Achieving behavioral control with millisecond resolution in a high-level programming environment
Asaad, Wael F.; Eskandar, Emad N.
2008-01-01
The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-level software running on a limited range of hardware. Despite the availability of software that allows the coding of behavioral tasks in high-level programming environments, many researchers are still reluctant to trust the temporal accuracy and resolution of programs running in such environments, especially when they run atop non-real-time operating systems. Thus, the creation of behavioral paradigms has been slowed by the intricacy of the coding required and their dissemination across labs has been hampered by the various types of hardware needed. However, we demonstrate here that, when proper measures are taken to handle the various sources of temporal error, accuracy can be achieved at the one millisecond time-scale that is relevant for the alignment of behavioral and neural events. PMID:18606188
Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes
Costa, Tommaso; Cauda, Franco; Crini, Manuella; Tatu, Mona-Karina; Celeghin, Alessia; de Gelder, Beatrice
2014-01-01
The different temporal dynamics of emotions are critical to understand their evolutionary role in the regulation of interactions with the surrounding environment. Here, we investigated the temporal dynamics underlying the perception of four basic emotions from complex scenes varying in valence and arousal (fear, disgust, happiness and sadness) with the millisecond time resolution of Electroencephalography (EEG). Event-related potentials were computed and each emotion showed a specific temporal profile, as revealed by distinct time segments of significant differences from the neutral scenes. Fear perception elicited significant activity at the earliest time segments, followed by disgust, happiness and sadness. Moreover, fear, disgust and happiness were characterized by two time segments of significant activity, whereas sadness showed only one long-latency time segment of activity. Multidimensional scaling was used to assess the correspondence between neural temporal dynamics and the subjective experience elicited by the four emotions in a subsequent behavioral task. We found a high coherence between these two classes of data, indicating that psychological categories defining emotions have a close correspondence at the brain level in terms of neural temporal dynamics. Finally, we localized the brain regions of time-dependent activity for each emotion and time segment with the low-resolution brain electromagnetic tomography. Fear and disgust showed widely distributed activations, predominantly in the right hemisphere. Happiness activated a number of areas mostly in the left hemisphere, whereas sadness showed a limited number of active areas at late latency. The present findings indicate that the neural signature of basic emotions can emerge as the byproduct of dynamic spatiotemporal brain networks as investigated with millisecond-range resolution, rather than in time-independent areas involved uniquely in the processing one specific emotion. PMID:24214921
High resolution measurements of the low state of Cyg X-1
NASA Technical Reports Server (NTRS)
Rothschild, R. E.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.
1976-01-01
Cyg X-1 was observed on two occasions separated by a year by the same X-ray rocket payload. High resolution temporal and spectral data reveal that Cyg X-1 was essentially unchanged in these two observations a year apart, with bursts of millisecond duration observed in the earlier flight and also, observed in the second. Analysis of these bursts has failed to reveal any internal temporal structure, either luminous or spectral. The shot noise character of temporal fluctuations on timescales approximately 1 second can be explained by the presence of exponential pulses with a fraction of a second time constant and a rate near 8 sec/1. The possible connection of these pulses with the bursts is examined.
Temporally precise single-cell resolution optogenetics
Shemesh, Or A.; Tanese, Dimitrii; Zampini, Valeria; Linghu, Changyang; Piatkevich, Kiryl; Ronzitti, Emiliano; Papagiakoumou, Eirini; Boyden, Edward S.; Emiliani, Valentina
2017-01-01
Optogenetic control of individual neurons with high temporal precision, within intact mammalian brain circuitry, would enable powerful explorations of how neural circuits operate. Two-photon computer generated holography enables precise sculpting of light, and could in principle enable simultaneous illumination of many neurons in a network, with the requisite temporal precision to simulate accurate neural codes. We designed a high efficacy soma-targeted opsin, finding that fusing the N-terminal 150 residues of kainate receptor subunit 2 (KA2) to the recently discovered high-photocurrent channelrhodopsin CoChR restricted expression of this opsin primarily to the cell body of mammalian cortical neurons. In combination with two-photon holographic stimulation, we found that this somatic CoChR (soCoChR) enabled photostimulation of individual cells in intact cortical circuits with single cell resolution and <1 millisecond temporal precision, and use soCoChR to perform connectivity mapping on intact cortical circuits. PMID:29184208
Huang, Zhifeng; Bartels, Matthias; Xu, Rui; Osterhoff, Markus; Kalbfleisch, Sebastian; Sprung, Michael; Suzuki, Akihiro; Takahashi, Yukio; Blanton, Thomas N; Salditt, Tim; Miao, Jianwei
2015-07-01
In situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reactions and crystal growth to grain boundary dynamics. A major limitation of in situ XRD and TEM is a compromise that has to be made between spatial and temporal resolution. Here, we report the development of in situ X-ray nanodiffraction to measure high-resolution diffraction patterns from single grains with up to 5 ms temporal resolution. We observed, for the first time, grain rotation and lattice deformation in chemical reactions induced by X-ray photons: Br(-) + hv → Br + e(-) and e(-) + Ag(+) → Ag(0). The grain rotation and lattice deformation associated with the chemical reactions were quantified to be as fast as 3.25 rad s(-1) and as large as 0.5 Å, respectively. The ability to measure high-resolution diffraction patterns from individual grains with a temporal resolution of several milliseconds is expected to find broad applications in materials science, physics, chemistry and nanoscience.
Lu, Yiming; Liu, Changgeng; Yao, Xincheng
2018-05-01
Rod-dominated transient retinal phototropism (TRP) has been observed in freshly isolated retinas, promising a noninvasive biomarker for objective assessment of retinal physiology. However, in vivo mapping of TRP is challenging due to its subcellular signal magnitude and fast time course. We report here a virtually structured detection-based super-resolution ophthalmoscope to achieve subcellular spatial resolution and millisecond temporal resolution for in vivo imaging of TRP. Spatiotemporal properties of in vivo TRP were characterized corresponding to variable light intensity stimuli, confirming that TRP is tightly correlated with early stages of phototransduction. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Chen, I-Wen; Papagiakoumou, Eirini; Emiliani, Valentina
2018-06-01
Optogenetics neuronal targeting combined with single-photon wide-field illumination has already proved its enormous potential in neuroscience, enabling the optical control of entire neuronal networks and disentangling their role in the control of specific behaviors. However, establishing how a single or a sub-set of neurons controls a specific behavior, or how functionally identical neurons are connected in a particular task, or yet how behaviors can be modified in real-time by the complex wiring diagram of neuronal connections requires more sophisticated approaches enabling to drive neuronal circuits activity with single-cell precision and millisecond temporal resolution. This has motivated on one side the development of flexible optical methods for two-photon (2P) optogenetic activation using either, or a hybrid of two approaches: scanning and parallel illumination. On the other side, it has stimulated the engineering of new opsins with modified spectral characteristics, channel kinetics and spatial distribution of expression, offering the necessary flexibility of choosing the appropriate opsin for each application. The need for optical manipulation of multiple targets with millisecond temporal resolution has imposed three-dimension (3D) parallel holographic illumination as the technique of choice for optical control of neuronal circuits organized in 3D. Today 3D parallel illumination exists in several complementary variants, each with a different degree of simplicity, light uniformity, temporal precision and axial resolution. In parallel, the possibility to reach hundreds of targets in 3D volumes has prompted the development of low-repetition rate amplified laser sources enabling high peak power, while keeping low average power for stimulating each cell. All together those progresses open the way for a precise optical manipulation of neuronal circuits with unprecedented precision and flexibility. Copyright © 2018 Elsevier Ltd. All rights reserved.
Laser Speckle Imaging of Cerebral Blood Flow
NASA Astrophysics Data System (ADS)
Luo, Qingming; Jiang, Chao; Li, Pengcheng; Cheng, Haiying; Wang, Zhen; Wang, Zheng; Tuchin, Valery V.
Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution can be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. To improve the spatial resolution of current LSI, a modified LSI method is proposed. To accelerate the speed of data processing, three LSI data processing frameworks based on graphics processing unit (GPU), digital signal processor (DSP), and field-programmable gate array (FPGA) are also presented. Applications for detecting the changes in local CBF induced by sensory stimulation and thermal stimulation, the influence of a chemical agent on CBF, and the influence of acute hyperglycemia following cortical spreading depression on CBF are given.
New Insights into Auroral Particle Acceleration via Coordinated Optical-Radar Networks
NASA Astrophysics Data System (ADS)
Hirsch, M.
2016-12-01
The efficacy of instruments synthesized from heterogeneous sensor networks is increasingly being realized in fielded science observation systems. New insights into the finest spatio-temporal scales of ground-observable ionospheric physics are realized by coupling low-level data from fixed legacy instruments with mobile and portable sensors. In particular, turbulent ionospheric events give enhanced radar returns more than three orders of magnitude larger than typical incoherent plasma observations. Radar integration times for the Poker Flat Incoherent Scatter Radar (PFISR) can thereby be shrunk from order 100 second integration time down to order 100 millisecond integration time for the ion line. Auroral optical observations with 20 millisecond cadence synchronized in absolute time with the radar help uncover plausible particle acceleration processes for the highly dynamic aurora often associated with Langmuir turbulence. Quantitative analysis of coherent radar returns combined with a physics-based model yielding optical volume emission rate profiles vs. differential number flux input of precipitating particles into the ionosphere yield plausibility estimates for a particular auroral acceleration process type. Tabulated results from a survey of auroral events where the Boston University High Speed Auroral Tomography system operated simultaneously with PFISR are presented. Context is given to the narrow-field HiST observations by the Poker Flat Digital All-Sky Camera and THEMIS GBO ASI network. Recent advances in high-rate (order 100 millisecond) plasma line ISR observations (100x improvement in temporal resolution) will contribute to future coordinated observations. ISR beam pattern and pulse parameter configurations favorable for future coordinated optical-ISR experiments are proposed in light of recent research uncovering the criticality of aspect angle to ISR-observable physics. High-rate scientist-developed GPS TEC receivers are expected to contribute additional high resolution observations to such experiments.
The brain in time: insights from neuromagnetic recordings.
Hari, Riitta; Parkkonen, Lauri; Nangini, Cathy
2010-03-01
The millisecond time resolution of magnetoencephalography (MEG) is instrumental for investigating the brain basis of sensory processing, motor planning, cognition, and social interaction. We review the basic principles, recent progress, and future potential of MEG in noninvasive tracking of human brain activity. Cortical activation sequences from tens to hundreds of milliseconds can be followed during, e.g., perception, motor action, imitation, and language processing by recording both spontaneous and evoked brain signals. Moreover, tagging of sensory input can be used to reveal neuronal mechanisms of binaural interaction and perception of ambiguous images. The results support the emerging ideas of multiple, hierarchically organized temporal scales in human brain function. Instrumentation and data analysis methods are rapidly progressing, enabling attempts to decode the four-dimensional spatiotemporal signal patterns to reveal correlates of behavior and mental contents.
ERIC Educational Resources Information Center
Morimoto, Chie; Hida, Eisuke; Shima, Keisuke; Okamura, Hitoshi
2018-01-01
To identify a specific sensorimotor impairment feature of autism spectrum disorder (ASD), we focused on temporal processing with millisecond accuracy. A synchronized finger-tapping task was used to characterize temporal processing in individuals with ASD as compared to typically developing (TD) individuals. We found that individuals with ASD…
Simultaneous Spectral Temporal Adaptive Raman Spectrometer - SSTARS
NASA Technical Reports Server (NTRS)
Blacksberg, Jordana
2010-01-01
Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis, which is structure and composition. However, large fluorescence return from many mineral samples under visible light excitation can render Raman spectra unattainable. Using the described approach, Raman and fluorescence, which occur on different time scales, can be simultaneously obtained from mineral samples using a compact instrument in a planetary environment. This new approach is taken based on the use of time-resolved spectroscopy for removing the fluorescence background from Raman spectra in the laboratory. In the SSTARS instrument, a visible excitation source (a green, pulsed laser) is used to generate Raman and fluorescence signals in a mineral sample. A spectral notch filter eliminates the directly reflected beam. A grating then disperses the signal spectrally, and a streak camera provides temporal resolution. The output of the streak camera is imaged on the CCD (charge-coupled device), and the data are read out electronically. By adjusting the sweep speed of the streak camera, anywhere from picoseconds to milliseconds, it is possible to resolve Raman spectra from numerous fluorescence spectra in the same sample. The key features of SSTARS include a compact streak tube capable of picosecond time resolution for collection of simultaneous spectral and temporal information, adaptive streak tube electronics that can rapidly change from one sweep rate to another over ranges of picoseconds to milliseconds, enabling collection of both Raman and fluorescence signatures versus time and wavelength, and Synchroscan integration that allows for a compact, low-power laser without compromising ultimate sensitivity.
Achieving behavioral control with millisecond resolution in a high-level programming environment.
Asaad, Wael F; Eskandar, Emad N
2008-08-30
The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-level software running on a limited range of hardware. Despite the availability of software that allows the coding of behavioral tasks in high-level programming environments, many researchers are still reluctant to trust the temporal accuracy and resolution of programs running in such environments, especially when they run atop non-real-time operating systems. Thus, the creation of behavioral paradigms has been slowed by the intricacy of the coding required and their dissemination across labs has been hampered by the various types of hardware needed. However, we demonstrate here that, when proper measures are taken to handle the various sources of temporal error, accuracy can be achieved at the 1 ms time-scale that is relevant for the alignment of behavioral and neural events.
In situ X-ray-based imaging of nano materials
Weker, Johanna Nelson; Huang, Xiaojing; Toney, Michael F.
2016-02-13
We study functional nanomaterials that are heterogeneous and understanding their behavior during synthesis and operation requires high resolution diagnostic imaging tools that can be used in situ. Over the past decade, huge progress has been made in the development of X-ray based imaging, including full field and scanning microscopy and their analogs in coherent diffractive imaging. Currently, spatial resolution of about 10 nm and time resolution of sub-seconds are achievable. For catalysis, X-ray imaging allows tracking of particle chemistry under reaction conditions. In energy storage, in situ X-ray imaging of electrode particles is providing important insight into degradation processes. Recently,more » both spatial and temporal resolutions are improving to a few nm and milliseconds and these developments will open up unprecedented opportunities.« less
4D electron microscopy: principles and applications.
Flannigan, David J; Zewail, Ahmed H
2012-10-16
The transmission electron microscope (TEM) is a powerful tool enabling the visualization of atoms with length scales smaller than the Bohr radius at a factor of only 20 larger than the relativistic electron wavelength of 2.5 pm at 200 keV. The ability to visualize matter at these scales in a TEM is largely due to the efforts made in correcting for the imperfections in the lens systems which introduce aberrations and ultimately limit the achievable spatial resolution. In addition to the progress made in increasing the spatial resolution, the TEM has become an all-in-one characterization tool. Indeed, most of the properties of a material can be directly mapped in the TEM, including the composition, structure, bonding, morphology, and defects. The scope of applications spans essentially all of the physical sciences and includes biology. Until recently, however, high resolution visualization of structural changes occurring on sub-millisecond time scales was not possible. In order to reach the ultrashort temporal domain within which fundamental atomic motions take place, while simultaneously retaining high spatial resolution, an entirely new approach from that of millisecond-limited TEM cameras had to be conceived. As shown below, the approach is also different from that of nanosecond-limited TEM, whose resolution cannot offer the ultrafast regimes of dynamics. For this reason "ultrafast electron microscopy" is reserved for the field which is concerned with femtosecond to picosecond resolution capability of structural dynamics. In conventional TEMs, electrons are produced by heating a source or by applying a strong extraction field. Both methods result in the stochastic emission of electrons, with no control over temporal spacing or relative arrival time at the specimen. The timing issue can be overcome by exploiting the photoelectric effect and using pulsed lasers to generate precisely timed electron packets of ultrashort duration. The spatial and temporal resolutions achievable with short intense pulses containing a large number of electrons, however, are limited to tens of nanometers and nanoseconds, respectively. This is because Coulomb repulsion is significant in such a pulse, and the electrons spread in space and time, thus limiting the beam coherence. It is therefore not possible to image the ultrafast elementary dynamics of complex transformations. The challenge was to retain the high spatial resolution of a conventional TEM while simultaneously enabling the temporal resolution required to visualize atomic-scale motions. In this Account, we discuss the development of four-dimensional ultrafast electron microscopy (4D UEM) and summarize techniques and applications that illustrate the power of the approach. In UEM, images are obtained either stroboscopically with coherent single-electron packets or with a single electron bunch. Coulomb repulsion is absent under the single-electron condition, thus permitting imaging, diffraction, and spectroscopy, all with high spatiotemporal resolution, the atomic scale (sub-nanometer and femtosecond). The time resolution is limited only by the laser pulse duration and energy carried by the electron packets; the CCD camera has no bearing on the temporal resolution. In the regime of single pulses of electrons, the temporal resolution of picoseconds can be attained when hundreds of electrons are in the bunch. The applications given here are selected to highlight phenomena of different length and time scales, from atomic motions during structural dynamics to phase transitions and nanomechanical oscillations. We conclude with a brief discussion of emerging methods, which include scanning ultrafast electron microscopy (S-UEM), scanning transmission ultrafast electron microscopy (ST-UEM) with convergent beams, and time-resolved imaging of biological structures at ambient conditions with environmental cells.
Encoding model of temporal processing in human visual cortex.
Stigliani, Anthony; Jeska, Brianna; Grill-Spector, Kalanit
2017-12-19
How is temporal information processed in human visual cortex? Visual input is relayed to V1 through segregated transient and sustained channels in the retina and lateral geniculate nucleus (LGN). However, there is intense debate as to how sustained and transient temporal channels contribute to visual processing beyond V1. The prevailing view associates transient processing predominately with motion-sensitive regions and sustained processing with ventral stream regions, while the opposing view suggests that both temporal channels contribute to neural processing beyond V1. Using fMRI, we measured cortical responses to time-varying stimuli and then implemented a two temporal channel-encoding model to evaluate the contributions of each channel. Different from the general linear model of fMRI that predicts responses directly from the stimulus, the encoding approach first models neural responses to the stimulus from which fMRI responses are derived. This encoding approach not only predicts cortical responses to time-varying stimuli from milliseconds to seconds but also, reveals differential contributions of temporal channels across visual cortex. Consistent with the prevailing view, motion-sensitive regions and adjacent lateral occipitotemporal regions are dominated by transient responses. However, ventral occipitotemporal regions are driven by both sustained and transient channels, with transient responses exceeding the sustained. These findings propose a rethinking of temporal processing in the ventral stream and suggest that transient processing may contribute to rapid extraction of the content of the visual input. Importantly, our encoding approach has vast implications, because it can be applied with fMRI to decipher neural computations in millisecond resolution in any part of the brain. Copyright © 2017 the Author(s). Published by PNAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, B; Wiersma, R
Purpose: Low temporal latency between a gating on/off signal and a linac beam on/off during respiratory gating is critical for patient safety. Although, a measurement of temporal lag is recommended by AAPM Task Group 142 for commissioning and annual quality assurance, there currently exists no published method. Here we describe a simple, inexpensive, and reliable method to precisely measure gating lag at millisecond resolutions. Methods: A Varian Real-time Position Management™ (RPM) gating simulator with rotating disk was modified with a resistive flex sensor (Spectra Symbol) attached to the gating box platform. A photon diode was placed at machine isocenter. Outputmore » signals of the flex sensor and diode were monitored with a multichannel oscilloscope (Tektronix™ DPO3014). Qualitative inspection of the gating window/beam on synchronicity were made by setting the linac to beam on/off at end-expiration, and the oscilloscope's temporal window to 100 ms to visually examine if the on/off timing was within the recommended 100-ms tolerance. Quantitative measurements were made by saving the signal traces and analyzing in MatLab™. The on and off of the beam signal were located and compared to the expected gating window (e.g. 40% to 60%). Four gating cycles were measured and compared. Results: On a Varian TrueBeam™ STx linac with RPM gating software, the average difference in synchronicity at beam on and off for four cycles was 14 ms (3 to 30 ms) and 11 ms (2 to 32 ms), respectively. For a Varian Clinac™ 21EX the average difference at beam on and off was 127 ms (122 to 133 ms) and 46 ms (42 to 49 ms), respectively. The uncertainty in the synchrony difference was estimated at ±6 ms. Conclusion: This new gating QA method is easy to implement and allows for fast qualitative inspection and quantitative measurements for commissioning and TG-142 annual QA measurements.« less
NASA Astrophysics Data System (ADS)
Förster, Matthias; Rashev, Mikhail; Haaland, Stein
2017-04-01
The Electron Drift Instrument (EDI) onboard Cluster can measure 500 eV and 1 keV electron fluxes with high time resolution during passive operation phases in its Ambient Electron (AE) mode. Data from this mode is available in the Cluster Science Archive since October 2004 with a cadence of 16 Hz in the normal mode or 128 Hz for burst mode telemetry intervals. The fluxes are recorded at pitch angles of 0, 90, and 180 degrees. This paper describes the calibration and validation of these measurements. The high resolution AE data allow precise temporal and spatial diagnostics of magnetospheric boundaries and will be used for case studies and statistical studies of low energy electron fluxes in the near-Earth space. We show examples of applications.
Object-oriented millisecond timers for the PC.
Hamm, J P
2001-11-01
Object-oriented programming provides a useful structure for designing reusable code. Accurate millisecond timing is essential for many areas of research. With this in mind, this paper provides a Turbo Pascal unit containing an object-oriented millisecond timer. This approach allows for multiple timers to be running independently. The timers may also be set at different levels of temporal precision, such as 10(-3) (milliseconds) or 10(-5) sec. The object also is able to store the time of a flagged event for later examination without interrupting the ongoing timing operation.
Electroencephalographic imaging of higher brain function
NASA Technical Reports Server (NTRS)
Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.
1999-01-01
High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.
Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors.
Salomé, R; Kremer, Y; Dieudonné, S; Léger, J-F; Krichevsky, O; Wyart, C; Chatenay, D; Bourdieu, L
2006-06-30
Two-photon scanning microscopy (TPSM) is a powerful tool for imaging deep inside living tissues with sub-cellular resolution. The temporal resolution of TPSM is however strongly limited by the galvanometric mirrors used to steer the laser beam. Fast physiological events can therefore only be followed by scanning repeatedly a single line within the field of view. Because acousto-optic deflectors (AODs) are non-mechanical devices, they allow access at any point within the field of view on a microsecond time scale and are therefore excellent candidates to improve the temporal resolution of TPSM. However, the use of AOD-based scanners with femtosecond pulses raises several technical difficulties. In this paper, we describe an all-digital TPSM setup based on two crossed AODs. It includes in particular an acousto-optic modulator (AOM) placed at 45 degrees with respect to the AODs to pre-compensate for the large spatial distortions of femtosecond pulses occurring in the AODs, in order to optimize the spatial resolution and the fluorescence excitation. Our setup allows recording from freely selectable point-of-interest at high speed (1kHz). By maximizing the time spent on points of interest, random-access TPSM (RA-TPSM) constitutes a promising method for multiunit recordings with millisecond resolution in biological tissues.
Auditory perception of temporal order in centenarians in comparison with young and elderly subjects.
Kołodziejczyk, Iwona; Szelsg, Elzbieta
2008-01-01
Temporal information processing controls many aspects of human mental activity and may be assessed by examining perception of temporal order in the tens of milliseconds time range. Although existing studies suggest an age-related decline in mental abilities, the data on the deterioration of temporal order perception seems inconsistent. Moreover, any evidence on subjects aged over 70 years is lacking. The present experiment aimed to extend the existing data to extremely old people. Temporal order judgment (TOJ) for auditory stimuli was tested across the life span of approx. 80 years, i.e. in young (mean age 22 years) elderly (66 years) and very old (101 years) subjects. Age-related deterioration of performance was observed, with slight changes in elderly subjects and significant deterioration in centenarians which was more distinct in women than in men. The results confirm age-related decrease in temporal resolution which may be explained by slowing of information processing or of a hypothetical internal-timing mechanism. These effects may be influenced by different strategies used in particular age groups.
Liu, Hesheng; Agam, Yigal; Madsen, Joseph R.; Kreiman, Gabriel
2010-01-01
Summary The difficulty of visual recognition stems from the need to achieve high selectivity while maintaining robustness to object transformations within hundreds of milliseconds. Theories of visual recognition differ in whether the neuronal circuits invoke recurrent feedback connections or not. The timing of neurophysiological responses in visual cortex plays a key role in distinguishing between bottom-up and top-down theories. Here we quantified at millisecond resolution the amount of visual information conveyed by intracranial field potentials from 912 electrodes in 11 human subjects. We could decode object category information from human visual cortex in single trials as early as 100 ms post-stimulus. Decoding performance was robust to depth rotation and scale changes. The results suggest that physiological activity in the temporal lobe can account for key properties of visual recognition. The fast decoding in single trials is compatible with feed-forward theories and provides strong constraints for computational models of human vision. PMID:19409272
Temporal Binding Window of the Sound-Induced Flash Illusion in Amblyopia.
Narinesingh, Cindy; Goltz, Herbert C; Wong, Agnes M F
2017-03-01
Amblyopia is a neurodevelopmental visual disorder caused by abnormal visual experience in childhood. In addition to known visual deficits, there is evidence for changes in audiovisual integration in amblyopia using explicit tasks. We examined audiovisual integration in amblyopia using an implicit task that is more relevant in a real-world context. A total of 11 participants with amblyopia and 16 controls were tested binocularly and monocularly on the sound-induced flash illusion, in which flashes and beeps are presented concurrently and the perceived number of flashes is influenced by the number of beeps. The task used 1 to 2 rapid peripheral flashes presented with 0 to 2 beeps, at 5 stimulus onset asynchronies, that is, beep (-200 milliseconds, -100 milliseconds) or flash leading (100 milliseconds, 200 milliseconds) or simultaneous (0 milliseconds). Participants reported the number of perceived flashes. Susceptibility was indicated by a "2 flashes" response to "fission" (1 flash, 2 beeps) or "1 flash" to "fusion" (2 flashes, 1 beep). For fission with the beep leading during binocular viewing, controls showed an expected decrease in illusion strength as stimulus onset asynchronies increased, whereas the illusion strength remained constant in participants with amblyopia, indicating a wider temporal binding window in amblyopia (P = 0.007). For fusion, participants with amblyopia showed reduced illusion strength during amblyopic eye viewing (P = 0.044) with the flash leading. Amblyopia is associated with the widening of the temporal binding window, specifically for fission when viewing binocularly with the beep leading. This suggests a developmental adaptation to delayed amblyopic eye visual processing to optimize audiovisual integration.
Advances in solar radio astronomy
NASA Technical Reports Server (NTRS)
Kundu, M. R.
1982-01-01
The status of the observations and interpretations of the sun's radio emission covering the entire radio spectrum from millimeter wavelengths to hectometer and kilometer wavelengths is reviewed. Emphasis is given to the progress made in solar radio physics as a result of recent advances in plasma and radiation theory. It is noted that the capability now exists of observing the sun with a spatial resolution of approximately a second of arc and a temporal resolution of about a millisecond at centimeter wavelengths and of obtaining fast multifrequency two-dimensional pictures of the sun at meter and decameter wavelengths. A summary is given of the properties of nonflaring active regions at millimeter, centimeter, and meter-decameter wavelengths. The properties of centimeter wave bursts are discussed in connection with the high spatial resolution observations. The observations of the preflare build-up of an active region are reviewed. High spatial resolution observations (a few seconds of arc to approximately 1 arcsec) are discussed, with particular attention given to the one- and two-dimensional maps of centimeter-wavelength burst sources.
Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy.
Huang, Xiaoshuai; Fan, Junchao; Li, Liuju; Liu, Haosen; Wu, Runlong; Wu, Yi; Wei, Lisi; Mao, Heng; Lal, Amit; Xi, Peng; Tang, Liqiang; Zhang, Yunfeng; Liu, Yanmei; Tan, Shan; Chen, Liangyi
2018-06-01
To increase the temporal resolution and maximal imaging time of super-resolution (SR) microscopy, we have developed a deconvolution algorithm for structured illumination microscopy based on Hessian matrixes (Hessian-SIM). It uses the continuity of biological structures in multiple dimensions as a priori knowledge to guide image reconstruction and attains artifact-minimized SR images with less than 10% of the photon dose used by conventional SIM while substantially outperforming current algorithms at low signal intensities. Hessian-SIM enables rapid imaging of moving vesicles or loops in the endoplasmic reticulum without motion artifacts and with a spatiotemporal resolution of 88 nm and 188 Hz. Its high sensitivity allows the use of sub-millisecond excitation pulses followed by dark recovery times to reduce photobleaching of fluorescent proteins, enabling hour-long time-lapse SR imaging of actin filaments in live cells. Finally, we observed the structural dynamics of mitochondrial cristae and structures that, to our knowledge, have not been observed previously, such as enlarged fusion pores during vesicle exocytosis.
Two-Dimensional Optoelectronic Graphene Nanoprobes for Neural Nerwork
NASA Astrophysics Data System (ADS)
Hong, Tu; Kitko, Kristina; Wang, Rui; Zhang, Qi; Xu, Yaqiong
2014-03-01
Brain is the most complex network created by nature, with billions of neurons connected by trillions of synapses through sophisticated wiring patterns and countless modulatory mechanisms. Current methods to study the neuronal process, either by electrophysiology or optical imaging, have significant limitations on throughput and sensitivity. Here, we use graphene, a monolayer of carbon atoms, as a two-dimensional nanoprobe for neural network. Scanning photocurrent measurement is applied to detect the local integration of electrical and chemical signals in mammalian neurons. Such interface between nanoscale electronic device and biological system provides not only ultra-high sensitivity, but also sub-millisecond temporal resolution, owing to the high carrier mobility of graphene.
FRET excited ratiometric oxygen sensing in living tissue
Ingram, Justin M.; Zhang, Chunfeng; Xu, Jian; Schiff, Steven J.
2013-01-01
Dynamic analysis of oxygen (O2) has been limited by the lack of a real-time, quantitative, and biocompatible sensor. To address these demands, we designed a ratiometric optode matrix consisting of the phosphorescence quenching dye platinum (II) octaethylporphine ketone (PtOEPK) and nanocystal quantum dots (NQDs), which when embedded within an inert polymer matrix allows long-term pre-designed excitation through fluorescence resonance energy transfer (FRET). Depositing this matrix on various glass substrates allowed the development of a series of optical sensors able to measure interstitial oxygen concentration [O2] with several hundred millisecond temporal resolution in varying biological microdomains of active brain tissue. PMID:23333398
NASA Astrophysics Data System (ADS)
Kuzmenko, Anton; Tankov, Stoyan; English, Brian P.; Tarassov, Ivan; Tenson, Tanel; Kamenski, Piotr; Elf, Johan; Hauryliuk, Vasili
2011-12-01
Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole.
Rammsayer, Thomas; Ulrich, Rolf
2011-05-01
The distinct timing hypothesis suggests a sensory mechanism for processing of durations in the range of milliseconds and a cognitively controlled mechanism for processing of longer durations. To test this hypothesis, we employed a dual-task approach to investigate the effects of maintenance and elaborative rehearsal on temporal processing of brief and long durations. Unlike mere maintenance rehearsal, elaborative rehearsal as a secondary task involved transfer of information from working to long-term memory and elaboration of information to enhance storage in long-term memory. Duration discrimination of brief intervals was not affected by a secondary cognitive task that required either maintenance or elaborative rehearsal. Concurrent elaborative rehearsal, however, impaired discrimination of longer durations as compared to maintenance rehearsal and a control condition with no secondary task. These findings endorse the distinct timing hypothesis and are in line with the notion that executive functions, such as continuous memory updating and active transfer of information into long-term memory interfere with temporal processing of durations in the second, but not in the millisecond range. 2011 Elsevier B.V. All rights reserved.
Takeshima, T; Takahashi, T; Yamashita, J; Okada, Y; Watanabe, S
2018-05-25
Multi-emitter fitting algorithms have been developed to improve the temporal resolution of single-molecule switching nanoscopy, but the molecular density range they can analyse is narrow and the computation required is intensive, significantly limiting their practical application. Here, we propose a computationally fast method, wedged template matching (WTM), an algorithm that uses a template matching technique to localise molecules at any overlapping molecular density from sparse to ultrahigh density with subdiffraction resolution. WTM achieves the localization of overlapping molecules at densities up to 600 molecules μm -2 with a high detection sensitivity and fast computational speed. WTM also shows localization precision comparable with that of DAOSTORM (an algorithm for high-density super-resolution microscopy), at densities up to 20 molecules μm -2 , and better than DAOSTORM at higher molecular densities. The application of WTM to a high-density biological sample image demonstrated that it resolved protein dynamics from live cell images with subdiffraction resolution and a temporal resolution of several hundred milliseconds or less through a significant reduction in the number of camera images required for a high-density reconstruction. WTM algorithm is a computationally fast, multi-emitter fitting algorithm that can analyse over a wide range of molecular densities. The algorithm is available through the website. https://doi.org/10.17632/bf3z6xpn5j.1. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
On the physical reality of the millisecond bursts in Cygnus X-1 - Bursts and shot noise
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; Sutherland, P. G.
1978-01-01
The method of data analysis used to interpret the millisecond temporal structure of Cyg X-1 is discussed. In particular, the effects produced by the shot-noise variability of this source, which occurs on time scales of about 0.5 s, are examined. Taking into account the recent discovery that only about 30% of the flux may be in the shots, it is found that spurious 'millisecond bursts' will be detected. A comparison of the properties of these bursts with currently published experimental data is performed.
Inferring the Composition of Super-Jupiter Mass Companions of Pulsars with Radio Line Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Alak; Loeb, Abraham, E-mail: akr@tifr.res.in, E-mail: aloeb@cfa.harvard.edu
We propose using radio line spectroscopy to detect molecular absorption lines (such as OH at 1.6–1.7 GHz) before and after the total eclipse of black widow and other short orbital period binary pulsars with low-mass companions. The companion in such a binary may be ablated away by energetic particles and high-energy radiation produced by the pulsar wind. The observations will probe the eclipsing wind being ablated by the pulsar and constrain the nature of the companion and its surroundings. Maser emission from the interstellar medium stimulated by a pulsar beam might also be detected from the intrabinary medium. The shortmore » temporal resolution allowed by the millisecond pulsars can probe this medium with the high angular resolution of the pulsar beam.« less
On pure word deafness, temporal processing, and the left hemisphere.
Stefanatos, Gerry A; Gershkoff, Arthur; Madigan, Sean
2005-07-01
Pure word deafness (PWD) is a rare neurological syndrome characterized by severe difficulties in understanding and reproducing spoken language, with sparing of written language comprehension and speech production. The pathognomonic disturbance of auditory comprehension appears to be associated with a breakdown in processes involved in mapping auditory input to lexical representations of words, but the functional locus of this disturbance and the localization of the responsible lesion have long been disputed. We report here on a woman with PWD resulting from a circumscribed unilateral infarct involving the left superior temporal lobe who demonstrated significant problems processing transitional spectrotemporal cues in both speech and nonspeech sounds. On speech discrimination tasks, she exhibited poor differentiation of stop consonant-vowel syllables distinguished by voicing onset and brief formant frequency transitions. Isolated formant transitions could be reliably discriminated only at very long durations (> 200 ms). By contrast, click fusion threshold, which depends on millisecond-level resolution of brief auditory events, was normal. These results suggest that the problems with speech analysis in this case were not secondary to general constraints on auditory temporal resolution. Rather, they point to a disturbance of left hemisphere auditory mechanisms that preferentially analyze rapid spectrotemporal variations in frequency. The findings have important implications for our conceptualization of PWD and its subtypes.
Lee, Wang Wei; Kukreja, Sunil L.; Thakor, Nitish V.
2017-01-01
This paper presents a neuromorphic tactile encoding methodology that utilizes a temporally precise event-based representation of sensory signals. We introduce a novel concept where touch signals are characterized as patterns of millisecond precise binary events to denote pressure changes. This approach is amenable to a sparse signal representation and enables the extraction of relevant features from thousands of sensing elements with sub-millisecond temporal precision. We also proposed measures adopted from computational neuroscience to study the information content within the spiking representations of artificial tactile signals. Implemented on a state-of-the-art 4096 element tactile sensor array with 5.2 kHz sampling frequency, we demonstrate the classification of transient impact events while utilizing 20 times less communication bandwidth compared to frame based representations. Spiking sensor responses to a large library of contact conditions were also synthesized using finite element simulations, illustrating an 8-fold improvement in information content and a 4-fold reduction in classification latency when millisecond-precise temporal structures are available. Our research represents a significant advance, demonstrating that a neuromorphic spatiotemporal representation of touch is well suited to rapid identification of critical contact events, making it suitable for dynamic tactile sensing in robotic and prosthetic applications. PMID:28197065
Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs
2018-01-01
Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.
Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.
Sapra, K Tanuj
2013-01-01
The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.
Cell Signaling Experiments Driven by Optical Manipulation
Difato, Francesco; Pinato, Giulietta; Cojoc, Dan
2013-01-01
Cell signaling involves complex transduction mechanisms in which information released by nearby cells or extracellular cues are transmitted to the cell, regulating fundamental cellular activities. Understanding such mechanisms requires cell stimulation with precise control of low numbers of active molecules at high spatial and temporal resolution under physiological conditions. Optical manipulation techniques, such as optical tweezing, mechanical stress probing or nano-ablation, allow handling of probes and sub-cellular elements with nanometric and millisecond resolution. PicoNewton forces, such as those involved in cell motility or intracellular activity, can be measured with femtoNewton sensitivity while controlling the biochemical environment. Recent technical achievements in optical manipulation have new potentials, such as exploring the actions of individual molecules within living cells. Here, we review the progress in optical manipulation techniques for single-cell experiments, with a focus on force probing, cell mechanical stimulation and the local delivery of active molecules using optically manipulated micro-vectors and laser dissection. PMID:23698758
Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2016-01-01
Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG–fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099
Combined ICA-LORETA analysis of mismatch negativity.
Marco-Pallarés, J; Grau, C; Ruffini, G
2005-04-01
A major challenge for neuroscience is to map accurately the spatiotemporal patterns of activity of the large neuronal populations that are believed to underlie computing in the human brain. To study a specific example, we selected the mismatch negativity (MMN) brain wave (an event-related potential, ERP) because it gives an electrophysiological index of a "primitive intelligence" capable of detecting changes, even abstract ones, in a regular auditory pattern. ERPs have a temporal resolution of milliseconds but appear to result from mixed neuronal contributions whose spatial location is not fully understood. Thus, it is important to separate these sources in space and time. To tackle this problem, a two-step approach was designed combining the independent component analysis (ICA) and low-resolution tomography (LORETA) algorithms. Here we implement this approach to analyze the subsecond spatiotemporal dynamics of MMN cerebral sources using trial-by-trial experimental data. We show evidence that a cerebral computation mechanism underlies MMN. This mechanism is mediated by the orchestrated activity of several spatially distributed brain sources located in the temporal, frontal, and parietal areas, which activate at distinct time intervals and are grouped in six main statistically independent components.
Unfolding the Spatial and Temporal Neural Processing of Making Dishonest Choices
Wang, Zhaoxin; Chan, Chetwyn C. H.
2016-01-01
To understand the neural processing that underpins dishonest behavior in an economic exchange game task, this study employed both functional magnetic resonance imaging (fMRI) and event-related potential (ERP) methodologies to examine the neural conditions of 25 participants while they were making either dishonest or honest choices. It was discovered that dishonest choices, contrary to honest choices, elicited stronger fMRI activations in bilateral striatum and anterior insula. It also induced fluctuations in ERP amplitudes within two time windows, which are 270–30 milliseconds before and 110–290 milliseconds after the response, respectively. Importantly, when making either dishonest or honest choices, human and computer counterparts were associated with distinct fMRI activations in the left insula and different ERP amplitudes at medial and right central sites from 80 milliseconds before to 250 milliseconds after the response. These results support the hypothesis that there would be distinct neural processing during making dishonest decisions, especially when the subject considers the interests of the counterpart. Furthermore, the fMRI and ERP findings, together with ERP source reconstruction, clearly delineate the temporal sequence of the neural processes of a dishonest decision: the striatum is activated before response, then the left insula is involved around the time of response, and finally the thalamus is activated after response. PMID:27096474
ERIC Educational Resources Information Center
Oron, Anna; Szymaszek, Aneta; Szelag, Elzbieta
2015-01-01
Background: Temporal information processing (TIP) underlies many aspects of cognitive functions like language, motor control, learning, memory, attention, etc. Millisecond timing may be assessed by sequencing abilities, e.g. the perception of event order. It may be measured with auditory temporal-order-threshold (TOT), i.e. a minimum time gap…
NASA Astrophysics Data System (ADS)
Yang, Lei; Tian, Jie; Wang, Xiaoxiang; Hu, Jin
2005-04-01
The comprehensive understanding of human emotion processing needs consideration both in the spatial distribution and the temporal sequencing of neural activity. The aim of our work is to identify brain regions involved in emotional recognition as well as to follow the time sequence in the millisecond-range resolution. The effect of activation upon visual stimuli in different gender by International Affective Picture System (IAPS) has been examined. Hemodynamic and electrophysiological responses were measured in the same subjects. Both fMRI and ERP study were employed in an event-related study. fMRI have been obtained with 3.0 T Siemens Magnetom whole-body MRI scanner. 128-channel ERP data were recorded using an EGI system. ERP is sensitive to millisecond changes in mental activity, but the source localization and timing is limited by the ill-posed 'inversed' problem. We try to investigate the ERP source reconstruction problem in this study using fMRI constraint. We chose ICA as a pre-processing step of ERP source reconstruction to exclude the artifacts and provide a prior estimate of the number of dipoles. The results indicate that male and female show differences in neural mechanism during emotion visual stimuli.
Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs
2018-01-01
Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments. PMID:29867383
Phillips, D P; Farmer, M E
1990-11-15
This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.
A Parallel Spectroscopic Method for Examining Dynamic Phenomena on the Millisecond Time Scale
Snively, Christopher M.; Chase, D. Bruce; Rabolt, John F.
2009-01-01
An infrared spectroscopic technique based on planar array infrared (PAIR) spectroscopy has been developed that allows the acquisition of spectra from multiple samples simultaneously. Using this technique, it is possible to acquire spectra over a spectral range of 950–1900cm−1 with a temporal resolution of 2.2ms. The performance of this system was demonstrated by determining the shear-induced orientational response of several low molecular weight liquid crystals. Five different liquid crystals were examined in combination with five different alignment layers, and both primary and secondary screens were demonstrated. Implementation of this high throughput PAIR technique resulted in a reduction in acquisition time as compared to both step-scan and ultra-rapid-scanning FTIR spectroscopy. PMID:19239197
Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device
Guo, Yanmeng; Song, Peipei; Zhang, Xiaohui; Zeng, Shaoqun; Wang, Zuoren
2011-01-01
Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision. PMID:22174813
An internally consistent gamma ray burst time history phenomenology
NASA Technical Reports Server (NTRS)
Cline, T. L.
1985-01-01
A phenomenology for gamma ray burst time histories is outlined. Order of their generally chaotic appearance is attempted, based on the speculation that any one burst event can be represented above 150 keV as a superposition of similarly shaped increases of varying intensity. The increases can generally overlap, however, confusing the picture, but a given event must at least exhibit its own limiting characteristic rise and decay times if the measurements are made with instruments having adequate temporal resolution. Most catalogued observations may be of doubtful or marginal utility to test this hypothesis, but some time histories from Helios-2, Pioneer Venus Orbiter and other instruments having one-to several-millisecond capabilities appear to provide consistency. Also, recent studies of temporally resolved Solar Maximum Mission burst energy spectra are entirely compatible with this picture. The phenomenology suggested here, if correct, may assist as an analytic tool for modelling of burst processes and possibly in the definition of burst source populations.
Baker, Christa A.; Ma, Lisa; Casareale, Chelsea R.
2016-01-01
In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8–12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. SIGNIFICANCE STATEMENT The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. PMID:27559179
Baker, Christa A; Ma, Lisa; Casareale, Chelsea R; Carlson, Bruce A
2016-08-24
In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8-12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. Copyright © 2016 the authors 0270-6474/16/368985-16$15.00/0.
Whole cell quenched flow analysis.
Chiang, Ya-Yu; Haeri, Sina; Gizewski, Carsten; Stewart, Joanna D; Ehrhard, Peter; Shrimpton, John; Janasek, Dirk; West, Jonathan
2013-12-03
This paper describes a microfluidic quenched flow platform for the investigation of ligand-mediated cell surface processes with unprecedented temporal resolution. A roll-slip behavior caused by cell-wall-fluid coupling was documented and acts to minimize the compression and shear stresses experienced by the cell. This feature enables high-velocity (100-400 mm/s) operation without impacting the integrity of the cell membrane. In addition, rotation generates localized convection paths. This cell-driven micromixing effect causes the cell to become rapidly enveloped with ligands to saturate the surface receptors. High-speed imaging of the transport of a Janus particle and fictitious domain numerical simulations were used to predict millisecond-scale biochemical switching times. Dispersion in the incubation channel was characterized by microparticle image velocimetry and minimized by using a horizontal Hele-Shaw velocity profile in combination with vertical hydrodynamic focusing to achieve highly reproducible incubation times (CV = 3.6%). Microfluidic quenched flow was used to investigate the pY1131 autophosphorylation transition in the type I insulin-like growth factor receptor (IGF-1R). This predimerized receptor undergoes autophosphorylation within 100 ms of stimulation. Beyond this demonstration, the extreme temporal resolution can be used to gain new insights into the mechanisms underpinning a tremendous variety of important cell surface events.
Measurement of pulsatile motion with millisecond resolution by MRI.
Souchon, Rémi; Gennisson, Jean-Luc; Tanter, Mickael; Salomir, Rares; Chapelon, Jean-Yves; Rouvière, Olivier
2012-06-01
We investigated a technique based on phase-contrast cine MRI combined with deconvolution of the phase shift waveforms to measure rapidly varying pulsatile motion waveforms. The technique does not require steady-state displacement during motion encoding. Simulations and experiments were performed in porcine liver samples in view of a specific application, namely the observation of transient displacements induced by acoustic radiation force. Simulations illustrate the advantages and shortcomings of the methods. For experimental validation, the waveforms were acquired with an ultrafast ultrasound scanner (Supersonic Imagine Aixplorer), and the rates of decay of the waveforms (relaxation time) were compared. With bipolar motion-encoding gradient of 8.4 ms, the method was able to measure displacement waveforms with a temporal resolution of 1 ms over a time course of 40 ms. Reasonable agreement was found between the rate of decay of the waveforms measured in ultrasound (2.8 ms) and in MRI (2.7-3.3 ms). Copyright © 2011 Wiley-Liss, Inc.
Sub-millisecond closed-loop feedback stimulation between arbitrary sets of individual neurons
Müller, Jan; Bakkum, Douglas J.; Hierlemann, Andreas
2012-01-01
We present a system to artificially correlate the spike timing between sets of arbitrary neurons that were interfaced to a complementary metal–oxide–semiconductor (CMOS) high-density microelectrode array (MEA). The system features a novel reprogrammable and flexible event engine unit to detect arbitrary spatio-temporal patterns of recorded action potentials and is capable of delivering sub-millisecond closed-loop feedback of electrical stimulation upon trigger events in real-time. The relative timing between action potentials of individual neurons as well as the temporal pattern among multiple neurons, or neuronal assemblies, is considered an important factor governing memory and learning in the brain. Artificially changing timings between arbitrary sets of spiking neurons with our system could provide a “knob” to tune information processing in the network. PMID:23335887
Different Cortical Dynamics in Face and Body Perception: An MEG study
Meeren, Hanneke K. M.; de Gelder, Beatrice; Ahlfors, Seppo P.; Hämäläinen, Matti S.; Hadjikhani, Nouchine
2013-01-01
Evidence from functional neuroimaging indicates that visual perception of human faces and bodies is carried out by distributed networks of face and body-sensitive areas in the occipito-temporal cortex. However, the dynamics of activity in these areas, needed to understand their respective functional roles, are still largely unknown. We monitored brain activity with millisecond time resolution by recording magnetoencephalographic (MEG) responses while participants viewed photographs of faces, bodies, and control stimuli. The cortical activity underlying the evoked responses was estimated with anatomically-constrained noise-normalised minimum-norm estimate and statistically analysed with spatiotemporal cluster analysis. Our findings point to distinct spatiotemporal organization of the neural systems for face and body perception. Face-selective cortical currents were found at early latencies (120–200 ms) in a widespread occipito-temporal network including the ventral temporal cortex (VTC). In contrast, early body-related responses were confined to the lateral occipito-temporal cortex (LOTC). These were followed by strong sustained body-selective responses in the orbitofrontal cortex from 200–700 ms, and in the lateral temporal cortex and VTC after 500 ms latency. Our data suggest that the VTC region has a key role in the early processing of faces, but not of bodies. Instead, the LOTC, which includes the extra-striate body area (EBA), appears the dominant area for early body perception, whereas the VTC contributes to late and post-perceptual processing. PMID:24039712
Human brain activity with functional NIR optical imager
NASA Astrophysics Data System (ADS)
Luo, Qingming
2001-08-01
In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.
Spinning Disk Confocal Imaging of Neutrophil Migration in Zebrafish
Lam, Pui-ying; Fischer, Robert S; Shin, William D.; Waterman, Clare M; Huttenlocher, Anna
2014-01-01
Live-cell imaging techniques have been substantially improved due to advances in confocal microscopy instrumentation coupled with ultrasensitive detectors. The spinning disk confocal system is capable of generating images of fluorescent live samples with broad dynamic range and high temporal and spatial resolution. The ability to acquire fluorescent images of living cells in vivo on a millisecond timescale allows the dissection of biological processes that have not previously been visualized in a physiologically relevant context. In vivo imaging of rapidly moving cells such as neutrophils can be technically challenging. In this chapter, we describe the practical aspects of imaging neutrophils in zebrafish embryos using spinning disk confocal microscopy. Similar setups can also be applied to image other motile cell types and signaling processes in translucent animals or tissues. PMID:24504955
Pagès, Stéphane; Côté, Daniel; De Koninck, Paul
2011-01-01
Cell to cell communication in the central nervous system is encoded into transient and local membrane potential changes (ΔVm). Deciphering the rules that govern synaptic transmission and plasticity entails to be able to perform Vm recordings throughout the entire neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within small and fragile neuronal subcompartments. Thus, optical techniques based on the use of fluorescent voltage-sensitive dyes (VSDs) have been developed. However, reporting spontaneous or small ΔVm from neuronal ramifications has been challenging, in part due to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we demonstrate the use of water soluble VSD, ANNINE-6plus, with laser-scanning microscopy to optically record ΔVm in cultured neurons. We show that the sensitivity (>10% of fluorescence change for 100 mV depolarization) and time response (sub millisecond) of the dye allows the robust detection of action potentials (APs) even without averaging, allowing the measurement of spontaneous neuronal firing patterns. In addition, we show that back-propagating APs can be recorded, along distinct dendritic sites and within dendritic spines. Importantly, our approach does not induce any detectable phototoxic effect on cultured neurons. This optophysiological approach provides a simple, minimally invasive, and versatile optical method to measure electrical activity in cultured neurons with high temporal (ms) resolution and high spatial (μm) resolution. PMID:22016723
Single particle tracking through highly scattering media with multiplexed two-photon excitation
NASA Astrophysics Data System (ADS)
Perillo, Evan; Liu, Yen-Liang; Liu, Cong; Yeh, Hsin-Chih; Dunn, Andrew K.
2015-03-01
3D single-particle tracking (SPT) has been a pivotal tool to furthering our understanding of dynamic cellular processes in complex biological systems, with a molecular localization accuracy (10-100 nm) often better than the diffraction limit of light. However, current SPT techniques utilize either CCDs or a confocal detection scheme which not only suffer from poor temporal resolution but also limit tracking to a depth less than one scattering mean free path in the sample (typically <15μm). In this report we highlight our novel design for a spatiotemporally multiplexed two-photon microscope which is able to reach sub-diffraction-limit tracking accuracy and sub-millisecond temporal resolution, but with a dramatically extended SPT range of up to 200 μm through dense cell samples. We have validated our microscope by tracking (1) fluorescent nanoparticles in a prescribed motion inside gelatin gel (with 1% intralipid) and (2) labeled single EGFR complexes inside skin cancer spheroids (at least 8 layers of cells thick) for ~10 minutes. Furthermore we discuss future capabilities of our multiplexed two-photon microscope design, specifically to the extension of (1) simultaneous multicolor tracking (i.e. spatiotemporal co-localization analysis) and (2) FRET studies (i.e. lifetime analysis). The high resolution, high depth penetration, and multicolor features of this microscope make it well poised to study a variety of molecular scale dynamics in the cell, especially related to cellular trafficking studies with in vitro tumor models and in vivo.
Righi, Stefania; Galli, Luca; Paganini, Marco; Bertini, Elisabetta; Viggiano, Maria Pia; Piacentini, Silvia
2016-01-01
Huntington's disease (HD) primarily affects striatum and prefrontal dopaminergic circuits which are fundamental neural correlates of the timekeeping mechanism. The few studies on HD mainly investigated motor timing performance in second durations. The present work explored time perception in early-to-moderate symptomatic HD patients for seconds and milliseconds with the aim to clarify which component of the scalar expectancy theory (SET) is mainly responsible for HD timing defect. Eleven HD patients were compared to 11 controls employing two separate temporal bisection tasks in second and millisecond ranges. Our results revealed the same time perception deficits for seconds and milliseconds in HD patients. Time perception impairment in early-to-moderate stages of Huntington's disease is related to memory deficits. Furthermore, both the non-systematical defect of temporal sensitivity and the main impairment of timing performance in the extreme value of the psychophysical curves suggested an HD deficit in the memory component of the SET. This result was further confirmed by the significant correlations between time perception performance and long-term memory test scores. Our findings added important preliminary data for both a deeper comprehension of HD time-keeping deficits and possible implications on neuro-rehabilitation practices.
The High Time Resolution Universe
NASA Astrophysics Data System (ADS)
Bailes, Matthew; Possenti, Andrea; Johnston, Simon; Kramer, Michael; Burgay, Marta; Bhat, Ramesh; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Stappers, Benjamin; Bates, Samuel
2008-04-01
The Parkes multibeam surveys heralded a new era in pulsar surveys, more than doubling the number of pulsars known. However, at high time resolution, they were severely limited by the analogue backend system, which limited the volume of sky they could effectively survey to just the local 2-3 kpc. Here we propose to use a new digital backend coupled with Australia's most powerful (16 Tflop) supercomputing cluster to conduct three ambitious surveys for millisecond and relativistic pulsars with the Parkes telescope. We hope to discover over 200 new millisecond and relativistic pulsars that will define the recycled pulsar period distribution, supply pulsars for the timing array and aid in our understanding of binary evolution.
ERIC Educational Resources Information Center
Jones, Catherine R. G.; Malone, Tim J. L.; Dirnberger, Georg; Edwards, Mark; Jahanshahi, Marjan
2008-01-01
A pervasive hypothesis in the timing literature is that temporal processing in the milliseconds and seconds range engages the basal ganglia and is modulated by dopamine. This hypothesis was investigated by testing 12 patients with Parkinson's disease (PD), both "on" and "off" dopaminergic medication, and 20 healthy controls on three timing tasks.…
NASA Astrophysics Data System (ADS)
Kobayashi, Akizo; Okiharu, Fumiko
2010-07-01
We are developing various modularized materials in physics education to overcome students' misconceptions by use of ICT, i.e. video analysis software and ultra-high-speed digital movies, motion detector, force sensors, current and voltage probes, temperature sensors etc. Furthermore, we also present some new modules of active learning approaches on electric circuit using high speed camera and voltage probes with milliseconds resolution. We are now especially trying to improve conceptual understanding by use of ICT devices with milliseconds resolution in various areas of physics education We give some modules of mass measurements by video analysis of collision phenomena by using high speed cameras—Casio EX-F1(1200 fps), EX-FH20(1000 fps) and EX-FC100/150(1000 fps). We present several new modules on collision phenomena to establish deeper understanding of conservation laws of momentum. We discuss some effective results of trial on a physics education training courses for science educators, and those for science teachers during the renewal years of teacher's license after every ten years in Japan. Finally, we discuss on some typical results of pre-test and post-test in our active learning approaches based on ICT, i.e. some evidence on improvements of physics education (increasing ratio of correct answer are 50%-level).
Ng, C.; Bailes, M.; Bates, S. D.; ...
2014-02-15
Here, we report on the discovery of four millisecond pulsars (MSPs) in the High Time Resolution Universe (HTRU) pulsar survey being conducted at the Parkes 64 m radio telescope. All four MSPs are in binary systems and are likely to have white dwarf companions. Additionally, we present updated timing solutions for 12 previously published HTRU MSPs, revealing new observational parameters such as five proper motion measurements and significant temporal dispersion measure variations in PSR J1017-7156. We discuss the case of PSR J1801-3210, which shows no significant period derivativemore » $$\\dot{P}$$ after four years of timing data. Our best-fitting solution shows a $$\\dot{P}$$ of the order of 10 -23, an extremely small number compared to that of a typical MSP. But, it is likely that the pulsar lies beyond the Galactic Centre, and an unremarkable intrinsic $$\\dot{P}$$ is reduced to close to zero by the Galactic potential acceleration. Furthermore, we highlight the potential to employ PSR J1801-3210 in the strong equivalence principle test due to its wide and circular orbit. In a broader comparison with the known MSP population, we suggest a correlation between higher mass functions and the presence of eclipses in ‘very low mass binary pulsars’, implying that eclipses are observed in systems with high orbital inclinations. We also suggest that the distribution of the total mass of binary systems is inversely related to the Galactic height distribution. Finally, we report on the first detection of PSRs J1543-5149 and J1811-2404 as gamma-ray pulsars.« less
Spatiotemporal patterns of ERP based on combined ICA-LORETA analysis
NASA Astrophysics Data System (ADS)
Zhang, Jiacai; Guo, Taomei; Xu, Yaqin; Zhao, Xiaojie; Yao, Li
2007-03-01
In contrast to the FMRI methods widely used up to now, this method try to understand more profoundly how the brain systems work under sentence processing task map accurately the spatiotemporal patterns of activity of the large neuronal populations in the human brain from the analysis of ERP data recorded on the brain scalp. In this study, an event-related brain potential (ERP) paradigm to record the on-line responses to the processing of sentences is chosen as an example. In order to give attention to both utilizing the ERPs' temporal resolution of milliseconds and overcoming the insensibility of cerebral location ERP sources, we separate these sources in space and time based on a combined method of independent component analysis (ICA) and low-resolution tomography (LORETA) algorithms. ICA blindly separate the input ERP data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. And then the spatial maps associated with each ICA component are analyzed, with use of LORETA to uniquely locate its cerebral sources throughout the full brain according to the assumption that neighboring neurons are simultaneously and synchronously activated. Our results show that the cerebral computation mechanism underlies content words reading is mediated by the orchestrated activity of several spatially distributed brain sources located in the temporal, frontal, and parietal areas, and activate at distinct time intervals and are grouped into different statistically independent components. Thus ICA-LORETA analysis provides an encouraging and effective method to study brain dynamics from ERP.
Dietary self-control is related to the speed with which health and taste attributes are processed
Sullivan, Nicolette; Hutcherson, Cendri; Harris, Alison; Rangel, Antonio
2015-01-01
We propose that self-control failures, and variation across individuals in self-control abilities, are partly due to differences in the speed with which the decision-making circuitry processes basic attributes like taste, versus more abstract attributes such as health. We test these hypotheses by combining a dietary choice task with a novel form of mouse tracking that allows us to pinpoint when different attributes are being integrated into the choice process with millisecond temporal resolution. We find that, on average, taste attributes are processed about 195 ms earlier than health attributes during the choice process. We also find that 13 - 39% of observed individual differences in self-control ability can be explained by differences in the relative speed with which taste and health attributes are processed. PMID:25515527
Beres, Anna M
2017-12-01
The discovery of electroencephalography (EEG) over a century ago has changed the way we understand brain structure and function, in terms of both clinical and research applications. This paper starts with a short description of EEG and then focuses on the event-related brain potentials (ERPs), and their use in experimental settings. It describes the typical set-up of an ERP experiment. A description of a number of ERP components typically involved in language research is presented. Finally, the advantages and disadvantages of using ERPs in language research are discussed. EEG has an extensive use in today's world, including medical, psychology, or linguistic research. The excellent temporal resolution of EEG information allows one to track a brain response in milliseconds and therefore makes it uniquely suited to research concerning language processing.
Sullivan, Nicolette; Hutcherson, Cendri; Harris, Alison; Rangel, Antonio
2015-02-01
We propose that self-control failures, and variation across individuals in self-control abilities, are partly due to differences in the speed with which the decision-making circuitry processes basic attributes, such as tastiness, versus more abstract attributes, such as healthfulness. We tested these hypotheses by combining a dietary-choice task with a novel form of mouse tracking that allowed us to pinpoint when different attributes were being integrated into the choice process with temporal resolution at the millisecond level. We found that, on average, tastiness was processed about 195 ms earlier than healthfulness during the choice process. We also found that 13% to 39% of observed individual differences in self-control ability could be explained by differences in the relative speed with which tastiness and healthfulness were processed. © The Author(s) 2014.
Hussaini, Zahra; Lin, Pin Ann; Natarajan, Bharath; Zhu, Wenhui; Sharma, Renu
2018-03-01
For many reaction processes, such as catalysis, phase transformations, nanomaterial synthesis etc., nanoscale observations at high spatial (sub-nanometer) and temporal (millisecond) resolution are required to characterize and comprehend the underlying factors that favor one reaction over another. The combination of such spatial and temporal resolution (up to 600 µs), while rich in information, produces a large number of snapshots, each of which must be analyzed to obtain the structural (and thereby chemical) information. Here we present a methodology for automated quantitative measurement of real-time atomic position fluctuations in a nanoparticle. We leverage a combination of several image processing algorithms to precisely identify the positions of the atomic columns in each image. A geometric model is then used to measure the time-evolution of distances and angles between neighboring atomic columns to identify different phases and quantify local structural fluctuations. We apply this technique to determine the atomic-level fluctuations in the relative fractions of metal and metal-carbide phases in a cobalt catalyst nanoparticle during single-walled carbon nanotube (SWCNT) growth. These measurements provided a means to obtain the number of carbon atoms incorporated into and released from the catalyst particle, thereby helping resolve carbon reaction pathways during SWCNT growth. Further we demonstrate the use of this technique to measure the reaction kinetics of iron oxide reduction. Apart from reducing the data analysis time, the statistical approach allows us to measure atomic distances with sub-pixel resolution. We show that this method can be applied universally to measure atomic positions with a precision of 0.01 nm from any set of atomic-resolution video images. With the advent of high time-resolution direct detection cameras, we anticipate such methods will be essential in addressing the metrology problem of quantifying large datasets of time-resolved images in future. Published by Elsevier B.V.
A solar radio dynamic spectrograph with flexible temporal-spectral resolution
NASA Astrophysics Data System (ADS)
Du, Qing-Fu; Chen, Lei; Zhao, Yue-Chang; Li, Xin; Zhou, Yan; Zhang, Jun-Rui; Yan, Fa-Bao; Feng, Shi-Wei; Li, Chuan-Yang; Chen, Yao
2017-09-01
Observation and research on solar radio emission have unique scientific values in solar and space physics and related space weather forecasting applications, since the observed spectral structures may carry important information about energetic electrons and underlying physical mechanisms. In this study, we present the design of a novel dynamic spectrograph that has been installed at the Chashan Solar Radio Observatory operated by the Laboratory for Radio Technologies, Institute of Space Sciences at Shandong University. The spectrograph is characterized by real-time storage of digitized radio intensity data in the time domain and its capability to perform off-line spectral analysis of the radio spectra. The analog signals received via antennas and amplified with a low-noise amplifier are converted into digital data at a speed reaching up to 32 k data points per millisecond. The digital data are then saved into a high-speed electronic disk for further off-line spectral analysis. Using different word lengths (1-32 k) and time cadences (5 ms-10 s) for off-line fast Fourier transform analysis, we can obtain the dynamic spectrum of a radio burst with different (user-defined) temporal (5 ms-10 s) and spectral (3 kHz˜320 kHz) resolutions. This enables great flexibility and convenience in data analysis of solar radio bursts, especially when some specific fine spectral structures are under study.
Three years of ULTRASPEC at the Thai 2.4-m telescope: Capabilities and scientific highlights
NASA Astrophysics Data System (ADS)
Yadav, Ram Kesh; Richichi, Andrea; Irawati, Puji; Dhillon, Vikram Singh; Marsh, Thomas R.; Soonthornthum, Boonrucksar
2018-04-01
High temporal resolution observations enable the study of rapid phenomena such as the flux variations in binary system objects, e.g. cataclysmic variables, compact binary systems, the flux variations in young star clusters, stellar occultations and more. The 2.4-m Thai National Telescope (TNT) is ideally suited for this niche research, being the largest facility in Southeast Asia and being equipped with ULTRASPEC, a high-speed imager based on a low-noise frame transfer electron-multiplying CCD. In the sub-window mode, ULTRASPEC can record uninterrupted sequences with frame rates as fast as few milliseconds. We present some of the key results obtained in the area of high time resolution with ULTRASPEC. We also present the results of a recent worldwide campaign to observe the current series of lunar occultations of Aldebaran (α Tauri) carried out in close collaboration with the Devasthal facilities, the out-of-eclipse variations on the post common-envelope system J1021+1744, and pre-main-sequence variables in young open cluster Stock 8.
NASA Astrophysics Data System (ADS)
Wu, Di; Torres, Elizabeth B.; Jose, Jorge V.
2015-03-01
ASD is a spectrum of neurodevelopmental disorders. The high heterogeneity of the symptoms associated with the disorder impedes efficient diagnoses based on human observations. Recent advances with high-resolution MEM wearable sensors enable accurate movement measurements that may escape the naked eye. It calls for objective metrics to extract physiological relevant information from the rapidly accumulating data. In this talk we'll discuss the statistical analysis of movement data continuously collected with high-resolution sensors at 240Hz. We calculated statistical properties of speed fluctuations within the millisecond time range that closely correlate with the subjects' cognitive abilities. We computed the periodicity and synchronicity of the speed fluctuations' from their power spectrum and ensemble averaged two-point cross-correlation function. We built a two-parameter phase space from the temporal statistical analyses of the nearest neighbor fluctuations that provided a quantitative biomarker for ASD and adult normal subjects and further classified ASD severity. We also found age related developmental statistical signatures and potential ASD parental links in our movement dynamical studies. Our results may have direct clinical applications.
Osmanski, Bruno-Félix; Pezet, Sophie; Ricobaraza, Ana; Lenkei, Zsolt; Tanter, Mickael
2014-01-01
Long-range coherences in spontaneous brain activity reflect functional connectivity. Here we propose a novel, highly resolved connectivity mapping approach, using ultrafast functional ultrasound (fUS), which enables imaging of cerebral microvascular haemodynamics deep in the anaesthetized rodent brain, through a large thinned-skull cranial window, with pixel dimensions of 100 μm × 100 μm in-plane. The millisecond-range temporal resolution allows unambiguous cancellation of low-frequency cardio-respiratory noise. Both seed-based and singular value decomposition analysis of spatial coherences in the low-frequency (<0.1 Hz) spontaneous fUS signal fluctuations reproducibly report, at different coronal planes, overlapping high-contrast, intrinsic functional connectivity patterns. These patterns are similar to major functional networks described in humans by resting-state fMRI, such as the lateral task-dependent network putatively anticorrelated with the midline default-mode network. These results introduce fUS as a powerful novel neuroimaging method, which could be extended to portable systems for three-dimensional functional connectivity imaging in awake and freely moving rodents. PMID:25277668
DETECTION OF POLARIZED QUASI-PERIODIC MICROSTRUCTURE EMISSION IN MILLISECOND PULSARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, Kishalay; Sharma, Prateek; Gupta, Yashwant, E-mail: kde@caltech.edu
Microstructure emission, involving short timescale, often quasi-periodic, intensity fluctuations in subpulse emission, is well known in normal period pulsars. In this Letter, we present the first detections of quasi-periodic microstructure emission from millisecond pulsars (MSPs), from Giant Metrewave Radio Telescope observations of two MSPs at 325 and 610 MHz. Similar to the characteristics of microstructure observed in normal period pulsars, we find that these features are often highly polarized and exhibit quasi-periodic behavior on top of broader subpulse emission, with periods of the order of a few μ s. By measuring their widths and periodicities from single pulse intensity profilesmore » and their autocorrelation functions, we extend the microstructure timescale–rotation period relationship by more than an order of magnitude down to rotation periods ∼5 ms, and find it to be consistent with the relationship derived earlier for normal pulsars. The similarity of behavior is remarkable, given the significantly different physical properties of MSPs and normal period pulsars, and rules out several previous speculations about the possible different characteristics of microstructure in MSP radio emission. We discuss the possible reasons for the non-detection of these features in previous high time resolution MSP studies along with the physical implications of our results, both in terms of a geometric beam sweeping model and temporal modulation model for micropulse production.« less
Simultaneous trimodal PET-MR-EEG imaging: Do EEG caps generate artefacts in PET images?
Rajkumar, Ravichandran; Rota Kops, Elena; Mauler, Jörg; Tellmann, Lutz; Lerche, Christoph; Herzog, Hans; Shah, N Jon; Neuner, Irene
2017-01-01
Trimodal simultaneous acquisition of positron emission tomography (PET), magnetic resonance imaging (MRI), and electroencephalography (EEG) has become feasible due to the development of hybrid PET-MR scanners. To capture the temporal dynamics of neuronal activation on a millisecond-by-millisecond basis, an EEG system is appended to the quantitative high resolution PET-MR imaging modality already established in our institute. One of the major difficulties associated with the development of simultaneous trimodal acquisition is that the components traditionally used in each modality can cause interferences in its counterpart. The mutual interferences of MRI components and PET components on PET and MR images, and the influence of EEG electrodes on functional MRI images have been studied and reported on. Building on this, this study aims to investigate the influence of the EEG cap on the quality and quantification of PET images acquired during simultaneous PET-MR measurements. A preliminary transmission scan study on the ECAT HR+ scanner, using an Iida phantom, showed visible attenuation effect due to the EEG cap. The BrainPET-MR emission images of the Iida phantom with [18F]Fluordeoxyglucose, as well as of human subjects with the EEG cap, did not show significant effects of the EEG cap, even though the applied attenuation correction did not take into account the attenuation of the EEG cap itself.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier
In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO 2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of themore » hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.« less
Direct real-time detection of the structural and biochemical events in the myosin power stroke.
Muretta, Joseph M; Rohde, John A; Johnsrud, Daniel O; Cornea, Sinziana; Thomas, David D
2015-11-17
A principal goal of molecular biophysics is to show how protein structural transitions explain physiology. We have developed a strategic tool, transient time-resolved FRET [(TR)(2)FRET], for this purpose and use it here to measure directly, with millisecond resolution, the structural and biochemical kinetics of muscle myosin and to determine directly how myosin's power stroke is coupled to the thermodynamic drive for force generation, actin-activated phosphate release, and the weak-to-strong actin-binding transition. We find that actin initiates the power stroke before phosphate dissociation and not after, as many models propose. This result supports a model for muscle contraction in which power output and efficiency are tuned by the distribution of myosin structural states. This technology should have wide application to other systems in which questions about the temporal coupling of allosteric structural and biochemical transitions remain unanswered.
Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.
Lenne, Pierre-François; Wawrezinieck, Laure; Conchonaud, Fabien; Wurtz, Olivier; Boned, Annie; Guo, Xiao-Jun; Rigneault, Hervé; He, Hai-Tao; Marguet, Didier
2006-07-26
It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (Ø <120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane.
NASA Astrophysics Data System (ADS)
Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.
2018-03-01
We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.
A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics
Clausen, Mathias P.; Sezgin, Erdinc; Bernardino de la Serna, Jorge; Waithe, Dominic; Lagerholm, B. Christoffer; Eggeling, Christian
2015-01-01
Recent years have seen the development of multiple technologies to investigate, with great spatial and temporal resolution, the dynamics of lipids in cellular and model membranes. One of these approaches is the combination of far-field super-resolution stimulated-emission-depletion (STED) microscopy with fluorescence correlation spectroscopy (FCS). STED-FCS combines the diffraction-unlimited spatial resolution of STED microscopy with the statistical accuracy of FCS to determine sub-millisecond-fast molecular dynamics with single-molecule sensitivity. A unique advantage of STED-FCS is that the observation spot for the FCS data recordings can be tuned to sub-diffraction scales, i.e. <200 nm in diameter, in a gradual manner to investigate fast diffusion of membrane-incorporated labelled entities. Unfortunately, so far the STED-FCS technology has mostly been applied on a few custom-built setups optimised for far-red fluorescent emitters. Here, we summarise the basics of the STED-FCS technology and highlight how it can give novel details into molecular diffusion modes. Most importantly, we present a straightforward way for performing STED-FCS measurements on an unmodified turnkey commercial system using a time-gated detection scheme. Further, we have evaluated the STED-FCS performance of different commonly used green emitting fluorescent dyes applying freely available, custom-written analysis software. PMID:26123184
Magneto-optical imaging of thin magnetic films using spins in diamond
NASA Astrophysics Data System (ADS)
Simpson, David A.; Tetienne, Jean-Philippe; McCoey, Julia M.; Ganesan, Kumaravelu; Hall, Liam T.; Petrou, Steven; Scholten, Robert E.; Hollenberg, Lloyd C. L.
2016-03-01
Imaging the fields of magnetic materials provides crucial insight into the physical and chemical processes surrounding magnetism, and has been a key ingredient in the spectacular development of magnetic data storage. Existing approaches using the magneto-optic Kerr effect, x-ray and electron microscopy have limitations that constrain further development, and there is increasing demand for imaging and characterisation of magnetic phenomena in real time with high spatial resolution. Here we show how the magneto-optical response of an array of negatively-charged nitrogen-vacancy spins in diamond can be used to image and map the sub-micron stray magnetic field patterns from thin ferromagnetic films. Using optically detected magnetic resonance, we demonstrate wide-field magnetic imaging over 100 × 100 μm2 with sub-micron spatial resolution at video frame rates, under ambient conditions. We demonstrate an all-optical spin relaxation contrast imaging approach which can image magnetic structures in the absence of an applied microwave field. Straightforward extensions promise imaging with sub-μT sensitivity and sub-optical spatial and millisecond temporal resolution. This work establishes practical diamond-based wide-field microscopy for rapid high-sensitivity characterisation and imaging of magnetic samples, with the capability for investigating magnetic phenomena such as domain wall and skyrmion dynamics and the spin Hall effect in metals.
Fully integrated silicon probes for high-density recording of neural activity.
Jun, James J; Steinmetz, Nicholas A; Siegle, Joshua H; Denman, Daniel J; Bauza, Marius; Barbarits, Brian; Lee, Albert K; Anastassiou, Costas A; Andrei, Alexandru; Aydın, Çağatay; Barbic, Mladen; Blanche, Timothy J; Bonin, Vincent; Couto, João; Dutta, Barundeb; Gratiy, Sergey L; Gutnisky, Diego A; Häusser, Michael; Karsh, Bill; Ledochowitsch, Peter; Lopez, Carolina Mora; Mitelut, Catalin; Musa, Silke; Okun, Michael; Pachitariu, Marius; Putzeys, Jan; Rich, P Dylan; Rossant, Cyrille; Sun, Wei-Lung; Svoboda, Karel; Carandini, Matteo; Harris, Kenneth D; Koch, Christof; O'Keefe, John; Harris, Timothy D
2017-11-08
Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca 2+ imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal-oxide-semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-μm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.
Fully Integrated Silicon Probes for High-Density Recording of Neural Activity
Jun, James J.; Steinmetz, Nicholas A.; Siegle, Joshua H.; Denman, Daniel J.; Bauza, Marius; Barbarits, Brian; Lee, Albert K.; Anastassiou, Costas A.; Andrei, Alexandru; Aydın, Çağatay; Barbic, Mladen; Blanche, Timothy J.; Bonin, Vincent; Couto, João; Dutta, Barundeb; Gratiy, Sergey L.; Gutnisky, Diego A.; Häusser, Michael; Karsh, Bill; Ledochowitsch, Peter; Lopez, Carolina Mora; Mitelut, Catalin; Musa, Silke; Okun, Michael; Pachitariu, Marius; Putzeys, Jan; Rich, P. Dylan; Rossant, Cyrille; Sun, Wei-lung; Svoboda, Karel; Carandini, Matteo; Harris, Kenneth D.; Koch, Christof; O'Keefe, John; Harris, Timothy D.
2018-01-01
Summary Paragraph Sensory, motor, and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures1,2. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution but from only a few dozen neurons per shank. Optical Ca2+ imaging3–5 offers more coverage but lacks the temporal resolution to reliably distinguish individual spikes and does not measure local field potentials. To date, no technology compatible with unrestrained animals has combined high spatiotemporal resolution with large volume coverage. To satisfy this need, we designed, fabricated, and tested a new silicon probe called Neuropixels. Each probe has 384 recording channels that can programmably address 960 CMOS processing-compatible low-impedance TiN6 sites that tile a single 10 mm long, 70x20 µm cross section shank. The 6x9 mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed, and digitized on the base, allowing noise-free digital data transmission directly from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were simultaneously recorded from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed recording large populations of neurons from multiple brain structures in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens the path to record brain-wide neural activity during behavior. PMID:29120427
Functional requirements for reward-modulated spike-timing-dependent plasticity.
Frémaux, Nicolas; Sprekeler, Henning; Gerstner, Wulfram
2010-10-06
Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term that captures the covariance of neuronal firing and reward and a second term that presents the influence of unsupervised learning. The unsupervised term, which is, in general, detrimental for reward-based learning, can be suppressed if the neuromodulatory signal encodes the difference between the reward and the expected reward-but only if the expected reward is calculated for each task and stimulus separately. If several tasks are to be learned simultaneously, the nervous system needs an internal critic that is able to predict the expected reward for arbitrary stimuli. We show that, with a critic, reward-modulated spike-timing-dependent plasticity is capable of learning motor trajectories with a temporal resolution of tens of milliseconds. The relation to temporal difference learning, the relevance of block-based learning paradigms, and the limitations of learning with a critic are discussed.
Kersten, Hendrik; Derpmann, Valerie; Barnes, Ian; Brockmann, Klaus J; O'Brien, Rob; Benter, Thorsten
2011-11-01
We report on the development of a novel atmospheric pressure photoionization setup and its applicability for in situ degradation product studies of atmospherically relevant compounds. A custom miniature spark discharge lamp was embedded into an ion transfer capillary, which separates the atmospheric pressure from the low pressure region in the first differential pumping stage of a conventional atmospheric pressure ionization mass spectrometer. The lamp operates with a continuous argon flow and produces intense light emissions in the VUV. The custom lamp is operated windowless and efficiently illuminates the sample flow through the transfer capillary on an area smaller than 1 mm(2). Limits of detection in the lower ppbV range, a temporal resolution of milliseconds in the positive as well as the quasi simultaneously operating negative ion mode, and a significant reduction of ion transformation processes render this system applicable to real time studies of rapidly changing chemical systems. The method termed capillary atmospheric pressure photo ionization (cAPPI) is characterized with respect to the lamp emission properties as a function of the operating conditions, temporal response, and its applicability for in situ degradation product studies of atmospherically relevant compounds, respectively.
Zheng, Y.
2013-01-01
Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues. PMID:23636724
Voltage-sensitive dye imaging of mouse neocortex during a whisker detection task
Kyriakatos, Alexandros; Sadashivaiah, Vijay; Zhang, Yifei; Motta, Alessandro; Auffret, Matthieu; Petersen, Carl C. H.
2016-01-01
Abstract. Sensorimotor processing occurs in a highly distributed manner in the mammalian neocortex. The spatiotemporal dynamics of electrical activity in the dorsal mouse neocortex can be imaged using voltage-sensitive dyes (VSDs) with near-millisecond temporal resolution and ∼100-μm spatial resolution. Here, we trained mice to lick a water reward spout after a 1-ms deflection of the C2 whisker, and we imaged cortical dynamics during task execution with VSD RH1691. Responses to whisker deflection were highly dynamic and spatially highly distributed, exhibiting high variability from trial to trial in amplitude and spatiotemporal dynamics. We differentiated trials based on licking and whisking behavior. Hit trials, in which the mouse licked after the whisker stimulus, were accompanied by overall greater depolarization compared to miss trials, with the strongest hit versus miss differences being found in frontal cortex. Prestimulus whisking decreased behavioral performance by increasing the fraction of miss trials, and these miss trials had attenuated cortical sensorimotor responses. Our data suggest that the spatiotemporal dynamics of depolarization in mouse sensorimotor cortex evoked by a single brief whisker deflection are subject to important behavioral modulation during the execution of a simple, learned, goal-directed sensorimotor transformation. PMID:27921068
NASA Astrophysics Data System (ADS)
Lee, Minsuk; Won, Youngjae; Park, Byungjun; Lee, Seungrag
2017-02-01
Not only static characteristics but also dynamic characteristics of the red blood cell (RBC) contains useful information for the blood diagnosis. Quantitative phase imaging (QPI) can capture sample images with subnanometer scale depth resolution and millisecond scale temporal resolution. Various researches have been used QPI for the RBC diagnosis, and recently many researches has been developed to decrease the process time of RBC information extraction using QPI by the parallel computing algorithm, however previous studies are interested in the static parameters such as morphology of the cells or simple dynamic parameters such as root mean square (RMS) of the membrane fluctuations. Previously, we presented a practical blood test method using the time series correlation analysis of RBC membrane flickering with QPI. However, this method has shown that there is a limit to the clinical application because of the long computation time. In this study, we present an accelerated time series correlation analysis of RBC membrane flickering using the parallel computing algorithm. This method showed consistent fractal scaling exponent results of the surrounding medium and the normal RBC with our previous research.
An imaging vector magnetograph for the next solar maximum
NASA Technical Reports Server (NTRS)
Canfield, Richard C.; Mickey, Donald L.
1988-01-01
Measurements of the vector magnetic field in the solar atmosphere with high spatial and temporal resolution over a large field of view are critical to understanding the nature and evolution of currents in active regions. Such measurements, when combined with the thermal and nonthermal X-ray images from the upcoming Solar-A mission, will reveal the large-scale relationship between these currents and sites of heating and particle acceleration in flaring coronal magnetic flux tubes. The conceptual design of an imaging vector magnetograph that combines a modest solar telescope with a rotating quarter-wave plate, an acousto-optical tunable prefilter as a blocker for a servo-controlled Fabry-Perot etalon, CCD cameras, and a rapid digital tape recorder are described. Its high spatial resolution (1/2 arcsec pixel size) over a large field of view (4 x 5 arcmin) will be sufficient to significantly measure, for the first time, the magnetic energy dissipated in major solar flares. Its millisecond tunability and wide spectra range (5000 to 8000 A) enable nearly simultaneous vector magnetic field measurements in the gas-pressure-dominated photosphere and magnetically dominated chromosphere, as well as effective co-alignment with Solar-A's X-ray images.
Timing Dysfunctions in Schizophrenia Span from Millisecond to Several-Second Durations
ERIC Educational Resources Information Center
Carroll, Christine A.; O'Donnell, Brian F.; Shekhar, Anantha; Hetrick, William P.
2009-01-01
Schizophrenia may be associated with a fundamental disturbance in the temporal coordination of information processing in the brain, leading to classic symptoms of schizophrenia such as thought disorder and disorganized and contextually inappropriate behavior. However, the majority of studies that have examined timing behavior in schizophrenia have…
Towards neutron scattering experiments with sub-millisecond time resolution
Adlmann, F. A.; Gutfreund, Phillip; Ankner, John Francis; ...
2015-02-01
Neutron scattering techniques offer several unique opportunities in materials research. However, most neutron scattering experiments suffer from the limited flux available at current facilities. This limitation becomes even more severe if time-resolved or kinetic experiments are performed. A new method has been developed which overcomes these limitations when a reversible process is studied, without any compromise on resolution or beam intensity. We demonstrate that, by recording in absolute time the neutron detector events linked to an excitation, information can be resolved on sub-millisecond timescales. Specifically, the concept of the method is demonstrated by neutron reflectivity measurements in time-of-flight mode atmore » the Liquids Reflectometer located at the Spallation Neutron Source, Oak Ridge National Laboratory, Tennessee, USA, combined with in situ rheometry. Finally, the opportunities and limitations of this new technique are evaluated by investigations of a micellar polymer solution offering excellent scattering contrast combined with high sensitivity to shear.« less
Tracking individual membrane proteins and their biochemistry: The power of direct observation.
Barden, Adam O; Goler, Adam S; Humphreys, Sara C; Tabatabaei, Samaneh; Lochner, Martin; Ruepp, Marc-David; Jack, Thomas; Simonin, Jonathan; Thompson, Andrew J; Jones, Jeffrey P; Brozik, James A
2015-11-01
The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.
The High Time Resolution Universe surveys for pulsars and fast transients
NASA Astrophysics Data System (ADS)
Keith, Michael J.
2013-03-01
The High Time Resolution Universe survey for pulsars and transients is the first truly all-sky pulsar survey, taking place at the Parkes Radio Telescope in Australia and the Effelsberg Radio Telescope in Germany. Utilising multibeam receivers with custom built all-digital recorders the survey targets the fastest millisecond pulsars and radio transients on timescales of 64 μs to a few seconds. The new multibeam digital filter-bank system at has a factor of eight improvement in frequency resolution over previous Parkes multibeam surveys, allowing us to probe further into the Galactic plane for short duration signals. The survey is split into low, mid and high Galactic latitude regions. The mid-latitude portion of the southern hemisphere survey is now completed, discovering 107 previously unknown pulsars, including 26 millisecond pulsars. To date, the total number of discoveries in the combined survey is 135 and 29 MSPs These discoveries include the first magnetar to be discovered by it's radio emission, unusual low-mass binaries, gamma-ray pulsars and pulsars suitable for pulsar timing array experiments.
Temporal Precision of Neuronal Information in a Rapid Perceptual Judgment
Ghose, Geoffrey M.; Harrison, Ian T.
2009-01-01
In many situations, such as pedestrians crossing a busy street or prey evading predators, rapid decisions based on limited perceptual information are critical for survival. The brevity of these perceptual judgments constrains how neuronal signals are integrated or pooled over time because the underlying sequence of processes, from sensation to perceptual evaluation to motor planning and execution, all occur within several hundred milliseconds. Because most previous physiological studies of these processes have relied on tasks requiring considerably longer temporal integration, the neuronal basis of such rapid decisions remains largely unexplored. In this study, we examine the temporal precision of neuronal activity associated with a rapid perceptual judgment. We find that the activity of individual neurons over tens of milliseconds can reliably convey information about sensory events and was well correlated with the animals' judgments. There was a strong correlation between sensory reliability and the correlation with behavioral choice, suggesting that rapid decisions were preferentially based on the most reliable sensory signals. We also find that a simple model in which the responses of a small number of individual neurons (<5) are summed can completely explain behavioral performance. These results suggest that neuronal circuits are sufficiently precise to allow for cognitive decisions to be based on small numbers of action potentials from highly reliable neurons. PMID:19109454
Temporal precision of neuronal information in a rapid perceptual judgment.
Ghose, Geoffrey M; Harrison, Ian T
2009-03-01
In many situations, such as pedestrians crossing a busy street or prey evading predators, rapid decisions based on limited perceptual information are critical for survival. The brevity of these perceptual judgments constrains how neuronal signals are integrated or pooled over time because the underlying sequence of processes, from sensation to perceptual evaluation to motor planning and execution, all occur within several hundred milliseconds. Because most previous physiological studies of these processes have relied on tasks requiring considerably longer temporal integration, the neuronal basis of such rapid decisions remains largely unexplored. In this study, we examine the temporal precision of neuronal activity associated with a rapid perceptual judgment. We find that the activity of individual neurons over tens of milliseconds can reliably convey information about sensory events and was well correlated with the animals' judgments. There was a strong correlation between sensory reliability and the correlation with behavioral choice, suggesting that rapid decisions were preferentially based on the most reliable sensory signals. We also find that a simple model in which the responses of a small number of individual neurons (<5) are summed can completely explain behavioral performance. These results suggest that neuronal circuits are sufficiently precise to allow for cognitive decisions to be based on small numbers of action potentials from highly reliable neurons.
Smoke and mirrors: Ultra-rapid-scan FT-IR spectrometry
NASA Astrophysics Data System (ADS)
Manning, C. J.
1998-06-01
Fourier transform-infrared spectrometers have dominated the marketplace and the experimental literature of vibrational spectroscopy for almost three decades. These versatile instruments have been applied to a wide variety of measurements in both industrial and research settings. There has been, however, an ongoing need for enhanced time resolution. Limitations of time resolution in FT-IR measurements arise from the modulation frequencies intrinsic to the spectral multiplexing. Events which are slower than the minimum scan time, about 40 milliseconds at 4-cm-1 resolution, can be readily monitored with conventional instrumentation. For shorter transients, various step-scan, stroboscopic and asynchronous methods have been demonstrated to provide excellent time resolution, down to nanoseconds, but these approaches are limited to events which can be repeated many times with minimal variations. Some of these methods are also susceptible to low-frequency noise sources. The intrinsic scan time of conventional FT-IR spectrometers is limited by the force that can be applied to the moving mirror. In commercial systems the moving mirror is invariably driven by a voice coil linear motor. The maximum force that can be exerted by the voice coil is sharply limited to a few Newtons. It is desirable to decrease the scan time by a large factor, but the required force scales as the square of the scan rate, while the voltage applied to the coil must scale as the cube of the rate. A more suitable approach to very-rapid-scan FT-IR spectrometry may be the use of rotating optical components which do not have to turn around at the end of travel. There is, however, an apparent symmetry mismatch between rotating elements and the nominally planar wavefronts in a Michelson interferometer. In spite of the mismatch, numerous interferometer designs based on rotating elements have been proposed and demonstrated. Some of these designs are suitable for operation with scan times from tens of milliseconds to milliseconds, and perhaps faster, at 4-cm-1 resolution. A novel interferometer design utilizing a single-sided precessing disk mirror allows a complete interferogram to be measured in 1 millisecond or less. A prototype instrument of this design has been constructed and tested. One application reported here is the measurement of a transient combustion event. While combustion reactions can be conveniently repeated under some circumstances, such as with gas-phase reactants, the shot-to-shot variation is unacceptably large for step-scan measurements. Preliminary data, illustrating operation and performance of the system, are presented. It is thought that the high modulation frequencies have resulted in superior rejection of multiplicative noise.
Weitschies, Werner; Blume, Henning; Mönnikes, Hubert
2010-01-01
Knowledge about the performance of dosage forms in the gastrointestinal tract is essential for the development of new oral delivery systems, as well as for the choice of the optimal formulation technology. Magnetic Marker Monitoring (MMM) is an imaging technology for the investigation of the behaviour of solid oral dosage forms within the gastrointestinal tract, which is based on the labelling of solid dosage forms as a magnetic dipole and determination of the location, orientation and strength of the dipole after oral administration using measurement equipment and localization methods that are established in biomagnetism. MMM enables the investigation of the performance of solid dosage forms in the gastrointestinal tract with a temporal resolution in the range of a few milliseconds and a spatial resolution in 3D in the range of some millimetres. Thereby, MMM provides real-time tracking of dosage forms in the gastrointestinal tract. MMM is also suitable for the determination of dosage form disintegration and for quantitative measurement of in vivo drug release in case of appropriate extended release dosage forms like hydrogel-forming matrix tablets. The combination of MMM with pharmacokinetic measurements (pharmacomagnetography) enables the determination of in vitro-in vivo correlations (IVIC) and the delineation of absorption sites in the gastrointestinal tract. Copyright 2009 Elsevier B.V. All rights reserved.
Digital holographic interferometry for characterizing deformable mirrors in aero-optics
NASA Astrophysics Data System (ADS)
Trolinger, James D.; Hess, Cecil F.; Razavi, Payam; Furlong, Cosme
2016-08-01
Measuring and understanding the transient behavior of a surface with high spatial and temporal resolution are required in many areas of science. This paper describes the development and application of a high-speed, high-dynamic range, digital holographic interferometer for high-speed surface contouring with fractional wavelength precision and high-spatial resolution. The specific application under investigation here is to characterize deformable mirrors (DM) employed in aero-optics. The developed instrument was shown capable of contouring a deformable mirror with extremely high-resolution at frequencies exceeding 40 kHz. We demonstrated two different procedures for characterizing the mechanical response of a surface to a wide variety of input forces, one that employs a high-speed digital camera and a second that employs a low-speed, low-cost digital camera. The latter is achieved by cycling the DM actuators with a step input, producing a transient that typically lasts up to a millisecond before reaching equilibrium. Recordings are made at increasing times after the DM initiation from zero to equilibrium to analyze the transient. Because the wave functions are stored and reconstructable, they can be compared with each other to produce contours including absolute, difference, and velocity. High-speed digital cameras recorded the wave functions during a single transient at rates exceeding 40 kHz. We concluded that either method is fully capable of characterizing a typical DM to the extent required by aero-optical engineers.
Applications of nanopipettes in bionanotechnology.
Ying, Liming
2009-08-01
At present, technical hurdles remain in probing biochemical processes in living cells and organisms at nanometre spatial resolution, millisecond time resolution and with high specificity and single-molecule sensitivity. Owing to its unique shape, size and electrical properties, the nanopipette has been used to obtain high-resolution topographic images of live cells under physiological conditions, and to create nanoscale features by controlled delivery of biomolecules. In the present paper, I discuss recent progress in the development of a family of new methods for nanosensing and nanomanipulation using nanopipettes.
Intertrial auditory neural stability supports beat synchronization in preschoolers
Carr, Kali Woodruff; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina
2016-01-01
The ability to synchronize motor movements along with an auditory beat places stringent demands on the temporal processing and sensorimotor integration capabilities of the nervous system. Links between millisecond-level precision of auditory processing and the consistency of sensorimotor beat synchronization implicate fine auditory neural timing as a mechanism for forming stable internal representations of, and behavioral reactions to, sound. Here, for the first time, we demonstrate a systematic relationship between consistency of beat synchronization and trial-by-trial stability of subcortical speech processing in preschoolers (ages 3 and 4 years old). We conclude that beat synchronization might provide a useful window into millisecond-level neural precision for encoding sound in early childhood, when speech processing is especially important for language acquisition and development. PMID:26760457
Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork
Lenne, Pierre-François; Wawrezinieck, Laure; Conchonaud, Fabien; Wurtz, Olivier; Boned, Annie; Guo, Xiao-Jun; Rigneault, Hervé; He, Hai-Tao; Marguet, Didier
2006-01-01
It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (∅<120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane. PMID:16858413
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karim, Ayman M.; Al Hasan, Naila M.; Ivanov, Sergei A.
2015-06-11
In this paper we show that the temporal separation of nucleation and growth is not a necessary condition for the colloidal synthesis of monodisperse nanoparticles. The synthesis mechanism of Pd nanoparticles was determined by in situ XAFS and SAXS in a microfluidic reactor capable of millisecond up to an hour time resolution. The SAXS results showed two autocatalytic growth phases, a fast growth phase followed by a very slow growth phase. The steady increase in the number of particles throughout the two growth phases indicates the synthesis is limited by slow continuous nucleation. The transition from fast to slow growthmore » was caused by rapid increase in bonding with the capping agent as shown by XAFS. Based on this fundamental understanding of the synthesis mechanism, we show that 1 nm monodisperse Pd nanoparticles can be synthesized at low temperature using a strong binding capping agent such as trioctylphosphine (TOP).« less
All-Optical Electrophysiology for Disease Modeling and Pharmacological Characterization of Neurons.
Werley, Christopher A; Brookings, Ted; Upadhyay, Hansini; Williams, Luis A; McManus, Owen B; Dempsey, Graham T
2017-09-11
A key challenge for establishing a phenotypic screen for neuronal excitability is measurement of membrane potential changes with high throughput and accuracy. Most approaches for probing excitability rely on low-throughput, invasive methods or lack cell-specific information. These limitations stimulated the development of novel strategies for characterizing the electrical properties of cultured neurons. Among these was the development of optogenetic technologies (Optopatch) that allow for stimulation and recording of membrane voltage signals from cultured neurons with single-cell sensitivity and millisecond temporal resolution. Neuronal activity is elicited using blue light activation of the channelrhodopsin variant 'CheRiff'. Action potentials and synaptic signals are measured with 'QuasAr', a rapid and sensitive voltage-indicating protein with near-infrared fluorescence that scales proportionately with transmembrane potential. This integrated technology of optical stimulation and recording of electrical signals enables investigation of neuronal electrical function with unprecedented scale and precision. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors
NASA Astrophysics Data System (ADS)
Tsukagoshi, Takuya; Nguyen, Thanh-Vinh; Hirayama Shoji, Kayoko; Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao
2018-04-01
Adhesive cells perceive the mechanical properties of the substrates to which they adhere, adjusting their cellular mechanical forces according to their biological characteristics. This mechanical interaction subsequently affects the growth, locomotion, and differentiation of the cell. However, little is known about the detailed mechanism that underlies this interaction between adherent cells and substrates because dynamically measuring mechanical phenomena is difficult. Here, we utilize microelectromechamical systems force sensors that can measure cellular traction forces with high temporal resolution (~2.5 µs) over long periods (~3 h). We found that the cellular dynamics reflected physical phenomena with time scales from milliseconds to hours, which contradicts the idea that cellular motion is slow. A single focal adhesion (FA) generates an average force of 7 nN, which disappears in ms via the action of trypsin-ethylenediaminetetraacetic acid. The force-changing rate obtained from our measurements suggests that the time required for an FA to decompose was nearly proportional to the force acting on the FA.
MEG-BIDS, the brain imaging data structure extended to magnetoencephalography
Niso, Guiomar; Gorgolewski, Krzysztof J.; Bock, Elizabeth; Brooks, Teon L.; Flandin, Guillaume; Gramfort, Alexandre; Henson, Richard N.; Jas, Mainak; Litvak, Vladimir; T. Moreau, Jeremy; Oostenveld, Robert; Schoffelen, Jan-Mathijs; Tadel, Francois; Wexler, Joseph; Baillet, Sylvain
2018-01-01
We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with millisecond temporal resolution and unique source imaging capabilities. So far, BIDS was a solution to organise magnetic resonance imaging (MRI) data. The nature and acquisition parameters of MRI and MEG data are strongly dissimilar. Although there is no standard data format for MEG, we propose MEG-BIDS as a principled solution to store, organise, process and share the multidimensional data volumes produced by the modality. The standard also includes well-defined metadata, to facilitate future data harmonisation and sharing efforts. This responds to unmet needs from the multimodal neuroimaging community and paves the way to further integration of other techniques in electrophysiology. MEG-BIDS builds on MRI-BIDS, extending BIDS to a multimodal data structure. We feature several data-analytics software that have adopted MEG-BIDS, and a diverse sample of open MEG-BIDS data resources available to everyone. PMID:29917016
MEG-BIDS, the brain imaging data structure extended to magnetoencephalography.
Niso, Guiomar; Gorgolewski, Krzysztof J; Bock, Elizabeth; Brooks, Teon L; Flandin, Guillaume; Gramfort, Alexandre; Henson, Richard N; Jas, Mainak; Litvak, Vladimir; T Moreau, Jeremy; Oostenveld, Robert; Schoffelen, Jan-Mathijs; Tadel, Francois; Wexler, Joseph; Baillet, Sylvain
2018-06-19
We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with millisecond temporal resolution and unique source imaging capabilities. So far, BIDS was a solution to organise magnetic resonance imaging (MRI) data. The nature and acquisition parameters of MRI and MEG data are strongly dissimilar. Although there is no standard data format for MEG, we propose MEG-BIDS as a principled solution to store, organise, process and share the multidimensional data volumes produced by the modality. The standard also includes well-defined metadata, to facilitate future data harmonisation and sharing efforts. This responds to unmet needs from the multimodal neuroimaging community and paves the way to further integration of other techniques in electrophysiology. MEG-BIDS builds on MRI-BIDS, extending BIDS to a multimodal data structure. We feature several data-analytics software that have adopted MEG-BIDS, and a diverse sample of open MEG-BIDS data resources available to everyone.
Multiplexing using synchrony in the zebrafish olfactory bulb.
Friedrich, Rainer W; Habermann, Christopher J; Laurent, Gilles
2004-08-01
In the olfactory bulb (OB) of zebrafish and other species, odors evoke fast oscillatory population activity and specific firing rate patterns across mitral cells (MCs). This activity evolves over a few hundred milliseconds from the onset of the odor stimulus. Action potentials of odor-specific MC subsets phase-lock to the oscillation, defining small and distributed ensembles within the MC population output. We found that oscillatory field potentials in the zebrafish OB propagate across the OB in waves. Phase-locked MC action potentials, however, were synchronized without a time lag. Firing rate patterns across MCs analyzed with low temporal resolution were informative about odor identity. When the sensitivity for phase-locked spiking was increased, activity patterns became progressively more informative about odor category. Hence, information about complementary stimulus features is conveyed simultaneously by the same population of neurons and can be retrieved selectively by biologically plausible mechanisms, indicating that seemingly alternative coding strategies operating on different time scales may coexist.
Bhave, Sampada; Lingala, Sajan Goud; Newell, John D; Nagle, Scott K; Jacob, Mathews
2016-06-01
The objective of this study was to increase the spatial and temporal resolution of dynamic 3-dimensional (3D) magnetic resonance imaging (MRI) of lung volumes and diaphragm motion. To achieve this goal, we evaluate the utility of the proposed blind compressed sensing (BCS) algorithm to recover data from highly undersampled measurements. We evaluated the performance of the BCS scheme to recover dynamic data sets from retrospectively and prospectively undersampled measurements. We also compared its performance against that of view-sharing, the nuclear norm minimization scheme, and the l1 Fourier sparsity regularization scheme. Quantitative experiments were performed on a healthy subject using a fully sampled 2D data set with uniform radial sampling, which was retrospectively undersampled with 16 radial spokes per frame to correspond to an undersampling factor of 8. The images obtained from the 4 reconstruction schemes were compared with the fully sampled data using mean square error and normalized high-frequency error metrics. The schemes were also compared using prospective 3D data acquired on a Siemens 3 T TIM TRIO MRI scanner on 8 healthy subjects during free breathing. Two expert cardiothoracic radiologists (R1 and R2) qualitatively evaluated the reconstructed 3D data sets using a 5-point scale (0-4) on the basis of spatial resolution, temporal resolution, and presence of aliasing artifacts. The BCS scheme gives better reconstructions (mean square error = 0.0232 and normalized high frequency = 0.133) than the other schemes in the 2D retrospective undersampling experiments, producing minimally distorted reconstructions up to an acceleration factor of 8 (16 radial spokes per frame). The prospective 3D experiments show that the BCS scheme provides visually improved reconstructions than the other schemes do. The BCS scheme provides improved qualitative scores over nuclear norm and l1 Fourier sparsity regularization schemes in the temporal blurring and spatial blurring categories. The qualitative scores for aliasing artifacts in the images reconstructed by nuclear norm scheme and BCS scheme are comparable.The comparisons of the tidal volume changes also show that the BCS scheme has less temporal blurring as compared with the nuclear norm minimization scheme and the l1 Fourier sparsity regularization scheme. The minute ventilation estimated by BCS for tidal breathing in supine position (4 L/min) and the measured supine inspiratory capacity (1.5 L) is in good correlation with the literature. The improved performance of BCS can be explained by its ability to efficiently adapt to the data, thus providing a richer representation of the signal. The feasibility of the BCS scheme was demonstrated for dynamic 3D free breathing MRI of lung volumes and diaphragm motion. A temporal resolution of ∼500 milliseconds, spatial resolution of 2.7 × 2.7 × 10 mm, with whole lung coverage (16 slices) was achieved using the BCS scheme.
NASA Astrophysics Data System (ADS)
Lerner, Eitan; Ingargiola, Antonino; Weiss, Shimon
2018-03-01
Bio-macromolecules carry out complicated functions through structural changes. To understand their mechanism of action, the structure of each step has to be characterized. While classical structural biology techniques allow the characterization of a few "structural snapshots" along the enzymatic cycle (usually of stable conformations), they do not cover all (and often fast interconverting) structures in the ensemble, where each may play an important functional role. Recently, several groups have demonstrated that structures of different conformations in solution could be solved by measuring multiple distances between different pairs of residues using single-molecule Förster resonance energy transfer (smFRET) and using them as constrains for hybrid/integrative structural modeling. However, this approach is limited in cases where the conformational dynamics is faster than the technique's temporal resolution. In this study, we combine existing tools that elucidate sub-millisecond conformational dynamics together with hybrid/integrative structural modeling to study the conformational states of the transcription bubble in the bacterial RNA polymerase-promoter open complex (RPo). We measured microsecond alternating laser excitation-smFRET of differently labeled lacCONS promoter dsDNA constructs. We used a combination of burst variance analysis, photon-by-photon hidden Markov modeling, and the FRET-restrained positioning and screening approach to identify two conformational states for RPo. The experimentally derived distances of one conformational state match the known crystal structure of bacterial RPo. The experimentally derived distances of the other conformational state have characteristics of a scrunched RPo. These findings support the hypothesis that sub-millisecond dynamics in the transcription bubble are responsible for transcription start site selection.
The High Time Resolution Radio Sky
NASA Astrophysics Data System (ADS)
Thornton, D.
2013-11-01
Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with each orbit, PSR J1729-2117 which is an unusual isolated recycled pulsar, and PSR J2322-2650 which has a companion of very low mass - just 7 × 10^{-4} {M}_{⊙}, amongst others. I begin this thesis with the study of these pulsars and discuss their histories. In addition, I demonstrate that optical observations of the companions to some of the newly discovered pulsars in the High Time Resolution Universe survey may result in a measurement of their age and that of the pulsar. I have discovered five new extragalactic single radio bursts, confirming them as an astronomical population. These appear to occur frequently, with a rate of 1.0^{+0.6}_{-0.5} × 10^4 sky^{-1} day^{-1}. The sources are likely at cosmological distances - with redshifts between 0.45 and 1.45, making them more than half way to the Big Bang in the most distant case. This implies their luminosities must be enormous, 10^{31} to 10^{33} J emitted in just a few milliseconds. Their source is unknown but I present an analysis of the options. I also perform a population simulation of the bursts which demonstrates how their intrinsic spectrum could be measured, even for unlocalised FRBs: early indications are that the spectral index of FRBs < 0.
NASA Astrophysics Data System (ADS)
Lin, Shengtao; Zhang, Ge; Jamburidze, Akaki; Chee, Melisse; Hau Leow, Chee; Garbin, Valeria; Tang, Meng-Xing
2018-03-01
Phase-change ultrasound contrast agent (PCCA), or nanodroplet, shows promise as an alternative to the conventional microbubble agent over a wide range of diagnostic applications. Meanwhile, high-frame-rate (HFR) ultrasound imaging with microbubbles enables unprecedented temporal resolution compared to traditional contrast-enhanced ultrasound imaging. The combination of HFR ultrasound imaging and PCCAs can offer the opportunity to observe and better understand PCCA behaviour after vaporisation captures the fast phenomenon at a high temporal resolution. In this study, we utilised HFR ultrasound at frame rates in the kilohertz range (5-20 kHz) to image native and size-selected PCCA populations immediately after vaporisation in vitro within clinical acoustic parameters. The size-selected PCCAs through filtration are shown to preserve a sub-micron-sized (mean diameter < 200 nm) population without micron-sized outliers (>1 µm) that originate from native PCCA emulsion. The results demonstrate imaging signals with different amplitudes and temporal features compared to that of microbubbles. Compared with the microbubbles, both the B-mode and pulse-inversion (PI) signals from the vaporised PCCA populations were reduced significantly in the first tens of milliseconds, while only the B-mode signals from the PCCAs were recovered during the next 400 ms, suggesting significant changes to the size distribution of the PCCAs after vaporisation. It is also shown that such recovery in signal over time is not evident when using size-selective PCCAs. Furthermore, it was found that signals from the vaporised PCCA populations are affected by the amplitude and frame rate of the HFR ultrasound imaging. Using high-speed optical camera observation (30 kHz), we observed a change in particle size in the vaporised PCCA populations exposed to the HFR ultrasound imaging pulses. These findings can further the understanding of PCCA behaviour under HFR ultrasound imaging.
Zhou, Lianjie; Chen, Nengcheng; Chen, Zeqiang
2017-01-01
The efficient data access of streaming vehicle data is the foundation of analyzing, using and mining vehicle data in smart cities, which is an approach to understand traffic environments. However, the number of vehicles in urban cities has grown rapidly, reaching hundreds of thousands in number. Accessing the mass streaming data of vehicles is hard and takes a long time due to limited computation capability and backward modes. We propose an efficient streaming spatio-temporal data access based on Apache Storm (ESDAS) to achieve real-time streaming data access and data cleaning. As a popular streaming data processing tool, Apache Storm can be applied to streaming mass data access and real time data cleaning. By designing the Spout/bolt workflow of topology in ESDAS and by developing the speeding bolt and other bolts, Apache Storm can achieve the prospective aim. In our experiments, Taiyuan BeiDou bus location data is selected as the mass spatio-temporal data source. In the experiments, the data access results with different bolts are shown in map form, and the filtered buses’ aggregation forms are different. In terms of performance evaluation, the consumption time in ESDAS for ten thousand records per second for a speeding bolt is approximately 300 milliseconds, and that for MongoDB is approximately 1300 milliseconds. The efficiency of ESDAS is approximately three times higher than that of MongoDB. PMID:28394287
Seriès, Peggy; Georges, Sébastien; Lorenceau, Jean; Frégnac, Yves
2002-11-01
Psychophysical and physiological studies suggest that long-range horizontal connections in primary visual cortex participate in spatial integration and contour processing. Until recently, little attention has been paid to their intrinsic temporal properties. Recent physiological studies indicate, however, that the propagation of activity through long-range horizontal connections is slow, with time scales comparable to the perceptual scales involved in motion processing. Using a simple model of V1 connectivity, we explore some of the implications of this slow dynamics. The model predicts that V1 responses to a stimulus in the receptive field can be modulated by a previous stimulation, a few milliseconds to a few tens of milliseconds before, in the surround. We analyze this phenomenon and its possible consequences on speed perception, as a function of the spatio-temporal configuration of the visual inputs (relative orientation, spatial separation, temporal interval between the elements, sequence speed). We show that the dynamical interactions between feed-forward and horizontal signals in V1 can explain why the perceived speed of fast apparent motion sequences strongly depends on the orientation of their elements relative to the motion axis and can account for the range of speed for which this perceptual effect occurs (Georges, Seriès, Frégnac and Lorenceau, this issue).
Zhou, Lianjie; Chen, Nengcheng; Chen, Zeqiang
2017-04-10
The efficient data access of streaming vehicle data is the foundation of analyzing, using and mining vehicle data in smart cities, which is an approach to understand traffic environments. However, the number of vehicles in urban cities has grown rapidly, reaching hundreds of thousands in number. Accessing the mass streaming data of vehicles is hard and takes a long time due to limited computation capability and backward modes. We propose an efficient streaming spatio-temporal data access based on Apache Storm (ESDAS) to achieve real-time streaming data access and data cleaning. As a popular streaming data processing tool, Apache Storm can be applied to streaming mass data access and real time data cleaning. By designing the Spout/bolt workflow of topology in ESDAS and by developing the speeding bolt and other bolts, Apache Storm can achieve the prospective aim. In our experiments, Taiyuan BeiDou bus location data is selected as the mass spatio-temporal data source. In the experiments, the data access results with different bolts are shown in map form, and the filtered buses' aggregation forms are different. In terms of performance evaluation, the consumption time in ESDAS for ten thousand records per second for a speeding bolt is approximately 300 milliseconds, and that for MongoDB is approximately 1300 milliseconds. The efficiency of ESDAS is approximately three times higher than that of MongoDB.
Scalable Nanostructured Carbon Electrode Arrays for Enhanced Dopamine Detection.
Demuru, Silvia; Nela, Luca; Marchack, Nathan; Holmes, Steven J; Farmer, Damon B; Tulevski, George S; Lin, Qinghuang; Deligianni, Hariklia
2018-04-27
Dopamine is a neurotransmitter that modulates arousal and motivation in humans and animals. It plays a central role in the brain "reward" system. Its dysregulation is involved in several debilitating disorders such as addiction, depression, Parkinson's disease, and schizophrenia. Dopamine neurotransmission and its reuptake in extracellular space takes place with millisecond temporal and nanometer spatial resolution. Novel nanoscale electrodes are needed with superior sensitivity and improved spatial resolution to gain an improved understanding of dopamine dysregulation. We report on a scalable fabrication of dopamine neurochemical probes of a nanostructured glassy carbon that is smaller than any existing dopamine sensor and arrays of more than 6000 nanorod probes. We also report on the electrochemical dopamine sensing of the glassy carbon nanorod electrode. Compared with a carbon fiber, the nanostructured glassy carbon nanorods provide about 2× higher sensitivity per unit area for dopamine sensing and more than 5× higher signal per unit area at low concentration of dopamine, with comparable LOD and time response. These glassy carbon nanorods were fabricated by pyrolysis of a lithographically defined polymeric nanostructure with an industry standard semiconductor fabrication infrastructure. The scalable fabrication strategy offers the potential to integrate these nanoscale carbon rods with an integrated circuit control system and with other complementary metal oxide semiconductor (CMOS) compatible sensors.
You, Youbo; Bai, Lijun; Dai, Ruwei; Zhong, Chongguang; Xue, Ting; Wang, Hu; Liu, Zhenyu; Wei, Wenjuan; Tian, Jie
2012-01-01
As an ancient Chinese healing modality which has gained increasing popularity in modern society, acupuncture involves stimulation with fine needles inserted into acupoints. Both traditional literature and clinical data indicated that modulation effects largely depend on specific designated acupoints. However, scientific representations of acupoint specificity remain controversial. In the present study, considering the new findings on the sustained effects of acupuncture and its time-varied temporal characteristics, we employed an electrophysiological imaging modality namely magnetoencephalography with a temporal resolution on the order of milliseconds. Taken into account the differential band-limited signal modulations induced by acupuncture, we sought to explore whether or not stimulation at Stomach Meridian 36 (ST36) and a nearby non-meridian point (NAP) would evoke divergent functional connectivity alterations within delta, theta, alpha, beta and gamma bands. Whole-head scanning was performed on 28 healthy participants during an eyes-closed no-task condition both preceding and following acupuncture. Data analysis involved calculation of band-limited power (BLP) followed by pair-wise BLP correlations. Further averaging was conducted to obtain local and remote connectivity. Statistical analyses revealed the increased connection degree of the left temporal cortex within delta (0.5-4 Hz), beta (13-30 Hz) and gamma (30-48 Hz) bands following verum acupuncture. Moreover, we not only validated the closer linkage of the left temporal cortex with the prefrontal and frontal cortices, but further pinpointed that such patterns were more extensively distributed in the ST36 group in the delta and beta bands compared to the restriction only to the delta band for NAP. Psychophysical results for significant pain threshold elevation further confirmed the analgesic effect of acupuncture at ST36. In conclusion, our findings may provide a new perspective to lend support for the specificity of neural expression underlying acupuncture.
Merboldt, Klaus-Dietmar; Uecker, Martin; Voit, Dirk; Frahm, Jens
2011-10-01
This work demonstrates that the principles underlying phase-contrast MRI may be used to encode spatial rather than flow information along a perpendicular dimension, if this dimension contains an MRI-visible object at only one spatial location. In particular, the situation applies to 3D mapping of curved 2D structures which requires only two projection images with different spatial phase-encoding gradients. These phase-contrast gradients define the field of view and mean spin-density positions of the object in the perpendicular dimension by respective phase differences. When combined with highly undersampled radial fast low angle shot (FLASH) and image reconstruction by regularized nonlinear inversion, spatial phase-contrast MRI allows for dynamic 3D mapping of 2D structures in real time. First examples include 3D MRI movies of the acting human hand at a temporal resolution of 50 ms. With an even simpler technique, 3D maps of curved 1D structures may be obtained from only three acquisitions of a frequency-encoded MRI signal with two perpendicular phase encodings. Here, 3D MRI movies of a rapidly rotating banana were obtained at 5 ms resolution or 200 frames per second. In conclusion, spatial phase-contrast 3D MRI of 2D or 1D structures is respective two or four orders of magnitude faster than conventional 3D MRI. Copyright © 2011 Wiley-Liss, Inc.
Fast detection of extrasynaptic GABA with a whole-cell sniffer.
Christensen, Rasmus K; Petersen, Anders V; Schmitt, Nicole; Perrier, Jean-François
2014-01-01
Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a "sniffer" allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations.
Fast detection of extrasynaptic GABA with a whole-cell sniffer
Christensen, Rasmus K.; Petersen, Anders V.; Schmitt, Nicole; Perrier, Jean-François
2014-01-01
Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a “sniffer” allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations. PMID:24860433
The Neural Bases of Taxonomic and Thematic Conceptual Relations: An MEG Study
Lewis, Gwyneth A.; Poeppel, David; Murphy, Gregory L.
2015-01-01
Converging evidence from behavioral and neuroimaging studies of human concepts indicate distinct neural systems for taxonomic and thematic knowledge. A recent study of naming in aphasia found involvement of the anterior temporal lobe (ATL) during taxonomic (feature-based) processing, and involvement of the temporoparietal junction (TPJ) during thematic (function-based) processing. We conducted an online magnetoencephalography (MEG) study to examine the spatio-temporal nature of taxonomic and thematic relations. We measured participants’ brain responses to words preceded by either a taxonomically or thematically related item (e.g., cottage→castle, king→castle). In a separate experiment we collected relatedness ratings of the word pairs from participants. We examined effects of relatedness and relation type on activation in ATL and TPJ regions of interest (ROIs) using permutation t-tests to identify differences in ROI activation between conditions as well as single-trial correlational analyses to examine the millisecond-by-millisecond influence of the stimulus variables on the ROIs. Taxonomic relations strongly predicted ATL activation, and both kinds of relations influenced the TPJ. Our results further strengthen the view of the ATL's importance to taxonomic knowledge. Moreover, they provide a nuanced view of thematic relations as involving taxonomic knowledge. PMID:25582406
Jiang, Li; Wang, Yujue; Li, Na; Qiu, Weihong; Wu, Huixiang; Huo, Jianshan; Dai, Meng; Yu, Yong; Wan, Guifang; Dou, Zulin; Guo, Weiping
2017-02-01
Surgical procedures for colonic replacement of the esophagus are most commonly associated with anastomotic stricture which cause dysphagia. In this report, we describe a rare case of a patient who demonstrated dysphagia resulting from an anastomotic stricture following esophageal replacement with the colon. All the treatments to dilate the anastomotic stricture were ineffective. To investigate the new treatment strategy for a case with complicated dysphagia, clinical dysphagia evaluations, functional oral intake scale (FOIS), videofluoroscopic swallowing study as well as high-resolution manometry were used to evaluate the swallowing function of the patient before and after treatments. Comprehensive swallowing exercises included the protective airway maneuver, tongue pressure resistance feedback exercise, Masako Maneuver swallowing exercise, and the effortful swallowing exercise. Comprehensive swallowing exercises showed good effect in the patient. The FOIS score increased from level 1 to level 7. The videofluoroscopy digital analysis showed that the pharynx constriction rate was 23% and 50%, before and after treatment, respectively. The data from the high-resolution manometry displayed that: the value of the velopharyngeal pressure peak was 82.8 mmHg before treatment and 156.9 mmHg after treatment; the velopharyngeal contraction duration time was 310 milliseconds before treatment and 525 milliseconds after treatment; the value of the hypopharynx pressure peak was 53.7 mmHg before treatment and 103.2 mmHg after treatment; and the hypopharynx contraction duration time was 390 milliseconds before treatment and 1030 milliseconds after treatment. The swallowing visualization illustrated that a bolus could normally pass through the anastomotic stoma, and the bolus leakage was no longer present. The patient was able to eat various consistencies of food independently, and we were able to remove the jejunum nutrient catheter before discharging the patient. For patients with dysphagia caused by anastomotic stricture following esophageal replacement with colon, the swallowing function can be improved by enhancing the pharyngeal impetus when treatment using esophageal dilation is ineffective.
Jiang, Li; Wang, Yujue; Li, Na; Qiu, Weihong; Wu, Huixiang; Huo, Jianshan; Dai, Meng; Yu, Yong; Wan, Guifang; Dou, Zulin; Guo, Weiping
2017-01-01
Abstract Introduction: Surgical procedures for colonic replacement of the esophagus are most commonly associated with anastomotic stricture which cause dysphagia. In this report, we describe a rare case of a patient who demonstrated dysphagia resulting from an anastomotic stricture following esophageal replacement with the colon. All the treatments to dilate the anastomotic stricture were ineffective. To investigate the new treatment strategy for a case with complicated dysphagia, clinical dysphagia evaluations, functional oral intake scale (FOIS), videofluoroscopic swallowing study as well as high-resolution manometry were used to evaluate the swallowing function of the patient before and after treatments. Interventions: Comprehensive swallowing exercises included the protective airway maneuver, tongue pressure resistance feedback exercise, Masako Maneuver swallowing exercise, and the effortful swallowing exercise. Outcomes: Comprehensive swallowing exercises showed good effect in the patient. The FOIS score increased from level 1 to level 7. The videofluoroscopy digital analysis showed that the pharynx constriction rate was 23% and 50%, before and after treatment, respectively. The data from the high-resolution manometry displayed that: the value of the velopharyngeal pressure peak was 82.8 mmHg before treatment and 156.9 mmHg after treatment; the velopharyngeal contraction duration time was 310 milliseconds before treatment and 525 milliseconds after treatment; the value of the hypopharynx pressure peak was 53.7 mmHg before treatment and 103.2 mmHg after treatment; and the hypopharynx contraction duration time was 390 milliseconds before treatment and 1030 milliseconds after treatment. The swallowing visualization illustrated that a bolus could normally pass through the anastomotic stoma, and the bolus leakage was no longer present. The patient was able to eat various consistencies of food independently, and we were able to remove the jejunum nutrient catheter before discharging the patient. Conclusion: For patients with dysphagia caused by anastomotic stricture following esophageal replacement with colon, the swallowing function can be improved by enhancing the pharyngeal impetus when treatment using esophageal dilation is ineffective. PMID:28178125
Studying enzymatic bioreactions in a millisecond microfluidic flow mixer
Buchegger, Wolfgang; Haller, Anna; van den Driesche, Sander; Kraft, Martin; Lendl, Bernhard; Vellekoop, Michael
2012-01-01
In this study, the pre-steady state development of enzymatic bioreactions using a microfluidic mixer is presented. To follow such reactions fast mixing of reagents (enzyme and substrate) is crucial. By using a highly efficient passive micromixer based on multilaminar flow, mixing times in the low millisecond range are reached. Four lamination layers in a shallow channel reduce the diffusion lengths to a few micrometers only, enabling very fast mixing. This was proven by confocal fluorescence measurements in the channel’s cross sectional area. Adjusting the overall flow rate in the 200 μm wide and 900 μm long mixing and observation channel makes it possible to investigate enzyme reactions over several seconds. Further, the device enables changing the enzyme/substrate ratio from 1:1 up to 3:1, while still providing high mixing efficiency, as shown for the enzymatic hydrolysis using β-galactosidase. This way, the early kinetics of the enzyme reaction at multiple enzyme/substrate concentrations can be collected in a very short time (minutes). The fast and easy handling of the mixing device makes it a very powerful and convenient instrument for millisecond temporal analysis of bioreactions. PMID:22662071
McKinstry, Jeffrey L; Edelman, Gerald M
2013-01-01
Animal behavior often involves a temporally ordered sequence of actions learned from experience. Here we describe simulations of interconnected networks of spiking neurons that learn to generate patterns of activity in correct temporal order. The simulation consists of large-scale networks of thousands of excitatory and inhibitory neurons that exhibit short-term synaptic plasticity and spike-timing dependent synaptic plasticity. The neural architecture within each area is arranged to evoke winner-take-all (WTA) patterns of neural activity that persist for tens of milliseconds. In order to generate and switch between consecutive firing patterns in correct temporal order, a reentrant exchange of signals between these areas was necessary. To demonstrate the capacity of this arrangement, we used the simulation to train a brain-based device responding to visual input by autonomously generating temporal sequences of motor actions.
Tay, Yong-Kwang; Tan, Siew-Kiang
2012-02-01
The pulsed dye laser (PDL) using varying fluences and pulse durations have been used to treat hemangiomas. This study aims to examine the efficacy and safety of the 595-nm PDL for the treatment of infantile hemangiomas using short (1.5-3 milliseconds) versus long (10 milliseconds) pulse durations and high fluences. This is a retrospective study of patients with hemangiomas (n = 23) treated with the 595-nm PDL from 2003 to 2007. The parameters used for the short pulse duration group (n = 15) were 7-mm spot size, fluence 10-13.5 J/cm(2) and dynamic cooling device (DCD) spray duration of 50 milliseconds and delay of 30 milliseconds. For the long pulse duration group (n = 8), parameters were 7-mm spot size, fluence 10.5-14.5 J/cm(2) and DCD spray duration of 40 milliseconds and delay of 20 milliseconds. The number of treatments required to achieve complete or near complete resolution of the hemangioma ranged from 3 to 14 for the short pulse duration group (mean: 8) and for the long pulse duration group, 4-14 treatments (mean: 9). For both groups, more treatments were needed to achieve clearance of mixed hemangiomas (n = 13) compared to superficial hemangiomas (n = 10) (on average, 4-5 treatments more). Erythema, edema, and purpura lasted for about a week in the short pulse duration group but only 2 days in the long pulse duration group. There was no ulceration or hypertrophic scarring noted in both groups. Both short and long pulse durations using moderately high fluences are equally effective in the treatment of infantile hemangiomas. Shorter pulse durations had a slightly higher incidence of side effects compared to longer pulse duration in our patients with darker phototypes. Hemangiomas are tumors with relatively large diameter blood vessels and this provides the basis for the use of longer pulse durations. Copyright © 2012 Wiley Periodicals, Inc.
Han, Xue; Boyden, Edward S.
2007-01-01
The quest to determine how precise neural activity patterns mediate computation, behavior, and pathology would be greatly aided by a set of tools for reliably activating and inactivating genetically targeted neurons, in a temporally precise and rapidly reversible fashion. Having earlier adapted a light-activated cation channel, channelrhodopsin-2 (ChR2), for allowing neurons to be stimulated by blue light, we searched for a complementary tool that would enable optical neuronal inhibition, driven by light of a second color. Here we report that targeting the codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo) to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light. We show that trains of yellow and blue light pulses can drive high-fidelity sequences of hyperpolarizations and depolarizations in neurons simultaneously expressing yellow light-driven Halo and blue light-driven ChR2, allowing for the first time manipulations of neural synchrony without perturbation of other parameters such as spiking rates. The Halo/ChR2 system thus constitutes a powerful toolbox for multichannel photoinhibition and photostimulation of virally or transgenically targeted neural circuits without need for exogenous chemicals, enabling systematic analysis and engineering of the brain, and quantitative bioengineering of excitable cells. PMID:17375185
Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David
2015-02-01
Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals--over a range of time scales from milliseconds to seconds--renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own 'privileged' temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. Copyright © 2014 Elsevier B.V. All rights reserved.
Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David
2014-01-01
Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals - over a range of time scales from milliseconds to seconds - renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own ‚privileged‘ temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. PMID:24956028
Solar microwave millisecond spike at 2.84 GHz
NASA Technical Reports Server (NTRS)
Fu, Qi-Jun; Jin, Sheng-Zhen; Zhao, Ren-Yang; Zheng, Le-Ping; Liu, Yu-Ying; Li, Xiao-Cong; Wang, Shu-Lan; Chen, Zhi-Jun; Hu, Chu-Min
1986-01-01
Using the high time resolution of 1 ms, the data of solar microwave millisecond spike (MMS) event was recorded more than two hundred times at the frequency of 2.84 GHz at Beijing (Peking) Observatory since May 1981. A preliminary analysis was made. It can be seen from the data that the MMS-events have a variety of the fast activities such as the dispersed and isolated spikes, the clusters of the crowded spikes, the weak spikes superimposed on the noise background, and the phenomena of absorption. The marked differences from that observed with lower time resolution are presented. Using the data, a valuable statistical analysis was made. There are close correlations between MMS-events and hard X-ray bursts, and fast drifting bursts. The MMS events are highly dependent on the type of active regions and the magnetic field configuration. It seems to be crucial to find out the accurate positions on the active region where the MMS-events happen and to make co-operative observations at different bands during the special period when specific active regions appear on the solar disk.
Laser heating of scanning probe tips for thermal near-field spectroscopy and imaging
NASA Astrophysics Data System (ADS)
O'Callahan, Brian T.; Raschke, Markus B.
2017-02-01
Spectroscopy and microscopy of the thermal near-field yield valuable insight into the mechanisms of resonant near-field heat transfer and Casimir and Casimir-Polder forces, as well as providing nanoscale spatial resolution for infrared vibrational spectroscopy. A heated scanning probe tip brought close to a sample surface can excite and probe the thermal near-field. Typically, tip temperature control is provided by resistive heating of the tip cantilever. However, this requires specialized tips with limited temperature range and temporal response. By focusing laser radiation onto AFM cantilevers, we achieve heating up to ˜1800 K, with millisecond thermal response time. We demonstrate application to thermal infrared near-field spectroscopy (TINS) by acquiring near-field spectra of the vibrational resonances of silicon carbide, hexagonal boron nitride, and polytetrafluoroethylene. We discuss the thermal response as a function of the incident excitation laser power and model the dominant cooling contributions. Our results provide a basis for laser heating as a viable approach for TINS, nanoscale thermal transport measurements, and thermal desorption nano-spectroscopy.
Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier; ...
2015-04-07
In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO 2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of themore » hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.« less
Unravelling the mysteries of sub-second biochemical processes using time-resolved mass spectrometry.
Lento, Cristina; Wilson, Derek J
2017-05-21
Many important chemical and biochemical phenomena proceed on sub-second time scales before entering equilibrium. In this mini-review, we explore the history and recent advancements of time-resolved mass spectrometry (TRMS) for the characterization of millisecond time-scale chemical reactions and biochemical processes. TRMS allows for the simultaneous tracking of multiple reactants, intermediates and products with no chromophoric species required, high sensitivity and temporal resolution. The method has most recently been used for the characterization of several short-lived reaction intermediates in rapid chemical reactions. Most of the reactions that occur in living organisms are accelerated by enzymes, with pre-steady state kinetics only attainable using time-resolved methods. TRMS has been increasingly used to monitor the conversion of substrates to products and the resulting changes to the enzyme during catalytic turnover. Early events in protein folding systems have also been elucidated, along with the characterization of dynamics and transient secondary structures in intrinsically disordered proteins. In this review, we will highlight representative examples where TRMS has been applied to study these phenomena.
Highlights and discoveries from the Chandra X-ray Observatory.
Tananbaum, H; Weisskopf, M C; Tucker, W; Wilkes, B; Edmonds, P
2014-06-01
Within 40 years of the detection of the first extra-solar x-ray source in 1962, NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond x-ray images with 100-200 eV energy resolution for energies in the range 0.08 < E < 10 keV, locating x-ray sources to high precision, detecting extremely faint sources, and obtaining high-resolution spectra of selected cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over timescales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding of topics as diverse as protoplanetary nebulae; massive stars; supernova explosions; pulsar wind nebulae; the superfluid interior of neutron stars; accretion flows around black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shayduk, Roman; Vonk, Vedran; Strempfer, Jörg
We report on the quantitative determination of the transient surface temperature of Pt(110) upon nanosecond laser pulse heating. We find excellent agreement between heat transport theory and the experimentally determined transient surface temperature as obtained from time-resolved X-ray diffraction on timescales from hundred nanoseconds to milliseconds. Exact knowledge of the surface temperature's temporal evolution after laser excitation is crucial for future pump-probe experiments at synchrotron storage rings and X-ray free electron lasers.
Human lateral geniculate nucleus and visual cortex respond to screen flicker.
Krolak-Salmon, Pierre; Hénaff, Marie-Anne; Tallon-Baudry, Catherine; Yvert, Blaise; Guénot, Marc; Vighetto, Alain; Mauguière, François; Bertrand, Olivier
2003-01-01
The first electrophysiological study of the human lateral geniculate nucleus (LGN), optic radiation, striate, and extrastriate visual areas is presented in the context of presurgical evaluation of three epileptic patients (Patients 1, 2, and 3). Visual-evoked potentials to pattern reversal and face presentation were recorded with depth intracranial electrodes implanted stereotactically. For Patient 1, electrode anatomical registration, structural magnetic resonance imaging, and electrophysiological responses confirmed the location of two contacts in the geniculate body and one in the optic radiation. The first responses peaked approximately 40 milliseconds in the LGN in Patient 1 and 60 milliseconds in the V1/V2 complex in Patients 2 and 3. Moreover, steady state visual-evoked potentials evoked by the unperceived but commonly experienced video-screen flicker were recorded in the LGN, optic radiation, and V1/V2 visual areas. This study provides topographic and temporal propagation characteristics of steady state visual-evoked potentials along human visual pathways. We discuss the possible relationship between the oscillating signal recorded in subcortical and cortical areas and the electroencephalogram abnormalities observed in patients suffering from photosensitive epilepsy, particularly video-game epilepsy. The consequences of high temporal frequency visual stimuli delivered by ubiquitous video screens on epilepsy, headaches, and eyestrain must be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovell, Jack, E-mail: jack.lovell@durham.ac.uk; Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB; Naylor, Graham
A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of themore » JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.« less
The SMM UV observations of Active Region 5395
NASA Technical Reports Server (NTRS)
Drake, Stephen A.; Gurman, Joseph B.
1989-01-01
The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) spacecraft was used extensively to study the spatial morphology and time variability of solar active regions in the far UV (at approx. wavelength of 1370 A) since July 1985. The normal spatial resolution of UVSP observations in this 2nd-order mode is 10 sec., and the highest temporal resolution is 64 milliseconds. To make a full-field, 4 min. by 4 min. image this wavelength using 5 sec. raster steps takes about 3 minutes. UVSP can also make observations of the Sun at approx. wavelength of 2790 with 3 sec. spatial resolution when operated in its 1st-order mode; a full-field image at this wavelength (a so-called SNEW image) takes about 8 minutes. UVSP made thousands of observations (mostly in 2nd-order) of AR 5395 during its transit across the visible solar hemisphere (from 7 to 19 March, inclusive). During this period, UVSP's duty cycle for observing AR 5395 was roughly 40 percent, with the remaining 60 percent of the time being fairly evenly divided between aeronomy studies of the Earth's atmosphere and dead time due to Earth occultation of the Sun. UVSP observed many of the flares tagged to AR 5395, including 26 GOES M-level flares and 3 X-level flares, one of which produced so much UV emission that the safety software of UVSP turned off the detector to avoid damage due to saturation. Images and light curves of some of the more spectacular of the AR 5395 events are presented.
Gender-specific effects of emotional modulation on visual temporal order thresholds.
Liang, Wei; Zhang, Jiyuan; Bao, Yan
2015-09-01
Emotions affect temporal information processing in the low-frequency time window of a few seconds, but little is known about their effect in the high-frequency domain of some tens of milliseconds. The present study aims to investigate whether negative and positive emotional states influence the ability to discriminate the temporal order of visual stimuli, and whether gender plays a role in temporal processing. Due to the hemispheric lateralization of emotion, a hemispheric asymmetry between the left and the right visual field might be expected. Using a block design, subjects were primed with neutral, negative and positive emotional pictures before performing temporal order judgment tasks. Results showed that male subjects exhibited similarly reduced order thresholds under negative and positive emotional states, while female subjects demonstrated increased threshold under positive emotional state and reduced threshold under negative emotional state. Besides, emotions influenced female subjects more intensely than male subjects, and no hemispheric lateralization was observed. These observations indicate an influence of emotional states on temporal order processing of visual stimuli, and they suggest a gender difference, which is possibly associated with a different emotional stability.
Hierarchical organization in the temporal structure of infant-direct speech and song.
Falk, Simone; Kello, Christopher T
2017-06-01
Caregivers alter the temporal structure of their utterances when talking and singing to infants compared with adult communication. The present study tested whether temporal variability in infant-directed registers serves to emphasize the hierarchical temporal structure of speech. Fifteen German-speaking mothers sang a play song and told a story to their 6-months-old infants, or to an adult. Recordings were analyzed using a recently developed method that determines the degree of nested clustering of temporal events in speech. Events were defined as peaks in the amplitude envelope, and clusters of various sizes related to periods of acoustic speech energy at varying timescales. Infant-directed speech and song clearly showed greater event clustering compared with adult-directed registers, at multiple timescales of hundreds of milliseconds to tens of seconds. We discuss the relation of this newly discovered acoustic property to temporal variability in linguistic units and its potential implications for parent-infant communication and infants learning the hierarchical structures of speech and language. Copyright © 2017 Elsevier B.V. All rights reserved.
Optogenetic approaches to treat epilepsy.
Wykes, Robert C; Kullmann, Dimitri M; Pavlov, Ivan; Magloire, Vincent
2016-02-15
Novel treatments for drug-resistant epilepsy are required. Optogenetics is a combination of optical and genetic methods used to control the activity of specific populations of excitable cells using light with high temporal and spatial resolution. Derived from microbial organisms, 'opsin' genes encode light-activated ion channels and pumps. Opsins can be genetically targeted to well-defined neuronal populations in mammalian brains using viral vectors. When exposed to light of an appropriate wavelength, the excitability of neurons can be increased or decreased optically on a millisecond timescale. Alternative treatments for drug-resistant epilepsy such as vagal, cortical or subcortical stimulation, focal cooling, callosotomy, or ketogenic diet have met with limited success, whereas optogenetic approaches have shown considerable pre-clinical promise. Several groups have reported that optogenetic approaches successfully attenuated epileptiform activity in different rodent models of epilepsy, providing proof of the principle that this approach may translate to an effective treatment for epilepsy patients. However, further studies are required to determine the optimal opsin, in which types (or subtypes) of neurons it should be expressed, and what are the most efficient temporal profiles of photostimulation. Although invasive due to the need to inject a viral vector into the brain and implant a device to deliver light to opsin-transduced neurons, this approach has the potential to be effective in suppressing spontaneous seizures while avoiding the side-effects of anti-epileptic drugs (AEDs) or the need to permanently excise regions of the brain. Optogenetic approaches may treat drug-refractory epilepsies. Copyright © 2015 Elsevier B.V. All rights reserved.
Weisz, Nathan; Obleser, Jonas
2014-01-01
Human magneto- and electroencephalography (M/EEG) are capable of tracking brain activity at millisecond temporal resolution in an entirely non-invasive manner, a feature that offers unique opportunities to uncover the spatiotemporal dynamics of the hearing brain. In general, precise synchronisation of neural activity within as well as across distributed regions is likely to subserve any cognitive process, with auditory cognition being no exception. Brain oscillations, in a range of frequencies, are a putative hallmark of this synchronisation process. Embedded in a larger effort to relate human cognition to brain oscillations, a field of research is emerging on how synchronisation within, as well as between, brain regions may shape auditory cognition. Combined with much improved source localisation and connectivity techniques, it has become possible to study directly the neural activity of auditory cortex with unprecedented spatio-temporal fidelity and to uncover frequency-specific long-range connectivities across the human cerebral cortex. In the present review, we will summarise recent contributions mainly of our laboratories to this emerging domain. We present (1) a more general introduction on how to study local as well as interareal synchronisation in human M/EEG; (2) how these networks may subserve and influence illusory auditory perception (clinical and non-clinical) and (3) auditory selective attention; and (4) how oscillatory networks further reflect and impact on speech comprehension. This article is part of a Special Issue entitled Human Auditory Neuroimaging. Copyright © 2013 Elsevier B.V. All rights reserved.
Lipidic cubic phase serial millisecond crystallography using synchrotron radiation
Nogly, Przemyslaw; James, Daniel; Wang, Dingjie; White, Thomas A.; Zatsepin, Nadia; Shilova, Anastasya; Nelson, Garrett; Liu, Haiguang; Johansson, Linda; Heymann, Michael; Jaeger, Kathrin; Metz, Markus; Wickstrand, Cecilia; Wu, Wenting; Båth, Petra; Berntsen, Peter; Oberthuer, Dominik; Panneels, Valerie; Cherezov, Vadim; Chapman, Henry; Schertler, Gebhard; Neutze, Richard; Spence, John; Moraes, Isabel; Burghammer, Manfred; Standfuss, Joerg; Weierstall, Uwe
2015-01-01
Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR) at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway. PMID:25866654
An FPGA-based bolometer for the MAST-U Super-X divertor.
Lovell, Jack; Naylor, Graham; Field, Anthony; Drewelow, Peter; Sharples, Ray
2016-11-01
A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of the JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.
NASA Astrophysics Data System (ADS)
Duten, X.; Redolfi, M.; Aggadi, N.; Vega, A.; Hassouni, K.
2011-10-01
This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.
Observations of potential ultra high energy gamma-ray sources above 10(15) eV
NASA Technical Reports Server (NTRS)
Lambert, A.; Lloyd-Evans, J.; Perrett, J. C.; Watson, A. A.; West, A. A.
1985-01-01
The Haverah Park 50 m water-Cerenkov array has been used to examine a number of periodic sources for ultra high energy gamma-ray emission above 10 to the 15th power eV. The data, recorded between 1 Jan. 1979 and 31 Dec. 1984, feature a modest angular resolution of approx 3 deg with millisecond arrival time resolution post 1982. The sources investigated include the Crab pulsar, Her X-1, Au0115 + 63 and Geminga. All objects have been detected by workers in the TeV region, with varying degrees of confidence.
Muller, Lyle; Piantoni, Giovanni; Koller, Dominik; Cash, Sydney S; Halgren, Eric; Sejnowski, Terrence J
2016-01-01
During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops. Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of memory, but the specific neural mechanism for this process remains unclear. We show here that cortical spindles are spatiotemporally organized into circular wave-like patterns, organizing neuronal activity over tens of milliseconds, within the timescale for storing memories in large-scale networks across the cortex via spike-time dependent plasticity. These circular patterns repeat over hours of sleep with millisecond temporal precision, allowing reinforcement of the activity patterns through hundreds of reverberations. These results provide a novel mechanistic account for how global sleep oscillations and synaptic plasticity could strengthen networks distributed across the cortex to store coherent and integrated memories. DOI: http://dx.doi.org/10.7554/eLife.17267.001 PMID:27855061
Coalescence driven self-organization of growing nanodroplets around a microcap
NASA Astrophysics Data System (ADS)
Dyett, Brendan; Hao, Hao; Lohse, Detlef; Zhang, Xuehua
The coalescence between growing droplets is important for the surface coverage and spatial arrangements of droplets on surfaces. In this work, total internal reflection fluorescence (TIRF) microscopy is utilized to in-situ investigate the formation of nanodroplets around the rim of a polymer microcap, with sub-micron spatial and millisecond temporal resolution. We observe that the coalescence among droplets occurs frequently during their growth by solvent exchange. Our experimental results show that the position of the droplet from two merged droplets is related to the size of the parent droplets. The position of the coalesced droplet and the ratio of parent droplet sizes obey a scaling law, reflecting a coalescence preference based on the size inequality. As a result of droplet coalescence, the angles between the centroids of two neighbouring droplets increase with time, obeying a nearly symmetrical arrangement of droplets at various time intervals. The evolution of the position and number from coalescence of growing droplets is modelled. The mechanism for coalescence driven self-organization of growing droplets is general, applicable to microcaps of different sizes and droplets of different liquids. The understanding from this work may be valuable for positioning nanodroplets by nucleation and growth without using templates.
Coalescence driven self-organization of growing nanodroplets around a microcap.
Dyett, Brendan; Hao, Hao; Lohse, Detlef; Zhang, Xuehua
2018-04-04
The coalescence between growing droplets is important for the surface coverage and spatial arrangements of droplets on surfaces. In this work, total internal reflection fluorescence (TIRF) microscopy is utilized to in situ investigate the formation of nanodroplets around the rim of a polymer microcap, with sub-micron spatial and millisecond temporal resolution. We observe that the coalescence among droplets occurs frequently during their growth by solvent exchange. Our experimental results show that the position of the droplet from two merged droplets is related to the size of the parent droplets. The position of the coalesced droplet and the ratio of parent droplet sizes obey a scaling law, reflecting a coalescence preference based on the size inequality. As a result of droplet coalescence, the angles between the centroids of two neighbouring droplets increase with time, obeying a nearly symmetrical arrangement of droplets at various time intervals. The evolution of the position and number from coalescence of growing droplets is modelled. The mechanism for coalescence driven self-organization of growing droplets is general, applicable to microcaps of different sizes and droplets of different liquids. The understanding from this work may be valuable for positioning nanodroplets by nucleation and growth without using templates.
Otsu, Yo; Bormuth, Volker; Wong, Jerome; Mathieu, Benjamin; Dugué, Guillaume P; Feltz, Anne; Dieudonné, Stéphane
2008-08-30
Two-photon microscopy offers the promise of monitoring brain activity at multiple locations within intact tissue. However, serial sampling of voxels has been difficult to reconcile with millisecond timescales characteristic of neuronal activity. This is due to the conflicting constraints of scanning speed and signal amplitude. The recent use of acousto-optic deflector scanning to implement random-access multiphoton microscopy (RAMP) potentially allows to preserve long illumination dwell times while sampling multiple points-of-interest at high rates. However, the real-life abilities of RAMP microscopy regarding sensitivity and phototoxicity issues, which have so far impeded prolonged optical recordings at high frame rates, have not been assessed. Here, we describe the design, implementation and characterisation of an optimised RAMP microscope. We demonstrate the application of the microscope by monitoring calcium transients in Purkinje cells and cortical pyramidal cell dendrites and spines. We quantify the illumination constraints imposed by phototoxicity and show that stable continuous high-rate recordings can be obtained. During these recordings the fluorescence signal is large enough to detect spikes with a temporal resolution limited only by the calcium dye dynamics, improving upon previous techniques by at least an order of magnitude.
Event-related functional MRI: Past, present, and future
Rosen, Bruce R.; Buckner, Randy L.; Dale, Anders M.
1998-01-01
The past two decades have seen an enormous growth in the field of human brain mapping. Investigators have extensively exploited techniques such as positron emission tomography and MRI to map patterns of brain activity based on changes in cerebral hemodynamics. However, until recently, most studies have investigated equilibrium changes in blood flow measured over time periods upward of 1 min. The advent of high-speed MRI methods, capable of imaging the entire brain with a temporal resolution of a few seconds, allows for brain mapping based on more transient aspects of the hemodynamic response. Today it is now possible to map changes in cerebrovascular parameters essentially in real time, conferring the ability to observe changes in brain state that occur over time periods of seconds. Furthermore, because robust hemodynamic alterations are detectable after neuronal stimuli lasting only a few tens of milliseconds, a new class of task paradigms designed to measure regional responses to single sensory or cognitive events can now be studied. Such “event related” functional MRI should provide for fundamentally new ways to interrogate brain function, and allow for the direct comparison and ultimately integration of data acquired by using more traditional behavioral and electrophysiological methods. PMID:9448240
Learning and recognition of tactile temporal sequences by mice and humans
Bale, Michael R; Bitzidou, Malamati; Pitas, Anna; Brebner, Leonie S; Khazim, Lina; Anagnou, Stavros T; Stevenson, Caitlin D; Maravall, Miguel
2017-01-01
The world around us is replete with stimuli that unfold over time. When we hear an auditory stream like music or speech or scan a texture with our fingertip, physical features in the stimulus are concatenated in a particular order. This temporal patterning is critical to interpreting the stimulus. To explore the capacity of mice and humans to learn tactile sequences, we developed a task in which subjects had to recognise a continuous modulated noise sequence delivered to whiskers or fingertips, defined by its temporal patterning over hundreds of milliseconds. GO and NO-GO sequences differed only in that the order of their constituent noise modulation segments was temporally scrambled. Both mice and humans efficiently learned tactile sequences. Mouse sequence recognition depended on detecting transitions in noise amplitude; animals could base their decision on the earliest information available. Humans appeared to use additional cues, including the duration of noise modulation segments. DOI: http://dx.doi.org/10.7554/eLife.27333.001 PMID:28812976
Probing interval timing with scalp-recorded electroencephalography (EEG).
Ng, Kwun Kei; Penney, Trevor B
2014-01-01
Humans, and other animals, are able to easily learn the durations of events and the temporal relationships among them in spite of the absence of a dedicated sensory organ for time. This chapter summarizes the investigation of timing and time perception using scalp-recorded electroencephalography (EEG), a non-invasive technique that measures brain electrical potentials on a millisecond time scale. Over the past several decades, much has been learned about interval timing through the examination of the characteristic features of averaged EEG signals (i.e., event-related potentials, ERPs) elicited in timing paradigms. For example, the mismatch negativity (MMN) and omission potential (OP) have been used to study implicit and explicit timing, respectively, the P300 has been used to investigate temporal memory updating, and the contingent negative variation (CNV) has been used as an index of temporal decision making. In sum, EEG measures provide biomarkers of temporal processing that allow researchers to probe the cognitive and neural substrates underlying time perception.
The influence of lexical statistics on temporal lobe cortical dynamics during spoken word listening
Cibelli, Emily S.; Leonard, Matthew K.; Johnson, Keith; Chang, Edward F.
2015-01-01
Neural representations of words are thought to have a complex spatio-temporal cortical basis. It has been suggested that spoken word recognition is not a process of feed-forward computations from phonetic to lexical forms, but rather involves the online integration of bottom-up input with stored lexical knowledge. Using direct neural recordings from the temporal lobe, we examined cortical responses to words and pseudowords. We found that neural populations were not only sensitive to lexical status (real vs. pseudo), but also to cohort size (number of words matching the phonetic input at each time point) and cohort frequency (lexical frequency of those words). These lexical variables modulated neural activity from the posterior to anterior temporal lobe, and also dynamically as the stimuli unfolded on a millisecond time scale. Our findings indicate that word recognition is not purely modular, but relies on rapid and online integration of multiple sources of lexical knowledge. PMID:26072003
NASA Technical Reports Server (NTRS)
Cezairliyan, Ared
1993-01-01
Rapid (subsecond) heating techniques developed at the National Institute of Standards and Technology for the measurements of selected thermophysical and related properties of metals and alloys at high temperatures (above 1000 C) are described. The techniques are based on rapid resistive self-heating of the specimen from room temperature to the desired high temperature in short times and measuring the relevant experimental quantities, such as electrical current through the specimen, voltage across the specimen, specimen temperature, length, etc., with appropriate time resolution. The first technique, referred to as the millisecond-resolution technique, is for measurements on solid metals and alloys in the temperature range 1000 C to the melting temperature of the specimen. It utilizes a heavy battery bank for the energy source, and the total heating time of the specimen is typically in the range of 100-1000 ms. Data are recorded digitally every 0.5 ms with a full-scale resolution of about one part in 8000. The properties that can be measured with this system are as follows: specific heat, enthalpy, thermal expansion, electrical resistivity, normal spectral emissivity, hemispherical total emissivity, temperature and energy of solid-solid phase transformations, and melting temperature (solidus). The second technique, referred to as the microsecond-resolution technique, is for measurements on liquid metals and alloys in the temperature range 1200 to 6000 C. It utilizes a capacitor bank for the energy source, and the total heating time of the specimen is typically in the range 50-500 micro-s. Data are recorded digitally every 0.5 micro-s with a full-scale resolution of about one part in 4000. The properties that can be measured with this system are: melting temperature (solidus and liquidus), heat of fusion, specific heat, enthalpy, and electrical resistivity. The third technique is for measurements of the surface tension of liquid metals and alloys at their melting temperature. It utilizes a modified millisecond-resolution heating system designed for use in a microgravity environment.
NASA Astrophysics Data System (ADS)
Popov, M. V.; Soglasnov, V. A.; Kondrat'ev, V. I.; Kostyuk, S. V.
2004-02-01
We performed polarization observations of giant radio pulses from the millisecond pulsar B1937+21. The observations were carried out in July 2002 with the 64-m Kalyazin radio telescope at a frequency of 600 MHz in two polarization channels with left- and right-hand circular polarizations (RCP and LCP). We used the S2 data acquisition system with a time resolution of 125 ns. The duration of an observing session was 20 min. We detected twelve giant radio pulses with peak flux densities higher than 1000 Jy; five and seven of these pulses appeared in the RCP and LCP channels, respectively. We found no event that exceeded the established detection threshold simultaneously in the two polarization channels. Thus, we may conclude that the detected giant pulses have a high degree of circular polarization, with the frequency of occurrence of RCP and LCP pulses being the same.
Real-time data collection in Linux: a case study.
Finney, S A
2001-05-01
Multiuser UNIX-like operating systems such as Linux are often considered unsuitable for real-time data collection because of the potential for indeterminate timing latencies resulting from preemptive scheduling. In this paper, Linux is shown to be fully adequate for precisely controlled programming with millisecond resolution or better. The Linux system calls that subserve such timing control are described and tested and then utilized in a MIDI-based program for tapping and music performance experiments. The timing of this program, including data input and output, is shown to be accurate at the millisecond level. This demonstrates that Linux, with proper programming, is suitable for real-time experiment software. In addition, the detailed description and test of both the operating system facilities and the application program itself may serve as a model for publicly documenting programming methods and software performance on other operating systems.
Serial Millisecond Crystallography of Membrane Proteins.
Jaeger, Kathrin; Dworkowski, Florian; Nogly, Przemyslaw; Milne, Christopher; Wang, Meitian; Standfuss, Joerg
2016-01-01
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a powerful method to determine high-resolution structures of pharmaceutically relevant membrane proteins. Recently, the technology has been adapted to carry out serial millisecond crystallography (SMX) at synchrotron sources, where beamtime is more abundant. In an injector-based approach, crystals grown in lipidic cubic phase (LCP) or embedded in viscous medium are delivered directly into the unattenuated beam of a microfocus beamline. Pilot experiments show the application of microjet-based SMX for solving the structure of a membrane protein and compatibility of the method with de novo phasing. Planned synchrotron upgrades, faster detectors and software developments will go hand-in-hand with developments at free-electron lasers to provide a powerful methodology for solving structures from microcrystals at room temperature, ligand screening or crystal optimization for time-resolved studies with minimal or no radiation damage.
Brodbeck, Christian; Presacco, Alessandro; Simon, Jonathan Z
2018-05-15
Human experience often involves continuous sensory information that unfolds over time. This is true in particular for speech comprehension, where continuous acoustic signals are processed over seconds or even minutes. We show that brain responses to such continuous stimuli can be investigated in detail, for magnetoencephalography (MEG) data, by combining linear kernel estimation with minimum norm source localization. Previous research has shown that the requirement to average data over many trials can be overcome by modeling the brain response as a linear convolution of the stimulus and a kernel, or response function, and estimating a kernel that predicts the response from the stimulus. However, such analysis has been typically restricted to sensor space. Here we demonstrate that this analysis can also be performed in neural source space. We first computed distributed minimum norm current source estimates for continuous MEG recordings, and then computed response functions for the current estimate at each source element, using the boosting algorithm with cross-validation. Permutation tests can then assess the significance of individual predictor variables, as well as features of the corresponding spatio-temporal response functions. We demonstrate the viability of this technique by computing spatio-temporal response functions for speech stimuli, using predictor variables reflecting acoustic, lexical and semantic processing. Results indicate that processes related to comprehension of continuous speech can be differentiated anatomically as well as temporally: acoustic information engaged auditory cortex at short latencies, followed by responses over the central sulcus and inferior frontal gyrus, possibly related to somatosensory/motor cortex involvement in speech perception; lexical frequency was associated with a left-lateralized response in auditory cortex and subsequent bilateral frontal activity; and semantic composition was associated with bilateral temporal and frontal brain activity. We conclude that this technique can be used to study the neural processing of continuous stimuli in time and anatomical space with the millisecond temporal resolution of MEG. This suggests new avenues for analyzing neural processing of naturalistic stimuli, without the necessity of averaging over artificially short or truncated stimuli. Copyright © 2018 Elsevier Inc. All rights reserved.
What is special about Cygnus X-1?. [evidence for a black hole
NASA Technical Reports Server (NTRS)
Boldt, E. A.; Holt, S. S.; Rothschild, R. E.; Serlemitsos, P. J.
1974-01-01
The X-ray evidence from several experiments is reviewed, with special emphasis on those characteristics which appear to distinguish Cygnus X-1 from other compact X-ray emitting objects. Data are examined within the context of a model in which millisecond bursts are superposed upon shot-noise fluctuations arising from events of durations on the order of a second. Possible spectral-temporal correlations are investigated which provide additional evidence that Cygnus X-1 is very likely a black hole.
Lunar Occultations as a Simple Tool for High Angular Resolution Astronomy
NASA Astrophysics Data System (ADS)
Richichi, Andrea
1999-08-01
At the turn of the millennium, modern astronomy is seeing the creation of several new impressive facilities. Among them, large telescopes and long baseline interferometers are beginning to break the limitations imposed by seeing and to push our angular resolution limits at the level of the millisecond of arc. In this race for the state-of-the-art in angular resolution, one should not forget the considerable aid which has been provided for some decades by the more humble technique of lunar occultations. Although burdened with obvious limitations in the choice of the sources, this latter method has two main features that can make it attractive for the modern amateur astronomer: it is simple, and can be implemented also at realtively small telescopes.
Wittmann, Marc
2011-01-01
It has been suggested that perception and action can be understood as evolving in temporal epochs or sequential processing units. Successive events are fused into units forming a unitary experience or “psychological present.” Studies have identified several temporal integration levels on different time scales which are fundamental for our understanding of behavior and subjective experience. In recent literature concerning the philosophy and neuroscience of consciousness these separate temporal processing levels are not always precisely distinguished. Therefore, empirical evidence from psychophysics and neuropsychology on these distinct temporal processing levels is presented and discussed within philosophical conceptualizations of time experience. On an elementary level, one can identify a functional moment, a basic temporal building block of perception in the range of milliseconds that defines simultaneity and succession. Below a certain threshold temporal order is not perceived, individual events are processed as co-temporal. On a second level, an experienced moment, which is based on temporal integration of up to a few seconds, has been reported in many qualitatively different experiments in perception and action. It has been suggested that this segmental processing mechanism creates temporal windows that provide a logistical basis for conscious representation and the experience of nowness. On a third level of integration, continuity of experience is enabled by working memory in the range of multiple seconds allowing the maintenance of cognitive operations and emotional feelings, leading to mental presence, a temporal window of an individual’s experienced presence. PMID:22022310
Clinical ophthalmic ultrasound improvements
NASA Technical Reports Server (NTRS)
Garrison, J. B.; Piro, P. A.
1981-01-01
The use of digital synthetic aperture techniques to obtain high resolution ultrasound images of eye and orbit was proposed. The parameters of the switched array configuration to reduce data collection time to a few milliseconds to avoid eye motion problems in the eye itself were established. An assessment of the effects of eye motion on the performance of the system was obtained. The principles of synthetic techniques are discussed. Likely applications are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umetani, K.; Fukushima, K.
2013-03-15
An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 {mu}m, yielding sharp images of small arteries. The exposure time has been shortened to around 2 msmore » using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 {mu}m diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 {mu}m was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct investigation of mechanisms of vascular dysfunctions.« less
Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.
Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Proskovec, Amy L; McDermott, Timothy J; Wilson, Tony W
2017-10-01
The dynamic allocation of neural resources to discrete features within a visual scene enables us to react quickly and accurately to salient environmental circumstances. A network of bilateral cortical regions is known to subserve such visuospatial attention functions; however the oscillatory and functional connectivity dynamics of information coding within this network are not fully understood. Particularly, the coding of information within prototypical attention-network hubs and the subsecond functional connections formed between these hubs have not been adequately characterized. Herein, we use the precise temporal resolution of magnetoencephalography (MEG) to define spectrally specific functional nodes and connections that underlie the deployment of attention in visual space. Twenty-three healthy young adults completed a visuospatial discrimination task designed to elicit multispectral activity in visual cortex during MEG, and the resulting data were preprocessed and reconstructed in the time-frequency domain. Oscillatory responses were projected to the cortical surface using a beamformer, and time series were extracted from peak voxels to examine their temporal evolution. Dynamic functional connectivity was then computed between nodes within each frequency band of interest. We find that visual attention network nodes are defined functionally by oscillatory frequency, that the allocation of attention to the visual space dynamically modulates functional connectivity between these regions on a millisecond timescale, and that these modulations significantly correlate with performance on a spatial discrimination task. We conclude that functional hubs underlying visuospatial attention are segregated not only anatomically but also by oscillatory frequency, and importantly that these oscillatory signatures promote dynamic communication between these hubs. Hum Brain Mapp 38:5128-5140, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Putman, William P.
2012-01-01
Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.
Temporal Resolution Needed for Auditory Communication: Measurement With Mosaic Speech
Nakajima, Yoshitaka; Matsuda, Mizuki; Ueda, Kazuo; Remijn, Gerard B.
2018-01-01
Temporal resolution needed for Japanese speech communication was measured. A new experimental paradigm that can reflect the spectro-temporal resolution necessary for healthy listeners to perceive speech is introduced. As a first step, we report listeners' intelligibility scores of Japanese speech with a systematically degraded temporal resolution, so-called “mosaic speech”: speech mosaicized in the coordinates of time and frequency. The results of two experiments show that mosaic speech cut into short static segments was almost perfectly intelligible with a temporal resolution of 40 ms or finer. Intelligibility dropped for a temporal resolution of 80 ms, but was still around 50%-correct level. The data are in line with previous results showing that speech signals separated into short temporal segments of <100 ms can be remarkably robust in terms of linguistic-content perception against drastic manipulations in each segment, such as partial signal omission or temporal reversal. The human perceptual system thus can extract meaning from unexpectedly rough temporal information in speech. The process resembles that of the visual system stringing together static movie frames of ~40 ms into vivid motion. PMID:29740295
Millisecond-timescale local network coding in the rat primary somatosensory cortex.
Eldawlatly, Seif; Oweiss, Karim G
2011-01-01
Correlation among neocortical neurons is thought to play an indispensable role in mediating sensory processing of external stimuli. The role of temporal precision in this correlation has been hypothesized to enhance information flow along sensory pathways. Its role in mediating the integration of information at the output of these pathways, however, remains poorly understood. Here, we examined spike timing correlation between simultaneously recorded layer V neurons within and across columns of the primary somatosensory cortex of anesthetized rats during unilateral whisker stimulation. We used bayesian statistics and information theory to quantify the causal influence between the recorded cells with millisecond precision. For each stimulated whisker, we inferred stable, whisker-specific, dynamic bayesian networks over many repeated trials, with network similarity of 83.3±6% within whisker, compared to only 50.3±18% across whiskers. These networks further provided information about whisker identity that was approximately 6 times higher than what was provided by the latency to first spike and 13 times higher than what was provided by the spike count of individual neurons examined separately. Furthermore, prediction of individual neurons' precise firing conditioned on knowledge of putative pre-synaptic cell firing was 3 times higher than predictions conditioned on stimulus onset alone. Taken together, these results suggest the presence of a temporally precise network coding mechanism that integrates information across neighboring columns within layer V about vibrissa position and whisking kinetics to mediate whisker movement by motor areas innervated by layer V.
Millisecond pulsars: Timekeepers of the cosmos
NASA Technical Reports Server (NTRS)
Kaspi, Victoria M.
1995-01-01
A brief discussion on the characteristics of pulsars is given followed by a review of millisecond pulsar discoveries including the very first, PRS B1937+21, discovered in 1982. Methods of timing millisecond pulsars and the accuracy of millisecond pulsars as clocks are discussed. Possible reasons for the pulse residuals, or differences between the observed and predicted pulse arrival times for millisecond pulsars, are given.
NASA Astrophysics Data System (ADS)
Aravanis, Alexander M.; Wang, Li-Ping; Zhang, Feng; Meltzer, Leslie A.; Mogri, Murtaza Z.; Schneider, M. Bret; Deisseroth, Karl
2007-09-01
Neural interface technology has made enormous strides in recent years but stimulating electrodes remain incapable of reliably targeting specific cell types (e.g. excitatory or inhibitory neurons) within neural tissue. This obstacle has major scientific and clinical implications. For example, there is intense debate among physicians, neuroengineers and neuroscientists regarding the relevant cell types recruited during deep brain stimulation (DBS); moreover, many debilitating side effects of DBS likely result from lack of cell-type specificity. We describe here a novel optical neural interface technology that will allow neuroengineers to optically address specific cell types in vivo with millisecond temporal precision. Channelrhodopsin-2 (ChR2), an algal light-activated ion channel we developed for use in mammals, can give rise to safe, light-driven stimulation of CNS neurons on a timescale of milliseconds. Because ChR2 is genetically targetable, specific populations of neurons even sparsely embedded within intact circuitry can be stimulated with high temporal precision. Here we report the first in vivo behavioral demonstration of a functional optical neural interface (ONI) in intact animals, involving integrated fiberoptic and optogenetic technology. We developed a solid-state laser diode system that can be pulsed with millisecond precision, outputs 20 mW of power at 473 nm, and is coupled to a lightweight, flexible multimode optical fiber, ~200 µm in diameter. To capitalize on the unique advantages of this system, we specifically targeted ChR2 to excitatory cells in vivo with the CaMKIIα promoter. Under these conditions, the intensity of light exiting the fiber (~380 mW mm-2) was sufficient to drive excitatory neurons in vivo and control motor cortex function with behavioral output in intact rodents. No exogenous chemical cofactor was needed at any point, a crucial finding for in vivo work in large mammals. Achieving modulation of behavior with optical control of neuronal subtypes may give rise to fundamental network-level insights complementary to what electrode methodologies have taught us, and the emerging optogenetic toolkit may find application across a broad range of neuroscience, neuroengineering and clinical questions.
Software algorithm and hardware design for real-time implementation of new spectral estimator
2014-01-01
Background Real-time spectral analyzers can be difficult to implement for PC computer-based systems because of the potential for high computational cost, and algorithm complexity. In this work a new spectral estimator (NSE) is developed for real-time analysis, and compared with the discrete Fourier transform (DFT). Method Clinical data in the form of 216 fractionated atrial electrogram sequences were used as inputs. The sample rate for acquisition was 977 Hz, or approximately 1 millisecond between digital samples. Real-time NSE power spectra were generated for 16,384 consecutive data points. The same data sequences were used for spectral calculation using a radix-2 implementation of the DFT. The NSE algorithm was also developed for implementation as a real-time spectral analyzer electronic circuit board. Results The average interval for a single real-time spectral calculation in software was 3.29 μs for NSE versus 504.5 μs for DFT. Thus for real-time spectral analysis, the NSE algorithm is approximately 150× faster than the DFT. Over a 1 millisecond sampling period, the NSE algorithm had the capability to spectrally analyze a maximum of 303 data channels, while the DFT algorithm could only analyze a single channel. Moreover, for the 8 second sequences, the NSE spectral resolution in the 3-12 Hz range was 0.037 Hz while the DFT spectral resolution was only 0.122 Hz. The NSE was also found to be implementable as a standalone spectral analyzer board using approximately 26 integrated circuits at a cost of approximately $500. The software files used for analysis are included as a supplement, please see the Additional files 1 and 2. Conclusions The NSE real-time algorithm has low computational cost and complexity, and is implementable in both software and hardware for 1 millisecond updates of multichannel spectra. The algorithm may be helpful to guide radiofrequency catheter ablation in real time. PMID:24886214
Future Directions of Structural Mass Spectrometry using Hydroxyl Radical Footprinting
Kiselar, Janna G.; Chance, Mark R.
2010-01-01
Hydroxyl radical protein footprinting coupled to mass spectrometry has been developed over the last decade and has matured to a powerful method for analyzing protein structure and dynamics. It has been successfully applied in the analysis of protein structure, protein folding, protein dynamics, and protein-protein and protein-DNA interactions. Using synchrotron radiolysis, exposures of proteins to a “white” x-ray beam for milliseconds provide sufficient oxidative modifications to surface amino acid side chains that can be easily detected and quantified by mass spectrometry. Thus, conformational changes in proteins or protein complexes can be examined using a time-resolved approach, which would be a valuable method for the study of macromolecular dynamics. In this review, we describe a new application of hydroxyl radical protein footprinting to probe the time evolution of the calcium-dependent conformational changes of gelsolin on the millisecond timescale. The data suggest a cooperative transition as multiple sites in different molecular sub-domains have similar rates of conformational change. These findings demonstrate that time-resolved protein footprinting is suitable for studies of protein dynamics that occur over periods ranging from milliseconds to seconds. In this review we also show how the structural resolution and sensitivity of the technology can be improved as well. The hydroxyl radical varies in its reactivity to different side chains by over two orders of magnitude, thus oxidation of amino acid side chains of lower reactivity are more rarely observed in such experiments. Here we demonstrate that selected reaction monitoring (SRM)-based method can be utilized for quantification of oxidized species, improving the signal to noise ratio. This expansion of the set of oxidized residues of lower reactivity will improve the overall structural resolution of the technique. This approach is also suggested as a basis for developing hypothesis driven structural mass spectrometry experiments. PMID:20812376
Continuous throughput and long-term observation of single-molecule FRET without immobilization.
Tyagi, Swati; VanDelinder, Virginia; Banterle, Niccolò; Fuertes, Gustavo; Milles, Sigrid; Agez, Morgane; Lemke, Edward A
2014-03-01
We present an automated microfluidic platform that performs multisecond observation of single molecules with millisecond time resolution while bypassing the need for immobilization procedures. With this system, we confine biomolecules to a thin excitation field by reversibly collapsing microchannels to nanochannels. We demonstrate the power of our method by studying a variety of complex nucleic acid and protein systems, including DNA Holliday junctions, nucleosomes and human transglutaminase 2.
Selective Detection of Neurotransmitters by Fluorescence and Chemiluminescence Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziqiang Wang; Edward S. Yeung
In recent years, luminescence imaging has been widely employed in neurochemical analysis. It has a number of advantages for the study of neuronal and other biological cells: (1) a particular molecular species or cellular constituent can be selectively visualized in the presence of a large excess of other species in a heterogeneous environment; (2) low concentration detection limits can be achieved because of the inherent sensitivity associated with fluorescence and chemiluminescence; (3) low excitation intensities can be used so that long-term observation can be realized while the viability of the specimen is preserved; and (4) excellent spatial resolution can bemore » obtained with the light microscope so subcellular compartments can be identified. With good sensitivity, temporal and spatial resolution, the flux of ions and molecules and the distribution and dynamics of intracellular species can be measured in real time with specific luminescence probes, substrates, or with native fluorescence. A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with CCD imaging is down to {micro}M levels of glutamate with reasonable response time. They also found that chemiluminescence associated with the ATP-dependent reaction between luciferase and luciferin can be used to image ATP at levels down to 10 nM in the millisecond time scale. Similar imaging experiments should be feasible in a broad spectrum of biological systems.« less
Santos-Cancel, Mirelis; Lazenby, Robert A; White, Ryan J
2018-06-22
In this manuscript, we employ the technique intermittent pulse amperometry (IPA) to interrogate equilibrium and kinetic target binding to the surface of electrochemical, aptamer-based (E-AB) sensors, achieving as fast as 2 ms time resolution. E-AB sensors comprise an electrode surface modified with a flexible nucleic acid aptamer tethered at the 3'-terminus with a redox-active molecule. The introduction of a target changes the conformation and flexibility of the nucleic acid, which alters the charge transfer rate of the appended redox molecule. Typically, changes in charge transfer rate within this class of sensor are monitored via voltammetric methods. Here, we demonstrate that the use of IPA enables the detection of changes in charge transfer rates (i.e., current) at times <100 μs after the application of a potential pulse. Changes in sensor current are quantitatively related to target analyte concentration and can be used to create binding isotherms. Furthermore, the application of IPA enables rapid probing of the electrochemical surface with a time resolution equivalent to as low as twice the applied potential pulse width, not previously demonstrated with traditional voltammetric techniques employed with E-AB sensors (alternating current, square wave, cyclic). To visualize binding, we developed false-color plots analogous to those used in the field of fast-scan cyclic voltammetry. The use of IPA is universal, as demonstrated with two representative small molecule E-AB sensors directed against the aminoglycoside antibiotic tobramycin and adenosine triphosphate (ATP). Intermittent pulse amperometry exhibits an unprecedented sub-microsecond temporal response and is a general method for measuring rapid sensor performance.
Fast fMRI can detect oscillatory neural activity in humans.
Lewis, Laura D; Setsompop, Kawin; Rosen, Bruce R; Polimeni, Jonathan R
2016-10-25
Oscillatory neural dynamics play an important role in the coordination of large-scale brain networks. High-level cognitive processes depend on dynamics evolving over hundreds of milliseconds, so measuring neural activity in this frequency range is important for cognitive neuroscience. However, current noninvasive neuroimaging methods are not able to precisely localize oscillatory neural activity above 0.2 Hz. Electroencephalography and magnetoencephalography have limited spatial resolution, whereas fMRI has limited temporal resolution because it measures vascular responses rather than directly recording neural activity. We hypothesized that the recent development of fast fMRI techniques, combined with the extra sensitivity afforded by ultra-high-field systems, could enable precise localization of neural oscillations. We tested whether fMRI can detect neural oscillations using human visual cortex as a model system. We detected small oscillatory fMRI signals in response to stimuli oscillating at up to 0.75 Hz within single scan sessions, and these responses were an order of magnitude larger than predicted by canonical linear models. Simultaneous EEG-fMRI and simulations based on a biophysical model of the hemodynamic response to neuronal activity suggested that the blood oxygen level-dependent response becomes faster for rapidly varying stimuli, enabling the detection of higher frequencies than expected. Accounting for phase delays across voxels further improved detection, demonstrating that identifying vascular delays will be of increasing importance with higher-frequency activity. These results challenge the assumption that the hemodynamic response is slow, and demonstrate that fMRI has the potential to map neural oscillations directly throughout the brain.
Millisecond-Scale Motor Encoding in a Cortical Vocal Area
NASA Astrophysics Data System (ADS)
Nemenman, Ilya; Tang, Claire; Chehayeb, Diala; Srivastava, Kyle; Sober, Samuel
2015-03-01
Studies of motor control have almost universally examined firing rates to investigate how the brain shapes behavior. In principle, however, neurons could encode information through the precise temporal patterning of their spike trains as well as (or instead of) through their firing rates. Although the importance of spike timing has been demonstrated in sensory systems, it is largely unknown whether timing differences in motor areas could affect behavior. We tested the hypothesis that significant information about trial-by-trial variations in behavior is represented by spike timing in the songbird vocal motor system. We found that neurons in motor cortex convey information via spike timing far more often than via spike rate and that the amount of information conveyed at the millisecond timescale greatly exceeds the information available from spike counts. These results demonstrate that information can be represented by spike timing in motor circuits and suggest that timing variations evoke differences in behavior. This work was supported in part by the National Institutes of Health, National Science Foundation, and James S. McDonnell Foundation
Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O
2016-09-12
A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.
Pressure jump relaxation setup with IR detection and millisecond time resolution
NASA Astrophysics Data System (ADS)
Schiewek, Martin; Krumova, Marina; Hempel, Günter; Blume, Alfred
2007-04-01
An instrument is described that allows the use of Fourier transform infrared (FTIR) spectroscopy as a detection system for kinetic processes after a pressure jump of up to 100bars. The pressure is generated using a high performance liquid chromatography (HPLC) pump and water as a pressure transducing medium. A flexible membrane separates the liquid sample in the IR cell from the pressure transducing medium. Two electromagnetic switching valves in the setup enable pressure jumps with a decay time of 4ms. The FTIR spectrometer is configured to measure time resolved spectra in the millisecond time regime using the rapid scan mode. All components are computer controlled. For a demonstration of the capability of the method first results on the kinetics of a phase transition between two lamellar phases of an aqueous phospholipid dispersion are presented. This combination of FTIR spectroscopy with the pressure jump relaxation technique can also be used for other systems which display cooperative transitions with concomitant volume changes.
NASA Astrophysics Data System (ADS)
Andrade, Débora M.; Clausen, Mathias P.; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E.; Hell, Stefan W.; Lagerholm, B. Christoffer; Eggeling, Christian
2015-06-01
Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes.
NASA Astrophysics Data System (ADS)
Welch, Kyle; Kumar, Santosh; Hong, Jiarong; Cheng, Xiang
2017-11-01
Understanding the 3D flow induced by microswimmers is paramount to revealing how they interact with each other and their environment. While many studies have measured 2D projections of flow fields around single microorganisms, reliable 3D measurement remains elusive due to the difficulty in imaging fast 3D fluid flows at submicron spatial and millisecond temporal scales. Here, we present a precision measurement of the 3D flow field induced by motile planktonic algae cells, Chlamydomonas reinhardtii. We manually capture and hold stationary a single alga using a micropipette, while still allowing it to beat its flagella in the breastroke pattern characteristic to C. reinhardtii. The 3D flow field around the alga is then tracked by employing fast holographic imaging on 1 um tracer particles, which leads to a spatial resolution of 100 nm along the optical axis and 40 nm in the imaging plane normal to the optical axis. We image the flow around a single alga continuously through thousands of flagellar beat cycles and aggregate that data into a complete 3D flow field. Our study demonstrates the power of holography in imaging fast complex microscopic flow structures and provides crucial information for understanding the detailed locomotion of swimming microorganisms.
Andrade, Débora M; Clausen, Mathias P; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E; Hell, Stefan W; Lagerholm, B Christoffer; Eggeling, Christian
2015-06-29
Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes.
Andrade, Débora M.; Clausen, Mathias P.; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E.; Hell, Stefan W.; Lagerholm, B. Christoffer; Eggeling, Christian
2015-01-01
Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes. PMID:26118385
Generalized analog thresholding for spike acquisition at ultralow sampling rates
He, Bryan D.; Wein, Alex; Varshney, Lav R.; Kusuma, Julius; Richardson, Andrew G.
2015-01-01
Efficient spike acquisition techniques are needed to bridge the divide from creating large multielectrode arrays (MEA) to achieving whole-cortex electrophysiology. In this paper, we introduce generalized analog thresholding (gAT), which achieves millisecond temporal resolution with sampling rates as low as 10 Hz. Consider the torrent of data from a single 1,000-channel MEA, which would generate more than 3 GB/min using standard 30-kHz Nyquist sampling. Recent neural signal processing methods based on compressive sensing still require Nyquist sampling as a first step and use iterative methods to reconstruct spikes. Analog thresholding (AT) remains the best existing alternative, where spike waveforms are passed through an analog comparator and sampled at 1 kHz, with instant spike reconstruction. By generalizing AT, the new method reduces sampling rates another order of magnitude, detects more than one spike per interval, and reconstructs spike width. Unlike compressive sensing, the new method reveals a simple closed-form solution to achieve instant (noniterative) spike reconstruction. The base method is already robust to hardware nonidealities, including realistic quantization error and integration noise. Because it achieves these considerable specifications using hardware-friendly components like integrators and comparators, generalized AT could translate large-scale MEAs into implantable devices for scientific investigation and medical technology. PMID:25904712
High speed MRI of laryngeal gestures during speech production
NASA Astrophysics Data System (ADS)
Nissenbaum, Jon; Hillman, Robert E.; Kobler, James B.; Curtin, Hugh D.; Halle, Morris; Kirsch, John E.
2002-05-01
Dynamic sequences of magnetic resonance images (MRI) of the vocal tract were obtained with a frame rate of 144 frames/second. Changes in vertical position and length of the vocal folds, both observable in the mid-sagittal plane, have been argued to play a role in consonant production in addition to their primary function in the control of vocal fundamental frequency (F0) [W. G. Ewan and R. Krones, J. Phonet. 2, 327-335 (1974); A. Lofqvist et al., Haskins Lab. Status Report Speech Res., SR-97/98, pp. 25-40, 1989], but temporal resolution of available techniques has hindered direct imaging of these articulations. A novel data acquisition sequence was used to circumvent the imaging time imposed by standard MRI (typically 100-500 ms). Images were constructed by having subjects rhythmically repeat short utterances 256 times using the same F0 contour. Sixty-four lines of MR data were sampled during each repetition, at 7 millisecond increments, yielding partial raw data sets for 64 time points. After all repetitions were completed, one frame per time point was constructed by combining raw data from the corresponding time point during every repetition. Preliminary results indicate vocal fold shortening and lowering only during voiced consonants and in production of lower F0.
NASA Astrophysics Data System (ADS)
Piffaretti, Filippo M.; Santhakumar, Kanappan; Forte, Eddy; van den Bergh, Hubert E.; Wagnières, Georges A.
2011-03-01
A new optical-fiber-based spectrofluorometer for in vivo or in vitro detection of delayed fluorescence is presented and characterized. This compact setup is designed so that it can be readily adapted for future clinical use. Optical excitation is done with a nitrogen laser-pumped, tunable dye laser, emitting in the UV-vis part of the spectrum. Excitation and luminescence signals are carried to and from the biological tissues under investigation, located out of the setup enclosure, by a single optical fiber. These measurements, as well as measurements performed without a fiber on in vitro samples in a thermostable quartz cell, in a controlled-atmosphere enclosure, are possible due to the efficient collection of the laser-induced luminescence light which is collected and focused on the detector with a high aperture parabolic mirror. The detection is based on a gated photomultiplier which allows for time-resolved measurements of the delayed fluorescence intensity. Thus, relevant luminescence lifetimes, typically in the sub-microsecond-to-millisecond range, can be measured with near total rejection of the sample's prompt fluorescence. The instrument spectral and temporal resolution, as well as its sensitivity, is characterized and measurement examples are presented. The primary application foreseen for this setup is the monitoring and adjustment of the light dose delivered during photodynamic therapy.
NASA Astrophysics Data System (ADS)
Giancardo, L.; Sánchez-Ferro, A.; Butterworth, I.; Mendoza, C. S.; Hooker, J. M.
2015-04-01
Modern digital devices and appliances are capable of monitoring the timing of button presses, or finger interactions in general, with a sub-millisecond accuracy. However, the massive amount of high resolution temporal information that these devices could collect is currently being discarded. Multiple studies have shown that the act of pressing a button triggers well defined brain areas which are known to be affected by motor-compromised conditions. In this study, we demonstrate that the daily interaction with a computer keyboard can be employed as means to observe and potentially quantify psychomotor impairment. We induced a psychomotor impairment via a sleep inertia paradigm in 14 healthy subjects, which is detected by our classifier with an Area Under the ROC Curve (AUC) of 0.93/0.91. The detection relies on novel features derived from key-hold times acquired on standard computer keyboards during an uncontrolled typing task. These features correlate with the progression to psychomotor impairment (p < 0.001) regardless of the content and language of the text typed, and perform consistently with different keyboards. The ability to acquire longitudinal measurements of subtle motor changes from a digital device without altering its functionality may allow for early screening and follow-up of motor-compromised neurodegenerative conditions, psychological disorders or intoxication at a negligible cost in the general population.
Brown, Andrew D; Tollin, Daniel J
2016-09-21
In mammals, localization of sound sources in azimuth depends on sensitivity to interaural differences in sound timing (ITD) and level (ILD). Paradoxically, while typical ILD-sensitive neurons of the auditory brainstem require millisecond synchrony of excitatory and inhibitory inputs for the encoding of ILDs, human and animal behavioral ILD sensitivity is robust to temporal stimulus degradations (e.g., interaural decorrelation due to reverberation), or, in humans, bilateral clinical device processing. Here we demonstrate that behavioral ILD sensitivity is only modestly degraded with even complete decorrelation of left- and right-ear signals, suggesting the existence of a highly integrative ILD-coding mechanism. Correspondingly, we find that a majority of auditory midbrain neurons in the central nucleus of the inferior colliculus (of chinchilla) effectively encode ILDs despite complete decorrelation of left- and right-ear signals. We show that such responses can be accounted for by relatively long windows of bilateral excitatory-inhibitory interaction, which we explicitly measure using trains of narrowband clicks. Neural and behavioral data are compared with the outputs of a simple model of ILD processing with a single free parameter, the duration of excitatory-inhibitory interaction. Behavioral, neural, and modeling data collectively suggest that ILD sensitivity depends on binaural integration of excitation and inhibition within a ≳3 ms temporal window, significantly longer than observed in lower brainstem neurons. This relatively slow integration potentiates a unique role for the ILD system in spatial hearing that may be of particular importance when informative ITD cues are unavailable. In mammalian hearing, interaural differences in the timing (ITD) and level (ILD) of impinging sounds carry critical information about source location. However, natural sounds are often decorrelated between the ears by reverberation and background noise, degrading the fidelity of both ITD and ILD cues. Here we demonstrate that behavioral ILD sensitivity (in humans) and neural ILD sensitivity (in single neurons of the chinchilla auditory midbrain) remain robust under stimulus conditions that render ITD cues undetectable. This result can be explained by "slow" temporal integration arising from several-millisecond-long windows of excitatory-inhibitory interaction evident in midbrain, but not brainstem, neurons. Such integrative coding can account for the preservation of ILD sensitivity despite even extreme temporal degradations in ecological acoustic stimuli. Copyright © 2016 the authors 0270-6474/16/369908-14$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.
2016-02-10
Low-frequency observations of pulsars provide a powerful means for probing the microstructure in the turbulent interstellar medium (ISM). Here we report on high-resolution dynamic spectral analysis of our observations of the timing-array millisecond pulsar PSR J0437–4715 with the Murchison Widefield Array (MWA), enabled by our recently commissioned tied-array beam processing pipeline for voltage data recorded from the high time resolution mode of the MWA. A secondary spectral analysis reveals faint parabolic arcs akin to those seen in high-frequency observations of pulsars with the Green Bank and Arecibo telescopes. Data from Parkes observations at a higher frequency of 732 MHz revealmore » a similar parabolic feature with a curvature that scales approximately as the square of the observing wavelength (λ{sup 2}) to the MWA's frequency of 192 MHz. Our analysis suggests that scattering toward PSR J0437–4715 predominantly arises from a compact region about 115 pc from the Earth, which matches well with the expected location of the edge of the Local Bubble that envelopes the local Solar neighborhood. As well as demonstrating new and improved pulsar science capabilities of the MWA, our analysis underscores the potential of low-frequency pulsar observations for gaining valuable insights into the local ISM and for characterizing the ISM toward timing-array pulsars.« less
NASA Astrophysics Data System (ADS)
Vahidi, Siavash; Konermann, Lars
2016-07-01
Hydroxyl radical (ṡOH) labeling with mass spectrometry detection reports on protein conformations and interactions. Fast photochemical oxidation of proteins (FPOP) involves ṡOH production via H2O2 photolysis by UV laser pulses inside a flow tube. The experiments are conducted in the presence of a scavenger (usually glutamine) that shortens the ṡOH lifetime. The literature claims that FPOP takes place within 1 μs. This ultrafast time scale implies that FPOP should be immune to labeling-induced artifacts that may be encountered with other techniques. Surprisingly, the FPOP time scale has never been validated in direct kinetic measurements. Here we employ flash photolysis for probing oxidation processes under typical FPOP conditions. Bleaching of the reporter dye cyanine-5 (Cy5) served as readout of the time-dependent radical milieu. Surprisingly, Cy5 oxidation extends over tens of milliseconds. This time range is four orders of magnitude longer than expected from the FPOP literature. We demonstrate that the glutamine scavenger generates metastable secondary radicals in the FPOP solution, and that these radicals lengthen the time frame of Cy5 oxidation. Cy5 and similar dyes are widely used for monitoring the radical dose experienced by proteins in solution. The measured Cy5 kinetics thus strongly suggest that protein oxidation in FPOP extends over a much longer time window than previously thought (i.e., many milliseconds instead of one microsecond). The optical approach developed here should be suitable for assessing the performance of future FPOP-like techniques with improved temporal labeling characteristics.
Visual temporal processing in dyslexia and the magnocellular deficit theory: the need for speed?
McLean, Gregor M T; Stuart, Geoffrey W; Coltheart, Veronika; Castles, Anne
2011-12-01
A controversial question in reading research is whether dyslexia is associated with impairments in the magnocellular system and, if so, how these low-level visual impairments might affect reading acquisition. This study used a novel chromatic flicker perception task to specifically explore temporal aspects of magnocellular functioning in 40 children with dyslexia and 42 age-matched controls (aged 7-11). The relationship between magnocellular temporal resolution and higher-level aspects of visual temporal processing including inspection time, single and dual-target (attentional blink) RSVP performance, go/no-go reaction time, and rapid naming was also assessed. The Dyslexia group exhibited significant deficits in magnocellular temporal resolution compared with controls, but the two groups did not differ in parvocellular temporal resolution. Despite the significant group differences, associations between magnocellular temporal resolution and reading ability were relatively weak, and links between low-level temporal resolution and reading ability did not appear specific to the magnocellular system. Factor analyses revealed that a collective Perceptual Speed factor, involving both low-level and higher-level visual temporal processing measures, accounted for unique variance in reading ability independently of phonological processing, rapid naming, and general ability.
Beyene, Abraham G; McFarlane, Ian R; Pinals, Rebecca L; Landry, Markita P
2017-10-18
Imaging the dynamic behavior of neuromodulatory neurotransmitters in the extracelluar space that arise from individual quantal release events would constitute a major advance in neurochemical imaging. Spatial and temporal resolution of these highly stochastic neuromodulatory events requires concurrent advances in the chemical development of optical nanosensors selective for neuromodulators in concert with advances in imaging methodologies to capture millisecond neurotransmitter release. Herein, we develop and implement a stochastic model to describe dopamine dynamics in the extracellular space (ECS) of the brain dorsal striatum to guide the design and implementation of fluorescent neurochemical probes that record neurotransmitter dynamics in the ECS. Our model is developed from first-principles and simulates release, diffusion, and reuptake of dopamine in a 3D simulation volume of striatal tissue. We find that in vivo imaging of neuromodulation requires simultaneous optimization of dopamine nanosensor reversibility and sensitivity: dopamine imaging in the striatum or nucleus accumbens requires nanosensors with an optimal dopamine dissociation constant (K d ) of 1 μM, whereas K d s above 10 μM are required for dopamine imaging in the prefrontal cortex. Furthermore, as a result of the probabilistic nature of dopamine terminal activity in the striatum, our model reveals that imaging frame rates of 20 Hz are optimal for recording temporally resolved dopamine release events. Our work provides a modeling platform to probe how complex neuromodulatory processes can be studied with fluorescent nanosensors and enables direct evaluation of nanosensor chemistry and imaging hardware parameters. Our stochastic model is generic for evaluating fluorescent neurotransmission probes, and is broadly applicable to the design of other neurotransmitter fluorophores and their optimization for implementation in vivo.
Huang, Ming-Xiong; Huang, Charles W; Robb, Ashley; Angeles, AnneMarie; Nichols, Sharon L; Baker, Dewleen G; Song, Tao; Harrington, Deborah L; Theilmann, Rebecca J; Srinivasan, Ramesh; Heister, David; Diwakar, Mithun; Canive, Jose M; Edgar, J Christopher; Chen, Yu-Han; Ji, Zhengwei; Shen, Max; El-Gabalawy, Fady; Levy, Michael; McLay, Robert; Webb-Murphy, Jennifer; Liu, Thomas T; Drake, Angela; Lee, Roland R
2014-01-01
The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL's performance was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL's performance was then examined in the analysis of human median-nerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer's problems of signal leaking and distorted source time-courses. © 2013.
Huang, Ming-Xiong; Huang, Charles W.; Robb, Ashley; Angeles, AnneMarie; Nichols, Sharon L.; Baker, Dewleen G.; Song, Tao; Harrington, Deborah L.; Theilmann, Rebecca J.; Srinivasan, Ramesh; Heister, David; Diwakar, Mithun; Canive, Jose M.; Edgar, J. Christopher; Chen, Yu-Han; Ji, Zhengwei; Shen, Max; El-Gabalawy, Fady; Levy, Michael; McLay, Robert; Webb-Murphy, Jennifer; Liu, Thomas T.; Drake, Angela; Lee, Roland R.
2014-01-01
The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL’s performance of was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL’s performance was then examined in the analysis of human mediannerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer’s problems of signal leaking and distorted source time-courses. PMID:24055704
Ground control system for the midcourse space experiment UTC clock
NASA Technical Reports Server (NTRS)
Dragonette, Richard
1994-01-01
One goal of the Midcourse Space Experiment (MSX) spacecraft Operations Planning Center is to maintain the onboard satellite UTC clock (UTC(MSX)) to within 1 millisecond of UTC(APL) (the program requirement is 10 msec). The UTC(MSX) clock employs as its time base an APL built 5 MHz quartz oscillator, which is expected to have frequency instabilities (aging rate + drift rate + frequency offset) that will cause the clock to drift approximately two to ten milliseconds per day. The UTC(MSX) clock can be advanced or retarded by the APL MSX satellite ground control center by integer multiples of 1 millisecond. The MSX Operations Planning Center is developing software which records the drift of UTC(MSX) relative to UTC(APL) and which schedules the time of day and magnitude of UTC(MSX) clock updates up to 48 hours in advance. Because of the manner in which MSX spacecraft activities are scheduled, MSX clock updates are planned 24 to 48 hours in advance, and stored in the satellite's computer controller for later execution. Data will be collected on the drift of UTC(MSX) relative to UTC(APL) over a three to five day period. Approximately six times per day, the time offset between UTC(MSX) and UTC(APL) will be measured by APL with a resolution of less than 100 microseconds. From this data a second order analytical model of the clock's drift will be derived. This model will be used to extrapolate the offset of the MSX clock in time from the present to 48 hours in the future. MSX clock updates will be placed on the spacecraft's daily schedule whenever the predicted clock offset exceeds 0.5 milliseconds. The paper includes a discussion of how the empirical model of the MSX clock is derived from satellite telemetry data, as well as the algorithm used to schedule MSX clock updates based on the model.
NASA Astrophysics Data System (ADS)
Berthomier, M.; Techer, J. D.
2017-12-01
Understanding electron acceleration mechanisms in planetary magnetospheres or energy dissipation at electron scale in the solar wind requires fast measurement of electron distribution functions on a millisecond time scale. Still, since the beginning of space age, the instantaneous field of view of plasma spectrometers is limited to a few degrees around their viewing plane. In Earth's magnetosphere, the NASA MMS spacecraft use 8 state-of-the-art sensor heads to reach a time resolution of 30 milliseconds. This costly strategy in terms of mass and power consumption can hardly be extended to the next generation of constellation missions that would use a large number of small-satellites. In the solar wind, using the same sensor heads, the ESA THOR mission is expected to reach the 5ms timescale in the thermal energy range, up to 100eV. We present the « 3-D donut » electrostatic analyzer concept that can change the game for future space missions because of its instantaneous hemispheric field of view. A set of 2 sensors is sufficient to cover all directions over a wide range of energy, e.g. up to 1-2keV in the solar wind, which covers both thermal and supra-thermal particles. In addition, its high sensitivity compared to state of the art instruments opens the possibility of millisecond time scale measurements in space plasmas. With CNES support, we developed a high fidelity prototype (a quarter of the full « 3-D donut » analyzer) that includes all electronic sub-systems. The prototype weights less than a kilogram. The key building block of the instrument is an imaging detector that uses EASIC, a low-power front-end electronics that will fly on the ESA Solar Orbiter and on the NASA Parker Solar Probe missions.
A method for generating high resolution satellite image time series
NASA Astrophysics Data System (ADS)
Guo, Tao
2014-10-01
There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation, environment and etc. applications.
The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source
Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; ...
2015-03-03
The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. In addition, a description of the instrument capabilities and recent achievements is presented.
Birth of millisecond pulsars in globular clusters
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Bailyn, C. D.
1988-01-01
It is argued here that accretion-induced collapse of white dwarfs in binaries can form millisecond pulsars directly without requiring a precursor low-mass X-ray binary stage. Ablation of the precollapse binary companion by the millisecond pulsar's radiation field, a process invoked to explain some of the characteristics of the recently discovered eclipsing millisecond pulsar, can then yield isolated neutron stars witout requiring an additional stellar encounter.
Kazantsev, D.; Van Eyndhoven, G.; Lionheart, W. R. B.; Withers, P. J.; Dobson, K. J.; McDonald, S. A.; Atwood, R.; Lee, P. D.
2015-01-01
There are many cases where one needs to limit the X-ray dose, or the number of projections, or both, for high frame rate (fast) imaging. Normally, it improves temporal resolution but reduces the spatial resolution of the reconstructed data. Fortunately, the redundancy of information in the temporal domain can be employed to improve spatial resolution. In this paper, we propose a novel regularizer for iterative reconstruction of time-lapse computed tomography. The non-local penalty term is driven by the available prior information and employs all available temporal data to improve the spatial resolution of each individual time frame. A high-resolution prior image from the same or a different imaging modality is used to enhance edges which remain stationary throughout the acquisition time while dynamic features tend to be regularized spatially. Effective computational performance together with robust improvement in spatial and temporal resolution makes the proposed method a competitive tool to state-of-the-art techniques. PMID:25939621
Satellite image time series simulation for environmental monitoring
NASA Astrophysics Data System (ADS)
Guo, Tao
2014-11-01
The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of costly high resolution data can be reduced as much as possible, and it presents an efficient solution with great cost performance to build up an economically operational monitoring service for environment, agriculture, forest, land use investigation, and other applications.
Two-photon imaging and analysis of neural network dynamics
NASA Astrophysics Data System (ADS)
Lütcke, Henry; Helmchen, Fritjof
2011-08-01
The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.
Fulks, Jenny L; O'Bryhim, Bliss E; Wenzel, Sara K; Fowler, Stephen C; Vorontsova, Elena; Pinkston, Jonathan W; Ortiz, Andrea N; Johnson, Michael A
2010-10-20
In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.
Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei
2013-01-01
Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.
A balloon-borne payload for imaging hard X-rays and gamma rays from solar flares
NASA Technical Reports Server (NTRS)
Crannell, Carol J.; Dennis, Brian R.; Orwig, Larry E.; Schmahl, Edward J.; Lang, Frederic L.; Starr, Richard; Norris, Jay P.; Greene, Michael E.; Hurford, Gordon J.; Johnson, W. N.
1991-01-01
Hard X-rays and gamma rays provide direct evidence of the roles of accelerated particles in solar flares. An approach that employs a spatial Fourier-transform technique for imaging the sources of these emissions is described, and the development of a balloon-borne imaging device based on this instrumental technique is presented. The detectors, together with the imaging optics, are sensitive to hard X-ray and gamma-ray emission in the energy-range from 20 to 700 keV. This payload, scheduled for its first flight in June 1992, will provide 11-arc second angular resolution and millisecond time resolution with a whole-sun field of view. For subsequent flights, the effective detector area can be increased by as much as a factor of four, and imaging optics with angular resolution as fine as 2 arcsec can be added to the existing gondola and metering structures.
ANS hard X-ray experiment development program. [emission from X-ray sources
NASA Technical Reports Server (NTRS)
Parsignault, D.; Gursky, H.; Frank, R.; Kubierschky, K.; Austin, G.; Paganetti, R.; Bawdekar, V.
1974-01-01
The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included.
NASA Astrophysics Data System (ADS)
Lopez-Baeza, E.; Monsoriu Torres, A.; Font, J.; Alonso, O.
2009-04-01
The ESA SMOS (Soil Moisture and Ocean Salinity) Mission is planned to be launched in July 2009. The satellite will measure soil moisture over the continents and surface salinity of the oceans at resolutions that are sufficient for climatological-type studies. This paper describes the procedure to be used at the Spanish SMOS Level 3 and 4 Data Processing Centre (CP34) to generate Soil Moisture and other Land Surface Product maps from SMOS Level 2 data. This procedure can be used to map Soil Moisture, Vegetation Water Content and Soil Dielectric Constant data into different pre-defined spatial grids with fixed temporal frequency. The L3 standard Land Surface Products to be generated at CP34 are: Soil Moisture products: maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation Seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Vegetation Water Content products: maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. a': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month) using simple averaging method over the L2 products in ISEA grid, generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Dielectric Constant products: (the dielectric constant products are delivered together with soil moisture products, with the same averaging periods and generation frequency): maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation.
Neurophysiological correlates of abnormal somatosensory temporal discrimination in dystonia.
Antelmi, Elena; Erro, Roberto; Rocchi, Lorenzo; Liguori, Rocco; Tinazzi, Michele; Di Stasio, Flavio; Berardelli, Alfredo; Rothwell, John C; Bhatia, Kailash P
2017-01-01
Somatosensory temporal discrimination threshold is often prolonged in patients with dystonia. Previous evidence suggested that this might be caused by impaired somatosensory processing in the time domain. Here, we tested if other markers of reduced inhibition in the somatosensory system might also contribute to abnormal somatosensory temporal discrimination in dystonia. Somatosensory temporal discrimination threshold was measured in 19 patients with isolated cervical dystonia and 19 age-matched healthy controls. We evaluated temporal somatosensory inhibition using paired-pulse somatosensory evoked potentials, spatial somatosensory inhibition by measuring the somatosensory evoked potentials interaction between simultaneous stimulation of the digital nerves in thumb and index finger, and Gamma-aminobutyric acid-ergic (GABAergic) sensory inhibition using the early and late components of high-frequency oscillations in digital nerves somatosensory evoked potentials. When compared with healthy controls, dystonic patients had longer somatosensory temporal discrimination thresholds, reduced suppression of cortical and subcortical paired-pulse somatosensory evoked potentials, less spatial inhibition of simultaneous somatosensory evoked potentials, and a smaller area of the early component of the high-frequency oscillations. A logistic regression analysis found that paired pulse suppression of the N20 component at an interstimulus interval of 5 milliseconds and the late component of the high-frequency oscillations were independently related to somatosensory temporal discrimination thresholds. "Dystonia group" was also a predictor of enhanced somatosensory temporal discrimination threshold, indicating a dystonia-specific effect that independently influences this threshold. Increased somatosensory temporal discrimination threshold in dystonia is related to reduced activity of inhibitory circuits within the primary somatosensory cortex. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Conrad, Chelsie E.; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A.; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C.; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C. H.; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F.; Liu, Wei
2017-01-01
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals. PMID:28875031
Martin-Garcia, Jose M; Conrad, Chelsie E; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; James, Daniel; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C H; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F; Liu, Wei
2017-07-01
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2A AR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2A AR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2A AR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.
Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett; ...
2017-05-24
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advancedmore » Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. Furthermore, these developments will enable structure determination from smaller and/or weakly diffracting microcrystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advancedmore » Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. Furthermore, these developments will enable structure determination from smaller and/or weakly diffracting microcrystals.« less
Stilp, Christian E.; Goupell, Matthew J.
2015-01-01
Short-time spectral changes in the speech signal are important for understanding noise-vocoded sentences. These information-bearing acoustic changes, measured using cochlea-scaled entropy in cochlear implant simulations [CSECI; Stilp et al. (2013). J. Acoust. Soc. Am. 133(2), EL136–EL141; Stilp (2014). J. Acoust. Soc. Am. 135(3), 1518–1529], may offer better understanding of speech perception by cochlear implant (CI) users. However, perceptual importance of CSECI for normal-hearing listeners was tested at only one spectral resolution and one temporal resolution, limiting generalizability of results to CI users. Here, experiments investigated the importance of these informational changes for understanding noise-vocoded sentences at different spectral resolutions (4–24 spectral channels; Experiment 1), temporal resolutions (4–64 Hz cutoff for low-pass filters that extracted amplitude envelopes; Experiment 2), or when both parameters varied (6–12 channels, 8–32 Hz; Experiment 3). Sentence intelligibility was reduced more by replacing high-CSECI intervals with noise than replacing low-CSECI intervals, but only when sentences had sufficient spectral and/or temporal resolution. High-CSECI intervals were more important for speech understanding as spectral resolution worsened and temporal resolution improved. Trade-offs between CSECI and intermediate spectral and temporal resolutions were minimal. These results suggest that signal processing strategies that emphasize information-bearing acoustic changes in speech may improve speech perception for CI users. PMID:25698018
Electrophysiological models of neural processing.
Nelson, Mark E
2011-01-01
The brain is an amazing information processing system that allows organisms to adaptively monitor and control complex dynamic interactions with their environment across multiple spatial and temporal scales. Mathematical modeling and computer simulation techniques have become essential tools in understanding diverse aspects of neural processing ranging from sub-millisecond temporal coding in the sound localization circuity of barn owls to long-term memory storage and retrieval in humans that can span decades. The processing capabilities of individual neurons lie at the core of these models, with the emphasis shifting upward and downward across different levels of biological organization depending on the nature of the questions being addressed. This review provides an introduction to the techniques for constructing biophysically based models of individual neurons and local networks. Topics include Hodgkin-Huxley-type models of macroscopic membrane currents, Markov models of individual ion-channel currents, compartmental models of neuronal morphology, and network models involving synaptic interactions among multiple neurons.
Resolving human object recognition in space and time
Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2014-01-01
A comprehensive picture of object processing in the human brain requires combining both spatial and temporal information about brain activity. Here, we acquired human magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) responses to 92 object images. Multivariate pattern classification applied to MEG revealed the time course of object processing: whereas individual images were discriminated by visual representations early, ordinate and superordinate category levels emerged relatively later. Using representational similarity analysis, we combine human fMRI and MEG to show content-specific correspondence between early MEG responses and primary visual cortex (V1), and later MEG responses and inferior temporal (IT) cortex. We identified transient and persistent neural activities during object processing, with sources in V1 and IT., Finally, human MEG signals were correlated to single-unit responses in monkey IT. Together, our findings provide an integrated space- and time-resolved view of human object categorization during the first few hundred milliseconds of vision. PMID:24464044
Millisecond radio pulsars in globular clusters
NASA Technical Reports Server (NTRS)
Verbunt, Frank; Lewin, Walter H. G.; Vanparadijs, Jan
1989-01-01
It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.
NASA Technical Reports Server (NTRS)
Rigney, Matt; Jedlovec, Gary; LaFontaine, Frank; Shafer, Jaclyn
2010-01-01
Heat and moisture exchange between ocean surface and atmosphere plays an integral role in short-term, regional NWP. Current SST products lack both spatial and temporal resolution to accurately capture small-scale features that affect heat and moisture flux. NASA satellite is used to produce high spatial and temporal resolution SST analysis using an OI technique.
Impaired temporal, not just spatial, resolution in amblyopia.
Spang, Karoline; Fahle, Manfred
2009-11-01
In amblyopia, neuronal deficits deteriorate spatial vision including visual acuity, possibly because of a lack of use-dependent fine-tuning of afferents to the visual cortex during infancy; but temporal processing may deteriorate as well. Temporal, rather than spatial, resolution was investigated in patients with amblyopia by means of a task based on time-defined figure-ground segregation. Patients had to indicate the quadrant of the visual field where a purely time-defined square appeared. The results showed a clear decrease in temporal resolution of patients' amblyopic eyes compared with the dominant eyes in this task. The extent of this decrease in figure-ground segregation based on time of motion onset only loosely correlated with the decrease in spatial resolution and spanned a smaller range than did the spatial loss. Control experiments with artificially induced blur in normal observers confirmed that the decrease in temporal resolution was not simply due to the acuity loss. Amblyopia not only decreases spatial resolution, but also temporal factors such as time-based figure-ground segregation, even at high stimulus contrasts. This finding suggests that the realm of neuronal processes that may be disturbed in amblyopia is larger than originally thought.
Zrenner, Christoph; Eytan, Danny; Wallach, Avner; Thier, Peter; Marom, Shimon
2010-01-01
Distinct modules of the neural circuitry interact with each other and (through the motor-sensory loop) with the environment, forming a complex dynamic system. Neuro-prosthetic devices seeking to modulate or restore CNS function need to interact with the information flow at the level of neural modules electrically, bi-directionally and in real-time. A set of freely available generic tools is presented that allow computationally demanding multi-channel short-latency bi-directional interactions to be realized in in vivo and in vitro preparations using standard PC data acquisition and processing hardware and software (Mathworks Matlab and Simulink). A commercially available 60-channel extracellular multi-electrode recording and stimulation set-up connected to an ex vivo developing cortical neuronal culture is used as a model system to validate the method. We demonstrate how complex high-bandwidth (>10 MBit/s) neural recording data can be analyzed in real-time while simultaneously generating specific complex electrical stimulation feedback with deterministically timed responses at sub-millisecond resolution. PMID:21060803
Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry
Gupta, Sayan; D’Mello, Rhijuta; Chance, Mark R.
2012-01-01
Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H218O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein–water interactions and water dynamics for both small and large proteins and their complexes. PMID:22927377
Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch.
Bruetzel, Linda K; Walker, Philipp U; Gerling, Thomas; Dietz, Hendrik; Lipfert, Jan
2018-04-11
Self-assembled DNA structures enable creation of specific shapes at the nanometer-micrometer scale with molecular resolution. The construction of functional DNA assemblies will likely require dynamic structures that can undergo controllable conformational changes. DNA devices based on shape complementary stacking interactions have been demonstrated to undergo reversible conformational changes triggered by changes in ionic environment or temperature. An experimentally unexplored aspect is how quickly conformational transitions of large synthetic DNA origami structures can actually occur. Here, we use time-resolved small-angle X-ray scattering to monitor large-scale conformational transitions of a two-state DNA origami switch in free solution. We show that the DNA device switches from its open to its closed conformation upon addition of MgCl 2 in milliseconds, which is close to the theoretical diffusive speed limit. In contrast, measurements of the dimerization of DNA origami bricks reveal much slower and concentration-dependent assembly kinetics. DNA brick dimerization occurs on a time scale of minutes to hours suggesting that the kinetics depend on local concentration and molecular alignment.
Kim, Yoon-Chul; Narayanan, Shrikanth S; Nayak, Krishna S
2011-05-01
In speech production research using real-time magnetic resonance imaging (MRI), the analysis of articulatory dynamics is performed retrospectively. A flexible selection of temporal resolution is highly desirable because of natural variations in speech rate and variations in the speed of different articulators. The purpose of the study is to demonstrate a first application of golden-ratio spiral temporal view order to real-time speech MRI and investigate its performance by comparison with conventional bit-reversed temporal view order. Golden-ratio view order proved to be more effective at capturing the dynamics of rapid tongue tip motion. A method for automated blockwise selection of temporal resolution is presented that enables the synthesis of a single video from multiple temporal resolution videos and potentially facilitates subsequent vocal tract shape analysis. Copyright © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Jelínková, Helena; Doroshenko, Maxim E.; Šulc, Jan; Němec, Michal; Jelínek, Michal; Osiko, Vjatcheslav V.; Badikov, Valerii V.; Badikov, Dmitri V.
2016-03-01
On the basis of our previous Dy3+:PbGa2S4 laser study, laser output wavelength temporal evolution as well as tuning possibilities in the range 4.3-4.7 μm were investigated. Active crystal was pumped by a fiber-coupled Brightlase Ultra- 50 diode laser (1.7 μm, max. power 7.5 W). Laser resonator was formed by flat dichroic pumping mirror (T = 70%@1.7 μm, R~100% @ 3.5 - 5 μm) and a concave (r = 200 mm) output coupler with R~99% @ 3.5 - 5 μm. The laser output wavelength dependence on the pump pulse duration and its evolution during the pulse was investigated first without any spectrally-selective element in the cavity. At pump pulse duration of 1 ms, generation just near Dy3+ fluorescence maximum of 4.35 μm has been observed. Prolongation of the pulse up to 5 ms led to similar lasing at 4.35 μm in the first millisecond, followed by simultaneous generation at 4.35 and 4.38 μm in the next millisecond, and further lasing at 4.6 μm till the end of the pump pulse. Increase of pump pulse duration up to 10 ms led to similar oscillation pulse development followed by generation at 4.6 μm only. Furthermore, output wavelength tuning using MgF2 birefringent filter as a cavity spectral selective element was investigated under 10 ms pumping. Almost continuous tuning without any significant dip has been observed within spectral range from 4.3 up to 4.7 μm. Due to practically closed cavity mean output power in the maximum of tuning curve was in the order of 400 μW.
Temporal resolution in individuals with neurological disorders
Rabelo, Camila Maia; Weihing, Jeffrey A; Schochat, Eliane
2015-01-01
OBJECTIVE: Temporal processing refers to the ability of the central auditory nervous system to encode and detect subtle changes in acoustic signals. This study aims to investigate the temporal resolution ability of individuals with mesial temporal sclerosis and to determine the sensitivity and specificity of the gaps-in-noise test in identifying this type of lesion. METHOD: This prospective study investigated differences in temporal resolution between 30 individuals with normal hearing and without neurological lesions (G1) and 16 individuals with both normal hearing and mesial temporal sclerosis (G2). Test performances were compared, and the sensitivity and specificity were calculated. RESULTS: There was no difference in gap detection thresholds between the two groups, although G1 revealed better average thresholds than G2 did. The sensitivity and specificity of the gaps-in-noise test for neurological lesions were 68% and 98%, respectively. CONCLUSIONS: Temporal resolution ability is compromised in individuals with neurological lesions caused by mesial temporal sclerosis. The gaps-in-noise test was shown to be a sensitive and specific measure of central auditory dysfunction in these patients. PMID:26375561
Application of Millisecond Pulsar Timing to the Long-Term Stability of Clock Ensembles
NASA Technical Reports Server (NTRS)
Foster, Roger S.; Matsakis, Demetrios N.
1996-01-01
We review the application of millisecond pulsars to define a precise long-term standard and positional reference system in a nearly inertial reference frame. We quantify the current timing precision of the best millisecond pulsars and define the required precise time and time interval (PTTI) accuracy and stability to enable time transfer via pulsars. Pulsars may prove useful as independent standards to examine decade-long timing stability and provide an independent natural system within which to calibrate any new, perhaps vastly improved atomic time scale. Since pulsar stability appears to be related to the lifetime of the pulsar, the new millisecond pulsar J173+0747 is projected to have a 100-day accuracy equivalent to a single HP5071 cesium standard. Over the last five years, dozens of new millisecond pulsars have been discovered. A few of the new millisecond pulsars may have even better timing properties.
NASA Astrophysics Data System (ADS)
Gill, Andrew B.; Black, Richard T.; Bowden, David J.; Priest, Andrew N.; Graves, Martin J.; Lomas, David J.
2014-06-01
This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2-20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR.
MISR Level 2 TOA/Cloud Classifier parameters (MIL2TCCL_V2)
NASA Technical Reports Server (NTRS)
Diner, David J. (Principal Investigator)
The TOA/Cloud Classifiers contain the Angular Signature Cloud Mask (ASCM), a scene classifier calculated using support vector machine technology (SVM) both of which are on a 1.1 km grid, and cloud fractions at 17.6 km resolution that are available in different height bins (low, middle, high) and are also calculated on an angle-by-angle basis. [Location=GLOBAL] [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=17.6 km; Longitude_Resolution=17.6 km; Horizontal_Resolution_Range=10 km - < 50 km or approximately .09 degree - < .5 degree; Temporal_Resolution=about 15 orbits/day; Temporal_Resolution_Range=Daily - < Weekly, Daily - < Weekly].
Hu, Mandy X; Lamers, Femke; de Geus, Eco J C; Penninx, Brenda W J H
2016-06-01
It remains unclear whether depressive and anxiety disorders are associated with hyporeactivity or hyperreactivity of the autonomic nervous system (ANS) and whether deviant reactivity occurs in all types of stressors. This study compared ANS reactivity in people with current or remitted depression/anxiety with reactivity in healthy controls during two stress conditions. From the Netherlands Study of Depression and Anxiety, data of 804 individuals with current depression/anxiety, 913 individuals with remitted depression/anxiety, and 466 healthy controls (mean age = 44.1 years; 66.4% female) were available. Two conditions were used to evoke stress: a) an n-back task, a cognitively challenging stressor, and 2) a psychiatric interview, evoking personal-emotional stress related to the occurrence of symptoms of depression/anxiety. Indicators of ANS activity were heart rate (HR), root mean square of differences between successive interbeat intervals (RMSSD), respiratory sinus arrhythmia (RSA), and preejection period. As compared with controls, participants with psychopathology had significant hyporeactivity of HR (controls = 4.1 ± 4.2 beats/min; remitted = 3.5 ± 3.5 beats/min; current psychopathology = 3.1 ± 3.4 beats/min), RMSSD (controls = -6.2 ± 14.5 milliseconds; remitted = -5.4 ± 17.8 milliseconds; current psychopathology = -3.5 ± 15.4 milliseconds), and RSA (controls = -9.3 ± 17.0 milliseconds; remitted = -7.4 ± 16.5 milliseconds; current psychopathology = -6.9 ± 15.0 milliseconds) during the n-back task. In contrast, during the psychiatric interview, they showed significant hyperreactivity of HR (controls = 2.7 ± 3.4 beats/min; remitted = 3.5 ± 3.4 beats/min; current psychopathology = 4.0 ± 3.3 beats/min), RMSSD (controls = -3.4 ± 12.2 milliseconds; remitted = -4.1 ± 12.1 milliseconds; current psychopathology = -5.6 ± 11.8 milliseconds), and RSA (controls = -3.8 ± 8.1 milliseconds; remitted = -4.3 ± 7.9 milliseconds; current psychopathology = -5.0 ± 7.9 milliseconds). The lack of group differences in preejection period reactivity suggests that the found effects were driven by altered cardiac vagal reactivity in depression/anxiety. The direction of altered ANS reactivity in depressed/anxious patients is dependent on the type of stressor, and only the more ecologically valid stressors may evoke hyperreactivity in these patients.
High density event-related potential data acquisition in cognitive neuroscience.
Slotnick, Scott D
2010-04-16
Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.
NASA Astrophysics Data System (ADS)
Bindhu, V. M.; Narasimhan, B.
2015-03-01
Normalized Difference Vegetation Index (NDVI), a key parameter in understanding the vegetation dynamics, has high spatial and temporal variability. However, continuous monitoring of NDVI is not feasible at fine spatial resolution (<60 m) owing to the long revisit time needed by the satellites to acquire the fine spatial resolution data. Further, the study attains significance in the case of humid tropical regions of the earth, where the prevailing atmospheric conditions restrict availability of fine resolution cloud free images at a high temporal frequency. As an alternative to the lack of high resolution images, the current study demonstrates a novel disaggregation method (DisNDVI) which integrates the spatial information from a single fine resolution image and temporal information in terms of crop phenology from time series of coarse resolution images to generate estimates of NDVI at fine spatial and temporal resolution. The phenological variation of the pixels captured at the coarser scale provides the basis for relating the temporal variability of the pixel with the NDVI available at fine resolution. The proposed methodology was tested over a 30 km × 25 km spatially heterogeneous study area located in the south of Tamil Nadu, India. The robustness of the algorithm was assessed by an independent comparison of the disaggregated NDVI and observed NDVI obtained from concurrent Landsat ETM+ imagery. The results showed good spatial agreement across the study area dominated with agriculture and forest pixels, with a root mean square error of 0.05. The validation done at the coarser scale showed that disaggregated NDVI spatially averaged to 240 m compared well with concurrent MODIS NDVI at 240 m (R2 > 0.8). The validation results demonstrate the effectiveness of DisNDVI in improving the spatial and temporal resolution of NDVI images for utility in fine scale hydrological applications such as crop growth monitoring and estimation of evapotranspiration.
Microstates in resting-state EEG: current status and future directions.
Khanna, Arjun; Pascual-Leone, Alvaro; Michel, Christoph M; Farzan, Faranak
2015-02-01
Electroencephalography (EEG) is a powerful method of studying the electrophysiology of the brain with high temporal resolution. Several analytical approaches to extract information from the EEG signal have been proposed. One method, termed microstate analysis, considers the multichannel EEG recording as a series of quasi-stable "microstates" that are each characterized by a unique topography of electric potentials over the entire channel array. Because this technique simultaneously considers signals recorded from all areas of the cortex, it is capable of assessing the function of large-scale brain networks whose disruption is associated with several neuropsychiatric disorders. In this review, we first introduce the method of EEG microstate analysis. We then review studies that have discovered significant changes in the resting-state microstate series in a variety of neuropsychiatric disorders and behavioral states. We discuss the potential utility of this method in detecting neurophysiological impairments in disease and monitoring neurophysiological changes in response to an intervention. Finally, we discuss how the resting-state microstate series may reflect rapid switching among neural networks while the brain is at rest, which could represent activity of resting-state networks described by other neuroimaging modalities. We conclude by commenting on the current and future status of microstate analysis, and suggest that EEG microstates represent a promising neurophysiological tool for understanding and assessing brain network dynamics on a millisecond timescale in health and disease. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microstates in Resting-State EEG: Current Status and Future Directions
Khanna, Arjun; Pascual-Leone, Alvaro; Michel, Christoph M.; Farzan, Faranak
2015-01-01
Electroencephalography (EEG) is a powerful method of studying the electrophysiology of the brain with high temporal resolution. Several analytical approaches to extract information from the EEG signal have been proposed. One method, termed microstate analysis, considers the multichannel EEG recording as a series of quasi-stable “microstates” that are each characterized by a unique topography of electric potentials over the entire channel array. Because this technique simultaneously considers signals recorded from all areas of the cortex, it is capable of assessing the function of large-scale brain networks whose disruption is associated with several neuropsychiatric disorders. In this review, we first introduce the method of EEG microstate analysis. We then review studies that have discovered significant changes in the resting-state microstate series in a variety of neuropsychiatric disorders and behavioral states. We discuss the potential utility of this method in detecting neurophysiological impairments in disease and monitoring neurophysiological changes in response to an intervention. Finally, we discuss how the resting-state microstate series may reflect rapid switching among neural networks while the brain is at rest, which could represent activity of resting-state networks described by other neuroimaging modalities. We conclude by commenting on the current and future status of microstate analysis, and suggest that EEG microstates represent a promising neurophysiological tool for understanding and assessing brain network dynamics on a millisecond timescale in health and disease. PMID:25526823
Millisecond Microwave Spikes: Statistical Study and Application for Plasma Diagnostics
NASA Astrophysics Data System (ADS)
Rozhansky, I. V.; Fleishman, G. D.; Huang, G.-L.
2008-07-01
We analyze a dense cluster of solar radio spikes registered at 4.5-6 GHz by the Purple Mountain Observatory spectrometer (Nanjing, China), operating in the 4.5-7.5 GHz range with 5 ms temporal resolution. To handle the data from the spectrometer, we developed a new technique that uses a nonlinear multi-Gaussian spectral fit based on χ2 criteria to extract individual spikes from the originally recorded spectra. Applying this method to the experimental raw data, we eventually identified about 3000 spikes for this event, which allows us to make a detailed statistical analysis. Various statistical characteristics of the spikes have been evaluated, including the intensity distributions, the spectral bandwidth distributions, and the distribution of the spike mean frequencies. The most striking finding of this analysis is the distributions of the spike bandwidth, which are remarkably asymmetric. To reveal the underlaying microphysics, we explore the local-trap model with the renormalized theory of spectral profiles of the electron cyclotron maser (ECM) emission peak in a source with random magnetic irregularities. The distribution of the solar spike relative bandwidths calculated within the local-trap model represents an excellent fit to the experimental data. Accordingly, the developed technique may offer a new tool with which to study very low levels of magnetic turbulence in the spike sources, when the ECM mechanism of the spike cluster is confirmed.
Emotional cues enhance the attentional effects on spatial and temporal resolution.
Bocanegra, Bruno R; Zeelenberg, René
2011-12-01
In the present study, we demonstrated that the emotional significance of a spatial cue enhances the effect of covert attention on spatial and temporal resolution (i.e., our ability to discriminate small spatial details and fast temporal flicker). Our results indicated that fearful face cues, as compared with neutral face cues, enhanced the attentional benefits in spatial resolution but also enhanced the attentional deficits in temporal resolution. Furthermore, we observed that the overall magnitudes of individuals' attentional effects correlated strongly with the magnitude of the emotion × attention interaction effect. Combined, these findings provide strong support for the idea that emotion enhances the strength of a cue's attentional response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Yuxing; Fan, Jiwen; Xiao, Heng
Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32more » km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.« less
Confocal three dimensional tracking of a single nanoparticle with concurrent spectroscopic readouts
NASA Astrophysics Data System (ADS)
Cang, Hu; Wong, Chung M.; Xu, C. Shan; Rizvi, Abbas H.; Yang, Haw
2006-05-01
We present an apparatus that noninvasively tracks a moving nanoparticle in three dimensions while providing concurrent sequential spectroscopic measurements. The design, based on confocal microscopy, uses a near-infrared laser and a dark-field condenser for illumination of a gold nanoparticle. By monitoring the scattered light from the nanoparticle and using a piezoelectric stage, the system was able to continuously bring the diffusive particle in a glycerol/water solution back to the focal volume with spatial resolution and response time of less than 210nm and a millisecond, respectively.
Nanopores and nucleic acids: prospects for ultrarapid sequencing
NASA Technical Reports Server (NTRS)
Deamer, D. W.; Akeson, M.
2000-01-01
DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new method for directly reading information encoded in linear polymers. If single-nucleotide resolution can be achieved, it is possible that nucleic acid sequences can be determined at rates exceeding a thousand bases per second.
Linear optical pulse compression based on temporal zone plates.
Li, Bo; Li, Ming; Lou, Shuqin; Azaña, José
2013-07-15
We propose and demonstrate time-domain equivalents of spatial zone plates, namely temporal zone plates, as alternatives to conventional time lenses. Both temporal intensity zone plates, based on intensity-only temporal modulation, and temporal phase zone plates, based on phase-only temporal modulation, are introduced and studied. Temporal zone plates do not exhibit the limiting tradeoff between temporal aperture and frequency bandwidth (temporal resolution) of conventional linear time lenses. As a result, these zone plates can be ideally designed to offer a time-bandwidth product (TBP) as large as desired, practically limited by the achievable temporal modulation bandwidth (limiting the temporal resolution) and the amount of dispersion needed in the target processing systems (limiting the temporal aperture). We numerically and experimentally demonstrate linear optical pulse compression by using temporal zone plates based on linear electro-optic temporal modulation followed by fiber-optics dispersion. In the pulse-compression experiment based on temporal phase zone plates, we achieve a resolution of ~25.5 ps over a temporal aperture of ~5.77 ns, representing an experimental TBP larger than 226 using a phase-modulation amplitude of only ~0.8π rad. We also numerically study the potential of these devices to achieve temporal imaging of optical waveforms and present a comparative analysis on the performance of different temporal intensity and phase zone plates.
MSE commissioning and other major diagnostic updates on KSTAR
NASA Astrophysics Data System (ADS)
Ko, Jinseok; Kstar Team
2015-11-01
The motional Stark effect (MSE) diagnostic based on the photoelastic-modulator (PEM) approach has been commissioned for the Korea Superconducting Tokamak Advanced Research (KSTAR). The 25-channel MSE system with the polarization-preserving front optics and precise tilt-tuning narrow bandpass filters provides the spatial resolution less than 1 cm in most of the plasma cross section and about 10 millisecond of time resolution. The polarization response curves with the daily Faraday rotation correction provides reliable pitch angle profiles for the KSTAR discharges with the MSE-optimized energy combination in the three-ion-source neutral beam injection. Some major diagnostic advances such as the poloidal charge exchange spectroscopy, the improved Thomson-scatting system, and the divertor infrared TV are reported as well. Work supported by the Ministry of Science, ICT and Future Planning, Korea.
Sub-Millisecond Time Resolved X-ray Surface Diffraction During Pulsed Laser Deposition
NASA Astrophysics Data System (ADS)
Tischler, J. Z.; Larson, B. C.; Eres, Gyula; Rouleau, C. M.; Lowndes, D. H.; Yoon, M.; Zschack, P.
2001-03-01
The initial crystallization and evolution of the SrTiO3 (001) surface during homoeptaxial pulsed laser deposition growth of SrTiO3 was studied using time resolved surface x-ray diffraction with a time resolution down to 200 μ s. Measurements performed at the UNICAT undulator line at the Advanced Photon Source indicated prompt formation of epitaxial SrTiO3 bi-layers down to our limiting time resolution. The subsequent evolution of the surface occurred on a much greater time scale, and was studied both by measurements of surface truncation rod intensities and by measurements of diffuse scattering near the rod. The effect of temperature and correlation with in-plane order will also be discussed.
NASA Astrophysics Data System (ADS)
Seo, Jeongmin; Han, Min Cheol; Yeom, Yeon Soo; Lee, Hyun Su; Kim, Chan Hyeong; Jeong, Jong Hwi; Kim, SeongHoon
2017-04-01
In proton therapy, the spot scanning method is known to suffer from the interplay effect induced from the independent movements of the proton beam and the organs in the patient during the treatment. To study the interplay effect, several investigators have performed four-dimensional (4D) dose calculations with some limited temporal resolutions (4 or 10 phases per respiratory cycle) by using the 4D computed tomography (CT) images of the patient; however, the validity of the limited temporal resolutions has not been confirmed. The aim of the present study is to determine whether the previous temporal resolutions (4 or 10 phases per respiratory cycle) are really high enough for adequate study of the interplay effect in spot scanning proton therapy. For this study, a series of 4D dose calculations were performed with a virtual water phantom moving in the vertical direction during dose delivery. The dose distributions were calculated for different temporal resolutions (4, 10, 25, 50, and 100 phases per respiratory cycle), and the calculated dose distributions were compared with the reference dose distribution, which was calculated using an almost continuously-moving water phantom ( i.e., 1000 phases per respiratory cycle). The results of the present study show that the temporal resolutions of 4 and 10 phases per respiratory cycle are not high enough for an accurate evaluation of the interplay effect for spot scanning proton therapy. The temporal resolution should be at least 14 and 17 phases per respiratory cycle for 10-mm and 20-mm movement amplitudes, respectively, even for rigid movement ( i.e., without deformation) of the homogeneous water phantom considered in the present study. We believe that even higher temporal resolutions are needed for an accurate evaluation of the interplay effect in the human body, in which the organs are inhomogeneous and deform during movement.
NASA Astrophysics Data System (ADS)
Qin, Xuerong; van Sebille, Erik; Sen Gupta, Alexander
2014-04-01
Lagrangian particle tracking within ocean models is an important tool for the examination of ocean circulation, ventilation timescales and connectivity and is increasingly being used to understand ocean biogeochemistry. Lagrangian trajectories are obtained by advecting particles within velocity fields derived from hydrodynamic ocean models. For studies of ocean flows on scales ranging from mesoscale up to basin scales, the temporal resolution of the velocity fields should ideally not be more than a few days to capture the high frequency variability that is inherent in mesoscale features. However, in reality, the model output is often archived at much lower temporal resolutions. Here, we quantify the differences in the Lagrangian particle trajectories embedded in velocity fields of varying temporal resolution. Particles are advected from 3-day to 30-day averaged fields in a high-resolution global ocean circulation model. We also investigate whether adding lateral diffusion to the particle movement can compensate for the reduced temporal resolution. Trajectory errors reveal the expected degradation of accuracy in the trajectory positions when decreasing the temporal resolution of the velocity field. Divergence timescales associated with averaging velocity fields up to 30 days are faster than the intrinsic dispersion of the velocity fields but slower than the dispersion caused by the interannual variability of the velocity fields. In experiments focusing on the connectivity along major currents, including western boundary currents, the volume transport carried between two strategically placed sections tends to increase with increased temporal averaging. Simultaneously, the average travel times tend to decrease. Based on these two bulk measured diagnostics, Lagrangian experiments that use temporal averaging of up to nine days show no significant degradation in the flow characteristics for a set of six currents investigated in more detail. The addition of random-walk-style diffusion does not mitigate the errors introduced by temporal averaging for large-scale open ocean Lagrangian simulations.
Breath-holding spells may be associated with maturational delay in myelination of brain stem.
Vurucu, Sebahattin; Karaoglu, Abdulbaki; Paksu, Sukru M; Oz, Oguzhan; Yaman, Halil; Gulgun, Mustafa; Babacan, Oguzhan; Unay, Bulent; Akin, Ridvan
2014-02-01
To evaluate possible contribution of maturational delay of brain stem in the etiology of breath-holding spells in children using brain stem auditory evoked potentials. The study group included children who experienced breath-holding spells. The control group consisted of healthy age- and sex-matched children. Age, gender, type and frequency of spell, hemoglobin, and ferritin levels in study group and brain stem auditory evoked potentials results in both groups were recorded. Study group was statistically compared with control group for brain stem auditory evoked potentials. The mean age of study and control groups was 26.3 ± 14.6 and 28.9 ± 13.9 months, respectively. The III-V and I-V interpeak latencies were significantly prolonged in the study group compared with the control group (2.07 ± 0.2 milliseconds; 1.92 ± 0.13 milliseconds and 4.00 ± 0.27 milliseconds; 3.83 ± 0.19 milliseconds; P = 0.009 and P = 0.03, respectively). At the same time, III-V and I-V interpeak latencies of patients without anemia in the study group compared with those of control group were significantly prolonged (2.09 ± 0.24 milliseconds; 1.92 ± 0.13 milliseconds and 4.04 ± 0.28 milliseconds; 3.83 ± 0.19 milliseconds; P = 0.007 and P = 0.01, respectively). Our results consider that maturational delay in myelination of brain stem may have a role in the etiology of breath-holding spells in children.
Wittsack, Hans-Jörg; Lanzman, Rotem S; Quentin, Michael; Kuhlemann, Julia; Klasen, Janina; Pentang, Gael; Riegger, Caroline; Antoch, Gerald; Blondin, Dirk
2012-04-01
To evaluate the influence of pulsatile blood flow on apparent diffusion coefficients (ADC) and the fraction of pseudodiffusion (F(P)) in the human kidney. The kidneys of 6 healthy volunteers were examined by a 3-T magnetic resonance scanner. Electrocardiogram (ECG)-gated and respiratory-triggered diffusion-weighted imaging (DWI) and phase-contrast flow measurements were performed. Flow imaging of renal arteries was carried out to quantify the dependence of renal blood flow on the cardiac cycle. ECG-triggered DWI was acquired in the coronal plane with 16 b values in the range of 0 s/mm(2) and 750 s/mm(2) at the time of minimum (MIN) (20 milliseconds after R wave) and maximum renal blood flow (MAX) (197 ± 24 milliseconds after R wave). The diffusion coefficients were calculated using the monoexponential approach as well as the biexponential intravoxel incoherent motion model and correlated to phase-contrast flow measurements. Flow imaging showed pulsatile renal blood flow depending on the cardiac cycle. The mean flow velocity at MIN was 45 cm/s as compared with 61 cm/s at MAX. F(p) at MIN (0.29) was significantly lower than at MAX (0.40) (P = 0.001). Similarly, ADC(mono), derived from the monoexponential model, also showed a significant difference (P < 0.001) between MIN (ADC(mono) = 2.14 ± 0.08 × 10(-3) mm(2)/s) and MAX (ADC(mono) = 2.37 ± 0.04 × 10(-3) mm(2)/s). The correlation between renal blood flow and F(p) (r = 0.85) as well as ADC(mono) (r = 0.67) was statistically significant. Temporally resolved ECG-gated DWI enables for the determination of the diffusion coefficients at different time points of the cardiac cycle. ADC(mono) and FP vary significantly among acquisitions at minimum (diastole) and maximum (systole) renal blood flow. Temporally resolved ECG-gated DWI might therefore serve as a novel technique for the assessment of pulsatility in the human kidney.
Temporal and spatial resolution required for imaging myocardial function
NASA Astrophysics Data System (ADS)
Eusemann, Christian D.; Robb, Richard A.
2004-05-01
4-D functional analysis of myocardial mechanics is an area of significant interest and research in cardiology and vascular/interventional radiology. Current multidimensional analysis is limited by insufficient temporal resolution of x-ray and magnetic resonance based techniques, but recent improvements in system design holds hope for faster and higher resolution scans to improve images of moving structures allowing more accurate functional studies, such as in the heart. This paper provides a basis for the requisite temporal and spatial resolution for useful imaging during individual segments of the cardiac cycle. Multiple sample rates during systole and diastole are compared to determine an adequate sample frequency to reduce regional myocardial tracking errors. Concurrently, out-of-plane resolution has to be sufficiently high to minimize partial volume effect. Temporal resolution and out-of-plane spatial resolution are related factors that must be considered together. The data used for this study is a DSR dynamic volume image dataset with high temporal and spatial resolution using implanted fiducial markers to track myocardial motion. The results of this study suggest a reduced exposure and scan time for x-ray and magnetic resonance imaging methods, since a lower sample rate during systole is sufficient, whereas the period of rapid filling during diastole requires higher sampling. This could potentially reduce the cost of these procedures and allow higher patient throughput.
Temporal resolution for the perception of features and conjunctions.
Bodelón, Clara; Fallah, Mazyar; Reynolds, John H
2007-01-24
The visual system decomposes stimuli into their constituent features, represented by neurons with different feature selectivities. How the signals carried by these feature-selective neurons are integrated into coherent object representations is unknown. To constrain the set of possible integrative mechanisms, we quantified the temporal resolution of perception for color, orientation, and conjunctions of these two features. We find that temporal resolution is measurably higher for each feature than for their conjunction, indicating that time is required to integrate features into a perceptual whole. This finding places temporal limits on the mechanisms that could mediate this form of perceptual integration.
NASA Astrophysics Data System (ADS)
Hennen, Mark; White, Kevin; Shahgedanova, Maria
2017-04-01
This paper compares Dust RGB products derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) data at 15 minute, 30 minute and hourly temporal resolutions. From January 2006 to December 2006, observations of dust emission point sources were observed at each temporal resolution across the entire Middle East region (38.50N; 30.00E - 10.00N; 65.50E). Previous work has demonstrated that 15-minute resolution SEVIRI data can be used to map dust sources across the Sahara by observing dust storms back through sequential images to the point of first emission (Schepanski et al., 2007; 2009; 2012). These observations have improved upon lower resolution maps, based on daily retrievals of aerosol optical depth (AOD), whose maxima can be biased by prevalent transport routes, not necessarily coinciding with sources of emissions. Based on the thermal contrast of atmospheric dust to the surface, brightness temperature differences (BTD's) in the thermal infrared (TIR) wavelengths (8.7, 10.8 and 12.0 µm) highlight dust in the scene irrespective of solar illumination, giving both increased accuracy of dust source areas and a greater understanding of diurnal emission behaviour. However, the highest temporal resolution available (15-minute repeat capture) produces 96 images per day, resulting in significantly higher data storage demands than 30 minute or hourly data. To aid future research planning, this paper investigates what effect lowering the temporal resolution has on the number and spatial distribution of the observed dust sources. The results show a reduction in number of dust emission events observed with each step decrease in temporal resolution, reducing by 17% for 30-minute resolution and 50% for hourly. These differences change seasonally, with the highest reduction observed in summer (34% and 64% reduction respectively). Each resolution shows a similar spatial distribution, with the biggest difference seen near the coastlines, where near-shore convective cloud patterns obscure atmospheric dust soon after emission, restricting the opportunity to be observed at hourly resolution.
Design of 4D x-ray tomography experiments for reconstruction using regularized iterative algorithms
NASA Astrophysics Data System (ADS)
Mohan, K. Aditya
2017-10-01
4D X-ray computed tomography (4D-XCT) is widely used to perform non-destructive characterization of time varying physical processes in various materials. The conventional approach to improving temporal resolution in 4D-XCT involves the development of expensive and complex instrumentation that acquire data faster with reduced noise. It is customary to acquire data with many tomographic views at a high signal to noise ratio. Instead, temporal resolution can be improved using regularized iterative algorithms that are less sensitive to noise and limited views. These algorithms benefit from optimization of other parameters such as the view sampling strategy while improving temporal resolution by reducing the total number of views or the detector exposure time. This paper presents the design principles of 4D-XCT experiments when using regularized iterative algorithms derived using the framework of model-based reconstruction. A strategy for performing 4D-XCT experiments is presented that allows for improving the temporal resolution by progressively reducing the number of views or the detector exposure time. Theoretical analysis of the effect of the data acquisition parameters on the detector signal to noise ratio, spatial reconstruction resolution, and temporal reconstruction resolution is also presented in this paper.
Spatio-temporal Dynamics of Audiovisual Speech Processing
Bernstein, Lynne E.; Auer, Edward T.; Wagner, Michael; Ponton, Curtis W.
2007-01-01
The cortical processing of auditory-alone, visual-alone, and audiovisual speech information is temporally and spatially distributed, and functional magnetic resonance imaging (fMRI) cannot adequately resolve its temporal dynamics. In order to investigate a hypothesized spatio-temporal organization for audiovisual speech processing circuits, event-related potentials (ERPs) were recorded using electroencephalography (EEG). Stimuli were congruent audiovisual /bα/, incongruent auditory /bα/ synchronized with visual /gα/, auditory-only /bα/, and visual-only /bα/ and /gα/. Current density reconstructions (CDRs) of the ERP data were computed across the latency interval of 50-250 milliseconds. The CDRs demonstrated complex spatio-temporal activation patterns that differed across stimulus conditions. The hypothesized circuit that was investigated here comprised initial integration of audiovisual speech by the middle superior temporal sulcus (STS), followed by recruitment of the intraparietal sulcus (IPS), followed by activation of Broca's area (Miller and d'Esposito, 2005). The importance of spatio-temporally sensitive measures in evaluating processing pathways was demonstrated. Results showed, strikingly, early (< 100 msec) and simultaneous activations in areas of the supramarginal and angular gyrus (SMG/AG), the IPS, the inferior frontal gyrus, and the dorsolateral prefrontal cortex. Also, emergent left hemisphere SMG/AG activation, not predicted based on the unisensory stimulus conditions was observed at approximately 160 to 220 msec. The STS was neither the earliest nor most prominent activation site, although it is frequently considered the sine qua non of audiovisual speech integration. As discussed here, the relatively late activity of the SMG/AG solely under audiovisual conditions is a possible candidate audiovisual speech integration response. PMID:17920933
Swings between rotation and accretion power in a binary millisecond pulsar.
Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F
2013-09-26
It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.
Auditory Processing Efficiency and Temporal Resolution in Children and Adults.
ERIC Educational Resources Information Center
Hill, Penelope R.; Hartley, Douglas E.H.; Glasberg, Brian R.; Moore, Brian C.J.; Moore, David R.
2004-01-01
Children have higher auditory backward masking (BM) thresholds than adults. One explanation for this is poor temporal resolution, resulting in difficulty separating brief or rapidly presented sounds. This implies that the auditory temporal window is broader in children than in adults. Alternatively, elevated BM thresholds in children may indicate…
Fischmeister, Florian Ph.S.; Leodolter, Ulrich; Windischberger, Christian; Kasess, Christian H.; Schöpf, Veronika; Moser, Ewald; Bauer, Herbert
2010-01-01
Throughout recent years there has been an increasing interest in studying unconscious visual processes. Such conditions of unawareness are typically achieved by either a sufficient reduction of the stimulus presentation time or visual masking. However, there are growing concerns about the reliability of the presentation devices used. As all these devices show great variability in presentation parameters, the processing of visual stimuli becomes dependent on the display-device, e.g. minimal changes in the physical stimulus properties may have an enormous impact on stimulus processing by the sensory system and on the actual experience of the stimulus. Here we present a custom-built three-way LC-shutter-tachistoscope which allows experimental setups with both, precise and reliable stimulus delivery, and millisecond resolution. This tachistoscope consists of three LCD-projectors equipped with zoom lenses to enable stimulus presentation via a built-in mirror-system onto a back projection screen from an adjacent room. Two high-speed liquid crystal shutters are mounted serially in front of each projector to control the stimulus duration. To verify the intended properties empirically, different sequences of presentation times were performed while changes in optical power were measured using a photoreceiver. The obtained results demonstrate that interfering variabilities in stimulus parameters and stimulus rendering are markedly reduced. Together with the possibility to collect external signals and to send trigger-signals to other devices, this tachistoscope represents a highly flexible and easy to set up research tool not only for the study of unconscious processing in the brain but for vision research in general. PMID:20122963
Determination and characterization of the Hubble Space Telescope pointing stability
NASA Technical Reports Server (NTRS)
Bradley, A. J.; Connor, C. T.; Del Toro, Y.; Andersen, G. C.; Bely, Pierre Y.; Decker, J.; Franz, O. G.; Wasserman, L. H.; Van Altena, William F.
1993-01-01
The Hubble Space Telescope (HST) was designed to maintian a pointing stability (jitter) of 0.007 arc seconds rms throughout every observing period, which can last from a few seconds to several orbits. On-orbit measurements indicate that the hardware excitation induced by the reaction wheels. gyros, high gain antennae, science instrument mechanisms and tape recorders are well within specifications. Unexpectedly, the solar arrays because the dominant source of jitter. Every passage through an orbital terminator produces vibrations which emanate from the solar arrays due to thermal effects, which affect the relative positional stability. Broadband frequencies centered about 0.11 and 0.65 Hz were detected in the frequency content of the vehicle jitter. On-board modifications to the control law have attenuated the disturbance torques and reduced the vehicle jitter close to specification. Replacement of the solar arrays in December, 1993, should eliminate the torque distubances. Astrometric science observations are extremely susceptible to corruption from vehicle jitter. The removal of vehicle jitter from astrometric Transfer function scans of binary stars is explained in detail. A binary star separation of 16 milli-seconds of arc has been achieved, a separation resolution of 10 to 12 milli-seconds of arc appears feasible, with a binary star magnitude of 9 m(sub V). The achievement of this resolution is in part due to vehicle jitter removal. Comparison of vehicle jitter measurements from the position path of the vehicle control law, or from the guiding Fine Guidance Sensors (FGS), are shown to be equivalent to approximately 0.001 arc second.
Determination and characterization of the Hubble Space Telescope pointing stability
NASA Astrophysics Data System (ADS)
Bradley, A. J.; Connor, C. T.; del Toro, Y.; Andersen, G. C.; Bely, Pierre Y.; Decker, J.; Franz, O. G.; Wasserman, L. H.; van Altena, William F.
The Hubble Space Telescope (HST) was designed to maintian a pointing stability (jitter) of 0.007 arc seconds rms throughout every observing period, which can last from a few seconds to several orbits. On-orbit measurements indicate that the hardware excitation induced by the reaction wheels. gyros, high gain antennae, science instrument mechanisms and tape recorders are well within specifications. Unexpectedly, the solar arrays because the dominant source of jitter. Every passage through an orbital terminator produces vibrations which emanate from the solar arrays due to thermal effects, which affect the relative positional stability. Broadband frequencies centered about 0.11 and 0.65 Hz were detected in the frequency content of the vehicle jitter. On-board modifications to the control law have attenuated the disturbance torques and reduced the vehicle jitter close to specification. Replacement of the solar arrays in December, 1993, should eliminate the torque distubances. Astrometric science observations are extremely susceptible to corruption from vehicle jitter. The removal of vehicle jitter from astrometric Transfer function scans of binary stars is explained in detail. A binary star separation of 16 milli-seconds of arc has been achieved, a separation resolution of 10 to 12 milli-seconds of arc appears feasible, with a binary star magnitude of 9 m(sub V). The achievement of this resolution is in part due to vehicle jitter removal. Comparison of vehicle jitter measurements from the position path of the vehicle control law, or from the guiding Fine Guidance Sensors (FGS), are shown to be equivalent to approximately 0.001 arc second.
Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.
The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is criticalmore » to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.« less
Integration of High-resolution Data for Temporal Bone Surgical Simulations
Wiet, Gregory J.; Stredney, Don; Powell, Kimerly; Hittle, Brad; Kerwin, Thomas
2016-01-01
Purpose To report on the state of the art in obtaining high-resolution 3D data of the microanatomy of the temporal bone and to process that data for integration into a surgical simulator. Specifically, we report on our experience in this area and discuss the issues involved to further the field. Data Sources Current temporal bone image acquisition and image processing established in the literature as well as in house methodological development. Review Methods We reviewed the current English literature for the techniques used in computer-based temporal bone simulation systems to obtain and process anatomical data for use within the simulation. Search terms included “temporal bone simulation, surgical simulation, temporal bone.” Articles were chosen and reviewed that directly addressed data acquisition and processing/segmentation and enhancement with emphasis given to computer based systems. We present the results from this review in relationship to our approach. Conclusions High-resolution CT imaging (≤100μm voxel resolution), along with unique image processing and rendering algorithms, and structure specific enhancement are needed for high-level training and assessment using temporal bone surgical simulators. Higher resolution clinical scanning and automated processes that run in efficient time frames are needed before these systems can routinely support pre-surgical planning. Additionally, protocols such as that provided in this manuscript need to be disseminated to increase the number and variety of virtual temporal bones available for training and performance assessment. PMID:26762105
NASA Astrophysics Data System (ADS)
Li, Lei; Robertson-Honecker, Jennifer; Vaghela, Vishal; King, Fred L.
2006-06-01
This study employed a power perturbation method to examine the energy transfer processes at different locations within the afterpeak regime of a millisecond pulsed glow discharge plasma. Brief power perturbation pulses were applied during the afterpeak regime altering the environment of the collapsing plasma. Responses of several transitions to the power perturbations were measured via atomic emission and absorption spectroscopic methods at various distances from the surface of the cathode. The experimental data provide further insight into the energy transfer processes that occur at different spatial locations and in different temporal regimes of these pulsed glow discharge plasmas. Although the enhancement of the large population of metastable argon atoms is again confirmed, the mechanism responsible for this enhancement remains unclear. The most likely possibility involves some form of ion-electron recombination followed by radiative relaxation of the resulting species. The metastable argon atoms subsequently Penning ionize sputtered copper atoms which then appear to undergo a similar ion-electron recombination process yielding variable degrees of observable afterpeak emission for copper atom transitions. The kinetic information of these processes was approximated from the corresponding relaxation time. The electron thermalization time allowing for recombination with ions was found to be ˜25 μs after the discharge power termination.
NASA Astrophysics Data System (ADS)
Philip, S.; Martin, R. V.; Keller, C. A.
2015-11-01
Chemical transport models involve considerable computational expense. Fine temporal resolution offers accuracy at the expense of computation time. Assessment is needed of the sensitivity of simulation accuracy to the duration of chemical and transport operators. We conduct a series of simulations with the GEOS-Chem chemical transport model at different temporal and spatial resolutions to examine the sensitivity of simulated atmospheric composition to temporal resolution. Subsequently, we compare the tracers simulated with operator durations from 10 to 60 min as typically used by global chemical transport models, and identify the timesteps that optimize both computational expense and simulation accuracy. We found that longer transport timesteps increase concentrations of emitted species such as nitrogen oxides and carbon monoxide since a more homogeneous distribution reduces loss through chemical reactions and dry deposition. The increased concentrations of ozone precursors increase ozone production at longer transport timesteps. Longer chemical timesteps decrease sulfate and ammonium but increase nitrate due to feedbacks with in-cloud sulfur dioxide oxidation and aerosol thermodynamics. The simulation duration decreases by an order of magnitude from fine (5 min) to coarse (60 min) temporal resolution. We assess the change in simulation accuracy with resolution by comparing the root mean square difference in ground-level concentrations of nitrogen oxides, ozone, carbon monoxide and secondary inorganic aerosols with a finer temporal or spatial resolution taken as truth. Simulation error for these species increases by more than a factor of 5 from the shortest (5 min) to longest (60 min) temporal resolution. Chemical timesteps twice that of the transport timestep offer more simulation accuracy per unit computation. However, simulation error from coarser spatial resolution generally exceeds that from longer timesteps; e.g. degrading from 2° × 2.5° to 4° × 5° increases error by an order of magnitude. We recommend prioritizing fine spatial resolution before considering different temporal resolutions in offline chemical transport models. We encourage the chemical transport model users to specify in publications the durations of operators due to their effects on simulation accuracy.
Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation
NASA Astrophysics Data System (ADS)
Song, Huihui
Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.
Haider, Clifton R; Borisch, Eric A; Glockner, James F; Mostardi, Petrice M; Rossman, Phillip J; Young, Phillip M; Riederer, Stephen J
2010-10-01
High temporal and spatial resolution is desired in imaging of vascular abnormalities having short arterial-to-venous transit times. Methods that exploit temporal correlation to reduce the observed frame time demonstrate temporal blurring, obfuscating bolus dynamics. Previously, a Cartesian acquisition with projection reconstruction-like (CAPR) sampling method has been demonstrated for three-dimensional contrast-enhanced angiographic imaging of the lower legs using two-dimensional sensitivity-encoding acceleration and partial Fourier acceleration, providing 1mm isotropic resolution of the calves, with 4.9-sec frame time and 17.6-sec temporal footprint. In this work, the CAPR acquisition is further undersampled to provide a net acceleration approaching 40 by eliminating all view sharing. The tradeoff of frame time and temporal footprint in view sharing is presented and characterized in phantom experiments. It is shown that the resultant 4.9-sec acquisition time, three-dimensional images sets have sufficient spatial and temporal resolution to clearly portray arterial and venous phases of contrast passage. It is further hypothesized that these short temporal footprint sequences provide diagnostic quality images. This is tested and shown in a series of nine contrast-enhanced MR angiography patient studies performed with the new method.
Imaging fast electrical activity in the brain with electrical impedance tomography
Aristovich, Kirill Y.; Packham, Brett C.; Koo, Hwan; Santos, Gustavo Sato dos; McEvoy, Andy; Holder, David S.
2016-01-01
Imaging of neuronal depolarization in the brain is a major goal in neuroscience, but no technique currently exists that could image neural activity over milliseconds throughout the whole brain. Electrical impedance tomography (EIT) is an emerging medical imaging technique which can produce tomographic images of impedance changes with non-invasive surface electrodes. We report EIT imaging of impedance changes in rat somatosensory cerebral cortex with a resolution of 2 ms and < 200 μm during evoked potentials using epicortical arrays with 30 electrodes. Images were validated with local field potential recordings and current source-sink density analysis. Our results demonstrate that EIT can image neural activity in a volume 7 × 5 × 2 mm in somatosensory cerebral cortex with reduced invasiveness, greater resolution and imaging volume than other methods. Modeling indicates similar resolutions are feasible throughout the entire brain so this technique, uniquely, has the potential to image functional connectivity of cortical and subcortical structures. PMID:26348559
NASA Technical Reports Server (NTRS)
Michell, R. G.; Samara, M.; Grubbs, G., II; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.
2016-01-01
We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm x 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm x 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.
Park, Jong Kang; Rowlands, Christopher J; So, Peter T C
2017-01-01
Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice.
Park, Jong Kang; Rowlands, Christopher J.; So, Peter T. C.
2017-01-01
Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice. PMID:29387484
Whole-animal imaging with high spatio-temporal resolution
NASA Astrophysics Data System (ADS)
Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.
2016-03-01
We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.
Real-time polarization imaging algorithm for camera-based polarization navigation sensors.
Lu, Hao; Zhao, Kaichun; You, Zheng; Huang, Kaoli
2017-04-10
Biologically inspired polarization navigation is a promising approach due to its autonomous nature, high precision, and robustness. Many researchers have built point source-based and camera-based polarization navigation prototypes in recent years. Camera-based prototypes can benefit from their high spatial resolution but incur a heavy computation load. The pattern recognition algorithm in most polarization imaging algorithms involves several nonlinear calculations that impose a significant computation burden. In this paper, the polarization imaging and pattern recognition algorithms are optimized through reduction to several linear calculations by exploiting the orthogonality of the Stokes parameters without affecting precision according to the features of the solar meridian and the patterns of the polarized skylight. The algorithm contains a pattern recognition algorithm with a Hough transform as well as orientation measurement algorithms. The algorithm was loaded and run on a digital signal processing system to test its computational complexity. The test showed that the running time decreased to several tens of milliseconds from several thousand milliseconds. Through simulations and experiments, it was found that the algorithm can measure orientation without reducing precision. It can hence satisfy the practical demands of low computational load and high precision for use in embedded systems.
Lignos, Ioannis; Stavrakis, Stavros; Kilaj, Ardita; deMello, Andrew J
2015-08-26
The early-time kinetics (<1 s) of lead sulfide (PbS) quantum dot formation are probed using a novel droplet-based microfluidic platform, which allows for high-throughput and real-time optical analysis of the reactive process with millisecond time resolution. The reaction platform enables the concurrent investigation of the emission characteristics of PbS quantum dots and a real-time estimation of their size and concentration during nucleation and growth. These investigations reveal a two-stage mechanism for PbS nanoparticle formation. The first stage corresponds to the fast conversion of precursor species to PbS crystals, followed by the growth of the formed particles. The growth kinetics of the PbS nanoparticles follow the Lifshitz-Slyozov-Wagner model for Ostwald ripening, allowing direct estimation of the rate constants for the process. In addition, the extraction of absorption spectra of ultrasmall quantum dots is demonstrated for first time in an online manner. The droplet-based microfluidic platform integrated with online spectroscopic analysis provides a new tool for the quantitative extraction of high temperature kinetics for systems with rapid nucleation and growth stages. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Montalba, Cristian; Urbina, Jesus; Sotelo, Julio; Andia, Marcelo E; Tejos, Cristian; Irarrazaval, Pablo; Hurtado, Daniel E; Valverde, Israel; Uribe, Sergio
2018-04-01
To assess the variability of peak flow, mean velocity, stroke volume, and wall shear stress measurements derived from 3D cine phase contrast (4D flow) sequences under different conditions of spatial and temporal resolutions. We performed controlled experiments using a thoracic aortic phantom. The phantom was connected to a pulsatile flow pump, which simulated nine physiological conditions. For each condition, 4D flow data were acquired with different spatial and temporal resolutions. The 2D cine phase contrast and 4D flow data with the highest available spatio-temporal resolution were considered as a reference for comparison purposes. When comparing 4D flow acquisitions (spatial and temporal resolution of 2.0 × 2.0 × 2.0 mm 3 and 40 ms, respectively) with 2D phase-contrast flow acquisitions, the underestimation of peak flow, mean velocity, and stroke volume were 10.5, 10 and 5%, respectively. However, the calculated wall shear stress showed an underestimation larger than 70% for the former acquisition, with respect to 4D flow, with spatial and temporal resolution of 1.0 × 1.0 × 1.0 mm 3 and 20 ms, respectively. Peak flow, mean velocity, and stroke volume from 4D flow data are more sensitive to changes of temporal than spatial resolution, as opposed to wall shear stress, which is more sensitive to changes in spatial resolution. Magn Reson Med 79:1882-1892, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-01-01
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification. PMID:28025525
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-12-22
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification.
The magnetic fields, ages, and original spin periods of millisecond pulsars
NASA Technical Reports Server (NTRS)
Camilo, F.; Thorsett, S. E.; Kulkarni, S. R.
1994-01-01
Accurate determination of the spin-down rates of millisecond pulsars requires consideration of the apparent acceleration of the pulsars due to their high transverse velocities. We show that for several nearby pulsars the neglect of this effect leads to substantial errors in inferred pulsar ages and magnetic fields. Two important ramifications follow. (1) The intrinsic magnetic field strengths of all millisecond pulsars lie below 5 x 10(exp 8) G, strengthening an earlier suggestion of a 'gap' between the magnetic field strengths of millisecond pulsars and of high-mass binary pulsars such as PSR B1913+16, which are thought to have been formed by mass transfer in low-mass and high-mass X-ray binaries, respectively. This result suggests that the magnetic field strengths of recycled pulsars are related to their formation and evolution in binary systems. (2) The corrected characteristic ages of several millisecond pulsars appear to be greater than the age of the Galactic disk. We reconcile this apparent paradox by suggesting that some millisecond pulsars were born with periods close to their current periods. This conclusion has important implications for the interpretation of the cooling ages of white dwarf companions, the birthrate discrepancy between millisecond pulsars and their X-ray binary progenitors, and the possible existence of a class of weakly magnetized (B much less than 10(exp 8)G), rapidly rotating neutron stars.
Schlägel, Ulrike E; Lewis, Mark A
2016-12-01
Discrete-time random walks and their extensions are common tools for analyzing animal movement data. In these analyses, resolution of temporal discretization is a critical feature. Ideally, a model both mirrors the relevant temporal scale of the biological process of interest and matches the data sampling rate. Challenges arise when resolution of data is too coarse due to technological constraints, or when we wish to extrapolate results or compare results obtained from data with different resolutions. Drawing loosely on the concept of robustness in statistics, we propose a rigorous mathematical framework for studying movement models' robustness against changes in temporal resolution. In this framework, we define varying levels of robustness as formal model properties, focusing on random walk models with spatially-explicit component. With the new framework, we can investigate whether models can validly be applied to data across varying temporal resolutions and how we can account for these different resolutions in statistical inference results. We apply the new framework to movement-based resource selection models, demonstrating both analytical and numerical calculations, as well as a Monte Carlo simulation approach. While exact robustness is rare, the concept of approximate robustness provides a promising new direction for analyzing movement models.
Resolution of spatial and temporal visual attention in infants with fragile X syndrome.
Farzin, Faraz; Rivera, Susan M; Whitney, David
2011-11-01
Fragile X syndrome is the most common cause of inherited intellectual impairment and the most common single-gene cause of autism. Individuals with fragile X syndrome present with a neurobehavioural phenotype that includes selective deficits in spatiotemporal visual perception associated with neural processing in frontal-parietal networks of the brain. The goal of the current study was to examine whether reduced resolution of spatial and/or temporal visual attention may underlie perceptual deficits related to fragile X syndrome. Eye tracking was used to psychophysically measure the limits of spatial and temporal attention in infants with fragile X syndrome and age-matched neurotypically developing infants. Results from these experiments revealed that infants with fragile X syndrome experience drastically reduced resolution of temporal attention in a genetic dose-sensitive manner, but have a spatial resolution of attention that is not impaired. Coarse temporal attention could have significant knock-on effects for the development of perceptual, cognitive and motor abilities in individuals with the disorder.
Resolution of spatial and temporal visual attention in infants with fragile X syndrome
Rivera, Susan M.; Whitney, David
2011-01-01
Fragile X syndrome is the most common cause of inherited intellectual impairment and the most common single-gene cause of autism. Individuals with fragile X syndrome present with a neurobehavioural phenotype that includes selective deficits in spatiotemporal visual perception associated with neural processing in frontal–parietal networks of the brain. The goal of the current study was to examine whether reduced resolution of spatial and/or temporal visual attention may underlie perceptual deficits related to fragile X syndrome. Eye tracking was used to psychophysically measure the limits of spatial and temporal attention in infants with fragile X syndrome and age-matched neurotypically developing infants. Results from these experiments revealed that infants with fragile X syndrome experience drastically reduced resolution of temporal attention in a genetic dose-sensitive manner, but have a spatial resolution of attention that is not impaired. Coarse temporal attention could have significant knock-on effects for the development of perceptual, cognitive and motor abilities in individuals with the disorder. PMID:22075522
Spatiotemporal neural network dynamics for the processing of dynamic facial expressions.
Sato, Wataru; Kochiyama, Takanori; Uono, Shota
2015-07-24
The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150-200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300-350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual-motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions.
Sensitivity to timing and order in human visual cortex
Singer, Jedediah M.; Madsen, Joseph R.; Anderson, William S.
2014-01-01
Visual recognition takes a small fraction of a second and relies on the cascade of signals along the ventral visual stream. Given the rapid path through multiple processing steps between photoreceptors and higher visual areas, information must progress from stage to stage very quickly. This rapid progression of information suggests that fine temporal details of the neural response may be important to the brain's encoding of visual signals. We investigated how changes in the relative timing of incoming visual stimulation affect the representation of object information by recording intracranial field potentials along the human ventral visual stream while subjects recognized objects whose parts were presented with varying asynchrony. Visual responses along the ventral stream were sensitive to timing differences as small as 17 ms between parts. In particular, there was a strong dependency on the temporal order of stimulus presentation, even at short asynchronies. From these observations we infer that the neural representation of complex information in visual cortex can be modulated by rapid dynamics on scales of tens of milliseconds. PMID:25429116
Spatiotemporal neural network dynamics for the processing of dynamic facial expressions
Sato, Wataru; Kochiyama, Takanori; Uono, Shota
2015-01-01
The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150–200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300–350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual–motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions. PMID:26206708
Williams, Alex H; Kim, Tony Hyun; Wang, Forea; Vyas, Saurabh; Ryu, Stephen I; Shenoy, Krishna V; Schnitzer, Mark; Kolda, Tamara G; Ganguli, Surya
2018-06-27
Perceptions, thoughts, and actions unfold over millisecond timescales, while learned behaviors can require many days to mature. While recent experimental advances enable large-scale and long-term neural recordings with high temporal fidelity, it remains a formidable challenge to extract unbiased and interpretable descriptions of how rapid single-trial circuit dynamics change slowly over many trials to mediate learning. We demonstrate a simple tensor component analysis (TCA) can meet this challenge by extracting three interconnected, low-dimensional descriptions of neural data: neuron factors, reflecting cell assemblies; temporal factors, reflecting rapid circuit dynamics mediating perceptions, thoughts, and actions within each trial; and trial factors, describing both long-term learning and trial-to-trial changes in cognitive state. We demonstrate the broad applicability of TCA by revealing insights into diverse datasets derived from artificial neural networks, large-scale calcium imaging of rodent prefrontal cortex during maze navigation, and multielectrode recordings of macaque motor cortex during brain machine interface learning. Copyright © 2018 Elsevier Inc. All rights reserved.
Wu, Lingfei; Wu, Kesheng; Sim, Alex; ...
2016-06-01
A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes tomore » detect and track blob-filaments in real time in fusion plasma. Here, on a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.« less
NASA Astrophysics Data System (ADS)
Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.
2016-02-01
A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.
Study of the eclipse region of the redback millisecond pulsar J1431-4715
NASA Astrophysics Data System (ADS)
Miraval Zanon, A.; Burgay, M.; Possenti, A.; Ridolfi, A.
2018-01-01
We report on the rotational, astrometric and orbital parameters for PSR J1431-4715, and we also present a preliminary analysis of the eclipsing region. This pulsar was discovered in the High Time Resolution Universe survey and it belongs to the class of “redback” systems. The minimum estimated mass for the companion of J1431-4715 is, indeed, 0.13 M⊙. Thanks to multi-frequency observations, obtained at the 64 m Parkes radio telescope, we note that the magnitude and the duration of the eclipse delay depend upon the observing frequency.
Pushing x-ray photon correlation spectroscopy beyond the continuous frame rate limit
Dufresne, Eric M.; Narayanan, Suresh; Sandy, Alec R.; ...
2016-01-06
We demonstrate delayed-frame X-ray Photon Correlation Spectroscopy with 120 microsecond time resolution, limited only by sample scattering rates, with a prototype Pixel-array detector capable of taking two image frames separated by 153 ns or less. Although the overall frame rate is currently limited to about 4 frame pairs per second, we easily measured millisecond correlation functions. In conclusion, this technology, coupled to the use of brighter synchrotrons such as Petra III or the NSLS-II should enable X-ray Photon Correlation Spectroscopy on microsecond time scales on a wider variety of materials.
A New Individually Addressable Micro-LED Array for Photogenetic Neural Stimulation.
McGovern, B; Berlinguer Palmini, R; Grossman, N; Drakakis, E; Poher, V; Neil, M A A; Degenaar, P
2010-12-01
Here, we demonstrate the use of a micro light emitting diode (LED) array as a powerful tool for complex spatiotemporal control of photosensitized neurons. The array can generate arbitrary, 2-D, excitation patterns with millisecond and micrometer resolution. In particular, we describe an active matrix control address system to allow simultaneous control of 256 individual micro LEDs. We present the system optically integrated into a microscope environment and patch clamp electrophysiology. The results show that the emitters have sufficient radiance at the required wavelength to stimulate neurons expressing channelrhodopsin-2 (ChR2).
Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Goebel, Rainer; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia
2014-01-01
Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3 and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are represented in the human brain. We compare competing models of sound representations and select the model that most accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex. PMID:24391486
USDA-ARS?s Scientific Manuscript database
Spatio-temporal variability of soil moisture (') is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time ' monitoring methods. This restricted the comprehensive and intensive examination of ' dynamic...
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-01-01
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. PMID:26959023
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-03-04
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera.
Integration of EEG source imaging and fMRI during continuous viewing of natural movies.
Whittingstall, Kevin; Bartels, Andreas; Singh, Vanessa; Kwon, Soyoung; Logothetis, Nikos K
2010-10-01
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an estimate of the current density at every time point. We then carried out a correlation between the time series of visual contrast changes in the movie with that of EEG voxels. We found the most significant correlations in visual area V1, just as seen in previous fMRI studies (Bartels A, Zeki, S, Logothetis NK. Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cereb Cortex 2008;18(3):705-717), but on the time scale of milliseconds rather than of seconds. To obtain an estimate of how the EEG signal relates to the BOLD signal, we calculated the IRF between the BOLD signal and the estimated current density in area V1. We found that this IRF was very similar to that observed using combined intracortical recordings and fMRI experiments in nonhuman primates. Taken together, these findings open a new approach to noninvasive mapping of the brain. It allows, firstly, the localization of feature-selective brain areas during natural viewing conditions with the temporal resolution of EEG. Secondly, it provides a tool to assess EEG/BOLD transfer functions during processing of more natural stimuli. This is especially useful in combined EEG/fMRI experiments, where one can now potentially study neural-hemodynamic relationships across the whole brain volume in a noninvasive manner. Copyright © 2010 Elsevier Inc. All rights reserved.
Biomechanics meets the ecological niche: the importance of temporal data resolution.
Kearney, Michael R; Matzelle, Allison; Helmuth, Brian
2012-03-15
The emerging field of mechanistic niche modelling aims to link the functional traits of organisms to their environments to predict survival, reproduction, distribution and abundance. This approach has great potential to increase our understanding of the impacts of environmental change on individuals, populations and communities by providing functional connections between physiological and ecological response to increasingly available spatial environmental data. By their nature, such mechanistic models are more data intensive in comparison with the more widely applied correlative approaches but can potentially provide more spatially and temporally explicit predictions, which are often needed by decision makers. A poorly explored issue in this context is the appropriate level of temporal resolution of input data required for these models, and specifically the error in predictions that can be incurred through the use of temporally averaged data. Here, we review how biomechanical principles from heat-transfer and metabolic theory are currently being used as foundations for mechanistic niche models and consider the consequences of different temporal resolutions of environmental data for modelling the niche of a behaviourally thermoregulating terrestrial lizard. We show that fine-scale temporal resolution (daily) data can be crucial for unbiased inference of climatic impacts on survival, growth and reproduction. This is especially so for species with little capacity for behavioural buffering, because of behavioural or habitat constraints, and for detecting temporal trends. However, coarser-resolution data (long-term monthly averages) can be appropriate for mechanistic studies of climatic constraints on distribution and abundance limits in thermoregulating species at broad spatial scales.
NASA Astrophysics Data System (ADS)
Nallasamy, N. D.; Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.
2014-12-01
Sustainable management of water resources requires reliable estimates of actual evapotranspiration (ET) at fine spatial and temporal resolution. This is significant in the case of rice based irrigation systems, one of the major consumers of surface water resources and where ET forms a major component of water consumption. However huge tradeoff in the spatial and temporal resolution of satellite images coupled with lack of adequate number of cloud free images within a growing season act as major constraints in deriving ET at fine spatial and temporal resolution using remote sensing based energy balance models. The scale at which ET is determined is decided by the spatial and temporal scale of Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which form inputs to energy balance models. In this context, the current study employed disaggregation algorithms (NL-DisTrad and DisNDVI) to generate time series of LST and NDVI images at fine resolution. The disaggregation algorithms aimed at generating LST and NDVI at finer scale by integrating temporal information from concurrent coarse resolution data and spatial information from a single fine resolution image. The temporal frequency of the disaggregated images is further improved by employing composite images of NDVI and LST in the spatio-temporal disaggregation method. The study further employed half-hourly incoming surface insolation and outgoing long wave radiation obtained from the Indian geostationary satellite (Kalpana-1) to convert the instantaneous ET into daily ET and subsequently to the seasonal ET, thereby improving the accuracy of ET estimates. The estimates of ET were validated with field based water balance measurements carried out in Gadana, a subbasin predominated by rice paddy fields, located in Tamil Nadu, India.
Gamma rays from hidden millisecond pulsars
NASA Technical Reports Server (NTRS)
Tavani, Marco
1992-01-01
The properties were studied of a new class of gamma ray sources consisting of millisecond pulsars totally or partially surrounded by evaporating material from irradiated companion stars. Hidden millisecond pulsars offer a unique possibility to study gamma ray, optical and radio emission from vaporizing binaries. The relevance of this class of binaries for GRO observations and interpretation of COS-B data is emphasized.
Millisecond accuracy video display using OpenGL under Linux.
Stewart, Neil
2006-02-01
To measure people's reaction times to the nearest millisecond, it is necessary to know exactly when a stimulus is displayed. This article describes how to display stimuli with millisecond accuracy on a normal CRT monitor, using a PC running Linux. A simple C program is presented to illustrate how this may be done within X Windows using the OpenGL rendering system. A test of this system is reported that demonstrates that stimuli may be consistently displayed with millisecond accuracy. An algorithm is presented that allows the exact time of stimulus presentation to be deduced, even if there are relatively large errors in measuring the display time.
An x-ray nebula associated with the millisecond pulsar B1957+20.
Stappers, B W; Gaensler, B M; Kaspi, V M; van der Klis, M; Lewin, W H G
2003-02-28
We have detected an x-ray nebula around the binary millisecond pulsar B1957+20. A narrow tail, corresponding to the shocked pulsar wind, is seen interior to the known Halpha bow shock and proves the long-held assumption that the rotational energy of millisecond pulsars is dissipated through relativistic winds. Unresolved x-ray emission likely represents the shock where the winds of the pulsar and its companion collide. This emission indicates that the efficiency with which relativistic particles are accelerated in the postshock flow is similar to that for young pulsars, despite the shock proximity and much weaker surface magnetic field of this millisecond pulsar.
A Markov model for the temporal dynamics of balanced random networks of finite size
Lagzi, Fereshteh; Rotter, Stefan
2014-01-01
The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between neuronal populations also opens new doors to analyze the joint dynamics of multiple interacting networks. PMID:25520644
Coherent diffractive imaging of time-evolving samples with improved temporal resolution
Ulvestad, A.; Tripathi, A.; Hruszkewycz, S. O.; ...
2016-05-19
Bragg coherent x-ray diffractive imaging is a powerful technique for investigating dynamic nanoscale processes in nanoparticles immersed in reactive, realistic environments. Its temporal resolution is limited, however, by the oversampling requirements of three-dimensional phase retrieval. Here, we show that incorporating the entire measurement time series, which is typically a continuous physical process, into phase retrieval allows the oversampling requirement at each time step to be reduced, leading to a subsequent improvement in the temporal resolution by a factor of 2-20 times. The increased time resolution will allow imaging of faster dynamics and of radiation-dose-sensitive samples. Furthermore, this approach, which wemore » call "chrono CDI," may find use in improving the time resolution in other imaging techniques.« less
Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory.
Wang, Haoyu; Miao, Yanwei; Zhou, Kun; Yu, Yanming; Bao, Shanglian; He, Qiang; Dai, Yongming; Xuan, Stephanie Y; Tarabishy, Bisher; Ye, Yongquan; Hu, Jiani
2010-09-01
To investigate the feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory. Two experiments were designed to investigate the feasibility of using reference image based compressed sensing (RICS) technique in DCE-MRI of the breast. The first experiment examined the capability of RICS to faithfully reconstruct uptake curves using undersampled data sets extracted from fully sampled clinical breast DCE-MRI data. An average approach and an approach using motion estimation and motion compensation (ME/MC) were implemented to obtain reference images and to evaluate their efficacy in reducing motion related effects. The second experiment, an in vitro phantom study, tested the feasibility of RICS for improving temporal resolution without degrading the spatial resolution. For the uptake-curve reconstruction experiment, there was a high correlation between uptake curves reconstructed from fully sampled data by Fourier transform and from undersampled data by RICS, indicating high similarity between them. The mean Pearson correlation coefficients for RICS with the ME/MC approach and RICS with the average approach were 0.977 +/- 0.023 and 0.953 +/- 0.031, respectively. The comparisons of final reconstruction results between RICS with the average approach and RICS with the ME/MC approach suggested that the latter was superior to the former in reducing motion related effects. For the in vitro experiment, compared to the fully sampled method, RICS improved the temporal resolution by an acceleration factor of 10 without degrading the spatial resolution. The preliminary study demonstrates the feasibility of RICS for faithfully reconstructing uptake curves and improving temporal resolution of breast DCE-MRI without degrading the spatial resolution.
NASA Astrophysics Data System (ADS)
Mbabazi, D.; Mohanty, B.; Gaur, N.
2017-12-01
Evapotranspiration (ET) is an important component of the water and energy balance and accounts for 60 -70% of precipitation losses. However, accurate estimates of ET are difficult to quantify at varying spatial and temporal scales. Eddy covariance methods estimate ET at high temporal resolutions but without capturing the spatial variation in ET within its footprint. On the other hand, remote sensing methods using Landsat imagery provide ET with high spatial resolution but low temporal resolution (16 days). In this study, we used both eddy covariance and remote sensing methods to generate high space-time resolution ET. Daily, monthly and seasonal ET estimates were obtained using the eddy covariance (EC) method, Penman-Monteith (PM) and Mapping Evapotranspiration with Internalized Calibration (METRIC) models to determine cotton and native prairie ET dynamics in the Brazos river basin characterized by varying hydro-climatic and geological gradients. Daily estimates of spatially distributed ET (30 m resolution) were generated using spatial autocorrelation and temporal interpolations between the EC flux variable footprints and METRIC ET for the 2016 and 2017 growing seasons. A comparison of the 2016 and 2017 preliminary daily ET estimates showed similar ET dynamics/trends among the EC, PM and METRIC methods, and 5-20% differences in seasonal ET estimates. This study will improve the spatial estimates of EC ET and temporal resolution of satellite derived ET thus providing better ET data for water use management.
Object Manifold Alignment for Multi-Temporal High Resolution Remote Sensing Images Classification
NASA Astrophysics Data System (ADS)
Gao, G.; Zhang, M.; Gu, Y.
2017-05-01
Multi-temporal remote sensing images classification is very useful for monitoring the land cover changes. Traditional approaches in this field mainly face to limited labelled samples and spectral drift of image information. With spatial resolution improvement, "pepper and salt" appears and classification results will be effected when the pixelwise classification algorithms are applied to high-resolution satellite images, in which the spatial relationship among the pixels is ignored. For classifying the multi-temporal high resolution images with limited labelled samples, spectral drift and "pepper and salt" problem, an object-based manifold alignment method is proposed. Firstly, multi-temporal multispectral images are cut to superpixels by simple linear iterative clustering (SLIC) respectively. Secondly, some features obtained from superpixels are formed as vector. Thirdly, a majority voting manifold alignment method aiming at solving high resolution problem is proposed and mapping the vector data to alignment space. At last, all the data in the alignment space are classified by using KNN method. Multi-temporal images from different areas or the same area are both considered in this paper. In the experiments, 2 groups of multi-temporal HR images collected by China GF1 and GF2 satellites are used for performance evaluation. Experimental results indicate that the proposed method not only has significantly outperforms than traditional domain adaptation methods in classification accuracy, but also effectively overcome the problem of "pepper and salt".
Central tendency effects in time interval reproduction in autism
Karaminis, Themelis; Cicchini, Guido Marco; Neil, Louise; Cappagli, Giulia; Aagten-Murphy, David; Burr, David; Pellicano, Elizabeth
2016-01-01
Central tendency, the tendency of judgements of quantities (lengths, durations etc.) to gravitate towards their mean, is one of the most robust perceptual effects. A Bayesian account has recently suggested that central tendency reflects the integration of noisy sensory estimates with prior knowledge representations of a mean stimulus, serving to improve performance. The process is flexible, so prior knowledge is weighted more heavily when sensory estimates are imprecise, requiring more integration to reduce noise. In this study we measure central tendency in autism to evaluate a recent theoretical hypothesis suggesting that autistic perception relies less on prior knowledge representations than typical perception. If true, autistic children should show reduced central tendency than theoretically predicted from their temporal resolution. We tested autistic and age- and ability-matched typical children in two child-friendly tasks: (1) a time interval reproduction task, measuring central tendency in the temporal domain; and (2) a time discrimination task, assessing temporal resolution. Central tendency reduced with age in typical development, while temporal resolution improved. Autistic children performed far worse in temporal discrimination than the matched controls. Computational simulations suggested that central tendency was much less in autistic children than predicted by theoretical modelling, given their poor temporal resolution. PMID:27349722
NASA Astrophysics Data System (ADS)
Girish, B. S.; Pandey, Deepak; Ramachandran, Hema
2017-08-01
We present a compact, inexpensive multichannel module, APODAS (Avalanche Photodiode Output Data Acquisition System), capable of detecting 0.8 billion photons per second and providing real-time recording on a computer hard-disk, of channel- and time-tagged information of the arrival of upto 0.4 billion photons per second. Built around a Virtex-5 Field Programmable Gate Array (FPGA) unit, APODAS offers a temporal resolution of 5 nanoseconds with zero deadtime in data acquisition, utilising an efficient scheme for time and channel tagging and employing Gigabit ethernet for the transfer of data. Analysis tools have been developed on a Linux platform for multi-fold coincidence studies and time-delayed intensity interferometry. As illustrative examples, the second-order intensity correlation function ( g 2) of light from two commonly used sources in quantum optics —a coherent laser source and a dilute atomic vapour emitting spontaneously, constituting a thermal source— are presented. With easy reconfigurability and with no restriction on the total record length, APODAS can be readily used for studies over various time scales. This is demonstrated by using APODAS to reveal Rabi oscillations on nanosecond time scales in the emission of ultracold atoms, on the one hand, and, on the other hand, to measure the second-order correlation function on the millisecond time scales from tailored light sources. The efficient and versatile performance of APODAS promises its utility in diverse fields, like quantum optics, quantum communication, nuclear physics, astrophysics and biology.
Measuring Fast-Temporal Sediment Fluxes with an Analogue Acoustic Sensor: A Wind Tunnel Study
Poortinga, Ate; van Minnen, Jan; Keijsers, Joep; Riksen, Michel; Goossens, Dirk; Seeger, Manuel
2013-01-01
In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the most effective application and data analysis techniques is widely debated in the literature. Here we investigate the effectiveness of two different sediment traps (the BEST trap and the MWAC catcher) in measuring vertical sediment flux. The study was performed in a wind tunnel with sediment fluxes characterized using saltiphones. Contrary to most studies, we used the analogue output of five saltiphones mounted on top of each other to determine the total kinetic energy, which was then used to calculate aeolian sediment budgets. Absolute sediment losses during the experiments were determined using a balance located beneath the test tray. Test runs were conducted with different sand sizes and at different wind speeds. The efficiency of the two traps did not vary with the wind speed or sediment size but was affected by both the experimental setup (position of the lowest trap above the surface and number of traps in the saltation layer) and the technique used to calculate the sediment flux. Despite this, good agreement was found between sediment losses calculated from the saltiphone and those measured using the balance. The results of this study provide a framework for measuring sediment fluxes at small time resolution (seconds to milliseconds) in the field. PMID:24058512
Measuring fast-temporal sediment fluxes with an analogue acoustic sensor: a wind tunnel study.
Poortinga, Ate; van Minnen, Jan; Keijsers, Joep; Riksen, Michel; Goossens, Dirk; Seeger, Manuel
2013-01-01
In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the most effective application and data analysis techniques is widely debated in the literature. Here we investigate the effectiveness of two different sediment traps (the BEST trap and the MWAC catcher) in measuring vertical sediment flux. The study was performed in a wind tunnel with sediment fluxes characterized using saltiphones. Contrary to most studies, we used the analogue output of five saltiphones mounted on top of each other to determine the total kinetic energy, which was then used to calculate aeolian sediment budgets. Absolute sediment losses during the experiments were determined using a balance located beneath the test tray. Test runs were conducted with different sand sizes and at different wind speeds. The efficiency of the two traps did not vary with the wind speed or sediment size but was affected by both the experimental setup (position of the lowest trap above the surface and number of traps in the saltation layer) and the technique used to calculate the sediment flux. Despite this, good agreement was found between sediment losses calculated from the saltiphone and those measured using the balance. The results of this study provide a framework for measuring sediment fluxes at small time resolution (seconds to milliseconds) in the field.
gPhoton: The GALEX Photon Data Archive
NASA Astrophysics Data System (ADS)
Million, Chase; Fleming, Scott W.; Shiao, Bernie; Seibert, Mark; Loyd, Parke; Tucker, Michael; Smith, Myron; Thompson, Randy; White, Richard L.
2016-12-01
gPhoton is a new database product and software package that enables analysis of GALEX ultraviolet data at the photon level. The project’s stand-alone, pure-Python calibration pipeline reproduces the functionality of the original mission pipeline to reduce raw spacecraft data to lists of time-tagged, sky-projected photons, which are then hosted in a publicly available database by the Mikulski Archive at Space Telescope. This database contains approximately 130 terabytes of data describing approximately 1.1 trillion sky-projected events with a timestamp resolution of five milliseconds. A handful of Python and command-line modules serve as a front end to interact with the database and to generate calibrated light curves and images from the photon-level data at user-defined temporal and spatial scales. The gPhoton software and source code are in active development and publicly available under a permissive license. We describe the motivation, design, and implementation of the calibration pipeline, database, and tools, with emphasis on divergence from prior work, as well as challenges created by the large data volume. We summarize the astrometric and photometric performance of gPhoton relative to the original mission pipeline. For a brief example of short time-domain science capabilities enabled by gPhoton, we show new flares from the known M-dwarf flare star CR Draconis. The gPhoton software has permanent object identifiers with the ASCL (ascl:1603.004) and DOI (doi:10.17909/T9CC7G). This paper describes the software as of version v1.27.2.
N-Way FRET Microscopy of Multiple Protein-Protein Interactions in Live Cells
Hoppe, Adam D.; Scott, Brandon L.; Welliver, Timothy P.; Straight, Samuel W.; Swanson, Joel A.
2013-01-01
Fluorescence Resonance Energy Transfer (FRET) microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET) to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells. PMID:23762252
NASA Astrophysics Data System (ADS)
Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten
2013-04-01
The estimated power required to sustain global general circulation in the ocean is about 2 TW. This power is supplied with wind stress and tides. Energy spectrum shows pronounced maxima at near-inertial frequency. Near-inertial waves excited by high-frequency winds represent an important source for deep ocean mixing since they can propagate into the deep ocean and dissipate far away from the generation sites. The energy input by winds to near-inertial waves has been studied mostly using slab ocean models and wind stress forcing with coarse temporal resolution (e.g. 6-hourly). Slab ocean models lack the ability to reproduce fundamental aspects of kinetic energy balance and systematically overestimate the wind work. Also, slab ocean models do not account the energy used for the mixed layer deepening or the energy radiating downward into the deep ocean. Coarse temporal resolution of the wind forcing strongly underestimates the near-inertial energy. To overcome this difficulty we use an eddy permitting ocean model with high-frequency wind forcing. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45 km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal and temporal resolution. We use high-resolution (1-hourly with 35 km horizontal resolution) and low-resolution winds (6-hourly with 250 km horizontal resolution). We address the following questions: Is the kinetic energy of near-inertial waves enhanced when high-resolution wind forcings are used? If so, is this due to higher level of overall wind variability or higher spatial or temporal resolution of wind forcing? How large is the power of near-inertial waves generated by winds? Our results show that near-inertial waves are enhanced and the near-inertial kinetic energy is two times higher (in the storm track regions 3.5 times higher) when high-resolution winds are used. Filtering high-resolution winds in space and time, the near-inertial kinetic energy reduces. The reduction is faster when a temporal filter is used suggesting that the high-frequency wind forcing is more efficient in generating near-inertial wave energy than the small-scale wind forcing. Using low-resolution wind forcing the wind generated power to near-inertial waves is 0.55 TW. When we use high-resolution wind forcing the result is 1.6 TW meaning that the result increases by 300%.
High energy transients: The millisecond domain
NASA Astrophysics Data System (ADS)
Rao, A. R.
2018-02-01
The search for high energy transients in the millisecond domain has come to the focus in recent times due to the detection of gravitational wave events and the identification of fast radio bursts as cosmological sources. Here we highlight the sensitivity limitations in the currently operating hard X-ray telescopes and give some details of the search for millisecond events in the AstroSat CZT Imager data.
Safford, Ashley S; Hussey, Elizabeth A; Parasuraman, Raja; Thompson, James C
2010-07-07
Although it is well documented that the ability to perceive biological motion is mediated by the lateral temporal cortex, whether and when neural activity in this brain region is modulated by attention is unknown. In particular, it is unclear whether the processing of biological motion requires attention or whether such stimuli are processed preattentively. Here, we used functional magnetic resonance imaging, high-density electroencephalography, and cortically constrained source estimation methods to investigate the spatiotemporal effects of attention on the processing of biological motion. Directing attention to tool motion in overlapping movies of biological motion and tool motion suppressed the blood oxygenation level-dependent (BOLD) response of the right superior temporal sulcus (STS)/middle temporal gyrus (MTG), while directing attention to biological motion suppressed the BOLD response of the left inferior temporal sulcus (ITS)/MTG. Similarly, category-based modulation of the cortical current source density estimates from the right STS/MTG and left ITS was observed beginning at approximately 450 ms following stimulus onset. Our results indicate that the cortical processing of biological motion is strongly modulated by attention. These findings argue against preattentive processing of biological motion in the presence of stimuli that compete for attention. Our findings also suggest that the attention-based segregation of motion category-specific responses only emerges relatively late (several hundred milliseconds) in processing.
Extraction of temporal information in functional MRI
NASA Astrophysics Data System (ADS)
Singh, M.; Sungkarat, W.; Jeong, Jeong-Won; Zhou, Yongxia
2002-10-01
The temporal resolution of functional MRI (fMRI) is limited by the shape of the haemodynamic response function (hrf) and the vascular architecture underlying the activated regions. Typically, the temporal resolution of fMRI is on the order of 1 s. We have developed a new data processing approach to extract temporal information on a pixel-by-pixel basis at the level of 100 ms from fMRI data. Instead of correlating or fitting the time-course of each pixel to a single reference function, which is the common practice in fMRI, we correlate each pixel's time-course to a series of reference functions that are shifted with respect to each other by 100 ms. The reference function yielding the highest correlation coefficient for a pixel is then used as a time marker for that pixel. A Monte Carlo simulation and experimental study of this approach were performed to estimate the temporal resolution as a function of signal-to-noise ratio (SNR) in the time-course of a pixel. Assuming a known and stationary hrf, the simulation and experimental studies suggest a lower limit in the temporal resolution of approximately 100 ms at an SNR of 3. The multireference function approach was also applied to extract timing information from an event-related motor movement study where the subjects flexed a finger on cue. The event was repeated 19 times with the event's presentation staggered to yield an approximately 100-ms temporal sampling of the haemodynamic response over the entire presentation cycle. The timing differences among different regions of the brain activated by the motor task were clearly visualized and quantified by this method. The results suggest that it is possible to achieve a temporal resolution of /spl sim/200 ms in practice with this approach.
Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions
Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra
2016-01-01
Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min−1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics. PMID:27991512
Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions
NASA Astrophysics Data System (ADS)
Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra
2016-12-01
Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min-1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.
Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions.
Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra
2016-12-19
Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min -1 . The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.
NASA Astrophysics Data System (ADS)
Franzen, Jochen; Frey, Rüdiger; Nagel, Holger
1995-03-01
A new analytical procedure is provided by the combination of two types of spectroscopy. Resonant ionization of selected compounds by multiphoton ionization is based on results of absorption spectroscopy for the compound molecules of interest and time-of-flight mass spectrometry serves for the unambigious detection of these compounds. An interesting application of this method is the fast exhaust gas analysis. In the development of future combustion engines, the management of dynamic motor processes becomes predominant because by more than 90 % of all the dangerous exhaust pollutions are produced in instationary motor phases such as fast speed or load changes. The investigation of dynamic processes however, requires fast analytical procedures with millisecond time resolution together with the capability to measure individual components in a very complex gas mixture The objectives for a development project of such an instrument were set by the Research Association for Combustion Engines (Forschungsvereinigung Verbrennungskraftmaschinen, FVV, Germany): Up to ten substances should be monitored synchroneously with a time resolution of about 10 milliseconds, with concentration limits of 1 part per million and with a precision better than 10 % relative standard deviation. Such a laser mass spectrometer for fast multi-component automotive exhaust analyses has been developed in a joint research project by Bruker-Franzen Analytik GmbH, Dornier GmbH and the Technical University of Munich. The system has been applied at a motor test facility to investigate the emissions of the aromatic hydrocarbons benzene, toluene and xylene, of nitric oxide and acetaldehyde in stationary and dynamic engine operation. These measurements demonstrate that strong emission of these pollutants takes place at instationary engine operation and in particular that these compounds are emitted at different times, giving new information about the processes in the combustion chamber and in the exhaust pipe.
Temporal resolution and motion artifacts in single-source and dual-source cardiac CT.
Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas
2013-03-01
The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same amount of data being used in the reconstruction process. The concept of assessing temporal resolution by means of the data employed for reconstruction can nicely be extended from single-source to dual-source CT. However, for advanced (possibly nonlinear iterative) reconstruction algorithms the examined approach fails to deliver accurate results. New methods and measures to assess the temporal resolution of CT images need to be developed to be able to accurately compare the performance of such algorithms.
Added-values of high spatiotemporal remote sensing data in crop yield estimation
NASA Astrophysics Data System (ADS)
Gao, F.; Anderson, M. C.
2017-12-01
Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.
Effects of time delay and pitch control sensitivity in the flared landing
NASA Technical Reports Server (NTRS)
Berthe, C. J.; Chalk, C. R.; Wingarten, N. C.; Grantham, W.
1986-01-01
Between December 1985 and January 1986, a flared landing program was conducted, using the USAF Total In-Flight simulator airplane, to examine time delay effects in a formal manner. Results show that as pitch sensitivity is increased, tolerance to time delay decreases. With the proper selection of pitch sensitivity, Level I performance was maintained with time delays ranging from 150 milliseconds to greater than 300 milliseconds. With higher sensitivity, configurations with Level I performance at 150 milliseconds degraded to level 2 at 200 milliseconds. When metrics of time delay and pitch sensitivity effects are applied to enhance previously developed predictive criteria, the result is an improved prediction technique which accounts for significant closed loop items.
Prospects for Electron Imaging with Ultrafast Time Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, M R; Reed, B W; Torralva, B R
2007-01-26
Many pivotal aspects of material science, biomechanics, and chemistry would benefit from nanometer imaging with ultrafast time resolution. Here we demonstrate the feasibility of short-pulse electron imaging with t10 nanometer/10 picosecond spatio-temporal resolution, sufficient to characterize phenomena that propagate at the speed of sound in materials (1-10 kilometer/second) without smearing. We outline resolution-degrading effects that occur at high current density followed by strategies to mitigate these effects. Finally, we present a model electron imaging system that achieves 10 nanometer/10 picosecond spatio-temporal resolution.
Temporal and spectral manipulations of correlated photons using a time lens
NASA Astrophysics Data System (ADS)
Mittal, Sunil; Orre, Venkata Vikram; Restelli, Alessandro; Salem, Reza; Goldschmidt, Elizabeth A.; Hafezi, Mohammad
2017-10-01
A common challenge in quantum information processing with photons is the limited ability to manipulate and measure correlated states. An example is the inability to measure picosecond-scale temporal correlations of a multiphoton state, given state-of-the-art detectors have a temporal resolution of about 100 ps. Here, we demonstrate temporal magnification of time-bin-entangled two-photon states using a time lens and measure their temporal correlation function, which is otherwise not accessible because of the limited temporal resolution of single-photon detectors. Furthermore, we show that the time lens maps temporal correlations of photons to frequency correlations and could be used to manipulate frequency-bin-entangled photons. This demonstration opens a new avenue to manipulate and analyze spectral and temporal wave functions of many-photon states.
Fast time-resolved aerosol collector: proof of concept
NASA Astrophysics Data System (ADS)
Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.
2010-10-01
Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.
Fast time-resolved aerosol collector: proof of concept
NASA Astrophysics Data System (ADS)
Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.
2010-06-01
Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.
Improved Fast, Deep Record Length, Time-Resolved Visible Spectroscopy of Plasmas Using Fiber Grids
NASA Astrophysics Data System (ADS)
Brockington, S.; Case, A.; Cruz, E.; Williams, A.; Witherspoon, F. D.; Horton, R.; Klauser, R.; Hwang, D.
2017-10-01
HyperV Technologies is developing a fiber-coupled, deep record-length, low-light camera head for performing high time resolution spectroscopy on visible emission from plasma events. By coupling the output of a spectrometer to an imaging fiber bundle connected to a bank of amplified silicon photomultipliers, time-resolved spectroscopic imagers of 100 to 1,000 pixels can be constructed. A second generation prototype 32-pixel spectroscopic imager employing this technique was constructed and successfully tested at the University of California at Davis Compact Toroid Injection Experiment (CTIX). Pixel performance of 10 Megaframes/sec with record lengths of up to 256,000 frames ( 25.6 milliseconds) were achieved. Pixel resolution was 12 bits. Pixel pitch can be refined by using grids of 100 μm to 1000 μm diameter fibers. Experimental results will be discussed, along with future plans for this diagnostic. Work supported by USDOE SBIR Grant DE-SC0013801.
Millisecond Pulsar Observation at CRL
2000-11-01
32nd Annual Precise Time and Time Interval (PTTI) Meeting MILLISECOND PULSAR OBSERVATION AT CRL Y. Hanado, Y . Shibuya, M. Hosokawa, M. Sekido...status of millisecond pulsar timing observation at CRL.. Weekly observation of PSR1937+21 using the 34-m antenna at Kashima Space Research Center has...been on going since November 1997. Recently we eliminated systematic trends that were apparent in the data, and estimated the pulsar parameters of
Discovery of two millisecond pulsars in Fermi sources with the Nancay Radio Telescope
Cognard, I.; Guillemot, L.; Johnson, Tyrel J.; ...
2011-04-14
Here, we report the discovery of two millisecond pulsars in a search for radio pulsations at the positions of Fermi-Large Area Telescope sources with no previously known counterparts, using the Nançay Radio Telescope. The two millisecond pulsars, PSRs J2017+0603 and J2302+4442, have rotational periods of 2.896 and 5.192 ms and are both in binary systems with low-eccentricity orbits and orbital periods of 2.2 and 125.9 days, respectively, suggesting long recycling processes. Gamma-ray pulsations were subsequently detected for both objects, indicating that they power the associated Fermi sources in which they were found. The gamma-ray light curves and spectral properties aremore » similar to those of previously detected gamma-ray millisecond pulsars. Detailed modeling of the observed radio and gamma-ray light curves shows that the gamma-ray emission seems to originate at high altitudes in their magnetospheres. Additionally, X-ray observations revealed the presence of an X-ray source at the position of PSR J2302+4442, consistent with thermal emission from a neutron star. These discoveries along with the numerous detections of radio-loud millisecond pulsars in gamma rays suggest that many Fermi sources with no known counterpart could be unknown millisecond pulsars.« less
NASA Technical Reports Server (NTRS)
Cirtain, Jonathan
2013-01-01
Hi-C obtained the highest spatial and temporal resolution observatoins ever taken in the solar corona. Hi-C reveals dynamics and structure at the limit of its temporal and spatial resolution. Hi-C observed ubiquitous fine-scale flows consistent with the local sound speed.
Peripheral resolution and contrast sensitivity: Effects of stimulus drift.
Venkataraman, Abinaya Priya; Lewis, Peter; Unsbo, Peter; Lundström, Linda
2017-04-01
Optimal temporal modulation of the stimulus can improve foveal contrast sensitivity. This study evaluates the characteristics of the peripheral spatiotemporal contrast sensitivity function in normal-sighted subjects. The purpose is to identify a temporal modulation that can potentially improve the remaining peripheral visual function in subjects with central visual field loss. High contrast resolution cut-off for grating stimuli with four temporal frequencies (0, 5, 10 and 15Hz drift) was first evaluated in the 10° nasal visual field. Resolution contrast sensitivity for all temporal frequencies was then measured at four spatial frequencies between 0.5 cycles per degree (cpd) and the measured stationary cut-off. All measurements were performed with eccentric optical correction. Similar to foveal vision, peripheral contrast sensitivity is highest for a combination of low spatial frequency and 5-10Hz drift. At higher spatial frequencies, there was a decrease in contrast sensitivity with 15Hz drift. Despite this decrease, the resolution cut-off did not vary largely between the different temporal frequencies tested. Additional measurements of contrast sensitivity at 0.5 cpd and resolution cut-off for stationary (0Hz) and 7.5Hz stimuli performed at 10, 15, 20 and 25° in the nasal visual field also showed the same characteristics across eccentricities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cope, Thomas E.; Grube, Manon; Mandal, Arnab; Cooper, Freya E.; Brechany, Una; Burn, David J.; Griffiths, Timothy D.
2014-01-01
Bilateral, high-frequency stimulation of the basal ganglia (STN-DBS) is in widespread use for the treatment of the motor symptoms of Parkinson׳s disease (PD). We present here the first psychophysical investigation of the effect of STN-DBS upon perceptual timing in the hundreds of milliseconds range, with both duration-based (absolute) and beat-based (relative) tasks; 13 patients with PD were assessed with their STN-DBS ‘on’, ‘off’, and then ‘on’ again. Paired parametric analyses revealed no statistically significant differences for any task according to DBS status. We demonstrate, from the examination of confidence intervals, that any functionally relevant effect of STN-DBS on relative perceptual timing is statistically unlikely. For absolute, duration-based timing, we demonstrate that the activation of STN-DBS may either worsen performance or have no effect, but that it is unlikely to lead to significant improvement. Although these results are negative they have important implications for our understanding of perceptual timing and its relationship to motor functions within the timing network of the brain. They imply that the mechanisms involved in the perceptual processing of temporal information are likely to be functionally independent from those that underpin movement. Further, they suggest that the connections between STN and the subtantia nigra and globus pallidus are unlikely to be critical to beat-based perceptual timing. PMID:24613477
Frontiers of Radio Astronomy in the 2020s: The Next Generation Very Large Array
NASA Astrophysics Data System (ADS)
Murphy, Eric Joseph; ngVLA Project Office, ngVLA Science and Technical Advisory Councils, ngVLA Science Working Groups
2018-01-01
This talk will describe the current community-driven science goals, design, and planning status of a future large centimeter radio array: the ‘Next Generation Very Large Array’ (ngVLA). The ngVLA is being developed to observe at wavelengths between ALMA at submm wavelengths, and the future SKA-1 at few centimeter and longer wavelengths, opening a new window on the Universe through ultra-sensitive imaging of thermal line and continuum emission down to milliarcsecond resolution, and unprecedented broad band continuum polarimetric imaging of non-thermal processes. The current design for the array includes 10x more effective collecting area and 10x higher spatial resolution than the current JVLA or ALMA, carefully optimized for operation in the frequency range 10GHz to 50GHz, while still delivering world-leading sensitivity over the entire 1.2GHz to 116 GHz spectrum.With this array, new frontiers in modern astronomy can be reached, including direct imaging and chemical analysis of planet formation in the terrestrial-zone of nearby stars, studies of dust-obscured star formation and the cosmic baryon cycle down to pc-scales in the local Universe, and detailed imaging of molecular gas and galaxy formation into the epoch of reionization. Novel techniques for exploring temporal phenomena on timescales from milliseconds to years will also be implemented. The ngVLA will be situated in the desert southwest of the United States, centered on the current JVLA infrastructure, with multiple antennas anticipated in states/regions adjacent to NM, and in northern Mexico.A recently formed Project Office is working closely with the U.S. and international research community to design the array, and plan its construction beginning mid next decade. Recent significant funding for design and development brought forward by the NSF will enable detailed science case development and technology prototyping/risk reduction before the next U.S astronomy Decadal Survey.
Large Area Field of View for Fast Temporal Resolution Astronomy
NASA Astrophysics Data System (ADS)
Covarrubias, Ricardo A.
2018-01-01
Scientific CMOS (sCMOS) technology is especially relevant for high temporal resolution astronomy combining high resolution, large field of view with very fast frame rates, without sacrificing ultra-low noise performance. Solar Astronomy, Near Earth Object detections, Space Debris Tracking, Transient Observations or Wavefront Sensing are among the many applications this technology can be utilized. Andor Technology is currently developing the next-generation, very large area sCMOS camera with an extremely low noise, rapid frame rates, high resolution and wide dynamic range.
Kreft, Heather A.
2014-01-01
Under normal conditions, human speech is remarkably robust to degradation by noise and other distortions. However, people with hearing loss, including those with cochlear implants, often experience great difficulty in understanding speech in noisy environments. Recent work with normal-hearing listeners has shown that the amplitude fluctuations inherent in noise contribute strongly to the masking of speech. In contrast, this study shows that speech perception via a cochlear implant is unaffected by the inherent temporal fluctuations of noise. This qualitative difference between acoustic and electric auditory perception does not seem to be due to differences in underlying temporal acuity but can instead be explained by the poorer spectral resolution of cochlear implants, relative to the normally functioning ear, which leads to an effective smoothing of the inherent temporal-envelope fluctuations of noise. The outcome suggests an unexpected trade-off between the detrimental effects of poorer spectral resolution and the beneficial effects of a smoother noise temporal envelope. This trade-off provides an explanation for the long-standing puzzle of why strong correlations between speech understanding and spectral resolution have remained elusive. The results also provide a potential explanation for why cochlear-implant users and hearing-impaired listeners exhibit reduced or absent masking release when large and relatively slow temporal fluctuations are introduced in noise maskers. The multitone maskers used here may provide an effective new diagnostic tool for assessing functional hearing loss and reduced spectral resolution. PMID:25315376
Multi-scale approaches for high-speed imaging and analysis of large neural populations
Ahrens, Misha B.; Yuste, Rafael; Peterka, Darcy S.; Paninski, Liam
2017-01-01
Progress in modern neuroscience critically depends on our ability to observe the activity of large neuronal populations with cellular spatial and high temporal resolution. However, two bottlenecks constrain efforts towards fast imaging of large populations. First, the resulting large video data is challenging to analyze. Second, there is an explicit tradeoff between imaging speed, signal-to-noise, and field of view: with current recording technology we cannot image very large neuronal populations with simultaneously high spatial and temporal resolution. Here we describe multi-scale approaches for alleviating both of these bottlenecks. First, we show that spatial and temporal decimation techniques based on simple local averaging provide order-of-magnitude speedups in spatiotemporally demixing calcium video data into estimates of single-cell neural activity. Second, once the shapes of individual neurons have been identified at fine scale (e.g., after an initial phase of conventional imaging with standard temporal and spatial resolution), we find that the spatial/temporal resolution tradeoff shifts dramatically: after demixing we can accurately recover denoised fluorescence traces and deconvolved neural activity of each individual neuron from coarse scale data that has been spatially decimated by an order of magnitude. This offers a cheap method for compressing this large video data, and also implies that it is possible to either speed up imaging significantly, or to “zoom out” by a corresponding factor to image order-of-magnitude larger neuronal populations with minimal loss in accuracy or temporal resolution. PMID:28771570
2016-04-01
polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are...The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are reported. The technique is demonstrated...cell filled with polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image
Gijsen, Frank J.; Marquering, Henk; van Ooij, Pim; vanBavel, Ed; Wentzel, Jolanda J.; Nederveen, Aart J.
2016-01-01
Introduction Wall shear stress (WSS) and oscillatory shear index (OSI) are associated with atherosclerotic disease. Both parameters are derived from blood velocities, which can be measured with phase-contrast MRI (PC-MRI). Limitations in spatiotemporal resolution of PC-MRI are known to affect these measurements. Our aim was to investigate the effect of spatiotemporal resolution using a carotid artery phantom. Methods A carotid artery phantom was connected to a flow set-up supplying pulsatile flow. MRI measurement planes were placed at the common carotid artery (CCA) and internal carotid artery (ICA). Two-dimensional PC-MRI measurements were performed with thirty different spatiotemporal resolution settings. The MRI flow measurement was validated with ultrasound probe measurements. Mean flow, peak flow, flow waveform, WSS and OSI were compared for these spatiotemporal resolutions using regression analysis. The slopes of the regression lines were reported in %/mm and %/100ms. The distribution of low and high WSS and OSI was compared between different spatiotemporal resolutions. Results The mean PC-MRI CCA flow (2.5±0.2mL/s) agreed with the ultrasound probe measurements (2.7±0.02mL/s). Mean flow (mL/s) depended only on spatial resolution (CCA:-13%/mm, ICA:-49%/mm). Peak flow (mL/s) depended on both spatial (CCA:-13%/mm, ICA:-17%/mm) and temporal resolution (CCA:-19%/100ms, ICA:-24%/100ms). Mean WSS (Pa) was in inverse relationship only with spatial resolution (CCA:-19%/mm, ICA:-33%/mm). OSI was dependent on spatial resolution for CCA (-26%/mm) and temporal resolution for ICA (-16%/100ms). The regions of low and high WSS and OSI matched for most of the spatiotemporal resolutions (CCA:30/30, ICA:28/30 cases for WSS; CCA:23/30, ICA:29/30 cases for OSI). Conclusion We show that both mean flow and mean WSS are independent of temporal resolution. Peak flow and OSI are dependent on both spatial and temporal resolution. However, the magnitude of mean and peak flow, WSS and OSI, and the spatial distribution of OSI and WSS did not exhibit a strong dependency on spatiotemporal resolution. PMID:27669568
Effects of temporal averaging on short-term irradiance variability under mixed sky conditions
NASA Astrophysics Data System (ADS)
Lohmann, Gerald M.; Monahan, Adam H.
2018-05-01
Characterizations of short-term variability in solar radiation are required to successfully integrate large numbers of photovoltaic power systems into the electrical grid. Previous studies have used ground-based irradiance observations with a range of different temporal resolutions and a systematic analysis of the effects of temporal averaging on the representation of variability is lacking. Using high-resolution surface irradiance data with original temporal resolutions between 0.01 and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. In this analysis, we condition all data to states of mixed skies, which are the most potentially problematic in terms of local PV power volatility. Statistics of clear-sky index k* and its increments Δk*τ (i.e., normalized surface irradiance and changes therein over specified intervals of time) are considered separately. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability. Higher-resolution data increase the complexity of data management and quality control without appreciably improving the representation of variability. The results do not show any substantial discrepancies between locations or seasons.
Status of a Parkes Survey of the Large Magellanic Cloud for Millisecond Pulsars and Transients
NASA Astrophysics Data System (ADS)
Crawford, Fronefield; Lorimer, Duncan; Ridley, Josh; Bonidie, Victoria; Faisal Alam, Md
2018-01-01
To date, no millisecond radio pulsars have been discovered outside of our Galaxy. We are undertaking the first survey of the Large Magellanic Cloud that is sensitive to millisecond pulsars. For this search we are using the 1.4 GHz multibeam receiver on the Parkes 64-m telescope. We also hope to discover new source populations and probe the high-end of the pulsar luminosity function. We are searching our data over a wide range of dispersion measures for both single-pulse events and for accelerated pulsars. With about 40% of the survey completed, we have discovered three new long-period pulsars (all of which have been published) but have not yet confirmed any new millisecond pulsars.
Spin-down of radio millisecond pulsars at genesis.
Tauris, Thomas M
2012-02-03
Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.
Velarde, Luis; Wang, Hong-Fei
2013-12-14
The lack of understanding of the temporal effects and the restricted ability to control experimental conditions in order to obtain intrinsic spectral lineshapes in surface sum-frequency generation vibrational spectroscopy (SFG-VS) have limited its applications in surface and interfacial studies. The emergence of high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS) with sub-wavenumber resolution [Velarde et al., J. Chem. Phys., 2011, 135, 241102] offers new opportunities for obtaining and understanding the spectral lineshapes and temporal effects in SFG-VS. Particularly, the high accuracy of the HR-BB-SFG-VS experimental lineshape provides detailed information on the complex coherent vibrational dynamics through direct spectral measurements. Here we present a unified formalism for the theoretical and experimental routes for obtaining an accurate lineshape of the SFG response. Then, we present a detailed analysis of a cholesterol monolayer at the air/water interface with higher and lower resolution SFG spectra along with their temporal response. With higher spectral resolution and accurate vibrational spectral lineshapes, it is shown that the parameters of the experimental SFG spectra can be used both to understand and to quantitatively reproduce the temporal effects in lower resolution SFG measurements. This perspective provides not only a unified picture but also a novel experimental approach to measuring and understanding the frequency-domain and time-domain SFG response of a complex molecular interface.
In-pore exchange and diffusion of carbonate solvent mixtures in nanoporous carbon
Alam, Todd M.; Osborn Popp, Thomas M.
2016-06-04
High resolution magic angle spinning (HRMAS) 1H NMR spectroscopy has been used to resolve different surface and in-pore solvent environments of ethylene carbonate (EC) and dimethyl carbonate (DMC) mixtures absorbed within nanoporous carbon (NPC). Two dimensional (2D) 1H HRMAS NMR exchange measurements revealed that the inhomogeneous broadened in-pore resonances have pore-to-pore exchange rates on the millisecond timescale. Pulsed-field gradient (PFG) NMR diffusometry revealed the in-pore self-diffusion constants for both EC and DMC were reduced by up to a factor of five with respect to the diffusion in the non-absorbed solvent mixtures.
Review and latest news from the VEGA/CHARA facility
NASA Astrophysics Data System (ADS)
Nardetto, N.; Mourard, D.; Perraut, K.; Tallon-Bosc, I.; Meilland, A.; Stee, P.; Ligi, R.; Challouf, M.; Clausse, J.-M.; Berio, P.; Spang, A.
2014-12-01
The VEGA instrument located at the focus of the Center for High Angular Resolution Astronomy (CHARA) array in California is a collaborating project between the Lagrange laboratory in Nice, where it has been developed (Mourard et al. 2009, 2011), the IPAG (Grenoble) and CRAL (Lyon) laboratories, and the CHARA group at Mount Wilson Observatory. The outcome from this international collaboration is to provide to the community a visible spectro-interferometer with an unprecedented angular resolution of 0.3 milli-second of arc (mas) together with a spectral resolution of 5000 or 30000. With such an instrument it becomes possible to determine simultaneously the size and the kinematic of the photosphere and/or of the circumstellar environment of the star as a function of the wavelength, which basically means for each spectral channel in the continuum and/or within spectral lines (in Hα for instance). The only limitation is to get enough signal to noise ratio in each spectral channel. We can currently reach a limiting magnitude of 8 in visible in medium spectral resolution (5000) and 4.5 in high resolution (30000). In this proceeding, we illustrate the two main subjects studied with the VEGA instrument, namely (1) how angular diameters are useful to accurately derive the fundamental parameters of stars, (2) how the spectral resolution can allow to study the kinematical structure of stars or even to derive chromatic images of stellar objects.
Physics of cardiac imaging with multiple-row detector CT.
Mahesh, Mahadevappa; Cody, Dianna D
2007-01-01
Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.
Searches for millisecond pulsations in low-mass X-ray binaries, 2
NASA Technical Reports Server (NTRS)
Vaughan, B. A.; Van Der Klis, M.; Wood, K. S.; Norris, J. P.; Hertz, P.; Michelson, P. F.; Paradijs, J. Van; Lewin, W. H. G.; Mitsuda, K.; Penninx, W.
1994-01-01
Coherent millisecond X-ray pulsations are expected from low-mass X-ray binaries (LMXBs), but remain undetected. Using the single-parameter Quadratic Coherence Recovery Technique (QCRT) to correct for unknown binary orbit motion, we have performed Fourier transform searches for coherent oscillations in all long, continuous segments of data obtained at 1 ms time resolution during Ginga observations of LMXB. We have searched the six known Z sources (GX 5-1, Cyg X-2, Sco X-1, GX 17+2, GX 340+0, and GX 349+2), seven of the 14 known atoll sources (GX 3+1. GX 9+1, GX 9+9, 1728-33. 1820-30, 1636-53 and 1608-52), the 'peculiar' source Cir X-1, and the high-mass binary Cyg X-3. We find no evidence for coherent pulsations in any of these sources, with 99% confidence limits on the pulsed fraction between 0.3% and 5.0% at frequencies below the Nyquist frequency of 512 Hz. A key assumption made in determining upper limits in previous searches is shown to be incorrect. We provide a recipe for correctly setting upper limits and detection thresholds. Finally we discuss and apply two strategies to improve sensitivity by utilizing multiple, independent, continuous segments of data with comparable count rates.
NASA Astrophysics Data System (ADS)
Gur, M.; Zomot, E.; Bahar, I.
2013-09-01
The Anton supercomputing technology recently developed for efficient molecular dynamics simulations permits us to examine micro- to milli-second events at full atomic resolution for proteins in explicit water and lipid bilayer. It also permits us to investigate to what extent the collective motions predicted by network models (that have found broad use in molecular biophysics) agree with those exhibited by full-atomic long simulations. The present study focuses on Anton trajectories generated for two systems: the bovine pancreatic trypsin inhibitor, and an archaeal aspartate transporter, GltPh. The former, a thoroughly studied system, helps benchmark the method of comparative analysis, and the latter provides new insights into the mechanism of function of glutamate transporters. The principal modes of motion derived from both simulations closely overlap with those predicted for each system by the anisotropic network model (ANM). Notably, the ANM modes define the collective mechanisms, or the pathways on conformational energy landscape, that underlie the passage between the crystal structure and substates visited in simulations. In particular, the lowest frequency ANM modes facilitate the conversion between the most probable substates, lending support to the view that easy access to functional substates is a robust determinant of evolutionarily selected native contact topology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wenpei; Wu, Jianbo; Yoon, Aram
Atomic motion at grain boundaries is essential to microstructure development, growth and stability of catalysts and other nanostructured materials. However, boundary atomic motion is often too fast to observe in a conventional transmission electron microscope (TEM) and too slow for ultrafast electron microscopy. We report on the entire transformation process of strained Pt icosahedral nanoparticles (ICNPs) into larger FCC crystals, captured at 2.5 ms time resolution using a fast electron camera. Results show slow diffusive dislocation motion at nm/s inside ICNPs and fast surface transformation at μm/s. By characterizing nanoparticle strain, we show that the fast transformation is driven bymore » inhomogeneous surface stress. And interaction with pre-existing defects led to the slowdown of the transformation front inside the nanoparticles. Particle coalescence, assisted by oxygen-induced surface migration at T ≥ 300°C, also played a critical role. Thus by studying transformation in the Pt ICNPs at high time and spatial resolution, we obtain critical insights into the transformation mechanisms in strained Pt nanoparticles.« less
TES/Aura L3 Atmospheric Temperatures Daily V5 (TL3ATD)
Atmospheric Science Data Center
2018-05-08
... Platform: TES Aura L1B Nadir/Limb Spatial Coverage: (-180, 180)(-90, 90) Spatial Resolution: 0.5 x 5 km nadir 2.3 x 23 km limb Temporal Coverage: 07/15/2004 - Present Temporal Resolution: ...
On representation of temporal variability in electricity capacity planning models
Merrick, James H.
2016-08-23
This study systematically investigates how to represent intra-annual temporal variability in models of optimum electricity capacity investment. Inappropriate aggregation of temporal resolution can introduce substantial error into model outputs and associated economic insight. The mechanisms underlying the introduction of this error are shown. How many representative periods are needed to fully capture the variability is then investigated. For a sample dataset, a scenario-robust aggregation of hourly (8760) resolution is possible in the order of 10 representative hours when electricity demand is the only source of variability. The inclusion of wind and solar supply variability increases the resolution of the robustmore » aggregation to the order of 1000. A similar scale of expansion is shown for representative days and weeks. These concepts can be applied to any such temporal dataset, providing, at the least, a benchmark that any other aggregation method can aim to emulate. Finally, how prior information about peak pricing hours can potentially reduce resolution further is also discussed.« less
On representation of temporal variability in electricity capacity planning models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrick, James H.
This study systematically investigates how to represent intra-annual temporal variability in models of optimum electricity capacity investment. Inappropriate aggregation of temporal resolution can introduce substantial error into model outputs and associated economic insight. The mechanisms underlying the introduction of this error are shown. How many representative periods are needed to fully capture the variability is then investigated. For a sample dataset, a scenario-robust aggregation of hourly (8760) resolution is possible in the order of 10 representative hours when electricity demand is the only source of variability. The inclusion of wind and solar supply variability increases the resolution of the robustmore » aggregation to the order of 1000. A similar scale of expansion is shown for representative days and weeks. These concepts can be applied to any such temporal dataset, providing, at the least, a benchmark that any other aggregation method can aim to emulate. Finally, how prior information about peak pricing hours can potentially reduce resolution further is also discussed.« less
Lopez, Richard B; Stillman, Paul E; Heatherton, Todd F; Freeman, Jonathan B
2018-01-01
In this review, we present the case for using computer mouse-tracking techniques to examine psychological processes that support (and hinder) self-regulation of eating. We first argue that computer mouse-tracking is suitable for studying the simultaneous engagement of-and dynamic interactions between-multiple perceptual and cognitive processes as they unfold and interact over a fine temporal scale (i.e., hundreds of milliseconds). Next, we review recent work that implemented mouse-tracking techniques by measuring mouse movements as participants chose between various food items (of varying nutritional content). Lastly, we propose next steps for future investigations to link behavioral features from mouse-tracking paradigms, corresponding neural correlates, and downstream eating behaviors.
Pennacchio, Francesco; Vanacore, Giovanni M; Mancini, Giulia F; Oppermann, Malte; Jayaraman, Rajeswari; Musumeci, Pietro; Baum, Peter; Carbone, Fabrizio
2017-07-01
Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 10 5 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.
Pennacchio, Francesco; Vanacore, Giovanni M.; Mancini, Giulia F.; Oppermann, Malte; Jayaraman, Rajeswari; Musumeci, Pietro; Baum, Peter; Carbone, Fabrizio
2017-01-01
Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons. PMID:28713841
Generating High-Temporal and Spatial Resolution TIR Image Data
NASA Astrophysics Data System (ADS)
Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.
2017-09-01
Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.
Popescu, Mihai; Otsuka, Asuka; Ioannides, Andreas A
2004-04-01
There are formidable problems in studying how 'real' music engages the brain over wide ranges of temporal scales extending from milliseconds to a lifetime. In this work, we recorded the magnetoencephalographic signal while subjects listened to music as it unfolded over long periods of time (seconds), and we developed and applied methods to correlate the time course of the regional brain activations with the dynamic aspects of the musical sound. We showed that frontal areas generally respond with slow time constants to the music, reflecting their more integrative mode; motor-related areas showed transient-mode responses to fine temporal scale structures of the sound. The study combined novel analysis techniques designed to capture and quantify fine temporal sequencing from the authentic musical piece (characterized by a clearly defined rhythm and melodic structure) with the extraction of relevant features from the dynamics of the regional brain activations. The results demonstrated that activity in motor-related structures, specifically in lateral premotor areas, supplementary motor areas, and somatomotor areas, correlated with measures of rhythmicity derived from the music. These correlations showed distinct laterality depending on how the musical performance deviated from the strict tempo of the music score, that is, depending on the musical expression.
Ronald, Kelly L; Fernández-Juricic, Esteban; Lucas, Jeffrey R
2018-05-16
A common assumption in sexual selection studies is that receivers decode signal information similarly. However, receivers may vary in how they rank signallers if signal perception varies with an individual's sensory configuration. Furthermore, receivers may vary in their weighting of different elements of multimodal signals based on their sensory configuration. This could lead to complex levels of selection on signalling traits. We tested whether multimodal sensory configuration could affect preferences for multimodal signals. We used brown-headed cowbird ( Molothrus ater ) females to examine how auditory sensitivity and auditory filters, which influence auditory spectral and temporal resolution, affect song preferences, and how visual spatial resolution and visual temporal resolution, which influence resolution of a moving visual signal, affect visual display preferences. Our results show that multimodal sensory configuration significantly affects preferences for male displays: females with better auditory temporal resolution preferred songs that were shorter, with lower Wiener entropy, and higher frequency; and females with better visual temporal resolution preferred males with less intense visual displays. Our findings provide new insights into mate-choice decisions and receiver signal processing. Furthermore, our results challenge a long-standing assumption in animal communication which can affect how we address honest signalling, assortative mating and sensory drive. © 2018 The Author(s).
A high-resolution imaging technique using a whole-body, research photon counting detector CT system
NASA Astrophysics Data System (ADS)
Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.
2016-03-01
A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.
Four-dimensional ultrafast electron microscopy of phase transitions
Grinolds, Michael S.; Lobastov, Vladimir A.; Weissenrieder, Jonas; Zewail, Ahmed H.
2006-01-01
Reported here is direct imaging (and diffraction) by using 4D ultrafast electron microscopy (UEM) with combined spatial and temporal resolutions. In the first phase of UEM, it was possible to obtain snapshot images by using timed, single-electron packets; each packet is free of space–charge effects. Here, we demonstrate the ability to obtain sequences of snapshots (“movies”) with atomic-scale spatial resolution and ultrashort temporal resolution. Specifically, it is shown that ultrafast metal–insulator phase transitions can be studied with these achieved spatial and temporal resolutions. The diffraction (atomic scale) and images (nanometer scale) we obtained manifest the structural phase transition with its characteristic hysteresis, and the time scale involved (100 fs) is now studied by directly monitoring coordinates of the atoms themselves. PMID:17130445
State-change in the "transition" binary millisecond pulsar J1023+0038
NASA Astrophysics Data System (ADS)
Stappers, B. W.; Archibald, A.; Bassa, C.; Hessels, J.; Janssen, G.; Kaspi, V.; Lyne, A.; Patruno, A.; Hill, A. B.
2013-10-01
We report a change in the state of PSR J1023+0038, a source which is believed to be transitioning from an X-ray binary to an eclipsing binary radio millisecond pulsar (Archibald et al. 2009, Science, 324, 1411). The system was known to contain an accretion disk in 2001 but has shown no signs of it, or of accretion, since then, rather exhibiting all the properties of an eclipsing binary millisecond radio pulsar (MSP).
Spatial and temporal resolution effects on urban catchments with different imperviousness degrees
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.
2015-04-01
One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.
Neutron stars and millisecond pulsars from accretion-induced collapse in globular clusters
NASA Technical Reports Server (NTRS)
Bailyn, Charles D.; Grindlay, Jonathan E.
1990-01-01
This paper examines the limits on the number of millisecond pulsars which could be formed in globular clusters by the generally accepted scenario (in which a neutron star is created by the supernova of an initially massive star and subsequently captures a companion to form a low-mass X-ray binary which eventually becomes a millisecond pulsar). It is found that, while the number of observed low-mass X-ray binaries can be adequately explained in this way, the reasonable assumption that the pulsar luminosity function in clusters extends below the current observational limits down to the luminosity of the faintest millisecond pulsars in the field suggests a cluster population of millisecond pulsars which is substantially larger than the standard model can produce. Alleviating this problem by postulating much shorter lifetimes for the X-ray binaries requires massive star populations sufficiently large that the mass loss resulting from their evolution would be likely to unbind the cluster. It is argued that neutron star formation in globular clusters by accretion-induced collapse of white dwarfs may resolve the discrepancy in birthrates.
Patterson, Eric E; Pritchett, Jeanita S; Shippy, Scott A
2009-02-01
A system is presented demonstrating the high-temporal resolution coupling of low-flow push-pull perfusion sampling (LFPS) to capillary electrophoresis for the absorbance measurement of ascorbate at the rat vitreoretinal interface. This system holds all separation components at a low pressure as the means for withdrawing sample during LFPS. The system uses a flow-gated interface to directly couple the withdrawal capillary from the LFPS probe to a separation capillary and eliminates the need for any offline sample handling. The temporal resolution of the system was limited by injection time and is less than 16 s. This high temporal resolution was applied to the monitoring of in vivo ascorbate levels at the rat vitreoretinal interface. Baseline concentrations of ascorbate were found to be 86 microM +/- 18 microM at the vitreoretinal interface. Baseline concentrations matched well with those obtained for the postmortem bulk vitreous analysis. Upon stimulation with 145 mM K(+), a maximum increase in baseline values between 32-107% for n = 3 was observed. This system demonstrates the first in vivo temporal study of ascorbate at the rat vitreoretinal interface.
Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging.
Feng, Xue; Salerno, Michael; Kramer, Christopher M; Meyer, Craig H
2013-05-01
In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome, and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and signal-to-noise ratio. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view-sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction. Copyright © 2012 Wiley Periodicals, Inc.
Kalman Filter Techniques for Accelerated Cartesian Dynamic Cardiac Imaging
Feng, Xue; Salerno, Michael; Kramer, Christopher M.; Meyer, Craig H.
2012-01-01
In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories, because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and SNR. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction. PMID:22926804
Spatial attention does improve temporal discrimination.
Chica, Ana B; Christie, John
2009-02-01
It has recently been stated that exogenous attention impairs temporal-resolution tasks (Hein, Rolke, & Ulrich, 2006; Rolke, Dinkelbach, Hein, & Ulrich, 2008; Yeshurun, 2004; Yeshurun & Levy, 2003). In comparisons of performance on spatially cued trials versus neutral cued trials, the results have suggested that spatial attention decreases temporal resolution. However, when performance on cued and uncued trials has been compared in order to equate for cue salience, typically speed-accuracy trade-offs (SATs) have been observed, making the interpretation of the results difficult. In the present experiments, we aimed at studying the effect of spatial attention in temporal resolution while using a procedure to control for SATs. We controlled reaction times (RTs) by constraining the time to respond, so that response decisions would be made within comparable time windows. The results revealed that when RT was controlled, performance was impaired for cued trials as compared with neutral trials, replicating previous findings. However, when cued and uncued trials were compared, performance was actually improved for cued trials as compared with uncued trials. These results suggest that SAT effects may have played an important role in the previous studies, because when they were controlled and measured, the results reversed, revealing that exogenous attention does improve performance on temporal-resolution tasks.
Phase division multiplexed EIT for enhanced temporal resolution.
Dowrick, T; Holder, D
2018-03-29
The most commonly used EIT paradigm (time division multiplexing) limits the temporal resolution of impedance images due to the need to switch between injection electrodes. Advances have previously been made using frequency division multiplexing (FDM) to increase temporal resolution, but in cases where a fixed range of frequencies is available, such as imaging fast neural activity, an upper limit is placed on the total number of simultaneous injections. The use of phase division multiplexing (PDM) where multiple out of phase signals can be injected at each frequency is investigated to increase temporal resolution. TDM, FDM and PDM were compared in head tank experiments, to compare transfer impedance measurements and spatial resolution between the three techniques. A resistor phantom paradigm was established to investigate the imaging of one-off impedance changes, of magnitude 1% and with durations as low as 500 µs (similar to those seen in nerve bundles), using both PDM and TDM approaches. In head tank experiments, a strong correlation (r > 0.85 and p < 0.001) was present between the three sets of measured transfer impedances, and no statistically significant difference was found in reconstructed image quality. PDM was able to image impedance changes down to 500 µs in the phantom experiments, while the minimum duration imaged using TDM was 5 ms. PDM offers a possible solution to the imaging of fast moving impedance changes (such as in nerves), where the use of triggering or coherent averaging is not possible. The temporal resolution presents an order of magnitude improvement of the TDM approach, and the approach addresses the limited spatial resolution of FDM by increasing the number of simultaneous EIT injections.
Auditory Temporal Resolution in Individuals with Diabetes Mellitus Type 2.
Mishra, Rajkishor; Sanju, Himanshu Kumar; Kumar, Prawin
2016-10-01
Introduction "Diabetes mellitus is a group of metabolic disorders characterized by elevated blood sugar and abnormalities in insulin secretion and action" (American Diabetes Association). Previous literature has reported connection between diabetes mellitus and hearing impairment. There is a dearth of literature on auditory temporal resolution ability in individuals with diabetes mellitus type 2. Objective The main objective of the present study was to assess auditory temporal resolution ability through GDT (Gap Detection Threshold) in individuals with diabetes mellitus type 2 with high frequency hearing loss. Methods Fifteen subjects with diabetes mellitus type 2 with high frequency hearing loss in the age range of 30 to 40 years participated in the study as the experimental group. Fifteen age-matched non-diabetic individuals with normal hearing served as the control group. We administered the Gap Detection Threshold (GDT) test to all participants to assess their temporal resolution ability. Result We used the independent t -test to compare between groups. Results showed that the diabetic group (experimental) performed significantly poorer compared with the non-diabetic group (control). Conclusion It is possible to conclude that widening of auditory filters and changes in the central auditory nervous system contributed to poorer performance for temporal resolution task (Gap Detection Threshold) in individuals with diabetes mellitus type 2. Findings of the present study revealed the deteriorating effect of diabetes mellitus type 2 at the central auditory processing level.
a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data
NASA Astrophysics Data System (ADS)
Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.
2017-09-01
The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.
Fritz, Jan; Ahlawat, Shivani; Demehri, Shadpour; Thawait, Gaurav K; Raithel, Esther; Gilson, Wesley D; Nittka, Mathias
2016-10-01
The aim of this study was to prospectively test the hypothesis that a compressed sensing-based slice encoding for metal artifact correction (SEMAC) turbo spin echo (TSE) pulse sequence prototype facilitates high-resolution metal artifact reduction magnetic resonance imaging (MRI) of cobalt-chromium knee arthroplasty implants within acquisition times of less than 5 minutes, thereby yielding better image quality than high-bandwidth (BW) TSE of similar length and similar image quality than lengthier SEMAC standard of reference pulse sequences. This prospective study was approved by our institutional review board. Twenty asymptomatic subjects (12 men, 8 women; mean age, 56 years; age range, 44-82 years) with total knee arthroplasty implants underwent MRI of the knee using a commercially available, clinical 1.5 T MRI system. Two compressed sensing-accelerated SEMAC prototype pulse sequences with 8-fold undersampling and acquisition times of approximately 5 minutes each were compared with commercially available high-BW and SEMAC pulse sequences with acquisition times of approximately 5 minutes and 11 minutes, respectively. For each pulse sequence type, sagittal intermediate-weighted (TR, 3750-4120 milliseconds; TE, 26-28 milliseconds; voxel size, 0.5 × 0.5 × 3 mm) and short tau inversion recovery (TR, 4010 milliseconds; TE, 5.2-7.5 milliseconds; voxel size, 0.8 × 0.8 × 4 mm) were acquired. Outcome variables included image quality, display of the bone-implant interfaces and pertinent knee structures, artifact size, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Statistical analysis included Friedman, repeated measures analysis of variances, and Cohen weighted k tests. Bonferroni-corrected P values of 0.005 and less were considered statistically significant. Image quality, bone-implant interfaces, anatomic structures, artifact size, SNR, and CNR parameters were statistically similar between the compressed sensing-accelerated SEMAC prototype and SEMAC commercial pulse sequences. There was mild blur on images of both SEMAC sequences when compared with high-BW images (P < 0.001), which however did not impair the assessment of knee structures. Metal artifact reduction and visibility of central knee structures and bone-implant interfaces were good to very good and significantly better on both types of SEMAC than on high-BW images (P < 0.004). All 3 pulse sequences showed peripheral structures similarly well. The implant artifact size was 46% to 51% larger on high-BW images when compared with both types of SEMAC images (P < 0.0001). Signal-to-noise ratios and CNRs of fat tissue, tendon tissue, muscle tissue, and fluid were statistically similar on intermediate-weighted MR images of all 3 pulse sequence types. On short tau inversion recovery images, the SNRs of tendon tissue and the CNRs of fat and fluid, fluid and muscle, as well as fluid and tendon were significantly higher on SEMAC and compressed sensing SEMAC images (P < 0.005, respectively). We accept the hypothesis that prospective compressed sensing acceleration of SEMAC is feasible for high-quality metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants in less than 5 minutes and yields better quality than high-BW TSE and similarly high quality than lengthier SEMAC pulse sequences.
Degefu, Dagmawi Mulugeta; Weijun, He; Zaiyi, Liao; Liang, Yuan; Zhengwei, Huang; Min, An
2018-02-01
Currently fresh water scarcity is an issue with huge socio-economic and environmental impacts. Transboundary river and lake basins are among the sources of fresh water facing this challenge. Previous studies measured blue water scarcity at different spatial and temporal resolutions. But there is no global water availability and footprint assessment done at country-basin mesh based spatial and monthly temporal resolutions. In this study we assessed water scarcity at these spatial and temporal resolutions. Our results showed that around 1.6 billion people living within the 328 country-basin units out of the 560 we assessed in this study endures severe water scarcity at least for a month within the year. In addition, 175 country-basin units goes through severe water scarcity for 3-12 months in the year. These sub-basins include nearly a billion people. Generally, the results of this study provide insights regarding the number of people and country-basin units experiencing low, moderate, significant and severe water scarcity at a monthly temporal resolution. These insights might help these basins' sharing countries to design and implement sustainable water management and sharing schemes.
Voice gender identification by cochlear implant users: The role of spectral and temporal resolution
NASA Astrophysics Data System (ADS)
Fu, Qian-Jie; Chinchilla, Sherol; Nogaki, Geraldine; Galvin, John J.
2005-09-01
The present study explored the relative contributions of spectral and temporal information to voice gender identification by cochlear implant users and normal-hearing subjects. Cochlear implant listeners were tested using their everyday speech processors, while normal-hearing subjects were tested under speech processing conditions that simulated various degrees of spectral resolution, temporal resolution, and spectral mismatch. Voice gender identification was tested for two talker sets. In Talker Set 1, the mean fundamental frequency values of the male and female talkers differed by 100 Hz while in Talker Set 2, the mean values differed by 10 Hz. Cochlear implant listeners achieved higher levels of performance with Talker Set 1, while performance was significantly reduced for Talker Set 2. For normal-hearing listeners, performance was significantly affected by the spectral resolution, for both Talker Sets. With matched speech, temporal cues contributed to voice gender identification only for Talker Set 1 while spectral mismatch significantly reduced performance for both Talker Sets. The performance of cochlear implant listeners was similar to that of normal-hearing subjects listening to 4-8 spectral channels. The results suggest that, because of the reduced spectral resolution, cochlear implant patients may attend strongly to periodicity cues to distinguish voice gender.
The Influence of Temporal Resolution Power and Working Memory Capacity on Psychometric Intelligence
ERIC Educational Resources Information Center
Troche, Stefan J.; Rammsayer, Thomas H.
2009-01-01
According to the temporal resolution power (TRP) hypothesis, higher TRP as reflected by better performance on psychophysical timing tasks accounts for faster speed of information processing and increased efficiency of information processing leading to better performance on tests of psychometric intelligence. An alternative explanation of…
Refinement of learned skilled movement representation in motor cortex deep output layer
Li, Qian; Ko, Ho; Qian, Zhong-Ming; Yan, Leo Y. C.; Chan, Danny C. W.; Arbuthnott, Gordon; Ke, Ya; Yung, Wing-Ho
2017-01-01
The mechanisms underlying the emergence of learned motor skill representation in primary motor cortex (M1) are not well understood. Specifically, how motor representation in the deep output layer 5b (L5b) is shaped by motor learning remains virtually unknown. In rats undergoing motor skill training, we detect a subpopulation of task-recruited L5b neurons that not only become more movement-encoding, but their activities are also more structured and temporally aligned to motor execution with a timescale of refinement in tens-of-milliseconds. Field potentials evoked at L5b in vivo exhibit persistent long-term potentiation (LTP) that parallels motor performance. Intracortical dopamine denervation impairs motor learning, and disrupts the LTP profile as well as the emergent neurodynamical properties of task-recruited L5b neurons. Thus, dopamine-dependent recruitment of L5b neuronal ensembles via synaptic reorganization may allow the motor cortex to generate more temporally structured, movement-encoding output signal from M1 to downstream circuitry that drives increased uniformity and precision of movement during motor learning. PMID:28598433
Sensitivity to timing and order in human visual cortex.
Singer, Jedediah M; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel
2015-03-01
Visual recognition takes a small fraction of a second and relies on the cascade of signals along the ventral visual stream. Given the rapid path through multiple processing steps between photoreceptors and higher visual areas, information must progress from stage to stage very quickly. This rapid progression of information suggests that fine temporal details of the neural response may be important to the brain's encoding of visual signals. We investigated how changes in the relative timing of incoming visual stimulation affect the representation of object information by recording intracranial field potentials along the human ventral visual stream while subjects recognized objects whose parts were presented with varying asynchrony. Visual responses along the ventral stream were sensitive to timing differences as small as 17 ms between parts. In particular, there was a strong dependency on the temporal order of stimulus presentation, even at short asynchronies. From these observations we infer that the neural representation of complex information in visual cortex can be modulated by rapid dynamics on scales of tens of milliseconds. Copyright © 2015 the American Physiological Society.
Goodhew, Stephanie C; Shen, Elizabeth; Edwards, Mark
2016-08-01
An important but often neglected aspect of attention is how changes in the attentional spotlight size impact perception. The zoom-lens model predicts that a small ("focal") attentional spotlight enhances all aspects of perception relative to a larger ("diffuse" spotlight). However, based on the physiological properties of the two major classes of visual cells (magnocellular and parvocellular neurons) we predicted trade-offs in spatial and temporal acuity as a function of spotlight size. Contrary to both of these accounts, however, across two experiments we found that attentional spotlight size affected spatial acuity, such that spatial acuity was enhanced for a focal relative to a diffuse spotlight, whereas the same modulations in spotlight size had no impact on temporal acuity. This likely reflects the function of attention: to induce the high spatial resolution of the fovea in periphery, where spatial resolution is poor but temporal resolution is good. It is adaptive, therefore, for the attentional spotlight to enhance spatial acuity, whereas enhancing temporal acuity does not confer the same benefit.
NASA Astrophysics Data System (ADS)
Smith, W.; Weisz, E.; McNabb, J. M. C.
2017-12-01
A technique is described which enables the combination of high vertical resolution (1 to 2-km) JPSS hyper-spectral soundings (i.e., from AIRS, CrIS, and IASI) with high horizontal (2-km) and temporal (15-min) resolution GOES multi-spectral imagery (i.e., provided by ABI) to produce low latency sounding products with the highest possible spatial and temporal resolution afforded by the instruments.
NASA Astrophysics Data System (ADS)
El-Sheikh, H. M.; Yakushenkov, Y. G.
2014-08-01
Formulas for determination of the interconnection between the spatial resolution from perspective distortions and the temporal resolution of the onboard electro-optical system for remote sensing application for a variety of scene viewing modes is offered. These dependences can be compared with the user's requirements, upon the permission values of the design parameters of the modern main units of the electro-optical system is discussed.
Example-Based Super-Resolution Fluorescence Microscopy.
Jia, Shu; Han, Boran; Kutz, J Nathan
2018-04-23
Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.
Lightning Forcing in Global Fire Models: The Importance of Temporal Resolution
NASA Astrophysics Data System (ADS)
Felsberg, A.; Kloster, S.; Wilkenskjeld, S.; Krause, A.; Lasslop, G.
2018-01-01
In global fire models, lightning is typically prescribed from observational data with monthly mean temporal resolution while meteorological forcings, such as precipitation or temperature, are prescribed in a daily resolution. In this study, we investigate the importance of the temporal resolution of the lightning forcing for the simulation of burned area by varying from daily to monthly and annual mean forcing. For this, we utilize the vegetation fire model JSBACH-SPITFIRE to simulate burned area, forced with meteorological and lightning data derived from the general circulation model ECHAM6. On a global scale, differences in burned area caused by lightning forcing applied in coarser temporal resolution stay below 0.55% compared to the use of daily mean forcing. Regionally, however, differences reach up to 100%, depending on the region and season. Monthly averaged lightning forcing as well as the monthly lightning climatology cause differences through an interaction between lightning ignitions and fire prone weather conditions, accounted for by the fire danger index. This interaction leads to decreased burned area in the boreal zone and increased burned area in the Tropics and Subtropics under the coarser temporal resolution. The exclusion of interannual variability, when forced with the lightning climatology, has only a minor impact on the simulated burned area. Annually averaged lightning forcing causes differences as a direct result of the eliminated seasonal characteristics of lightning. Burned area is decreased in summer and increased in winter where fuel is available. Regions with little seasonality, such as the Tropics and Subtropics, experience an increase in burned area.
Light-sheet enhanced resolution of light field microscopy for rapid imaging of large volumes
NASA Astrophysics Data System (ADS)
Madrid Wolff, Jorge; Castro, Diego; Arbeláez, Pablo; Forero-Shelton, Manu
2018-02-01
Whole-brain imaging is challenging because it demands microscopes with high temporal and spatial resolution, which are often at odds, especially in the context of large fields of view. We have designed and built a light-sheet microscope with digital micromirror illumination and light-field detection. On the one hand, light sheets provide high resolution optical sectioning on live samples without compromising their viability. On the other hand, light field imaging makes it possible to reconstruct full volumes of relatively large fields of view from a single camera exposure; however, its enhanced temporal resolution comes at the expense of spatial resolution, limiting its applicability. We present an approach to increase the resolution of light field images using DMD-based light sheet illumination. To that end, we develop a method to produce synthetic resolution targets for light field microscopy and a procedure to correct the depth at which planes are refocused with rendering software. We measured the axial resolution as a function of depth and show a three-fold potential improvement with structured illumination, albeit by sacrificing some temporal resolution, also three-fold. This results in an imaging system that may be adjusted to specific needs without having to reassemble and realign it. This approach could be used to image relatively large samples at high rates.
MISR Level 2 TOA/Cloud Classifier parameters (MIL2TCCL_V3)
NASA Technical Reports Server (NTRS)
Diner, David J. (Principal Investigator)
The TOA/Cloud Classifiers contain the Angular Signature Cloud Mask (ASCM), a scene classifier calculated using support vector machine technology (SVM) both of which are on a 1.1 km grid, and cloud fractions at 17.6 km resolution that are available in different height bins (low, middle, high) and are also calculated on an angle-by-angle basis. [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1.1 km; Longitude_Resolution=1.1 km; Temporal_Resolution=about 15 orbits/day].
Downscaling Land Surface Temperature in an Urban Area: A Case Study for Hamburg, Germany
NASA Astrophysics Data System (ADS)
Bechtel, Benjamin; Zakšek, Klemen
2013-04-01
Land surface temperature (LST) is an important parameter for the urban radiation and heat balance and a boundary condition for the atmospheric urban heat island (UHI). The increase in urban surface temperatures compared to the surrounding area (surface urban heat island, SUHI) has been described and analysed with satellite-based measurements for several decades. Besides continuous progress in the development of new sensors, an operational monitoring is still severely limited by physical constraints regarding the spatial and temporal resolution of the satellite data. Essentially, two measurement concepts must be distinguished: Sensors on geostationary platforms have high temporal (several times per hour) and poor spatial resolution (~ 5 km) while those on low earth orbiters have high spatial (~ 100-1000 m) resolution and a long return period (one day to several weeks). To enable an observation with high temporal and spatial resolution, a downscaling scheme for LST from the Spinning Enhanced Visible Infra-Red Imager (SEVIRI) sensor onboard the geostationary meteorological Meteosat 9 to spatial resolutions between 100 and 1000 m was developed and tested for Hamburg in this case study. Therefore, various predictor sets (including parameters derived from multi-temporal thermal data, NDVI, and morphological parameters) were tested. The relationship between predictors and LST was empirically calibrated in the low resolution domain and then transferred to the high resolution domain. The downscaling was validated with LST data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for the same time. Aggregated parameters from multi-temporal thermal data (in particular annual cycle parameters and principal components) proved particularly suitable. The results for the highest resolution of 100 m showed a high explained variance (R² = 0.71) and relatively low root mean square errors (RMSE = 2.2 K). Larger predictor sets resulted in higher errors, because they tended to overfit. As expected the results were better for coarser spatial resolutions (R² = 0.80, RMSE = 1.8 K for 500 m). These results are similar or slightly better than in previous studies, although we are not aware of any study with a comparably large downscaling factor. A considerable percentage of the error is systematic due to the different viewing geometry of the sensors (the high resolution LST was overestimated about 1.3 K). The study shows that downscaling of SEVIRI LST is possible up to a resolution of 100 m for urban areas and that multi-temporal thermal data are particularly suitable as predictors.
Functional cardiac magnetic resonance microscopy
NASA Astrophysics Data System (ADS)
Brau, Anja Christina Sophie
2003-07-01
The study of small animal models of human cardiovascular disease is critical to our understanding of the origin, progression, and treatment of this pervasive disease. Complete analysis of disease pathophysiology in these animal models requires measuring structural and functional changes at the level of the whole heart---a task for which an appropriate non-invasive imaging method is needed. The purpose of this work was thus to develop an imaging technique to support in vivo characterization of cardiac structure and function in rat and mouse models of cardiovascular disease. Whereas clinical cardiac magnetic resonance imaging (MRI) provides accurate assessment of the human heart, the extension of cardiac MRI from humans to rodents presents several formidable scaling challenges. Acquiring images of the mouse heart with organ definition and fluidity of contraction comparable to that achieved in humans requires an increase in spatial resolution by a factor of 3000 and an increase in temporal resolution by a factor of ten. No single technical innovation can meet the demanding imaging requirements imposed by the small animal. A functional cardiac magnetic resonance microscopy technique was developed by integrating improvements in physiological control, imaging hardware, biological synchronization of imaging, and pulse sequence design to achieve high-quality images of the murine heart with high spatial and temporal resolution. The specific methods and results from three different sets of imaging experiments are presented: (1) 2D functional imaging in the rat with spatial resolution of 175 mum2 x 1 mm and temporal resolution of 10 ms; (2) 3D functional imaging in the rat with spatial resolution of 100 mum 2 x 500 mum and temporal resolution of 30 ms; and (3) 2D functional imaging in the mouse with spatial resolution down to 100 mum2 x 1 mm and temporal resolution of 10 ms. The cardiac microscopy technique presented here represents a novel collection of technologies capable of acquiring routine high-quality images of murine cardiac structure and function with minimal artifacts and markedly higher spatial resolution compared to conventional techniques. This work is poised to serve a valuable role in the evaluation of cardiovascular disease and should find broad application in studies ranging from basic pathophysiology to drug discovery.
Binary and Millisecond Pulsars.
Lorimer, Duncan R
2008-01-01
We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.
Impact of the Norepinephrine Prodrug Droxidopa on the QTc Interval in Healthy Individuals.
White, William B; Hewitt, L Arthur; Mehdirad, Ali A
2018-03-01
A double-blind, 4-period crossover study (NCT01327066) was conducted to assess the effect of the novel norepinephrine prodrug droxidopa on the QT interval in in healthy subjects. Subjects were randomized to receive a single dose of droxidopa 600 mg (maximal dose) and 2000 mg (supratherapeutic dose) compared with the positive control, moxifloxacin 400 mg, and placebo, each separated by a 3-day washout period. Patients were monitored by continuous Holter monitoring, and electrocardiograms (ECGs) were extracted 0.5-23 hours after dosing. Blood samples for pharmacokinetic analysis were collected before dosing and after ECG data collection. The primary end point was the time-matched placebo-adjusted change from baseline in the individually corrected QT (QTcI). The time-averaged QTcI mean placebo-corrected changes from baseline for droxidopa 600 and 2000 mg were 0.1 milliseconds (90%CI, -0.9 to 1.0 milliseconds) and 0.3 milliseconds (90%CI, -0.6 to 1.3 milliseconds), respectively, and 9 milliseconds (90%CI, 8.4-10.3 milliseconds) for moxifloxacin. This study found no effect of either dose of droxidopa on cardiac repolarization using QTcI. Analysis of the pharmacokinetic/pharmacodynamic relationship and cardiac repolarization showed no association with droxidopa exposure. There were no clinically relevant effects of droxidopa on heart rate, atrioventricular conduction, or cardiac depolarization identified. No morphologic ECG changes were observed. © 2017 The Authors. Clinical Pharmacology in Drug Development Published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.
Impact of the Norepinephrine Prodrug Droxidopa on the QTc Interval in Healthy Individuals
Hewitt, L. Arthur; Mehdirad, Ali A.
2017-01-01
Abstract A double‐blind, 4‐period crossover study (NCT01327066) was conducted to assess the effect of the novel norepinephrine prodrug droxidopa on the QT interval in in healthy subjects. Subjects were randomized to receive a single dose of droxidopa 600 mg (maximal dose) and 2000 mg (supratherapeutic dose) compared with the positive control, moxifloxacin 400 mg, and placebo, each separated by a 3‐day washout period. Patients were monitored by continuous Holter monitoring, and electrocardiograms (ECGs) were extracted 0.5–23 hours after dosing. Blood samples for pharmacokinetic analysis were collected before dosing and after ECG data collection. The primary end point was the time‐matched placebo‐adjusted change from baseline in the individually corrected QT (QTcI). The time‐averaged QTcI mean placebo‐corrected changes from baseline for droxidopa 600 and 2000 mg were 0.1 milliseconds (90%CI, ‐0.9 to 1.0 milliseconds) and 0.3 milliseconds (90%CI, ‐0.6 to 1.3 milliseconds), respectively, and 9 milliseconds (90%CI, 8.4–10.3 milliseconds) for moxifloxacin. This study found no effect of either dose of droxidopa on cardiac repolarization using QTcI. Analysis of the pharmacokinetic/pharmacodynamic relationship and cardiac repolarization showed no association with droxidopa exposure. There were no clinically relevant effects of droxidopa on heart rate, atrioventricular conduction, or cardiac depolarization identified. No morphologic ECG changes were observed. PMID:29024579
Frost, Charles; Nepal, Sunil; Byon, Wonkyung; Moore, Kenneth; Reeves, Richard A; Boyd, Rebecca; LaCreta, Frank
2015-05-01
Apixaban is an oral, direct factor Xa inhibitor indicated for the prevention and treatment of thromboembolic disease. This randomized, blinded, 4-way crossover study investigated the potential effect of apixaban on the QTc interval. Forty healthy subjects (39 completers) each received 3 days of the following treatments: blinded apixaban 10 mg once daily (QD), 50 mg QD (supratherapeutic), matched apixaban placebo QD, and a single dose of open-label moxifloxacin 400 mg on Day 3, preceded by 2 days of placebo QD. Triplicate electrocardiograms obtained over 24 hours on Days -1 (baseline) and 3 were read by a blinded third party. The mean placebo-adjusted, time-matched, Fridericia-corrected change from baseline QTc (ΔΔQTcF) for apixaban and moxifloxacin was estimated at each time point. The maximum ΔΔQTcF was 1.51 milliseconds (one-sided upper 95% confidence interval [CI] 3.71 milliseconds) after apixaban 50 mg QD, 1.36 milliseconds (one-sided upper 95%CI 3.54 milliseconds) after apixaban 10 mg QD, and 10.21 milliseconds (lower 95%CI 8.07 milliseconds) after moxifloxacin. Concentration-response analysis suggested no evidence of a positive relationship between apixaban concentration and ΔQTcF. Apixaban doses up to 50 mg QD for 3 days were well tolerated and did not prolong the QTc interval in healthy subjects. © 2015, The American College of Clinical Pharmacology.
Coarse climate change projections for species living in a fine-scaled world.
Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R
2017-01-01
Accurately predicting biological impacts of climate change is necessary to guide policy. However, the resolution of climate data could be affecting the accuracy of climate change impact assessments. Here, we review the spatial and temporal resolution of climate data used in impact assessments and demonstrate that these resolutions are often too coarse relative to biologically relevant scales. We then develop a framework that partitions climate into three important components: trend, variance, and autocorrelation. We apply this framework to map different global climate regimes and identify where coarse climate data is most and least likely to reduce the accuracy of impact assessments. We show that impact assessments for many large mammals and birds use climate data with a spatial resolution similar to the biologically relevant area encompassing population dynamics. Conversely, impact assessments for many small mammals, herpetofauna, and plants use climate data with a spatial resolution that is orders of magnitude larger than the area encompassing population dynamics. Most impact assessments also use climate data with a coarse temporal resolution. We suggest that climate data with a coarse spatial resolution is likely to reduce the accuracy of impact assessments the most in climates with high spatial trend and variance (e.g., much of western North and South America) and the least in climates with low spatial trend and variance (e.g., the Great Plains of the USA). Climate data with a coarse temporal resolution is likely to reduce the accuracy of impact assessments the most in the northern half of the northern hemisphere where temporal climatic variance is high. Our framework provides one way to identify where improving the resolution of climate data will have the largest impact on the accuracy of biological predictions under climate change. © 2016 John Wiley & Sons Ltd.
Ultra high spatial and temporal resolution breast imaging at 7T.
van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J
2013-04-01
There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.
Interferometric temporal focusing microscopy using three-photon excitation fluorescence.
Toda, Keisuke; Isobe, Keisuke; Namiki, Kana; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi
2018-04-01
Super-resolution microscopy has become a powerful tool for biological research. However, its spatial resolution and imaging depth are limited, largely due to background light. Interferometric temporal focusing (ITF) microscopy, which combines structured illumination microscopy and three-photon excitation fluorescence microscopy, can overcome these limitations. Here, we demonstrate ITF microscopy using three-photon excitation fluorescence, which has a spatial resolution of 106 nm at an imaging depth of 100 µm with an excitation wavelength of 1060 nm.
NASA Astrophysics Data System (ADS)
Ticehurst, C. J.; Bartsch, A.; Doubkova, M.; van Dijk, A. I. J. M.
2009-11-01
Continuous flood monitoring can support emergency response, water management and environmental monitoring. Optical sensors such as MODIS allow inundation mapping with high spatial and temporal resolution (250-1000 m, twice daily) but are affected by cloud cover. Passive microwave sensors also acquire observations at high temporal resolution, but coarser spatial resolution (e.g. ca. 5-70 km for AMSR-E) and smaller footprints are also affected by cloud and/or rain. ScanSAR systems allow all-weather monitoring but require spatial resolution to be traded off against coverage and/or temporal resolution; e.g. the ENVISAT ASAR Global Mode observes at ca. 1 km over large regions about twice a week. The complementary role of the AMSR-E and ASAR GM data to that of MODIS is here introduced for three flood events and locations across Australia. Additional improvements can be made by integrating digital elevation models and stream flow gauging data.
NASA Astrophysics Data System (ADS)
Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei
2017-04-01
High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.
High speed imaging of dynamic processes with a switched source x-ray CT system
NASA Astrophysics Data System (ADS)
Thompson, William M.; Lionheart, William R. B.; Morton, Edward J.; Cunningham, Mike; Luggar, Russell D.
2015-05-01
Conventional x-ray computed tomography (CT) scanners are limited in their scanning speed by the mechanical constraints of their rotating gantries and as such do not provide the necessary temporal resolution for imaging of fast-moving dynamic processes, such as moving fluid flows. The Real Time Tomography (RTT) system is a family of fast cone beam CT scanners which instead use multiple fixed discrete sources and complete rings of detectors in an offset geometry. We demonstrate the potential of this system for use in the imaging of such high speed dynamic processes and give results using simulated and real experimental data. The unusual scanning geometry results in some challenges in image reconstruction, which are overcome using algebraic iterative reconstruction techniques and explicit regularisation. Through the use of a simple temporal regularisation term and by optimising the source firing pattern, we show that temporal resolution of the system may be increased at the expense of spatial resolution, which may be advantageous in some situations. Results are given showing temporal resolution of approximately 500 µs with simulated data and 3 ms with real experimental data.
Omidvar, Shaghayegh; Jafari, Zahra; Tahaei, Ali Akbar; Salehi, Masoud
2013-04-01
The aims of this study were to prepare a Persian version of the temporal resolution test using the method of Phillips et al (1994) and Stuart and Phillips (1996), and to compare the word-recognition performance in the presence of continuous and interrupted noise as well as the temporal resolution abilities between monolingual (ML) Persian and bilingual (BL) Turkish-Persian young adults. Word-recognition scores (WRSs) were obtained in quiet and in the presence of background competing continuous and interrupted noise at signal-to-noise ratios (SNRs) of -20, -10, 0, and 10 dB. Two groups of 33 ML Persian and 36 BL Turkish-Persian volunteers participated. WRSs significantly differed between ML and BL subjects at four sensation levels in the presence of continuous and interrupted noise. However, the difference in the release from masking between ML and BL subjects was not significant at the studied SNRs. BL Turkish-Persian listeners seem to show poorer performance when responding to Persian words in continuous and interrupted noise. However, bilingualism may not affect auditory temporal resolution ability.
Remote Control of Neuronal Signaling
Rogan, Sarah C.
2011-01-01
A significant challenge for neuroscientists is to determine how both electrical and chemical signals affect the activity of cells and circuits and how the nervous system subsequently translates that activity into behavior. Remote, bidirectional manipulation of those signals with high spatiotemporal precision is an ideal approach to addressing that challenge. Neuroscientists have recently developed a diverse set of tools that permit such experimental manipulation with varying degrees of spatial, temporal, and directional control. These tools use light, peptides, and small molecules to primarily activate ion channels and G protein-coupled receptors (GPCRs) that in turn activate or inhibit neuronal firing. By monitoring the electrophysiological, biochemical, and behavioral effects of such activation/inhibition, researchers can better understand the links between brain activity and behavior. Here, we review the tools that are available for this type of experimentation. We describe the development of the tools and highlight exciting in vivo data. We focus primarily on designer GPCRs (receptors activated solely by synthetic ligands, designer receptors exclusively activated by designer drugs) and microbial opsins (e.g., channelrhodopsin-2, halorhodopsin, Volvox carteri channelrhodopsin) but also describe other novel techniques that use orthogonal receptors, caged ligands, allosteric modulators, and other approaches. These tools differ in the direction of their effect (activation/inhibition, hyperpolarization/depolarization), their onset and offset kinetics (milliseconds/minutes/hours), the degree of spatial resolution they afford, and their invasiveness. Although none of these tools is perfect, each has advantages and disadvantages, which we describe, and they are all still works in progress. We conclude with suggestions for improving upon the existing tools. PMID:21415127
gPhoton: THE GALEX PHOTON DATA ARCHIVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Million, Chase; Fleming, Scott W.; Shiao, Bernie
gPhoton is a new database product and software package that enables analysis of GALEX ultraviolet data at the photon level. The project’s stand-alone, pure-Python calibration pipeline reproduces the functionality of the original mission pipeline to reduce raw spacecraft data to lists of time-tagged, sky-projected photons, which are then hosted in a publicly available database by the Mikulski Archive at Space Telescope. This database contains approximately 130 terabytes of data describing approximately 1.1 trillion sky-projected events with a timestamp resolution of five milliseconds. A handful of Python and command-line modules serve as a front end to interact with the database andmore » to generate calibrated light curves and images from the photon-level data at user-defined temporal and spatial scales. The gPhoton software and source code are in active development and publicly available under a permissive license. We describe the motivation, design, and implementation of the calibration pipeline, database, and tools, with emphasis on divergence from prior work, as well as challenges created by the large data volume. We summarize the astrometric and photometric performance of gPhoton relative to the original mission pipeline. For a brief example of short time-domain science capabilities enabled by gPhoton, we show new flares from the known M-dwarf flare star CR Draconis. The gPhoton software has permanent object identifiers with the ASCL (ascl:1603.004) and DOI (doi:10.17909/T9CC7G). This paper describes the software as of version v1.27.2.« less
Cardiac action potential imaging
NASA Astrophysics Data System (ADS)
Tian, Qinghai; Lipp, Peter; Kaestner, Lars
2013-06-01
Action potentials in cardiac myocytes have durations in the order of magnitude of 100 milliseconds. In biomedical investigations the documentation of the occurrence of action potentials is often not sufficient, but a recording of the shape of an action potential allows a functional estimation of several molecular players. Therefore a temporal resolution of around 500 images per second is compulsory. In the past such measurements have been performed with photometric approaches limiting the measurement to one cell at a time. In contrast, imaging allows reading out several cells at a time with additional spatial information. Recent developments in camera technologies allow the acquisition with the required speed and sensitivity. We performed action potential imaging on isolated adult cardiomyocytes of guinea pigs utilizing the fluorescent membrane potential sensor di-8-ANEPPS and latest electron-multiplication CCD as well as scientific CMOS cameras of several manufacturers. Furthermore, we characterized the signal to noise ratio of action potential signals of varying sets of cameras, dye concentrations and objective lenses. We ensured that di-8-ANEPPS itself did not alter action potentials by avoiding concentrations above 5 μM. Based on these results we can conclude that imaging is a reliable method to read out action potentials. Compared to conventional current-clamp experiments, this optical approach allows a much higher throughput and due to its contact free concept leaving the cell to a much higher degree undisturbed. Action potential imaging based on isolated adult cardiomyocytes can be utilized in pharmacological cardiac safety screens bearing numerous advantages over approaches based on heterologous expression of hERG channels in cell lines.
NASA Astrophysics Data System (ADS)
Tang, Xiangyang; Hsieh, Jiang; Taha, Basel H.; Vass, Melissa L.; Seamans, John L.; Okerlund, Darin R.
2009-02-01
With increasing longitudinal detector dimension available in diagnostic volumetric CT, step-and-shoot scan is becoming popular for cardiac imaging. In comparison to helical scan, step-and-shoot scan decouples patient table movement from cardiac gating/triggering, which facilitates the cardiac imaging via multi-sector data acquisition, as well as the administration of inter-cycle heart beat variation (arrhythmia) and radiation dose efficiency. Ideally, a multi-sector data acquisition can improve temporal resolution at a factor the same as the number of sectors (best scenario). In reality, however, the effective temporal resolution is jointly determined by gantry rotation speed and patient heart beat rate, which may significantly lower than the ideal or no improvement (worst scenario). Hence, it is clinically relevant to investigate the behavior of effective temporal resolution in cardiac imaging with multi-sector data acquisition. In this study, a 5-second cine scan of a porcine heart, which cascades 6 porcine cardiac cycles, is acquired. In addition to theoretical analysis and motion phantom study, the clinical consequences due to the effective temporal resolution variation are evaluated qualitative or quantitatively. By employing a 2-sector image reconstruction strategy, a total of 15 (the permutation of P(6, 2)) cases between the best and worst scenarios are studied, providing informative guidance for the design and optimization of CT cardiac imaging in volumetric CT with multi-sector data acquisition.
NASA Astrophysics Data System (ADS)
Jiang, H.; Lin, T.
2017-12-01
Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.
Static and Dynamic Electron Microscopy Investigations at the Atomic and Ultrafast Scales
NASA Astrophysics Data System (ADS)
Suri, Pranav Kumar
Advancements in the electron microscopy capabilities - aberration-corrected imaging, monochromatic spectroscopy, direct-electron detectors - have enabled routine visualization of atomic-scale processes with millisecond temporal resolutions in this decade. This, combined with progress in the transmission electron microscopy (TEM) specimen holder technology and nanofabrication techniques, allows comprehensive experiments on a wide range of materials in various phases via in situ methods. The development of ultrafast (sub-nanosecond) time-resolved TEM with ultrafast electron microscopy (UEM) has further pushed the envelope of in situ TEM to sub-nanosecond temporal resolution while maintaining sub-nanometer spatial resolution. A plethora of materials phenomena - including electron-phonon coupling, phonon transport, first-order phase transitions, bond rotation, plasmon dynamics, melting, and dopant atoms arrangement - are not yet clearly understood and could be benefitted with the current in situ TEM capabilities having atomic-level and ultrafast precision. Better understanding of these phenomena and intrinsic material dynamics (e.g. how phonons propagate in a material, what time-scales are involved in a first-order phase transition, how fast a material melts, where dopant atoms sit in a crystal) in new-generation and technologically important materials (e.g. two-dimensional layered materials, semiconductor and magnetic devices, rare-earth-element-free permanent magnets, unconventional superconductors) could bring a paradigm shift in their electronic, structural, magnetic, thermal and optical applications. Present research efforts, employing cutting-edge static and dynamic in situ electron microscopy resources at the University of Minnesota, are directed towards understanding the atomic-scale crystallographic structural transition and phonon transport in an iron-pnictide parent compound LaFeAsO, studying the mechanical stability of fast moving hard-drive heads in heat-assisted magnetic recording (HAMR) technology, exploring the possibility of ductile ceramics in magnesium oxide (MgO) nanomaterials, and revealing the atomic-structure of newly discovered rare-earth-element-free iron nitride (FeN) magnetic materials. Via atomic-resolution imaging and electron diffraction coupled with in situ TEM cooling on LaFeAsO, it was found that additional effects not related to the structural transition, namely dynamical scattering and electron channeling, can give signatures reminiscent of those typically associated with the symmetry change. UEM studies on LaFeAsO revealed direct, real-space imaging of the emergence and evolution of acoustic phonons and resolved dispersion behavior during propagation and scattering. Via UEM bright-field imaging, megahertz vibrational frequencies were observed upon laser-illumination in TEM specimens made out of HAMR devices which could be detrimental to their long-term thermal and structural reliability. Compression testing of 100-350 nm single-crystal MgO nanocubes shows size-dependent stresses and engineering strains of 4-13.8 GPa and 0.046-0.221 respectively at the first signs of yield accompanied by an absence of brittle fracture, which is a significant increase in plasticity of a brittle ceramic material. Atomic-scale characterization of FeN phases show that it is possible to detect interstitial locations of low atomic-number nitrogen atoms in iron crystal and hints at a development of novel routes (without involving rare-earth elements) for bulk permanent magnet synthesis.
A space-time multiscale modelling of Earth's gravity field variations
NASA Astrophysics Data System (ADS)
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2017-04-01
The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.
Temporal resolution improvement using PICCS in MDCT cardiac imaging
Chen, Guang-Hong; Tang, Jie; Hsieh, Jiang
2009-01-01
The current paradigm for temporal resolution improvement is to add more source-detector units and∕or increase the gantry rotation speed. The purpose of this article is to present an innovative alternative method to potentially improve temporal resolution by approximately a factor of 2 for all MDCT scanners without requiring hardware modification. The central enabling technology is a most recently developed image reconstruction method: Prior image constrained compressed sensing (PICCS). Using the method, cardiac CT images can be accurately reconstructed using the projection data acquired in an angular range of about 120°, which is roughly 50% of the standard short-scan angular range (∼240° for an MDCT scanner). As a result, the temporal resolution of MDCT cardiac imaging can be universally improved by approximately a factor of 2. In order to validate the proposed method, two in vivo animal experiments were conducted using a state-of-the-art 64-slice CT scanner (GE Healthcare, Waukesha, WI) at different gantry rotation times and different heart rates. One animal was scanned at heart rate of 83 beats per minute (bpm) using 400 ms gantry rotation time and the second animal was scanned at 94 bpm using 350 ms gantry rotation time, respectively. Cardiac coronary CT imaging can be successfully performed at high heart rates using a single-source MDCT scanner and projection data from a single heart beat with gantry rotation times of 400 and 350 ms. Using the proposed PICCS method, the temporal resolution of cardiac CT imaging can be effectively improved by approximately a factor of 2 without modifying any scanner hardware. This potentially provides a new method for single-source MDCT scanners to achieve reliable coronary CT imaging for patients at higher heart rates than the current heart rate limit of 70 bpm without using the well-known multisegment FBP reconstruction algorithm. This method also enables dual-source MDCT scanner to achieve higher temporal resolution without further hardware modifications. PMID:19610302
Temporal resolution improvement using PICCS in MDCT cardiac imaging.
Chen, Guang-Hong; Tang, Jie; Hsieh, Jiang
2009-06-01
The current paradigm for temporal resolution improvement is to add more source-detector units and/or increase the gantry rotation speed. The purpose of this article is to present an innovative alternative method to potentially improve temporal resolution by approximately a factor of 2 for all MDCT scanners without requiring hardware modification. The central enabling technology is a most recently developed image reconstruction method: Prior image constrained compressed sensing (PICCS). Using the method, cardiac CT images can be accurately reconstructed using the projection data acquired in an angular range of about 120 degrees, which is roughly 50% of the standard short-scan angular range (approximately 240 degrees for an MDCT scanner). As a result, the temporal resolution of MDCT cardiac imaging can be universally improved by approximately a factor of 2. In order to validate the proposed method, two in vivo animal experiments were conducted using a state-of-the-art 64-slice CT scanner (GE Healthcare, Waukesha, WI) at different gantry rotation times and different heart rates. One animal was scanned at heart rate of 83 beats per minute (bpm) using 400 ms gantry rotation time and the second animal was scanned at 94 bpm using 350 ms gantry rotation time, respectively. Cardiac coronary CT imaging can be successfully performed at high heart rates using a single-source MDCT scanner and projection data from a single heart beat with gantry rotation times of 400 and 350 ms. Using the proposed PICCS method, the temporal resolution of cardiac CT imaging can be effectively improved by approximately a factor of 2 without modifying any scanner hardware. This potentially provides a new method for single-source MDCT scanners to achieve reliable coronary CT imaging for patients at higher heart rates than the current heart rate limit of 70 bpm without using the well-known multisegment FBP reconstruction algorithm. This method also enables dual-source MDCT scanner to achieve higher temporal resolution without further hardware modifications.
Development of a Dual-PIV system for high-speed flow applications
NASA Astrophysics Data System (ADS)
Schreyer, Anne-Marie; Lasserre, Jean J.; Dupont, Pierre
2015-10-01
A new Dual-particle image velocimetry (Dual-PIV) system for application in supersonic flows was developed. The system was designed for shock wave/turbulent boundary layer interactions with separation. This type of flow places demanding requirements on the system, from the large range of characteristic frequencies O(100 Hz-100 kHz) to spatial and temporal resolutions necessary for the measurement of turbulent quantities (Dolling in AIAA J 39(8):1517-1531, 2001; Dupont et al. in J Fluid Mech 559:255-277, 2006; Smits and Dussauge in Turbulent shear layers in supersonic flow, 2nd edn. Springer, New York, 2006). While classic PIV systems using high-resolution CCD sensors allow high spatial resolution, these systems cannot provide the required temporal resolution. Existing high-speed PIV systems provide temporal and CMOS sensor resolutions, and even laser pulse energies, that are not adapted to our needs. The only obvious solution allowing sufficiently high spatial resolution, access to high frequencies, and a high laser pulse energy is a multi-frame system: a Dual-PIV system, consisting of two synchronized PIV systems observing the same field of view, will give access to temporal characteristics of the flow. The key technology of our system is frequency-based image separation: two lasers of different wavelengths illuminate the field of view. The cross-pollution with laser light from the respective other branches was quantified during system validation. The overall system noise was quantified, and the prevailing error of only 2 % reflects the good spatial and temporal alignment. The quality of the measurement system is demonstrated with some results on a subsonic jet flow including the spatio-temporal inter-correlation functions between the systems. First measurements in a turbulent flat-plate boundary layer at Mach 2 show the same satisfactory data quality and are also presented and discussed.
Research on millisecond load recovery strategy in the late period of UHVDC fault dispose
NASA Astrophysics Data System (ADS)
Qiu, Chenguang; Qian, Tiantian; Cheng, Jinmin; Wang, Ke
2018-06-01
When UHVDC has a fault, it needs to quickly cut off the load so that the entire system can keep balance. In the late period of fault dispose, it needs to recover the load step by step. The recovery strategy of millisecond load is studied in this paper. Aimed at the maximum recovery load in one step, combined with grid security constraints, the recovery model of millisecond load is built, and then solved by Genetic Algorithms. The simulation example is established to verify the effectiveness of proposed method.
Airborne Network Camera Standard
2015-06-01
SS is the second in the minute from 0 to 59; TTT is the millisecond from 0 to 999; UUU are the microseconds. 5.3.5.7 Trigger Delay Enable Feature...to 59; SS is the second in the minute from 0 to 59; TTT is the millisecond from 0 to 999; UUU are the microseconds. 5.3.5.12 Acquisition Start Time...0 to 59; SS is the second in the minute from 0 to 59; TTT is the millisecond from 0 to 999; UUU are the microseconds. 5.3.5.13 Acquisition Arm
Oikawa, Hiroyuki; Takahashi, Takumi; Kamonprasertsuk, Supawich; Takahashi, Satoshi
2018-01-31
Single-molecule (sm) fluorescence time series measurements based on the line confocal optical system are a powerful strategy for the investigation of the structure, dynamics, and heterogeneity of biological macromolecules. This method enables the detection of more than several thousands of fluorescence photons per millisecond from single fluorophores, implying that the potential time resolution for measurements of the fluorescence resonance energy transfer (FRET) efficiency is 10 μs. However, the necessity of using imaging photodetectors in the method limits the time resolution in the FRET efficiency measurements to approximately 100 μs. In this investigation, a new photodetector called a hybrid photodetector (HPD) was incorporated into the line confocal system to improve the time resolution without sacrificing the length of the time series detection. Among several settings examined, the system based on a slit width of 10 μm and a high-speed counting device made the best of the features of the line confocal optical system and the HPD. This method achieved a time resolution of 10 μs and an observation time of approximately 5 ms in the sm-FRET time series measurements. The developed device was used for the native state of the B domain of protein A.
SEARCHES FOR MILLISECOND PULSAR CANDIDATES AMONG THE UNIDENTIFIED FERMI OBJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, C. Y.; Park, S. M.; Hu, C. P.
2015-08-10
Here we report the results of searching millisecond pulsar (MSP) candidates from the Fermi LAT second source catalog (2FGL). Seven unassociated γ-ray sources in this catalog are identified as promising MSP candidates based on their γ-ray properties. Through the X-ray analysis, we have detected possible X-ray counterparts, localized to an arcsecond accuracy. We have systematically estimated their X-ray fluxes and compared them with the corresponding γ-ray fluxes. The X-ray to γ-ray flux ratios for 2FGL J1653.6-0159 and 2FGL J1946.4-5402 are comparable with the typical value for pulsars. For 2FGL J1625.2-0020, 2FGL J1653.6-0159, and 2FGL J1946.4-5402, their candidate X-ray counterparts aremore » bright enough to perform a detailed spectral and temporal analysis to discriminate their thermal/non-thermal nature and search for the periodic signal. We have also searched for possible optical/IR counterparts at the X-ray positions. For the optical/IR source coincident with the brightest X-ray object associated with 2FGL J1120.0-2204, its spectral energy distribution is comparable with a late-type star. Evidence for the variability has also been found by examining its optical light curve. All the aforementioned 2FGL sources resemble a pulsar in one or more aspects, making them promising targets for follow-up investigations.« less
Cope, Thomas E; Grube, Manon; Mandal, Arnab; Cooper, Freya E; Brechany, Una; Burn, David J; Griffiths, Timothy D
2014-05-01
Bilateral, high-frequency stimulation of the basal ganglia (STN-DBS) is in widespread use for the treatment of the motor symptoms of Parkinson׳s disease (PD). We present here the first psychophysical investigation of the effect of STN-DBS upon perceptual timing in the hundreds of milliseconds range, with both duration-based (absolute) and beat-based (relative) tasks; 13 patients with PD were assessed with their STN-DBS 'on', 'off', and then 'on' again. Paired parametric analyses revealed no statistically significant differences for any task according to DBS status. We demonstrate, from the examination of confidence intervals, that any functionally relevant effect of STN-DBS on relative perceptual timing is statistically unlikely. For absolute, duration-based timing, we demonstrate that the activation of STN-DBS may either worsen performance or have no effect, but that it is unlikely to lead to significant improvement. Although these results are negative they have important implications for our understanding of perceptual timing and its relationship to motor functions within the timing network of the brain. They imply that the mechanisms involved in the perceptual processing of temporal information are likely to be functionally independent from those that underpin movement. Further, they suggest that the connections between STN and the subtantia nigra and globus pallidus are unlikely to be critical to beat-based perceptual timing. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rare Earth Optical Temperature Sensor
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Wolford, David S.
2000-01-01
A new optical temperature sensor suitable for high temperatures (greater than 1700 K) and harsh environments is introduced. The key component of the sensor is the rare earth material contained at the end of a sensor that is in contact with the sample being measured. The measured narrow wavelength band emission from the rare earth is used to deduce the sample temperature. A simplified relation between the temperature and measured radiation was verified experimentally. The upper temperature limit of the sensor is determined by material limits to be approximately 2000 C. The lower limit, determined by the minimum detectable radiation, is found to be approximately 700 K. At high temperatures 1 K resolution is predicted. Also, millisecond response times are calculated.
Qin, Jia; Shi, Lei; Dziennis, Suzan; Reif, Roberto; Wang, Ruikang K.
2014-01-01
In this paper, we describe a newly developed synchronized dual-wavelength laser speckle contrast imaging (SDW-LSCI) system, which contains two cameras that are synchronously triggered to acquire data. The system can acquire data at a high spatiotemporal resolution (up to 500Hz for ~1000×1000 pixels). A mouse model of stroke is used to demonstrate the capability for imaging the fast changes (within tens of milliseconds) in oxygenated and deoxygenated hemoglobin concentration, and the relative changes in blood flow in the mouse brain, through an intact cranium. This novel imaging technology will enable the study of fast hemodynamics and metabolic changes in vascular diseases. PMID:23027260
A single-sweep, nanosecond time resolution laser temperature-jump apparatus
NASA Astrophysics Data System (ADS)
Ballew, R. M.; Sabelko, J.; Reiner, C.; Gruebele, M.
1996-10-01
We describe a fast temperature-jump (T-jump) apparatus capable of acquiring kinetic relaxation transients via real-time fluorescence detection over a time interval from nanoseconds to milliseconds in a single sweep. The method is suitable for aqueous solutions, relying upon the direct absorption of laser light by the bulk water. This obviates the need for additives (serving as optical or conductive heaters) that may interact with the sample under investigation. The longitudinal temperature profile is made uniform by counterpropagating heating pulses. Dead time is limited to one period of the probe laser (16 ns). The apparatus response is tested with aqueous tryptophan and the diffusion-controlled dimerization of proflavine.
Gravitational lensing of active galactic nuclei.
Hewitt, J N
1995-12-05
Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes.
The Application of Timing in Therapy of Children and Adults with Language Disorders
Szelag, Elzbieta; Dacewicz, Anna; Szymaszek, Aneta; Wolak, Tomasz; Senderski, Andrzej; Domitrz, Izabela; Oron, Anna
2015-01-01
A number of evidence revealed a link between temporal information processing (TIP) and language. Both literature data and results of our studies indicated an overlapping of deficient TIP and disordered language, pointing to the existence of an association between these two functions. On this background the new approach is to apply such knowledge in therapy of patients suffering from language disorders. In two studies we asked the following questions: (1) can the temporal training reduce language deficits in aphasic patients (Study 1) or in children with specific language impairment (SLI, Study 2)? (2) can such training ameliorate also the other cognitive functions? Each of these studies employed pre-training assessment, training application, post-training and follow-up assessment. In Study 1 we tested 28 patients suffering from post-stroke aphasia. They were assigned either to the temporal training (Group A, n = 15) in milliseconds range, or to the non-temporal training (Group B, n = 13). Following the training we found only in Group A improved TIP, accompanied by a transfer of improvement to language and working memory functions. In Study 2 we tested 32 children aged from 5 to 8 years, affected by SLI who were classified into the temporal training (Group A, n = 17) or non-temporal training (Group B, n = 15). Group A underwent the multileveled audio-visual computer training Dr. Neuronowski®, recently developed in our laboratory. Group B performed the computer speech therapy exercises extended by playing computer games. Similarly as in Study 1, in Group A we found significant improvements of TIP, auditory comprehension and working memory. These results indicated benefits of temporal training for amelioration of language and other cognitive functions in both aphasic patients and children with SLI. The novel powerful therapy tools provide evidence for future promising clinical applications. PMID:26617547
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegel, J.; Gawelda, W.; Puerto, D.
2008-01-15
Phase transformations of crystalline Ge{sub 2}Sb{sub 2}Te{sub 5} films upon pulsed laser irradiation have been studied using in situ reflectivity measurements with temporal resolution. Two different configurations allowed point probing with nanosecond temporal resolution and imaging with subpicosecond temporal and micrometer spatial resolution. The role of the pulse duration and laser fluence on the dynamics of the phase change and the degree of amorphization is discussed. Several advantageous features of femtosecond compared to nanosecond laser-induced amorphization are identified. Moreover, a high-resolution study of the amorphization dynamics reveals the onset of amorphization at moderate fluences to occur within {approx}100 ps aftermore » arrival of the laser pulse. At high fluences, amorphization occurs after {approx}430 ps and the molten phase is characterized by an anomalously low reflectivity value, indicative of a state of extreme supercooling.« less
Femtosecond MeV Electron Energy-Loss Spectroscopy
NASA Astrophysics Data System (ADS)
Li, R. K.; Wang, X. J.
2017-11-01
Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. In this paper, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the "reference-beam technique" relaxes the energy stability requirement of the rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving sub-electron-volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.
Design and manufacturing challenges of optogenetic neural interfaces: a review
NASA Astrophysics Data System (ADS)
Goncalves, S. B.; Ribeiro, J. F.; Silva, A. F.; Costa, R. M.; Correia, J. H.
2017-08-01
Optogenetics is a relatively new technology to achieve cell-type specific neuromodulation with millisecond-scale temporal precision. Optogenetic tools are being developed to address neuroscience challenges, and to improve the knowledge about brain networks, with the ultimate aim of catalyzing new treatments for brain disorders and diseases. To reach this ambitious goal the implementation of mature and reliable engineered tools is required. The success of optogenetics relies on optical tools that can deliver light into the neural tissue. Objective/Approach: Here, the design and manufacturing approaches available to the scientific community are reviewed, and current challenges to accomplish appropriate scalable, multimodal and wireless optical devices are discussed. Significance: Overall, this review aims at presenting a helpful guidance to the engineering and design of optical microsystems for optogenetic applications.
Pulsar-irradiated stars in dense globular clusters
NASA Technical Reports Server (NTRS)
Tavani, Marco
1992-01-01
We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.
Lidar Data Products and Applications Enabled by Conical Scanning
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Lee, Sang-Woo
2004-01-01
Several new data products and applications for elastic backscatter lidar are achieved using simple conical scanning. Atmospheric boundary layer spatial and temporal structure is revealed with resolution not possible with static pointing lidars. Cloud fractional coverage as a function of altitude is possible with high temporal resolution. Wind profiles are retrieved from the cloud and aerosol structure motions revealed by scanning. New holographic technology will soon allow quasi-conical scanning and push-broom lidar imaging without mechanical scanning, high resolution, on the order of seconds.
NASA Astrophysics Data System (ADS)
Broich, Mark
Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single best Landsat images. Such an approach does not provide timely results, and cloud cover reduces the utility of map outputs. In a second study, I develop a method to exhaustively mine the recently opened Landsat archive for cloud-free observations and automatically map forest cover loss for Sumatra and Kalimantan for the 2000-2005 interval. In a comparison with a reference dataset consisting of 64 Landsat sample blocks, I show that my method, using per pixel time-series, provides more accurate forest cover loss maps for multiyear intervals than approaches using image composites. In a third study, I disaggregate Landsat-mapped forest cover loss, mapped over a multiyear interval, by year using annual forest cover loss maps generated from coarse spatial, high temporal resolution MODIS imagery. I further disaggregate and analyze forest cover loss by forest land use, and provinces. Forest cover loss trends show high spatial and temporal variability. These results underline the importance of annual mapping for the quantification of forest cover loss in Indonesia, specifically in the light of the developing Reducing Emissions from Deforestation and Forest Degradation in Developing Countries policy framework (REDD). All three studies highlight the advances in quantifying forest cover loss in the humid tropics made by integrating coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data. The three methods presented can be combined into an integrated monitoring strategy.
Documentation of the Douglas-fir tussock moth outbreak-population model.
J.J. Colbert; W. Scott Overton; Curtis. White
1979-01-01
Documentation of three model versions: the Douglas-fir tussock moth population-branch model on (1) daily temporal resolution, (2) instart temporal resolution, and (3) the Douglas-fir tussock moth stand-outbreak model; the hierarchical framework and the conceptual paradigm used are described. The coupling of the model with a normal-stand model is discussed. The modeling...
High-resolution infrared thermography for capturing wildland fire behaviour - RxCADRE 2012
Joseph J. O’Brien; E. Louise Loudermilk; Benjamin Hornsby; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; J. Kevin Hiers; Casey Teske; Roger D. Ottmar
2016-01-01
Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at wide spatial extents and high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about fire effects and useful for examining patterns of fire spread. In this study we describe our...
Effects of Age and Hearing Loss on Gap Detection and the Precedence Effect: Broadband Stimuli
ERIC Educational Resources Information Center
Roberts, Richard A.; Lister, Jennifer J.
2004-01-01
Older listeners with normal-hearing sensitivity and impaired-hearing sensitivity often demonstrate poorer-than-normal performance on tasks of speech understanding in noise and reverberation. Deficits in temporal resolution and in the precedence effect may underlie this difficulty. Temporal resolution is often studied by means of a gap-detection…
Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.
Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less
Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals
Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.; ...
2018-02-09
Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less
The Chronotron: A Neuron That Learns to Fire Temporally Precise Spike Patterns
Florian, Răzvan V.
2012-01-01
In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons), one that provides high memory capacity (E-learning), and one that has a higher biological plausibility (I-learning). With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm. PMID:22879876
Long pacing pulses reduce phrenic nerve stimulation in left ventricular pacing.
Hjortshøj, Søren; Heath, Finn; Haugland, Morten; Eschen, Ole; Thøgersen, Anna Margrethe; Riahi, Sam; Toft, Egon; Struijk, Johannes Jan
2014-05-01
Phrenic nerve stimulation is a major obstacle in cardiac resynchronization therapy (CRT). Activation characteristics of the heart and phrenic nerve are different with higher chronaxie for the heart. Therefore, longer pulse durations could be beneficial in preventing phrenic nerve stimulation during CRT due to a decreased threshold for the heart compared with the phrenic nerve. We investigated if long pulse durations decreased left ventricular (LV) thresholds relatively to phrenic nerve thresholds in humans. Eleven patients, with indication for CRT and phrenic nerve stimulation at the intended pacing site, underwent determination of thresholds for the heart and phrenic nerve at different pulse durations (0.3-2.9 milliseconds). The resulting strength duration curves were analyzed by determining chronaxie and rheobase. Comparisons for those parameters were made between the heart and phrenic nerve, and between the models of Weiss and Lapicque as well. In 9 of 11 cases, the thresholds decreased faster for the LV than for the phrenic nerve with increasing pulse duration. In 3 cases, the thresholds changed from unfavorable for LV stimulation to more than a factor 2 in favor of the LV. The greatest change occurred for pulse durations up to 1.5 milliseconds. The chronaxie of the heart was significantly higher than the chronaxie of the phrenic nerve (0.47 milliseconds vs. 0.22 milliseconds [P = 0.029, Lapicque] and 0.79 milliseconds vs. 0.27 milliseconds [P = 0.033, Weiss]). Long pulse durations lead to a decreased threshold of the heart relatively to the phrenic nerve and may prevent stimulation of the phrenic nerve in a clinical setting. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Boughariou, Jihene; Zouch, Wassim; Slima, Mohamed Ben; Kammoun, Ines; Hamida, Ahmed Ben
2015-11-01
Electroencephalography (EEG) and magnetic resonance imaging (MRI) are noninvasive neuroimaging modalities. They are widely used and could be complementary. The fusion of these modalities may enhance some emerging research fields targeting the exploration better brain activities. Such research attracted various scientific investigators especially to provide a convivial and helpful advanced clinical-aid tool enabling better neurological explorations. Our present research was, in fact, in the context of EEG inverse problem resolution and investigated an advanced estimation methodology for the localization of the cerebral activity. Our focus was, therefore, on the integration of temporal priors to low-resolution brain electromagnetic tomography (LORETA) formalism and to solve the inverse problem in the EEG. The main idea behind our proposed method was in the integration of a temporal projection matrix within the LORETA weighting matrix. A hyperparameter is the principal fact for such a temporal integration, and its importance would be obvious when obtaining a regularized smoothness solution. Our experimental results clearly confirmed the impact of such an optimization procedure adopted for the temporal regularization parameter comparatively to the LORETA method.
Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes
Du, Jiangang; Blanche, Timothy J.; Harrison, Reid R.; Lester, Henry A.; Masmanidis, Sotiris C.
2011-01-01
Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable. PMID:22022568
X-ray phase imaging-From static observation to dynamic observation-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momose, A.; Yashiro, W.; Olbinado, M. P.
2012-07-31
We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase imagesmore » and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.« less
NASA Astrophysics Data System (ADS)
Gotthelf, Eric V.; Bogdanov, Slavko
2017-08-01
We present NuSTAR hard X-ray timing and spectroscopy of the three exceptionally energetic rotation-powered millisecond pulsars PSRs B1821-24, B1937+21, and J0218+4232. By correcting for frequency and phase drifts of the NuSTAR on-board clock we are able to recover the intrinsic hard X-ray pulse profiles of all three pulsars with a resolution down to <15 ms. The substantial reduction of background emission relative to previous broad-band X-ray observations allows us to detect for the first time pulsed emission up to ~50 keV, ~20 keV, and ~25 keV, for the three pulsars, respectively. We conduct phase-resolved spectroscopy in the 0.5 - 79 keV range for all three objects, obtaining the best yet measurements of the broad-band spectral shape and high-energy pulsed emission to date. We find extensions of the same power-law continua seen at lower energies, with no conclusive evidence for a spectral turnover or break. Extrapolation of the X-ray power-law spectrum to higher energies reveals that a turnover in the 100 keV to 100 MeV range is required to accommodate the high energy gamma-ray emission observed with Fermi LAT, similar to the broad-band spectral energy distribution observed for the Crab pulsar.
Design and engineering of a man-made diffusive electron-transport protein
Fry, Bryan A.; Solomon, Lee A.; Dutton, P. Leslie
2016-01-01
Maquettes are man-made cofactor-binding oxidoreductases designed from first principles with minimal reference to natural protein sequences. Here we focus on water-soluble maquettes designed and engineered to perform diffusive electron transport of the kind typically carried out by cytochromes, ferredoxins and flavodoxins and other small proteins in photosynthetic and respiratory energy conversion and oxido-reductive metabolism. Our designs were tested by analysis of electron transfer between heme maquettes and the well-known natural electron transporter, cytochrome c. Electron-transfer kinetics were measured from seconds to milliseconds by stopped-flow, while sub-millisecond resolution was achieved through laser photolysis of the carbon monoxide maquette heme complex. These measurements demonstrate electron transfer from the maquette to cytochrome c, reproducing the timescales and charge complementarity modulation observed in natural systems. The ionic strength dependence of inter-protein electron transfer from 9.7 × 106 M−1s−1 to 1.2 × 109 M−1s−1 follows a simple Debye-Hückel model for attraction between +8 net charged oxidized cytochrome c and −19 net charged heme maquette, with no indication of significant protein dipole moment steering. Successfully recreating essential components of energy conversion and downstream metabolism in man-made proteins holds promise for in vivo clinical intervention and for the production of fuel or other industrial products. PMID:26423266
Spatial and Temporal Monitoring Resolutions for CO2 Leakage Detection at Carbon Storage Sites
NASA Astrophysics Data System (ADS)
Yang, Y. M.; Dilmore, R. M.; Daley, T. M.; Carroll, S.; Mansoor, K.; Gasperikova, E.; Harbert, W.; Wang, Z.; Bromhal, G. S.; Small, M.
2016-12-01
Different leakage monitoring techniques offer different strengths in detection sensitivity, coverage, feedback time, cost, and technology availability, such that they may complement each other when applied together. This research focuses on quantifying the spatial coverage and temporal resolution of detection response for several geophysical remote monitoring and direct groundwater monitoring techniques for an optimal monitoring plan for CO2 leakage detection. Various monitoring techniques with different monitoring depths are selected: 3D time-lapse seismic survey, wellbore pressure, groundwater chemistry and soil gas. The spatial resolution in terms of leakage detectability is quantified through the effective detection distance between two adjacent monitors, given the magnitude of leakage and specified detection probability. The effective detection distances are obtained either from leakage simulations with various monitoring densities or from information garnered from field test data. These spatial leakage detection resolutions are affected by physically feasible monitoring design and detection limits. Similarly, the temporal resolution, in terms of leakage detectability, is quantified through the effective time to positive detection of a given size of leak and a specified detection probability, again obtained either from representative leakage simulations with various monitoring densities or from field test data. The effective time to positive detection is also affected by operational feedback time (associated with sampling, sample analysis and data interpretation), with values obtained mainly through expert interviews and literature review. In additional to the spatial and temporal resolutions of these monitoring techniques, the impact of CO2 plume migration speed and leakage detection sensitivity of each monitoring technique are also discussed with consideration of how much monitoring is necessary for effective leakage detection and how these monitoring techniques can be better combined in a time-space framework. The results of the spatial and temporal leakage detection resolutions for several geophysical monitoring techniques and groundwater monitoring are summarized to inform future monitoring designs at carbon storage sites.
NASA Astrophysics Data System (ADS)
Lin, S.; Li, J.; Liu, Q.
2018-04-01
Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day), which has better performance than using MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.
NASA Astrophysics Data System (ADS)
Liu, Q.; Chiu, L. S.; Hao, X.
2017-10-01
The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.
Temporal focusing microscopy combined with three-dimensional structured illumination
NASA Astrophysics Data System (ADS)
Isobe, Keisuke; Toda, Keisuke; Song, Qiyuan; Kannari, Fumihiko; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi
2017-05-01
Temporal focusing microscopy provides the optical sectioning capability in wide-field two-photon fluorescence imaging. Here, we demonstrate temporal focusing microscopy combined with three-dimensional structured illumination, which enables us to enhance the three-dimensional spatial resolution and reject the background fluorescence. Experimentally, the periodic pattern of the illumination was produced not only in the lateral direction but also in the axial direction by the interference between three temporal focusing pulses, which were easily generated using a digital micromirror device. The lateral resolution and optical sectioning capability were successfully enhanced by factors of 1.6 and 3.6, respectively, compared with those of temporal focusing microscopy. In the two-photon fluorescence imaging of a tissue-like phantom, the out-of-focus background fluorescence and the scattered background fluorescence could also be rejected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-09-27
Demeter-W, an open-access software written in Python, consists of extensible module packages. It is developed with statistical downscaling algorithms, to spatially and temporally downscale water demand data into finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. For better understanding of the driving forces and patterns for global water withdrawal, the researchers is able to utilize Demeter-W to reconstruct the data sets to examine the issues related to water withdrawals at fine spatial and temporal scales.
Towards the utilization of EEG as a brain imaging tool.
Michel, Christoph M; Murray, Micah M
2012-06-01
Recent advances in signal analysis have engendered EEG with the status of a true brain mapping and brain imaging method capable of providing spatio-temporal information regarding brain (dys)function. Because of the increasing interest in the temporal dynamics of brain networks, and because of the straightforward compatibility of the EEG with other brain imaging techniques, EEG is increasingly used in the neuroimaging community. However, the full capability of EEG is highly underestimated. Many combined EEG-fMRI studies use the EEG only as a spike-counter or an oscilloscope. Many cognitive and clinical EEG studies use the EEG still in its traditional way and analyze grapho-elements at certain electrodes and latencies. We here show that this way of using the EEG is not only dangerous because it leads to misinterpretations, but it is also largely ignoring the spatial aspects of the signals. In fact, EEG primarily measures the electric potential field at the scalp surface in the same way as MEG measures the magnetic field. By properly sampling and correctly analyzing this electric field, EEG can provide reliable information about the neuronal activity in the brain and the temporal dynamics of this activity in the millisecond range. This review explains some of these analysis methods and illustrates their potential in clinical and experimental applications. Copyright © 2011 Elsevier Inc. All rights reserved.
Slow Cholinergic Modulation of Spike Probability in Ultra-Fast Time-Coding Sensory Neurons
Goyer, David; Kurth, Stefanie; Rübsamen, Rudolf
2016-01-01
Abstract Sensory processing in the lower auditory pathway is generally considered to be rigid and thus less subject to modulation than central processing. However, in addition to the powerful bottom-up excitation by auditory nerve fibers, the ventral cochlear nucleus also receives efferent cholinergic innervation from both auditory and nonauditory top–down sources. We thus tested the influence of cholinergic modulation on highly precise time-coding neurons in the cochlear nucleus of the Mongolian gerbil. By combining electrophysiological recordings with pharmacological application in vitro and in vivo, we found 55–72% of spherical bushy cells (SBCs) to be depolarized by carbachol on two time scales, ranging from hundreds of milliseconds to minutes. These effects were mediated by nicotinic and muscarinic acetylcholine receptors, respectively. Pharmacological block of muscarinic receptors hyperpolarized the resting membrane potential, suggesting a novel mechanism of setting the resting membrane potential for SBC. The cholinergic depolarization led to an increase of spike probability in SBCs without compromising the temporal precision of the SBC output in vitro. In vivo, iontophoretic application of carbachol resulted in an increase in spontaneous SBC activity. The inclusion of cholinergic modulation in an SBC model predicted an expansion of the dynamic range of sound responses and increased temporal acuity. Our results thus suggest of a top–down modulatory system mediated by acetylcholine which influences temporally precise information processing in the lower auditory pathway. PMID:27699207
Fast, deep record length, time-resolved visible spectroscopy of plasmas using fiber grids
NASA Astrophysics Data System (ADS)
Brockington, Samuel; Case, Andrew; Cruz, Edward; Witherspoon, F. Douglas; Horton, Robert; Klauser, Ruth; Hwang, D. Q.
2016-10-01
HyperV Technologies is developing a fiber-coupled, deep-record-length, low-light camera head for performing high time resolution spectroscopy on visible emission from plasma events. New solid-state Silicon Photo-Multiplier (SiPM) chips are capable of single photon event detection and high speed data acquisition. By coupling the output of a spectrometer to an imaging fiber bundle connected to a bank of amplified SiPMs, time-resolved spectroscopic imagers of 100 to 1,000 pixels can be constructed. Target pixel performance is 10 Megaframes/sec with record lengths of up to 256,000 frames yielding 25.6 milliseconds of record at10 Megasamples/sec resolution. Pixel resolutions of 8 to 12 bits are pos- sible. Pixel pitch can be refined by using grids of 100 μm to 1000 μm diameter fibers. A prototype 32-pixel spectroscopic imager employing this technique was constructed and successfully tested at the University of California at Davis Compact Toroid Injection Experiment (CTIX) as a full demonstration of the concept. Experimental results will be dis-cussed, along with future plans for the Phase 2 project, and potential applications to plasma experiments . Work supported by USDOE SBIR Grant DE-SC0013801.
Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control.
Yoshida, Jun-ichi
2010-10-01
This article addresses a fascinating aspect of flash chemistry, high-resolution reaction-time control by virtue of a flow microreactor system, and its applications. The length of time that the solution remains inside the reactor is called the residence time. The residence time between the addition of a reagent and that of a quenching agent or the next reagent in a flow microreactor is the reaction time, and the reaction time can be greatly reduced by adjusting the length of a reaction channel in a flow microreactor. This feature is quite effective for conducting reactions involving short-lived reactive intermediates. A reactive species can be generated and transferred to another location to be used in the next reaction before it decomposes by adjusting the residence time in the millisecond to second timescale. The principle of such high-resolution reaction-time control, which can be achieved only by flow microreactors, and its applications to synthetic reactions including Swern-Moffatt-type oxidation, as well as the generation and reactions of aryllithium compounds bearing electrophilic substituents, such as alkoxycarbonyl groups, are presented. Integration of such reactions using integrated flow microreactor systems is also demonstrated. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
Further NICER observations of the accreting millisecond pulsar Swift J1756.9-2508
NASA Astrophysics Data System (ADS)
Bult, P. M.; Gendreau, K. C.; Ray, P. S.; Altamirano, D.; Arzoumanian, Z.; Strohmayer, T. E.; Homan, J.; Chakrabarty, D.
2018-04-01
The accreting millisecond X-ray pulsar Swift J1756.9-2508 has been in outburst since 2018 April 1 (ATel #11497, #11502, #11505, #11523, #11566) and has been subject to regular monitoring with NICER (ATel #11502).
Binary and Millisecond Pulsars.
Lorimer, Duncan R
2005-01-01
We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5. Supplementary material is available for this article at 10.12942/lrr-2005-7.
Detection of high-energy gamma-ray emission from the globular cluster 47 Tucanae with Fermi.
Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Horan, D; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Wang, P; Webb, N; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M
2009-08-14
We report the detection of gamma-ray emissions above 200 megaelectron volts at a significance level of 17sigma from the globular cluster 47 Tucanae, using data obtained with the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. Globular clusters are expected to emit gamma rays because of the large populations of millisecond pulsars that they contain. The spectral shape of 47 Tucanae is consistent with gamma-ray emission from a population of millisecond pulsars. The observed gamma-ray luminosity implies an upper limit of 60 millisecond pulsars present in 47 Tucanae.
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
On some limitations on temporal resolution in imaging subpicosecond photoelectronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shchelev, M Ya; Andreev, S V; Degtyareva, V P
2015-05-31
Numerical modelling is used to analyse some effects restricting the enhancement of temporal resolution into the area better than 100 fs in streak image tubes and photoelectron guns. A particular attention is paid to broadening of an electron bunch as a result of Coulomb interaction. Possible ways to overcome the limitations under consideration are discussed. (extreme light fields and their applications)
2010-04-01
Methodological Results / Details ................................................ 24 4.1.3.1 Clock Synchronization , Network & Temporal Resolution...xii DRDC Atlantic CR 2010-058 Acknowledgements Special thanks to Carl Helmick, Patti Devlin, Mike Taber, and the Dalhousie lab...Methodological Results / Details 4.1.3.1 Clock Synchronization , Network & Temporal Resolution Due to drift in computer clock times, especially laptop
Prieto, Claudia; Uribe, Sergio; Razavi, Reza; Atkinson, David; Schaeffter, Tobias
2010-08-01
One of the current limitations of dynamic contrast-enhanced MR angiography is the requirement of both high spatial and high temporal resolution. Several undersampling techniques have been proposed to overcome this problem. However, in most of these methods the tradeoff between spatial and temporal resolution is constant for all the time frames and needs to be specified prior to data collection. This is not optimal for dynamic contrast-enhanced MR angiography where the dynamics of the process are difficult to predict and the image quality requirements are changing during the bolus passage. Here, we propose a new highly undersampled approach that allows the retrospective adaptation of the spatial and temporal resolution. The method combines a three-dimensional radial phase encoding trajectory with the golden angle profile order and non-Cartesian Sensitivity Encoding (SENSE) reconstruction. Different regularization images, obtained from the same acquired data, are used to stabilize the non-Cartesian SENSE reconstruction for the different phases of the bolus passage. The feasibility of the proposed method was demonstrated on a numerical phantom and in three-dimensional intracranial dynamic contrast-enhanced MR angiography of healthy volunteers. The acquired data were reconstructed retrospectively with temporal resolutions from 1.2 sec to 8.1 sec, providing a good depiction of small vessels, as well as distinction of different temporal phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Gourab, E-mail: gourab@tifr.res.in; Singh, Prashant Kumar; Adak, Amitava
A pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally incident time-delayed probe pulse reflected from its critical surface undergoes a change in its ellipticity according to the magneto-optic Cotton-Mouton effect due to the azimuthal nature of the ambient self-generated megagauss magnetic fields. The temporal resolution of the magnetic field mapping is typically of the order of the pulsewidth, limited by the laser intensity contrast, whereas a spatial resolution of a few μm is achieved by this optical technique. High-harmonics of themore » probe can be employed to penetrate deeper into the plasma to even near-solid densities. The spatial and temporal evolution of the megagauss magnetic fields at the target front as well as at the target rear are presented. The μm-scale resolution of the magnetic field mapping provides valuable information on the filamentary instabilities at the target front, whereas probing the target rear mirrors the highly complex fast electron transport in intense laser-plasma interactions.« less
Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers
Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry
2016-01-01
Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach. PMID:26984634
Guo, Jia; Buxton, Richard B.; Wong, Eric C.
2015-01-01
Purpose In pulsed arterial spin labeling (PASL) methods, arterial blood is labeled via inverting a slab with uniform thickness, resulting in different temporal widths of boluses in vessels with different flow velocities. This limits the temporal resolution and signal-to-noise ratio (SNR) efficiency gains in PASL-based methods intended for high temporal resolution and SNR efficiency, such as Turbo-ASL and Turbo-QUASAR. Theory and Methods A novel wedge-shaped (WS) adiabatic inversion pulse is developed by adding in-plane gradient pulses to a slice-selective (SS) adiabatic inversion pulse to linearly modulate the inversion thicknesses at different locations while maintaining the adiabatic properties of the original pulse. A hyperbolic secant (HS) based WS inversion pulse was implemented. Its performance was tested in simulations, phantom and human experiments, and compared to an SS HS inversion pulse. Results Compared to the SS inversion pulse, the WS inversion pulse is capable of inducing different inversion thicknesses at different locations. It can be adjusted to generate a uniform temporal width of boluses in arteries at locations with different flow velocities. Conclusion The WS inversion pulse can be used to control the temporal widths of labeled boluses in PASL experiments. This should benefit PASL experiments by maximizing labeling duty cycle, and improving temporal resolution and SNR efficiency. PMID:26451521
NASA Astrophysics Data System (ADS)
Wiese, D. N.; McCullough, C. M.
2017-12-01
Studies have shown that both single pair low-low satellite-to-satellite tracking (LL-SST) and dual-pair LL-SST hypothetical future satellite gravimetry missions utilizing improved onboard measurement systems relative to the Gravity Recovery and Climate Experiment (GRACE) will be limited by temporal aliasing errors; that is, the error introduced through deficiencies in models of high frequency mass variations required for the data processing. Here, we probe the spatio-temporal characteristics of temporal aliasing errors to understand their impact on satellite gravity retrievals using high fidelity numerical simulations. We find that while aliasing errors are dominant at long wavelengths and multi-day timescales, improving knowledge of high frequency mass variations at these resolutions translates into only modest improvements (i.e. spatial resolution/accuracy) in the ability to measure temporal gravity variations at monthly timescales. This result highlights the reliance on accurate models of high frequency mass variations for gravity processing, and the difficult nature of reducing temporal aliasing errors and their impact on satellite gravity retrievals.
Gowers, S. A. N.; Hamaoui, K.; Cunnea, P.; Anastasova, S.; Curto, V. F.; Vadgama, P.; Yang, G.-Z.; Papalois, V.; Drakakis, E. M.; Fotopoulou, C.; Weber, S. G.
2018-01-01
This paper presents the use of tubing to store clinical microdialysis samples for delayed analysis with high temporal resolution, offering an alternative to traditional discrete offline microdialysis sampling. Samples stored in this way were found to be stable for up to 72 days at –80 °C. Examples of how this methodology can be applied to glucose and lactate measurement in a wide range of in vivo monitoring experiments are presented. This paper presents a general model, which allows for an informed choice of tubing parameters for a given storage time and flow rate avoiding high back pressure, which would otherwise cause the microdialysis probe to leak, while maximising temporal resolution. PMID:29336454
Holcombe, Alex O; Chen, Wei-Ying
2013-01-09
Overall performance when tracking moving targets is known to be poorer for larger numbers of targets, but the specific effect on tracking's temporal resolution has never been investigated. We document a broad range of display parameters for which visual tracking is limited by temporal frequency (the interval between when a target is at each location and a distracter moves in and replaces it) rather than by object speed. We tested tracking of one, two, and three moving targets while the eyes remained fixed. Variation of the number of distracters and their speed revealed both speed limits and temporal frequency limits on tracking. The temporal frequency limit fell from 7 Hz with one target to 4 Hz with two targets and 2.6 Hz with three targets. The large size of this performance decrease implies that in the two-target condition participants would have done better by tracking only one of the two targets and ignoring the other. These effects are predicted by serial models involving a single tracking focus that must switch among the targets, sampling the position of only one target at a time. If parallel processing theories are to explain why dividing the tracking resource reduces temporal resolution so markedly, supplemental assumptions will be required.
Experimental flat-panel high-spatial-resolution volume CT of the temporal bone.
Gupta, Rajiv; Bartling, Soenke H; Basu, Samit K; Ross, William R; Becker, Hartmut; Pfoh, Armin; Brady, Thomas; Curtin, Hugh D
2004-09-01
A CT scanner employing a digital flat-panel detector is capable of very high spatial resolution as compared with a multi-section CT (MSCT) scanner. Our purpose was to determine how well a prototypical volume CT (VCT) scanner with a flat-panel detector system defines fine structures in temporal bone. Four partially manipulated temporal-bone specimens were imaged by use of a prototypical cone-beam VCT scanner with a flat-panel detector system at an isometric resolution of 150 microm at the isocenter. These specimens were also depicted by state-of-the-art multisection CT (MSCT). Forty-two structures imaged by both scanners were qualitatively assessed and rated, and scores assigned to VCT findings were compared with those of MSCT. Qualitative assessment of anatomic structures, lesions, cochlear implants, and middle-ear hearing aids indicated that image quality was significantly better with VCT (P < .001). Structures near the spatial-resolution limit of MSCT (e.g., bony covering of the tympanic segment of the facial canal, the incudo-stapedial joint, the proximal vestibular aqueduct, the interscalar septum, and the modiolus) had higher contrast and less partial-volume effect with VCT. The flat-panel prototype provides better definition of fine osseous structures of temporal bone than that of currently available MSCT scanners. This study provides impetus for further research in increasing spatial resolution beyond that offered by the current state-of-the-art scanners.
Chang, Chun-Hui
2017-07-01
The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017. Published by Oxford University Press on behalf of CINP.
All-optical framing photography based on hyperspectral imaging method
NASA Astrophysics Data System (ADS)
Liu, Shouxian; Li, Yu; Li, Zeren; Chen, Guanghua; Peng, Qixian; Lei, Jiangbo; Liu, Jun; Yuan, Shuyun
2017-02-01
We propose and experimentally demonstrate a new all optical-framing photography that uses hyperspectral imaging methods to record a chirped pulse's temporal-spatial information. This proposed method consists of three parts: (1) a chirped laser pulse encodes temporal phenomena onto wavelengths; (2) a lenslet array generates a series of integral pupil images;(3) a dispersive device disperses the integral images at void space of image sensor. Compared with Ultrafast All-Optical Framing Technology(Daniel Frayer,2013,2014) and Sequentially Time All-Optical Mapping Photography( Nakagawa 2014, 2015), our method is convenient to adjust the temporal resolution and to flexibly increase the numbers of frames. Theoretically, the temporal resolution of our scheme is limited by the amount of dispersion that is added to a Fourier transform limited femtosecond laser pulse. Correspondingly, the optimal number of frames is decided by the ratio of the observational time window to the temporal resolution, and the effective pixels of each frame are mostly limited by the dimensions M×N of the lenslet array. For example, if a 40fs Fourier transform limited femtosecond pulse is stretched to 10ps, a CCD camera with 2048×3072 pixels can record 15 framing images with temporal resolution of 650fs and image size of 100×100 pixels. As spectrometer structure, our recording part has another advantage that not only amplitude images but also frequency domain interferograms can be imaged. Therefore, it is comparatively easy to capture fast dynamics in the refractive index change of materials. A further dynamic experiment is being conducted.
NASA Astrophysics Data System (ADS)
Hendrickx, J. M. H.; Allen, R. G.; Myint, S. W.; Ogden, F. L.
2015-12-01
Large scale mapping of evapotranspiration and root zone soil moisture is only possible when satellite images are used. The spatial resolution of this imagery typically depends on its temporal resolution or the satellite overpass time. For example, the Landsat satellite acquires images at 30 m resolution every 16 days while the MODIS satellite acquires images at 250 m resolution every day. In this study we deal with optical/thermal imagery that is impacted by cloudiness contrary to radar imagery that penetrates through clouds. Due to cloudiness, the temporal resolution of Landsat drops from 16 days to about one clear sky Landsat image per month in the southwestern USA and about one every ten years in the humid tropics of Panama. Only by launching additional satellites can the temporal resolution be improved. Since this is too costly, an alternative is found by using ground measurements with high temporal resolution (from minutes to days) but poor spatial resolution. The challenge for large-scale evapotranspiration and root zone soil moisture mapping is to construct a layer stack consisting of N time layers covering the period of interest each containing M pixels covering the region of interest. We will present examples of the Phoenix Active Management Area in AZ (14,600 km2), Green River Basin in WY (44,000 km2), the Kishwaukee Watershed in IL (3,150 km2), the area covered by Landsat Path 28/Row 35 in OK (30,000 km2) and the Agua Salud Watershed in Panama (200 km2). In these regions we used Landsat or MODIS imagery for mapping evapotranspiration and root zone soil moisture by the algorithm Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) together with meteorological measurements and sometimes either Large Aperture Scintillometers (LAS) or Eddy Covariance (EC). We conclude with lessons learned for future large-scale hydrological studies.
Femtosecond gas phase electron diffraction with MeV electrons.
Yang, Jie; Guehr, Markus; Vecchione, Theodore; Robinson, Matthew S; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin
2016-12-16
We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.
Mentoring Temporal and Spatial Variations in Rainfall across Wadi Ar-Rumah, Saudi Arabia
NASA Astrophysics Data System (ADS)
Alharbi, T.; Ahmed, M.
2015-12-01
Across the Kingdom of Saudi Arabia (KSA), the fresh water resources are limited only to those found in aquifer systems. Those aquifers were believed to be recharged during the previous wet climatic period but still receiving modest local recharge in interleaving dry periods such as those prevailing at present. Quantifying temporal and spatial variabilities in rainfall patterns, magnitudes, durations, and frequencies is of prime importance when it comes to sustainable management of such aquifer systems. In this study, an integrated approach, using remote sensing and field data, was used to assess the past, the current, and the projected spatial and temporal variations in rainfall over one of the major watersheds in KSA, Wadi Ar-Rumah. This watershed was selected given its larger areal extent and population intensity. Rainfall data were extracted from (1) the Climate Prediction Centers (CPC) Merged Analysis of Precipitation (CMAP; spatial coverage: global; spatial resolution: 2.5° × 2.5°; temporal coverage: January 1979 to April 2015; temporal resolution: monthly), and (2) the Tropical Rainfall Measuring Mission (TRMM; spatial coverage: 50°N to 50°S; spatial resolution: 0.25° × 0.25°; temporal coverage: January 1998 to March 2015; temporal resolution: 3 hours) and calibrated against rainfall measurements extracted from rain gauges. Trends in rainfall patterns were examined over four main investigation periods: period I (01/1979 to 12/1985), period II (01/1986 to 12/1992), period III (01/1993 to 12/2002), and period IV (01/2003 to 12/2014). Our findings indicate: (1) a significant increase (+14.19 mm/yr) in rainfall rates were observed during period I, (2) a significant decrease in rainfall rates were observed during periods II (-5.80 mm/yr), III (-9.38 mm/yr), and IV (-2.46 mm/yr), and (3) the observed variations in rainfall rates are largely related to the temporal variations in the northerlies (also called northwesterlies) and the monsoonal wind regimes.
Identification and characterization of agro-ecological infrastructures by remote sensing
NASA Astrophysics Data System (ADS)
Ducrot, D.; Duthoit, S.; d'Abzac, A.; Marais-Sicre, C.; Chéret, V.; Sausse, C.
2015-10-01
Agro-Ecological Infrastructures (AEIs) include many semi-natural habitats (hedgerows, grass strips, grasslands, thickets…) and play a key role in biodiversity preservation, water quality and erosion control. Indirect biodiversity indicators based on AEISs are used in many national and European public policies to analyze ecological processes. The identification of these landscape features is difficult and expensive and limits their use. Remote sensing has a great potential to solve this problem. In this study, we propose an operational tool for the identification and characterization of AEISs. The method is based on segmentation, contextual classification and fusion of temporal classifications. Experiments were carried out on various temporal and spatial resolution satellite data (20-m, 10-m, 5-m, 2.5-m, 50-cm), on three French regions southwest landscape (hilly, plain, wooded, cultivated), north (open-field) and Brittany (farmland closed by hedges). The results give a good idea of the potential of remote sensing image processing methods to map fine agro-ecological objects. At 20-m spatial resolution, only larger hedgerows and riparian forests are apparent. Classification results show that 10-m resolution is well suited for agricultural and AEIs applications, most hedges, forest edges, thickets can be detected. Results highlight the multi-temporal data importance. The future Sentinel satellites with a very high temporal resolution and a 10-m spatial resolution should be an answer to AEIs detection. 2.50-m resolution is more precise with more details. But treatments are more complicated. At 50-cm resolution, accuracy level of details is even higher; this amplifies the difficulties previously reported. The results obtained allow calculation of statistics and metrics describing landscape structures.
Influence of Gridded Standoff Measurement Resolution on Numerical Bathymetric Inversion
NASA Astrophysics Data System (ADS)
Hesser, T.; Farthing, M. W.; Brodie, K.
2016-02-01
The bathymetry from the surfzone to the shoreline incurs frequent, active movement due to wave energy interacting with the seafloor. Methodologies to measure bathymetry range from point-source in-situ instruments, vessel-mounted single-beam or multi-beam sonar surveys, airborne bathymetric lidar, as well as inversion techniques from standoff measurements of wave processes from video or radar imagery. Each type of measurement has unique sources of error and spatial and temporal resolution and availability. Numerical bathymetry estimation frameworks can use these disparate data types in combination with model-based inversion techniques to produce a "best-estimate of bathymetry" at a given time. Understanding how the sources of error and varying spatial or temporal resolution of each data type affect the end result is critical for determining best practices and in turn increase the accuracy of bathymetry estimation techniques. In this work, we consider an initial step in the development of a complete framework for estimating bathymetry in the nearshore by focusing on gridded standoff measurements and in-situ point observations in model-based inversion at the U.S. Army Corps of Engineers Field Research Facility in Duck, NC. The standoff measurement methods return wave parameters computed using linear wave theory from the direct measurements. These gridded datasets can range in temporal and spatial resolution that do not match the desired model parameters and therefore could lead to a reduction in the accuracy of these methods. Specifically, we investigate the affect of numerical resolution on the accuracy of an Ensemble Kalman Filter bathymetric inversion technique in relation to the spatial and temporal resolution of the gridded standoff measurements. The accuracies of the bathymetric estimates are compared with both high-resolution Real Time Kinematic (RTK) single-beam surveys as well as alternative direct in-situ measurements using sonic altimeters.
Temporal processing asymmetries between the cerebral hemispheres: evidence and implications.
Nicholls, M E
1996-07-01
This paper reviews a large body of research which has investigated the capacities of the cerebral hemispheres to process temporal information. This research includes clinical, non-clinical, and electrophysiological experimentation. On the whole, the research supports the notion of a left hemisphere advantage for temporal resolution. The existence of such an asymmetry demonstrates that cerebral lateralisation is not limited to the higher-order functions such as language. The capacity for the resolution of fine temporal events appears to play an important role in other left hemisphere functions which require a rapid sequential processor. The functions that are facilitated by such a processor include verbal, textual, and fine movement skills. The co-development of these functions with an efficient temporal processor can be accounted for with reference to a number of evolutionary scenarios. Physiological evidence favours a temporal processing mechanism located within the left temporal cortex. The function of this mechanism may be described in terms of intermittency or travelling moment models of temporal processing. The travelling moment model provides the most plausible account of the asymmetry.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.
NASA Astrophysics Data System (ADS)
Yamana, Teresa K.; Eltahir, Elfatih A. B.
2011-02-01
This paper describes the use of satellite-based estimates of rainfall to force the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a hydrology-based mechanistic model of malaria transmission. We first examined the temporal resolution of rainfall input required by HYDREMATS. Simulations conducted over Banizoumbou village in Niger showed that for reasonably accurate simulation of mosquito populations, the model requires rainfall data with at least 1 h resolution. We then investigated whether HYDREMATS could be effectively forced by satellite-based estimates of rainfall instead of ground-based observations. The Climate Prediction Center morphing technique (CMORPH) precipitation estimates distributed by the National Oceanic and Atmospheric Administration are available at a 30 min temporal resolution and 8 km spatial resolution. We compared mosquito populations simulated by HYDREMATS when the model is forced by adjusted CMORPH estimates and by ground observations. The results demonstrate that adjusted rainfall estimates from satellites can be used with a mechanistic model to accurately simulate the dynamics of mosquito populations.
Femtosecond MeV Electron Energy-Loss Spectroscopy
Li, R. K.; Wang, X. J.
2017-11-09
Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. Here in this article, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the “referencebeam technique” relaxes the energy stability requirement of themore » rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving subelectron- volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.« less
Femtosecond MeV Electron Energy-Loss Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, R. K.; Wang, X. J.
Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. Here in this article, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the “referencebeam technique” relaxes the energy stability requirement of themore » rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving subelectron- volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.« less
ERIC Educational Resources Information Center
Oztekin, Ilke; Curtis, Clayton E.; McElree, Brian
2009-01-01
During working memory retrieval, proactive interference (PI) can be induced by semantic similarity and episodic familiarity. Here, we used fMRI to test hypotheses about the role of the left inferior frontal gyrus (LIFG) and the medial temporal lobe (MTL) regions in successful resolution of PI. Participants studied six-word lists and responded to a…
Developmental Modulation of the Temporal Relationship Between Brain and Behavior
Crandall, Shane R.; Aoki, Naoya; Nick, Teresa A.
2008-01-01
Humans and songbirds shape learned vocalizations during a sensorimotor sensitive period or “babbling” phase. The brain mechanisms that underlie the shaping of vocalizations by sensory feedback are not known. We examined song behavior and brain activity in zebra finches during singing as they actively shaped their song toward a tutor model. We now show that the temporal relationship of behavior and activity in the premotor area HVC changes with the development of song behavior. During sensorimotor learning, HVC bursting activity both preceded and followed learned vocalizations by hundreds of milliseconds. Correspondingly, the duration of bursts that occurred during ongoing song motif behavior was prolonged in juveniles, as compared with adults, and was inversely correlated with song maturation. Multielectrode single-unit recording in juveniles revealed that single fast-spiking neurons were active both before and after vocalization. These same neurons responded to auditory stimuli. Collectively, these data indicate that a key aspect of sensory critical periods—prolonged bursting—also applies to sensorimotor development. In addition, prolonged motor discharge and sensory input coincide in single neurons of the developing song system, providing the necessary cellular elements for sensorimotor shaping through activity-dependent mechanisms. PMID:17079340
Correlated microtiming deviations in jazz and rock music.
Sogorski, Mathias; Geisel, Theo; Priesemann, Viola
2018-01-01
Musical rhythms performed by humans typically show temporal fluctuations. While they have been characterized in simple rhythmic tasks, it is an open question what is the nature of temporal fluctuations, when several musicians perform music jointly in all its natural complexity. To study such fluctuations in over 100 original jazz and rock/pop recordings played with and without metronome we developed a semi-automated workflow allowing the extraction of cymbal beat onsets with millisecond precision. Analyzing the inter-beat interval (IBI) time series revealed evidence for two long-range correlated processes characterized by power laws in the IBI power spectral densities. One process dominates on short timescales (t < 8 beats) and reflects microtiming variability in the generation of single beats. The other dominates on longer timescales and reflects slow tempo variations. Whereas the latter did not show differences between musical genres (jazz vs. rock/pop), the process on short timescales showed higher variability for jazz recordings, indicating that jazz makes stronger use of microtiming fluctuations within a measure than rock/pop. Our results elucidate principles of rhythmic performance and can inspire algorithms for artificial music generation. By studying microtiming fluctuations in original music recordings, we bridge the gap between minimalistic tapping paradigms and expressive rhythmic performances.
The First Call Note Plays a Crucial Role in Frog Vocal Communication.
Yue, Xizi; Fan, Yanzhu; Xue, Fei; Brauth, Steven E; Tang, Yezhong; Fang, Guangzhan
2017-08-31
Vocal Communication plays a crucial role in survival and reproductive success in most amphibian species. Although amphibian communication sounds are often complex consisting of many temporal features, we know little about the biological significance of each temporal component. The present study examined the biological significance of notes of the male advertisement calls of the Emei music frog (Babina daunchina) using the optimized electroencephalogram (EEG) paradigm of mismatch negativity (MMN). Music frog calls generally contain four to six notes separated approximately by 150 millisecond intervals. A standard stimulus (white noise) and five deviant stimuli (five notes from one advertisement call) were played back to each subject while simultaneously recording multi-channel EEG signals. The results showed that the MMN amplitude for the first call note was significantly larger than for that of the others. Moreover, the MMN amplitudes evoked from the left forebrain and midbrain were typically larger than those from the right counterpart. These results are consistent with the ideas that the first call note conveys more information than the others for auditory recognition and that there is left-hemisphere dominance for processing information derived from conspecific calls in frogs.
A practical method of predicting the loudness of complex electrical stimuli
NASA Astrophysics Data System (ADS)
McKay, Colette M.; Henshall, Katherine R.; Farrell, Rebecca J.; McDermott, Hugh J.
2003-04-01
The output of speech processors for multiple-electrode cochlear implants consists of current waveforms with complex temporal and spatial patterns. The majority of existing processors output sequential biphasic current pulses. This paper describes a practical method of calculating loudness estimates for such stimuli, in addition to the relative loudness contributions from different cochlear regions. The method can be used either to manipulate the loudness or levels in existing processing strategies, or to control intensity cues in novel sound processing strategies. The method is based on a loudness model described by McKay et al. [J. Acoust. Soc. Am. 110, 1514-1524 (2001)] with the addition of the simplifying approximation that current pulses falling within a temporal integration window of several milliseconds' duration contribute independently to the overall loudness of the stimulus. Three experiments were carried out with six implantees who use the CI24M device manufactured by Cochlear Ltd. The first experiment validated the simplifying assumption, and allowed loudness growth functions to be calculated for use in the loudness prediction method. The following experiments confirmed the accuracy of the method using multiple-electrode stimuli with various patterns of electrode locations and current levels.
Daitch, Amy L.; Foster, Brett L.; Schrouff, Jessica; Rangarajan, Vinitha; Kaşikçi, Itır; Gattas, Sandra; Parvizi, Josef
2016-01-01
Brain areas within the lateral parietal cortex (LPC) and ventral temporal cortex (VTC) have been shown to code for abstract quantity representations and for symbolic numerical representations, respectively. To explore the fast dynamics of activity within each region and the interaction between them, we used electrocorticography recordings from 16 neurosurgical subjects implanted with grids of electrodes over these two regions and tracked the activity within and between the regions as subjects performed three different numerical tasks. Although our results reconfirm the presence of math-selective hubs within the VTC and LPC, we report here a remarkable heterogeneity of neural responses within each region at both millimeter and millisecond scales. Moreover, we show that the heterogeneity of response profiles within each hub mirrors the distinct patterns of functional coupling between them. Our results support the existence of multiple bidirectional functional loops operating between discrete populations of neurons within the VTC and LPC during the visual processing of numerals and the performance of arithmetic functions. These findings reveal information about the dynamics of numerical processing in the brain and also provide insight into the fine-grained functional architecture and connectivity within the human brain. PMID:27821758
Evaluating dedicated and intrinsic models of temporal encoding by varying context
Spencer, Rebecca M.C.; Karmarkar, Uma; Ivry, Richard B.
2009-01-01
Two general classes of models have been proposed to account for how people process temporal information in the milliseconds range. Dedicated models entail a mechanism in which time is explicitly encoded; examples include clock–counter models and functional delay lines. Intrinsic models, such as state-dependent networks (SDN), represent time as an emergent property of the dynamics of neural processing. An important property of SDN is that the encoding of duration is context dependent since the representation of an interval will vary as a function of the initial state of the network. Consistent with this assumption, duration discrimination thresholds for auditory intervals spanning 100 ms are elevated when an irrelevant tone is presented at varying times prior to the onset of the test interval. We revisit this effect in two experiments, considering attentional issues that may also produce such context effects. The disruptive effect of a variable context was eliminated or attenuated when the intervals between the irrelevant tone and test interval were made dissimilar or the duration of the test interval was increased to 300 ms. These results indicate how attentional processes can influence the perception of brief intervals, as well as point to important constraints for SDN models. PMID:19487188
Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains.
Onken, Arno; Liu, Jian K; Karunasekara, P P Chamanthi R; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano
2016-11-01
Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding.
Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains
Onken, Arno; Liu, Jian K.; Karunasekara, P. P. Chamanthi R.; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano
2016-01-01
Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding. PMID:27814363
Nature and evolution of the eclipsing millisecond binary pulsar PSR1957 + 20
NASA Technical Reports Server (NTRS)
Kluzniak, W.; Ruderman, M.; Shaham, J.; Tavani, M.
1988-01-01
A model in which a millisecond pulsar may be able to evaporate a very light companion by a particular component of its energetic radiation is applied to the recently discovered 1.6-ms pulsar PSR1957 + 20. Pulsar turn-on in the very low-mass X-ray binary follows a stage of mass transfer dominated by an evaporative wind from the surface of the companion. The wind is driven by a large MeV gamma-ray flux powered by an accretion dynamo. That source of radiation ceases when it is replaced by that from the millisecond pulsar, which has been spun up by accretion.
NASA Astrophysics Data System (ADS)
Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.
2018-03-01
Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.
NASA Astrophysics Data System (ADS)
Hutter, Nils; Losch, Martin; Menemenlis, Dimitris
2017-04-01
Sea ice models with the traditional viscous-plastic (VP) rheology and very high grid resolution can resolve leads and deformation rates that are localised along Linear Kinematic Features (LKF). In a 1-km pan-Arctic sea ice-ocean simulation, the small scale sea-ice deformations in the Central Arctic are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS). A new coupled scaling analysis for data on Eulerian grids determines the spatial and the temporal scaling as well as the coupling between temporal and spatial scales. The spatial scaling of the modelled sea ice deformation implies multi-fractality. The spatial scaling is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling and its coupling to temporal scales with satellite observations and models with the modern elasto-brittle rheology challenges previous results with VP models at coarse resolution where no such scaling was found. The temporal scaling analysis, however, shows that the VP model does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.
Ronacher, Bernhard; Wohlgemuth, Sandra; Vogel, Astrid; Krahe, Rüdiger
2008-08-01
A characteristic feature of hearing systems is their ability to resolve both fast and subtle amplitude modulations of acoustic signals. This applies also to grasshoppers, which for mate identification rely mainly on the characteristic temporal patterns of their communication signals. Usually the signals arriving at a receiver are contaminated by various kinds of noise. In addition to extrinsic noise, intrinsic noise caused by stochastic processes within the nervous system contributes to making signal recognition a difficult task. The authors asked to what degree intrinsic noise affects temporal resolution and, particularly, the discrimination of similar acoustic signals. This study aims at exploring the neuronal basis for sexual selection, which depends on exploiting subtle differences between basically similar signals. Applying a metric, by which the similarities of spike trains can be assessed, the authors investigated how well the communication signals of different individuals of the same species could be discriminated and correctly classified based on the responses of auditory neurons. This spike train metric yields clues to the optimal temporal resolution with which spike trains should be evaluated. (c) 2008 APA, all rights reserved
Wu, Mingquan; Li, Hua; Huang, Wenjiang; Niu, Zheng; Wang, Changyao
2015-08-01
There is a shortage of daily high spatial land surface temperature (LST) data for use in high spatial and temporal resolution environmental process monitoring. To address this shortage, this work used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to evaluate the precision of the combined LST images using the correlation analysis method. This method was tested and validated in study areas located in Gansu Province, China. The results show that all the models can generate daily synthetic LST image with a high correlation coefficient (r) of 0.92 between the synthetic image and the actual ASTER LST observations. The ESTARFM has the best performance, followed by the STDFA and the STARFM. Those models had better performance in desert areas than in cropland. The STDFA had better noise immunity than the other two models.
Chen, Jiageng; Liu, Qingwen; He, Zuyuan
2017-09-04
We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.
Mining and Integration of Environmental Data
NASA Astrophysics Data System (ADS)
Tran, V.; Hluchy, L.; Habala, O.; Ciglan, M.
2009-04-01
The project ADMIRE (Advanced Data Mining and Integration Research for Europe) is a 7th FP EU ICT project aims to deliver a consistent and easy-to-use technology for extracting information and knowledge. The project is motivated by the difficulty of extracting meaningful information by data mining combinations of data from multiple heterogeneous and distributed resources. It will also provide an abstract view of data mining and integration, which will give users and developers the power to cope with complexity and heterogeneity of services, data and processes. The data sets describing phenomena from domains like business, society, and environment often contain spatial and temporal dimensions. Integration of spatio-temporal data from different sources is a challenging task due to those dimensions. Different spatio-temporal data sets contain data at different resolutions (e.g. size of the spatial grid) and frequencies. This heterogeneity is the principal challenge of geo-spatial and temporal data sets integration - the integrated data set should hold homogeneous data of the same resolution and frequency. Thus, to integrate heterogeneous spatio-temporal data from distinct source, transformation of one or more data sets is necessary. Following transformation operation are required: • transformation to common spatial and temporal representation - (e.g. transformation to common coordinate system), • spatial and/or temporal aggregation - data from detailed data source are aggregated to match the resolution of other resources involved in the integration process, • spatial and/or temporal record decomposition - records from source with lower resolution data are decomposed to match the granularity of the other data source. This operation decreases data quality (e.g. transformation of data from 50km grid to 10 km grid) - data from lower resolution data set in the integrated schema are imprecise, but it allows us to preserve higher resolution data. We can decompose the spatio-temporal data integration to following phases: • pre-integration data processing - different data set can be physically stored in different formats (e.g. relational databases, text files); it might be necessary to pre-process the data sets to be integrated, • identification of transformation operations necessary to integrate data in spatio-temporal dimensions, • identification of transformation operations to be performed on non-spatio-temporal attributes and • output data schema and set generation - given prepared data and the set of transformation, operations, the final integrated schema is produces. Spatio-temporal dimension brings its specifics also to the problem of mining spatio-temporal data sets. Spatio-temporal relationships exist among records in (s-t) data sets and those relationships should be considered in mining operation. This means that when analyzing a record in spatio-temporal data set, the records in its spatial and/or temporal proximity should be taken into account. In addition, the relationships discovered in spatio-temporal data can be different when mining the same data on different scales (e.g. mining the same data sets on 50 km grid with daily data vs. 10 km grid with hourly data). To be able to do effective data mining, we first needed to gather a sufficient amount of environmental data covering similar area and time span. For this purpose we have engaged in cooperation with several organizations working in the environmental domain in Slovakia, some of which are also our partners from previous research efforts. The organizations which volunteered some of their data are the Slovak Hydro-meteorological Institute (SHMU), the Slovak Water Enterprise (SVP), the Soil Science and Conservation Institute (VUPOP), and the Institute of Hydrology of the Slovak Academy of Sciences (UHSAV). We have prepared scenarios from general meteorology, as well as specialized in hydrology and soil protection.
Temporal and spatial scaling impacts on extreme precipitation
NASA Astrophysics Data System (ADS)
Eggert, B.; Berg, P.; Haerter, J. O.; Jacob, D.; Moseley, C.
2015-01-01
Both in the current climate and in the light of climate change, understanding of the causes and risk of precipitation extremes is essential for protection of human life and adequate design of infrastructure. Precipitation extreme events depend qualitatively on the temporal and spatial scales at which they are measured, in part due to the distinct types of rain formation processes that dominate extremes at different scales. To capture these differences, we first filter large datasets of high-resolution radar measurements over Germany (5 min temporally and 1 km spatially) using synoptic cloud observations, to distinguish convective and stratiform rain events. In a second step, for each precipitation type, the observed data are aggregated over a sequence of time intervals and spatial areas. The resulting matrix allows a detailed investigation of the resolutions at which convective or stratiform events are expected to contribute most to the extremes. We analyze where the statistics of the two types differ and discuss at which resolutions transitions occur between dominance of either of the two precipitation types. We characterize the scales at which the convective or stratiform events will dominate the statistics. For both types, we further develop a mapping between pairs of spatially and temporally aggregated statistics. The resulting curve is relevant when deciding on data resolutions where statistical information in space and time is balanced. Our study may hence also serve as a practical guide for modelers, and for planning the space-time layout of measurement campaigns. We also describe a mapping between different pairs of resolutions, possibly relevant when working with mismatched model and observational resolutions, such as in statistical bias correction.
NASA Astrophysics Data System (ADS)
Akers, P. D.; Welker, J. M.
2015-12-01
Spatial variations in precipitation isotopes have been the focus of much recent research, but relatively less work has explored changes at various temporal scales. This is partly because most spatially-diverse and long-term isotope databases are offered at a monthly resolution, while daily or event-level records are spatially and temporally limited by cost and logistics. A subset of 25 United States Network for Isotopes in Precipitation (USNIP) sites with weekly-resolution in the east-central United States was analyzed for site-specific relationships between δ18O and δD (the local meteoric water line/LMWL), δ18O and surface temperature, and δ18O and precipitation amount. Weekly data were then aggregated into monthly and seasonal data to examine the effect of aggregation on correlation and slope values for each of the relationships. Generally, increasing aggregation improved correlations (>25% for some sites) due to a reduced effect of extreme values, but estimates on regression variable error increased (>100%) because of reduced sample sizes. Aggregation resulted in small, but significant drops (5-25%) in relationship slope values for some sites. Weekly data were also grouped by month and season to explore changes in relationships throughout the year. Significant subannual variability exists in slope values and correlations even for sites with very strong overall correlations. LMWL slopes are highest in winter and lowest in summer, while the δ18O-surface temperature relationship is strongest in spring. Despite these overall trends, a high level of month-to-month and season-to-season variability is the norm for these sites. Researchers blindly applying overall relationships drawn from monthly-resolved databases to paleoclimate or environmental research risk assuming these relationships apply at all temporal resolutions. When possible, researchers should match the temporal resolution used to calculate an isotopic relationship with the temporal resolution of their applied proxy.
Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.
Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C
2015-02-01
We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of <100 nm. In order to demonstrate the spatiotemporal magnetic imaging capability of this microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.
Wellmon, Robert
2012-01-01
Walking has been shown to be an attentionally demanding task. For older adults, gender-specific differences in gait and falling reported in the literature could arise as a result of the attentional demands of walking. However, differences in how older men and women allocate attention to walking have not been investigated. The purpose of this study was to use a dual-task voice reaction time paradigm to examine gender-specific differences in the attentional demands of walking in older adults who are independent in community ambulation. A dual-task paradigm was used to measure voice reaction time (VRT) in older community-dwelling men (n = 29; mean age = 78.40, SD = 6.17 years) and women (n = 33; mean age = 77.01, SD = 6.07 years) under 3 task conditions: sitting in a chair, standing, and walking on a level surface. Between- and within-group differences in dual-task VRT were examined using a 2 (men vs women) by 3 (task condition) repeated-measures analysis of variance. The level of statistical significance was set at 0.05, and a Bonferroni procedure was used for post hoc analyses. Sitting VRT was similar for men (mean = 454.90, SD = 140.05 milliseconds) and women (mean = 454.49, SD = 94.27 milliseconds). While standing, men had a slightly faster VRT (mean = 444.90, SD = 125.31 milliseconds vs mean = 452.09, SD = 92.82 milliseconds). When walking, VRT increased for both groups in comparison to sitting and standing and older men (mean = 509.11, SD = 142.19 milliseconds) responded faster than older women (mean = 537.55, SD = 122.43). However, the main effect of gender (P = .665) and interaction of gender with task (P = .433) were both not statistically significant. A statistically significant main effect for task (P < .001) indicated that walking VRT (mean = 524.25, SD = 131.71 milliseconds) was significantly longer than both sitting (P < .001, mean = 454.68, SD = 116.89 milliseconds) and standing (P < .001, mean = 448.36, SD = 108.37 milliseconds) VRT. The results demonstrate that the attentional demands of walking are not different for older adult men and women who are independent in community mobility. However, support was provided for the idea that walking is an attentionally demanding activity. In comparison with sitting and standing, walking was more attentionally demanding for both men and women. CONCLUSIONS.: A dual-task voice reaction time paradigm revealed that walking is not more attentionally demanding on the basis of gender when comparing community-dwelling older adult men with women.
Searching for flares in GALEX data with gPhoton
NASA Astrophysics Data System (ADS)
Million, Chase; Fleming, Scott W.; Brasseur, Clara; Osten, Rachel A.; Bianchi, Luciana; Shiao, Bernie
2017-06-01
The Galaxy Evolution Explorer (GALEX) spacecraft observed a large fraction of the sky in two ultraviolet bands using micro-channel plate detectors with time resolutions of less than ten milliseconds. The gPhoton database of calibrated GALEX photon events at MAST has recently enabled a thorough search of this legacy data set for astrophysical variability at cadences shorter than the orbital period of the spacecraft. (https://archive.stsci.edu/prepds/gphoton/) We explore techniques for mining photon-level data for variability on timescales of seconds to minutes with an emphasis on dwarf star flares, which can be probed at lower energies and shorter durations with gPhoton than prior surveys. We present the early results of a systematic search for such events.
An ultrashort mixing length micromixer: the shear superposition micromixer.
Bottausci, Frédéric; Cardonne, Caroline; Meinhart, Carl; Mezić, Igor
2007-03-01
We report for the first time a laminar high-performance continuous micromixing process of two fluids over a length of 200 microns in under 10 milliseconds achieved by an optimization of the control parameters amplitude and frequency in the mixing device denoted as 'Shear Superposition Micromixer'. We improve mixing time by approximately 5 orders of magnitude over diffusion-limited mixing. The data indicate that rapid mixing is a result of the combined action of Taylor-Aris dispersion in the main and secondary microchannels and unsteady vortex motion that occurs at finite Reynolds number, which occurs above a threshold amplitude and frequency. The mixing performance is quantified using micron-resolution particle image velocimetry (micro-PIV) and computational fluid dynamics (CFD) simulations.
High speed line-scan confocal imaging of stimulus-evoked intrinsic optical signals in the retina
Li, Yang-Guo; Liu, Lei; Amthor, Franklin; Yao, Xin-Cheng
2010-01-01
A rapid line-scan confocal imager was developed for functional imaging of the retina. In this imager, an acousto-optic deflector (AOD) was employed to produce mechanical vibration- and inertia-free light scanning, and a high-speed (68,000 Hz) linear CCD camera was used to achieve sub-cellular and sub-millisecond spatiotemporal resolution imaging. Two imaging modalities, i.e., frame-by-frame and line-by-line recording, were validated for reflected light detection of intrinsic optical signals (IOSs) in visible light stimulus activated frog retinas. Experimental results indicated that fast IOSs were tightly correlated with retinal stimuli, and could track visible light flicker stimulus frequency up to at least 2 Hz. PMID:20125743
Analysis of speech sounds is left-hemisphere predominant at 100-150ms after sound onset.
Rinne, T; Alho, K; Alku, P; Holi, M; Sinkkonen, J; Virtanen, J; Bertrand, O; Näätänen, R
1999-04-06
Hemispheric specialization of human speech processing has been found in brain imaging studies using fMRI and PET. Due to the restricted time resolution, these methods cannot, however, determine the stage of auditory processing at which this specialization first emerges. We used a dense electrode array covering the whole scalp to record the mismatch negativity (MMN), an event-related brain potential (ERP) automatically elicited by occasional changes in sounds, which ranged from non-phonetic (tones) to phonetic (vowels). MMN can be used to probe auditory central processing on a millisecond scale with no attention-dependent task requirements. Our results indicate that speech processing occurs predominantly in the left hemisphere at the early, pre-attentive level of auditory analysis.
Gravitational lensing of active galactic nuclei.
Hewitt, J N
1995-01-01
Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613
A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI)
NASA Astrophysics Data System (ADS)
Houborg, Rasmus; McCabe, Matthew F.; Gao, Feng
2016-05-01
Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77-0.94 compared to 0.01-0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0.86) over a range of plant development stages. Overall, STEM-LAI represents an effective downscaling and temporal enhancement mechanism that predicts in-situ measured LAI better than estimates derived through linear interpolation between Landsat acquisitions. This is particularly true when the in-situ measurement date is greater than 10 days from the nearest Landsat acquisition, with prediction errors reduced by up to 50%. With a streamlined and completely automated processing interface, STEM-LAI represents a flexible tool for LAI disaggregation in space and time that is adaptable to different land cover types, landscape heterogeneities, and cloud cover conditions.
NASA Astrophysics Data System (ADS)
Kim, Jongyoun; Hogue, Terri S.
2012-01-01
The current study investigates a method to provide land surface parameters [i.e., land surface temperature (LST) and normalized difference vegetation index (NDVI)] at a high spatial (˜30 and 60 m) and temporal (daily and 8-day) resolution by combining advantages from Landsat and moderate-resolution imaging spectroradiometer (MODIS) satellites. We adopt a previously developed subtraction method that merges the spatial detail of higher-resolution imagery (Landsat) with the temporal change observed in coarser or moderate-resolution imagery (MODIS). Applying the temporal difference between MODIS images observed at two different dates to a higher-resolution Landsat image allows prediction of a combined or fused image (Landsat+MODIS) at a future date. Evaluation of the resultant merged products is undertaken within the Southeastern Arizona region where data is available from a range of flux tower sites. The Landsat+MODIS fused products capture the raw Landsat values and also reflect the MODIS temporal variation. The predicted Landsat+MODIS LST improves mean absolute error around 5°C at the more heterogeneous sites compared to the original satellite products. The fused Landsat+MODIS NDVI product also shows good correlation to ground-based data and is relatively consistent except during the acute (monsoon) growing season. The sensitivity of the fused product relative to temporal gaps in Landsat data appears to be more affected by uncertainty associated with regional precipitation and green-up, than the length of the gap associated with Landsat viewing, suggesting the potential to use a minimal number of original Landsat images during relatively stable land surface and climate conditions. Our extensive validation yields insight on the ability of the proposed method to integrate multiscale platforms and the potential for reducing costs associated with high-resolution satellite systems (e.g., SPOT, QuickBird, IKONOS).
Tympanic plate fractures in temporal bone trauma: prevalence and associated injuries.
Wood, C P; Hunt, C H; Bergen, D C; Carlson, M L; Diehn, F E; Schwartz, K M; McKenzie, G A; Morreale, R F; Lane, J I
2014-01-01
The prevalence of tympanic plate fractures, which are associated with an increased risk of external auditory canal stenosis following temporal bone trauma, is unknown. A review of posttraumatic high-resolution CT temporal bone examinations was performed to determine the prevalence of tympanic plate fractures and to identify any associated temporal bone injuries. A retrospective review was performed to evaluate patients with head trauma who underwent emergent high-resolution CT examinations of the temporal bone from July 2006 to March 2012. Fractures were identified and assessed for orientation; involvement of the tympanic plate, scutum, bony labyrinth, facial nerve canal, and temporomandibular joint; and ossicular chain disruption. Thirty-nine patients (41.3 ± 17.2 years of age) had a total of 46 temporal bone fractures (7 bilateral). Tympanic plate fractures were identified in 27 (58.7%) of these 46 fractures. Ossicular disruption occurred in 17 (37.0%). Fractures involving the scutum occurred in 25 (54.4%). None of the 46 fractured temporal bones had a mandibular condyle dislocation or fracture. Of the 27 cases of tympanic plate fractures, 14 (51.8%) had ossicular disruption (P = .016) and 18 (66.6%) had a fracture of the scutum (P = .044). Temporomandibular joint gas was seen in 15 (33%) but was not statistically associated with tympanic plate fracture (P = .21). Tympanic plate fractures are commonly seen on high-resolution CT performed for evaluation of temporal bone trauma. It is important to recognize these fractures to avoid the preventable complication of external auditory canal stenosis and the potential for conductive hearing loss due to a fracture involving the scutum or ossicular chain.
NASA Astrophysics Data System (ADS)
Atencia, A.; Llasat, M. C.; Garrote, L.; Mediero, L.
2010-10-01
The performance of distributed hydrological models depends on the resolution, both spatial and temporal, of the rainfall surface data introduced. The estimation of quantitative precipitation from meteorological radar or satellite can improve hydrological model results, thanks to an indirect estimation at higher spatial and temporal resolution. In this work, composed radar data from a network of three C-band radars, with 6-minutal temporal and 2 × 2 km2 spatial resolution, provided by the Catalan Meteorological Service, is used to feed the RIBS distributed hydrological model. A Window Probability Matching Method (gage-adjustment method) is applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation in both convective and stratiform Z/R relations used over Catalonia. Once the rainfall field has been adequately obtained, an advection correction, based on cross-correlation between two consecutive images, was introduced to get several time resolutions from 1 min to 30 min. Each different resolution is treated as an independent event, resulting in a probable range of input rainfall data. This ensemble of rainfall data is used, together with other sources of uncertainty, such as the initial basin state or the accuracy of discharge measurements, to calibrate the RIBS model using probabilistic methodology. A sensitivity analysis of time resolutions was implemented by comparing the various results with real values from stream-flow measurement stations.
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2003-02-28] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2003-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2003-02-28] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2003-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2004-05-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
Constraints on millisecond magnetars as the engines of prompt emission in gamma-ray bursts
NASA Astrophysics Data System (ADS)
Beniamini, Paz; Giannios, Dimitrios; Metzger, Brian D.
2017-12-01
We examine millisecond magnetars as central engines of gamma-ray bursts' (GRBs) prompt emission. Using the protomagnetar wind model of Metzger et al., we estimate the temporal evolution of the magnetization and power injection at the base of the GRB jet and apply these to different prompt emission models to make predictions for the GRB energetics, spectra and light curves. We investigate both shock and magnetic reconnection models for the particle acceleration, as well as the effects of energy dissipation across optically thick and thin regions of the jet. The magnetization at the base of the jet, σ0, is the main parameter driving the GRB evolution in the magnetar model and the emission is typically released for 100 ≲σ0 ≲3000. Given the rapid increase in σ0 as the protomagnetar cools and its neutrino-driven mass loss subsides, the GRB duration is typically limited to ≲100 s. This low baryon loading at late times challenges magnetar models for ultralong GRBs, though black hole models likely run into similar difficulties without substantial entrainment from the jet walls. The maximum radiated gamma-ray energy is ≲5 × 1051 erg, significantly less than the magnetar's total initial rotational energy and in strong tension with the high end of the observed GRB energy distribution. However, the gradual magnetic dissipation model applied to a magnetar central engine, naturally explains several key observables of typical GRBs, including energetics, durations, stable peak energies, spectral slopes and a hard to soft evolution during the burst.
Fast Neuronal Imaging using Objective Coupled Planar Illumination Microscopy
NASA Astrophysics Data System (ADS)
Tarantino, Walter
Complex computations performed by the brain are produced by activities of neuronal populations. There is a large diversity in the functions of each individual neuron, and neuronal activities occur in the time scale of milliseconds. In order to gain a fundamental understanding of the neuronal populations, one has to measure activity of each neuron at high temporal resolution, while investigating enough neurons to encapsulate the neuronal diversity. Traditional neurotechniques such as electrophysiology and optical imaging are constrained by the number of neurons whose activities can be simultaneously measured or the speed of measuring such activities. We have developed a novel light-sheet based technique called Objective Coupled Planar Illumination (OCPI) microscopy which is capable of measuring simultaneous activities of thousands of neurons at high speeds. In this thesis I pursue the following two aims: · Improve OCPI microscopy by enhancing the spatial resolution deeper in tissue. Tissue inhomogeneity and refractive index mismatch at the surface of the tissue lead to optical aberrations. We have compensated for such aberrations by (1) miniaturizing the OCPI illumination optics, so as to enable more vertical imaging of the tissue, (2) correcting for the angular defocus caused by the refraction at the immersion fluid/tissue interface, and (3) applying adaptive optics to correct for higher order optical aberrations. The improvement in the depth at which one can image tissue will enable the measurement of activities of neuronal populations in cortical areas. · Measure the diversity in the expression pattern of VSNs responsive to sulfated steroids. Nodari et al. have identified sulfated steroids as a novel family of ligands which activate vomeronasal sensory neurons (VSNs). Due to the experimental constraints, it has not been possible to obtain a comprehensive understanding of the number, location and functional characteristics of the sulfated steroid responsive VSNs. Applying OCPI microscopy and calcium imaging to simultaneously image thousands of VSNs, we show that the sulfated steroid responsive neurons (1) have unique ligand preferences, (2) are predominantly present in the apical regions of the VNO, and (3) that the choice of expression of a receptor type is not purely stochastic.
Parameterization of volcanic ash remobilization by wind-tunnel erosion experiments.
NASA Astrophysics Data System (ADS)
Del Bello, Elisabetta; Taddeucci, Jacopo; Merrison, Jonathan; Alois, Stefano; Iversen, Jens Jacob; Scarlato, Piergiorgio
2017-04-01
The remobilization of volcanic ash from the ground is one of the many problems posing threat to life and infrastructures during and after the course of an explosive volcanic eruption. A proper management of the risks connected to this problem requires a thorough understanding of the factors that influence and promote the dispersal of particles over large distances. Towards this target, we conducted a series of experiments aimed at defining first-order processes controlling the remobilization threshold of ash particles by wind erosion. In the framework of the EU-funded Europlanet project, we joinly used the environmental wind tunnel facility at Aarhus University (DK) and the state-of-the art high-speed imaging equipment of INGV experimental lab (Italy) to capture at unparalleled temporal and spatial resolution the removal dynamics of ash-sized (half-millimetre to micron-sized) particles. A homogenous layer of particles was set at on a plate placed downwind a boundary layer setup. Resuspension processes were filmed at 2000 fps and 50 micron pixel resolution, and the plate weighted pre and post-experiment. Explored variables include: 1) wind speed (from ca. 1 to 7 m/s) and boundary layer structure; 2) particle grain size (from 32-63 to 90-125 micron), and sample sorting); 3) chemical and textural features, using basalt and trachyte samples from Campi Flegrei (Pomici Principali,10 ka) and Eyjafjallajökull (May 2010) eruptions; and 4) temperature and humidity, by conducting experiments either at ambient conditions or with a heated sample. We found that the grain size distribution exerts a strong control on the fundamental dynamics of gas-particle coupling. Particles > 90 micron detach from the particles layer individually, also entering the gas flow individually. Conversely, removal < 63 micron particles occurs in clumps of aggregates. These clumps, once taken in charge by the gas flow, are frequently disaggregated and dispersed rapidly (order of few milliseconds). Our preliminary results shows that, for a given size distribution, the boundary between the two dynamics may shift greatly as a function of ambient humidity.
The Temporal Resolution of Laser Induced Fluorescence Photobleaching Anemometer
NASA Astrophysics Data System (ADS)
Zhao, Wei; Yang, Fang; Wang, Guiren
2014-11-01
Recently, in microfluidics, electrokinetic flows are widely used on micromixer designing. However, there is unfortunately no valid velocimeter today that can measure the random velocity fluctuation at high temporal and spatial resolution simultaneously in the complicated flow circumstance. We recently introduced laser induced fluorescence photobleaching anemometer (LIFPA), which has been successfully used in the measurement of velocity field in AC electrically driven microflow. Here, we theoretically study the temporal resolution (TR) of and experimentally verify, LIFPA can have simultaneously ultrahigh temporal (~4 μs) and spatial (~203 nm) resolution and can measure velocity fluctuation up to at least 2 kHz, whose corresponding wave number is about 6 × 106 1/m in an electrokinetically forced unsteady flow in microfluidics. The measurement of LIFPA is also compared with the widely used micro Particle Imaging Velocimetry (μPIV). We found, at the inlet, due to multiple uncertainties, the velocity fluctuations by μPIV exhibits apparently smaller values than that by LIFPA. But at downstreams, where velocity fluctuation is much lower than at the inlet and the uncertainties of complicated electric field on particles becomes smaller, LIFPA and μPIV indicate similar measurement. The work was supported by NSF under grant no. CAREER CBET-0954977 and MRI CBET-1040227, respectively.