 and 1024 Hz. The authors conclude that XTE J1908+094 is a new blackhole candidate.

  2. Arecibo pulsar survey using ALFA. III. Precursor survey and population synthesis

    SciTech Connect

    Swiggum, J. K.; Lorimer, D. R.; McLaughlin, M. A.; Bates, S. D.; Senty, T. R.; Champion, D. J.; Lazarus, P.; Ransom, S. M.; Brazier, A.; Chatterjee, S.; Cordes, J. M.; Hessels, J. W. T.; Nice, D. J.; Ellis, J.; Allen, B.; Bhat, N. D. R.; Bogdanov, S.; Camilo, F.; Crawford, F.; Deneva, J. S.; and others

    2014-06-01

    The Pulsar Arecibo L-band Feed Array (PALFA) Survey uses the ALFA 7-beam receiver to search both inner and outer Galactic sectors visible from Arecibo (32° ≲ ℓ ≲ 77° and 168° ≲ ℓ ≲ 214°) close to the Galactic plane (|b| ≲ 5°) for pulsars. The PALFA survey is sensitive to sources fainter and more distant than have previously been seen because of Arecibo's unrivaled sensitivity. In this paper we detail a precursor survey of this region with PALFA, which observed a subset of the full region (slightly more restrictive in ℓ and |b| ≲ 1°) and detected 45 pulsars. Detections included 1 known millisecond pulsar and 11 previously unknown, long-period pulsars. In the surveyed part of the sky that overlaps with the Parkes Multibeam Pulsar Survey (36° ≲ ℓ ≲ 50°), PALFA is probing deeper than the Parkes survey, with four discoveries in this region. For both Galactic millisecond and normal pulsar populations, we compare the survey's detections with simulations to model these populations and, in particular, to estimate the number of observable pulsars in the Galaxy. We place 95% confidence intervals of 82,000 to 143,000 on the number of detectable normal pulsars and 9000 to 100,000 on the number of detectable millisecond pulsars in the Galactic disk. These are consistent with previous estimates. Given the most likely population size in each case (107,000 and 15,000 for normal and millisecond pulsars, respectively), we extend survey detection simulations to predict that, when complete, the full PALFA survey should have detected 1000{sub −230}{sup +330} normal pulsars and 30{sub −20}{sup +200} millisecond pulsars. Identical estimation techniques predict that 490{sub −115}{sup +160} normal pulsars and 12{sub −5}{sup +70} millisecond pulsars would be detected by the beginning of 2014; at the time, the PALFA survey had detected 283 normal pulsars and 31 millisecond pulsars, respectively. We attribute the deficiency in normal pulsar detections

  3. Arecibo Pulsar Survey Using ALFA. III. Precursor Survey and Population Synthesis

    NASA Astrophysics Data System (ADS)

    Swiggum, J. K.; Lorimer, D. R.; McLaughlin, M. A.; Bates, S. D.; Champion, D. J.; Ransom, S. M.; Lazarus, P.; Brazier, A.; Hessels, J. W. T.; Nice, D. J.; Ellis, J.; Senty, T. R.; Allen, B.; Bhat, N. D. R.; Bogdanov, S.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Freire, P. C. C.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Knispel, B.; Lee, K. J.; van Leeuwen, J.; Lynch, R.; Lyne, A. G.; Scholz, P.; Siemens, X.; Stairs, I. H.; Stappers, B. W.; Stovall, K.; Venkataraman, A.; Zhu, W. W.

    2014-06-01

    The Pulsar Arecibo L-band Feed Array (PALFA) Survey uses the ALFA 7-beam receiver to search both inner and outer Galactic sectors visible from Arecibo (32° <~ l <~ 77° and 168° <~ l <~ 214°) close to the Galactic plane (|b| <~ 5°) for pulsars. The PALFA survey is sensitive to sources fainter and more distant than have previously been seen because of Arecibo's unrivaled sensitivity. In this paper we detail a precursor survey of this region with PALFA, which observed a subset of the full region (slightly more restrictive in l and |b| <~ 1°) and detected 45 pulsars. Detections included 1 known millisecond pulsar and 11 previously unknown, long-period pulsars. In the surveyed part of the sky that overlaps with the Parkes Multibeam Pulsar Survey (36° <~ l <~ 50°), PALFA is probing deeper than the Parkes survey, with four discoveries in this region. For both Galactic millisecond and normal pulsar populations, we compare the survey's detections with simulations to model these populations and, in particular, to estimate the number of observable pulsars in the Galaxy. We place 95% confidence intervals of 82,000 to 143,000 on the number of detectable normal pulsars and 9000 to 100,000 on the number of detectable millisecond pulsars in the Galactic disk. These are consistent with previous estimates. Given the most likely population size in each case (107,000 and 15,000 for normal and millisecond pulsars, respectively), we extend survey detection simulations to predict that, when complete, the full PALFA survey should have detected 1000^{+330}_{-230} normal pulsars and 30^{+200}_{-20} millisecond pulsars. Identical estimation techniques predict that 490^{+160}_{-115} normal pulsars and 12^{+70}_{-5} millisecond pulsars would be detected by the beginning of 2014; at the time, the PALFA survey had detected 283 normal pulsars and 31 millisecond pulsars, respectively. We attribute the deficiency in normal pulsar detections predominantly to the radio frequency interference

  4. Serendipitous Detections of XTE J1906+09 with the Rossi X-ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Gogus, Ersin; Woods, Peter M.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In 1996 during Rossi X-ray Timing Explorer (RXTE) observations of SCR 1900+14, the 89-second X-ray pulsar XTE J1906+09 was discovered. As a result of monitoring campaigns of SGR 1900+14, XTE J1906+09 was also monitored regularly in 1996 September, 1998 May-June, 1998 August-1999 July, and 2000 March-2001 January. A frequency grid search of these observations resulted in detections of only the two previously reported outbursts in 1996 September and 1998 August-September. The non-detection of XTE J1906+09 in most observations indicates that it is a transient X-ray pulsar and therefore likely has a Be star companion, Pulse timing analysis of the second outburst revealed a sinusoidal signature in the pulse frequencies that is likely produced by periastron passage in a long period, eccentric, orbit. During the second outburst, the pulse shape changed with increasing intensity, Low intensity pulse profiles from the second outburst are consistent with profiles from the fainter first outburst. Energy dependent pulse shape variations were seen in both outbursts. Pulse phase spectroscopy was used to quantify these variations. The phase averaged spectrum, using the pulse minimum spectrum as the background spectrum to eliminate effects from SGR 1900+14 and the galactic ridge, was well fitted by an absorbed power law with a high energy cutoff with column density N(sub H) = (6 +/- 1) x 10(exp 22) cm(sup -2), photon index = 1.01 +/- 0.08, cutoff energy E(sub cut) = 11 +/- 1 keV, and folding energy E(sub fold) = 19 +/- 4 keV.

  5. VizieR Online Data Catalog: ATNF Pulsar Catalogue (Manchester+, 2005)

    NASA Astrophysics Data System (ADS)

    Manchester, R. N.; Hobbs, G. B.; Teoh, A.; Hobbs, M.

    2016-05-01

    The catalogue is a compilation of the principal observed parameters of pulsars, including positions, timing parameters, pulse widths, flux densities, proper motions, distances, and dispersion, rotation, and scattering measures. It also lists the orbital elements of binary pulsars, and some commonly used parameters derived from the basic measurements. The catalogue includes all published rotation-powered pulsars, including those detected only at high energies. It also includes Anomalous X-ray Pulsars (AXPs) and Soft Gamma-ray Repeaters (SGRs) for which coherent pulsations have been detected. However, it excludes accretion-powered pulsars such as Her X-1 and the recently discovered X-ray millisecond pulsars. (2 data files).

  6. Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2016-03-01

    For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.

  7. The Annular Gap: Gamma-Ray & Radio Emission of Pulsars

    NASA Astrophysics Data System (ADS)

    Qiao, G. J.; Du, Y. J.; Han, J. L.; Xu, R. X.

    2013-01-01

    Pulsars have been found more than 40 years. Observations from radio to gamma-rays present abundant information. However, the radiation mechanism is still an open question. It is found that the annular gap could be formed in the magnetosphere of pulsars (neutron stars or quark stars), which combines the advantages of the polar cap, slot gap and outer gap models. It is emphasized that observations of some radio pulsars, normal and millisecond gamma-ray pulsars (MSGPs) show that the annular gap would play a very important role. Here we show some observational and theoretical evidences about the annular gap. For example, bi-drifting sub-pulses; radio and gamma-ray millisecond pulsars and so on.

  8. An approximate model for pulsar navigation simulation

    NASA Astrophysics Data System (ADS)

    Jovanovic, Ilija; Enright, John

    2016-02-01

    This paper presents an approximate model for the simulation of pulsar aided navigation systems. High fidelity simulations of these systems are computationally intensive and impractical for simulating periods of a day or more. Simulation of yearlong missions is done by abstracting navigation errors as periodic Gaussian noise injections. This paper presents an intermediary approximate model to simulate position errors for periods of several weeks, useful for building more accurate Gaussian error models. This is done by abstracting photon detection and binning, replacing it with a simple deterministic process. The approximate model enables faster computation of error injection models, allowing the error model to be inexpensively updated throughout a simulation. Testing of the approximate model revealed an optimistic performance prediction for non-millisecond pulsars with more accurate predictions for pulsars in the millisecond spectrum. This performance gap was attributed to noise which is not present in the approximate model but can be predicted and added to improve accuracy.

  9. EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY

    SciTech Connect

    Knispel, B.; Kim, H.; Allen, B.; Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H.; Machenschalk, B.; Eatough, R. P.; Keane, E. F.; Kramer, M.; Anderson, D.; Crawford, F.; Rastawicki, D.; Hammer, D.; Papa, M. A.; Siemens, X.; Lyne, A. G.; Miller, R. B.; Sarkissian, J.; and others

    2013-09-10

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of Almost-Equal-To 17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s{sup -1}. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM ( Almost-Equal-To 420 pc cm{sup -3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.

  10. Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey

    NASA Astrophysics Data System (ADS)

    Knispel, B.; Eatough, R. P.; Kim, H.; Keane, E. F.; Allen, B.; Anderson, D.; Aulbert, C.; Bock, O.; Crawford, F.; Eggenstein, H.-B.; Fehrmann, H.; Hammer, D.; Kramer, M.; Lyne, A. G.; Machenschalk, B.; Miller, R. B.; Papa, M. A.; Rastawicki, D.; Sarkissian, J.; Siemens, X.; Stappers, B. W.

    2013-09-01

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of ≈17, 000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about 1 PFlop s-1. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM (≈420 pc cm-3). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.

  11. Oscillations millisecondes des binaires X : La révolution de RXTE

    NASA Astrophysics Data System (ADS)

    Olive, Jean-Francois

    2001-01-01

    In this lecture for the ``23ieme Ecole CNRS de Goutelas'' on binary systems, I review the RXTE observations of new neutron- star phenomena, namely the coherent pulsations from the first accreting millisecond pulsar, the coherent oscillations during X-ray bursts and kiloHertz quasi-periodic oscillations. I describe the ways in which study these millisecond phenomena could help to distinguish between models of dense matter and advance our understanding of general relativity in strong gravitational fields.

  12. A novel mechanism for creating double pulsars

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1992-01-01

    Simulations of encounters between pairs of hard binaries, each containing a neutron star and a main-sequence star, reveal a new formation mechanism for double pulsars in dense cores of globular clusters. In many cases, the two normal stars are disrupted to form a common envelope around the pair of neutron stars, both of which will be spun up to become millisecond pulsars. We predict that a new class of pulsars, double millisecond pulsars, will be discovered in the cores of dense globular clusters. The genesis proceeds through a short-lived double-core common envelope phase, with the envelope ejected in a fast wind. It is possible that the progenitor may also undergo a double X-ray binary phase. Any circular, short-period double pulsar found in the galaxy would necessarily come from disrupted disk clusters, unlike Hulse-Taylor class pulsars or low-mass X-ray binaries which may be ejected from clusters or formed in the galaxy.

  13. Observing peculiar γ-ray pulsars with AGILE

    NASA Astrophysics Data System (ADS)

    Pilia, M.; Pellizzoni, A.

    2011-08-01

    The AGILE γ-ray satellite provides large sky exposure levels (>=109 cm2 s per year on the Galactic Plane) with sensitivity peaking at E ~100 MeV where the bulk of pulsar energy output is typically released. Its ~1 μs absolute time tagging capability makes it perfectly suited for the study of γ-ray pulsars. AGILE collected a large number of γ-ray photons from EGRET pulsars (>=40,000 pulsed counts for Vela) in two years of observations unveiling new interesting features at sub-millisecond level in the pulsars' high-energy light-curves, γ-ray emission from pulsar glitches and Pulsar Wind Nebulae. AGILE detected about 20 nearby and energetic pulsars with good confidence through timing and/or spatial analysis. Among the newcomers we find pulsars with very high rotational energy losses, such as the remarkable PSR B1509-58 with a magnetic field in excess of 1013 Gauss, and PSR J2229+6114 providing a reliable identification for the previously unidentified EGRET source 3EG2227+6122. Moreover, the powerful millisecond pulsar B1821-24, in the globular cluster M28, is detected during a fraction of the observations.

  14. Pulsar Observations Using the First Station of the Long Wavelength Array and the LWA Pulsar Data Archive

    NASA Astrophysics Data System (ADS)

    Stovall, K.; Ray, P. S.; Blythe, J.; Dowell, J.; Eftekhari, T.; Garcia, A.; Lazio, T. J. W.; McCrackan, M.; Schinzel, F. K.; Taylor, G. B.

    2015-08-01

    We present initial pulsar results from the first station of the Long Wavelength Array (LWA1) obtained during the commissioning period of LWA1 and in early science results. We present detections of periodic emission from 44 previously known pulsars, including 3 millisecond pulsars. The effects of the interstellar medium (ISM) on pulsar emission are significantly enhanced at the low frequencies of the LWA1 band (10–88 MHz), making LWA1 a very sensitive instrument for characterizing changes in the dispersion measure (DM) and other effects from the ISM. Pulsars also often have significant evolution in their pulse profile at low frequency and a break in their spectral index. We report DM measurements for 44 pulsars, mean flux density measurements for 36 pulsars, and multi-frequency component spacing and widths for 15 pulsars with more than one profile component. For 27 pulsars, we report spectral index measurements within our frequency range. We also introduce the LWA1 Pulsar Data Archive, which stores reduced data products from LWA1 pulsar observations. Reduced data products for the observations presented here can be found in the archive. Reduced data products from future LWA1 pulsar observations will also be made available through the archive.

  15. The "Perseus Arm" Multibeam pulsar survey

    NASA Astrophysics Data System (ADS)

    Lyne, Andrew; Possenti, Andrea; Manchester, Dick; Kramer, Michael; Hobbs, George; McLaughlin, Maura; Burgay, Marta; D'Amico, Nichi; Camilo, Fernando; Stairs, Ingrid; Keith, Michael; Lorimer, Duncan Ross

    2007-04-01

    Given the extremely fruitful results of the completed Parkes Multibeam Pulsar Survey, Parkes Multibeam High Latitude Pulsar Survey, and Parkes Multibeam Intermediate Latitude Swinburne Survey, we have undertaken a new deep search for pulsars, sampling the galactic plane in the direction of the Perseus Arm at galactic coordinates 200 deg pulsar population and in particular improving the knowledge of the poorly known radial distribution of the pulsars in the outer regions of the Galaxy disk. Given the survey parameters and the sky coverage, this search will lead to the discovery of few tens of sources, with a good discovery rate (twice higher than for the two most recent large-scale searches performed at Parkes) and with a favorable ratio of millisecond over longer period pulsars. The requested range of Sidereal Time is complementary to other pulsar projects. We propose to continue this project, concluding the survey observations during this APR07 semester and timing the discovered pulsars.

  16. The "Perseus Arm" Multibeam pulsar survey

    NASA Astrophysics Data System (ADS)

    Lyne, Andrew; Possenti, Andrea; Manchester, Dick; Kramer, Michael; Hobbs, George; McLaughlin, Maura; Burgay, Marta; D'Amico, Nichi; Camilo, Fernando; Stairs, Ingrid; Lorimer, Duncan Ross

    2006-04-01

    Given the extremely fruitful results of the completed Parkes Multibeam Pulsar Survey, Parkes Multibeam High Latitude Pulsar Survey, and Parkes Multibeam Intermediate Latitude Swinburne Survey, we have undertaken a new deep search for pulsars, sampling the galactic plane in the direction of the Perseus Arm at galactic coordinates 200 deg pulsar population and in particular improving the knowledge of the poorly known radial distribution of the pulsars in the outer regions of the Galaxy disk. Given the survey parameters and the sky coverage, this search will lead to the discovery of few tens of sources, with a good discovery rate (twice higher than for the two most recent large-scale searches performed at Parkes) and with a favorable ratio of millisecond over longer period pulsars. The requested range of Sidereal Time is complementary to other pulsar projects. We propose to continue this project and start the timing observations of the discovered pulsars.

  17. The "Perseus Arm" Multibeam pulsar survey

    NASA Astrophysics Data System (ADS)

    Lyne, Andrew; Possenti, Andrea; Manchester, Dick; Kramer, Michael; Hobbs, George; McLaughlin, Maura; Burgay, Marta; D'Amico, Nichi; Camilo, Fernando; Stairs, Ingrid; Lorimer, Duncan Ross

    2006-10-01

    Given the extremely fruitful results of the completed Parkes Multibeam Pulsar Survey, Parkes Multibeam High Latitude Pulsar Survey, and Parkes Multibeam Intermediate Latitude Swinburne Survey, we have undertaken a new deep search for pulsars, sampling the galactic plane in the direction of the Perseus Arm at galactic coordinates 200 deg pulsar population and in particular improving the knowledge of the poorly known radial distribution of the pulsars in the outer regions of the Galaxy disk. Given the survey parameters and the sky coverage, this search will lead to the discovery of few tens of sources, with a good discovery rate (twice higher than for the two most recent large-scale searches performed at Parkes) and with a favorable ratio of millisecond over longer period pulsars. The requested range of Sidereal Time is complementary to other pulsar projects. We propose to continue this project and start the timing observations of the discovered pulsars.

  18. The "Perseus Arm" Multibeam pulsar survey

    NASA Astrophysics Data System (ADS)

    Lyne, Andrew; Possenti, Andrea; Manchester, Dick; Kramer, Michael; Hobbs, George; McLaughlin, Maura; Burgay, Marta; D'Amico, Nichi; Camilo, Fernando; Stairs, Ingrid; Keith, Michael; Lorimer, Duncan Ross

    2007-10-01

    Given the extremely fruitful results of the completed Parkes Multibeam Pulsar Survey, Parkes Multibeam High Latitude Pulsar Survey, and Parkes Multibeam Intermediate Latitude Swinburne Survey, we have undertaken a new deep search for pulsars, sampling the galactic plane in the direction of the Perseus Arm at galactic coordinates 200 deg pulsar population and in particular improving the knowledge of the poorly known radial distribution of the pulsars in the outer regions of the Galaxy disk. Given the survey parameters and the sky coverage, this search will lead to the discovery of few tens of sources, with a good discovery rate (twice higher than for the two most recent large-scale searches performed at Parkes) and with a favorable ratio of millisecond over longer period pulsars. The requested range of Sidereal Time is complementary to other pulsar projects. We propose to continue this project, concluding the survey observations during this OCT07 semester and timing the discovered pulsars.

  19. Wideband Observations of Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Pennucci, Timothy T.

    2015-08-01

    Pulsars are exotic objects which have yielded a bounty of important astrophysical results. As rapidly rotating, highly magnetized neutron stars, pulsars' stable rotation and beamed radio emission enables their use as interstellar laboratory clocks. The extraordinary timing regularity of the millisecond pulsar (MSP) population permits some of the most precise measurements in astronomy. The discovery of MSPs raised the probability of directly detecting gravitational waves for the first time. Ongoing efforts by several pulsar timing array (PTA) collaborations compliment the ground- and space-based efforts of laser interferometers. One such PTA is the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). NANOGrav has recently employed a new set of wideband instruments to increase the sensitivity of their PTA, and the future of pulsar astronomy is moving towards progressively larger bandwidths. In this dissertation, we address the benefits and issues from adopting the new instrumentation, particularly for the scientific motivations of NANOGrav. We first develop a measurement technique for simultaneously obtaining pulse times-of-arrival (TOAs) and dispersion measures (DMs) using 2D models of evolving Gaussian components. We then apply the methodology broadly to a variety of pulsars, including a bright, test MSP in a globular cluster, the Galactic Center magnetar, and the entire suite of 37 MSPs from the NANOGrav 9-year data set. For a subset of these MSPs, we make targeted observations at specific orbital phases aimed at improving the timing models and constraining the Shapiro delay. With a few exceptions, we find positive or consistent timing results from the implementation of our first generation wideband timing protocol. Some highlights include: improved measurement uncertainties, mitigation of chromatic ISM effects, a reduction in the number of timing parameters and TOAs, signs of chromatic DMs, and at least one new pulsar mass.

  20. Gamma radiation from pulsar magnetospheric gaps

    NASA Technical Reports Server (NTRS)

    Chiang, James; Romani, Roger W.

    1992-01-01

    We investigate the production of gamma rays in two pulsar emission models: the 'polar cap' model and the 'outer cap' model. For the former, we have performed detailed simulations of energetic electrons flowing in the vacuum dipole open field line region. In the outer gap case, we generate light curves for various magnetosphere geometries. Using data from radio and optical observations, we construct models for specific viewing angles appropriate to the Crab and Vela pulsars. Phase-resolved spectra are also computed in the polar cap case and provide signatures for testing the models. The calculations have been extended to include millisecond pulsars, and we have been able to predict fluxes and spectra for populations of recycled pulsars, which are compared to COS B data for globular cluster populations.

  1. Pulsar searches: From radio to gamma-rays

    NASA Astrophysics Data System (ADS)

    Chandler, Adam M.

    2003-08-01

    We report the results of four different pulsar searches, covering radio, X-ray, and gamma-ray wavelengths. These searches targeted pulsars in virtually all of their guises: young and old, long-period and short-period, accretion-powered and rotation-powered. Ten new pulsars were discovered. There are very few known gamma-ray pulsars, all of which were found by folding gamma-ray data with a pulse period known from other wavelengths. Some emission models indicate that there may be a large number of gamma-ray pulsars that are undetectable at lower energies. We searched several of the brightest unidentified gamma-ray sources for pulsations. This was the first attempt to identify gamma-ray pulsars by directly searching gamma- ray data. No new identifications resulted; we report upper limits. Even more rare than gamma-ray pulsars are accreting millisecond pulsars. We searched for coherent pulsations from Aql X-1, a low-mass X-ray binary suspected of harboring such an object. No pulsations were detected, and we argue that the quiescent emission of this system has a thermal origin. The two radio searches included here were both designed to detect millisecond pulsars. First, we report the results of a large area survey from Arecibo. Five new slow pulsars were discovered, including an apparent orthogonal rotator and an extremely unusual bursting radio pulsar. No short-period pulsars were discovered and we place some of the first useful observational constraints on the limiting spin period of a neutron star. We also performed pointed searches of several globular clusters using the new Green Bank Telescope. Three new binary millisecond pulsars were found in M62. These were the first new objects found with the GBT, and they bring the total pulsar population in M62 to six. We also discovered two isolated pulsars, one each in NGC 6544 and NGC 6624. Many of the methods we developed will be relevant to future searches. Perhaps the most significant contribution is a dynamic power

  2. A Large-Area Survey for Radio Pulsars at High Galactic Latitudes

    NASA Astrophysics Data System (ADS)

    Jacoby, B. A.; Bailes, M.; Ord, S. M.; Edwards, R. T.; Kulkarni, S. R.

    2009-07-01

    We have completed a survey for pulsars at high Galactic latitudes with the 64 m Parkes radio telescope. Observing with the 13 beam multibeam receiver at a frequency of 1374 MHz, we covered ~4150 square degrees in the region -100° <= l <= 50°, 15° <= |b| <= 30° with 7232 pointings of 265 s each, thus extending the Swinburne Intermediate Latitude Pulsar Survey a further 15° on either side of the Galactic plane. The signal from each beam was processed by a 96 channel × 3 MHz × 2 polarization filterbank, with the detected power in the two polarizations of each frequency channel summed and digitized with 1 bit sampling every 125 μs, giving good sensitivity to millisecond pulsars with low or moderate dispersion measure. The resulting 2.4 TB data set was processed using standard pulsar search techniques with the workstation cluster at the Swinburne Centre for Astrophysics and Supercomputing. This survey resulted in the discovery of 26 new pulsars including seven binary and/or millisecond pulsars, and redetected 36 previously known pulsars. We describe the survey methodology and results, and present timing solutions for the 19 newly discovered slow pulsars, as well as for nine slow pulsars discovered the Swinburne Intermediate Latitude Pulsar Survey that had no previous timing solutions. Even with a small sampling interval, 1374 MHz center frequency, and a large mid-latitude survey volume we failed to detect any very rapidly spinning pulsars. Evidently, such "submillisecond" pulsars are rare.

  3. Ion-proton pulsars

    NASA Astrophysics Data System (ADS)

    Jones, P. B.

    2016-07-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  4. The gamma-ray pulsar population of globular clusters: implications for the GeV excess

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Linden, Tim

    2016-08-01

    It has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.

  5. Detecting dark matter with imploding pulsars in the galactic center.

    PubMed

    Bramante, Joseph; Linden, Tim

    2014-11-01

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  6. THE PECULIAR PULSAR POPULATION OF THE CENTRAL PARSEC

    SciTech Connect

    Dexter, Jason; O'Leary, Ryan M. E-mail: oleary@berkeley.edu

    2014-03-01

    Pulsars orbiting the Galactic center black hole, Sgr A*, would be potential probes of its mass, distance, and spin, and may even be used to test general relativity. Despite predictions of large populations of both ordinary and millisecond pulsars in the Galactic center, none have been detected within 25 pc by deep radio surveys. One explanation has been that hyperstrong temporal scattering prevents pulsar detections, but the recent discovery of radio pulsations from a highly magnetized neutron star (magnetar) within 0.1 pc shows that the temporal scattering is much weaker than predicted. We argue that an intrinsic deficit in the ordinary pulsar population is the most likely reason for the lack of detections to date: a ''missing pulsar problem'' in the Galactic center. In contrast, we show that the discovery of a single magnetar implies efficient magnetar formation in the region. If the massive stars in the central parsec form magnetars rather than ordinary pulsars, their short lifetimes could explain the missing pulsars. Efficient magnetar formation could be caused by strongly magnetized progenitors, or could be further evidence of a top-heavy initial mass function. Furthermore, current high-frequency surveys should already be able to detect bright millisecond pulsars, given the measured degree of temporal scattering.

  7. Detecting dark matter with imploding pulsars in the galactic center.

    PubMed

    Bramante, Joseph; Linden, Tim

    2014-11-01

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent. PMID:25415895

  8. Birth and Evolution of Isolated Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Kaspi, Victoria M.

    2006-05-01

    We investigate the birth and evolution of Galactic isolated radio pulsars. We begin by estimating their birth space velocity distribution from proper-motion measurements of Brisken and coworkers. We find no evidence for multimodality of the distribution and favor one in which the absolute one-dimensional velocity components are exponentially distributed and with a three-dimensional mean velocity of 380+40-60 km s-1. We then proceed with a Monte Carlo-based population synthesis, modeling the birth properties of the pulsars, their time evolution, and their detection in the Parkes and Swinburne Multibeam surveys. We present a population model that appears generally consistent with the observations. Our results suggest that pulsars are born in the spiral arms, with a galactocentric radial distribution that is well described by the functional form proposed by Yusifov & Küçük, in which the pulsar surface density peaks at radius ~3 kpc. The birth spin period distribution extends to several hundred milliseconds, with no evidence of multimodality. Models that assume the radio luminosities of pulsars to be independent of the spin periods and period derivatives are inadequate, as they lead to the detection of too many old simulated pulsars in our simulations. Dithered radio luminosities proportional to the square root of the spin-down luminosity accommodate the observations well and provide a natural mechanism for the pulsars to dim uniformly as they approach the death line, avoiding an observed pileup on the latter. There is no evidence for significant torque decay (due to magnetic field decay or otherwise) over the lifetime of the pulsars as radio sources (~100 Myr). Finally, we estimate the pulsar birthrate and total number of pulsars in the Galaxy.

  9. Physics of radio emission in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Petrova, S. A.

    2016-04-01

    > Propagation of radio emission in a pulsar magnetosphere is reviewed. The effects of polarization transfer, induced scattering and reprocessing to high energies are analysed with a special emphasis on the implications for the gamma-ray pulsars. The possibilities of the pulsar plasma diagnostics based on the observed radio pulse characteristics are also outlined. As an example, the plasma number density profiles obtained from the polarization data for the Vela and the gamma-ray millisecond pulsars J1446-4701, J1939+2134 and J1744-1134 are presented. The number densities derived tend to be the highest/lowest when the radio pulse leads/lags the gamma-ray peak. In the PSR J1939+2134, the plasma density profiles for the main pulse and interpulse appear to fit exactly the same curve, testifying to the origin of both radio components above the same magnetic pole and their propagation through the same plasma flow in opposite directions. The millisecond radio pulse components exhibiting flat position angle curves are suggested to result from the induced scattering of the main pulse by the same particles that generate gamma rays. This is believed to underlie the wide-sense radio/gamma-ray correlation in the millisecond pulsars. The radio quietness of young gamma-ray pulsars is attributed to resonant absorption, whereas the radio loudness to the radio beam escape through the periphery of the open field line tube.

  10. Developing Precision Pulsar Timing Capability for the DSN

    NASA Astrophysics Data System (ADS)

    Majid, Walid A.; Kuiper, T. B.; Lazio, J.; Monroe, R.; Preston, R. A.; Spolaor, S.; Teitelbaum, L.; Trinh, J.

    2014-01-01

    Millisecond pulsars are a class of radio pulsars with extremely stable rotations. The excellent timing stability of millisecond pulsars can be used to study a wide variety of astrophysical phenomena. In particular, observations of a large sample of these pulsars can be used to detect the presence of low-frequency gravitational waves. We are currently developing a precision pulsar timing backend for the Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to observe and time pulses from an ensemble of millisecond pulsars. The NASA Deep Space Network (DSN) operates clusters of large dish antennas (up to 70-m in diameter), located roughly equi-distant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for pilot observations scheduled later this year. This research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under the Research and Technology Development Program, under a contract with the National Aeronautics and Space Administration.

  11. The variable spin-down rate of the transient magnetar XTE J1810-197

    NASA Astrophysics Data System (ADS)

    Pintore, Fabio; Bernardini, Federico; Mereghetti, Sandro; Esposito, Paolo; Turolla, Roberto; Rea, Nanda; Coti Zelati, Francesco; Israel, Gian Luca; Tiengo, Andrea; Zane, Silvia

    2016-05-01

    We have analysed XMM-Newton and Chandra observations of the transient magnetar XTE J1810-197 spanning more than 11 yr, from the initial phases of the 2003 outburst to the current quiescent level. We investigated the evolution of the pulsar spin period and we found evidence for two distinct regimes: during the outburst decay, dot{ν } was highly variable in the range -(2-4.5) × 10-13 Hz s-1, while during quiescence the spin-down rate was more stable at an average value of -1 × 10-13 Hz s-1. Only during ˜3000 d (from MJD 54165 to MJD 56908) in the quiescent stage it was possible to find a phase-connected timing solution, with dot{ν }=-4.9× 10^{-14} Hz s-1, and a positive second frequency derivative, ddot{ν }=1.8× 10^{-22} Hz s-2. These results are in agreement with the behaviour expected if the outburst of XTE J1810-197 was due to a strong magnetospheric twist.

  12. Properties of the observed recycle radio pulsars

    NASA Astrophysics Data System (ADS)

    Johnston, Simon

    1994-04-01

    Recent searches for pulsars have been highly successful in discovering recycle and binary pulsars, and we now know of approximately 25 recycled pulsars in the Galaxy and approximately 30 in globular cluster systems. These pulsars fall into four classes; those with high-mass stellar companions, with neutron star companions, with low-mass companions, and those whose evolutionary history has been affected by a companion since lost. There are two pulsars known to have high-mass stellar companions. Both systems contain approximately 10 solar mass B-star companions and have high eccentricities (e approximately 0.85). PSR B1259-63 has a spin period of 47 ms and an orbital period in excess of three years. In constrast, PSR J0045-7319 has a spin period close to 1 s and an orbital period of only 50 days. These systems originated from a binary system containing two massive stars. The supernova explosion (SN) creates the pulsar and is also responsible for the observed high eccentricity. There are five pulsars thought to have neutron star companions. All these systems have orbital eccentricities in excess of 0.2, and they fall into two classes. The first class contain the pulsars formed after the first SN, and which have been spun-up to approximately 50 ms periods during the giant phase of their companion star. This also reduces the orbital peirod to 0.3 day and the second SN induces the high eccentricity. The pulsars observed in the second class were born after the second SN and thus have periods more typical of the bulk of pulsars (greater than 250 ms). The bulk of the recycled pulsars have low-mass (probably white dwarf) companions. In general, these pulsars have very fast spin-rates (the 'millisecond' pulsars) and large apparent ages. The observed eccentricities are extremely small (less than 10-5). These pulsars are re-born as millisecond pulsars after accreting matter and angular momentum from their companion stars in their giant phase. The orbit is circularized during

  13. SUBARCSECOND LOCATION OF IGR J17480-2446 WITH ROSSI XTE

    SciTech Connect

    Riggio, A.; Burderi, L.; Egron, E.; Di Salvo, T.; D'Ai, A.; Iaria, R.; Robba, N. R.; Papitto, A.; Belloni, T.; Motta, S.; Floris, M.; Testa, V.; Menna, M. T.

    2012-07-20

    On 2010 October 13, the X-ray astronomical satellite Rossi XTE, during the observation of the newly discovered accretion powered X-ray pulsar IGR J17480-2446, detected a lunar occultation of the source. From knowledge of the lunar topography and Earth, Moon, and spacecraft ephemerides at the epoch of the event, we determined the source position with an accuracy of 40 mas (1{sigma} c.l.), which is interesting, given the very poor imaging capabilities of RXTE ({approx}1 Degree-Sign ). For the first time, using a non-imaging X-ray observatory, the position of an X-ray source with a subarcsecond accuracy is derived, demonstrating the neat capabilities of a technique that can be fruitfully applied to current and future X-ray missions.

  14. Planets around pulsars - a rare phenomenon?

    NASA Astrophysics Data System (ADS)

    Greaves, J. S.; Holland, W. S.

    1997-12-01

    We have used the new submillimetre camera (SCUBA) at the JCMT to search for dusty disks around nearby millisecond pulsars. Such disks are expected to be the precursors of planets, such as those detected by Wolszczan & Frail around B1257+12. No dust emission was detected in our sample, which is 60% complete for millisecond pulsars within 1 kpc of the Sun (and includes B1257+12). The upper limits on dust masses are only a few Earth masses, assuming large grains, or somewhat higher masses are obtained if the grains are very small. In either case, planetesimals and Earth-mass planets are unlikely to be forming at the present time. An alternative is that rocky planets form rapidly in these systems - the (non)detection rate would imply the process takes less than 3 x 10(8) years.

  15. Multi-wavelength analysis of young pulsars: an overview.

    NASA Astrophysics Data System (ADS)

    Maritz, J. M.; Meintjes, P. J.; Buchner, S. J.

    Young pulsars emit a broad spectrum of radiation that range from radio to gamma ray energies. These pulsars are considered as rotation powered pulsars that spin rapidly and are strongly magnetized. Following the discovery of pulsars nearly four decades ago, the population of known pulsars already reached a number of roughly two thousand. This known population of pulsars includes both millisecond and normal pulsars that were discovered by several telescopes. We analyze both HartRAO radio data and Fermi gamma ray data of the Vela pulsar. We also explore a proposed method of probing the electron column density of the instellar gas through analyzing the gamma ray diffuse data associated with the Fermi two-year observation. This paper serves as an overview of gamma ray and radio timing analysis of bright young pulsars with respect to the use of open source timing analysis tools (Tempo2, Psrchive, Enrico and the Fermi tools). We reason that the multi-wavelength picture of pulsars can help clarify questions regarding the origin of pulsed radiation emission mechanisms in several energy bands, but that radio observations will prove adequate for timing noise analysis, given the accurate and long radio data sets. The process of identifying gravitational waves in timing data, rests on gaining a deeper insight into the timing noise phenomena.

  16. The second FERMI large area telescope catalog of gamma-ray pulsars

    SciTech Connect

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  17. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    SciTech Connect

    Abdo, A. A.; Ajello, M.; Allafort, A.; Bloom, E. D.; Bottacini, E.; Baldini, L.; Ballet, J.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bregeon, J.; Bhattacharyya, B.; Bissaldi, E.; Bonamente, E.; Brandt, T. J.; Brigida, M.; and others

    2013-10-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  18. PEACE: pulsar evaluation algorithm for candidate extraction - a software package for post-analysis processing of pulsar survey candidates

    NASA Astrophysics Data System (ADS)

    Lee, K. J.; Stovall, K.; Jenet, F. A.; Martinez, J.; Dartez, L. P.; Mata, A.; Lunsford, G.; Cohen, S.; Biwer, C. M.; Rohr, M.; Flanigan, J.; Walker, A.; Banaszak, S.; Allen, B.; Barr, E. D.; Bhat, N. D. R.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D. J.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R. D.; Freire, P.; Hessels, J. W. T.; Karuppusamy, R.; Kaspi, V. M.; Knispel, B.; Kramer, M.; Lazarus, P.; Lynch, R.; Lyne, A.; McLaughlin, M.; Ransom, S.; Scholz, P.; Siemens, X.; Spitler, L.; Stairs, I.; Tan, M.; van Leeuwen, J.; Zhu, W. W.

    2013-07-01

    Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars. This process can be labour intensive. In this paper, we introduce an algorithm called Pulsar Evaluation Algorithm for Candidate Extraction (PEACE) which improves the efficiency of identifying pulsar signals. The algorithm ranks the candidates based on a score function. Unlike popular machine-learning-based algorithms, no prior training data sets are required. This algorithm has been applied to data from several large-scale radio pulsar surveys. Using the human-based ranking results generated by students in the Arecibo Remote Command Center programme, the statistical performance of PEACE was evaluated. It was found that PEACE ranked 68 per cent of the student-identified pulsars within the top 0.17 per cent of sorted candidates, 95 per cent within the top 0.34 per cent and 100 per cent within the top 3.7 per cent. This clearly demonstrates that PEACE significantly increases the pulsar identification rate by a factor of about 50 to 1000. To date, PEACE has been directly responsible for the discovery of 47 new pulsars, 5 of which are millisecond pulsars that may be useful for pulsar timing based gravitational-wave detection projects.

  19. Star Cluster Buzzing With Pulsars

    NASA Astrophysics Data System (ADS)

    2005-01-01

    A dense globular star cluster near the center of our Milky Way Galaxy holds a buzzing beehive of rapidly-spinning millisecond pulsars, according to astronomers who discovered 21 new pulsars in the cluster using the National Science Foundation's 100-meter Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The cluster, called Terzan 5, now holds the record for pulsars, with 24, including three known before the GBT observations. Pulsar Diagram Pulsar Diagram: Click on image for more detail. "We hit the jackpot when we looked at this cluster," said Scott Ransom, an astronomer at the National Radio Astronomy Observatory in Charlottesville, VA. "Not only does this cluster have a lot of pulsars -- and we still expect to find more in it -- but the pulsars in it are very interesting. They include at least 13 in binary systems, two of which are eclipsing, and the four fastest-rotating pulsars known in any globular cluster, with the fastest two rotating nearly 600 times per second, roughly as fast as a household blender," Ransom added. Ransom and his colleagues reported their findings to the American Astronomical Society's meeting in San Diego, CA, and in the online journal Science Express. The star cluster's numerous pulsars are expected to yield a bonanza of new information about not only the pulsars themselves, but also about the dense stellar environment in which they reside and probably even about nuclear physics, according to the scientists. For example, preliminary measurements indicate that two of the pulsars are more massive than some theoretical models would allow. "All these exotic pulsars will keep us busy for years to come," said Jason Hessels, a Ph.D student at McGill University in Montreal. Globular clusters are dense agglomerations of up to millions of stars, all of which formed at about the same time. Pulsars are spinning, superdense neutron stars that whirl "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is

  20. Imprints of relic gravitational waves on pulsar timing

    NASA Astrophysics Data System (ADS)

    Tong, Ming-Lei; Ding, Yong-Heng; Zhao, Cheng-Shi; Gao, Feng; Yan, Bao-Rong; Yang, Ting-Gao; Gao, Yu-Ping

    2016-03-01

    Relic gravitational waves (RGWs), a background originating during inflation, would leave imprints on pulsar timing residuals. This makes RGWs an important source for detection of RGWs using the method of pulsar timing. In this paper, we discuss the effects of RGWs on single pulsar timing, and quantitatively analyze the timing residuals caused by RGWs with different model parameters. In principle, if the RGWs are strong enough today, they can be detected by timing a single millisecond pulsar with high precision after the intrinsic red noises in pulsar timing residuals are understood, even though simultaneously observing multiple millisecond pulsars is a more powerful technique for extracting gravitational wave signals. We correct the normalization of RGWs using observations of the cosmic microwave background (CMB), which leads to the amplitudes of RGWs being reduced by two orders of magnitude or so compared to our previous works. We obtained new constraints on RGWs using recent observations from the Parkes Pulsar Timing Array, employing the tensor-to-scalar ratio r = 0.2 due to the tensor-type polarization observations of CMB by BICEP2 as a reference value, even though its reliability has been brought into question. Moreover, the constraints on RGWs from CMB and Big Bang nucleosynthesis will also be discussed for comparison.

  1. DETECTING GRAVITATIONAL WAVE MEMORY WITH PULSAR TIMING

    SciTech Connect

    Cordes, J. M.; Jenet, F. A. E-mail: merlyn@phys.utb.edu

    2012-06-10

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T Almost-Equal-To 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  2. The Swinburne intermediate-latitude pulsar survey

    NASA Astrophysics Data System (ADS)

    Edwards, R. T.; Bailes, M.; van Straten, W.; Britton, M. C.

    2001-09-01

    We have conducted a survey of intermediate Galactic latitudes using the 13-beam 21-cm multibeam receiver of the Parkes 64-m radio telescope. The survey covered the region enclosed by 5°<|b|<15° and -100°millisecond pulsars in the region with flux densities greater than approximately 0.3-1.1mJy. Offline analysis on the 64-node Swinburne workstation cluster resulted in the detection of 170 pulsars of which 69 were new discoveries. Eight of the new pulsars, by virtue of their small spin periods and period derivatives, may be recycled and have been reported elsewhere. The slow pulsars discovered are typical of those already known in the volume searched, being of intermediate to old age. Several pulsars experience pulse nulling and two display very regular drifting subpulses. We discuss the new discoveries and provide timing parameters for the 48 slow pulsars for which we have a phase-connected solution.

  3. THE PULSAR SEARCH COLLABORATORY: DISCOVERY AND TIMING OF FIVE NEW PULSARS

    SciTech Connect

    Rosen, R.; Swiggum, J.; McLaughlin, M. A.; Lorimer, D. R.; Yun, M.; Boyles, J.; Heatherly, S. A.; Scoles, S.; Lynch, R.; Kondratiev, V. I.; Ransom, S. M.; Moniot, M. L.; Thompson, C.; Cottrill, A.; Raycraft, M.; Weaver, M.; Snider, A.; Dudenhoefer, J.; Allphin, L.; Thorley, J.; and others

    2013-05-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory, a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hr of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 deg{sup 2} of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are PSR J1926-1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33 ms pulsar; and PSR J1400-1438, a millisecond pulsar in a 9.5 day orbit whose companion is likely a white dwarf star.

  4. The Pulsar Search Collaboratory: Discovery and Timing of Five New Pulsars

    NASA Astrophysics Data System (ADS)

    Rosen, R.; Swiggum, J.; McLaughlin, M. A.; Lorimer, D. R.; Yun, M.; Heatherly, S. A.; Boyles, J.; Lynch, R.; Kondratiev, V. I.; Scoles, S.; Ransom, S. M.; Moniot, M. L.; Cottrill, A.; Weaver, M.; Snider, A.; Thompson, C.; Raycraft, M.; Dudenhoefer, J.; Allphin, L.; Thorley, J.; Meadows, B.; Marchiny, G.; Liska, A.; O'Dwyer, A. M.; Butler, B.; Bloxton, S.; Mabry, H.; Abate, H.; Boothe, J.; Pritt, S.; Alberth, J.; Green, A.; Crowley, R. J.; Agee, A.; Nagley, S.; Sargent, N.; Hinson, E.; Smith, K.; McNeely, R.; Quigley, H.; Pennington, A.; Chen, S.; Maynard, T.; Loope, L.; Bielski, N.; McGough, J. R.; Gural, J. C.; Colvin, S.; Tso, S.; Ewen, Z.; Zhang, M.; Ciccarella, N.; Bukowski, B.; Novotny, C. B.; Gore, J.; Sarver, K.; Johnson, S.; Cunningham, H.; Collins, D.; Gardner, D.; Monteleone, A.; Hall, J.; Schweinhagen, R.; Ayers, J.; Jay, S.; Uosseph, B.; Dunkum, D.; Pal, J.; Dydiw, S.; Sterling, M.; Phan, E.

    2013-05-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory, a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hr of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 deg2 of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are PSR J1926-1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33 ms pulsar; and PSR J1400-1438, a millisecond pulsar in a 9.5 day orbit whose companion is likely a white dwarf star.

  5. Characteristic Age and True Age of Pulsars

    NASA Astrophysics Data System (ADS)

    Jiang, Long; Zhang, Cheng-Min; Tanni, Ali; Zhao, Hai-Hui

    2013-01-01

    Age of a pulsar is a useful parameter, but it is difficult to get the age from observation. We can only derive the characteristic age from the observed parameters: spin period (P) and period derivative (Ṗ). In this paper, we discussed the relationship between characteristic age and magnetic field of a pulsar. Monte Carlo simulation is also used to support the idea: it is useless to study the magnetic field evolution using characteristic age. From some observation evidences we get that: the characteristic age cannot be used as true age, especially for millisecond pulsar (MSP). The difference between them is also discussed. From the studying of breaking index and MSP's initial spin period (P0), we get the conclusion that: the problem cannot be resolved using different radiation models.

  6. Astronomers Discover Fastest-Spinning Pulsar

    NASA Astrophysics Data System (ADS)

    2006-01-01

    discovered in 1982. For reference, the fastest speeds of common kitchen blenders are 250-500 Hz. The scientists say the object's fast rotation speed means that it cannot be any larger than about 20 miles across. According to Hessels, "If it were any larger, material from the surface would be flung into orbit around the star." The scientists' calculation assumed that the neutron star contains less than two times the mass of the Sun, an assumption that is consistent with the masses of all known neutron stars. The spinning pulsar has a companion star that orbits it once every 26 hours. The companion passes in front of the pulsar, eclipsing the pulsar about 40 percent of the time. The long eclipse period, probably due to bloating of the companion, makes it difficult for the astronomers to learn details of the orbital configuration that would allow them to precisely measure the masses of the pulsar and its companion. "If we could pin down these masses more precisely, we could then get a better limit on the size of the pulsar. That, in turn, would then give us a better figure for the true density inside the neutron star," explained Ingrid Stairs, an assistant professor at the University of British Columbia and another collaborator on the work. Competing theoretical models for the types and distributions of elementary particles inside neutron stars make widely different predictions about the pressure and density of such an object. "We want observational data that shows which models fit the reality of nature," Hessels said. If the scientists can't use PSR J1748-2446ad to do that, they are hopeful some of its near neighbors will yield the data they seek. Using the GBT, the astronomers so far have found 30 new fast "millisecond pulsars" in the cluster Terzan 5, making 33 pulsars known in the cluster in total. This is the largest number of such pulsars ever found in a single globular cluster. Dense globular clusters of stars are excellent places to find fast-rotating millisecond

  7. The gamma-ray pulsar population of globular clusters: Implications for the GeV excess

    DOE PAGESBeta

    Hooper, Dan; Linden, Tim

    2016-08-09

    In this study, it has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecondmore » pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.« less

  8. Coordinated ASCA/EUVE/XTE Observations of Algol

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1997-01-01

    EUVE, Advanced Satellite for Cosmology and Astrophysics (ASCA), and X-ray Timing Explorer (XTE) observed the eclipsing binary Algol (Beta Per) from 1-7 Feb 1996. The coordinated observation covered approx. 2 binary orbits of the system, with a net exposure of approx. 160 ksec for EUVE, 40 ksec for ASCA (in 4 pointings), and 90 ksec for XTE (in 45 pointings). We discuss results of modeling the combined EUVE, ASCA, and XTE data using continuous differential emission measure distributions, and provide constraints on the abundance in the Algol system.

  9. Birth and Evolution of Isolated Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Kaspi, Victoria M.

    2008-02-01

    We investigate the birth and evolution of isolated radio pulsars using a population synthesis method, modeling the birth properties of the pulsars, their time evolution, and their detection in the Parkes and Swinburne Multibeam (MB) surveys. Together, the Parkes and Swinburne MB surveys [1, 2] have detected nearly 2/3 of the known pulsars and provide a remarkably homogeneous sample to compare with simulations. New proper motion measurements [3, 4] and an improved model of the distribution of free electrons in the interstellar medium, NE2001 [5], also make revisiting these issues particularly worthwhile. We present a simple population model that reproduces the actual observations well, and consider others that fail. We conclude that: pulsars are born in the spiral arms, with the birthrate of 2.8+/-0.5 pulsars/century peaking at a distance ~3 kpc from the Galactic centre, and with mean initial speed of 380-60+40 km s-1 the birth spin period distribution extends to several hundred milliseconds, with no evidence of multimodality, implying that characteristic ages overestimate the true ages of the pulsars by a median factor >2 for true ages <30,000 yr models in which the radio luminosities of the pulsars are random generically fail to reproduce the observed P-Ṗ diagram, suggesting a relation between intrinsic radio luminosity and (P,Ṗ) radio luminosities L~Ė provides a good match to the observed P-Ṗ diagram; for this favored radio luminosity model, we find no evidence for significant magnetic field decay over the lifetime of the pulsars as radio sources (~100 Myr).

  10. Pulsars at TeV

    NASA Astrophysics Data System (ADS)

    Edwards, P.

    1994-04-01

    The atmospheric Cerenkov technique is used to search for emission at energies above several hundred GeV from a variety of objects, including pulsars (see, e.g., reviews by Weekes, 1988, Phys. Rep., 160, 1; Weekes, 1992, Sp. Sci. Rev., 59, 315). Claims for TeV emission (from any source) should be of high significance, show gamma-ray-like properties, and be independently confirmed. By these criteria the Crab nebula is currently the only established pulsar-driven system to be observed at TeV energies (Weekes et al., 1989, Astrophys. J., 342, 379; Vacanti et al., 1991, Astrophys. J., 377, 467; Goret et al., 1993, Astron. Astrophys., 270, 401). The gamma-ray signal is not pulsed at TeV energies, leading to models of synchrotron self-Compton emission from the Crab nebula (e.g., De Jager and Harding, 1992, Astrophys. J., 396, 161), although other models have also been proposed (Kwok et al., 1991, Astrophys. J., 379, 653). While claims exist for TeV emission from, amongst others, the Vela pulsar (e.g., Bhat et al., 1987, Astron. Astrophys., 178, 242, Geminga (Vishwanath et al., 1993, Astron. Astrophys., 267, L5; Bowden et al., 1993, J. Phys. G: Nucl. Part. Phys., 19, L29), and PSR 1509-58 (Nel et al., 1992, Astrophys. millisecond pulsars have high values of E-dot/d2 (due to their proximity) and are thus potentially observable TeV sources. *The detection of TeV gamma-rays from millisecond pulsars has been considered recently by Smith (1993, Astrophys. -J., 408, 468).

  11. Pulsars Magnetospheres

    NASA Technical Reports Server (NTRS)

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  12. Pulsars for the Beginner

    ERIC Educational Resources Information Center

    DiLavore, Phillip; Wayland, James R.

    1971-01-01

    Presents the history of the discovery of pulsars, observations that have been made on pulsar radiation, and theories that have been presented for its presence and origin. Illustrations using pulsar's properties are presented in mechanics, electromagnetic radiation and thermodynamics. (DS)

  13. Millisecond Oxidation of Alkanes

    SciTech Connect

    Scott Han

    2011-09-30

    This project was undertaken in response to the Department of Energy's call to research and develop technologies 'that will reduce energy consumption, enhance economic competitiveness, and reduce environmental impacts of the domestic chemical industry.' The current technology at the time for producing 140 billion pounds per year of propylene from naphtha and Liquified Petroleum Gas (LPG) relied on energy- and capital-intensive steam crackers and Fluidized Catalytic Cracking (FCC) units. The propylene is isolated from the product stream in a costly separation step and subsequently converted to acrylic acid and other derivatives in separate production facilities. This project proposed a Short Contact Time Reactor (SCTR)-based catalytic oxydehydrogenation process that could convert propane to propylene and acrylic acid in a cost-effective and energy-efficient fashion. Full implementation of this technology could lead to sizeable energy, economic and environmental benefits for the U. S. chemical industry by providing up to 45 trillion BTUs/year, cost savings of $1.8 billion/year and a combined 35 million pounds/year reduction in environmental pollutants such as COx, NOx, and SOx. Midway through the project term, the program directive changed, which approval from the DOE and its review panel, from direct propane oxidation to acrylic acid at millisecond contact times to a two-step process for making acrylic acid from propane. The first step was the primary focus, namely the conversion of propane to propylene in high yields assisted by the presence of CO2. The product stream from step one was then to be fed directly into a commercially practiced propylene-to-acrylic acid tandem reactor system.

  14. Probing Microstructure in Interstellar Plasma with Pulsars

    NASA Astrophysics Data System (ADS)

    Backer, Donald

    1999-11-01

    Pulsars provide excellent probes of small structure in the interstellar plasma. The list of observable effects includes dispersion, Faraday rotation, diffraction and refraction. Of great interest recently has been episodes of lensing and dual path propagation when the plasma perturbation has just the right focal length for the pulsar-perturber-earth geometry at a given frequency. I will discuss a recent study of the variable dispersion, refraction and diffraction of the millisecond pulsar B1937+21. This is based mainly on daily observations at 327 and 610 MHz with a pulsar monitoring telescope in Green Bank, WV. Further observations at 820 and 1395 MHz allow us to investigate the limits on dispersion measure determination set by diffraction. Length scales in the medium from 10^10 to 10^15 cm are probed. A second study focuses on a rare event in the Crab pulsar where the dispersion measure jumped by 0.1 pc cm-3 within one week and, prior to the jump, a faint and delayed ghost of the pulsed emission was observed. These phenomena can be explained in terms of a plasma wedge crossing the line of sight. The most likely location of this wedge is in the Rayleigh-Taylor unstable interface between the expanding supernova remains and the pre-supernova stellar wind debris.

  15. High-Energy Pulsar Models: Developments and New Questions

    NASA Technical Reports Server (NTRS)

    Venter, C.; Harding, A. K.

    2014-01-01

    The past few years have seen a major advance in observational knowledge of high-energy (HE) pulsars. The Fermi Large Area Telescope (LAT) and AGILE have increased the number of known gamma-ray pulsars by an order of magnitude, its members being divided roughly equally among millisecond pulsars (MSPs), young radio-loud pulsars, and young radio-quiet pulsars. Many new and diverse emission characteristics are being measured, while radio and X-ray follow-up observations increase the pulsar detection rate and enrich our multiwavelength picture of these extreme sources. The wealth of new data has provided impetus for further development and improvement of existing theoretical pulsar models. Geometric light curve (LC) modelling has uncovered three broad classes into which HE pulsars fall: those where the radio profile leads, is aligned with, or lags the gamma-ray profile. For example, the original MSP and original black widow system are members of the second class, requiring co-located emission regions and thereby breaking with traditional notions of radio emission origin. These models imply narrow accelerator gaps in the outer magnetosphere, indicating copious pair production even in MSP magnetospheres that were previously thought to be pair-starved. The increased quality and variety of the LCs necessitate construction of ever more sophisticated models. We will review progress in global magnetosphere solutions which specify a finite conductivity on field lines above the stellar surface, filling the gap between the standard vacuum and force-free (FF; plasma-filled) models. The possibility of deriving phase-resolved spectra for the brightest pulsars, coupled with the fact that the HE pulsar population is sizable enough to allow sampling of various pulsar geometries, will enable much more stringent testing of future radiation models. Reproduction of the observed phase-resolved behavior of this disparate group will be one of the next frontiers in pulsar science, impacting on

  16. Prospects for Pulsar Studies with the GLAST Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2007-01-01

    The Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST), due to launch in November 2007, will have unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 200 GeV. GLAST is therefore expected to provide major advances in the understanding of high-energy emission from rotation-powered pulsars. As the only presently known galactic GeV source class; pulsars will be one of the most important sources for study with GLAST. The main science goals of the LAT for pulsar studies include an increase in the number of detected radio-loud and radio-quiet gamma-ray pulsars, including millisecond pulsars, giving much better statistics for elucidating population characteristics, measurement of the high-energy spectrum and the shape of spectral cutoffs and determining pulse profiles for a variety of pulsars of different age. Further, measurement of phase-resolved spectra and energy dependent pulse profiles of the brighter pulsars should allow detailed tests of magnetospheric particle acceleration and radiation mechanisms, by comparing data with theoretical models that have been developed. Additionally, the LAT will have the sensitivity to allow blind pulsation searches of nearly all unidentified EGRET sources, to possibly uncover more radio-quiet Geminga-like pulsars.

  17. Prospects for Pulsar Studies with the GLAST Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2006-01-01

    The Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST) will have unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 200 GeV. GLAST is therefore expected to provide major advances in the understanding of high-energy emission from rotation-powered pulsars. As the only presently known galactic GeV source class, pulsars will be one of the most important sources for study with GLAST. The main science goals of the LAT for pulsar studies include an increase in the number of detected radio-loud and radio-quiet gamma ray pulsars, including millisecond pulsars, giving much better statistics for elucidating population characteristics, measurement of the high-energy spectrum and the shape of spectral cutoffs and determining pulse profiles for a variety of pulsars of different age. Further, measurement of phase-resolved spectra and energy dependent pulse profiles of the brighter pulsars should allow detailed tests of magnetospheric particle acceleration and radiation mechanisms, by comparing data with theoretical models that have been developed. Additionally, the LAT will have the sensitivity to allow blind pulsation searches of nearly all unidentified EGRET sources, to possibly uncover more radio-quiet Geminga-like pulsars.

  18. Discovery of two new pulsars in 47 Tucanae (NGC 104)

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Hobbs, G.; Li, D.; Ridolfi, A.; Wang, P.; Freire, P.

    2016-06-01

    We report the discovery of two new millisecond pulsars (PSRs J0024-7204aa and J0024-7204ab) in the globular cluster 47 Tucanae (NGC 104). Our results bring the total number of pulsars in 47 Tucanae to 25. These pulsars were discovered by reprocessing archival observations from the Parkes radio telescope. We reprocessed the data using a standard search procedure based on the PRESTO software package as well as using a new method in which we incoherently added the power spectra corresponding to ˜1100 h of observations. The newly discovered PSR J0024-7204aa, has a pulse frequency of ˜541 Hz (corresponding to a ˜1.84 ms period), which is higher than any other pulsars currently known in the cluster and ranks 12th amongst all the currently known pulsars. The dispersion measure of this pulsar, 24.941(7) cm-3 pc, is the highest in the cluster. The second discovered pulsar, PSR J0024-7204ab, is an isolated pulsar with a pulse frequency of ˜270 Hz (corresponding to a period of ˜3.70 ms).

  19. Gamma-Ray Pulsar Revolution

    NASA Astrophysics Data System (ADS)

    Caraveo, Patrizia A.

    2014-08-01

    Isolated neutron stars (INSs) were the first sources identified in the field of high-energy gamma-ray astronomy. In the 1970s, only two sources had been identified, the Crab and Vela pulsars. However, although few in number, these objects were crucial in establishing the very concept of a gamma-ray source. Moreover, they opened up significant discovery space in both the theoretical and phenomenological fronts. The need to explain the copious gamma-ray emission of these pulsars led to breakthrough developments in understanding the structure and physics of neutron star (NS) magnetospheres. In parallel, the 20-year-long chase to understand the nature of Geminga unveiled the existence of a radio-quiet, gamma-ray-emitting INS, adding a new dimension to the INS family. We are living through an extraordinary time of discovery. The current generation of gamma-ray detectors has vastly increased the population of known gamma-ray-emitting NSs. The 100 mark was crossed in 2011, and we are now over 150. The gamma-ray-emitting NS population exhibits roughly equal numbers of radio-loud and radio-quiet young INSs, plus an astonishing, and unexpected, group of isolated and binary millisecond pulsars (MSPs). The number of MSPs is growing so rapidly that they are on their way to becoming the most numerous members of the family of gamma-ray-emitting NSs. Even as these findings have set the stage for a revolution in our understanding of gamma-ray-emitting NSs, long-term monitoring of the gamma-ray sky has revealed evidence of flux variability in the Crab Nebula as well as in the pulsed emission from PSR J2021+4026, challenging a four-decades-old, constant-emission paradigm. Now we know that both pulsars and their nebulae can, indeed, display variable emission.

  20. Nanohertz gravitational wave searches with interferometric pulsar timing experiments.

    PubMed

    Tinto, Massimo

    2011-05-13

    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same timekeeping subsystem (i.e., "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10(-9)-10(-8))  Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost 2 orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the NASA's Deep Space Network and the forthcoming large arraying projects.

  1. The (obscene) Challenges of Next-Generation Pulsar Surveys

    NASA Astrophysics Data System (ADS)

    Ransom, Scott M.

    2014-04-01

    In the last decade, large-scale surveys for new radio pulsars have made incredible progress, particularly in their ability to find important binary and millisecond pulsars. The reason for this progress has been Moore's Law, the same reason behind our current efforts and plans to build fantastic next-generation radio facilities. These new facilities, though, especially the radio arrays, will make pulsar searching incredibly difficult due to the (obscene) data rates that will be generated. Dealing with data rates that we cannot record will demand new ways of thinking about and processing our pulsar data. And unfortunately these challenges apply not only to the SKA in some distant future, but are with us already today in the arrays we have in operation or under construction.

  2. Nanohertz gravitational wave searches with interferometric pulsar timing experiments.

    PubMed

    Tinto, Massimo

    2011-05-13

    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same timekeeping subsystem (i.e., "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10(-9)-10(-8))  Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost 2 orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the NASA's Deep Space Network and the forthcoming large arraying projects. PMID:21668135

  3. The Unique Capabilities of the Allen Telescope Array for Pulsar Timing and Gravitational Wave Detection

    NASA Astrophysics Data System (ADS)

    McLaughlin, Maura

    2011-01-01

    Since their discovery in 1982, millisecond pulsars have served as exquisite probes of fundamental physics. I will discuss the most transformative current application of millisecond pulsars: the direct detection of gravitational waves. Timing an array of pulsars could result in the detection of a stochastic background of gravitational waves, most likely resulting from an ensemble of supermassive black hole binaries. The unique capabilities of the Allen Telescope Array (ATA) will make it a very important resource for this experiment. The multi-wavelength coverage will increase sensitivity and enable optimal removal of interstellar propagation affects and the flexibility of scheduling afforded by commensal observing will increase the number of sources times and the cadence at which we can observe each source. I will discuss how these properties complement existing facilities and how including the ATA will increase the sensitivity of the international pulsar timing array.

  4. Determination of Mass Limits Around Pulsars at 10 and 90 umu m with ISO- 0.3 cm

    NASA Astrophysics Data System (ADS)

    Koch Miramond, Lydie; Podsiadlowski, Philipp; Haas, Martin; Naylor, Tim; Sauvage, Marc

    We present mid-infrared photometric results obtained with ISOCAM and ISOPHOT on 3 millisecond pulsars and 3 ordinary radio pulsars. No detections have been obtained for the three ms pulsars nor the two more distant radio pulsars. A faint enhancement in the brightness map at 90 microns is seen at about 5 arcsec from the radio position of PSR J0108-1431, the nearest radio pulsar (Tauris et al, 1994), located at 85 pc from us. We conclude that this 90 micron emission, amounting to about 12 mJy, originates either from material orbiting the pulsar or from cirrus on the line of sight. We deduce the upper limits on mass of dust orbiting this pulsar and on the mean temperature of grains.

  5. Radio Disappearance of the Magnetar XTE J1810-197 and Continued X-ray Timing

    NASA Astrophysics Data System (ADS)

    Camilo, F.; Ransom, S. M.; Halpern, J. P.; Alford, J. A. J.; Cognard, I.; Reynolds, J. E.; Johnston, S.; Sarkissian, J.; van Straten, W.

    2016-04-01

    We report on timing, flux density, and polarimetric observations of the transient magnetar and 5.54 s radio pulsar XTE J1810-197 using the Green Bank, Nançay, and Parkes radio telescopes beginning in early 2006, until its sudden disappearance as a radio source in late 2008. Repeated observations through 2016 have not detected radio pulsations again. The torque on the neutron star, as inferred from its rotation frequency derivative \\dot{ν }, decreased in an unsteady manner by a factor of three in the first year of radio monitoring, until approximately mid-2007. By contrast, during its final year as a detectable radio source, the torque decreased steadily by only 9%. The period-averaged flux density, after decreasing by a factor of 20 during the first 10 months of radio monitoring, remained relatively steady in the next 22 months, at an average of 0.7 ± 0.3 mJy at 1.4 GHz, while still showing day-to-day fluctuations by factors of a few. There is evidence that during this last phase of radio activity the magnetar had a steep radio spectrum, in contrast to earlier flat-spectrum behavior. No secular decrease presaged its radio demise. During this time, the pulse profile continued to display large variations; polarimetry, including of a new profile component, indicates that the magnetic geometry remained consistent with that of earlier times. We supplement these results with X-ray timing of the pulsar from its outburst in 2003 up to 2014. For the first 4 years, XTE J1810-197 experienced non-monotonic excursions in frequency derivative by at least a factor of eight. But since 2007, its \\dot{ν } has remained relatively stable near its minimum observed value. The only apparent event in the X-ray record that is possibly contemporaneous with the radio shutdown is a decrease of ≈20% in the hot-spot flux in 2008-2009, to a stable, minimum value. However, the permanence of the high-amplitude, thermal X-ray pulse, even after the (unexplained) radio demise, implies

  6. The High Time Resolution Universe surveys for pulsars and fast transients

    NASA Astrophysics Data System (ADS)

    Keith, Michael J.

    2013-03-01

    The High Time Resolution Universe survey for pulsars and transients is the first truly all-sky pulsar survey, taking place at the Parkes Radio Telescope in Australia and the Effelsberg Radio Telescope in Germany. Utilising multibeam receivers with custom built all-digital recorders the survey targets the fastest millisecond pulsars and radio transients on timescales of 64 μs to a few seconds. The new multibeam digital filter-bank system at has a factor of eight improvement in frequency resolution over previous Parkes multibeam surveys, allowing us to probe further into the Galactic plane for short duration signals. The survey is split into low, mid and high Galactic latitude regions. The mid-latitude portion of the southern hemisphere survey is now completed, discovering 107 previously unknown pulsars, including 26 millisecond pulsars. To date, the total number of discoveries in the combined survey is 135 and 29 MSPs These discoveries include the first magnetar to be discovered by it's radio emission, unusual low-mass binaries, gamma-ray pulsars and pulsars suitable for pulsar timing array experiments.

  7. Prospects for Pulsar Studies with the GLAST Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2007-01-01

    The Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST), due to launch in November 2007, will have unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 200 GeV. GLAST is therefore expected to provide major advances in the understanding of high-energy emission from rotation-powered p ulsars. As the only presently known galactic GeV source class, pulsar s will be one of the most important sources for study with GLAST. The main science goals of the LAT for pulsar studies include an increase in the number of detected radio-loud and radio-quiet gamma-ray pulsar s, including millisecond pulsars, giving much better statistics for e lucidating population characteristics, measurement of the high-energy spectrum and the shape of spectral cutoffs and determining pulse profiles for a variety of pulsars of different age. Further, measurement of phase-resolved spectra and energy dependent pulse profiles of the brighter pulsars should allow detailed tests of magnetospheric partic le acceleration and radiation mechanisms, by comparing data with theo retical models that have been developed. Additionally, the LAT will have the sensitivity to allow blind pulsation searches of nearly all un identified EGRET sources, to possibly uncover more radio-quiet Geming a-like pulsars.

  8. PRESTO: PulsaR Exploration and Search TOolkit

    NASA Astrophysics Data System (ADS)

    Ransom, Scott

    2011-07-01

    PRESTO is a large suite of pulsar search and analysis software. It was primarily designed to efficiently search for binary millisecond pulsars from long observations of globular clusters (although it has since been used in several surveys with short integrations and to process a lot of X-ray data as well). To date, PRESTO has discovered well over a hundred and fifty pulsars, including approximately 100 recycled pulsars, about 80 of which are in binaries. It is written primarily in ANSI C, with many of the recent routines in Python. Written with portability, ease-of-use, and memory efficiency in mind, it can currently handle raw data from the following pulsar machines or formats: PSRFITS search-format data (as from GUPPI at the GBT and the Mock Spectrometers at Arecibo)SPIGOT at the GBTMost Wideband Arecibo Pulsar Processor (WAPP) at AreciboThe Parkes and Jodrell Bank 1-bit filterbank formatsBerkeley-Caltech Pulsar Machine (BCPM) at the GBT (may it RIP...)8-bit filterbank format from SIGPROC (other formats will be added if required)A time series composed of single precision (i.e. 4-byte) floating point dataPhoton arrival times (or events) in ASCII or double-precision binary formats

  9. Single-pulse study of radio pulsars

    NASA Astrophysics Data System (ADS)

    Bilous, Anna V.

    Single pulses provide valuable information about the pulsar magnetosphere, giving more spatial and time resolution than the integrated pulse profiles. Clearly, there are several different types of single pulse emission, however it is still unknown what is the nature or even strict definition of each type. This work aims to shed some light on different kinds of single pulses, making an attempt to constrain some emission theories and trace the possible connection between different types. The thesis consists of following case studies: 1. No apparent correlation was found between giant pulses (GPs) from the Crab pulsar (9 GHz, Green Bank Telescope) and its gamma-ray photons (100 MeV - 5 GeV, Fermi). This result suggests that GPs, at least the ones detected at high radio frequencies, are due to changes in coherence of radio emission rather than an overall increase in the magnetospheric particle density. Also, no apparent correlation was found between Crab GPs (1.5 GHz, Green Bank Telescope) and X-ray photons (1.5 - 4.5 keV, Chandra). 2. We show that single pulses from the millisecond pulsar B182-24A fall into two distinct categories — broad faint pulses, coincident with the peaks of integrated pulse profile and bright narrow GPs on the trailing edges of profile components. Owing to our large fractional bandwidth we were able to prove the hypothesis that the spectra of these GPs consist of separate substantially polarized patches. 3. We present a LOFAR study of single pulses from pulsars B0809+74 and B1133+16 below 90 MHz. We show that the spectral width of bright, low-frequency pulses scales with increasing frequency as Δ f/f ˜ 0.15, at least in the case of PSR B0809+74. This behaviour is consistent with predictions of strong plasma turbulence model. 4. Millisecond pulsar B1744-24A belongs to "windy" binary systems, with unbound material escaping from the companion star and interacting with the pulsar's magnetosphere. B1744-24A appears to emit strong wide single

  10. Tackling radio polarization of energetic pulsars

    SciTech Connect

    Craig, H. A.

    2014-08-01

    The traditional, geometrical rotating vector model (RVM) has proved particularly poor at capturing the polarization sweeps of the young energetic and millisecond pulsars detected by Fermi. We augment this model by including finite altitude effects using a swept back vacuum dipole geometry. By further including the effects of orthogonal mode jumps, multiple emission altitudes, open zone growth via y-point lowering, and interstellar scattering, we show that a wide range of departures from RVM can be modeled well while retaining a geometrical picture. We illustrate these effects by fitting six Fermi-detected pulsars (J0023+0923, J1024–0719, J1744–1134, J1057–5226, J1420–6048, and J2124–3358) and we describe how such modeling can improve our understanding of their emission geometry.

  11. Mildly Recycled Pulsars at High-Energies

    NASA Astrophysics Data System (ADS)

    Pellizzoni, A.

    2011-08-01

    Mildly recyled pulsars (MRP), conventionally defined as neutron star having spin period in the 20-100 ms range and surface magnetic field <1011 Gauss, probably rise from binary systems (disrupted or not) with an intermediate or an high mass companion. Despite their relatively low spin-down energies compared to the ``fully'' recycled millisecond pulsars (arising from common low mass X-ray binaries), nearby MRPs can be detected by deep X-ray observations and by timing analysis of the very long data span provided by gamma-ray space detectors. The discovery of peculiar timing and spectral properties, possibly transitional, of the MRPs can be of the utmost importance to link different classes of neutron stars and study their evolution.

  12. New Pulsar Theory

    NASA Astrophysics Data System (ADS)

    Kebede, Legesse

    2015-08-01

    Standard pulsar theory is based on fields that are conserved from progenitor stars. This has limited the scope of pulsar astronomy to a kind of study very much confined to a limited type of pulsars, so called field pulsars. The large majority of pulsars are technically eliminated from statistical studies because they are either too massive, or are of very high magnetic field with no mechanism yet known which forces them to decay to very low frequency rotators in a matter of a few thousands of years. This is one distinct property of these highly magnetized pulsars. The current presentation focuses on a new source for the generation of pulsar fields namely spinning separated surface charges and it shows that pulsar fields are strictly mass dependent. Massive neutron stars are strongly magnetized ( ≥ 1018 G) and less massive ones are weakly magnetized (1011 - 1013 G). This work therefore dismisses the current belief that there have to be two classes of pulsars (field pulsars and anomalous pulsars). It leads to a decay law that provides results that are consistent with observations from these two so called distinct classes of pulsars. This work also suggests that pulsar fields should be infinitely multi-polar which helps to successfully addresses the longtime issues of pulse shape and promises that the current problem of pulsar radiation could be solvable..

  13. Pulsars at the Center of the Galaxy

    NASA Astrophysics Data System (ADS)

    Majid, Walid

    2016-07-01

    Over the past few years, a number of groups using data from NASA's space-borne Fermi LAT instrument have identified excess gamma-ray flux toward the inner 1º of the Galactic Center (GC), with an even larger significant excess within 0.2º degrees. At present there are two leading candidates for this excess: dark matter annihilation and a population of unresolved millisecond pulsars (MSPs). We are currently developing dedicated instrumentation to carry out a sensitive search for the pulsars in this region of the galaxy using a newly developed front end and receiver on a Deep Space Network large diameter antenna in Australia. In this presentation, we will provide an overview of the challenges encountered with pulsar searches at the GC region and a summary of previous and ongoing efforts to survey this region with radio telescopes. We will also provide preliminary results from our recent observations of the GC region at 2 and 8 GHz and will conclude with prospects for detection of perhaps hundreds of pulsars in this region with new generations of radio telescopes now under construction.

  14. Pulsars at the Center of the Galaxy

    NASA Astrophysics Data System (ADS)

    Majid, Walid A.; Prince, Thomas A.

    2016-06-01

    Over the past few years, a number of groups using data from NASA’s space-borne Fermi LAT instrument have identified excess gamma-ray flux toward the inner degree of the Galactic Center (GC), with an even larger significant excess within 0.2 degrees. At present there are two leading candidates for this excess: dark matter annihilation and a population of unresolved millisecond pulsars (MSPs). We are currently developing dedicated instrumentation to carry out a sensitive search for the pulsars in this region of the galaxy using a newly developed front end and receiver on a Deep Space Network large diameter antenna in Australia. In this presentation, we will provide an overview of the challenges encountered with pulsar searches at the GC region and a summary of previous and ongoing efforts to survey this region with radio telescopes. We will also provide preliminary results from our recent observations of the GC region at 2 and 8 GHz and will conclude with prospects for detection of perhaps hundreds of pulsars in this region with new generations of radio telescopes now under construction.

  15. Pulsars at the Center of the Galaxy

    NASA Astrophysics Data System (ADS)

    Majid, Walid A.

    2016-04-01

    Over the past few years, a number of groups using data from NASA’s space-borne Fermi LAT instrument have identified excess gamma-ray flux toward the inner few degrees of the Galactic Center (GC), with an even larger significant excess within 1 degree of this region. At present there are two leading candidates for this excess: dark matter annihilation and a population of unresolved millisecond pulsars (MSPs). We are currently developing dedicated instrumentation to carry out a sensitive search for the pulsars in this region of the galaxy using a newly developed front end and receiver on a Deep Space Network large diameter antenna in Australia. In this presentation, we will provide an overview of the challenges encountered with pulsar searches at the GC region and a summary of previous and ongoing efforts to survey this region with radio telescopes. We will also provide preliminary results from our recent observations of the GC region at 2 and 8 GHz and will conclude with prospects for detection of perhaps hundreds of pulsars in this region with new generations of radio telescopes now under construction.

  16. Pulsar population synthesis using palfa detections and pulsar search collaboratory discoveries including a wide DNS system and a nearby MSP

    NASA Astrophysics Data System (ADS)

    Swiggum, Joseph Karl

    Using the ensemble of detections from pulsar surveys, we can learn about the sizes and characteristics of underlying populations. In this thesis, I analyze results from the Pulsar Arecibo L-band Feed Array (PALFA) precursor and Green Bank Telescope 350 MHz Drift Scan surveys; I examine survey sensitivity to see how detections can inform pulsar population models, I look at new ways of including young scientists -- high school students -- in the discovery process and I present timing solutions for students' discoveries (including a nearby millisecond pulsar and a pulsar in a wide-orbit double neutron star system). The PALFA survey is on-going and uses the ALFA 7-beam receiver at 1400 MHz to search both inner and outer Galactic sectors visible from Arecibo (32° ?£? 77° and 168° ?£? 214°) close to the Galactic plane (|b| ? 5°) for pulsars. The PALFA precursor survey observed a subset of this region, (|b| ? 1°) and detected 45 pulsars, including one known millisecond pulsar (MSP) and 11 previously unknown, long-period (normal) pulsars. I assess the sensitivity of the PALFA precursor survey and use the number of normal pulsar and MSP detections to infer the size of each underlying Galactic population. Based on 44 normal pulsar detections and one MSP, we constrain each population size to 107,000+36,000-25,000 and 15,000 +85,000-6,000 respectively with 95% confidence. Based on these constraints, we predict yields for the full PALFA survey and find a deficiency in normal pulsar detections, possibly due to radio frequency interference and/or scintillation, neither of which are currently accounted for in population simulations. The GBT 350 MHz Drift Scan survey collected data in the summer of 2007 while the GBT was stationary, undergoing track replacement. Results discussed here come from ~20% of the survey data, which were processed and donated to the Pulsar Search Collaboratory (PSC). The PSC is a joint outreach program between WVU and NRAO, involving high school

  17. Known Pulsars Identified in the GMRT 150 MHz All-sky Survey

    NASA Astrophysics Data System (ADS)

    Frail, D. A.; Jagannathan, P.; Mooley, K. P.; Intema, H. T.

    2016-10-01

    We have used the 150 MHz radio continuum survey (TGSS ADR) from the Giant Metrewave Radio Telescope (GMRT) to search for phase-averaged emission toward all well-localized radio pulsars north of -53° decl. We detect emission toward 200 pulsars with high confidence (≥slant 5σ ) and another 88 pulsars at fainter levels. We show that most of our identifications are likely from pulsars, except for a small number where the measured flux density is confused by an associated supernova or pulsar-wind nebula, or a globular cluster. We investigate the radio properties of the 150 MHz sample and find an unusually high number of gamma-ray binary millisecond pulsars with very steep spectral indices. We also note a discrepancy in the measured flux densities between GMRT and LOFAR pulsar samples, suggesting that the flux density scale for the LOFAR pulsar sample may be in error by approximately a factor of two. We carry out a separate search of 30 well-localized gamma-ray, radio-quiet pulsars in an effort to detect a widening of the radio beam into the line of sight at lower frequencies. No steep-spectrum emission was detected either toward individual pulsars or in a weighted stack of all 30 images.

  18. Binary pulsars studies with multiwavelength sky surveys - I. Companion star identification

    NASA Astrophysics Data System (ADS)

    Mignani, R. P.; Corongiu, A.; Pallanca, C.; Oates, S. R.; Yershov, V. N.; Breeveld, A. A.; Page, M. J.; Ferraro, F. R.; Possenti, A.; Jackson, A. C.

    2014-09-01

    The identification of the stellar companions to binary pulsars is key to studying the evolution of the binary system and how this is influenced by the interactions between the two stars. For only a fraction of the known binary pulsars, the stellar companions have been identified. Here, we used 11 source catalogues available from multiwavelength (ultraviolet, optical, infrared) imaging sky surveys to search for the stellar companions of a sample of 144 field binary pulsars (i.e. not in globular clusters) selected from the Australia Telescope National Facility data base (version 1.48) and from the public list of γ-ray pulsars detected by Fermi. We found positional associations in at least one source catalogue for 22 pulsars, of which 10 are detected in γ-rays by Fermi, including 15 millisecond pulsars. For six pulsars in our compilation, we confirm their identifications. For another seven pulsars that had yet not been identified, we examine potential identifications. In particular, we identified a likely companion star candidate to PSR J2317+1439, whereas for both PSR B1953+29 and PSR J1935+1726 the companion star identification is more uncertain. Follow-up observations of these three pulsars are needed to settle the proposed identifications. For the remaining nine pulsars that had been already identified, we provide additional spectral information in at least one of the surveys' spectral bands, which we will use to better constrain the stars' spectral energy distributions.

  19. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    SciTech Connect

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire; Langston, Glen

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.

  20. Pulsar Astronomy with GLAST

    SciTech Connect

    Thorsett, Stephen

    2005-09-12

    Despite their name, the rotation powered neutron stars called "radio pulsars" are actually most luminous in the hard x-ray and gamma-ray bands. GLAST will be the first high-energy satellite with sufficient sensitivity to detect and study large numbers of these pulsars. I will review GLAST's key science goals in pulsar astrophysics and summarize the extraordinary advances in low-energy pulsar surveys since the days of CGRO.

  1. Delta XTE Spacecraft Arrives at CCAS Skid Strip

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Footage shows the U.S Air Force Aircraft "Air Mobility Command" approaching, and landing at the Cape Canaveral Air Station Skid Strip (CCAS). The truck carrying the Delta XTE Spacecraft is also shown as it leaves the Air Mobility Command.

  2. The High Time Resolution Universe Pulsar Survey - XII. Galactic plane acceleration search and the discovery of 60 pulsars

    NASA Astrophysics Data System (ADS)

    Ng, C.; Champion, D. J.; Bailes, M.; Barr, E. D.; Bates, S. D.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Flynn, C. M. L.; Jameson, A.; Johnston, S.; Keith, M. J.; Kramer, M.; Levin, L.; Petroff, E.; Possenti, A.; Stappers, B. W.; van Straten, W.; Tiburzi, C.; Eatough, R. P.; Lyne, A. G.

    2015-07-01

    We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ≈0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have redetected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1 ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757-27 appears to be an isolated recycled pulsar with a relatively long spin period of 17 ms. In addition, PSR J1244-6359 is a mildly recycled binary system with a heavy WD companion, PSR J1755-25 has a significant orbital eccentricity of 0.09 and PSR J1759-24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.

  3. Pulsar Observations Using the First Station of the Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Stovall, Kevin; Demorest, Paul; Ray, Paul S.; Dowell, Jayce; Schinzel, Frank; Taylor, Gregory B.

    2015-01-01

    Radio pulsars have largely been unexplored at frequencies below 100 MHz. However, observations at such frequencies can provide extensive information about pulsars as well as the interstellar medium that their signals propagate through. We have begun to use the first station of the Long Wavelength Array (LWA1) to observe radio pulsars and have detected over 40 pulsars within the 30-88 MHz frequency range. This talk will present initial results from these observations, including preliminary results from a program in which we have monitored 3 millisecond pulsars once every 3 weeks for roughly one year. Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C-0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST-1139974 of the University Radio Observatory program.

  4. Pulsar Observations Using the First Station of the Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Stovall, Kevin; Demorest, P.; Dowell, J.; Ray, P. S.; Schinzel, F.; Taylor, G. B.

    2014-01-01

    Radio pulsars have largely been unexplored at frequencies below 100 MHz. However, observations at such frequencies can provide extensive information about pulsars as well as the interstellar medium that their signals propagate through. We have begun to use the first station of the Long Wavelength Array (LWA1) to observe radio pulsars and have detected over 30 pulsars within the 20-88 MHz frequency range. This talk will present initial results from these observations, which include detections of pulsars with spin periods from about 5 milliseconds to 4 seconds. Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C-0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST-1139974 of the University Radio Observatory program.

  5. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    PubMed

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  6. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    PubMed

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system. PMID:15105492

  7. A STACKED ANALYSIS OF 115 PULSARS OBSERVED BY THE FERMI LAT

    SciTech Connect

    McCann, A.

    2015-05-10

    Due to the low gamma-ray fluxes from pulsars above 50 GeV and the small collecting area of space-based telescopes, the gamma-ray emission discovered by the Fermi Large Area Telescope (LAT) in ∼150 pulsars is largely unexplored at these energies. In this regime, the uncertainties on the spectral data points and/or the constraints from upper limits are not sufficient to provide robust tests of competing emission models in individual pulsars. The discovery of power-law-type emission from the Crab pulsar at energies exceeding 100 GeV provides a compelling justification for exploration of other pulsars at these energies. We applied the method of aperture photometry to measure pulsar emission spectra from Fermi-LAT data and present a stacked analysis of 115 pulsars selected from the Second Fermi-LAT catalog of gamma-ray pulsars. This analysis, which uses an average of ∼4.2 yr of data per pulsar, aggregates low-level emission which cannot be resolved in individual objects but can be detected in an ensemble. We find no significant stacked excess at energies above 50 GeV. An upper limit of 30% of the Crab pulsar level is found for the average flux from 115 pulsars in the 100–177 GeV energy range at the 95% confidence level. Stacked searches exclusive to the young pulsar sample, the millisecond pulsar sample, and several other promising sub-samples also return no significant excesses above 50 GeV.

  8. Discovery of pulsed OH maser emission stimulated by a pulsar.

    PubMed

    Weisberg, Joel M; Johnston, Simon; Koribalski, Bärbel; Stanimirovic, Snezana

    2005-07-01

    Stimulated emission of radiation has not been directly observed in astrophysical situations up to this time. Here we demonstrate that photons from pulsar B1641-45 stimulate pulses of excess 1720-megahertz line emission in an interstellar hydroxyl (OH) cloud. As this stimulated emission is driven by the pulsar, it varies on a few-millisecond time scale, which is orders of magnitude shorter than the quickest OH maser variations previously detected. Our 1612-megahertz spectra are inverted copies of the 1720-megahertz spectra. This "conjugate line" phenomenon enables us to constrain the properties of the interstellar OH line-producing gas. We also show that pulsar signals undergo significantly deeper OH absorption than do other background sources, which confirms earlier tentative findings that OH clouds are clumpier on small scales than are neutral hydrogen clouds.

  9. Binary pulsar with a very small mass function

    NASA Astrophysics Data System (ADS)

    Dewey, R. J.; Maguire, C. M.; Rawley, L. A.; Stokes, G. H.; Taylor, J. H.

    1986-08-01

    Radiotelescope pulse-arrival-time (PAT) data of PSR1831-00, primarily at 390 MHz, were collected to characterize the evolution of the binary pulsars. The data were used to calculate, the right ascension and declination, pulsar and orbital periods, dispersion measure, semi-major axis, eccentricity, and time of periastron. The orbital period and semi-major axis are used to calculate the mass function. Comparisons are made with other binary and millisecond pulsars, noting the high degree of similarity with the other objects. The limitations imposed on the evolution of the objects by the observed physical characteristics lead to two possible evolutionary models: mass transfer after or during the formation of the neutron star, or no mass transfer. The first model would have required a contact phase during evolution of the primary. The second model posits a three solar mass primary which was also in contact during its evolution and which went to supernova.

  10. THE GREEN BANK TELESCOPE 350 MHz DRIFT-SCAN SURVEY II: DATA ANALYSIS AND THE TIMING OF 10 NEW PULSARS, INCLUDING A RELATIVISTIC BINARY

    SciTech Connect

    Lynch, Ryan S.; Kaspi, Victoria M.; Archibald, Anne M.; Karako-Argaman, Chen; Boyles, Jason; Lorimer, Duncan R.; McLaughlin, Maura A.; Cardoso, Rogerio F.; Ransom, Scott M.; Stairs, Ingrid H.; Berndsen, Aaron; Cherry, Angus; McPhee, Christie A.; Hessels, Jason W. T.; Kondratiev, Vladislav I.; Van Leeuwen, Joeri; Epstein, Courtney R.; Pennucci, Tim; Roberts, Mallory S. E.; Stovall, Kevin

    2013-02-15

    We have completed a 350 MHz Drift-scan Survey using the Robert C. Byrd Green Bank Telescope with the goal of finding new radio pulsars, especially millisecond pulsars that can be timed to high precision. This survey covered {approx}10,300 deg{sup 2} and all of the data have now been fully processed. We have discovered a total of 31 new pulsars, 7 of which are recycled pulsars. A companion paper by Boyles et al. describes the survey strategy, sky coverage, and instrumental setup, and presents timing solutions for the first 13 pulsars. Here we describe the data analysis pipeline, survey sensitivity, and follow-up observations of new pulsars, and present timing solutions for 10 other pulsars. We highlight several sources-two interesting nulling pulsars, an isolated millisecond pulsar with a measurement of proper motion, and a partially recycled pulsar, PSR J0348+0432, which has a white dwarf companion in a relativistic orbit. PSR J0348+0432 will enable unprecedented tests of theories of gravity.

  11. Search for Very High Energy Gamma-ray Emission from Pulsar-Pulsar Wind Nebula Systems with the MAGIC Telescope

    NASA Astrophysics Data System (ADS)

    Anderhub, H.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Baixeras, C.; Balestra, S.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Becker, J. K.; Bednarek, W.; Berger, al K.; Bernardini, E.; Biland, A.; Bock, R. K.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Britzger, D.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Commichau, S.; Contreras, J. L.; Cortina, J.; Costado, M. T.; Covino, S.; Dazzi, F.; De Angelis, A.; de Cea del Pozo, E.; De los Reyes, R.; De Lotto, B.; De Maria, M.; De Sabata, F.; Delgado Mendez, C.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Errando, M.; Ferenc, D.; Fernández, E.; Firpo, R.; Fonseca, M. V.; Font, L.; Galante, N.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Godinovic, N.; Goebel, F.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Hsu, C. C.; Jogler, T.; Klepser, S.; Kranich, D.; La Barbera, A.; Laille, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Lorenz, E.; Majumdar, P.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moles, M.; Moralejo, A.; Nieto, D.; Nilsson, K.; Ninkovic, J.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Pasanen, M.; Pascoli, D.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Prada, F.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Robert, A.; Rügamer, S.; Saggion, A.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Stark, L. S.; Suric, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Tescaro, D.; Teshima, M.; Torres, D. F.; Turini, N.; Vankov, H.; Wagner, R. M.; Zabalza, V.; Zandanel, F.; Zanin, R.; Zapatero, J.; Cognard, I.

    2010-02-01

    The MAGIC collaboration has searched for high-energy gamma-ray emission of some of the most promising pulsar candidates above an energy threshold of 50 GeV, an energy not reachable up to now by other ground-based instruments. Neither pulsed nor steady gamma-ray emission has been observed at energies of 100 GeV from the classical radio pulsars PSR J0205+6449 and PSR J2229+6114 (and their nebulae 3C58 and Boomerang, respectively) and the millisecond pulsar PSR J0218+4232. Here, we present the flux upper limits for these sources and discuss their implications in the context of current model predictions.

  12. Towards robust gravitational wave detection with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.; Sampson, Laura

    2016-05-01

    Precision timing of highly stable millisecond pulsars is a promising technique for the detection of very low frequency sources of gravitational waves. In any single pulsar, a stochastic gravitational wave signal appears as an additional source of timing noise that can be absorbed by the noise model, and so it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources in the sky, or many pulsars in the array, the signals produce a unique tensor correlation pattern that depends only on the angular separation between each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when the statistical isotropy of the timing array or the gravitational wave signal is broken by having a finite number of pulsars and a finite number of sources. We find the standard tensor-correlation analysis to be remarkably robust, with a mild impact on detectability compared to the isotropic limit. Only when there are very few sources and very few pulsars does the standard analysis begin to fail. Having established that the tensor correlations are a robust signature for detection, we study the use of "sky scrambles" to break the correlations as a way to increase confidence in a detection. This approach is analogous to the use of "time slides" in the analysis of data from ground-based interferometric detectors.

  13. Rotation powered pulsars in the x-rays

    NASA Astrophysics Data System (ADS)

    Arumugasamy, Prakash

    non-recycled X-ray pulsars, PSR J0108-3430 tauc = 166 Myr and E = 5.8 x 1030 erg s -1. The pulsar's spectrum likely consists of a thermal component, emitted from a hot polar cap, and a non-thermal component, emitted from its magnetosphere. The X-ray pulse profile shows a single, asymmetric peak which could be explained by an axially-asymmetric temperature distribution at the pole or by the non-thermal emission from the outer gap. The three pulsars represent important stages in the evolutionary path that a hypothetical single young pulsar like J2022+3842 might take, as it passes through stages close to gamma-ray emission turn-off (like J1836+5925) and X-ray turn-off (similar to J0108-3430). Pulsars in binaries can follow an alternative path. By accreting matter from their companions they can be 'recycled' to short millisecond periods and emit X-rays and gamma-rays for billions of years. I also present a special class of such recycled pulsars which are believed to be in the process of fatally ablating their companions. I present the X-ray analysis of PSR J1446-4701, an E = 3.6 x 1034 erg s-1 pulsar in a 6.7 hr binary orbit, and PSR J1311-3430, an E = 4.9 x 1034 erg s-1 pulsar in an extreme 1.6 hr binary orbit. PSR J1446-4701 turned out to be a non-eclipser with possibly low (face-on) orbital inclination, with emission from both the pulsar and the intra-binary shock observable throughout the binary orbit. PSR J1311-3430 is a known eclipser, in which hints of spectral variability have been found, between pulsar superior and inferior conjunction phases. I also present a comprehensive comparison of the sample of such extremely low-mass binary pulsars. We reveal the true nature of pulsars, slowly and steadily, usually one target at a time, but eventually we expect useful patterns to emerge that improves our understanding of the population of rotation powered pulsars.

  14. THE GALACTIC POPULATION OF YOUNG {gamma}-RAY PULSARS

    SciTech Connect

    Watters, Kyle P.; Romani, Roger W. E-mail: rwr@astro.stanford.edu

    2011-02-01

    We have simulated a Galactic population of young pulsars and compared with the Fermi LAT sample, constraining the birth properties, beaming and evolution of these spin-powered objects. Using quantitative tests of agreement with the distributions of observed spin and pulse properties, we find that short birth periods P{sub 0} {approx} 50 ms and {gamma}-ray beams arising in the outer magnetosphere, dominated by a single pole, are strongly preferred. The modeled relative numbers of radio-detected and radio-quiet objects agrees well with the data. Although the sample is local, extrapolation to the full Galaxy implies a {gamma}-ray pulsar birthrate 1/(59 yr). This is shown to be in good agreement with the estimated Galactic core collapse rate and with the local density of OB star progenitors. We give predictions for the numbers of expected young pulsar detections if Fermi LAT observations continue 10 years. In contrast to the potentially significant contribution of unresolved millisecond pulsars, we find that young pulsars should contribute little to the Galactic {gamma}-ray background.

  15. Extended Corbet Diagram of HMXBs, LMXBs and radio pulsar binaries

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Ali, Esamdin; Yin, Hongxing

    2010-09-01

    The evolutionary scenario of neutron star binaries is still an essential enigma in both stellar astrophysics and high energy astrophysics. In order to explore the scenario, we include the accumulation of data on the orbits and spins of compact binaries in multi-wavelength ranging from radio to X-ray, such as radio pulsar binaries, HMXBs, and LMXBs, filling them into the so called “Corbet Diagram” which initially investigated the period of orbit ( P orb)˜ the period of spin ( P spin) correlation of HMXBs. We find that the evolutionary scenario comes more clearly and makes strong confirmation of the connection between LMXBs and radio pulsar binaries, predicted by the recycle process. However, the origins of radio pulsar binaries sre still unknown. Accretion Induced Collapse (AIP) process may be a mechanism which can explain the origin of the binary millisecond pulsars with relatively longer orbital periods. A correlation of P {orb/1/3} ˜ P {spin/-1} of LMXBs and radio pulsar binaries may exist.

  16. Revised Pulsar Spindown

    SciTech Connect

    Contopoulos, Ioannis; Spitkovsky, Anatoly; /KIPAC, Menlo Park

    2005-12-14

    We address the issue of electromagnetic pulsar spindown by combining our experience from the two limiting idealized cases which have been studied in great extent in the past: that of an aligned rotator where ideal MHD conditions apply, and that of a misaligned rotator in vacuum. We construct a spindown formula that takes into account the misalignment of the magnetic and rotation axes, and the magnetospheric particle acceleration gaps. We show that near the death line aligned rotators spin down much slower than orthogonal ones. In order to test this approach, we use a simple Monte Carlo method to simulate the evolution of pulsars and find a good fit to the observed pulsar distribution in the P-{dot P} diagram without invoking magnetic field decay. Our model may also account for individual pulsars spinning down with braking index n < 3, by allowing the corotating part of the magnetosphere to end inside the light cylinder. We discuss the role of magnetic reconnection in determining the pulsar braking index. We show, however, that n {approx} 3 remains a good approximation for the pulsar population as a whole. Moreover, we predict that pulsars near the death line have braking index values n > 3, and that the older pulsar population has preferentially smaller magnetic inclination angles. We discuss possible signatures of such alignment in the existing pulsar data.

  17. Magnetic pair creation transparency in gamma-ray pulsars

    SciTech Connect

    Story, Sarah A.; Baring, Matthew G. E-mail: baring@rice.edu

    2014-07-20

    Magnetic pair creation, γ → e {sup +} e {sup –}, has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. The Fermi gamma-ray pulsar population now exceeds 140 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the population characteristics well established is the common occurrence of exponential turnovers in their spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. This paper explores such pair transparency constraints below the turnover energy and updates earlier altitude bound determinations that have been deployed in various Fermi pulsar papers. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the magnetic pole. The analysis presented in this paper clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths and escape energies. The altitude bounds are typically in the range of 2-7 stellar radii for the young Fermi pulsar population, and provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. The bound for the Crab pulsar is at a much higher altitude, with the

  18. On the nature and evolution of the windy binary pulsar PSR 1744 - 24A

    NASA Astrophysics Data System (ADS)

    Shaham, Jacob; Tavani, Marco

    1991-08-01

    It is suggested that the companion of the pulsar PSR 1744 - 24A is an approximately 0.1 solar mass main-sequence star that slightly underfills its Roche lobe and is sending off a cool wind due to excitation by radiation from the pulsar. Unlike in the similarly excited system of pulsar PSR 1957 + 20, pulsar radiation pressure here almost balances wind pressure at the companion distance, leading to vastly fluctuating eclipse patterns and to occasional attempted accretion episodes that are aborted by the propeller effect and result in X-ray bursts. If this picture is correct, multiwavelength continuous observations of PSR 1744 - 24A will give valuable information about the accretion process onto neutron stars rotating with millisecond periods.

  19. Arecibo Pulsar Highlights

    NASA Astrophysics Data System (ADS)

    Seymour, Andrew

    2016-01-01

    Here we present some of the recent interesting pulsar research that has been conducted from the Arecibo Observatory (AO). Many of these results are only possible because of the unique capabilities of AO's 305 meter telescope. Along with this, we state several possible improvements to AO's capabilities that would aid pulsar studies in the immediate future.

  20. Observational properties of pulsars.

    PubMed

    Manchester, R N

    2004-04-23

    Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars. PMID:15105491

  1. Newly Commissioned Green Bank Telescope Bags New Pulsars

    NASA Astrophysics Data System (ADS)

    2002-01-01

    Astronomers using the National Science Foundation's newly commissioned Robert C. Byrd Green Bank Telescope (GBT) have discovered a windfall of three previously undetected millisecond pulsars in a dense cluster of stars in the Milky Way Galaxy. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope "This globular cluster, known as Messier 62, has been very well studied, and it would have been an exciting discovery to find just one new pulsar. The fact that we were able to detect three new pulsars at one time is simply remarkable," said Bryan Jacoby, a graduate student at the California Institute of Technology who led the research team. Results of the discovery were recently announced in an International Astronomical Union Circular. Jacoby and his colleague Adam Chandler, also a graduate student at Caltech, used the GBT to search for new pulsars in addition to the three already known in this cluster. Their research was part of the GBT's Early Science Program, which allows scientific investigations during the testing and commissioning of the telescope. The researchers used the Berkeley-Caltech Pulsar Machine, a new instrument whose development was overseen by Donald Backer at the University of California at Berkeley, to process the signals from the GBT and record them for later analysis. After their data were analyzed, the researchers discovered the telltale signatures of three additional pulsars and their white dwarf companion stars. Pulsars are rapidly rotating neutron stars that emit intense beams of radio waves along their misaligned magnetic axes. When these beams intersect the Earth, we see the pulsar flash on and off. Due to their exquisitely steady rotation, pulsars allow astronomers to study the basic laws of physics and the ways in which these dense clusters and exotic stellar systems are formed. Astronomers study globular clusters because they are among the oldest building blocks of our Galaxy. With their very dense stellar populations, these

  2. The Nançay Pulsar Instrumentation : The BON Coherent Dedispersor

    NASA Astrophysics Data System (ADS)

    Cognard, I.; Theureau, G.

    2006-08-01

    We present here a summary of the Nançay pulsar instrumentation and the on going observational pulsar timing programs. The BON coherent dedispersor is able to handle 128MHz of bandwidth. It is made of a spectrometer, plus four data servers to spread data out to a 70-node cluster of PCs (with Linux Operating System). Dedispersion is done by applying a special filter in the complex Fourier domain. This backend has been designed in close collaboration with UC Berkeley. It benefits from the many qualities of the large Nançay radiotelescope (NRT, equivalent to a 94 m circular dish), which receivers were upgraded in 2000 : a factor of 2.2 sensitivity improvement was obtained at 1.4MHz, with an efficiency of 1.4K/Jy for a system temperature of 35K ; a better frequency coverage was also achieved (from 1.1 to 3.5GHz). The first two years of BON data acquisition demonstrates that the timing data quality is comparable with the Arecibo and Green Bank results. As an example, a Time Of Arrival (TOA) measurement accuracy better than 200ns (170-180ns) is obtained in only 30 seconds of integration on the millisecond pulsar PSR B1937+21. With this up to date instrumentation, we operate two main observational programs in pulsar timing with the Nançay antenna : 1) the radio follow-up of X- and gamma-ray pulsars for the building of a complete multi-wavelength sample and 2) the monitoring of both a millisecond pulsar timing array and a targeted list of binary or unstable pulsars for gravitational wave detection. Joining both list of targets, a total sample of 150 pulsars is then monitored regularly with a dense sampling in time.

  3. Key Science with the Square Kilometer Array: Strong-field Tests of Gravity using Pulsars and Black Holes

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Kramer, M.; Backer, D. C.; Lazio, T. J. W.; Science Working Groupthe Square Kilometer Array Team

    2005-12-01

    A Galactic census of pulsars with the SKA will discover most of the active pulsars in the Galaxy beamed toward us. The sheer number of pulsars discovered, along with the exceptional timing precision the SKA can provide, will revolutionize the field of pulsar astrophysics and will enable significant tests of theories of gravity. Census discoveries will almost certainly include pulsar-black hole binaries as well as pulsars orbiting the super-massive black hole in the Galactic center. These systems provide unique opportunties for probing the ultra-strong field limit of relativistic gravity and will complement future gravitational wave detections using LISA-like instruments. SKA measurements can be used to test the Cosmic Censorship Conjecture and the No-Hair theorem. The large number of millisecond pulsars discovered with the SKA will also provide a dense array of precision clocks on the sky that can be used as multiple arms of a cosmic gravitational wave detector, which can be used to detect and measure the stochastic cosmological gravitational wave background that is expected from a number of sources. In addition to gravitational tests, the large number of lines of sight will provide a detailed map of the Galaxy's electron density and magnetic fields and important information on the dynamics and evolutionary histories of neutron stars. The census will provide examples of nearly every possible outcome of the evolution of massive stars, including (as above) pulsar black-hole systems and sub-millisecond pulsars, if they exist. These objects will yield constraints on the equation of state of matter at super-nuclear densities. Masses of pulsars and their binary companions planets, white dwarfs, other neutron stars, and black holes will be determined to ˜ 1% for hundreds of objects. The SKA will also provide partial censuses of nearby galaxies through periodicity and giant-pulse detections, yielding important information on the intergalactic medium.

  4. "Missing Link" Revealing Fast-Spinning Pulsar Mysteries

    NASA Astrophysics Data System (ADS)

    2009-05-01

    Astronomers have discovered a unique double-star system that represents a "missing link" stage in what they believe is the birth process of the most rapidly-spinning stars in the Universe -- millisecond pulsars. "We've thought for some time that we knew how these pulsars get 'spun up' to rotate so swiftly, and this system looks like it's showing us the process in action," said Anne Archibald, of McGill University in Montreal, Canada. Pulsar and Companion Neutron star with accretion disk (left) drawing material from companion star (right). CREDIT:Bill Saxton, NRAO/AUI/NSF Animations of this system and its evolution. Pulsars are superdense neutron stars, the remnants left after massive stars have exploded as supernovae. Their powerful magnetic fields generate lighthouse-like beams of light and radio waves that sweep around as the star rotates. Most rotate a few to tens of times a second, slowing down over thousands of years. However, some, dubbed millisecond pulsars, rotate hundreds of times a second. Astronomers believe the fast rotation is caused by a companion star dumping material onto the neutron star and spinning it up. The material from the companion would form a flat, spinning disk around the neutron star, and during this period, the radio waves characteristic of a pulsar would not be seen coming from the system. As the amount of matter falling onto the neutron star decreased and stopped, the radio waves could emerge, and the object would be recognized as a pulsar. This sequence of events is apparently what happened with a binary-star system some 4000 light-years from Earth. The millisecond pulsar in this system, called J1023, was discovered by the National Science Foundation's (NSF) Robert C. Byrd Green Bank Telescope (GBT) in West Virginia in 2007 in a survey led by astronomers at West Virginia University and the National Radio Astronomy Observatory (NRAO). The astronomers then found that the object had been detected by NSF's Very Large Array (VLA) radio

  5. Reverse shock emission driven by post-merger millisecond magnetar winds: Effects of the magnetization parameter

    NASA Astrophysics Data System (ADS)

    Liu, L. D.; Wang, L. J.; Dai, Z. G.

    2016-08-01

    The study of short-duration gamma-ray bursts provides growing evidence that a good fraction of double neutron star mergers lead to the formation of stable millisecond magnetars. The launch of Poynting flux by the millisecond magnetars could leave distinct electromagnetic signatures that reveal the energy dissipation processes in the magnetar wind. In previous studies, we assume that the magnetar wind becomes completely lepton-dominated so that electrons/positrons in the magnetar wind are accelerated by a diffusive shock. However, theoretical modeling of pulsar wind nebulae shows that in many cases the magnetic field energy in the pulsar wind may be strong enough to suppress diffusive shock acceleration. In this paper, we investigate the reverse shock emission and the forward shock emission with an arbitrary magnetization parameter σ of a magnetar wind. We find that the reverse shock emission strongly depends on σ, and in particular that σ ~ 0.3 leads to the strongest reverse shock emission. Future observations would be helpful to diagnose the composition of the magnetar wind.

  6. A state change in the missing link binary pulsar system PSR J1023+0038

    SciTech Connect

    Stappers, B. W.; Lyne, A. G.; Archibald, A. M.; Hessels, J. W. T.; Bassa, C. G.; Janssen, G. H.; Bogdanov, S.; Kaspi, V. M.; Patruno, A.; Tendulkar, S.; Hill, A. B.; Glanzman, T.

    2014-07-20

    We present radio and γ-ray observations, which, along with concurrent X-ray observations, reveal that the binary millisecond pulsar (MSP)/low-mass X-ray binary transition system PSR J1023+0038 has undergone a transformation in state. Whereas until recently the system harbored a bright millisecond radio pulsar, the radio pulsations at frequencies between 300 to 5000 MHz have now become undetectable. Concurrent with this radio disappearance, the γ-ray flux of the system has quintupled. We conclude that, though the radio pulsar is currently not detectable, the pulsar mechanism is still active and the pulsar wind, as well as a newly formed accretion disk, are together providing the necessary conditions to create the γ-ray increase. This system is the first example of a compact, low-mass binary which has shown significant state changes accompanied by large changes in γ-ray flux; it will continue to provide an exceptional test bed for better understanding the formation of MSPs as well as accretion onto neutron stars in general.

  7. A new outburst of XTE J1739-285

    NASA Astrophysics Data System (ADS)

    Maccarone, Thomas J.; Bandyopadhyay, Reba; Kennea, Jamie

    2012-09-01

    With our program of Swift monitoring of the Galactic Bulge region (Atel #4109), we detect renewed activity of the X-ray binary XTE J1739-285. Using the pipeline of Phil Evans (Evans et al. 2007, A&A, 469, 379), we find that the source count rate is about 34 counts/sec in data taken on 4 September from 5:33 to 12:02 UT, with 372 seconds of exposure time on source. We note that the source is heavily piled up, since the data were taken in photon counting mode as part of an imaging survey and hence the count rate should be taken with caution.

  8. Additional Observations of XTE J1752-223

    NASA Astrophysics Data System (ADS)

    Markwardt, C. B.; Barthelmy, S. D.; Evans, P. A.; Swank, J. H.

    2009-10-01

    We report on additional observations of XTE J1752-223, a new transient recently reported active (ATEL #2258). Swift performed a dedicated follow-up observation at 2009-10-25 at 06:08 UT. A bright X-ray source was detected by the XRT instrument, heavily piled up. The best fit position from XRT is, R.A. = 268.06307 = 17:52:15.14 ; Dec. = -22.34274 = -22:20:33.8 (J2000) with estimated position error of about 5 arcsec.

  9. Gravitational Waves from Known Pulsars: Results from the Initial Detector Era

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Ceron, E. A.; Blackburn, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.; Kanner, J. B.; Hobbs, G. B.

    2014-01-01

    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.

  10. Science highlights from high-sensitivity pulsar observations with the MWA

    NASA Astrophysics Data System (ADS)

    McSweeney, Samuel; Bhat, Ramesh; Tremblay, Steven; Ord, Stephen

    2016-01-01

    Pulsars are exquisite probes of the turbulent interstellar medium (ISM), capable of resolving structures down to tens of thousands of kilometres. Understanding the ISM is important for many areas of astrophysics, such as galactic dynamics, the chemical evolution of the galaxy, and the identification of timing noise in the search for gravitational waves using pulsar timing arrays. Low frequency observations of pulsars are key, because the strength of propagation effects scales strongly with frequency.We present the Murchison Widefield Array (MWA) as a key science tool for making high quality observations of pulsars at low frequencies (~80-300 MHz). Recently commissioned software for making tied-array beams and the MWA's high time resolution voltage capture system (VCS) allow an order of magnitude increase in sensitivity, vital for pulsar and other time-domain science. A pipeline has now been developed for observing the scintillation patterns of important pulsars at low frequencies, including a new computational technique for measuring the curvature of parabolic arcs in noisy secondary spectra. A program of MWA observations is being undertaken to sample a large number of millisecond pulsars. We present recent highlights including PSR J0437-4715, which yielded a new measurement of scattering screen distance of ~120 pc from Earth, consistent with a Parkes observation at ~730 MHz, and matching the predicted perimeter of the Local Bubble.

  11. Gravitational Waves from Known Pulsars: Results from the Initial Detector Era

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.

    2014-04-01

    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.

  12. Gravitational waves from known pulsars: Results from the initial detector era

    SciTech Connect

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Ajith, P.; Abbott, T.; Accadia, T.; Adams, C.; Adams, T.; Affeldt, C.; Allen, B.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Allocca, A.; Ceron, E. Amador; Amariutei, D.; Collaboration: LIGO Scientific Collaboration and The Virgo Collaboration; and others

    2014-04-20

    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.

  13. Radio efficiency of pulsars

    SciTech Connect

    Szary, Andrzej; Melikidze, George I.; Gil, Janusz; Zhang, Bing; Xu, Ren-Xin E-mail: zhang@physics.unlv.edu

    2014-03-20

    We investigate radio emission efficiency, ξ, of pulsars and report a near-linear inverse correlation between ξ and the spin-down power, E-dot , as well as a near-linear correlation between ξ and pulsar age, τ. This is a consequence of very weak, if any, dependences of radio luminosity, L, on pulsar period, P, and the period derivative, P-dot , in contrast to X-ray or γ-ray emission luminosities. The analysis of radio fluxes suggests that these correlations are not due to a selection effect, but are intrinsic to the pulsar radio emission physics. We have found that, although with a large variance, the radio luminosity of pulsars is ≈10{sup 29} erg s{sup –1}, regardless of the position in the P-- P-dot diagram. Within such a picture, a model-independent statement can be made that the death line of radio pulsars corresponds to an upper limit in the efficiency of radio emission. If we introduce the maximum value for radio efficiency into the Monte Carlo-based population syntheses we can reproduce the observed sample using the random luminosity model. Using the Kolmogorov-Smirnov test on a synthetic flux distribution reveals a high probability of reproducing the observed distribution. Our results suggest that the plasma responsible for generating radio emission is produced under similar conditions regardless of pulsar age, dipolar magnetic field strength, and spin-down rate. The magnetic fields near the pulsar surface are likely dominated by crust-anchored, magnetic anomalies, which do not significantly differ among pulsars, leading to similar conditions for generating electron-positron pairs necessary to power radio emission.

  14. Stellar evolution and pulsars.

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y.

    1972-01-01

    It has been found that pulsars are rotating magnetic neutron stars, which are created during catastrophic collapses of old stars whose nuclear fuel has long since been used up. The maximum size of pulsars, based on the fastest rotation period of 33 msec, cannot exceed 100 km. The densest star the theory predicts is the neutron star. Its diameter is only 10 km. The processes producing radiation from pulsars are discussed, giving attention to a process similar to that by which a klystron operates and to a process based on a maser mechanism.

  15. A study of spatial correlations in pulsar timing array data

    NASA Astrophysics Data System (ADS)

    Tiburzi, C.; Hobbs, G.; Kerr, M.; Coles, W. A.; Dai, S.; Manchester, R. N.; Possenti, A.; Shannon, R. M.; You, X. P.

    2016-02-01

    Pulsar timing array experiments search for phenomena that produce angular correlations in the arrival times of signals from millisecond pulsars. The primary goal is to detect an isotropic and stochastic gravitational wave background. We use simulated data to show that this search can be affected by the presence of other spatially correlated noise, such as errors in the reference time standard, errors in the planetary ephemeris, the solar wind and instrumentation issues. All these effects can induce significant false detections of gravitational waves. We test mitigation routines to account for clock errors, ephemeris errors and the solar wind. We demonstrate that it is non-trivial to find an effective mitigation routine for the planetary ephemeris and emphasize that other spatially correlated signals may be present in the data.

  16. SHORT-LIVED RADIO BURSTS FROM THE CRAB PULSAR

    SciTech Connect

    Crossley, J. H.; Eilek, J. A.; Hankins, T. H.; Kern, J. S.

    2010-10-20

    Our high-time-resolution observations reveal that individual main pulses from the Crab pulsar contain one or more short-lived microbursts. Both the energy and duration of bursts measured above 1 GHz can vary dramatically in less than a millisecond. These fluctuations are too rapid to be caused by propagation through turbulence in the Crab Nebula or in the interstellar medium; they must be intrinsic to the radio emission process in the pulsar. The mean duration of a burst varies with frequency as {nu}{sup -2}, significantly different from the broadening caused by interstellar scattering. We compare the properties of the bursts to some simple models of microstructure in the radio emission region.

  17. X-ray observations of black widow pulsars

    SciTech Connect

    Gentile, P. A.; McLaughlin, M. A.; Roberts, M. S. E.; Camilo, F.; Hessels, J. W. T.; Kerr, M.; Ransom, S. M.; Ray, P. S.; Stairs, I. H.

    2014-03-10

    We describe the first X-ray observations of five short orbital period (P{sub B} < 1 day), γ-ray emitting, binary millisecond pulsars (MSPs). Four of these—PSRs J0023+0923, J1124–3653, J1810+1744, and J2256–1024—are 'black-widow' pulsars, with degenerate companions of mass <<0.1 M {sub ☉}, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing 'redback' with a near Roche-lobe filling ∼0.2 solar mass non-degenerate companion. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256–1024, show significant orbital variability while PSR J1124–3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission. This is similar to what has been detected in the low-mass X-ray binary to MSP transition object PSR J1023+0038.

  18. Versatile directional searches for gravitational waves with Pulsar Timing Arrays

    NASA Astrophysics Data System (ADS)

    Madison, D. R.; Zhu, X.-J.; Hobbs, G.; Coles, W.; Shannon, R. M.; Wang, J. B.; Tiburzi, C.; Manchester, R. N.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Dai, S.; Dempsey, J.; Keith, M.; Kerr, M.; Lasky, P.; Levin, Y.; Osłowski, S.; Ravi, V.; Reardon, D.; Rosado, P.; Spiewak, R.; van Straten, W.; Toomey, L.; Wen, L.; You, X.

    2016-02-01

    By regularly monitoring the most stable millisecond pulsars over many years, pulsar timing arrays (PTAs) are positioned to detect and study correlations in the timing behaviour of those pulsars. Gravitational waves (GWs) from supermassive black hole binaries (SMBHBs) are an exciting potentially detectable source of such correlations. We describe a straightforward technique by which a PTA can be `phased-up' to form time series of the two polarization modes of GWs coming from a particular direction of the sky. Our technique requires no assumptions regarding the time-domain behaviour of a GW signal. This method has already been used to place stringent bounds on GWs from individual SMBHBs in circular orbits. Here, we describe the methodology and demonstrate the versatility of the technique in searches for a wide variety of GW signals including bursts with unmodelled waveforms. Using the first six years of data from the Parkes Pulsar Timing Array, we conduct an all-sky search for a detectable excess of GW power from any direction. For the lines of sight to several nearby massive galaxy clusters, we carry out a more detailed search for GW bursts with memory, which are distinct signatures of SMBHB mergers. In all cases, we find that the data are consistent with noise.

  19. The Parkes Pulsar Timing Array and detection of gravitational waves

    NASA Astrophysics Data System (ADS)

    Manchester, R.

    Gravitational waves are an important prediction of Einstein s general theory of relativity Evidence for their existence has come from observations of orbit decay in double-neutron-star binary systems but up to now despite huge efforts there has been no direct detection of these waves In collaboration with groups from the Swinburne University of Technology Melbourne and the University of Texas Brownsville we have embarked on a major project to establish the Parkes Pulsar Timing Array PPTA with the principal goal of making a direct detection of gravitational waves of astronomical origin The project involves making precision timing observations of 20 millisecond pulsars at intervals of 2 -- 3 weeks using the Parkes 64-m radio telescope Observations are made at three radio frequencies 685 1400 and 3100 MHz to allow correction for interstellar propagation effects The PPTA is most sensitive to gravitational waves with frequencies in the nanoHertz range and hence is complementary to ground- and space-based laser interferometer systems Simulations suggest that if timing precisions of order 100 nanoseconds can be reached for most of the observed sample over a 5-year data span the stochastic background of gravitational waves from super-massive binary black holes in the cores of galaxies should be detectable Currently we have achieved this level of precision for 3 or 4 pulsars and sub-microsecond precision for a further 8 or 9 pulsars Improved hardware and software systems under development will hopefully allow us to reach our goal The PPTA

  20. Regimes of Pulsar Pair Formation and Particle Energetics

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alexander G.; Zhang, Bing; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We investigate the conditions required for the production of electron-positron pairs above a pulsar polar cap (PC) and the influence of pair production on the energetics of the primary particle acceleration. Assuming space-charge limited flow acceleration including the inertial frame-dragging effect, we allow both one-photon and two-photon pair production by either curvature radiation (CR) photons or photons resulting from inverse-Compton scattering of thermal photons from the PC by primary electrons. We find that,, while only the younger pulsars can produce pairs through CR, nearly all known radio pulsars are capable of producing pairs through non-resonant inverse-Compton scatterings. The effect of the neutron star equations of state on the pair death lines is explored. We show that pair production is facilitated in more compact stars and more a massive stars. Therefore accretion of mass by pulsars in binary systems may allow pair production in most of the millisecond purser population. We also find that two-photon pair production may be important in millisecond pursers if their surface temperatures are above approx. or equal to three million degrees K. Pursers that produce pairs through CRT wilt have their primary acceleration limited by the effect of screening of the electric field. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sup 1/2, sub rot) dependence. The acceleration voltage drop in pursers that produce pairs only through inverse-Compton emission will not be limited by electric field screening. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sub rot) dependence. Thus, older pursers will have significantly lower gamma-ray luminosity.

  1. Pulsars and Extreme Physics

    NASA Astrophysics Data System (ADS)

    Bell-Burnell, Jocelyn

    2004-10-01

    Pulsars were discovered 35 years ago. What do we know about them now, and what have they taught us about the extremes of physics? With an average density comparable to that of the nucleus, magnetic fields around 108 T and speeds close to c these objects have stretched our understanding of the behaviour of matter. They serve as extrememly accurate clocks with which to carry out precision experiments in relativity. Created in cataclysmic explosions, pulsars are a (stellar) form of life after death. After half a billion revolutions most pulsars finally die, but amazingly some are born again to yet another, even weirder, afterlife. Pulsar research continues lively, delivering exciting, startling and almost unbelievable results!

  2. Fermi Pulsar Analysis

    NASA Video Gallery

    This animation illustrates how analysis of Fermi data reveals new pulsars. Fermi's LAT records the precise arrival time and approximate direction of the gamma rays it detects, but to identify a pul...

  3. Geriatric Pulsar Still Kicking

    NASA Astrophysics Data System (ADS)

    2009-02-01

    The oldest isolated pulsar ever detected in X-rays has been found with NASA's Chandra X-ray Observatory. This very old and exotic object turns out to be surprisingly active. The pulsar, PSR J0108-1431 (J0108 for short) is about 200 million years old. Among isolated pulsars -- ones that have not been spun-up in a binary system -- it is over 10 times older than the previous record holder with an X-ray detection. At a distance of 770 light years, it is one of the nearest pulsars known. Pulsars are born when stars that are much more massive than the Sun collapse in supernova explosions, leaving behind a small, incredibly weighty core, known as a neutron star. At birth, these neutron stars, which contain the densest material known in the Universe, are spinning rapidly, up to a hundred revolutions per second. As the rotating beams of their radiation are seen as pulses by distant observers, similar to a lighthouse beam, astronomers call them "pulsars". Astronomers observe a gradual slowing of the rotation of the pulsars as they radiate energy away. Radio observations of J0108 show it to be one of the oldest and faintest pulsars known, spinning only slightly faster than one revolution per second. The surprise came when a team of astronomers led by George Pavlov of Penn State University observed J0108 in X-rays with Chandra. They found that it glows much brighter in X-rays than was expected for a pulsar of such advanced years. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago Erratic Black Hole Regulates Itself Celebrate the International Year of Astronomy Some of the energy that J0108 is losing as it spins more slowly is converted into X-ray radiation. The efficiency of this process for J0108 is found to be higher than for any other known pulsar. "This pulsar is pumping out high-energy radiation much more efficiently than its younger cousins," said Pavlov. "So, although it

  4. Elementary wideband timing of radio pulsars

    SciTech Connect

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M. E-mail: pdemores@nrao.edu

    2014-08-01

    We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription from Taylor's 1992 work to accommodate a general two-dimensional template 'portrait', the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between these two quantities and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using a Gaussian-component scheme that allows for independent component evolution with frequency, a 'fiducial component', and the inclusion of scattering. We showcase the algorithm using our publicly available code on three years of wideband data from the bright millisecond pulsar J1824–2452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates the algorithm. By using a simple model portrait of M28A, we obtain DM trends comparable to those measured by more standard methods, with improved TOA and DM precisions by factors of a few. Measurements from our algorithm will yield precisions at least as good as those from traditional techniques, but is prone to fewer systematic effects and is without ad hoc parameters. A broad application of this new method for dispersion measure tracking with modern large-bandwidth observing systems should improve the timing residuals for pulsar timing array experiments, such as the North American Nanohertz Observatory for Gravitational Waves.

  5. Cosmic Ray Positrons from Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2010-01-01

    Pulsars are potential Galactic sources of positrons through pair cascades in their magnetospheres. There are, however, many uncertainties in establishing their contribution to the local primary positron flux. Among these are the local density of pulsars, the cascade pair multiplicities that determine the injection rate of positrons from the pulsar, the acceleration of the injected particles by the pulsar wind termination shock, their rate of escape from the pulsar wind nebula, and their propagation through the interstellar medium. I will discuss these issues in the context of what we are learning from the new Fermi pulsar detections and discoveries.

  6. Pulse Portraiture: Pulsar timing

    NASA Astrophysics Data System (ADS)

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M.

    2016-06-01

    Pulse Portraiture is a wideband pulsar timing code written in python. It uses an extension of the FFTFIT algorithm (Taylor 1992) to simultaneously measure a phase (TOA) and dispersion measure (DM). The code includes a Gaussian-component-based portrait modeling routine. The code uses the python interface to the pulsar data analysis package PSRCHIVE (ascl:1105.014) and also requires the non-linear least-squares minimization package lmfit (ascl:1606.014).

  7. On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin; Kotera, Kumiko; Pétri, Jérôme

    2015-07-01

    Pulsar wind nebulae (PWNe) are outstanding accelerators in Nature, in the sense that they accelerate electrons up to the radiation reaction limit. Motivated by this observation, this paper examines the possibility that young pulsar wind nebulae can accelerate ions to ultra-high energies at the termination shock of the pulsar wind. We consider here powerful PWNe, fed by pulsars born with ~ millisecond periods. Assuming that such pulsars exist, at least during a few years after the birth of the neutron star, and that they inject ions into the wind, we find that protons could be accelerated up to energies of the order of the Greisen-Zatsepin-Kuzmin cut-off, for a fiducial rotation period P ~ 1 msec and a pulsar magnetic field Bstar ~ 1013 G, implying a fiducial wind luminosity Lp ~ 1045 erg/s and a spin-down time tsd ~ 3× 107 s. The main limiting factor is set by synchrotron losses in the nebula and by the size of the termination shock; ions with Z>= 1 may therefore be accelerated to even higher energies. We derive an associated neutrino flux produced by interactions in the source region. For a proton-dominated composition, our maximum flux lies slightly below the 5-year sensitivity of IceCube-86 and above the 3-year sensitivity of the projected Askaryan Radio Array. It might thus become detectable in the next decade, depending on the exact level of contribution of these millisecond pulsar wind nebulae to the ultra-high energy cosmic ray flux.

  8. Long-term observations of the pulsars in 47 Tucanae - I. A study of four elusive binary systems

    NASA Astrophysics Data System (ADS)

    Ridolfi, A.; Freire, P. C. C.; Torne, P.; Heinke, C. O.; van den Berg, M.; Jordan, C.; Kramer, M.; Bassa, C. G.; Sarkissian, J.; D'Amico, N.; Lorimer, D.; Camilo, F.; Manchester, R. N.; Lyne, A.

    2016-11-01

    For the past couple of decades, the Parkes radio telescope has been regularly observing the millisecond pulsars in 47 Tucanae (47 Tuc). This long-term timing programme was designed to address a wide range of scientific issues related to these pulsars and the globular cluster where they are located. In this paper, the first of a series, we address one of these objectives: the characterization of four previously known binary pulsars for which no precise orbital parameters were known, namely 47 Tuc P, V, W and X (pulsars 47 Tuc R and Y are discussed elsewhere). We determined the previously unknown orbital parameters of 47 Tuc V and X and greatly improved those of 47 Tuc P and W. For pulsars W and X we obtained, for the first time, full coherent timing solutions across the whole data span, which allowed a much more detailed characterization of these systems. 47 Tuc W, a well-known tight eclipsing binary pulsar, exhibits a large orbital period variability, as expected for a system of its class. 47 Tuc X turns out to be in a wide, extremely circular, 10.9-d long binary orbit and its position is ˜3.8 arcmin away from the cluster centre, more than three times the distance of any other pulsar in 47 Tuc. These characteristics make 47 Tuc X a very different object with respect to the other pulsars of the cluster.

  9. Delta XTE Spacecraft Solar Panel Deployment, Hangar AO at Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The footage shows technicians in the clean room checking and adjusting the deployment mechanism of the solar panel for XTE spacecraft. Other scenes show several technicians making adjustments to software for deployment of the solar panels.

  10. Optical study of pulsars

    NASA Astrophysics Data System (ADS)

    Sanwal, Divas

    The Crab Pulsar emits radiation at all wavelengths from radio to extreme γ-rays including the optical. We have performed extremely high time resolution multicolor photometry of the Crab Pulsar at optical wavelengths to constrain the high energy emission models for pulsars. Our observations with 1 microsecond time resolution are a factor of 20 better than the previous best observations. We have completely resolved the peak of the main pulse of the Crab Pulsar in optical passbands. The peaks of the main pulse and the interpulse move smoothly from the rising branch to the falling branch with neither a flat top nor a cusp. We find that the peak of the Crab Pulsar main pulse in the B band arrives 140 microseconds before the peak of the radio pulse. The color of the emission changes across the phase. The maximum variation in the color ratio is about 25%. The bluest color occurs in the bridge region between the main pulse and the interpulse. The Crab Pulsar has faded by 2 +/- 2.8% since the previous observations in 1991 using the same instrument. The statistics of photon arrival times are consistent with atmospheric scintillation causing most of the variations in addition to the mean pulse variations in the shape. However, the autocorrelation function (ACF) of the Crab Pulsar light curve shows extra correlations at very short time scales. We identify two time scales, one at about 20 microseconds and another one at about 1000 microseconds at which we observe a break in the ACF. We conclude that these short timescale correlations are internal to the pulsar. We attribute the extra correlation observed in our data to microstructures. This is the first time evidence for microstructures has been observed outside the radio wavelengths. The upturn in the ACF at short time scales depends on the color. The U band shows about 10% more correlation at short time scales while the R band shows only about 3% change. We have also observed the young X-ray pulsar PSR 0656+14 at optical

  11. ORIGIN OF INTERMITTENT ACCRETION-POWERED X-RAY OSCILLATIONS IN NEUTRON STARS WITH MILLISECOND SPIN PERIODS

    SciTech Connect

    Lamb, Frederick K.; Boutloukos, Stratos; Van Wassenhove, Sandor; Chamberlain, Robert T.; Lo, Ka Ho; Coleman Miller, M.

    2009-11-01

    We have shown previously that many of the properties of persistent accretion-powered millisecond pulsars can be understood if their X-ray emitting areas are near their spin axes and move as the accretion rate and structure of the inner disk vary. Here, we show that this 'nearly aligned moving spot model' may also explain the intermittent accretion-powered pulsations that have been detected in three weakly magnetic accreting neutron stars. We show that movement of the emitting area from very close to the spin axis to approx10 deg. away can increase the fractional rms amplitude from approx<0.5%, which is usually undetectable with current instruments, to a few percent, which is easily detectable. The second harmonic of the spin frequency usually would not be detected, in agreement with observations. The model produces intermittently detectable oscillations for a range of emitting area sizes and beaming patterns, stellar masses and radii, and viewing directions. Intermittent oscillations are more likely in stars that are more compact. In addition to explaining the sudden appearance of accretion-powered millisecond oscillations in some neutron stars with millisecond spin periods, the model explains why accretion-powered millisecond oscillations are relatively rare and predicts that the persistent accretion-powered millisecond oscillations of other stars may become undetectable for brief intervals. It suggests why millisecond oscillations are frequently detected during the X-ray bursts of some neutron stars but not others and suggests mechanisms that could explain the occasional temporal association of intermittent accretion-powered oscillations with thermonuclear X-ray bursts.

  12. The green bank northern celestial cap pulsar survey. I. Survey description, data analysis, and initial results

    SciTech Connect

    Stovall, K.; Dartez, L. P.; Ford, A. J.; Garcia, A.; Hinojosa, J.; Jenet, F. A.; Leake, S.; Lynch, R. S.; Archibald, A. M.; Karako-Argaman, C.; Kaspi, V. M.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Day, D.; Flanigan, J.; Kaplan, D. L.; Boyles, J.; Hessels, J. W. T.; Kondratiev, V. I.; and others

    2014-08-10

    We describe an ongoing search for pulsars and dispersed pulses of radio emission, such as those from rotating radio transients (RRATs) and fast radio bursts, at 350 MHz using the Green Bank Telescope. With the Green Bank Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided into 4096 channels every 81.92 μs. This survey will cover the entire sky visible to the Green Bank Telescope (δ > –40°, or 82% of the sky) and outside of the Galactic Plane will be sensitive enough to detect slow pulsars and low dispersion measure (<30 pc cm{sup –3}) millisecond pulsars (MSPs) with a 0.08 duty cycle down to 1.1 mJy. For pulsars with a spectral index of –1.6, we will be 2.5 times more sensitive than previous and ongoing surveys over much of our survey region. Here we describe the survey, the data analysis pipeline, initial discovery parameters for 62 pulsars, and timing solutions for 5 new pulsars. PSR J0214+5222 is an MSP in a long-period (512 days) orbit and has an optical counterpart identified in archival data. PSR J0636+5129 is an MSP in a very short-period (96 minutes) orbit with a very low mass companion (8 M{sub J}). PSR J0645+5158 is an isolated MSP with a timing residual RMS of 500 ns and has been added to pulsar timing array experiments. PSR J1434+7257 is an isolated, intermediate-period pulsar that has been partially recycled. PSR J1816+4510 is an eclipsing MSP in a short-period orbit (8.7 hr) and may have recently completed its spin-up phase.

  13. Prospects for high-precision pulsar timing with the new Effelsberg PSRIX backend

    NASA Astrophysics Data System (ADS)

    Lazarus, P.; Karuppusamy, R.; Graikou, E.; Caballero, R. N.; Champion, D. J.; Lee, K. J.; Verbiest, J. P. W.; Kramer, M.

    2016-05-01

    The PSRIX backend is the primary pulsar timing instrument of the Effelsberg 100 m radio telescope since early 2011. This new ROACH-based system enables bandwidths up to 500 MHz to be recorded, significantly more than what was possible with its predecessor, the Effelsberg-Berkeley Pulsar Processor (EBPP). We review the first four years of PSRIX timing data for 33 pulsars collected as part of the monthly European Pulsar Timing Array (EPTA) observations. We describe the automated data analysis pipeline, COASTGUARD, that we developed to reduce these observations. We also introduce TOASTER, the EPTA timing data base, used to store timing results, processing information and observation metadata. Using these new tools, we measure the phase-averaged flux densities at 1.4 GHz of all 33 pulsars. For seven of these pulsars, our flux density measurements are the first values ever reported. For the other 26 pulsars, we compare our flux density measurements with previously published values. By comparing PSRIX data with EBPP data, we find an improvement of ˜2-5 times in signal-to-noise ratio, which translates to an increase of ˜2-5 times in pulse time-of-arrival (TOA) precision. We show that such an improvement in TOA precision will improve the sensitivity to the stochastic gravitational wave background. Finally, we showcase the flexibility of the new PSRIX backend by observing several millisecond-period pulsars (MSPs) at 5 and 9 GHz. Motivated by our detections, we discuss the potential for complementing existing pulsar timing array data sets with MSP monitoring campaigns at these higher frequencies.

  14. The Fermi Gamma-Ray Space Telescope discovers the pulsar in the young galactic supernova remnant CTA 1.

    PubMed

    Abdo, A A; Ackermann, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bogaert, G; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dormody, M; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hartman, R C; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Kanai, Y; Kanbach, G; Katagiri, H; Kawai, N; Kerr, M; Kishishita, T; Kiziltan, B; Knödlseder, J; Kocian, M L; Komin, N; Kuehn, F; Kuss, M; Latronico, L; Lemoine-Goumard, M; Longo, F; Lonjou, V; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; McGlynn, S; Meurer, C; Michelson, P F; Mineo, T; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piano, G; Pieri, L; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Parkinson, P M Saz; Schalk, T L; Sellerholm, A; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Van Etten, A; Vilchez, N; Vitale, V; Wang, P; Watters, K; Winer, B L; Wood, K S; Yasuda, H; Ylinen, T; Ziegler, M

    2008-11-21

    Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars.

  15. The Fermi Gamma-Ray Space Telescope discovers the pulsar in the young galactic supernova remnant CTA 1.

    PubMed

    Abdo, A A; Ackermann, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bogaert, G; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dormody, M; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hartman, R C; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Kanai, Y; Kanbach, G; Katagiri, H; Kawai, N; Kerr, M; Kishishita, T; Kiziltan, B; Knödlseder, J; Kocian, M L; Komin, N; Kuehn, F; Kuss, M; Latronico, L; Lemoine-Goumard, M; Longo, F; Lonjou, V; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; McGlynn, S; Meurer, C; Michelson, P F; Mineo, T; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piano, G; Pieri, L; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Parkinson, P M Saz; Schalk, T L; Sellerholm, A; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Van Etten, A; Vilchez, N; Vitale, V; Wang, P; Watters, K; Winer, B L; Wood, K S; Yasuda, H; Ylinen, T; Ziegler, M

    2008-11-21

    Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars. PMID:18927355

  16. Observations of Spin-Powered Pulsars with the AGILE Gamma-Ray Telescope

    SciTech Connect

    Pellizzoni, A.; Pilia, M.; Possenti, M.; Fornari, F.; Caraveo, P.; Mereghetti, S.

    2008-12-24

    AGILE is a small gamma-ray astronomy satellite mission of the Italian Space Agency dedicated to high-energy astrophysics launched in 2007 April. It provides large sky exposure levels (> or approx. 10{sup 9} cm{sup 2} s per year on the Galactic Plane) with sensitivity peaking at E{approx}400 MeV(and simultaneous X-ray monitoring in the 18-60 keV band) where the bulk of pulsar energy output is typically released. Its {approx}1 {mu}s is absolute time tagging capability makes it perfectly suited for the study of gamma-ray pulsars following up on the CGRO/EGRET heritage. In this paper we summarize the timing results obtained during the first year of AGILE observations of the known gamma-ray pulsars Vela, Crab, Geminga and B 1706-4. AGILE collected a large number of gamma-ray photons from EGRET pulsars ({approx}10,000 pulsed counts for Vela) in only few months of observations unveiling new interesting features at sub-millisecond level in the pulsars' high-energy light-curves and paving the way to the discovery of new gamma-ray pulsars.

  17. A Pulsar and White Dwarf in an Unexpected Orbit

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Astronomers have discovered a binary system consisting of a low-mass white dwarf and a millisecond pulsar but its eccentric orbit defies all expectations of how such binaries form.Observed orbital periods and binary eccentricities for binary millisecond pulsars. PSR J2234+0511 is the furthest right of the green stars that mark the five known eccentric systems. [Antoniadis et al. 2016]Unusual EccentricityIt would take a low-mass (0.4 solar masses) white dwarf over 100 billion years to form from the evolution of a single star. Since this is longer than the age of the universe, we believe that these lightweights are instead products of binary-star evolution and indeed, we observe many of these stars to still be in binary systems.But the binary evolution that can create a low-mass white dwarf includes a period of mass transfer, in which efficient tidal dissipation damps the systems orbital eccentricity. Because of this, we would expect all systems containing low-mass white dwarfs to have circular orbits.In the past, our observations of low-mass white dwarfmillisecond pulsar binaries have all been consistent with this expectation. But a new detection has thrown a wrench in the works: the unambiguous identification of a low-mass white dwarf thats in an eccentric (e=0.13) orbit with the millisecond pulsar PSR J2234+0511. How could this system have formed?Eliminating Formation ModelsLed by John Antoniadis (Dunlap Institute at University of Toronto), a team of scientists has used newly obtained optical photometry (from the Sloan Digital Sky Survey) and spectroscopy (from the Very Large Telescope in Chile) of the white dwarf to confirm the identification of this system.Antoniadis and collaborators then use measurements of the bodies masses (0.28 and 1.4 solar masses for the white dwarf and pulsar, respectively) and velocities, and constraints on the white dwarfs temperature, radius and surface gravity, to address three proposed models for the formation of this system.The 3D

  18. Geriatric Pulsar Still Kicking

    NASA Astrophysics Data System (ADS)

    2009-02-01

    The oldest isolated pulsar ever detected in X-rays has been found with NASA's Chandra X-ray Observatory. This very old and exotic object turns out to be surprisingly active. The pulsar, PSR J0108-1431 (J0108 for short) is about 200 million years old. Among isolated pulsars -- ones that have not been spun-up in a binary system -- it is over 10 times older than the previous record holder with an X-ray detection. At a distance of 770 light years, it is one of the nearest pulsars known. Pulsars are born when stars that are much more massive than the Sun collapse in supernova explosions, leaving behind a small, incredibly weighty core, known as a neutron star. At birth, these neutron stars, which contain the densest material known in the Universe, are spinning rapidly, up to a hundred revolutions per second. As the rotating beams of their radiation are seen as pulses by distant observers, similar to a lighthouse beam, astronomers call them "pulsars". Astronomers observe a gradual slowing of the rotation of the pulsars as they radiate energy away. Radio observations of J0108 show it to be one of the oldest and faintest pulsars known, spinning only slightly faster than one revolution per second. The surprise came when a team of astronomers led by George Pavlov of Penn State University observed J0108 in X-rays with Chandra. They found that it glows much brighter in X-rays than was expected for a pulsar of such advanced years. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago Erratic Black Hole Regulates Itself Celebrate the International Year of Astronomy Some of the energy that J0108 is losing as it spins more slowly is converted into X-ray radiation. The efficiency of this process for J0108 is found to be higher than for any other known pulsar. "This pulsar is pumping out high-energy radiation much more efficiently than its younger cousins," said Pavlov. "So, although it

  19. Millisecond Timescale Synchrony among Hippocampal Neurons

    PubMed Central

    Amarasingham, Asohan; Mizuseki, Kenji; Buzsáki, György

    2014-01-01

    Inhibitory neurons in cortical circuits play critical roles in composing spike timing and oscillatory patterns in neuronal activity. These roles in turn require coherent activation of interneurons at different timescales. To investigate how the local circuitry provides for these activities, we applied resampled cross-correlation analyses to large-scale recordings of neuronal populations in the cornu ammonis 1 (CA1) and CA3 regions of the hippocampus of freely moving rats. Significant counts in the cross-correlation of cell pairs, relative to jittered surrogate spike-trains, allowed us to identify the effective couplings between neurons in CA1 and CA3 hippocampal regions on the timescale of milliseconds. In addition to putative excitatory and inhibitory monosynaptic connections, we uncovered prominent millisecond timescale synchrony between cell pairs, observed as peaks in the central 0 ms bin of cross-correlograms. This millisecond timescale synchrony appeared to be independent of network state, excitatory input, and γ oscillations. Moreover, it was frequently observed between cells of differing putative interneuronal type, arguing against gap junctions as the sole underlying source. Our observations corroborate recent in vitro findings suggesting that inhibition alone is sufficient to synchronize interneurons at such fast timescales. Moreover, we show that this synchronous spiking may cause stronger inhibition and rebound spiking in target neurons, pointing toward a potential function for millisecond synchrony of interneurons in shaping and affecting timing in pyramidal populations within and downstream from the circuit. PMID:25378164

  20. Looking for black-holes in X-ray binaries with XMM-Newton: XTE J1817-330 and XTE J1856+053

    SciTech Connect

    Sala, Gloria; Greiner, Jochen; Primak, Natalia

    2008-10-08

    The X-ray binary XTE J1817-330 was discovered in outburst on 26 January 2006 with RXTE/ASM. One year later, another X-ray transient discovered in 1996, XTE J1856+053, was detected by RXTE during a new outburst on 28 February 2007. We triggered XMM-Newton target of opportunity observationson these two objects to constrain their parameters and search for a stellar black holes. We summarize the properties of these two X-ray transients and show that the soft X-ray spectra indicate indeed the presence of an accreting stellar black hole in each of the two systems.

  1. Fast radio bursts as giant pulses from young rapidly rotating pulsars

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Burzawa, Lukasz; Popov, Sergei B.

    2016-10-01

    We discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars (ages ˜ tens to hundreds of years) born with regular magnetic field but very short - few milliseconds - spin periods. We assume that FRBs are extra-Galactic events coming from distances d ≲ 100 Mpc and that most of the dispersion measure (DM) comes from the material in the freshly ejected SNR shell. We then predict that for a given burst the DM should decrease with time and that FRBs are not expected to be seen below ˜300 MHz due to free-free absorption in the expanding ejecta. A supernova might have been detected years before the burst; FRBs are mostly associated with star-forming galaxies. The model requires that some pulsars are born with very fast spins, of the order of few milliseconds. The observed distribution of spin-down powers dot{E} in young energetic pulsars is consistent with equal birth rate per decade of dot{E}. Accepting this injection distribution and scaling the intrinsic brightness of FRBs with dot{E}, we predict the following properties of a large sample of FRBs: (i) the brightest observed events come from a broad distribution in distances; (ii) for repeating bursts brightness either remains nearly constant (if the spin-down time is longer than the age of the pulsar) or decreases with time otherwise; in the latter case DM ∝ dot{E}.

  2. Flares from Galactic Centre pulsars: a new class of X-ray transients?

    NASA Astrophysics Data System (ADS)

    Giannios, Dimitrios; Lorimer, Duncan R.

    2016-06-01

    Despite intensive searches, the only pulsar within 0.1 pc of the central black hole in our Galaxy, Sgr A*, is a radio-loud magnetar. Since magnetars are rare among the Galactic neutron star population, and a large number of massive stars are already known in this region, the Galactic Centre (GC) should harbour a large number of neutron stars. Population syntheses suggest several thousand neutron stars may be present in the GC. Many of these could be highly energetic millisecond pulsars which are also proposed to be responsible for the GC gamma-ray excess. We propose that the presence of a neutron star within 0.03 pc from Sgr A* can be revealed by the shock interactions with the disc around the central black hole. As we demonstrate, these interactions result in observable transient non-thermal X-ray and gamma-ray emission over time-scales of months, provided that the spin-down luminosity of the neutron star is Lsd ˜ 1035 erg s-1. Current limits on the population of normal and millisecond pulsars in the GC region suggest that a number of such pulsars are present with such luminosities.

  3. Modelling pulsar glitches

    NASA Astrophysics Data System (ADS)

    Haskell, Brynmor

    2016-07-01

    Pulsar glitches, i.e. sudden jumps in the spin frequency of pulsars, are thought to be due to the presence of large scale superfluid components in neutron star interiors, and offer a unique insight into the physics of matter at high densities and low temperatures. Nevertheless, more than forty years after the first observation, many open questions still exist on the nature of pulsar glitches. In this talk I will review our current theoretical understanding of glitches, of their trigger mechanisms and of the hydrodynamics of superfluid neutron stars. In particular I will focus on 'superfluid vortex avalanches' and recent advances in applying this paradigm to glitch observations, and I will discuss hydrodynamical modelling of the post-glitch recovery.

  4. Synchrotron Self-Compton Emission from the Crab and Other Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Kalapotharakos, Konstantinos

    2015-01-01

    Results of a simulation of synchrotron-self Compton (SSC) emission from a rotation-powered pulsar are presented. The radiating particles are assumed to be both accelerated primary electrons and a spectrum of electron-positron pairs produced in cascades near the polar cap. They follow trajectories in a slot gap using 3D force-free magnetic field geometry, gaining pitch angles through resonant cyclotron absorption of radio photons, radiating and scattering synchrotron emission at high altitudes out to and beyond the light cylinder. Full angular dependence of the synchrotron photon density is simulated in the scattering and all processes are treated in the inertial observer frame. Spectra for the Crab and Vela pulsars as well as two energetic millisecond pulsars, B1821-24 and B1937+21 are simulated using this model. The simulation of the Crab pulsar radiation can reproduce both the flux level and the shape of the observed optical to hard X-ray emission assuming a pair multiplicity of M+ = 3x10(exp 5), as well as the very-high- energy emission above 50 GeV detected by MAGIC and VERITAS, with both the synchrotron and SSC components reflecting the shape of the pair spectrum. Simulations of Vela, B1821-24 and B1937+21, for M+ up to 10(exp 5), do not produce pair SSC emission that is detectable by current telescopes, indicating that only Crab-like pulsars produce significant SSC components. The pair synchrotron emission matches the observed X-ray spectrum of the millisecond pulsars and the predicted peak of this emission at 1-10 MeV would be detectable with planned Compton telescopes.

  5. Diffuse γ-ray emission from galactic pulsars

    SciTech Connect

    Calore, F.; Di Mauro, M.; Donato, F. E-mail: mattia.dimauro@to.infn.it

    2014-11-20

    Millisecond pulsars (MSPs) are old fast-spinning neutron stars that represent the second most abundant source population discovered by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi). As guaranteed γ-ray emitters, they might contribute non-negligibly to the diffuse emission measured at high latitudes by Fermi-LAT (i.e., the Isotropic Diffuse γ-Ray Background (IDGRB)), which is believed to arise from the superposition of several components of galactic and extragalactic origin. Additionally, γ-ray sources also contribute to the anisotropy of the IDGRB measured on small scales by Fermi-LAT. In this manuscript we aim to assess the contribution of the unresolved counterpart of the detected MSPs population to the IDGRB and the maximal fraction of the measured anisotropy produced by this source class. To this end, we model the MSPs' spatial distribution in the Galaxy and the γ-ray emission parameters by considering observational constraints coming from the Australia Telescope National Facility pulsar catalog and the Second Fermi-LAT Catalog of γ-ray pulsars. By simulating a large number of MSP populations through a Monte Carlo simulation, we compute the average diffuse emission and the anisotropy 1σ upper limit. We find that the emission from unresolved MSPs at 2 GeV, where the peak of the spectrum is located, is at most 0.9% of the measured IDGRB above 10° in latitude. The 1σ upper limit on the angular power for unresolved MSP sources turns out to be about a factor of 60 smaller than Fermi-LAT measurements above 30°. Our results indicate that this galactic source class represents a negligible contributor to the high-latitude γ-ray sky and confirm that most of the intensity and geometrical properties of the measured diffuse emission are imputable to other extragalactic source classes (e.g., blazars, misaligned active galactic nuclei, or star-forming galaxies). Nevertheless, because MSPs are more concentrated toward the

  6. Pulsars and Acceleration Sites

    NASA Technical Reports Server (NTRS)

    Harding, Alice

    2008-01-01

    Rotation-powered pulsars are excellent laboratories for the studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. But even forty years after their discovery, we still do not understand their pulsed emission at any wavelength. I will review both the basic physics of pulsars as well as the latest developments in understanding their high-energy emission. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately the Gamma-Ray Large Area Space Telescope (GLAST), with launch in May 2008 will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  7. The Pulsar Search Collaboratory

    ERIC Educational Resources Information Center

    Rosen, R.; Heatherly, S.; McLaughlin, M. A.; Kondratiev, V. I.; Boyles, J. R.; Wilson, M.; Lorimer, D. R.; Lynch, R.; Ransom, S.

    2010-01-01

    The Pulsar Search Collaboratory (PSC) (NSF #0737641) is a joint project between the National Radio Astronomy Observatory and West Virginia University designed to interest high school students in science, technology, engineering, and mathematics related career paths by helping them to conduct authentic scientific research. The 3 year PSC program,…

  8. DEATH LINE OF GAMMA-RAY PULSARS WITH OUTER GAPS

    SciTech Connect

    Wang, Ren-Bo; Hirotani, Kouichi E-mail: hirotani@tiara.sinica.edu.tw

    2011-08-01

    We analytically investigate the condition for a particle accelerator to be active in the outer magnetosphere of a rotation-powered pulsar. Within the accelerator (or the gap), the magnetic-field-aligned electric field accelerates electrons and positrons, which emit copious gamma-rays via the curvature process. If one of the gamma-rays emitted by a single pair materializes as a new pair on average, the gap is self-sustained. However, if the neutron-star spin-down rate decreases below a certain limit, the gap becomes no longer self-sustained and the gamma-ray emission ceases. We explicitly compute the multiplicity of cascading pairs and find that the obtained limit corresponds to a modification of the previously derived outer-gap death line. In addition to this traditional death line, we find another death line, which becomes important for millisecond pulsars, by separately considering the threshold of photon-photon pair production. Combining these traditional and new death lines, we give predictions on the detectability of gamma-ray pulsars with Fermi and AGILE. An implication for X-ray observations of heated polar-cap emission is also discussed.

  9. Formation of Short-Period Binary Pulsars in Globular Clusters.

    PubMed

    Rasio; Pfahl; Rappaport

    2000-03-20

    We present a new dynamical scenario for the formation of short-period binary millisecond pulsars in globular clusters. Our work is motivated by the recent observations of 20 radio pulsars in 47 Tuc. In a dense cluster such as 47 Tuc, most neutron stars acquire binary companions through exchange interactions with primordial binaries. The resulting systems have semimajor axes in the range approximately 0.1-1 AU and neutron star companion masses approximately 1-3 M middle dot in circle. For many of these systems, we find that when the companion evolves off the main sequence and fills its Roche lobe, the subsequent mass transfer is dynamically unstable. This leads to a common envelope phase and the formation of short-period neutron star-white dwarf binaries. For a significant fraction of these binaries, the decay of the orbit due to gravitational radiation will be followed by a period of stable mass transfer driven by a combination of gravitational radiation and tidal heating of the companion. The properties of the resulting short-period binaries match well those of observed binary pulsars in 47 Tuc. PMID:10702129

  10. Formation of Short-Period Binary Pulsars in Globular Clusters.

    PubMed

    Rasio; Pfahl; Rappaport

    2000-03-20

    We present a new dynamical scenario for the formation of short-period binary millisecond pulsars in globular clusters. Our work is motivated by the recent observations of 20 radio pulsars in 47 Tuc. In a dense cluster such as 47 Tuc, most neutron stars acquire binary companions through exchange interactions with primordial binaries. The resulting systems have semimajor axes in the range approximately 0.1-1 AU and neutron star companion masses approximately 1-3 M middle dot in circle. For many of these systems, we find that when the companion evolves off the main sequence and fills its Roche lobe, the subsequent mass transfer is dynamically unstable. This leads to a common envelope phase and the formation of short-period neutron star-white dwarf binaries. For a significant fraction of these binaries, the decay of the orbit due to gravitational radiation will be followed by a period of stable mass transfer driven by a combination of gravitational radiation and tidal heating of the companion. The properties of the resulting short-period binaries match well those of observed binary pulsars in 47 Tuc.

  11. Student Discovers New Pulsar

    NASA Astrophysics Data System (ADS)

    2010-01-01

    A West Virginia high-school student has discovered a new pulsar, using data from the giant Robert C. Byrd Green Bank Telescope (GBT). Shay Bloxton, 15, a participant in a project in which students analyze data from the radio telescope, spotted evidence of the pulsar on October 15. Bloxton, along with NRAO astronomers observed the object again one month later. The new observation confirmed that the object is a pulsar, a rotating, superdense neutron star. Bloxton is a sophomore at Nicholas County High School in Summersville, West Virginia. "I was very excited when I found out I had actually made a discovery," Bloxton said. She went to Green Bank in November to participate in the follow-up observation. She termed that visit "a great experience." "It also helped me learn a lot about how observations with the GBT are actually done," she added. The project in which she participated, called the Pulsar Search Collaboratory (PSC), is a joint project of the National Radio Astronomy Observatory (NRAO) and West Virginia University, funded by a grant from the National Science Foundation. Pulsars are known for their lighthouse-like beams of radio waves that sweep through space as the neutron star rotates, creating a pulse as the beam sweeps by the Earth. First discovered in 1967, pulsars serve as valuable natural "laboratories" for physicists studying exotic states of matter, quantum mechanics and General Relativity. The GBT, dedicated in 2000, has become one of the world's leading tools for discovering and studying pulsars. The PSC, led by NRAO Education Officer Sue Ann Heatherly and Project Director Rachel Rosen, includes training for teachers and student leaders, and provides parcels of data from the GBT to student teams. The project involves teachers and students in helping astronomers analyze data from 1500 hours of observing with the GBT. The 120 terabytes of data were produced by 70,000 individual pointings of the giant, 17-million-pound telescope. Some 300 hours of the

  12. Exoplanets around pulsars

    NASA Astrophysics Data System (ADS)

    Kitiashvili, I.; Gusev, A.

    2003-04-01

    Surprise discovery of thrid planets and cometary body (!?) near the pulsar PSR~B1257+12 (Wolszczan and Frail, 1992) posed the problems of describing their moving around pulsar, their origin and early rotation. At the present time the question whether there exist another three pulsars in the planetary systems is under discussion: PSR 0329+54 (1 planet), PSR B1620--26 (1 planet) and PSR 1828--11 (3 planets, Stairs et al., 2000) . It is known the time scale of pulsars is very stable, then in some cases the periodical fluctuation in time of arrival may be provoked motion of planetary bodies, free precession or concerned with the interior of the neutron star. Discovery exoplanets around PSR~B1257+12 gave strong push for search and investigate planets around neutron stars. Dust disks around stars still retain information about the formation processes of the exoplanetary systems as they are formed by collisions of planetesimals or protoplanets.The conventional explanation for the formation gas giant planets, core accretion, presumes that a gaseous envelope collapses upon a roughly 10 M⊕, solid core that was formed by the collisional accumulation of planetary embryos orbiting in a gaseous disk (Boss, 2002). Small protoplanets torque the disk at the Lindblad and corotation resonances, and the resulting back-torque can propel a planet into the star (Ward, 1997). We investigate the equations of the magneto-rotational instability of the Keplerian disk in linear approximation by qualitative and bifurcation methods. The separation of 3-dimensional parameter space of dynamical system by bifurcation surfaces is obtained. The obtained gallery of more ten phase portraits of disk evolution illustrates the various regimes of the planetary systems evolution. Investigation of a matter around young pulsars will allow us to answer about a possibility of birth of planets after explosion of a supernova star.

  13. SPIN EVOLUTION OF MILLISECOND MAGNETARS WITH HYPERACCRETING FALLBACK DISKS: IMPLICATIONS FOR EARLY AFTERGLOWS OF GAMMA-RAY BURSTS

    SciTech Connect

    Dai, Z. G.; Liu Ruoyu E-mail: ryliu@nju.edu.cn

    2012-11-01

    The shallow decay phase or plateau phase of early afterglows of gamma-ray bursts (GRBs), discovered by Swift, is currently understood as being due to energy injection to a relativistic blast wave. One natural scenario for energy injection invokes a millisecond magnetar as the central engine of GRBs because the conventional model of a pulsar predicts a nearly constant magnetic-dipole-radiation luminosity within the spin-down timescale. However, we note that significant brightening occurs in some early afterglows, which apparently conflicts with the above scenario. Here we propose a new model to explain this significant brightening phenomena by considering a hyperaccreting fallback disk around a newborn millisecond magnetar. We show that for typical values of the model parameters, sufficient angular momentum of the accreted matter is transferred to the magnetar and spins it up. It is this spin-up that leads to a dramatic increase of the magnetic-dipole-radiation luminosity with time and thus significant brightening of an early afterglow. Based on this model, we carry out numerical calculations and fit well early afterglows of 12 GRBs assuming sufficiently strong fallback accretion. If the accretion is very weak, our model turns out to be the conventional energy-injection scenario of a pulsar. Therefore, our model can provide a unified explanation for the shallow decay phase, plateaus, and significant brightening of early afterglows.

  14. The Optimization of GBT Pulsar Data for the GBNCC Pulsar Survey

    NASA Astrophysics Data System (ADS)

    Gordon, Ashlee Nicole; Green Bank NRAO, GBNCC

    2016-01-01

    The Green Bank Telescope collects data from the Green Bank Northern Celestial Cap (GBNCC) pulsar survey in order to find new pulsars within its sensitivity and also, to confirm previously found pulsars within its sensitivity range. The collected data is then loaded into the CyberSKA website database where astronomers are tasked with rating the data sets based on its potential to be a pulsar from 0(unclassified), 1(class 1 pulsar), 2(class 2 pulsar), 3(class 3 pulsar), 4(radio frequency interference), 5(not a pulsar), 6(know pulsar), 7(harmonic of a known pulsar). This specific research done was to use previously classified pulsars to create a python script that will automatically identify the data set as a pulsar or a non-pulsar. After finding the recurring frequencies of radio frequency interference (RFI), the frequencies were then added to a pipeline to further discern pulsars from RFI.

  15. Probing gamma-ray emissions of Fermi-LAT pulsars with a non-stationary outer gap model

    NASA Astrophysics Data System (ADS)

    Takata, J.; Ng, C. W.; Cheng, K. S.

    2016-02-01

    We explore a non-stationary outer gap scenario for gamma-ray emission process in pulsar magnetosphere. Electrons/positrons that migrate along the magnetic field line and enter the outer gap from the outer/inner boundaries activate the pair-creation cascade and high-energy emission process. In our model, the rate of the particle injection at the gap boundaries is key physical quantity to control the gap structure and properties of the gamma-ray spectrum. Our model assumes that the injection rate is time variable and the observed gamma-ray spectrum are superposition of the emissions from different gap structures with different injection rates at the gap boundaries. The calculated spectrum superposed by assuming power law distribution of the particle injection rate can reproduce sub-exponential cut-off feature in the gamma-ray spectrum observed by Fermi-LAT. We fit the phase-averaged spectra for 43 young/middle-age pulsars and 14 millisecond pulsars with the model. Our results imply that (1) a larger particle injection at the gap boundaries is more frequent for the pulsar with a larger spin-down power and (2) outer gap with an injection rate much smaller than the Goldreich-Julian value produces observed >10 GeV emissions. Fermi-LAT gamma-ray pulsars show that (i) the observed gamma-ray spectrum below cut-off energy tends to be softer for the pulsar with a higher spin-down rate and (ii) the second peak is more prominent in higher energy bands. Based on the results of the fitting, we describe possible theoretical interpretations for these observational properties. We also briefly discuss Crab-like millisecond pulsars that show phase-aligned radio and gamma-ray pulses.

  16. Fermi LAT Pulsed Detection of PSR J0737-3039A in the Double Pulsar System

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Kramer, M.; Johnson, T. J.; Craig, H. A.; Romani, R. W.; Venter, C.; Harding, A. K.; Ferdman, R. D.; Stairs, I. H.; Kerr, M.

    2013-01-01

    We report the Fermi Large Area Telescope discovery of gamma-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in gamma rays. PSR J0737-3039A is a faint gamma-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the gamma-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the gamma-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination alpha and the viewing angle zeta to be close to 90 deg., which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.

  17. FERMI LAT PULSED DETECTION OF PSR J0737-3039A IN THE DOUBLE PULSAR SYSTEM

    SciTech Connect

    Guillemot, L.; Kramer, M.; Johnson, T. J.; Craig, H. A.; Romani, R. W.; Kerr, M.; Venter, C.; Harding, A. K.; Ferdman, R. D.; Stairs, I. H.

    2013-05-10

    We report the Fermi Large Area Telescope discovery of {gamma}-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in {gamma} rays. PSR J0737-3039A is a faint {gamma}-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the {gamma}-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the {gamma}-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination {alpha} and the viewing angle {zeta} to be close to 90 Degree-Sign , which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.

  18. Gamma radiation from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1990-01-01

    The probable magnetospheric location and source of the gamma ray emission from some young radiopulsars is discussed. The suggested evolution of this emission as a function of pulsar period gives a diminished gamma-ray luminosity for a more rapidly spinning pre-Crab pulsar. A greatly enhanced one, similar to that of unidentified Cos B sources, is predicted for a slightly slower post-Vela pulsar, followed by a relatively rapid quenching of the gamma-ray luminosity at still longer periods. Possible anomalous exo-magnetospheric pulsed MeV and TeV-PeV radiation from the Crab pulsar is considered.

  19. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  20. The Extended Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Constantinos, Kalapotharakos; Demosthenes, Kazanas; Ioannis, Contopoulos

    2012-01-01

    We present the structure of the 3D ideal MHD pulsar magnetosphere to a radius ten times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smooth, well-defined undulating current sheet which approaches the kinematic split monopole solution of Bogovalov 1999 only after a careful introduction of diffusivity even in the highest resolution simulations. It also exhibits an intriguing spiral region at the crossing of two zero charge surfaces on the current sheet, which shows a destabilizing behavior more prominent in higher resolution simulations. We discuss the possibility that this region is physically (and not numerically) unstable. Finally, we present the spiral pulsar antenna radiation pattern.

  1. Spectral Modeling of the Comptonized Continua of Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wolff, Michael Thomas; Pottschmidt, Katja; Becker, Peter A.; Marcu, Diana; Wilms, Jörn; Wood, Kent S.

    2015-01-01

    We are undertaking a program to analyze the X-ray spectra of the accretion flows onto strongly magnetic neutron stars in high mass binary systems such as Cen X-3, and XTE J1946+274. These accreting pulsars typically have X-ray spectra consisting of broad Comptonized cutoff power-laws. Current theory suggests these X-ray spectra result from radiation-dominated shocks that develop in the high-velocity magnetically channeled plasma accretion flows onto the surfaces of the neutron stars. These X-ray pulsars often, but not always, show cyclotron resonant scattering features implying neutron star surface magnetic field strengths above 1012 G. Proper fitting of cyclotron line centroids (for example, to investigate how the line centroid varies with X-ray luminosity) requires a robust model for the Comptonized X-ray continuum upon which the cyclotron lines are superposed, and this can be provided by a continuum model based on the physics of the accretion column.We discuss in this presentation our ongoing program for the analysis of the X-ray spectra formed in these systems. Our program consists of two parts. First, we are modeling the X-ray spectra from the Suzaku X-ray satellite of accreting X-ray pulsars Cen X-3 and XTE J1946+274 utilizing the best currently existing empirical models. The second part of our program is building a new analysis tool based on the analytical model of Becker and Wolff (2007). In the high temperature optically thick plasma flows, the processes of bremsstrahlung emission from the hot plasma, black body emission from a thermal mound near the neutron star surface, and cyclotron emission from electrons in the first Landau excited state, all contribute to the total observed X-ray spectrum. We show recent results from our new implementation and its comparison with the Suzaku data for these X-ray pulsars.This research is supported by the NASA Astrophysics Data Analysis Program.

  2. Doppler Imaging of Black Hole SYSTEMS:XTE J1118+480.

    NASA Astrophysics Data System (ADS)

    Callanan, Paul; Perres-Torres, Manuel; Garcia, Michael

    We present time-resolved spectroscopy of the black-hole candidate XTE J1118+480 obtained during its approach to quiescence. Doppler imaging of the intense Hα line shows persistent emission with an origin in the gas stream/hotspot. In addition the Doppler maps show enhanced emission in the +Vx -Vy quadrant clearing incompatible with a stream/hotspot origin. We favour a non-uniform disk intensity distribution due to tidal effects as the origin of this emission. We compare our map with that of XTE J1118+480 in outburst as well as with those of other transient systems in quiescence

  3. Pulsar extinction. [astrophysics

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Baker, K.; Turk, J. S.

    1975-01-01

    Radio emission from pulsars, attributed to an instability associated with the creation of electron-positron pairs from gamma rays was investigated. The condition for pair creation therefore lead to an extinction condition. The relevant physical processes were analyzed in the context of a mathematical model, according to which radiation originated at the polar caps and magnetic field lines changed from a closed configuration to an open configuration at the force balance or corotation radius.

  4. a Surprise from the Pulsar in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    1995-11-01

    New observations of the spectrum of the rapidly spinning neutron star (the `pulsar') in the Crab Nebula have been carried out with the ESO 3.5-metre New Technology Telescope (NTT) by a group of Italian astronomers [1]. Because of greatly improved spectral resolution which allows to register even very fine details in the pulsar's spectrum, they are able to determine for the first time with high accuracy the overall dependance of the emission on wavelength, i.e. the `shape' of the spectrum. Quite unexpectedly, they also detect a hitherto unknown 100 A (10 nm) broad `absorption dip', which can be securely attributed to the pulsar. These results open an exciting new window for the study of the extreme physical processes close to a pulsar. The Nature of Pulsars It is estimated that there may be as many as 100 million neutron stars in our Galaxy. A neutron star is the superdense remnant of the extremely violent supernova explosion that occurs at the end of the life of a comparatively massive star. In fact, all stars that are more than about 6 times heavier than the Sun are believed to end their lives as supernovae. During the explosion, the central core of the dying star collapses in a few milliseconds and the matter at the centre is compressed to a density comparable to that of an atomic nucleus. Due to the enormous inward pressure, the atomic particles are squeezed together into a kind of neutron jam. The outcome is the formation of a neutron star with a diameter of 10-15 kilometres, weighing as much as the Sun. In accordance with the physical law that implies that the rotation momentum of the exploding star must be conserved, newborn neutron stars will rotate very rapidly around their axis, in some cases as fast as 100 times per second. In the same way, the new neutron star is expected to possess a strong magnetic field. Of these myriads of neutron stars, about 700 have been observed to emit radio pulses (hence the name `pulsar'). A few of these can also be detected

  5. a Surprise from the Pulsar in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    1995-11-01

    New observations of the spectrum of the rapidly spinning neutron star (the `pulsar') in the Crab Nebula have been carried out with the ESO 3.5-metre New Technology Telescope (NTT) by a group of Italian astronomers [1]. Because of greatly improved spectral resolution which allows to register even very fine details in the pulsar's spectrum, they are able to determine for the first time with high accuracy the overall dependance of the emission on wavelength, i.e. the `shape' of the spectrum. Quite unexpectedly, they also detect a hitherto unknown 100 A (10 nm) broad `absorption dip', which can be securely attributed to the pulsar. These results open an exciting new window for the study of the extreme physical processes close to a pulsar. The Nature of Pulsars It is estimated that there may be as many as 100 million neutron stars in our Galaxy. A neutron star is the superdense remnant of the extremely violent supernova explosion that occurs at the end of the life of a comparatively massive star. In fact, all stars that are more than about 6 times heavier than the Sun are believed to end their lives as supernovae. During the explosion, the central core of the dying star collapses in a few milliseconds and the matter at the centre is compressed to a density comparable to that of an atomic nucleus. Due to the enormous inward pressure, the atomic particles are squeezed together into a kind of neutron jam. The outcome is the formation of a neutron star with a diameter of 10-15 kilometres, weighing as much as the Sun. In accordance with the physical law that implies that the rotation momentum of the exploding star must be conserved, newborn neutron stars will rotate very rapidly around their axis, in some cases as fast as 100 times per second. In the same way, the new neutron star is expected to possess a strong magnetic field. Of these myriads of neutron stars, about 700 have been observed to emit radio pulses (hence the name `pulsar'). A few of these can also be detected

  6. The pulsar spectral index distribution

    NASA Astrophysics Data System (ADS)

    Bates, S. D.; Lorimer, D. R.; Verbiest, J. P. W.

    2013-05-01

    The flux-density spectra of radio pulsars are known to be steep and, to first order, described by a power-law relationship of the form Sν ∝ να, where Sν is the flux density at some frequency ν and α is the spectral index. Although measurements of α have been made over the years for several hundred pulsars, a study of the intrinsic distribution of pulsar spectra has not been carried out. From the result of pulsar surveys carried out at three different radio frequencies, we use population synthesis techniques and a likelihood analysis to deduce what underlying spectral index distribution is required to replicate the results of these surveys. We find that in general the results of the surveys can be modelled by a Gaussian distribution of spectral indices with a mean of -1.4 and unit standard deviation. We also consider the impact of the so-called gigahertz-peaked spectrum pulsars proposed by Kijak et al. The fraction of peaked-spectrum sources in the population with any significant turnover at low frequencies appears to be at most 10 per cent. We demonstrate that high-frequency (>2 GHz) surveys preferentially select flatter spectrum pulsars and the converse is true for lower frequency (<1 GHz) surveys. This implies that any correlations between α and other pulsar parameters (for example age or magnetic field) need to carefully account for selection biases in pulsar surveys. We also expect that many known pulsars which have been detected at high frequencies will have shallow, or positive, spectral indices. The majority of pulsars do not have recorded flux density measurements over a wide frequency range, making it impossible to constrain their spectral shapes. We also suggest that such measurements would allow an improved description of any populations of pulsars with `non-standard' spectra. Further refinements to this picture will soon be possible from the results of surveys with the Green Bank Telescope and LOFAR.

  7. New Millisecond Isomer Lifetime Measurements at LANSCE

    SciTech Connect

    Devlin, M. Nelson, R.O.; Fotiades, N.; O'Donnell, J.M.

    2014-06-15

    New half-life measurements have been made of the millisecond isomers {sup 71m}Ge, {sup 114m2}I, {sup 208m}Bi, {sup 88m1}Y, {sup 88m2}Y, and {sup 75m}As populated in neutron-induced reactions. These measurements were made using the unique time structure of the LANSCE/WNR neutron source, by observing the γ-ray decays of the isomers during the time between the LANSCE proton macropulses. Two different LANSCE proton beam time structures were used. The GEANIE array of HPGe detectors was used to detect the γ-ray decays.

  8. Pulsar polarisation below 200 MHz: Average profiles and propagation effects

    NASA Astrophysics Data System (ADS)

    Noutsos, A.; Sobey, C.; Kondratiev, V. I.; Weltevrede, P.; Verbiest, J. P. W.; Karastergiou, A.; Kramer, M.; Kuniyoshi, M.; Alexov, A.; Breton, R. P.; Bilous, A. V.; Cooper, S.; Falcke, H.; Grießmeier, J.-M.; Hassall, T. E.; Hessels, J. W. T.; Keane, E. F.; Osłowski, S.; Pilia, M.; Serylak, M.; Stappers, B. W.; ter Veen, S.; van Leeuwen, J.; Zagkouris, K.; Anderson, K.; Bähren, L.; Bell, M.; Broderick, J.; Carbone, D.; Cendes, Y.; Coenen, T.; Corbel, S.; Eislöffel, J.; Fender, R.; Garsden, H.; Jonker, P.; Law, C.; Markoff, S.; Masters, J.; Miller-Jones, J.; Molenaar, G.; Osten, R.; Pietka, M.; Rol, E.; Rowlinson, A.; Scheers, B.; Spreeuw, H.; Staley, T.; Stewart, A.; Swinbank, J.; Wijers, R.; Wijnands, R.; Wise, M.; Zarka, P.; van der Horst, A.

    2015-04-01

    Aims: We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we perform an initial investigation of expected observational effects resulting from the propagation of polarised emission in the pulsar magnetosphere and the interstellar medium. Methods: The polarisation data presented in this paper have been calibrated for the geometric-projection and beam-shape effects that distort the polarised information as detected with the LOFAR antennas. We have used RM Synthesis to determine the amount of Faraday rotation in the data at the time of the observations. The ionospheric contribution to the measured Faraday rotation was estimated using a model of the ionosphere. To study the propagation effects, we have compared our low-frequency polarisation observations with archival data at 240, 400, 600, and 1400 MHz. Results: The predictions of magnetospheric birefringence in pulsars have been tested using spectra of the pulse width and fractional polarisation from multifrequency data. The derived spectra offer only partial support for the expected effects of birefringence on the polarisation properties, with only about half of our sample being consistent with the model's predictions. It is noted that for some pulsars these measurements are contaminated by the effects of interstellar scattering. For a number of pulsars in our sample, we have observed significant variations in the amount of Faraday rotation as a function of pulse phase, which is possibly an artefact of scattering. These variations are typically two orders of magnitude smaller than that observed at 1400 MHz by Noutsos et al. (2009), for a different sample of southern pulsars. In this paper we present a possible explanation for the difference in magnitude of this effect between the two frequencies, based on scattering. Finally, we have estimated the magnetospheric

  9. Multiwavelength Observations of the Redback Pulsar J1048+2339, Coincident with the Fermi-LAT Source 3FGL J1048.6+2338

    NASA Astrophysics Data System (ADS)

    Deneva, Julia S.; Fermi-LAT Collaboration

    2016-01-01

    We report on pulsar timing and multiwavelength observations of the redback millisecond pulsar J1048+2339, which was discovered in an Arecibo search for periodic radio pulsations targeting the Fermi-LAT source 3FGL J1048.6+2338 (Cromartie et al. 2015, in prep). This discovery calls into question the association of the Fermi-LAT source with the BL Lac active galactic nucleus NVSS J104900+233821 appearing in the 3FGL source catalog. Fourteen months of radio timing data from Arecibo allowed us to derive precise astrometric and orbital parameters for the pulsar. J1048+2339 is in a binary system with a companion whose minimum mass is 0.3 solar masses and exhibits radio eclipses over half the orbital period. We have identified an optical counterpart with intensity modulations matching the pulsar's orbital period. We also present preliminary results from searches for gamma-ray pulsations using the radio ephemeris.

  10. Millisecond laser machining of transparent materials assisted by nanosecond laser.

    PubMed

    Pan, Yunxiang; Zhang, Hongchao; Chen, Jun; Han, Bing; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2015-01-26

    A new form of double pulse composed of a nanosecond laser and a millisecond laser is proposed for laser machining transparent materials. To evaluate its advantages and disadvantages, experimental investigations are carried out and the corresponding results are compared with those of single millisecond laser. The mechanism is discussed from two aspects: material defects and effects of modifications induced by nanosecond laser on thermal stress field during millisecond laser irradiation. It is shown that the modifications of the sample generated by nanosecond laser improves the processing efficiency of subsequent millisecond laser, while limits the eventual size of modified region.

  11. Searching for Planets Around Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    Did you know that the very first exoplanets ever confirmed were found around a pulsar? The precise timing measurements of pulsar PSR 1257+12 were what made the discovery of its planetary companions possible. Yet surprisingly, though weve discovered thousands of exoplanets since then, only one other planet has ever been confirmed around a pulsar. Now, a team of CSIRO Astronomy and Space Science researchers are trying to figure out why.Formation ChallengesThe lack of detected pulsar planets may simply reflect the fact that getting a pulsar-planet system is challenging! There are three main pathways:The planet formed before the host star became a pulsar which means it somehow survived its star going supernova (yikes!).The planet formed elsewhere and was captured by the pulsar.The planet formed out of the debris of the supernova explosion.The first two options, if even possible, are likely to be rare occurrences but the third option shows some promise. In this scenario, after the supernova explosion, a small fraction of the material falls back toward the stellar remnant and is recaptured, forming what is known as a supernova fallback disk. According to this model, planets could potentially form out of this disk.Disk ImplicationsLed by Matthew Kerr, the CSIRO astronomers set out to systematically look for these potential planets that might have formed in situ around pulsars. They searched a sample of 151 young, energetic pulsars, scouring seven years of pulse time-of-arrival data for periodic variation that could signal the presence of planetary companions. Their methods to mitigate pulsar timing noise and model realistic orbits allowed them to have good sensitivity to low-mass planets.The results? They found no conclusive evidence that any of these pulsars have planets.This outcome carries with it some significant implications. The pulsar sample spans 2 Myr in age, in which planets should have had enough time to form in debris disks. The fact that none were detected

  12. Magnetars and white dwarf pulsars

    NASA Astrophysics Data System (ADS)

    Lobato, Ronaldo V.; Malheiro, Manuel; Coelho, Jaziel G.

    2016-07-01

    The anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are a class of pulsars understood as neutron stars (NSs) with super strong surface magnetic fields, namely B ≳ 1014G, and for that reason are known as magnetars. However, in the last years, some SGRs/AXPs with low surface magnetic fields B ˜ (1012-1013)G have been detected, challenging the magnetar description. Moreover, some fast and very magnetic white dwarfs (WDs) have also been observed, and at least one showed X-ray energy emission as an ordinary pulsar. Following this fact, an alternative model based on WDs pulsars has been proposed to explain this special class of pulsars. In this model, AXPs and SGRs as dense and magnetized WDs can have surface magnetic field B ˜ 107-1010 G and rotate very fast with frequencies Ω ˜ 1rad/s, consistent with the observed rotation periods P ˜ (2-12)s.

  13. Evolution of vaporizing pulsars

    NASA Technical Reports Server (NTRS)

    Mccormick, P.

    1994-01-01

    We construct evolutional scenarios for LMXB's using a simplified stellar model. We discuss the origin and evolution of short-period, low mass binary pulsars with evaporating companions. We suggest that these systems descend from low-mass X-ray binaries and that angular momentum loss mainly due to evaporative wind drives their evolution. We derive limits on the energy and angular momentum carried away by the wind based on the observed low eccentricity. In our model the companion remains near contact, and its quasiadiabatic expansion causes the binary to expand. Short-term oscillations of the orbital period may occur if the Roche-lobe overflow forms an evaporating disk.

  14. Evolution of the X-Ray Properties of the Transient Magnetar XTE J1810-197

    NASA Astrophysics Data System (ADS)

    Alford, J. A. J.; Halpern, J. P.

    2016-02-01

    We report on X-ray observations of the 5.54 s transient magnetar XTE J1810-197 using the XMM-Newton and Chandra observatories, analyzing new data from 2008 through 2014, and re-analyzing data from 2003 through 2007 with the benefit of these six years of new data. From the discovery of XTE J1810-197 during its 2003 outburst to the most recent 2014 observations, its 0.3-10 keV X-ray flux has declined by a factor of about 50 from 4.1 × 10-11 to 8.1 × 10-13 erg cm-2 s-1. Its X-ray spectrum has now reached a steady state. Pulsations continue to be detected from a 0.3 keV thermal hot spot that remains on the neutron star (NS) surface. The luminosity of this hot spot exceeds XTE J1810-197’s spin-down luminosity, indicating continuing magnetar activity. We find that XTE J1810-197’s X-ray spectrum is best described by a multiple component blackbody model in which the coldest 0.14 keV component likely originates from the entire NS surface, and the thermal hot-spot is, at different epochs, well described by an either one- or two-component blackbody model. A 1.2 keV absorption line, possibly due to resonant proton scattering, is detected at all epochs. The X-ray flux of the hot spot decreased by ≈ 20% between 2008 and 2009 March, the same period during which XTE J1810-197 became radio quiet.

  15. Evolution of the X-ray Properties of the Transient Magnetar XTE J1810-197

    NASA Astrophysics Data System (ADS)

    Alford, Jason

    2016-04-01

    We report on X-ray observations of the 5.54 s transient magnetar XTE J1810-197 using the XMM-Newton and Chandra observatories, analyzing new data from 2008 through 2014, and re-analyzing data from 2003 through 2007 with the benefit of these six years of new data. From the discovery of XTE J1810-197 during its 2003 outburst to the most recent 2014 observations, its 0.3-10 keV X-ray flux has declined by a factor of about 50 from 4.1E-11 to 8.1E-13 erg/cm^2/s. Its X-ray spectrum has now reached a steady state. Pulsations continue to be detected from a 0.3 keV thermal hot-spot that remains on the neutron star surface. The luminosity of this hot-spot exceeds XTE J1810-197's spin down luminosity, indicating continuing magnetar activity. We find that XTE J1810-197's X-ray spectrum is best described by a multiple component blackbody model in which the coldest 0.14 keV component likely originates from the entire neutron star surface, and the thermal hot-spot is, at different epochs, well described by an either one or two-component blackbody model. A 1.2 keV absorption line, possibly due to resonant proton scattering, is detected at all epochs. The X-ray flux of the hot spot decreased by approximately 20% between 2008 March and 2009 March, the same period during which XTE J1810-197 became radio quiet.

  16. Serial Millisecond Crystallography of Membrane Proteins.

    PubMed

    Jaeger, Kathrin; Dworkowski, Florian; Nogly, Przemyslaw; Milne, Christopher; Wang, Meitian; Standfuss, Joerg

    2016-01-01

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a powerful method to determine high-resolution structures of pharmaceutically relevant membrane proteins. Recently, the technology has been adapted to carry out serial millisecond crystallography (SMX) at synchrotron sources, where beamtime is more abundant. In an injector-based approach, crystals grown in lipidic cubic phase (LCP) or embedded in viscous medium are delivered directly into the unattenuated beam of a microfocus beamline. Pilot experiments show the application of microjet-based SMX for solving the structure of a membrane protein and compatibility of the method with de novo phasing. Planned synchrotron upgrades, faster detectors and software developments will go hand-in-hand with developments at free-electron lasers to provide a powerful methodology for solving structures from microcrystals at room temperature, ligand screening or crystal optimization for time-resolved studies with minimal or no radiation damage. PMID:27553240

  17. THE GREEN BANK TELESCOPE 350 MHz DRIFT-SCAN SURVEY. I. SURVEY OBSERVATIONS AND THE DISCOVERY OF 13 PULSARS

    SciTech Connect

    Boyles, J.; Lorimer, D. R.; McLaughlin, M. A.; Cardoso, R. F.; Lynch, R. S.; Kaspi, V. M.; Archibald, A.; Karako-Argaman, C.; Ransom, S. M.; Stairs, I. H.; Berndsen, A.; Cherry, A.; McPhee, C. A.; Hessels, J. W. T.; Kondratiev, V. I.; Van Leeuwen, J.; Epstein, C. R.; Pennucci, T.; Roberts, M. S. E.; Stovall, K.

    2013-02-15

    Over the summer of 2007, we obtained 1191 hr of 'drift-scan' pulsar search observations with the Green Bank Telescope at a radio frequency of 350 MHz. Here we describe the survey setup, search procedure, and the discovery and follow-up timing of 13 pulsars. Among the new discoveries, one (PSR J1623-0841) was discovered only through its single pulses, two (PSRs J1327-0755 and J1737-0814) are millisecond pulsars, and another (PSR J2222-0137) is a mildly recycled pulsar. PSR J1327-0755 is a 2.7 ms pulsar at a dispersion measure (DM) of 27.9 pc cm{sup -3} in an 8.7 day orbit with a minimum companion mass of 0.22 M {sub Sun }. PSR J1737-0814 is a 4.2 ms pulsar at a DM of 55.3 pc cm{sup -3} in a 79.3 day orbit with a minimum companion mass of 0.06 M {sub Sun }. PSR J2222-0137 is a 32.8 ms pulsar at a very low DM of 3.27 pc cm{sup -3} in a 2.4 day orbit with a minimum companion mass of 1.11 M {sub Sun }. It is most likely a white-dwarf-neutron-star system or an unusual low-eccentricity double neutron star system. Ten other pulsars discovered in this survey are reported in the companion paper Lynch et al.

  18. Shapiro effect as a possible cause of the low-frequency pulsar timing noise in globular clusters

    NASA Astrophysics Data System (ADS)

    Larchenkova, T. I.; Kopeikin, S. M.

    2006-01-01

    A prolonged timing of millisecond pulsars has revealed low-frequency uncorrelated (infrared) noise, presumably of astrophysical origin, in the pulse arrival time (PAT) residuals for some of them. Currently available pulsar timing methods allow the statistical parameters of this noise to be reliably measured by decomposing the PAT residual function into orthogonal Fourier harmonics. In most cases, pulsars in globular clusters show a low-frequency modulation of their rotational phase and spin rate. The relativistic time delay of the pulsar signal in the curved spacetime of randomly distributed and moving globular cluster stars (the Shapiro effect) is suggested as a possible cause of this modulation. Extremely important (from an astrophysical point of view) information about the structure of the globular cluster core, which is inaccessible to study by other observational methods, could be obtained by analyzing the spectral parameters of the low-frequency noise caused by the Shapiro effect and attributable to the random passages of stars near the line of sight to the pulsar. Given the smallness of the aberration corrections that arise from the nonstationarity of the gravitational field of the randomly distributed ensemble of stars under consideration, a formula is derived for the Shapiro effect for a pulsar in a globular cluster. The derived formula is used to calculate the autocorrelation function of the low-frequency pulsar noise, the slope of its power spectrum, and the behavior of the σz statistic that characterizes the spectral properties of this noise in the form of a time function. The Shapiro effect under discussion is shown to manifest itself for large impact parameters as a low-frequency noise of the pulsar spin rate with a spectral index of n = -1.8 that depends weakly on the specific model distribution of stars in the globular cluster. For small impact parameters, the spectral index of the noise is n = -1.5.

  19. The GMRT High Resolution Southern Sky Survey for Pulsars and Transients. I. Survey Description and Initial Discoveries

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, B.; Cooper, S.; Malenta, M.; Roy, J.; Chengalur, J.; Keith, M.; Kudale, S.; McLaughlin, M.; Ransom, S. M.; Ray, P. S.; Stappers, B. W.

    2016-02-01

    We are conducting a survey for pulsars and transients using the Giant Metrewave Radio Telescope (GMRT). The GMRT High Resolution Southern Sky (GHRSS) survey is an off-Galactic plane (| b| > 5) survey in the declination range -40° to -54° at 322 MHz. With the high time (up to 30.72 μs) and frequency (up to 0.016275 MHz) resolution observing modes, the 5σ detection limit is 0.5 mJy for a 2 ms pulsar with a 10% duty cycle at 322 MHz. The total GHRSS sky coverage of 2866 deg2 will result from 1953 pointings, each covering 1.8 deg2. The 10σ detection limit for a 5 ms transient burst is 1.6 Jy for the GHRSS survey. In addition, the GHRSS survey can reveal transient events like rotating radio transients or fast radio bursts. With 35% of the survey completed (i.e., 1000 deg2), we report the discovery of 10 pulsars, 1 of which is a millisecond pulsar (MSP), which is among the highest pulsar per square degree discovery rates for any off-Galactic plane survey. We re-detected 23 known in-beam pulsars. Utilizing the imaging capability of the GMRT, we also localized four of the GHRSS pulsars (including the MSP) in the gated image plane within ±10″. We demonstrated rapid convergence in pulsar timing with a more precise position than is possible with single-dish discoveries. We also show that we can localize the brightest transient sources with simultaneously obtained lower time resolution imaging data, demonstrating a technique that may have application in the Square Kilometre Array.

  20. Radio pulsar disk electrodynamics

    SciTech Connect

    Michel, F.C.

    1983-03-01

    We outline the macroscopic physics of a disk close to an isolated, magnetized, rotating neutron star. It seems likely that such systems are formed from time to time in the universe. The neutron star acts as a Faraday disk dynamo, and the disk acts as both a load and a neutral sheet, permitting the polar cap current to return to the neutron star and also splitting a dipolar magnetic field into two monopolar halves. Michel and Dessler have proposed that such systems are radio pulsars. The dominant energy loss is from the stellar wind torque (giving a deceleration index n = 7/3), and the next contribution is dissipation in the ''auroral'' zones, where the current returns to the star in a sheet about 5 cm thick. The latter is comparable to the observed radio luminosities and is in reasonable accord with the data. The disk itself may be a source of visible radiation comparable to that in pulsed radiofrequency emission. As the pulsar ages, the disk expands and narrows into a ring, the plausible consequence of which could be cessation of pulsed emission at periods of a few seconds.

  1. Tempo: Pulsar timing data analysis

    NASA Astrophysics Data System (ADS)

    Manchester, R.; Taylor, J.; Peters, W.; Weisberg, J.; Irwin, A.; Wex, N.; Stairs, I.; Demorest, P.; Nice, D.

    2015-09-01

    Tempo analyzes pulsar timing data. Pulse times of arrival (TOAs), pulsar model parameters, and coded instructions are read from one or more input files. The TOAs are fitted by a pulse timing model incorporating transformation to the solar-system barycenter, pulsar rotation and spin-down and, where necessary, one of several binary models. Program output includes parameter values and uncertainties, residual pulse arrival times, chi-squared statistics, and the covariance matrix of the model. In prediction mode, ephemerides of pulse phase behavior (in the form of polynomial expansions) are calculated from input timing models. Tempo is the basis for the Tempo2 (ascl:1210.015) code.

  2. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    PubMed

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves.

  3. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    PubMed

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves. PMID:26404832

  4. EVOLUTIONARY TRAJECTORIES OF ULTRACOMPACT 'BLACK WIDOW' PULSARS WITH VERY LOW MASS COMPANIONS

    SciTech Connect

    Benvenuto, O. G.; De Vito, M. A.

    2012-07-10

    The existence of millisecond pulsars with planet-mass companions in close orbits is challenging from the stellar evolution point of view. We calculate in detail the evolution of binary systems self-consistently, including mass transfer, evaporation, and irradiation of the donor by X-ray feedback, demonstrating the existence of a new evolutionary path leading to short periods and compact donors as required by the observations of PSR J1719-1438. We also point out the alternative of an exotic nature of the companion planet-mass star.

  5. Galvano-rotational effect induced by electroweak interactions in pulsars

    SciTech Connect

    Dvornikov, Maxim

    2015-05-21

    We study electroweakly interacting particles in rotating matter. The existence of the electric current along the axis of the matter rotation is predicted in this system. This new galvano-rotational effect is caused by the parity violating interaction between massless charged particles in the rotating matter. We start with the exact solution of the Dirac equation for a fermion involved in the electroweak interaction in the rotating frame. This equation includes the noninertial effects. Then, using the obtained solution, we derive the induced electric current which turns out to flow along the rotation axis. We study the possibility of the appearance of the galvano-rotational effect in dense matter of compact astrophysical objects. The particular example of neutron and hypothetical quark stars is discussed. It is shown that, using this effect, one can expect the generation of toroidal magnetic fields comparable with poloidal ones in old millisecond pulsars. We also briefly discuss the generation of the magnetic helicity in these stars. Finally we analyze the possibility to apply the galvano-rotational effect for the description of the asymmetric neutrino emission from a neutron star to explain pulsars kicks.

  6. Multi-wavelength studies of Redback and Black Widow pulsars

    NASA Astrophysics Data System (ADS)

    Mignani, Roberto; Salvetti, David; Pallanca, Cristina; Marelli, Martino; De Luca, Andrea; Belfiore, Andrea Mario

    2016-07-01

    The unexpected Fermi discovery of more than 70 gamma-ray milli-second pulsars (MSPs) outside globular clusters, spurred the scientific interest on these objects, and opened new horizons in MSP astronomy and on the study of the evolution of neutron stars in compact binary systems, including the ablation process of the companion star in the so-called Black Widow (BW) and Redback (RB) systems. It is thought that an important fraction of the tens of unidentified pulsar-like Fermi sources at high latitude are MSPs, yet unidentified, owing to their extremely elusive radio emission. As shown in a few recent cases, optical observations have been instrumental to spot binary MSP candidates through the discovery of periodic modulations in the flux of their putative companions. In this contribution, we report on the recent follow-ups of several candidate binary MSPs carried out with optical and X-ray facilities, e.g. GROND and XMM-Newton, Swift. This program already lead to identification of the Fermi source 3FGL 2036.6-5618 as candidate RB system, through the detection of periodic (orbital) modulation of its X/optical flux (Salvetti et al. 2015).

  7. Galvano-rotational effect induced by electroweak interactions in pulsars

    SciTech Connect

    Dvornikov, Maxim

    2015-05-01

    We study electroweakly interacting particles in rotating matter. The existence of the electric current along the axis of the matter rotation is predicted in this system. This new galvano-rotational effect is caused by the parity violating interaction between massless charged particles in the rotating matter. We start with the exact solution of the Dirac equation for a fermion involved in the electroweak interaction in the rotating frame. This equation includes the noninertial effects. Then, using the obtained solution, we derive the induced electric current which turns out to flow along the rotation axis. We study the possibility of the appearance of the galvano-rotational effect in dense matter of compact astrophysical objects. The particular example of neutron and hypothetical quark stars is discussed. It is shown that, using this effect, one can expect the generation of toroidal magnetic fields comparable with poloidal ones in old millisecond pulsars. We also briefly discuss the generation of the magnetic helicity in these stars. Finally we analyze the possibility to apply the galvano-rotational effect for the description of the asymmetric neutrino emission from a neutron star to explain pulsars kicks.

  8. PULSE BROADENING MEASUREMENTS FROM THE GALACTIC CENTER PULSAR J1745-2900

    SciTech Connect

    Spitler, L. G.; Lee, K. J.; Eatough, R. P.; Kramer, M.; Karuppusamy, R.; Desvignes, G.; Champion, D. J.; Falcke, H.; Bassa, C. G.; Lyne, A. G.; Stappers, B. W.; Cognard, I.; Cordes, J. M.

    2014-01-01

    We present temporal scattering measurements of single pulses and average profiles of PSR J1745-2900, a magnetar recently discovered only 3 arcsec away from Sagittarius A* (Sgr A*), from 1.2 to 18.95 GHz using the Effelsberg 100 m Radio Telescope, the Nançay Decimetric Radio Telescope, and the Jodrell Bank Lovell Telescope. Single pulse analysis shows that the integrated pulse profile above 2 GHz is dominated by pulse jitter, while below 2 GHz the pulse profile shape is dominated by scattering. This is the first object in the Galactic center (GC) with both pulse broadening and angular broadening measurements. We measure a pulse broadening time scale at 1 GHz of τ{sub 1GHz} = 1.3 ± 0.2 and pulse broadening spectral index of α = –3.8 ± 0.2, which is several orders of magnitude lower than predicted by the NE2001 model (Cordes and Lazio 2002). If this scattering time scale is representative of the GC as a whole, then previous surveys should have detected many pulsars. The lack of detections implies either our understanding of scattering in the GC is incomplete or there are fewer pulsars in the GC than previously predicted. Given that magnetars are a rare class of radio pulsar, there are likely many canonical and millisecond pulsars in the GC, and not surprisingly, scattering in the GC is spatially complex.

  9. Pulse Broadening Measurements from the Galactic Center Pulsar J1745-2900

    NASA Astrophysics Data System (ADS)

    Spitler, L. G.; Lee, K. J.; Eatough, R. P.; Kramer, M.; Karuppusamy, R.; Bassa, C. G.; Cognard, I.; Desvignes, G.; Lyne, A. G.; Stappers, B. W.; Bower, G. C.; Cordes, J. M.; Champion, D. J.; Falcke, H.

    2014-01-01

    We present temporal scattering measurements of single pulses and average profiles of PSR J1745-2900, a magnetar recently discovered only 3 arcsec away from Sagittarius A* (Sgr A*), from 1.2 to 18.95 GHz using the Effelsberg 100 m Radio Telescope, the Nançay Decimetric Radio Telescope, and the Jodrell Bank Lovell Telescope. Single pulse analysis shows that the integrated pulse profile above 2 GHz is dominated by pulse jitter, while below 2 GHz the pulse profile shape is dominated by scattering. This is the first object in the Galactic center (GC) with both pulse broadening and angular broadening measurements. We measure a pulse broadening time scale at 1 GHz of τ1GHz = 1.3 ± 0.2 and pulse broadening spectral index of α = -3.8 ± 0.2, which is several orders of magnitude lower than predicted by the NE2001 model (Cordes & Lazio 2002). If this scattering time scale is representative of the GC as a whole, then previous surveys should have detected many pulsars. The lack of detections implies either our understanding of scattering in the GC is incomplete or there are fewer pulsars in the GC than previously predicted. Given that magnetars are a rare class of radio pulsar, there are likely many canonical and millisecond pulsars in the GC, and not surprisingly, scattering in the GC is spatially complex.

  10. A test of general relativity from the three-dimensional orbital geometry of a binary pulsar.

    PubMed

    van Straten, W; Bailes, M; Britton, M; Kulkarni, S R; Anderson, S B; Manchester, R N; Sarkissian, J

    2001-07-12

    Binary pulsars provide an excellent system for testing general relativity because of their intrinsic rotational stability and the precision with which radio observations can be used to determine their orbital dynamics. Measurements of the rate of orbital decay of two pulsars have been shown to be consistent with the emission of gravitational waves as predicted by general relativity, but independent verification was not possible. Such verification can in principle be obtained by determining the orbital inclination in a binary pulsar system using only classical geometrical constraints. This would permit a measurement of the expected retardation of the pulse signal arising from the general relativistic curvature of space-time in the vicinity of the companion object (the 'Shapiro delay'). Here we report high-precision radio observations of the binary millisecond pulsar PSR J0437-4715, which establish the three-dimensional structure of its orbit. We see the Shapiro delay predicted by general relativity, and we determine the mass of the neutron star and its white dwarf companion. The determination of such masses is necessary in order to understand the origin and evolution of neutron stars. PMID:11449265

  11. A test of general relativity from the three-dimensional orbital geometry of a binary pulsar.

    PubMed

    van Straten, W; Bailes, M; Britton, M; Kulkarni, S R; Anderson, S B; Manchester, R N; Sarkissian, J

    2001-07-12

    Binary pulsars provide an excellent system for testing general relativity because of their intrinsic rotational stability and the precision with which radio observations can be used to determine their orbital dynamics. Measurements of the rate of orbital decay of two pulsars have been shown to be consistent with the emission of gravitational waves as predicted by general relativity, but independent verification was not possible. Such verification can in principle be obtained by determining the orbital inclination in a binary pulsar system using only classical geometrical constraints. This would permit a measurement of the expected retardation of the pulse signal arising from the general relativistic curvature of space-time in the vicinity of the companion object (the 'Shapiro delay'). Here we report high-precision radio observations of the binary millisecond pulsar PSR J0437-4715, which establish the three-dimensional structure of its orbit. We see the Shapiro delay predicted by general relativity, and we determine the mass of the neutron star and its white dwarf companion. The determination of such masses is necessary in order to understand the origin and evolution of neutron stars.

  12. Fermi's New Pulsar Detection Technique

    NASA Video Gallery

    To locate a pulsar in Fermi LAT data requires knowledge of the object’s sky position, its pulse period, and how the pulse rate slows over time. Computers check many different combinations of posi...

  13. Pulsar electrodynamics: an unsolved problem

    NASA Astrophysics Data System (ADS)

    Melrose, D. B.; Yuen, R.

    2016-04-01

    > Pulsar electrodynamics is reviewed emphasizing the role of the inductive electric field in an oblique rotator and the incomplete screening of its parallel component by charges, leaving `gaps' with \\Vert \

  14. FSSC Science Tools: Pulsar Analysis

    NASA Technical Reports Server (NTRS)

    Thompson, Dave

    2010-01-01

    This slide presentation reviews the typical pulsar analysis, giving tips for screening of the data, the use of time series analysis, and utility tools. Specific information about analyzing Vela data is reviewed.

  15. Discovery of a 1.69 ms radio pulsar associated with the X-ray binary XSS J12270-4859

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Benjamin; Chengalur, Jayaram N.; Deneva, Julia S.; Camilo, Fernando M.

    2015-01-01

    XSS J12270-4859 is an X-ray binary associated with the Fermi LAT gamma-ray source 1FGL J1227.9-4852 (Hill et al. 2011). In 2012 December, the source underwent a transition where the X-ray and optical luminosity dropped suddenly and spectral signatures of an accretion disk disappeared (Bassa et al. 2014). We report the discovery of a 1.69 millisecond pulsar using the Giant Metrewave Radio Telescope at 607 MHz associated with this source, confirming that system is now an active radio millisecond pulsar. We report on radio timing observations of the source with the GMRT and Parkes Telescope that allow precise determination of the orbital parameters of the system. In addition, using simultaneous radio imaging and timing observations with the GMRT, we are able to study the eclipse behavior.

  16. The International Pulsar Timing Array: First data release

    NASA Astrophysics Data System (ADS)

    Verbiest, J. P. W.; Lentati, L.; Hobbs, G.; van Haasteren, R.; Demorest, P. B.; Janssen, G. H.; Wang, J.-B.; Desvignes, G.; Caballero, R. N.; Keith, M. J.; Champion, D. J.; Arzoumanian, Z.; Babak, S.; Bassa, C. G.; Bhat, N. D. R.; Brazier, A.; Brem, P.; Burgay, M.; Burke-Spolaor, S.; Chamberlin, S. J.; Chatterjee, S.; Christy, B.; Cognard, I.; Cordes, J. M.; Dai, S.; Dolch, T.; Ellis, J. A.; Ferdman, R. D.; Fonseca, E.; Gair, J. R.; Garver-Daniels, N. E.; Gentile, P.; Gonzalez, M. E.; Graikou, E.; Guillemot, L.; Hessels, J. W. T.; Jones, G.; Karuppusamy, R.; Kerr, M.; Kramer, M.; Lam, M. T.; Lasky, P. D.; Lassus, A.; Lazarus, P.; Lazio, T. J. W.; Lee, K. J.; Levin, L.; Liu, K.; Lynch, R. S.; Lyne, A. G.; Mckee, J.; McLaughlin, M. A.; McWilliams, S. T.; Madison, D. R.; Manchester, R. N.; Mingarelli, C. M. F.; Nice, D. J.; Osłowski, S.; Palliyaguru, N. T.; Pennucci, T. T.; Perera, B. B. P.; Perrodin, D.; Possenti, A.; Petiteau, A.; Ransom, S. M.; Reardon, D.; Rosado, P. A.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Shannon, R. M.; Siemens, X.; Simon, J.; Smits, R.; Spiewak, R.; Stairs, I. H.; Stappers, B. W.; Stinebring, D. R.; Stovall, K.; Swiggum, J. K.; Taylor, S. R.; Theureau, G.; Tiburzi, C.; Toomey, L.; Vallisneri, M.; van Straten, W.; Vecchio, A.; Wang, Y.; Wen, L.; You, X. P.; Zhu, W. W.; Zhu, X.-J.

    2016-05-01

    The highly stable spin of neutron stars can be exploited for a variety of (astro)physical investigations. In particular, arrays of pulsars with rotational periods of the order of milliseconds can be used to detect correlated signals such as those caused by gravitational waves. Three such `pulsar timing arrays' (PTAs) have been set up around the world over the past decades and collectively form the `International' PTA (IPTA). In this paper, we describe the first joint analysis of the data from the three regional PTAs, i.e. of the first IPTA data set. We describe the available PTA data, the approach presently followed for its combination and suggest improvements for future PTA research. Particular attention is paid to subtle details (such as underestimation of measurement uncertainty and long-period noise) that have often been ignored but which become important in this unprecedentedly large and inhomogeneous data set. We identify and describe in detail several factors that complicate IPTA research and provide recommendations for future pulsar timing efforts. The first IPTA data release presented here (and available online) is used to demonstrate the IPTA's potential of improving upon gravitational-wave limits placed by individual PTAs by a factor of ˜2 and provides a 2σ limit on the dimensionless amplitude of a stochastic gravitational-wave background of 1.7 × 10-15 at a frequency of 1 yr-1. This is 1.7 times less constraining than the limit placed by Shannon et al., due mostly to the more recent, high-quality data they used.

  17. Pulsar Observatory for Students (POS)

    NASA Astrophysics Data System (ADS)

    Joshi, Bhal Chandra; Manoharan, P. K.; Gopakumar, A.; Mitra, D.; Bagchi, Joydeep; Saikia, D. J.

    2012-07-01

    A new program, to initiate motivated undergraduate students to the methodology of pulsar astronomy in particular and radio astronomy in general, is being launched at the Ooty Radio Telescope (ORT). The ORT is a 530 m X 30 m cylindrical radio telescope operating at 325 MHz, having an equatorial mount. Its equatorial mount allows modestly trained students to make pulsar observations without any substantial help from the observatory. Due to its large collecting area, it is a sensitive instrument for pulsar astronomy, capable of detecting a large number of pulsars with short observation time. The program consists of biannual workshops that will introduce scores of students to basics of radio-astronomy and pulsars. It will also train them in the use of the ORT as well as expose them to the future prospects and excitements in the field. The second leg of the program involves live ORT observations by these trained students during various academic breaks. There is a possibility for a follow up program of highly motivated students, selected from this program, to pursue projects of their interest from the data obtained in these sensitive observations. The long term aim of the program is to enlarge the pulsar astronomy community in the country. The presentation will highlight the main features of this program and describe the experience drawn from such programs.

  18. Millisecond accuracy video display using OpenGL under Linux.

    PubMed

    Stewart, Neil

    2006-02-01

    To measure people's reaction times to the nearest millisecond, it is necessary to know exactly when a stimulus is displayed. This article describes how to display stimuli with millisecond accuracy on a normal CRT monitor, using a PC running Linux. A simple C program is presented to illustrate how this may be done within X Windows using the OpenGL rendering system. A test of this system is reported that demonstrates that stimuli may be consistently displayed with millisecond accuracy. An algorithm is presented that allows the exact time of stimulus presentation to be deduced, even if there are relatively large errors in measuring the display time.

  19. Pulsars In The Headlines

    NASA Astrophysics Data System (ADS)

    Del Puerto, C.

    1967 was the year of the so-called “war of the six days” or “third Arab Israeli war”, the year of the Che Guevara's death in Bolivia, the year of the military coup in Greece and, in medicine, the year of the first human heart transplant. Moreover, the signing of the international agreement on the use of space with peaceful means and the crash of the Russian shuttle Soyuz-1, with Cosmonaut Vladimir Kamarov on board also happened that year. Likewise, Spanish writer and professor of journalists, José Azorín, passed away. However, here we are interested in 1967 because it was the year of the detection of pulsars, which astronomers initially confused with signals from extraterrestrials or Little Green Men. Nowadays, they are still present in the headlines.

  20. Fermi Finds Youthful Pulsar Among Ancient Stars

    NASA Video Gallery

    In three years, NASA's Fermi has detected more than 100 gamma-ray pulsars, but something new has appeared. Among a type of pulsar with ages typically numbering a billion years or more, Fermi has fo...

  1. Development of the solar array deployment and drive system for the XTE spacecraft

    NASA Technical Reports Server (NTRS)

    Farley, Rodger; Ngo, Son

    1995-01-01

    The X-ray Timing Explorer (XTE) spacecraft is a NASA science low-earth orbit explorer-class satellite to be launched in 1995, and is an in-house Goddard Space Flight Center (GSFC) project. It has two deployable aluminum honeycomb solar array wings with each wing being articulated by a single axis solar array drive assembly. This paper will address the design, the qualification testing, and the development problems as they surfaced of the Solar Array Deployment and Drive System.

  2. A New Standard Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-01

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  3. TOWARD A REALISTIC PULSAR MAGNETOSPHERE

    SciTech Connect

    Kalapotharakos, Constantinos; Kazanas, Demosthenes; Harding, Alice

    2012-04-10

    We present the magnetic and electric field structures and the currents and charge densities of pulsar magnetospheres that do not obey the ideal condition, E {center_dot} B = 0. Since the acceleration of particles and the production of radiation require the presence of an electric field component parallel to the magnetic field, E{sub ||}, the structure of non-ideal pulsar magnetospheres is intimately related to the production of pulsar radiation. Therefore, knowledge of the structure of non-ideal pulsar magnetospheres is important because their comparison (including models for the production of radiation) with observations will delineate the physics and the parameters underlying the pulsar radiation problem. We implement a variety of prescriptions that support non-zero values for E{sub ||} and explore their effects on the structure of the resulting magnetospheres. We produce families of solutions that span the entire range between the vacuum and the (ideal) force-free electrodynamic solutions. We also compute the amount of dissipation as a fraction of the Poynting flux for pulsars of different angles between the rotation and magnetic axes and conclude that this is at most 20%-40% (depending on the non-ideal prescription) in the aligned rotator and 10% in the perpendicular one. We present also the limiting solutions with the property J = {rho}c and discuss their possible implication on the determination of the 'on/off' states of the intermittent pulsars. Finally, we find that solutions with values of J greater than those needed to null E{sub ||} locally produce oscillations, potentially observable in the data.

  4. A new standard pulsar magnetosphere

    SciTech Connect

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-20

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  5. Towards a Realistic Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Kalapotharakos, Constantinos; Kazanas, Demosthenes; Harding, Alice; Contopoulos, Ioannis

    2012-01-01

    We present the magnetic and electric field structures as well as the currents ami charge densities of pulsar magnetospberes which do not obey the ideal condition, E(raised dot) B = O. Since the acceleration of particles and the production of radiation requires the presence of an electric field component parallel to the magnetic field, E(sub ll) the structure of non-Ideal pulsar magnetospheres is intimately related to the production of pulsar radiation. Therefore, knowledge of the structure of non-Ideal pulsar maglletospheres is important because their comparison (including models for t he production of radiation) with observations will delineate the physics and the parameters underlying the pulsar radiation problem. We implement a variety of prescriptions that support nonzero values for E(sub ll) and explore their effects on the structure of the resulting magnetospheres. We produce families of solutions that span the entire range between the vacuum and the (ideal) Force-Free Electrodynamic solutions. We also compute the amount of dissipation as a fraction of the Poynting flux for pulsars of different angles between the rotation and magnetic axes and conclude that tltis is at most 20-40% (depending on t he non-ideal prescription) in the aligned rotator and 10% in the perpendicular one. We present also the limiting solutions with the property J = pc and discuss their possible implicatioll on the determination of the "on/ off" states of the intermittent pulsars. Finally, we find that solutions with values of J greater than those needed to null E(sub ll) locally produce oscillations, potentially observable in the data.

  6. What brakes the Crab pulsar?

    NASA Astrophysics Data System (ADS)

    Čadež, A.; Zampieri, L.; Barbieri, C.; Calvani, M.; Naletto, G.; Barbieri, M.; Ponikvar, D.

    2016-03-01

    Context. Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio timing solution. Aims: The aim of this paper is to find a global mathematical description of Crab pulsar's phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. Methods: We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. Results: From our analysis, we demonstrate that the power law index undergoes "instantaneous" changes at the time of observed jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6. Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns during the above period, in which the pulsar has made more than 2 × 1010 turns. Conclusions: Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar with the surrounding environment.

  7. Sampling the Radio Transient Universe: Studies of Pulsars and the Search for Extraterrestrial Intelligence

    NASA Astrophysics Data System (ADS)

    Chennamangalam, Jayanth

    The transient radio universe is a relatively unexplored area of astronomy, offering a variety of phenomena, from solar and Jovian bursts, to flare stars, pulsars, and bursts of Galactic and potentially even cosmological origin. Among these, perhaps the most widely studied radio transients, pulsars are fast-spinning neutron stars that emit radio beams from their magnetic poles. In spite of over 40 years of research on pulsars, we have more questions than answers on these exotic compact objects, chief among them the nature of their emission mechanism. Nevertheless, the wealth of phenomena exhibited by pulsars make them one of the most useful astrophysical tools. With their high densities, pulsars are probes of the nature of ultra-dense matter. Characterized by their high timing stability, pulsars can be used to verify the predictions of general relativity, discover planets around them, study bodies in the solar system, and even serve as an interplanetary (and possibly some day, interstellar) navigation aid. Pulsars are also used to study the nature of the interstellar medium, much like a flashlight illuminating airborne dust in a dark room. Studies of pulsars in the Galactic center can help answer questions about the massive black hole in the region and the star formation history in its vicinity. Millisecond pulsars in globular clusters are long-lived tracers of their progenitors, low-mass X-ray binaries, and can be used to study the dynamical history of those clusters. Another source of interest in radio transient astronomy is the hitherto undetected engineered signal from extraterrestrial intelligence. The Search for Extraterrestrial Intelligence (SETI) is an ongoing attempt at discovering the presence of technological life elsewhere in the Galaxy. In this work, I present my forays into two aspects of the study of the radio transient universe---pulsars and SETI. Firstly, I describe my work on the luminosity function and population size of pulsars in the globular

  8. Detection of gravitational waves through observations of a group of pulsars

    NASA Astrophysics Data System (ADS)

    Rodin, A. E.

    2011-02-01

    We suggest a new approach to the detection of gravitational waves using observations of a group of millisecond pulsars. In contrast to the usual method, based on increasing the accuracy of the arrival times of pulses by excluding possible distorting factors, our method supposes that the additive phase noise that is inevitably present even in the most accurate observational data has various spectral components, which have characteristic amplitudes and begin to appear on different time scales. We use the “Caterpillar” (Singular Spectral Analysis, SSA) method to decompose the signal into its components. Our initial data are the residuals of the pulse arrival times for six millisecond pulsars. We constructed the angular correlation function for components of the decomposition of a given number, whose theoretical form for the case of an isotropic and homogeneous gravitational-wave background is known. The individual decomposition components show a statistically significant agreement with the theoretical expectations (correlation coefficient ρ = 0.92 ± 0.10).

  9. Fermi variability study of the candidate pulsar binary 2FGL J0523.3–2530

    SciTech Connect

    Xing, Yi; Wang, Zhongxiang; Ng, C.-Y.

    2014-11-01

    The Fermi source 2FGL J0523.3–2530 has recently been identified as a candidate millisecond pulsar binary with an orbital period of 16.5 hr. We have carried out detailed studies of the source's emission properties by analyzing data taken with the Fermi Large Area Telescope in the 0.2-300 GeV energy range. Long-term, yearly variability from the source has been found, with a factor of four flux variations in 1-300 GeV. From spectral analysis, we find an extra spectral component at 2-3 GeV that causes the source brightening. While no orbital modulations have been found from the Fermi data over the whole period of 2008-2014, orbital modulation in the source's >2 GeV emission is detected during the last 1.5 yr of the Fermi observation. Our results support the millisecond pulsar binary nature of 2FGL J0523.3–2530. Multi-wavelength observations of the source are warranted in order to find any correlated flux variations and thus help determine the origin of the long-term variability, which currently is not understood.

  10. Pulsar Astrometry with the VLBA

    NASA Astrophysics Data System (ADS)

    Brisken, W.

    2005-12-01

    Many features of the Very Long Baseline Array (VLBA) contrive to make it the best telescope for pulsar astrometry. The measured proper motions and parallaxes allow distances and transverse velocities to be determined. These in turn provide clues to questions spanning nuclear astrophysics on scales of 10-23 m to the distribution of gas in the Galaxy on scales of 1020 m. Three pulsars are discussed in this paper. Among pulsars, B0950+08 has the most accurate VLBI-determined parallax. B1133+16 has a very high transverse velocity; its radial velocity is discussed. B0656+14 is a thermally detected neutron star. Determination of its distance has allowed its radius to be measured and its association with the Monogem ring supernova remnant (SNR) to be established, allowing a long-standing question in cosmic ray astrophysics to be addressed.

  11. Interplanetary GPS using pulsar signals

    NASA Astrophysics Data System (ADS)

    Becker, W.; Bernhardt, M. G.; Jessner, A.

    2015-11-01

    An external reference system suitable for deep space navigation can be defined by fast spinning and strongly magnetized neutron stars, called pulsars. Their beamed periodic signals have timing stabilities comparable to atomic clocks and provide characteristic temporal signatures that can be used as natural navigation beacons, quite similar to the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location, the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. The unique properties of pulsars make clear already today that such a navigation system will have its application in future astronautics. In this paper we describe the basic principle of spacecraft navigation using pulsars and report on the current development status of this novel technology.

  12. PINT, a New Pulsar Timing Software

    NASA Astrophysics Data System (ADS)

    Luo, Jing; Jenet, Fredrick A.; Ransom, Scott M.; Demorest, Paul; Van Haasteren, Rutger; Archibald, Anne

    2015-01-01

    We are presenting a new pulsar timing software PINT. The current pulsar timing group are heavily depending on Tempo/Tempo2, a package for analysis pulsar data. However, for a high accuracy pulsar timing related project, such as pulsar timing for gravitational waves, an alternative software is needed for the purpose of examing the results. We are developing a Tempo independent software with a different structure. Different modules is designed to be more isolated and easier to be expanded. Instead of C, we are using Python as our programming language for the advantage of flexibility and powerful docstring. Here, we are presenting the detailed design and the first result of the software.

  13. Crustal entrainment and pulsar glitches.

    PubMed

    Chamel, N

    2013-01-01

    Large pulsar frequency glitches are generally interpreted as sudden transfers of angular momentum between the neutron superfluid permeating the inner crust and the rest of the star. Despite the absence of viscous drag, the neutron superfluid is strongly coupled to the crust due to nondissipative entrainment effects. These effects are shown to severely limit the maximum amount of angular momentum that can possibly be transferred during glitches. In particular, it is found that the glitches observed in the Vela pulsar require an additional reservoir of angular momentum.

  14. Crustal entrainment and pulsar glitches.

    PubMed

    Chamel, N

    2013-01-01

    Large pulsar frequency glitches are generally interpreted as sudden transfers of angular momentum between the neutron superfluid permeating the inner crust and the rest of the star. Despite the absence of viscous drag, the neutron superfluid is strongly coupled to the crust due to nondissipative entrainment effects. These effects are shown to severely limit the maximum amount of angular momentum that can possibly be transferred during glitches. In particular, it is found that the glitches observed in the Vela pulsar require an additional reservoir of angular momentum. PMID:23383772

  15. Outburst of the 2 s Anomalous X-ray Pulsar 1E 1547.0-5408

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Gotthelf, E. V.; Camilo, F.; Reynolds, J.; Ransom, S. M.

    2008-01-01

    Following our discovery of radio pulsations from the newly recognized anomalous X-ray pulsar (AXP) 1E 1547.0-5408, we initiated X-ray monitoring with the Swift X-ray telescope and obtained a single target-of-opportunity observation with the Newton X-ray Multi-Mirror Mission (XMM-Newton). In comparison with its historic minimum flux of 3 x 10(exp -l3)ergs/sq cm/s, the source was found to be in a record high state, f(sub x)(1-8 keV) = 5 x 10(exp -12)ergs/sq cm/s, or L(sub x) = 1.7 x 10(exp 35)(d/9 kpc )(sup 2)ergs/s, and declining by 25% in 1 month. Extrapolating the decay, we bound the total energy in this outburst to 1042 ergs < E < ergs. The spectra (fitted with a Comptonized blackbody) show that an increase in the temperature and area of a hot region, to 0.5 keV and -16% of the surface area of the neutron star, respectively, are primarily responsible for its increase in luminosity. The energy, spectrum, and timescale of decay are consistent with a deep crustal heating event, similar to an interpretation of the X-ray turn-on of the transient AXP XTE J18 10- 197. Simultaneous with the 4.6 hr ATdA4-Newton observation, we observed at 6.4 GHz with the Parkes telescope, measuring the phase relationship of the radio and X-ray pulse. The X-ray pulsed fraction of 1E 1547.0-5408 is only approx. 7 %, while its radio pulse is relatively broad for such a slow pulsar, which may indicate a nearly aligned rotator. As also inferred from the transient behavior of XTE J18 10-197, the only other AXP known to emit in the radio, the magnetic field rearrangement responsible for this X-ray outburst of 1E 1547.0-5408 is probably the cause of its radio turn-on.

  16. White Dwarf Pulsars

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph

    1998-01-01

    Work on NAG5-3288 ("White Dwarf Pulsars") has been fully integrated with the identically titled project NAG5-4734. The final report below is the same, since the data analysis and interpretative work are integrated, as are the resulting (previous and in-pipeline) publications. The proposal was designed to study pulse and orbital modulations in candidate DQ Herculis stars. Data on 5 stars were obtained. The best results were obtained on YY Draconis, which exhibited a strongly pulsed hard X-ray flux, and even suggested a transition between one-pole and two-pole emission during the course of the observation. This result is being readied for inclusion in a comprehensive study of YY Draconis. A strong pulsation appeared to be present also in H0857-242, but with a period of - 50 minutes, confusion with the first harmonic of the satellite's orbital frequency is possible. So that result is uncertain and is "on ice". A negative result was obtained on 4UO608-49 (V347 Pup), suggesting either that the X-ray identification is incorrect, or that the source is very transient. Finally, data was obtained on V1432 Aql and WZ Sge, respectively the slowest and fastest of these stars. Combined with the ASCA data, the high-energy data demonstrates the latter to contain a white dwarf rotating with P = 27.87 s (Patterson et al. 1998, PASP, 110, 403). Optical photometry contemporaneous with the X-ray data was obtained of V1432 Aql, in order to study the variations in the eclipse waveform. As anticipated, the width and centroid of the eclipse appeared to vary with the 50-day "supercycle".

  17. Multi-messenger Tests for Fast-spinning Newborn Pulsars Embedded in Stripped-envelope Supernovae

    NASA Astrophysics Data System (ADS)

    Kashiyama, Kazumi; Murase, Kohta; Bartos, Imre; Kiuchi, Kenta; Margutti, Raffaella

    2016-02-01

    Fast-spinning strongly magnetized newborn neutron stars (NSs), including nascent magnetars, are popularly implemented as the engine of luminous stellar explosions. Here, we consider the scenario that they power various stripped-envelope (SE) supernovae (SNe), not only superluminous SNe Ic but also broad-line (BL) SNe Ibc and possibly some ordinary SNe Ibc. This scenario is also motivated by the hypothesis that Galactic magnetars largely originate from fast-spinning NSs as remnants of SE SNe. By consistently modeling the energy injection from magnetized wind and {}56{Ni} decay, we show that proto-NSs with ≳ 10 {ms} rotation and a poloidal magnetic field of {B}{{dip}}≳ 5× {10}14 {{G}} can be harbored in ordinary SNe Ibc. On the other hand, millisecond proto-NSs can solely power BL SNe Ibc if they are born with {B}{{dip}}≳ 5× {10}14 {{G}} and superluminous SNe Ic with {B}{{dip}}≳ {10}13 {{G}}. Then, we study how multi-messenger emission can be used to discriminate such pulsar-driven SN models from other competitive scenarios. First, high-energy X-ray and gamma-ray emission from embryonic pulsar wind nebulae can probe the underlying newborn pulsar. Follow-up observations of SE SNe using NuSTAR ∼ 50{--}100 {days} after the explosion are strongly encouraged for nearby objects. We also discuss possible effects of gravitational waves (GWs) on the spin-down of proto-NSs. If millisecond proto-NSs with {B}{{dip}}\\lt {{a}} {few}× {10}13 {{G}} emit GWs through, e.g., non-axisymmetric rotation deformed by the inner toroidal fields of {B}{{t}}≳ {10}16 {{G}}, the GW signal can be detectable from ordinary SNe Ibc in the Virgo cluster by Advanced LIGO, Advanced Virgo, and KAGRA.

  18. Braking Index of Isolated Pulsars

    NASA Astrophysics Data System (ADS)

    Hamil, Oliver; Stone, Jirina; Urbanec, Martin; Urbancova, Gabriela

    2015-04-01

    Isolated pulsars are rotating neutron stars with accurately measured angular velocities Ω, and their time derivatives which show unambiguously that the pulsars are slowing down. The exact mechanism of the spin-down is a question of debate in detail, but the commonly accepted view is that it arises through emission of magnetic dipole radiation (MDR). The energy loss by a rotating pulsar is proportional to a model dependent power of Ω. This relation leads to the power law Ω˙ = -K Ωn where n is called the braking index, equal to the ratio (ΩΩ̈)/ Ω˙2 . The simple MDR model predicts the value of n = 3, but observations of isolated pulsars provide rather precise values of n, individually accurate to a few percent or better, in the range 1 < n < 2.8, which is consistently less than the predictions of the MDR model. In this work, we study the dynamical limits of the MDR model as a function of angular velocity. The effects of variation in the rest mass, the moment of inertia, and the dependence on a realistic Equation of State of the rotating star are considered. Furthermore, we introduce a simulated superfluid effect by which the angular momentum of the core is eliminated from the calculation.

  19. RESISTIVE SOLUTIONS FOR PULSAR MAGNETOSPHERES

    SciTech Connect

    Li, Jason; Spitkovsky, Anatoly; Tchekhovskoy, Alexander

    2012-02-10

    The current state of the art in the modeling of pulsar magnetospheres invokes either the vacuum or force-free limits for the magnetospheric plasma. Neither of these limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. To better understand the structure of such magnetospheres, we combine accelerating fields and force-free solutions by considering models of magnetospheres filled with resistive plasma. We formulate Ohm's law in the minimal velocity fluid frame and construct a family of resistive solutions that smoothly bridges the gap between the vacuum and the force-free magnetosphere solutions. The spin-down luminosity, open field line potential drop, and the fraction of open field lines all transition between the vacuum and force-free values as the plasma conductivity varies from zero to infinity. For fixed inclination angle, we find that the spin-down luminosity depends linearly on the open field line potential drop. We consider the implications of our resistive solutions for the spin-down of intermittent pulsars and sub-pulse drift phenomena in radio pulsars.

  20. X-ray Monitoring of the Pulsar PSR B1259-63

    NASA Astrophysics Data System (ADS)

    Huang, H. H.; Becker, W.

    2006-08-01

    PSR B1259-63, a rotation-powered radio pulsar with a ~48 millisecond period, is in a highly eccentric (e~0.87) 3.4 year orbit around a massive Be star SS 2883. We report the results of the XMM-Newton observations performed between 2001 and 2004. Combining the XMM-Newton observations with the previous results from ASCA, we found that the best-fit power-law models in 1.0-10.0 keV energy band show long term variations in the photon indices from ~1.11 to ~1.95. The X-ray flux is observed to increase by a factor of > 10 at perisatron to apastron. No X-ray pulsation at the pulsar's spin period was found in any observations so far. A model invoking the interaction between the pulsar and the stellar wind is likely to explain the observed orbital phase-dependent time variability in the X-ray flux and spectrum.

  1. Optical pulsar in the Large Magellanic Cloud remnant 0540-69. 3

    SciTech Connect

    Middleditch, J.; Pennypacker, C.R.

    1984-01-01

    We have detected pulsed optical emission from the Large Magellanic Cloud (LMC) X-ray pulsar PSR 0540-693 (Seward et al. 1984). The pulsed emission has a time averaged magnitude of approximately 22.7. The X-ray pulsar was discovered in the LMC remnant, 0540-69.3 as a pulse repetition period of approx. 50 milliseconds (ms) in Einstein Obsrvatory data (Seward et al. 1984). Earlier, Clark et al. (1982) had noted that this remnant resembles the Crab Nebula because of the X-ray power law spectrum, and suggested that the nebular emission was synchrotron radiation powered by a central pulsar. After the announcement of X-ray pulsed emission, Chanan et al. (1984) measured the broad optical band properties of the nebula and found evidence for synchrotron emission. They reported that the 4.5 arc second continuum emission remnant has only a tenth the luminosity of the Crab Nebula. We have recorded broad-band optical time-series data at 1 ms intervals with the 4-m and 1.5-m Cerro To