Science.gov

Sample records for mimetics protect mice

  1. A novel mimetic antigen eliciting protective antibody to Neisseria meningitidis.

    PubMed

    Granoff, D M; Moe, G R; Giuliani, M M; Adu-Bobie, J; Santini, L; Brunelli, B; Piccinetti, F; Zuno-Mitchell, P; Lee, S S; Neri, P; Bracci, L; Lozzi, L; Rappuoli, R

    2001-12-01

    Molecular mimetic Ags are of considerable interest as vaccine candidates. Yet there are few examples of mimetic Ags that elicit protective Ab against a pathogen, and the functional activity of anti-mimetic Abs has not been studied in detail. As part of the Neisseria meningitidis serogroup B genome sequencing project, a large number of novel proteins were identified. Herein, we provide evidence that genome-derived Ag 33 (GNA33), a lipoprotein with homology to Escherichia coli murein transglycosylase, elicits protective Ab to meningococci as a result of mimicking an epitope on loop 4 of porin A (PorA) in strains with serosubtype P1.2. Epitope mapping of a bactericidal anti-GNA33 mAb using overlapping peptides shows that the mAb recognizes peptides from GNA33 and PorA that share a QTP sequence that is necessary but not sufficient for binding. By flow cytometry, mouse antisera prepared against rGNA33 and the anti-GNA33 mAb bind as well as an anti-PorA P1.2 mAb to the surface of eight of nine N. meningitidis serogroup B strains tested with the P1.2 serosubtype. Anti-GNA33 Abs also are bactericidal for most P1.2 strains and, for susceptible strains, the activity of an anti-GNA33 mAb is similar to that of an anticapsular mAb but less active than an anti-P1.2 mAb. Anti-GNA Abs also confer passive protection against bacteremia in infant rats challenged with P1.2 strains. Thus, GNA33 represents one of the most effective immunogenic mimetics yet described. These results demonstrate that molecular mimetics have potential as meningococcal vaccine candidates.

  2. Protective effects of a glutathione disulfide mimetic (NOV-002) against cisplatin induced kidney toxicity

    PubMed Central

    Jenderny, Sara; Lin, He; Garrett, Tracy; Tew, Kenneth D.; Townsend, Danyelle M.

    2012-01-01

    NOV-002 is a glutathione disulfide (GSSG) mimetic with chemoprotective activity. Previous and ongoing clinical studies demonstrate a significantly improved 1-year survival and decreased tumor progression rates in non-small cell lung (NSCLC) and ovarian cancer patients when NOV-002 was included in cisplatin containing regimens. In order to understand this chemoprotective property, we employed as an animal model of kidney toxicity, 8-week-old Bl6 mice that were treated with a single nephrotoxic dose of cisplatin (15 mg/kg, ip) and sacrificed on Day 5. One group of animals was treated with NOV-002 (15 mg/kg, im) daily. NOV-002-treated mice had significantly lower levels of plasma creatinine compared to mice treated with cisplatin alone (4.7 vs 2.9 mg/dL, respectively). Moreover, NOV-002 protected the kidneys from cisplatin mediated proximal tubule damage, including dilation of tubules and the presence of protein casts. Since cisplatin-induced nephrotoxicity can be mediated by a glutathione-platinum conjugate catalyzed by γ-glutamyl-transpeptidase (GGT) and glutathione is an endogenous substrate of GGT, the protective effect of NOV-002 in the kidney may be attributed to its ability to act as a competitive substrate for the enzyme. PMID:19896793

  3. Annexin A1 mimetic peptide controls the inflammatory and fibrotic effects of silica particles in mice

    PubMed Central

    Trentin, P G; Ferreira, T P T; Arantes, A C S; Ciambarella, B T; Cordeiro, R S B; Flower, R J; Perretti, M; Martins, M A; Silva, P M R

    2015-01-01

    Background and Purpose Endogenous glucocorticoids are pro-resolving mediators, an example of which is the endogenous glucocorticoid-regulated protein annexin A1 (ANXA1). Because silicosis is an occupational lung disease characterized by unabated inflammation and fibrosis, in this study we tested the therapeutic properties of the N-terminal ANXA1-derived peptide annexin 1-(2-26) (Ac2-26) on experimental silicosis. Experimental Approach Swiss-Webster mice were administered silica particles intranasally and were subsequently treated with intranasal peptide Ac2-26 (200 μg per mouse) or dexamethasone (25 μg per mouse) for 7 days, starting 6 h post-challenge. Ac2-26 abolished the leukocyte infiltration, collagen deposition, granuloma formation and generation of pro-inflammatory cytokines evoked by silica; these variables were only partially inhibited by dexamethasone. Key Results A clear exacerbation of the silica-induced pathological changes was observed in ANXA1 knockout mice as compared with their wild-type (WT) littermate controls. Incubation of lung fibroblasts from WT mice with Ac2-26 in vitro reduced IL-13 or TGF-β-induced production of CCL2 (MCP-1) and collagen, but this peptide did not affect the production of CCL2 (MCP-1) by stimulated fibroblasts from formyl peptide receptor type 1 (FPR1) knockout mice. Ac2-26 also inhibited the production of CCL2 (MCP-1) from fibroblasts of FPR2 knockout mice. Conclusions and Implications Collectively, our findings reveal novel protective properties of the ANXA1 derived peptide Ac2-26 on the inflammatory and fibrotic responses induced by silica, and suggest that ANXA1 mimetic agents might be a promising strategy as innovative anti-fibrotic approaches for the treatment of silicosis. PMID:25659822

  4. Dormancy as exaptation to protect mimetic seeds against deterioration before dispersal

    PubMed Central

    Brancalion, Pedro H. S.; Novembre, Ana D. L. C.; Rodrigues, Ricardo R.; Marcos Filho, Júlio

    2010-01-01

    Background and Aims Mimetic seeds simulate the appearance of fleshy fruits and arilled seeds without producing nutritive tissues as a reward for seed dispersers. In this strategy of seed dispersal, seeds may remain attached to the mother plant for long periods after maturity, increasing their availability to naïve seed dispersers. The hypothesis that seed coat impermeability in many tropical Fabaceae with mimetic seeds serves as an exaptation to protect the seeds from deterioration and rotting while awaiting dispersal was investigated. Methods Seed coat impermeability was evaluated in five mimetic-seeded species of tropical Fabaceae in south-eastern Brazil (Abarema langsdorffii, Abrus precatorius, Adenanthera pavonina, Erythrina velutina and Ormosia arborea) and in Erythrina speciosa, a ‘basal’ species in its genus, which has monochromatic brown seeds and no mimetic displays. Seed hardness was evaluated as a defence against accelerated ageing (humid chamber at 41 °C for 144 h). Seed development and physiological potential of O. arborea was evaluated and the effect of holding mature seeds in pods on the mother plant in the field for a period of 1 year under humid tropical conditions was compared with seeds stored under controlled conditions (15 °C and 40 % relative air humidity). Key Results All five mimetic-seeded species, and E. speciosa, showed strong coat impermeability, which protected the seeds against deterioration in accelerated ageing. Most O. arborea seeds only became dormant 2 months after pod dehiscence. Germination of seeds after 1 year on the plant in a humid tropical climate was 56 %, compared with 80 % for seeds stored in controlled conditions (15 °C, 45 % relative humidity). Seedling shoot length after 1 year did not differ between seed sources. Conclusions Dormancy acts in mimetic-seeded species as an exaptation to reduce seed deterioration, allowing an increase in their effective dispersal period and mitigating the losses incurred by low

  5. A human apolipoprotein E mimetic peptide reduces atherosclerosis in aged apolipoprotein E null mice

    PubMed Central

    Xu, Yanyong; Liu, Hongmei; Liu, Mengting; Li, Feifei; Liu, Liangchen; Du, Fen; Fan, Daping; Yu, Hong

    2016-01-01

    Apolipoprotein E (apoE) is well known as an antiatherogenic protein via regulating lipid metabolism and inflammation. We previously reported that a human apoE mimetic peptide, EpK, reduced atherosclerosis in apoE null (apoE-/-) mice through reducing inflammation without affecting plasma lipid levels. Here, we construct another human apoE mimetic peptide, named hEp, and investigate whether expression of hEp can reduce atherosclerotic lesion development in aged female apoE-/- mice with pre-existing lesions. We found that chemically synthesized hEp significantly decreased cholesterol accumulation induced by oxidized low density lipoprotein and the expression of inflammatory cytokines TNFα and IL-6 induced by lipopolysaccharide in macrophages. In an in vivo study, Lv-hEp-GFP lentiviruses were intravenously injected into 9 month-old apoE-/- mice. Mice were then fed a chow diet for 18 weeks. Results showed that in comparison to the Lv-GFP lentivirus injection (Lv-GFP) group, Lv-hEp-GFP lentivirus injection achieved hepatic hEp expression and secretion in apoE-/- mice. It was observed that hEp expression significantly reduced plasma VLDL and LDL cholesterol levels and decreased aortic atherosclerotic lesions. This was accompanied by an increase of LDL receptor expression and a reduction of TNFα and IL-6 mRNA levels in the liver. Moreover, expression of hEp increased plasma paraoxonase-1 activity and decreased plasma myeloperoxidase activity and serum amyloid A levels. Our study provides evidence that hEp may be developed as a promising therapeutic apoE mimetic peptide for atherosclerosis-related cardiovascular diseases through its induction of plasma VLDL/LDL cholesterol clearance as well as its anti-oxidative and anti-inflammatory activities. PMID:27648138

  6. Orthogonally Protected Furanoid Sugar Diamino Acids for Solid-Phase Synthesis of Oligosaccharide Mimetics.

    PubMed

    John, Franklin; Wittmann, Valentin

    2015-08-07

    Sugar diamino acids (SDAs), which differ from the widely used sugar amino acids in the presence of a second amino group connected to the carbohydrate core, share structural features of both amino acids and carbohydrates. They can be used for the preparation of linear and branched amide-linked oligosaccharide mimetics. Such oligomers carry free amino groups, which are positively charged at neutral pH, in a spatially defined way and, thus, represent a potential class of aminoglycoside mimetics. We report here the first examples of orthogonally protected furanoid SDAs and their use in solid-phase synthesis. Starting from d-glucose, we developed a divergent synthetic route to three derivatives of 3,5-diamino-3,5-dideoxy-d-ribofuranose. These building blocks are compatible with solid-phase peptide synthesis following the 9-fluorenylmethoxycarbonyl (Fmoc) strategy, which we demonstrate by the synthesis of an SDA tetramer.

  7. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose

    PubMed Central

    Zhou, Yue-Yue; Zhu, Xiao-Juan; Li, Rong-Hua; Mu, Chang-Kao; Wang, Chun-Lin; Song, Wei-Wei

    2015-01-01

    D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance. PMID:26176541

  8. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose.

    PubMed

    Zhou, Yue-Yue; Ji, Xiong-Fei; Fu, Jian-Ping; Zhu, Xiao-Juan; Li, Rong-Hua; Mu, Chang-Kao; Wang, Chun-Lin; Song, Wei-Wei

    2015-01-01

    D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance.

  9. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice.

    PubMed

    Aslam, Mohamad F; Frazer, David M; Faria, Nuno; Bruggraber, Sylvaine F A; Wilkins, Sarah J; Mirciov, Cornel; Powell, Jonathan J; Anderson, Greg J; Pereira, Dora I A

    2014-08-01

    The ferritin core is composed of fine nanoparticulate Fe(3+) oxohydroxide, and we have developed a synthetic mimetic, nanoparticulate Fe(3+) polyoxohydroxide (nanoFe(3+)). The aim of this study was to determine how dietary iron derived in this fashion is absorbed in the duodenum. Following a 4 wk run-in on an Fe-deficient diet, mice with intestinal-specific disruption of the Fpn-1 gene (Fpn-KO), or littermate wild-type (WT) controls, were supplemented with Fe(2+) sulfate (FeSO4), nanoFe(3+), or no added Fe for a further 4 wk. A control group was Fe sufficient throughout. Direct intestinal absorption of nanoFe(3+) was investigated using isolated duodenal loops. Our data show that FeSO4 and nanoFe(3+) are equally bioavailable in WT mice, and at wk 8 the mean ± SEM hemoglobin increase was 18 ± 7 g/L in the FeSO4 group and 30 ± 5 g/L in the nanoFe(3+) group. Oral iron failed to be utilized by Fpn-KO mice and was retained in enterocytes, irrespective of the iron source. In summary, although nanoFe(3+) is taken up directly by the duodenum its homeostasis is under the normal regulatory control of dietary iron absorption, namely via ferroportin-dependent efflux from enterocytes, and thus offers potential as a novel oral iron supplement.

  10. Dipeptide Mimetic of the Brain-derived Neurotrophic Factor Prevents Impairments of Neurogenesis in Stressed Mice.

    PubMed

    Gudasheva, T A; Povarnina, P Yu; Seredenin, S B

    2017-02-01

    Brain-derived neurotrophic factor (BDNF) plays the central role in the mechanisms of regulation of neurogenesis and neuroplasticity. Impairment of these mechanisms is considered as one of the main etiological factors of depression. Dimeric dipeptide mimetic of BDNF loop 4 bis-(N-monosuccinyl-l-seryl-l-lysine) hexamethylenediamide (GSB-106) was synthesized at the V. V. Zakusov Research Institute of Pharmacology. In vivo experiments revealed significant antidepressant properties of GSB-106 in doses of 0.1-10 mg/kg (intraperitoneally and orally). Effects of GSB-106 on hippocampal neurogenesis were studied in mice subjected to chronic predator stress. Proliferative activity in the subgranular zone of the dental gyrus was assessed immunohistochemically by Ki-67 expression (a marker of dividing cells). It was found that GSB-106 (10 mg/kg, intraperitoneally, 5 days) completely prevents neurogenesis disturbances in stressed mice. These findings suggest that GSB-106 is a promising candidate for the development of antidepressant agents with BDNF-like mechanism of action.

  11. Tempol, a Superoxide Dismutase Mimetic Agent, Ameliorates Cisplatin-Induced Nephrotoxicity through Alleviation of Mitochondrial Dysfunction in Mice

    PubMed Central

    Ahmed, Lamiaa A.; Shehata, Nagwa I.; Abdelkader, Noha F.; Khattab, Mahmoud M.

    2014-01-01

    Background Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice. Methods and Findings Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg) with or without oral administration of tempol (100 mg/kg/day). Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP) content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I–IV activities and mitochondrial nitric oxide synthase (mNOS) protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma. Conclusion This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction

  12. Chronic delivery of a thrombospondin-1 mimetic decreases skeletal muscle capillarity in mice.

    PubMed

    Audet, Gerald N; Fulks, Daniel; Stricker, Janelle C; Olfert, I Mark

    2013-01-01

    Angiogenesis is an essential process for normal skeletal muscle function. There is a growing body of evidence suggesting that thrombospondin-1 (TSP-1), a potent antiangiogenic protein in tumorigenesis, is an important regulator of both physiological and pathological skeletal muscle angiogenesis. We tested the hypothesis that chronic exposure to a TSP-1 mimetic (ABT-510), which targets the CD36 TSP-1 receptor, would decrease skeletal muscle capillarity as well as alter the balance between positive and negative angiogenic proteins under basal conditions. Osmotic minipumps with either ABT-510 or vehicle (5% dextrose) were implanted subcutaneously in the subscapular region of C57/BL6 mice for 14 days. When compared to the vehicle treated mice, the ABT-510 group had a 20% decrease in capillarity in the superficial region of the gastrocnemius (GA), 11% decrease in the plantaris (PLT), and a 35% decrease in the soleus (SOL). ABT-510 also decreased muscle protein expression of vascular endothelial growth factor (VEGF) in both the GA (-140%) and SOL (-62%); however there was no change in VEGF in the PLT. Serum VEGF was not altered in ABT-510 treated animals. Endogenous TSP-1 protein expression in all muscles remained unaltered. Tunnel staining revealed no difference in muscle apoptosis between ABT-510 and vehicle treated groups. These data provide evidence that the anti-angiogenic effects of TSP-1 are mediated, at least in part, via the CD36 receptor. It also suggests that under physiologic conditions the TSP-1/CD36 axis plays a role in regulating basal skeletal muscle microvessel density.

  13. Peptide Mimetic of the S100A4 Protein Modulates Peripheral Nerve Regeneration and Attenuates the Progression of Neuropathy in Myelin Protein P0 Null Mice

    PubMed Central

    Moldovan, Mihai; Pinchenko, Volodymyr; Dmytriyeva, Oksana; Pankratova, Stanislava; Fugleholm, Kåre; Klingelhofer, Jorg; Bock, Elisabeth; Berezin, Vladimir; Krarup, Christian; Kiryushko, Darya

    2013-01-01

    We recently found that S100A4, a member of the multifunctional S100 protein family, protects neurons in the injured brain and identified two sequence motifs in S100A4 mediating its neurotrophic effect. Synthetic peptides encompassing these motifs stimulated neuritogenesis and survival in vitro and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration and survival of myelinated axons. H3 accelerated electrophysiological, behavioral and morphological recovery after sciatic nerve crush while transiently delaying regeneration after sciatic nerve transection and repair. On the basis of the finding that both S100A4 and H3 increased neurite branching in vitro, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1 disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss, such as Charcot-Marie-Tooth type 1 disease. Moreover, our data suggest that S100A4 is a neuroprotectant in PNS and that other S100 proteins, sharing high homology in the H3 motif, may have important functions in PNS pathologies. PMID:23508572

  14. Of mice, monkeys, and men: Physiological and morphological evidence for evolutionary divergence of function in mimetic musculature

    PubMed Central

    Burrows, Anne M.; Durham, Emily L.; Matthews, Lea C.; Smith, Timothy D.; Parr, Lisa A.

    2014-01-01

    Facial expression is a universal means of visual communication in humans and many other primates. Humans have the most complex facial display repertoire among primates but gross morphological studies have not found greater complexity in human mimetic musculature. The present study examines microanatomical aspects of mimetic musculature in order to test hypotheses related to human mimetic musculature physiology, function, and evolutionary morphology. Samples from the orbicularis oris (OOM) and the zygomaticus major muscles (ZM) in laboratory mice (N=3), rhesus macaques (N=3) and humans (N=3) were collected. Fiber type proportions (slow-twitch and fast-twitch), fiber cross-sectional area, diameter, and length were calculated and means were statistically compared among groups. Results showed that macaques had the greatest percentage of fast fibers in both muscles (followed by humans) and humans had the greatest percentage of slow fibers in both muscles. Macaques and humans typically did not differ from one another in morphometrics except for fiber length where humans had longer fibers. While sample sizes are low, results from the present study may indicate that the rhesus macaque OOM and ZM are specialized primarily to assist with maintenance of the rigid dominance hierarchy via rapid facial displays of submission and aggression while human musculature may have evolved not only under pressure to work in facial expressions but also in development of speech. PMID:24706483

  15. Analysis of Arg-Gly-Asp mimetics and soluble receptor of tumour necrosis factor as therapeutic modalities for concanavalin A induced hepatitis in mice.

    PubMed Central

    Bruck, R; Shirin, H; Hershkoviz, R; Lider, O; Kenet, G; Aeed, H; Matas, Z; Zaidel, L; Halpern, Z

    1997-01-01

    BACKGROUND/AIMS: It has been shown that synthetic non-peptidic analogues of Arg-Gly-Asp, a major cell adhesive ligand of extracellular matrix, prevented an increase in serum aminotransferase activity, as a manifestation of concanavalin A induced liver damage in mice. This study examined the effects of an Arg-Gly-Asp mimetic on liver histology and cytokine release in response to concanavalin A administration, and the efficacy of soluble receptor of tumour necrosis factor (TNF) alpha in preventing hepatitis in this model of liver injury. METHODS: Mice were pretreated with either the Arg-Gly-Asp mimetic SF-6,5 or recombinant soluble receptor of TNF alpha before their inoculation with 10 mg/kg concanavalin A. Liver enzymes, histology, and the serum values of TNF alpha and interleukin (IL)6 were examined. RESULTS: The histopathological damage in the liver, and the concanavalin A induced release of TNF alpha and IL6 were significantly inhibited by the synthetic Arg-Gly-Asp mimetic (p < 0.001). Liver injury, manifested by the increase in serum aminotransferase and cytokines, as well as by histological manifestations of hepatic damage, was effectively prevented by pretreatment of the mice with the soluble TNF receptor (p < 0.001). CONCLUSIONS: This study confirms the efficacy of a synthetic Arg-Gly-Asp mimetic and soluble TNF receptor in the prevention of immune mediated liver damage in mice. Images PMID:9155591

  16. Effect of Vanadyl Rosiglitazone, a New Insulin-Mimetic Vanadium Complexes, on Glucose Homeostasis of Diabetic Mice.

    PubMed

    Jiang, Pingzhe; Dong, Zhen; Ma, Baicheng; Ni, Zaizhong; Duan, Huikun; Li, Xiaodan; Wang, Bin; Ma, Xiaofeng; Wei, Qian; Ji, Xiangzhen; Li, Minggang

    2016-11-01

    Diabetes has been cited as the most challenging health problem in the twenty-first century. Accordingly, it is urgent to develop a new type of efficient and low-toxic antidiabetic medication. Since vanadium compounds have insulin-mimetic and potential hypoglycemic activities for type 1 and type 2 diabetes, a new trend has been developed using vanadium and organic ligands to form a new compound in order to increase the intestinal absorption and reduce the toxicity of vanadium compound. In the current investigation, a new organic vanadium compounds, vanadyl rosiglitazone, was synthesized and determined by infrared spectra. Vanadyl rosiglitazone and three other organic vanadium compounds were administered to the diabetic mice through oral administration for 5 weeks. The results of mouse model test indicated that vanadyl rosiglitazone could regulate the blood glucose level and relieve the symptoms of polydipsia, polyphagia, polyuria, and weight loss without side effects and was more effective than the other three organic vanadium compounds including vanadyl trehalose, vanadyl metformin, and vanadyl quercetin. The study indicated that vanadyl rosiglitazone presents insulin-mimetic activities, and it will be a good potential candidate for the development of a new type of oral drug for type 2 diabetes.

  17. Thioredoxin-Mimetic-Peptides Protect Cognitive Function after Mild Traumatic Brain Injury (mTBI)

    PubMed Central

    Baratz-Goldstein, Renana; Deselms, Hanna; Heim, Leore Raphael; Khomski, Lena; Hoffer, Barry J.

    2016-01-01

    Mild traumatic brain injury (mTBI) is recognized as a common injury among children, sportsmen, and elderly population. mTBI lacks visible objective structural brain damage but patients frequently suffer from long-lasting cognitive, behavioral and emotional difficulties associated with biochemical and cellular changes. Currently there is no effective treatment for patients with mTBI. The thioredoxin reductase/thioredoxin pathway (TrxR/Trx1) has both anti-inflammatory and anti-oxidative properties. If the system is compromised, Trx1 remains oxidized and triggers cell death via an ASK1-Trx1 signal transduction mechanism. We previously showed tri and tetra peptides which were derived from the canonical -CxxC- motif of the Trx1-active site, called thioredoxin mimetic (TXM) peptides, reversed inflammatory and oxidative stress damage mimicking Trx1 activity. Here, TXM-peptides were examined for protecting cognitive function following weight drop closed-head injury in a mouse model of mTBI. TXM-CB3 (AcCys-Pro-CysNH2), TXM-CB13 (DY-70; AcCys-Met-Lys-CysNH2) or AD4 (ACysNH2) were administered at 50 mg/kg, 60 min after injury and cognitive performance was monitored by the novel-object-recognition and Y-maze tests. Behavioral deficits subsequent to mTBI injury were reversed by a single dose of TXM-CB3, TXM-CB13 and, to a lesser extent, by AD4. TXM-CB13 similar to TXM-CB3 and AD4 reversed oxidative stress-induced phosphorylation of mitogen-activated kinases, p38MAPK and c-Jun N-terminal kinase, (JNK) in human neuronal SH-SY5Y cells. We conclude that significantly improved cognitive behavior post mTBI by the TXM-peptides could result from anti-apoptotic, and/or anti-inflammatory activities. Future preclinical studies are required to establish the TXM-peptides as potential therapeutic drugs for brain injuries. PMID:27285176

  18. Treatment of mice with the suppressor of cytokine signaling-1 mimetic peptide, tyrosine kinase inhibitor peptide, prevents development of the acute form of experimental allergic encephalomyelitis and induces stable remission in the chronic relapsing/remitting form.

    PubMed

    Mujtaba, Mustafa G; Flowers, Lawrence O; Patel, Chintak B; Patel, Ravi A; Haider, Mohammad I; Johnson, Howard M

    2005-10-15

    We have previously characterized a novel tyrosine kinase inhibitor peptide (Tkip) that is a mimetic of suppressor of cytokine signaling 1 (SOCS-1) and inhibits JAK2 phosphorylation of the transcription factor STAT1alpha. We show in this study that Tkip protects mice against experimental allergic encephalomyelitis (EAE), an animal model for multiple sclerosis. Mice are immunized with myelin basic protein (MBP) for induction of disease. Tkip (63 mug) administered every other day suppressed the development of acute EAE in 75% of New Zealand White (NZW) mice. Furthermore, Tkip completely protected SJL/J mice, which where induced to get the relapsing/remitting form of EAE, against relapses compared with control groups in which >70% of the mice relapsed after primary incidence of disease. Protection of mice by Tkip was similar to that seen with the type I IFN, IFN-tau. Protection of mice correlated with lower MBP Ab titers in Tkip-treated groups as well as suppression of MBP-induced proliferation of splenocytes taken from EAE-afflicted mice. Cessation of Tkip and IFN-tau administration resulted in SJL/J mice relapsing back into disease. Prolonged treatment of mice with Tkip produced no evidence of cellular toxicity or weight loss. Consistent with its JAK2 inhibitory function, Tkip also inhibited the activity of the inflammatory cytokine TNF-alpha, which uses the STAT1alpha transcription factor. The data presented in this study show that Tkip, like the type I IFN, IFN-tau, inhibits both the autoreactive cellular and humoral responses in EAE and ameliorates both the acute and chronic relapsing/remitting forms of EAE.

  19. PHEX Mimetic (SPR4-Peptide) Corrects and Improves HYP and Wild Type Mice Energy-Metabolism

    PubMed Central

    Zelenchuk, Lesya V.; Hedge, Anne-Marie; Rowe, Peter S. N.

    2014-01-01

    Context PHEX or DMP1 mutations cause hypophosphatemic-rickets and altered energy metabolism. PHEX binds to DMP1-ASARM-motif to form a complex with α5β3 integrin that suppresses FGF23 expression. ASARM-peptides increase FGF23 by disrupting the PHEX-DMP1-Integrin complex. We used a 4.2 kDa peptide (SPR4) that binds to ASARM-peptide/motif to study the DMP1-PHEX interaction and to assess SPR4 for the treatment of energy metabolism defects in HYP and potentially other bone-mineral disorders. Design Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle (VE) into wild-type mice (WT) and HYP-mice (PHEX mutation) for 4 weeks. Results SPR4 partially corrected HYP mice hypophosphatemia and increased serum 1.25(OH)2D3. Serum FGF23 remained high and PTH was unaffected. WT-SPR4 mice developed hypophosphatemia and hypercalcemia with increased PTH, FGF23 and 1.25(OH)2D3. SPR4 increased GAPDH HYP-bone expression 60× and corrected HYP-mice hyperglycemia and hypoinsulinemia. HYP-VE serum uric-acid (UA) levels were reduced and SPR4 infusion suppressed UA levels in WT-mice but not HYP-mice. SPR4 altered leptin, adiponectin, and sympathetic-tone and increased the fat mass/weight ratio for HYP and WT mice. Expression of perlipin-2 a gene involved in obesity was reduced in HYP-VE and WT-SPR4 mice but increased in HYP-SPR4 mice. Also, increased expression of two genes that inhibit insulin-signaling, ENPP1 and ESP, occurred with HYP-VE mice. In contrast, SPR4 reduced expression of both ENPP1 and ESP in WT mice and suppressed ENPP1 in HYP mice. Increased expression of FAM20C and sclerostin occurred with HYP-VE mice. SPR4 suppressed expression of FAM20C and sclerostin in HYP and WT mice. Conclusions ASARM peptides and motifs are physiological substrates for PHEX and modulate osteocyte PHEX-DMP1-α5β3-integrin interactions and thereby FGF23 expression. These interactions also provide a nexus that regulates bone and energy metabolism. SPR4 suppression of

  20. The protective effect of M40401, a superoxide dismutase mimetic, on post-ischemic brain damage in Mongolian gerbils

    PubMed Central

    Mollace, Vincenzo; Iannone, Michelangelo; Muscoli, Carolina; Palma, Ernesto; Granato, Teresa; Modesti, Andrea; Nisticò, Robert; Rotiroti, Domenicantonio; Salvemini, Daniela

    2003-01-01

    Background Overproduction of free radical species has been shown to occur in brain tissues after ischemia-reperfusion injury. However, most of free radical scavengers known to antagonize oxidative damage (e.g. superoxide dismutase, catalase), are unable to protect against ischemia-reperfusion brain injury when given in vivo, an effect mainly due to their difficulty to gain access to brain tissues. Here we studied the effect of a low molecular weight superoxide dismutase mimetic (M40401) in brain damage subsequent to ischemia-reperfusion injury in Mongolian gerbils. Results In animals undergoing ischemia-reperfusion injury, neuropathological and ultrastructural changes were monitored for 1–7 days either in the presence or in the absence of M40401 after bilateral common carotid artery occlusion (BCCO). Administration of M40401 (1–40 mg/kg, given i.p. 1 h after BCCO) protected against post-ischemic, ultrastructural and neuropathological changes occurring within the hippocampal CA1 area. The protective effect of M40401 was associated with a significant reduction of the levels of malondialdehyde (MDA; a marker of lipid peroxidation) in ischemic brain tissues after ischemia-reperfusion. Conclusion Taken together, these results demonstrate that M40401 provides protective effects when given early after the induction of ischemia-reperfusion of brain tissues and suggest the possible use of such compounds in the treatment of neurological dysfunction subsequent to cerebral flow disturbances. PMID:12809567

  1. A recombinant mimetics of the HIV-1 gp41 prehairpin fusion intermediate fused with human IgG Fc fragment elicits neutralizing antibody response in the vaccinated mice

    SciTech Connect

    Qi, Zhi; Pan, Chungen; Lu, Hong; Shui, Yuan; Li, Lin; Li, Xiaojuan; Xu, Xueqing; Liu, Shuwen; Jiang, Shibo

    2010-07-30

    Research highlights: {yields} One recombinant mimetics of gp41 prehairpin fusion intermediate (PFI) consisting of gp41 N46 sequence, foldon and IgG Fc, designated N46FdFc, was expressed. {yields} N46FdFc-induced antibodies in mice that neutralized HIV-1 infection, inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. {yields} These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines. -- Abstract: HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines.

  2. Prevention of cognitive deficits and brain oxidative stress with superoxide dismutase/catalase mimetics in aged mice.

    PubMed

    Clausen, Aaron; Doctrow, Susan; Baudry, Michel

    2010-03-01

    Continuous decline in cognitive performance accompanies the natural aging process in humans, and multiple studies in both humans and animal models have indicated that this decrease in cognitive function is associated with an age-related increase in oxidative stress. Treating aging mammals with exogenous free radical scavengers has generally been shown to attenuate age-related cognitive decline and oxidative stress. The present study assessed the effectiveness of the superoxide dismutase/catalase mimetics EUK-189 and EUK-207 on age-related decline in cognitive function and increase in oxidative stress. C57/BL6 mice received continuous treatment via osmotic minipumps with either EUK-189 or EUK-207 for 6 months starting at 17 months of age. At the end of treatment, markers for oxidative stress were evaluated by analyzing levels of free radicals, lipid peroxidation and oxidized nucleic acids in brain tissue. In addition, cognitive performance was assessed after 3 and 6 months of treatment with fear conditioning. Both EUK-189 and EUK-207 treatments resulted in significantly decreased lipid peroxidation, nucleic acid oxidation, and reactive oxygen species (ROS) levels. In addition, the treatments also significantly improved age-related decline in performance in the fear-conditioning task. Our results thus confirm a critical role for oxidative stress in age-related decline in learning and memory and strongly suggest a potential usefulness for salen-manganese complexes in reversing age-related declines in cognitive function and oxidative load.

  3. Superoxide Dismutase (SOD)-mimetic M40403 Is Protective in Cell and Fly Models of Paraquat Toxicity

    PubMed Central

    Filograna, Roberta; Godena, Vinay K.; Sanchez-Martinez, Alvaro; Ferrari, Emanuele; Casella, Luigi; Beltramini, Mariano; Bubacco, Luigi; Whitworth, Alexander J.; Bisaglia, Marco

    2016-01-01

    Parkinson disease is a debilitating and incurable neurodegenerative disorder affecting ∼1–2% of people over 65 years of age. Oxidative damage is considered to play a central role in the progression of Parkinson disease and strong evidence links chronic exposure to the pesticide paraquat with the incidence of the disease, most probably through the generation of oxidative damage. In this work, we demonstrated in human SH-SY5Y neuroblastoma cells the beneficial role of superoxide dismutase (SOD) enzymes against paraquat-induced toxicity, as well as the therapeutic potential of the SOD-mimetic compound M40403. Having verified the beneficial effects of superoxide dismutation in cells, we then evaluated the effects using Drosophila melanogaster as an in vivo model. Besides protecting against the oxidative damage induced by paraquat treatment, our data demonstrated that in Drosophila M40403 was able to compensate for the loss of endogenous SOD enzymes, acting both at a cytosolic and mitochondrial level. Because previous clinical trials have indicated that the M40403 molecule is well tolerated in humans, this study may have important implication for the treatment of Parkinson disease. PMID:26953346

  4. Protective effects of a superoxide dismutase mimetic and peroxynitrite decomposition catalysts in endotoxin-induced intestinal damage

    PubMed Central

    Salvemini, Daniela; Riley, Dennis P; Lennon, Patrick J; Wang, Zhi-Qiang; Currie, Mark G; Macarthur, Heather; Misko, Thomas P

    1999-01-01

    The relative contributions of superoxide anion (O2−) and peroxynitrite (PN) were evaluated in the pathogenesis of intestinal microvascular damage caused by the intravenous injection of E. coli lipopolysaccharide (LPS) in rats. The superoxide dismutase mimetic (SODm) SC-55858 and the active peroxynitrite decomposition catalysts 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-disulphonatophenyl)-porphyrinato iron (III) and 5,10,15,20-tetrakis(N-methyl-4′-pyridyl)-porphyrinato iron (III) (FeTMPS, FeTMPyP respectively) were used to assess the roles of O2− and PN respectively. The intravenous injection of LPS elicited an inflammatory response that was characterized by a time-dependent infiltration of neutrophils, lipid peroxidation, microvascular leakage (indicative of microvascular damage), and epithelial cell injury in both the duodenum and jejunum. Administration of the SODm SC-55858, FeTMPS or FeTMPyP at 3 h post LPS reduced the subsequent increase in microvascular leakage, lipid peroxidation and epithelial cell injury. Inactive peroxynitrite decomposition catalysts exhibited no protective effects. Only, SC-55858 inhibited neutrophil infiltration. Our results suggest that O2− and peroxynitrite play a significant role in the pathogenesis of duodenal and intestinal injury during endotoxaemia and that their removal by SODm and peroxynitrite decomposition catalysts offers a novel approach to the treatment of septic shock or clinical conditions of gastrointestinal inflammation. Furthermore, the remarkable protection of the intestinal epithelium by these agents suggests their use during chemo- and radiation therapy, cancer treatments characterized by gastrointestinal damage. Potential mechanisms through which these radicals evoke damage are discussed. PMID:10401559

  5. Creation of Apolipoprotein C-II (ApoC-II) Mutant Mice and Correction of Their Hypertriglyceridemia with an ApoC-II Mimetic Peptide

    PubMed Central

    Sakurai, Toshihiro; Sakurai, Akiko; Vaisman, Boris L.; Amar, Marcelo J.; Liu, Chengyu; Gordon, Scott M.; Drake, Steven K.; Pryor, Milton; Sampson, Maureen L.; Yang, Ling; Freeman, Lita A.

    2016-01-01

    Apolipoprotein C-II (apoC-II) is a cofactor for lipoprotein lipase, a plasma enzyme that hydrolyzes triglycerides (TGs). ApoC-II deficiency in humans results in hypertriglyceridemia. We used zinc finger nucleases to create Apoc2 mutant mice to investigate the use of C-II-a, a short apoC-II mimetic peptide, as a therapy for apoC-II deficiency. Mutant mice produced a form of apoC-II with an uncleaved signal peptide that preferentially binds high-density lipoproteins (HDLs) due to a 3-amino acid deletion at the signal peptide cleavage site. Homozygous Apoc2 mutant mice had increased plasma TG (757.5 ± 281.2 mg/dl) and low HDL cholesterol (31.4 ± 14.7 mg/dl) compared with wild-type mice (TG, 55.9 ± 13.3 mg/dl; HDL cholesterol, 55.9 ± 14.3 mg/dl). TGs were found in light (density < 1.063 g/ml) lipoproteins in the size range of very-low-density lipoprotein and chylomicron remnants (40–200 nm). Intravenous injection of C-II-a (0.2, 1, and 5 μmol/kg) reduced plasma TG in a dose-dependent manner, with a maximum decrease of 90% occurring 30 minutes after the high dose. Plasma TG did not return to baseline until 48 hours later. Similar results were found with subcutaneous or intramuscular injections. Plasma half-life of C-II-a is 1.33 ± 0.72 hours, indicating that C-II-a only acutely activates lipolysis, and the sustained TG reduction is due to the relatively slow rate of new TG-rich lipoprotein synthesis. In summary, we describe a novel mouse model of apoC-II deficiency and show that an apoC-II mimetic peptide can reverse the hypertriglyceridemia in these mice, and thus could be a potential new therapy for apoC-II deficiency. PMID:26574515

  6. A circulating ghrelin mimetic attenuates light-induced phase delay of mice and light-induced Fos expression in the suprachiasmatic nucleus of rats.

    PubMed

    Yi, Chun-Xia; Challet, Etienne; Pévet, Paul; Kalsbeek, Andries; Escobar, Carolina; Buijs, Ruud M

    2008-04-01

    Anatomical evidence suggests that the ventromedial arcuate nucleus (vmARC) is a route for circulating hormonal communications to the suprachiasmatic nucleus (SCN). Whether this vmARC-SCN connection is involved in the modulation of circadian activity of the SCN is not yet known. We recently demonstrated, in rats, that intravenous (i.v.) injection of a ghrelin mimetic, GHRP-6, during the daytime activated neurons in the vmARC and reduced the normal endogenous daytime Fos expression in the SCN. In the present study we show that i.v. administration of GHRP-6 decreases light-induced Fos expression at ZT13 in the rat SCN by 50%, indicating that light-induced changes in the SCN Fos expression can also be reduced by GHRP-6. Because it is difficult to study light-induced phase changes in rats, we examined the functional effects of GHRP-6 on light-induced phase shifts in mice and demonstrated that peripherally injected GHRP-6 attenuates light-induced phase delays at ZT13 by 45%. However, light-induced Fos expression in the mice SCN was not blocked by GHRP-6. These results illustrate that acute stimulation of the ghrelinergic system may modulate SCN activity, but that its effect on light-induced phase shifts and Fos expression in the SCN might be species related.

  7. Bone micro-fragility caused by the mimetic aging processes in α-klotho deficient mice: in situ nanoindentation assessment of dilatational bands.

    PubMed

    Maruyama, Noriko; Shibata, Yo; Mochizuki, Ayako; Yamada, Atsushi; Maki, Koutaro; Inoue, Tomio; Kamijo, Ryutaro; Miyazaki, Takashi

    2015-04-01

    The nanoscale structure-function relationship is a key determinant of bone toughness or micro-fragility. The loss of bone toughness during the aging process has been accepted based on empirical evidence, but this concept has not yet been fully supported by evidence at the material level. Here, we demonstrate a reduction in bone toughening mechanism in mimetic aged cortical bone obtained from α-klotho deficient (α-klotho(-/-)) mice and assessed by in situ dynamic mechanical analysis. The strain-rate nanoindentation tests showed enhanced stiffening of the wild-type calvarial bone and a large dimensional recovery during rapid loading following the constant displacement test. Such strain-dependent stiffening was likely associated with nanoscale dilatational bands and subsequent strain-energy transfer to the superior wild-type cross-linked collagen matrix network. The absence of dilatational bands formed by hydroxyapatite crystals and non-collagenous proteins in the α-klotho(-/-) bone samples likely diminished the intrinsic bone toughening mechanisms almost independent of viscoelastic behaviors. Such nanoscale structural alternations that occur during aging processes lead to crack propagation and result in overall bone fractures under large external stresses. In addition, dynamic mechanical analysis using instrumented nanoindentation was useful for the evaluation of bone mechanical properties in this pathological model of a genetic knockout mouse.

  8. Smac mimetic LCL161 overcomes protective ER stress induced by obatoclax, synergistically causing cell death in multiple myeloma

    PubMed Central

    Prasad, Vivek; Kimlinger, Teresa; Painuly, Utkarsh; Mukhopadhyay, Bedabrata; Haug, Jessica; Bi, Lintao; Rajkumar, S. Vincent; Kumar, Shaji

    2016-01-01

    Bcl2 and IAP families are anti-apoptotic proteins deregulated in multiple myeloma (MM) cells. Pharmacological inhibition of each of these families has shown significant activity only in subgroups of MM patients. Here, we have examined a broad-spectrum Bcl2 family inhibitor Obatoclax (OBX) in combination with a Smac mimetic LCL161 in MM cell lines and patient cells. LCL161/OBX combination induced synergistic cytotoxicity and anti-proliferative effects on a broad range of human MM cell lines. The cytotoxicity was mediated through inhibition of the IAPs, activation of caspases and up regulation of the pro-apoptotic proteins Bid, Bim, Puma and Noxa by the drug combination. In addition, we observed that OBX caused ER stress and activated the Unfolded Protein Response (UPR) leading to drug resistance. LCL161, however inhibited spliced Xbp-1, a pro-survival factor. In addition, we observed that OBX increased GRP78 localization to the cell surface, which then induced PI3K dependent Akt activation and resistance to cell death. LCL161 was able to block OBX induced Akt activation contributing to synergistic cell death. Our results support clinical evaluation of this combination strategy in relapsed refractory MM patients. PMID:27494845

  9. Oral lactoferrin protects against experimental candidiasis in mice

    PubMed Central

    Velliyagounder, Kabilan; Alsaedi, Wijdan; Alabdulmohsen, Waad; Markowitz, Kenneth; Fine, Daniel H.

    2015-01-01

    Aims To determine the role of lactoferrin in protecting the oral cavities of mice against Candida albicans infection in lactoferrin knockout (LFKO−/−) mice were compared to wild-type (WT) mice. We also determine the protective role of human lactoferrin in the LFKO−/− mice. Methods and Results Antibiotic treated immunosuppressed mice were inoculated with C. albicans (or sham infection) by oral swab and evaluated for the severity of infection after 7 days of infection. To determine the protective role of hLF, we added 0.3% solution of hLF to the drinking water given to some of the mice. CFU count, scoring of lesions and microscopic observations were carried out to determine the severity of infection. LFKO−/−I mice showed a 2 log (P=0.001) higher CFUs of C. albicans in the oral cavity compared to the WTI mice. LFKO−/−I mice given hLF had a 3 log (P=0.001) reduction in CFUs in the oral cavity compared to untreated LFKO−/−I mice. The severity of infection, observed by light microscopy revealed that the tongue of the LFKO−/−I mice showed more white patches compared to WTI and LFKO−/−I+hLF mice. Scanning electron microscopic observation revealed that more filiform papillae were destroyed in LFKO−/−I mice when compared to WTI or LFKO−/−I +hLF mice. Conclusions Human lactoferrin is important in protecting mice from oral C. albicans infection. Administered hLF may be used to prevent C. albicans infection. Significance and Impact of the Study Human lactoferrin, a multifunctional iron-binding glycoprotein can be used as a therapeutic active ingredient in oral health care products against C. albicans. PMID:25319508

  10. A peptide mimotope of type 8 pneumococcal capsular polysaccharide induces a protective immune response in mice.

    PubMed

    Buchwald, Ulrike K; Lees, Andrew; Steinitz, Michael; Pirofski, Liise-Anne

    2005-01-01

    Increasing antibiotic resistance and a rising patient population at risk for infection due to impaired immunity underscore the importance of vaccination against pneumococci. However, available capsular polysaccharide vaccines are often poorly immunogenic in patients at risk for pneumococcal disease. The goal of this study was to explore the potential of peptide mimotopes to function as alternative vaccine antigens to elicit a type-specific antibody response to pneumococci. We used a human monoclonal immunoglobulin A (IgA) antibody (NAD) to type 8 Streptococcus pneumoniae capsular polysaccharide (type 8 PS) to screen a phage display library, and the phage PUB1 displaying the peptide FHLPYNHNWFAL was selected after three rounds of biopanning. Inhibition studies with phage-displayed peptide or the peptide PUB1 and type 8 PS showed that PUB1 is a mimetic of type 8 PS. PUB1 conjugated to tetanus toxoid (PUB1-TT) induced a type 8 PS-specific antibody response in BALB/c mice, further defining it as a mimotope of type 8 PS. The administration of immune sera obtained from PUB1-TT-immunized mice earlier (days 14 and 21) and later (days 87 and 100) after primary and reimmunization resulted in a highly significant prolongation of the survival of naive mice after pneumococcal challenge compared to controls. The survival of PUB1-TT-immunized mice was also prolonged after pneumococcal challenge nearly 4 months after primary immunization. The efficacy of PUB1-TT-induced immune sera provides proof of principle that a mimotope-induced antibody response can protect against pneumococci and suggests that peptide mimotopes selected by type-specific human antibodies could hold promise as immunogens for pneumococci.

  11. Superoxide Dismutase (SOD)-mimetic M40403 Is Protective in Cell and Fly Models of Paraquat Toxicity: IMPLICATIONS FOR PARKINSON DISEASE.

    PubMed

    Filograna, Roberta; Godena, Vinay K; Sanchez-Martinez, Alvaro; Ferrari, Emanuele; Casella, Luigi; Beltramini, Mariano; Bubacco, Luigi; Whitworth, Alexander J; Bisaglia, Marco

    2016-04-22

    Parkinson disease is a debilitating and incurable neurodegenerative disorder affecting ∼1-2% of people over 65 years of age. Oxidative damage is considered to play a central role in the progression of Parkinson disease and strong evidence links chronic exposure to the pesticide paraquat with the incidence of the disease, most probably through the generation of oxidative damage. In this work, we demonstrated in human SH-SY5Y neuroblastoma cells the beneficial role of superoxide dismutase (SOD) enzymes against paraquat-induced toxicity, as well as the therapeutic potential of the SOD-mimetic compound M40403. Having verified the beneficial effects of superoxide dismutation in cells, we then evaluated the effects using Drosophila melanogaster as an in vivo model. Besides protecting against the oxidative damage induced by paraquat treatment, our data demonstrated that in Drosophila M40403 was able to compensate for the loss of endogenous SOD enzymes, acting both at a cytosolic and mitochondrial level. Because previous clinical trials have indicated that the M40403 molecule is well tolerated in humans, this study may have important implication for the treatment of Parkinson disease.

  12. Leishmania pifanoi amastigote antigens protect mice against cutaneous leishmaniasis.

    PubMed Central

    Soong, L; Duboise, S M; Kima, P; McMahon-Pratt, D

    1995-01-01

    In the search for a leishmaniasis vaccine, extensive studies have been carried out with promastigote (insect stage) molecules. Information in this regard on amastigote (mammalian host stage) molecules is limited. To investigate host immune responses to Leishmania amastigote antigens, we purified three stage-specific antigens (A2, P4, and P8) from in vitro-cultivated amastigotes of Leishmania pifanoi by using immunoaffinity chromatography. We found that with Corynebacterium parvum as an adjuvant, three intraperitoneal injections of 5 micrograms of P4 or P8 antigen provided partial to complete protection of BALB/c mice challenged with 10(5) to 10(7) L. pifanoi promastigotes. These immunized mice developed significantly smaller or no lesions and exhibited a 39- to 1.6 x 10(5)-fold reduction of lesion parasite burden after 15 to 20 weeks of infection. In addition, P8 immunization resulted in complete protection against L. amazonensis infection of CBA/J mice and partial protection of BALB/c mice, suggesting that this antigen provided cross-species protection of mice with different H-2 haplotypes. At different stages during infection, vaccinated mice exhibited profound proliferative responses to parasite antigens and increased levels of gamma interferon production, suggesting that a Th1 cell-mediated immune response is associated with the resistance in these mice. Taken together, the data in this report indicate the vaccine potential of amastigote-derived antigens. PMID:7642292

  13. Myofiber-specific inhibition of TGFβ signaling protects skeletal muscle from injury and dystrophic disease in mice.

    PubMed

    Accornero, Federica; Kanisicak, Onur; Tjondrokoesoemo, Andoria; Attia, Aria C; McNally, Elizabeth M; Molkentin, Jeffery D

    2014-12-20

    Muscular dystrophy (MD) is a disease characterized by skeletal muscle necrosis and the progressive accumulation of fibrotic tissue. While transforming growth factor (TGF)-β has emerged as central effector of MD and fibrotic disease, the cell types in diseased muscle that underlie TGFβ-dependent pathology have not been segregated. Here, we generated transgenic mice with myofiber-specific inhibition of TGFβ signaling owing to expression of a TGFβ type II receptor dominant-negative (dnTGFβRII) truncation mutant. Expression of dnTGFβRII in myofibers mitigated the dystrophic phenotype observed in δ-sarcoglycan-null (Sgcd(-/-)) mice through a mechanism involving reduced myofiber membrane fragility. The dnTGFβRII transgene also reduced muscle injury and improved muscle regeneration after cardiotoxin injury, as well as increased satellite cell numbers and activity. An unbiased global expression analysis revealed a number of potential mechanisms for dnTGFβRII-mediated protection, one of which was induction of the antioxidant protein metallothionein (Mt). Indeed, TGFβ directly inhibited Mt gene expression in vitro, the dnTGFβRII transgene conferred protection against reactive oxygen species accumulation in dystrophic muscle and treatment with Mt mimetics protected skeletal muscle upon injury in vivo and improved the membrane stability of dystrophic myofibers. Hence, our results show that the myofibers are central mediators of the deleterious effects associated with TGFβ signaling in MD.

  14. Context-specific protection of TGFα null mice from osteoarthritis

    PubMed Central

    Usmani, Shirine E.; Ulici, Veronica; Pest, Michael A.; Hill, Tracy L.; Welch, Ian D.; Beier, Frank

    2016-01-01

    Transforming growth factor alpha (TGFα) is a growth factor involved in osteoarthritis (OA). TGFα induces an OA-like phenotype in articular chondrocytes, by inhibiting matrix synthesis and promoting catabolic factor expression. To better understand TGFα’s potential as a therapeutic target, we employed two in vivo OA models: (1) post-traumatic and (2) aging related OA. Ten-week old and six-month old male Tgfa null mice and their heterozygous (control) littermates underwent destabilization of the medial meniscus (DMM) surgery. Disease progression was assessed histologically using the Osteoarthritis Research Society International (OARSI) scoring system. As well, spontaneous disease progression was analyzed in eighteen-month-old Tgfa null and heterozygous mice. Ten-week old Tgfa null mice were protected from OA progression at both seven and fourteen weeks post-surgery. No protection was seen however in six-month old null mice after DMM surgery, and no differences were observed between genotypes in the aging model. Thus, young Tgfa null mice are protected from OA progression in the DMM model, while older mice are not. In addition, Tgfa null mice are equally susceptible to spontaneous OA development during aging. Thus, TGFα might be a valuable therapeutic target in some post-traumatic forms of OA, however its role in idiopathic disease is less clear. PMID:27457421

  15. Context-specific protection of TGFα null mice from osteoarthritis.

    PubMed

    Usmani, Shirine E; Ulici, Veronica; Pest, Michael A; Hill, Tracy L; Welch, Ian D; Beier, Frank

    2016-07-26

    Transforming growth factor alpha (TGFα) is a growth factor involved in osteoarthritis (OA). TGFα induces an OA-like phenotype in articular chondrocytes, by inhibiting matrix synthesis and promoting catabolic factor expression. To better understand TGFα's potential as a therapeutic target, we employed two in vivo OA models: (1) post-traumatic and (2) aging related OA. Ten-week old and six-month old male Tgfa null mice and their heterozygous (control) littermates underwent destabilization of the medial meniscus (DMM) surgery. Disease progression was assessed histologically using the Osteoarthritis Research Society International (OARSI) scoring system. As well, spontaneous disease progression was analyzed in eighteen-month-old Tgfa null and heterozygous mice. Ten-week old Tgfa null mice were protected from OA progression at both seven and fourteen weeks post-surgery. No protection was seen however in six-month old null mice after DMM surgery, and no differences were observed between genotypes in the aging model. Thus, young Tgfa null mice are protected from OA progression in the DMM model, while older mice are not. In addition, Tgfa null mice are equally susceptible to spontaneous OA development during aging. Thus, TGFα might be a valuable therapeutic target in some post-traumatic forms of OA, however its role in idiopathic disease is less clear.

  16. CD4-mimetic sulfopeptide conjugates display sub-nanomolar anti-HIV-1 activity and protect macaques against a SHIV162P3 vaginal challenge

    PubMed Central

    Ariën, Kevin K.; Baleux, Françoise; Desjardins, Delphine; Porrot, Françoise; Coïc, Yves-Marie; Michiels, Johan; Bouchemal, Kawthar; Bonnaffé, David; Bruel, Timothée; Schwartz, Olivier; Le Grand, Roger; Vanham, Guido; Dereuddre-Bosquet, Nathalie; Lortat-Jacob, Hugues

    2016-01-01

    The CD4 and the cryptic coreceptor binding sites of the HIV-1 envelope glycoprotein are key to viral attachment and entry. We developed new molecules comprising a CD4 mimetic peptide linked to anionic compounds (mCD4.1-HS12 and mCD4.1-PS1), that block the CD4-gp120 interaction and simultaneously induce the exposure of the cryptic coreceptor binding site, rendering it accessible to HS12- or PS1- mediated inhibition. Using a cynomolgus macaque model of vaginal challenge with SHIV162P3, we report that mCD4.1-PS1, formulated into a hydroxyethyl-cellulose gel provides 83% protection (5/6 animals). We next engineered the mCD4 moiety of the compound, giving rise to mCD4.2 and mCD4.3 that, when conjugated to PS1, inhibited cell-free and cell-associated HIV-1 with particularly low IC50, in the nM to pM range, including some viral strains that were resistant to the parent molecule mCD4.1. These chemically defined molecules, which target major sites of vulnerability of gp120, are stable for at least 48 hours in conditions replicating the vaginal milieu (37 °C, pH 4.5). They efficiently mimic several large gp120 ligands, including CD4, coreceptor or neutralizing antibodies, to which their efficacy compares very favorably, despite a molecular mass reduced to 5500 Da. Together, these results support the development of such molecules as potential microbicides. PMID:27721488

  17. Chimeric plantibody passively protects mice against aerosolized ricin challenge.

    PubMed

    Sully, Erin K; Whaley, Kevin J; Bohorova, Natasha; Bohorov, Ognian; Goodman, Charles; Kim, Do H; Pauly, Michael H; Velasco, Jesus; Hiatt, Ernie; Morton, Josh; Swope, Kelsi; Roy, Chad J; Zeitlin, Larry; Mantis, Nicholas J

    2014-05-01

    Recent incidents in the United States and abroad have heightened concerns about the use of ricin toxin as a bioterrorism agent. In this study, we produced, using a robust plant-based platform, four chimeric toxin-neutralizing monoclonal antibodies that were then evaluated for the ability to passively protect mice from a lethal-dose ricin challenge. The most effective antibody, c-PB10, was further evaluated in mice as a therapeutic following ricin exposure by injection and inhalation.

  18. Dendritic Cell Targeting of Bacillus anthracis Protective Antigen Expressed by Lactobacillus acidophilus Protects Mice from Lethal Challenge

    DTIC Science & Technology

    2008-10-28

    Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge M...lethal chal- lenge. A vaccine strategy was established by using Lactobacillus acidophilus to deliver Bacillus anthracis protective antigen (PA) via...4. TITLE AND SUBTITLE Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice

  19. Macrophages in protective immunity to Hymenolepis nana in mice.

    PubMed

    Asano, K; Muramatsu, K; Ito, A; Okamoto, K

    1992-12-01

    When mice were treated with carrageenan just before infection with eggs of Hymenolepis nana, they failed to exhibit sterile immunity to the egg challenge, with evidence of a decrease in the number of peripheral macrophages (Mø) and the rate of carbon clearance. Although there were high levels of interleukin-1 (IL-1) released into the intestinal tracts of the parasitized mice at challenge infection, there was almost no release of IL-1 in those treated with carrageenan just before challenge. These results strongly suggest that Mø have an important role in protective immunity to H. nana in mice.

  20. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    PubMed

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  1. Quench Protection for the MICE Cooling Channel Coupling Magnet

    SciTech Connect

    Guo, Xing Long; Xu, Feng Yu; Wang, Li; Green, Michael A.; Pan, Heng; Wu, Hong; Liu, X.K.; Jia, Lin Xiang; Amm, Kathleen

    2008-08-02

    This paper describes the passive quench protection system selected for the muon ionization cooling experiment (MICE) cooling channel coupling magnet. The MICE coupling magnet will employ two methods of quench protection simultaneously. The most important method of quench protection in the coupling magnet is the subdivision of the coil. Cold diodes and resistors are put across the subdivisions to reduce both the voltage to ground and the hot-spot temperature. The second method of quench protection is quench-back from the mandrel, which speeds up the spread of the normal region within the coils. Combining quench back with coil subdivision will reduce the hot spot temperature further. This paper explores the effect on the quench process of the number of coil sub-divisions, the quench propagation velocity within the magnet, and the shunt resistance.

  2. Evaluating strategies to enhance the anti-tumor immune response to a carbohydrate mimetic peptide vaccine.

    PubMed

    Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Jousheghany, Fariba; Artaud, Cecile; Kieber-Emmons, Thomas

    2006-06-01

    Carbohydrate mimetic peptides of tumor associated carbohydrate antigens (TACA) are T-cell-dependent antigens and, therefore, immunization with these surrogates is predicted to overcome the low immunogenicity of carbohydrate antigens. Consistent with this hypothesis, we show that among the potential immune cells involved, peptide immunization led to an increase in T-cell populations. While peptide mimetics may also function as TLR binding ligands, we did not observe evidence of involvement of NK cells. Examining tumor challenged animals, we observed that peptide immunization and not tumor cells rendered IL-12 responsiveness to T-cells, as T-cells from peptide-immunized mice produced IFN-gamma upon stimulation with IL-12. Cyclophosphamide administration enhanced the anti-tumor efficacy of the vaccine, which was achieved by enhancing T-cell responses with no effect on NK cell population. Prophylactic immunization of mice with a DNA construct encoding carbohydrate mimetic peptides indicated a specific role for the mimotope vaccine in anti-tumor immune responses. These data suggest a role for both CD4(+) and CD8(+) T-cells induced by mimotopes of TACA in protective immunity against tumor cells.

  3. Frostbite Protection in Mice Expressing an Antifreeze Glycoprotein

    PubMed Central

    Heisig, Martin; Mattessich, Sarah; Rembisz, Alison; Acar, Ali; Shapiro, Martin; Booth, Carmen J.; Neelakanta, Girish; Fikrig, Erol

    2015-01-01

    Ectotherms in northern latitudes are seasonally exposed to cold temperatures. To improve survival under cold stress, they use diverse mechanisms to increase temperature resistance and prevent tissue damage. The accumulation of anti-freeze proteins that improve cold hardiness occurs in diverse species including plants, arthropods, fish, and amphibians. We previously identified an Ixodes scapularis anti-freeze glycoprotein, named IAFGP, and demonstrated its cold protective function in the natural tick host and in a transgenic Drosophila model. Here we show, in a transgenic mouse model expressing an anti-freeze glycoprotein, that IAFGP protects mammalian cells and mice from cold shock and frostbite respectively. Transgenic skin samples showed reduced cell death upon cold storage ex vivo and transgenic mice demonstrated increased resistance to frostbite injury in vivo. IAFGP actively protects mammalian tissue from freezing, suggesting its application for the prevention of frostbite, and other diseases associated with cold exposure. PMID:25714402

  4. Recombinant raccoon pox vaccine protects mice against lethal plague

    USGS Publications Warehouse

    Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T.

    2003-01-01

    Using a raccoon poxvirus (RCN) expression system, we have developed new recombinant vaccines that can protect mice against lethal plague infection. We tested the effects of a translation enhancer (EMCV-IRES) in combination with a secretory (tPA) signal or secretory (tPA) and membrane anchoring (CHV-gG) signals on in vitro antigen expression of F1 antigen in tissue culture and the induction of antibody responses and protection against Yersinia pestis challenge in mice. The RCN vector successfully expressed the F1 protein of Y. pestis in vitro. In addition, the level of expression was increased by the insertion of the EMCV-IRES and combinations of this and the secretory signal or secretory and anchoring signals. These recombinant viruses generated protective immune responses that resulted in survival of 80% of vaccinated mice upon challenge with Y. pestis. Of the RCN-based vaccines we tested, the RCN-IRES-tPA-YpF1 recombinant construct was the most efficacious. Mice vaccinated with this construct withstood challenge with as many as 1.5 million colony forming units of Y. pestis (7.7??104LD50). Interestingly, vaccination with F1 fused to the anchoring signal (RCN-IRES-tPA-YpF1-gG) elicited significant anti-F1 antibody titers, but failed to protect mice from plague challenge. Our studies demonstrate, in vitro and in vivo, the potential importance of the EMCV-IRES and secretory signals in vaccine design. These molecular tools provide a new approach for improving the efficacy of vaccines. In addition, these novel recombinant vaccines could have human, veterinary, and wildlife applications in the prevention of plague. ?? 2002 Elsevier Science Ltd. All rights reserved.

  5. Picroside II protects against sepsis via suppressing inflammation in mice

    PubMed Central

    Huang, Ying; Zhou, Miao; Li, Chengbao; Chen, Yuanli; Fang, Wei; Xu, Guo; Shi, Xueyin

    2016-01-01

    Picroside II, an iridoid compound extracted from Picrorhiza, exhibits anti-inflammatory and anti-apoptotic activities. We explored the protective effects and mechanisms of picroside II in a mouse model of sepsis induced by cecal ligation and puncture (CLP), using three groups of mice: Group A (sham), Group B (CLP+NS) and Group C (CLP+20 mg/kg picroside II). The mortality in mice with sepsis was decreased by the administration of picroside II, and lung injury was alleviated simultaneously. Picroside II treatment enhanced bacterial clearance in septic mice. Further, picroside II treatment alleviated the inflammatory response in sepsis and enhanced immune function by inhibiting the activation of NLRP3 inflammasome and NF-κB pathways. Picroside II may represent an anti-inflammatory drug candidate, providing novel insight into the treatment of sepsis. PMID:28078023

  6. Vaccine protection of leukopenic mice against Staphylococcus aureus bloodstream infection.

    PubMed

    Rauch, Sabine; Gough, Portia; Kim, Hwan Keun; Schneewind, Olaf; Missiakas, Dominique

    2014-11-01

    The risk for Staphylococcus aureus bloodstream infection (BSI) is increased in immunocompromised individuals, including patients with hematologic malignancy and/or chemotherapy. Due to the emergence of antibiotic-resistant strains, designated methicillin-resistant S. aureus (MRSA), staphylococcal BSI in cancer patients is associated with high mortality; however, neither a protective vaccine nor pathogen-specific immunotherapy is currently available. Here, we modeled staphylococcal BSI in leukopenic CD-1 mice that had been treated with cyclophosphamide, a drug for leukemia and lymphoma patients. Cyclophosphamide-treated mice were highly sensitive to S. aureus BSI and developed infectious lesions lacking immune cell infiltrates. Virulence factors of S. aureus that are key for disease establishment in immunocompetent hosts-α-hemolysin (Hla), iron-regulated surface determinants (IsdA and IsdB), coagulase (Coa), and von Willebrand factor binding protein (vWbp)-are dispensable for the pathogenesis of BSI in leukopenic mice. In contrast, sortase A mutants, which cannot assemble surface proteins, display delayed time to death and increased survival in this model. A vaccine with four surface antigens (ClfA, FnBPB, SdrD, and SpAKKAA), which was identified by genetic vaccinology using sortase A mutants, raised antigen-specific immune responses that protected leukopenic mice against staphylococcal BSI.

  7. Vaccine Protection of Leukopenic Mice against Staphylococcus aureus Bloodstream Infection

    PubMed Central

    Rauch, Sabine; Gough, Portia; Kim, Hwan Keun; Schneewind, Olaf

    2014-01-01

    The risk for Staphylococcus aureus bloodstream infection (BSI) is increased in immunocompromised individuals, including patients with hematologic malignancy and/or chemotherapy. Due to the emergence of antibiotic-resistant strains, designated methicillin-resistant S. aureus (MRSA), staphylococcal BSI in cancer patients is associated with high mortality; however, neither a protective vaccine nor pathogen-specific immunotherapy is currently available. Here, we modeled staphylococcal BSI in leukopenic CD-1 mice that had been treated with cyclophosphamide, a drug for leukemia and lymphoma patients. Cyclophosphamide-treated mice were highly sensitive to S. aureus BSI and developed infectious lesions lacking immune cell infiltrates. Virulence factors of S. aureus that are key for disease establishment in immunocompetent hosts—α-hemolysin (Hla), iron-regulated surface determinants (IsdA and IsdB), coagulase (Coa), and von Willebrand factor binding protein (vWbp)—are dispensable for the pathogenesis of BSI in leukopenic mice. In contrast, sortase A mutants, which cannot assemble surface proteins, display delayed time to death and increased survival in this model. A vaccine with four surface antigens (ClfA, FnBPB, SdrD, and SpAKKAA), which was identified by genetic vaccinology using sortase A mutants, raised antigen-specific immune responses that protected leukopenic mice against staphylococcal BSI. PMID:25183728

  8. Tumor suppressor p53 protects mice against Listeria monocytogenes infection

    PubMed Central

    Wang, Shaohui; Liu, Pingping; Wei, Jianchao; Zhu, Zixiang; Shi, Zixue; Shao, Donghua; Ma, Zhiyong

    2016-01-01

    Tumor suppressor p53 is involved in regulating immune responses, which contribute to antitumor and antiviral activity. However, whether p53 has anti-bacterial functions remains unclear. Listeria monocytogenes (LM) causes listeriosis in humans and animals, and it is a powerful model for studying innate and adaptive immunity. In the present study, we illustrate an important regulatory role of p53 during LM infection. p53 knockout (p53KO) mice were more susceptible to LM infection, which was manifested by a shorter survival time and lower survival rate. p53KO mice showed significant impairments in LM eradication. Knockdown of p53 in RAW264.7 and HeLa cells resulted in increased invasion and intracellular survival of LM. Furthermore, the invasion and intracellular survival of LM was inhibited in p53-overexpressing RAW264.7 and HeLa cells. LM-infected p53KO mice exhibited severe clinical symptoms and organ injury, presumably because of the abnormal production of the pro-inflammatory cytokines TNF-α, IL-6, IL-12, and IL-18. Decreased IFN-γ and GBP1 productions were observed in LM-infected p53-deficient mice or cells. The combination of these defects likely resulted in the overwhelming LM infection in the p53KO mice. These observations indicate that p53 serves as an important regulator of the host innate immune that protects against LM infection. PMID:27644341

  9. Macrophage autophagy protects against liver fibrosis in mice.

    PubMed

    Lodder, Jasper; Denaës, Timothé; Chobert, Marie-Noële; Wan, JingHong; El-Benna, Jamel; Pawlotsky, Jean-Michel; Lotersztajn, Sophie; Teixeira-Clerc, Fatima

    2015-01-01

    Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury. Experiments were performed in mice with mutations in the autophagy gene Atg5 in the myeloid lineage (Atg5(fl/fl) LysM-Cre mice, referred to as atg5(-/-)) and their wild-type (Atg5(fl/fl), referred to as WT) littermates. Liver fibrosis was induced by repeated intraperitoneal injection of carbon tetrachloride. In vitro studies were performed in cultures or co-cultures of peritoneal macrophages with hepatic myofibroblasts. As compared to WT littermates, atg5(-/-) mice exposed to chronic carbon tetrachloride administration displayed higher hepatic levels of IL1A and IL1B and enhanced inflammatory cell recruitment associated with exacerbated liver injury. In addition, atg5(-/-) mice were more susceptible to liver fibrosis, as shown by enhanced matrix and fibrogenic cell accumulation. Macrophages from atg5(-/-) mice secreted higher levels of reactive oxygen species (ROS)-induced IL1A and IL1B. Moreover, hepatic myofibroblasts exposed to the conditioned medium of macrophages from atg5(-/-) mice showed increased profibrogenic gene expression; this effect was blunted when neutralizing IL1A and IL1B in the conditioned medium of atg5(-/-) macrophages. Finally, administration of recombinant IL1RN (interleukin 1 receptor antagonist) to carbon tetrachloride-exposed atg5(-/-) mice blunted liver injury and fibrosis, identifying IL1A/B as central mediators in the deleterious effects of macrophage autophagy invalidation. These results uncover macrophage autophagy as a novel antiinflammatory pathway regulating liver fibrosis.

  10. Protective effects of two Lactobacillus plantarum strains in hyperlipidemic mice

    PubMed Central

    Wang, Li-Xin; Liu, Kai; Gao, Da-Wei; Hao, Ji-Kui

    2013-01-01

    AIM: To investigate the effects of Lactobacillus plantarum (L. plantarum) CAI6 and L. plantarum SC4 on hyperlipidemic mice. METHODS: Male Kunming mice were fed a high-cholesterol diet for 28 d to construct hyperlipidemic models. Hyperlipidemic mice and normal mice were assigned to 3 groups which were separately treated with L. plantarum CAI6, L. plantarum SC4, and physiological saline through oral gavage for 28 d. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were measured by commercially available enzyme kits. FACS Calibur flow cytometry was used to examine hepatic and renal nuclear factor-erythroid 2-related factor 2 (Nrf2) expression. The morphology of livers was checked by hematoxylin and eosin staining and optical microscope observation. RESULTS: Compared with normal mice, hyperlipidemic mice possessed significantly higher TC (3.50 ± 0.43 vs 2.89 ± 0.36, P < 0.01), TG (1.76 ± 0.07 vs 1.10 ± 0.16, P < 0.01), and LDL-C (1.72 ± 0.20 vs 0.82 ± 0.10, P< 0.01) levels, resulting in an increase of atherogenic index (AI) (2.34 ± 1.60 vs 0.93 ± 0.55, P < 0.05) and LDL-C/HDL-C ratio (1.43 ± 0.12 vs 0.51 ± 0.16, P < 0.05). After treatment with L. plantarum CAI6/L. plantarum SC4, TG (1.43 ± 0.27/1.54 ± 0.10 vs 1.76 ± 0.07, P < 0.01/P < 0.05) and LDL-C (1.42 ± 0.07/1.47 ± 0.12 vs 1.72 ± 0.20, P < 0.01/P < 0.01) in hyperlipidemic mice significantly decreased. In addition, TC, HDL-C, AI, and LDL-C/HDL-C ratio were all positively changed. Meanwhile, the treatment markedly alleviated hepatic steatosis and significantly stimulated Nrf2 expression (73.79 ± 0.80/72.96 ± 1.22 vs 54.94 ± 1.84, P < 0.01/P < 0.01) in hepatocytes of hyperlipidemic mice. CONCLUSION: L. plantarum CAI6 and L. plantarum SC4 may protect against cardiovascular disease by lipid metabolism regulation and Nrf2-induced antioxidative defense in hyperlipidemic mice. PMID:23716997

  11. Maresin 1 Mitigates Inflammatory Response and Protects Mice from Sepsis

    PubMed Central

    Li, Ruidong; Wang, Yaxin; Ma, Zhijun; Ma, Muyuan; Wang, Di; Xie, Gengchen; Yin, Yuping

    2016-01-01

    Sepsis, frequently caused by infection of bacteria, is considered as an uncontrollable systematic inflammation response syndrome (SIRS). Maresin 1 (Mar1) is a new proresolving mediator with potent anti-inflammatory effect in several animal models. However, its effect in sepsis is still not investigated. To address this question, we developed sepsis model in BALB/c mice by cecal ligation and puncture (CLP) with or without Mar1 treatment. Our data showed that Mar1 markedly improved survival rate and decreased the levels of proinflammatory cytokines in CLP mice such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). Furthermore, Mar1 reduced serum level of lipopolysaccharide (LPS) and enhanced the bacteria clearance in mice sepsis model. Moreover, Mar1 attenuated lung injury and decreased level of alanine transaminase (ALT), aspartate transaminase (AST), creatinine (Cre), and blood urea nitrogen (BUN) in serum in mice after CLP surgery. Treatment with Mar1 inhibited activation of nuclear factor kappa B (NF-κb) pathway. In conclusion, Mar1 exhibited protective effect in sepsis by reducing LPS, bacteria burden in serum, inhibiting inflammation response, and improving vital organ function. The possible mechanism is partly involved in inhibition of NF-κb activation. PMID:28042205

  12. SIRT6 protects against endothelial dysfunction and atherosclerosis in mice

    PubMed Central

    Xu, Suowen; Yin, Meimei; Koroleva, Marina; Mastrangelo, Michael A.; Zhang, Wenbo; Bai, Peter; Little, Peter J.; Jin, Zheng Gen

    2016-01-01

    SIRT6 is an important member of sirtuin family that represses inflammation, aging and DNA damage, three of which are causing factors for endothelial dysfunction. SIRT6 expression is decreased in atherosclerotic lesions from ApoE−/− mice and human patients. However, the role of SIRT6 in regulating vascular endothelial function and atherosclerosis is not well understood. Here we show that SIRT6 protects against endothelial dysfunction and atherosclerosis. Global and endothelium-specific SIRT6 knockout mice exhibited impaired endothelium-dependent vasorelaxation. Moreover, SIRT6+/− haploinsufficient mice fed a high-fat diet (HFD) also displayed impaired endothelium-dependent vasorelaxation. Importantly, SIRT6+/−;ApoE−/− mice after HFD feeding exhibited exacerbated atherosclerotic lesion development, concurrent with increased expression of the proinflammatory cytokine VCAM-1. Loss- and gain-of-SIRT6 function studies in cultured human endothelial cells (ECs) showed that SIRT6 attenuated monocyte adhesion to ECs. RNA-sequencing profiling revealed that SIRT6 overexpression decreased the expression of multiple atherosclerosis-related genes, including proatherogenic gene TNFSF4 (tumor necrosis factor superfamily member 4). Chromatin immunoprecipitation assays showed that SIRT6 decreased TNFSF4 gene expression by binding to and deacetylating H3K9 at TNFSF4 gene promoter. Collectively, these findings demonstrate that SIRT6 play a pivotal role in maintaining endothelial function and increased SIRT6 activity could be a new therapeutic strategy to combat atherosclerotic disease. PMID:27249230

  13. A Special Extract of Bacopa monnieri (CDRI-08)-Restored Memory in CoCl2-Hypoxia Mimetic Mice Is Associated with Upregulation of Fmr-1 Gene Expression in Hippocampus

    PubMed Central

    Rani, Anupama; Prasad, S.

    2015-01-01

    Fragile X mental retardation protein (FMRP) is a neuronal translational repressor and has been implicated in learning, memory, and cognition. However, the role of Bacopa monnieri extract (CDRI-08) in enhancing cognitive abilities in hypoxia-induced memory impairment via Fmr-1 gene expression is not known. Here, we have studied effects of CDRI-08 on the expression of Fmr-1 gene in the hippocampus of well validated cobalt chloride (CoCl2)-induced hypoxia mimetic mice and analyzed the data with alterations in spatial memory. Results obtained from Morris water maze test suggest that CoCl2 treatment causes severe loss of spatial memory and CDRI-08 is capable of reversing it towards that in the normal control mice. Our semiquantitative RT-PCR, Western blot, and immunofluorescence microscopic data reveal that CoCl2-induced hypoxia significantly upregulates the expression of Hif-1α and downregulates the Fmr-1 expression in the hippocampus, respectively. Further, CDRI-08 administration reverses the memory loss and this is correlated with significant downregulation of Hif-1α and upregulation of Fmr-1 expression. Our data are novel and may provide mechanisms of hypoxia-induced impairments in the spatial memory and action of CDRI-08 in the recovery of hypoxia led memory impairment involving Fmr-1 gene encoded protein called FMRP. PMID:26413121

  14. Preparation of orthogonally protected (2S, 3R)-2-amino-3-methyl-4-phosphonobutyric acid (Pmab) as a phosphatase–stable phosphothreonine mimetic and its use in the synthesis of Polo–box domain–binding peptides

    PubMed Central

    Liu, Fa; Park, Jung-Eun; Lee, Kyung S.; Burke, Terrence R.

    2014-01-01

    Reported herein is the first stereoselective synthesis of (2S,3R)-4-[bis-(tert-butyloxy)phosphinyl]-2-[(9H-fluoren-9-ylmethoxy)carbonyl]amino-3-methylbutanoic acid [(N-Fmoc, O,O-(bis-(tert-butyl))-Pmab, 4] as a hydrolytically-stable phosphothreonine mimetic bearing orthogonal protection compatible with standard solid-phase protocols. The synthetic approach used employs Evans’ oxazolidinone for chiral induction. Also presented is the application of 4 in the solid-phase synthesis of polo-like kinase 1 (Plk1) polo box domain (PBD)-binding peptides. These Pmab-containing peptides retain PBD binding efficacy similar to a parent pThr containing peptide. Reagent 4 should be a highly useful reagent for the preparation of signal transduction-directed peptides. PMID:24954959

  15. Inhibition of retrograde transport protects mice from lethal ricin challenge.

    PubMed

    Stechmann, Bahne; Bai, Siau-Kun; Gobbo, Emilie; Lopez, Roman; Merer, Goulven; Pinchard, Suzy; Panigai, Laetitia; Tenza, Danièle; Raposo, Graça; Beaumelle, Bruno; Sauvaire, Didier; Gillet, Daniel; Johannes, Ludger; Barbier, Julien

    2010-04-16

    Bacterial Shiga-like toxins are virulence factors that constitute a significant public health threat worldwide, and the plant toxin ricin is a potential bioterror weapon. To gain access to their cytosolic target, ribosomal RNA, these toxins follow the retrograde transport route from the plasma membrane to the endoplasmic reticulum, via endosomes and the Golgi apparatus. Here, we used high-throughput screening to identify small molecule inhibitors that protect cells from ricin and Shiga-like toxins. We identified two compounds that selectively block retrograde toxin trafficking at the early endosome-TGN interface, without affecting compartment morphology, endogenous retrograde cargos, or other trafficking steps, demonstrating an unexpected degree of selectivity and lack of toxicity. In mice, one compound clearly protects from lethal nasal exposure to ricin. Our work discovers the first small molecule that shows efficacy against ricin in animal experiments and identifies the retrograde route as a potential therapeutic target.

  16. The treatment of mice with Lactobacillus casei induces protection against Babesia microti infection.

    PubMed

    Bautista-Garfias, C R; Gómez, M B; Aguilar, B R; Ixta, O; Martínez, F; Mosqueda, J

    2005-12-01

    In this study, we report that administration of Lactobacillus casei confers protection to mice against the intracellular protozoan Babesia microti. Mice treated with L. casei orally or intraperitoneally were inoculated 7 days later with an infectious dose of B. microti. Mice treated with lactobacilli showed significant reduction in the percentage of parasitized erythrocytes (PPE) compared to untreated mice. When mice were inoculated intraperitoneally with L. casei 3 or 0 days before challenge with B. microti, the PPE was significantly lower compared to untreated mice and there were no differences between treated mice and mice immune to B. microti infection. When mice treated with live or dead L. casei were compared to mice inoculated with Freund Complete Adjuvant before a B. microti infection, a significant reduction of PPE was observed. These results show the protective effect of L. casei administered to mice against a B. microti infection and suggest that it might act by stimulating the innate immune system.

  17. Smallpox subunit vaccine produced in planta confers protection in mice

    PubMed Central

    Golovkin, Maxim; Spitsin, Sergei; Andrianov, Vyacheslav; Smirnov, Yuriy; Xiao, Yuhong; Pogrebnyak, Natalia; Markley, Karen; Brodzik, Robert; Gleba, Yuri; Isaacs, Stuart N.; Koprowski, Hilary

    2007-01-01

    We report here the in planta production of the recombinant vaccinia virus B5 antigenic domain (pB5), an attractive component of a subunit vaccine against smallpox. The antigenic domain was expressed by using efficient transient and constitutive plant expression systems and tested by various immunization routes in two animal models. Whereas oral administration in mice or the minipig with collard-derived insoluble pB5 did not generate an anti-B5 immune response, intranasal administration of soluble pB5 led to a rise of B5-specific immunoglobulins, and parenteral immunization led to a strong anti-B5 immune response in both mice and the minipig. Mice immunized i.m. with pB5 generated an antibody response that reduced virus spread in vitro and conferred protection from challenge with a lethal dose of vaccinia virus. These results indicate the feasibility of producing safe and inexpensive subunit vaccines by using plant production systems. PMID:17428917

  18. Absence of apolipoprotein E protects mice from cerebral malaria.

    PubMed

    Kassa, Fikregabrail Aberra; Van Den Ham, Kristin; Rainone, Anthony; Fournier, Sylvie; Boilard, Eric; Olivier, Martin

    2016-09-20

    Cerebral malaria claims the life of millions of people each year, particularly those of children, and is a major global public health problem. Thus, the identification of novel malaria biomarkers that could be utilized as diagnostic or therapeutic targets is becoming increasingly important. Using a proteomic approach, we previously identified unique biomarkers in the sera of malaria-infected individuals, including apolipoprotein E (ApoE). ApoE is the dominant apolipoprotein in the brain and has been implicated in several neurological disorders; therefore, we were interested in the potential role of ApoE in cerebral malaria. Here we report the first demonstration that cerebral malaria is markedly attenuated in ApoE(-/-) mice. The protection provided by the absence of ApoE was associated with decreased sequestration of parasites and T cells within the brain, and was determined to be independent from the involvement of ApoE receptors and from the altered lipid metabolism associated with the knock-out mice. Importantly, we demonstrated that treatment of mice with the ApoE antagonist heparin octasaccharide significantly decreased the incidence of cerebral malaria. Overall, our study indicates that the reduction of ApoE could be utilized in the development of therapeutic treatments aimed at mitigating the neuropathology of cerebral malaria.

  19. Absence of apolipoprotein E protects mice from cerebral malaria

    PubMed Central

    Kassa, Fikregabrail Aberra; Van Den Ham, Kristin; Rainone, Anthony; Fournier, Sylvie; Boilard, Eric; Olivier, Martin

    2016-01-01

    Cerebral malaria claims the life of millions of people each year, particularly those of children, and is a major global public health problem. Thus, the identification of novel malaria biomarkers that could be utilized as diagnostic or therapeutic targets is becoming increasingly important. Using a proteomic approach, we previously identified unique biomarkers in the sera of malaria-infected individuals, including apolipoprotein E (ApoE). ApoE is the dominant apolipoprotein in the brain and has been implicated in several neurological disorders; therefore, we were interested in the potential role of ApoE in cerebral malaria. Here we report the first demonstration that cerebral malaria is markedly attenuated in ApoE−/− mice. The protection provided by the absence of ApoE was associated with decreased sequestration of parasites and T cells within the brain, and was determined to be independent from the involvement of ApoE receptors and from the altered lipid metabolism associated with the knock-out mice. Importantly, we demonstrated that treatment of mice with the ApoE antagonist heparin octasaccharide significantly decreased the incidence of cerebral malaria. Overall, our study indicates that the reduction of ApoE could be utilized in the development of therapeutic treatments aimed at mitigating the neuropathology of cerebral malaria. PMID:27647324

  20. Cannabinoid receptor 2 protects against acute experimental sepsis in mice.

    PubMed

    Gui, Huan; Sun, Yang; Luo, Zhu-Min; Su, Ding-Feng; Dai, Sheng-Ming; Liu, Xia

    2013-01-01

    The systemic inflammatory response syndrome can be self-limited or can progress to severe sepsis and septic shock. Despite significant advances in the understanding of the molecular and cellular mechanisms of septic shock, it is still one of the most frequent and serious problems confronting clinicians in the treatments. And the effects of cannabinoid receptor 2 (CB2R) on the sepsis still remain undefined. The present study was aimed to explore the role and mechanism of CB2R in acute sepsis model of mice. Here, we found that mice were more vulnerable for lipopolysaccharide- (LPS-) induced death and inflammation after CB2R deletion (CB2R(-/-)). CB2R agonist, GW405833, could significantly extend the survival rate and decrease serum proinflammatory cytokines in LPS-treated mice. GW405833 dose-dependently inhibits proinflammatory cytokines release in splenocytes and peritoneal macrophages as well as splenocytes proliferation, and these effects were partly abolished in CB2R(-/-) splenocytes but completely abolished in CB2R(-/-) peritoneal macrophages. Further studies showed that GW405833 inhibits LPS-induced phosphorylation of ERK1/2 and STAT3 and blocks I κ B α degradation and NF- κB p65 nuclear translocation in macrophages. All data together showed that CB2R provides a protection and is a potential therapeutic target for the sepsis.

  1. Heat stress and protection from permanent acoustic injury in mice.

    PubMed

    Yoshida, N; Kristiansen, A; Liberman, M C

    1999-11-15

    The inner ear can be permanently damaged by overexposure to high-level noise; however, damage can be decreased by previous exposure to moderate level, nontraumatic noise (). The mechanism of this "protective" effect is unclear, but a role for heat shock proteins has been suggested. The aim of the present study was to directly test protective effects of heat stress in the ear. For physiological experiments, CBA/CaJ mice were exposed to an intense octave band of noise (8-16 kHz) at 100 dB SPL for 2 hr, either with or without previous whole-body heat stress (rectal temperature to 41. 5 degrees C for 15 min). The interval between heat stress and sound exposure varied in different groups from 6 to 96 hr. One week later, inner ear function was assessed in each animal via comparison of compound action potential thresholds to mean values from unexposed controls. Permanent threshold shifts (PTSs) were approximately 40 dB in the group sound-exposed without previous heat stress. Heat-stressed animals were protected from acoustic injury: mean PTS in the group with 6 hr heat-stress-trauma interval was reduced to approximately 10 dB. This heat stress protection disappeared when the treatment-trauma interval surpassed 24 hr. A parallel set of quantitative PCR experiments measured heat-shock protein mRNA in the cochlea and showed 100- to 200-fold increase over control 30 min after heat treatment, with levels returning to baseline at 6 hr after treatment. Results are consistent with the idea that upregulation of heat shock proteins protects the ear from acoustic injury.

  2. Silymarin Protects Against Acute Ethanol-Induced Hepatotoxicity in Mice

    PubMed Central

    Song, Zhenyuan; Deaciuc, Ion; Song, Ming; Lee, David Y.-W.; Liu, Yanze; Ji, Xiaosheng; McClain, Craig

    2014-01-01

    Background Accumulated evidence has demonstrated that both oxidative stress and abnormal cytokine production, especially tumor necrosis factor-α (TNF), play important etiological roles in the pathogenesis of alcoholic liver disease (ALD). Agents that have both antioxidant and anti-inflammation properties, particularly anti-TNF production, represent promising therapeutic interventions for ALD. We investigated the effects and the possible mechanism(s) of silymarin on liver injury induced by acute ethanol (EtOH) administration. Methods Nine-week-old mice were divided into 4 groups, control, silymarin treatment, EtOH treatment, and silymarin/EtOH treatment, with 6 mice in each group. Because control and silymarin values were virtually identical, only control treatment is shown for ease of viewing. Ethanol-treated mice received EtOH [5 g/kg body weight (BW)] by gavage every 12 hours for a total of 3 doses. Control mice received an isocalorical maltose solution. In the silymarin/EtOH group, silymarin was dissolved in the EtOH and gavaged simultaneously with EtOH at a dose of 200 mg/kg BW. At 4 hours after the last dosing, the mice were anesthetized and subsequent serum alanine aminotransferase (ALT) level, hepatic lipid peroxidation, enzymatic activity of hepatic cytochrome P450 2E1, hepatic TNF-α, and glutathione (GSH) levels were measured. Histopathological change was assessed by hematoxylin and eosin staining. Results Acute EtOH administration caused prominent hepatic microvesicular steatosis with mild necrosis and an elevation of serum ALT activity, induced a significant decrease in hepatic GSH in conjunction with enhanced lipid peroxidation, and increased hepatic TNF production. Supplementation with a standardized silymarin attenuated these adverse changes induced by acute EtOH administration. Conclusions Silymarin protects against the liver injury caused by acute EtOH administration. In view of its nontoxic nature, it may be developed as an effective therapeutic

  3. Melatonin protects uterus and oviduct exposed to nicotine in mice

    PubMed Central

    Saadat, Seyedeh Nazanin Seyed; Jahromi, Sina Khajeh; Homafar, Mohammad Amin; Haghiri, Mostafa

    2014-01-01

    Smoking is associated with higher infertility risk. The aim of this study was to evaluate protective effects of melatonin on the uterus and oviduct in mice exposed to nicotine. Adult female mice (n=32) were divided into four groups. Group A: control animals received normal saline, Group B: injected with nicotine 40µg/kg, Group C: injected with melatonin 10 µg, Group D: injected with nicotine 40µg/kg and melatonin 10 µg. All animals were treated over 15 days intraperitoneally. On the 16th day, animals in the estrus phase were dissected and their uterus and oviducts were removed. Immunohistochemistry was recruited for studying apoptosis and for detection of estrogen receptor (ER) alpha in luminal epithelium of the uterus and oviduct. Enzyme-linked immunosorbent assay was used for serum estradiol level determination. Nicotine in group B decreased estradiol level and ERalpha numbers both in the uterus and oviduct (p<0.05). Co-administration of melatonin-nicotine in Group D ameliorated the histology of the uterus and oviduct, increased ERalpha numbers and reduced apoptosis in the uterus and oviduct compared with the nicotine Group B (p<0.05). This study indicates that nicotine impairs the histology of the uterus and oviduct and co-administration of melatonin-nicotine ameliorates these findings, partly through alteration in ERalpha numbers and reduction of apoptosis. PMID:26038675

  4. Chitohexaose protects against acetaminophen-induced hepatotoxicity in mice

    PubMed Central

    Barman, P K; Mukherjee, R; Prusty, B K; Suklabaidya, S; Senapati, S; Ravindran, B

    2016-01-01

    Acetaminophen (N-acetyl-para-aminophenol (APAP)) toxicity causes acute liver failure by inducing centrilobular hepatic damage as a consequence of mitochondrial oxidative stress. Sterile inflammation, triggered by hepatic damage, facilitates gut bacterial translocation leading to systemic inflammation; TLR4-mediated activation by LPS has been shown to have a critical role in APAP-mediated hepatotoxicity. In this study, we demonstrate significant protection mediated by chitohexaose (Chtx) in mice challenged with a lethal dose of APAP (400 mg/kg b.w.). Decreased mortality by Chtx was associated with reduced hepatic damage, increased peritoneal migration of neutrophils, decreased mRNA expression of IL-1β as well as inhibition of inflammasome activation in liver. Further, an alternate mouse model of co-administration of a sublethal doses of APAP (200 mg/kg b.w.) and LPS (5 mg/kg b.w.) operating synergistically and mediating complete mortality was developed. Overwhelming inflammation, characterized by increased inflammatory cytokines (TNF-α, IL-1β and so on) in liver as well as in circulation and mortality was demonstrable in this model. Also, Chtx administration mediated significant reversal of mortality in APAP+LPS co-administered mice, which was associated with reduced IL-1β in liver and plasma cytokines in this model. In conclusion, Chtx being a small molecular weight linear carbohydrate offers promise for clinical management of liver failure associated with APAP overdose. PMID:27171266

  5. The Potent Humanin Analogue (HNG) Protects Germ Cells and Leucocytes While Enhancing Chemotherapy-Induced Suppression of Cancer Metastases in Male Mice.

    PubMed

    Lue, YanHe; Swerdloff, Ronald; Wan, Junxiang; Xiao, Jialin; French, Samuel; Atienza, Vince; Canela, Victor; Bruhn, Kevin W; Stone, Brian; Jia, Yue; Cohen, Pinchas; Wang, Christina

    2015-12-01

    Humanin is a peptide that is cytoprotective against stresses in many cell types. We investigated whether a potent humanin analogue S14G-humanin (HNG) would protect against chemotherapy-induced damage to normal cells without interfering with the chemotherapy-induced suppression of cancer cells. Young adult male mice were inoculated iv with murine melanoma cells. After 1 week, cancer-bearing mice were randomized to receive either: no treatment, daily ip injection of HNG, a single ip injection of cyclophosphamide (CP), or CP+HNG and killed at the end of 3 weeks. HNG rescued the CP-induced suppression of leucocytes and protected germ cell from CP-induced apoptosis. Lung metastases were suppressed by HNG or CP alone, and further suppressed by CP+HNG treatment. Plasma IGF-1 levels were suppressed by HNG with or without CP treatment. To investigate whether HNG maintains its protective effects on spermatogonial stem cells, sperm output, and peripheral leucocytes after repeated doses of CP, normal adult male mice received: no treatment, daily sc injection of HNG, 6 ip injections of CP at 5-day intervals, and the same regimens of CP+HNG and killed at the end of 4 weeks of treatment. Cauda epididymal sperm counts were elevated by HNG and suppressed by CP. HNG rescued the CP-induced suppression of spermatogonial stem cells, sperm count and peripheral leucocytes. We conclude that HNG 1) protects CP-induced loss of male germ cells and leucocytes, 2) enhances CP-induced suppression of cancer metastases, and 3) acts as a caloric-restriction mimetic by suppressing IGF-1 levels. Our findings suggest that humanin analogues may be promising adjuvants to chemotherapy.

  6. Baicalin Protects Mice from Lethal Infection by Enterohemorrhagic Escherichia coli.

    PubMed

    Zhang, Yong; Qi, Zhimin; Liu, Yan; He, Wenqi; Yang, Cheng; Wang, Quan; Dong, Jing; Deng, Xuming

    2017-01-01

    Shiga-like toxin-producing Escherichia coli (STEC) O157:H7 poses grave challenges to public health by its ability to cause severe colonic diseases and renal failure in both human and animals. Shiga-like toxins are the major pathogenic factor for some highly virulent E. coli expecially Shiga-like toxin 2. Conventional treatments such as antibiotics can facilitate the release of the toxin thus potentially exacerbate the diseases. Small molecule inhibitors and antibodies capable of neutralizing the toxins are the two major venues for the development of therapeutics against enterohemorrhagic serotype E. coli infection. While promising and potentially effective at clinical settings, these approaches need to overcome obstacles such as the limited routes of administration, responses from the host immune system, which are known to differ greatly among individuals. Our previous studies demonstrate that Baicalin (BAI), a flavonoid compound isolated from Scutellaria baicalensis protects against rStx2-induced cell cytotoxicity and also protects mice from lethal rStx2 challenges by inducing Stx2 to form inactive oligomers. In this manuscript, we present some exciting work showing that baicalin is an effective agent for therapeutic treatment of STEC O157:H7 infection.

  7. Baicalin Protects Mice from Lethal Infection by Enterohemorrhagic Escherichia coli

    PubMed Central

    Zhang, Yong; Qi, Zhimin; Liu, Yan; He, Wenqi; Yang, Cheng; Wang, Quan; Dong, Jing; Deng, Xuming

    2017-01-01

    Shiga-like toxin-producing Escherichia coli (STEC) O157:H7 poses grave challenges to public health by its ability to cause severe colonic diseases and renal failure in both human and animals. Shiga-like toxins are the major pathogenic factor for some highly virulent E. coli expecially Shiga-like toxin 2. Conventional treatments such as antibiotics can facilitate the release of the toxin thus potentially exacerbate the diseases. Small molecule inhibitors and antibodies capable of neutralizing the toxins are the two major venues for the development of therapeutics against enterohemorrhagic serotype E. coli infection. While promising and potentially effective at clinical settings, these approaches need to overcome obstacles such as the limited routes of administration, responses from the host immune system, which are known to differ greatly among individuals. Our previous studies demonstrate that Baicalin (BAI), a flavonoid compound isolated from Scutellaria baicalensis protects against rStx2-induced cell cytotoxicity and also protects mice from lethal rStx2 challenges by inducing Stx2 to form inactive oligomers. In this manuscript, we present some exciting work showing that baicalin is an effective agent for therapeutic treatment of STEC O157:H7 infection. PMID:28337193

  8. Effect of antiflagellar serum in the protection of mice against Clostridium chauvoei.

    PubMed

    Tamura, Y; Tanaka, S

    1984-02-01

    Specific antiflagellar serum of Clostridium chauvoei showed a powerful protective effect which prevented bacterial growth in the liver, but not in infected muscle, against intramuscular challenge with calcium chloride-activated spores in normal mice. No protective effect was observed in mice with polymorphonuclear leucocytes depleted by cyclophosphamide treatment. The antiflagellar serum had approximately the same protective effect in mice with macrophages blocked selectively by carrageenan as it did in normal mice. We suggest that the antiflagellar serum exerted its effect by opsonic function and that opsonized C. chauvoei was eliminated mainly by polymorphonuclear leucocytes rather than by macrophages.

  9. Active protection of mice against Salmonella typhi by immunization with strain-specific porins.

    PubMed

    Isibasi, A; Ortiz-Navarrete, V; Paniagua, J; Pelayo, R; González, C R; García, J A; Kumate, J

    1992-01-01

    NIH mice were immunized with between 2.5 and 30 micrograms of two highly purified porins, 34 kDa and 36 kDa, isolated from the virulent strain Salmonella typhi 9,12, Vi:d. Of mice immunized with 10 micrograms of porins, 90% were protected against a challenge with up to 500 LD50 (50% lethal doses) of S. typhi 9,12,Vi:d and only 30% protection was observed in mice immunized with the same dose of porins but challenged with the heterologous strain Salmonella typhimurium. These results demonstrate the utility of porins for the induction of a protective status against S. typhi in mice.

  10. Power Supply and Quench Protection for the MICE ChannelMagnets

    SciTech Connect

    Green, Michael A.; Witte, Holger

    2005-09-07

    This report discusses the power supply and quench protection system selected for the MICE superconducting coupling and focusing magnets. First, the MICE focusing and coupling magnet parameters are presented. Second, the report describes passive quench protection systems for these focusing and coupling magnets. Thermal quench-back from the magnet mandrel, which is a key to the MICE magnet quench protection system, is also discussed. A system of diodes and resistors is used to control the voltage to ground as the magnet quenches. Third, the report presents the magnet power supply parameters for MICE magnets.

  11. Participation of platelets in protection against larval Taenia taeniaeformis infection in mice.

    PubMed

    Kakuda, T; Ooi, H K; Oku, Y; Kamiya, M

    1996-03-01

    The participation of platelets in the protection against larval Taenia taeniaeformis was studied. CB-17 SCID mice, susceptible to T. taeniaeformis, were protected against a challenge infection with T. taeniaeformis by the passive transfer of platelets from T. taeniaeformis-infected normal CB-17 mice, resistant to T. taeniaeformis.

  12. A Nanoparticulate Ferritin-Core Mimetic Is Well Taken Up by HuTu 80 Duodenal Cells and Its Absorption in Mice Is Regulated by Body Iron12

    PubMed Central

    Latunde-Dada, Gladys O; Pereira, Dora IA; Tempest, Bethan; Ilyas, Hibah; Flynn, Angela C; Aslam, Mohamad F; Simpson, Robert J; Powell, Jonathan J

    2014-01-01

    Background: Iron (Fe) deficiency anemia remains the largest nutritional deficiency disorder worldwide. How the gut acquires iron from nano Fe(III), especially at the apical surface, is incompletely understood. Objective: We developed a novel Fe supplement consisting of nanoparticulate tartrate-modified Fe(III) poly oxo-hydroxide [here termed nano Fe(III)], which mimics the Fe oxide core of ferritin and effectively treats iron deficiency anemia in rats. Methods: We determined transfer to the systemic circulation of nano Fe(III) in iron-deficient and iron-sufficient outbread Swiss mouse strain (CD1) mice with use of 59Fe-labeled material. Iron deficiency was induced before starting the Fe-supplementation period through reduction of Fe concentrations in the rodent diet. A control group of iron-sufficient mice were fed a diet with adequate Fe concentrations throughout the study. Furthermore, we conducted a hemoglobin repletion study in which iron-deficient CD1 mice were fed for 7 d a diet supplemented with ferrous sulfate (FeSO4) or nano Fe(III). Finally, we further probed the mechanism of cellular acquisition of nano Fe(III) by assessing ferritin formation, as a measure of Fe uptake and utilization, in HuTu 80 duodenal cancer cells with targeted inhibition of divalent metal transporter 1 (DMT1) and duodenal cytochrome b (DCYTB) before exposure to the supplemented iron sources. Differences in gene expression were assessed by quantitative polymerase chain reaction. Results: Absorption (means ± SEMs) of nano Fe(III) was significantly increased in iron-deficient mice (58 ± 19%) compared to iron-sufficient mice (18 ± 17%) (P = 0.0001). Supplementation of the diet with nano Fe(III) or FeSO4 significantly increased hemoglobin concentrations in iron-deficient mice (170 ± 20 g/L, P = 0.01 and 180 ± 20 g/L, P = 0.002, respectively). Hepatic hepcidin mRNA expression reflected the nonheme-iron concentrations of the liver and was also comparable for both nano Fe(III)– and

  13. Sappanone A protects mice against cisplatin-induced kidney injury.

    PubMed

    Kang, Lin; Zhao, Huanfen; Chen, Chen; Zhang, Xiuzhi; Xu, Mingtang; Duan, Huijun

    2016-09-01

    Cisplatin (CP) is an anti-cancer drug that often causes nephrotoxicity due to enhanced inflammatory response and oxidative stress. Sappanone A (SA), a homoisoflavanone isolated from the heartwood of Caesalpinia sappan, has been known to have antioxidant and anti-inflammatory effects. In this study, we aimed to investigate the protective effects and mechanism of SA on CP-induced kidney injury in mice. The results showed that treatment of SA improved CP-induced histopathalogical injury and renal dysfunction. SA also inhibited CP-induced MPO, MDA, TNF-α and IL-1β production and up-regulated the activities of SOD and GSH-PX decreased by CP. SA significantly inhibited the apoptosis rate of kidney tissues induced by CP. Furthermore, SA was found to inhibit CP-induced NF-κB activation. Treatment of SA up-regulated the expression of Nrf2 and HO-1 in a dose-dependent manner. In vitro, SA dose-dependently inhibited CP-induced TNF-α and IL-1β production and NF-κB activation in HK-2 cells. In conclusion, these results suggested that SA inhibited CP-induced kidney injury through activating Nrf2 and inhibiting NF-κB activation. SA was a potential therapeutic drug for treating CP-induced kidney injury.

  14. Equine hyperimmune serum protects mice against Clostridium difficile spore challenge

    PubMed Central

    Yan, Weiwei; Shin, Kang-Soon; Wang, Shih-Jon; Xiang, Hua; Divers, Thomas; McDonough, Sean; Bowman, James; Rowlands, Anne; Akey, Bruce; Mohamed, Hussni

    2014-01-01

    Clostridium (C.) difficile is a common cause of nosocomial diarrhea in horses. Vancomycin and metronidazole have been used as standard treatments but are only moderately effective, which highlights the need for a novel alternative therapy. In the current study, we prepared antiserum of equine origin against both C. difficile toxins A and B as well as whole-cell bacteria. The toxin-neutralizing activities of the antibodies were evaluated in vitro and the prophylactic effects of in vivo passive immunotherapy were demonstrated using a conventional mouse model. The data demonstrated that immunized horses generated antibodies against both toxins A and B that possessed toxin-neutralizing activity. Additionally, mice treated with the antiserum lost less weight without any sign of illness and regained weight back to a normal range more rapidly compared to the control group when challenged orally with 107 C. difficile spores 1 day after serum injection. These results indicate that intravenous delivery of hyperimmune serum can protect animals from C. difficile challenge in a dose-dependent manner. Hence, immunotherapy may be a promising prophylactic strategy for preventing C. difficile infection in horses. PMID:24136208

  15. Protective effects of baicalin against bromocriptine induced abortion in mice.

    PubMed

    Ma, Ai-Tuan; Zhong, Xiu-Hui; Liu, Zhan-Min; Shi, Wan-Yu; Du, Jian; Zhai, Xiang-He; Zhang, Tie; Meng, Li-Gen

    2009-01-01

    The Chinese herbal medicine Huang Qin (Radix Scutellariae) had been used for restless fetus for hundreds of years in China, however, little attention had been given to the components of the herb, specifically its ability to exert abortion-preventing effects at the maternal fatal interface. The present study was carried out to investigate the protective effects of baicalin and the possible mechanisms on pregnancies. Baicalin (at 10, 20, and 50 mg/kg BW respectively) was gavaged to bromocriptine-treated mice from gestation day (GD) 1 through GD 7. Abortion rates were calculated and the changes of interferon-gamma (IFN-gamma), interleukin-10 (IL-10) and progesterone were assayed on different gestation days. Results showed that the embryonic death rates were significantly decreased in groups supplemented with 20 or 50 mg/kg BW of baicalin, accompanied with reduced IFN-gamma and enhanced progesterone contents. Moreover, the highest levels of IFN-gamma appeared on GD 5 both in the control and in baicalin treated groups. It is concluded that baicalin can exert an anti-abortive effect by cutting down the production of IFN-gamma and elevating the levels of progesterone in a dose dependent manner and IFN-gamma is involved in an inflammatory reaction which is beneficial for a successful implantation.

  16. Lupeol Protects Against Cerulein-Induced Acute Pancreatitis in Mice.

    PubMed

    Kim, Min-Jun; Bae, Gi-Sang; Choi, Sun Bok; Jo, Il-Joo; Kim, Dong-Goo; Shin, Joon-Yeon; Lee, Sung-Kon; Kim, Myoung-Jin; Song, Ho-Joon; Park, Sung-Joo

    2015-10-01

    Lupeol is a triterpenoid commonly found in fruits and vegetables and is known to exhibit a wide range of biological activities, including antiinflammatory and anti-cancer effects. However, the effects of lupeol on acute pancreatitis specifically have not been well characterized. Here, we investigated the effects of lupeol on cerulein-induced acute pancreatitis in mice. Acute pancreatitis was induced via an intraperitoneal injection of cerulein (50 µg/kg). In the lupeol treatment group, lupeol was administered intraperitoneally (10, 25, or 50 mg/kg) 1 h before the first cerulein injection. Blood samples were taken to determine serum cytokine and amylase levels. The pancreas was rapidly removed for morphological examination and used in the myeloperoxidase assay, trypsin activity assay, and real-time reverse transcription polymerase chain reaction. In addition, we isolated pancreatic acinar cells using a collagenase method to examine the acinar cell viability. Lupeol administration significantly attenuated the severity of pancreatitis, as was shown by reduced pancreatic edema, and neutrophil infiltration. In addition, lupeol inhibited elevation of digestive enzymes and cytokine levels, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, and interleukin (IL)-6. Furthermore, lupeol inhibited the cerulein-induced acinar cell death. In conclusion, these results suggest that lupeol exhibits protective effects on cerulein-induced acute pancreatitis.

  17. The novel antiepileptic drug imepitoin compares favourably to other GABA-mimetic drugs in a seizure threshold model in mice and dogs.

    PubMed

    Löscher, Wolfgang; Hoffmann, Katrin; Twele, Friederike; Potschka, Heidrun; Töllner, Kathrin

    2013-11-01

    Recently, the imidazolinone derivative imepitoin has been approved for treatment of canine epilepsy. Imepitoin acts as a low-affinity partial agonist at the benzodiazepine (BZD) site of the GABAA receptor and is the first compound with such mechanism that has been developed as an antiepileptic drug (AED). This mechanism offers several advantages compared to full agonists, including less severe adverse effects and a lack of tolerance and dependence liability, which has been demonstrated in rodents, dogs, and nonhuman primates. In clinical trials in epileptic dogs, imepitoin was shown to be an effective and safe AED. Recently, seizures in dogs have been proposed as a translational platform for human therapeutic trials on new epilepsy treatments. In the present study, we compared the anticonvulsant efficacy of imepitoin, phenobarbital and the high-affinity partial BZD agonist abecarnil in the timed i.v. pentylenetetrazole (PTZ) seizure threshold test in dogs and, for comparison, in mice. Furthermore, adverse effects of treatments were compared in both species. All drugs dose-dependently increased the PTZ threshold in both species, but anticonvulsant efficacy was higher in dogs than mice. At the doses selected for this study, imepitoin was slightly less potent than phenobarbital in increasing seizure threshold, but markedly more tolerable in both species. Effective doses of imepitoin in the PTZ seizure model were in the same range as those suppressing spontaneous recurrent seizures in epileptic dogs. The study demonstrates that low-affinity partial agonists at the benzodiazepine site of the GABAA receptor, such as imepitoin, offer advantages as a new category of AEDs.

  18. Neural ECM mimetics.

    PubMed

    Estrada, Veronica; Tekinay, Ayse; Müller, Hans Werner

    2014-01-01

    The consequence of numerous neurological disorders is the significant loss of neural cells, which further results in multilevel dysfunction or severe functional deficits. The extracellular matrix (ECM) is of tremendous importance for neural regeneration mediating ambivalent functions: ECM serves as a growth-promoting substrate for neurons but, on the other hand, is a major constituent of the inhibitory scar, which results from traumatic injuries of the central nervous system. Therefore, cell and tissue replacement strategies on the basis of ECM mimetics are very promising therapeutic interventions. Numerous synthetic and natural materials have proven effective both in vitro and in vivo. The closer a material's physicochemical and molecular properties are to the original extracellular matrix, the more promising its effectiveness may be. Relevant factors that need to be taken into account when designing such materials for neural repair relate to receptor-mediated cell-matrix interactions, which are dependent on chemical and mechanical sensing. This chapter outlines important characteristics of natural and synthetic ECM materials (scaffolds) and provides an overview of recent advances in design and application of ECM materials for neural regeneration, both in therapeutic applications and in basic biological research.

  19. Caveolin-1 Protects B6129 Mice against Helicobacter pylori Gastritis

    PubMed Central

    Hitkova, Ivana; Yuan, Gang; Anderl, Florian; Gerhard, Markus; Kirchner, Thomas; Reu, Simone; Röcken, Christoph; Schäfer, Claus; Schmid, Roland M.; Vogelmann, Roger; Ebert, Matthias P. A.; Burgermeister, Elke

    2013-01-01

    Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies (“humming bird”) compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells. PMID:23592983

  20. Mechanism of T-cell mediated protection in newborn mice against a Chlamydia infection.

    PubMed

    Pal, Sukumar; de la Maza, Luis M

    2013-01-01

    To determine the immune components needed for protection of newborn mice against Chlamydia muridarum, animals born to Chlamydia-immunized and to sham-immunized dams were infected intranasally with C. muridarum at 2 post-natal days. T-cells isolated from immunized or sham-immunized adult mice were adoptively transferred to newborn mice at the time of infection. Also, to establish what cytokines are involved in protection, IFN-γ, TNF-α, IL-10, and IL-12 were passively transferred to newborn mice. To assess the Chlamydia burden in the lungs mice were euthanized at 12 post-natal days. When T-cells from immunized adult mice were transferred, mice born to and fed by immunized dams were significantly protected as evidenced by the reduced number of Chlamydia isolated from the lungs compared to mice born to and fed by sham-immunized dams. Transfer of IFN-γ and TNF-α also significantly reduced the number of Chlamydia in the lungs of mice born to immunized dams. Transfer of IL-10 or IL-12 did not result in a significant reduction of Chlamydia. In vitro T-cell proliferation data suggest that neonatal antigen presenting cells can present Chlamydia antigens to adult T-cells. In conclusion, maternal antibodies and Chlamydia specific T-cells or Th1 cytokines are required for protection of neonates against this pathogen.

  1. Protection of mice from infection with Streptococcus pneumoniae by anti-phosphocholine antibody.

    PubMed Central

    Yother, J; Forman, C; Gray, B M; Briles, D E

    1982-01-01

    Anti-phosphocholine (PC) antibody mediated protection against many strains of Streptococcus pneumoniae, and hybridoma anti-PC antibodies protected mice from fatal infections with types 1 and 3 S. pneumoniae. Live types 1, 3, 5, 6A, and 19F S. pneumoniae had similar amounts of surface PC accessible to antibody. Furthermore, mice expressing the X-linked immunodeficiency (xid) of the CBA/N strain were found to be more susceptible to infection with S. pneumoniae of types 3, 6A, and 19F than were immunologically normal mice. The only exception to these results was with the type 5 strain, which was highly virulent for both xid and normal mice. In addition, we were unable to protect mice against infection with the type 5 strain by using anti-PC antibody. PMID:7076292

  2. Suspended animation-like state protects mice from lethal hypoxia.

    PubMed

    Blackstone, Eric; Roth, Mark B

    2007-04-01

    Joseph Priestley observed the high burn rate of candles in pure oxygen and wondered if people would "live out too fast" if we were in the same environment. We hypothesize that sulfide, a natural reducer of oxygen that is made in many cell types, acts as a buffer to prevent unrestricted oxygen consumption. To test this, we administered sulfide in the form of hydrogen sulfide (H2S) to mice (Mus musculus). As we have previously shown, H2S decreases the metabolic rate of mice by approximately 90% and induces a suspended animation-like state. Mice cannot survive for longer than 20 min when exposed to 5% oxygen. However, if mice are first put into a suspended animation-like state by a 20-min pretreatment with H2S and then are exposed to low oxygen, they can survive for more than 6.5 h in 5% oxygen with no apparent detrimental effects. In addition, if mice are exposed to a 20-min pretreatment with H2S followed by 1 h at 5% oxygen, they can then survive for several hours at oxygen tensions as low as 3%. We hypothesize that prior exposure to H2S reduces oxygen demand, therefore making it possible for the mice to survive with low oxygen supply. These results suggest that H2S may be useful to prevent damage associated with hypoxia.

  3. Microbiota protects mice against acute alcohol-induced liver injury

    PubMed Central

    Chen, Peng; Miyamoto, Yukiko; Mazagova, Magdalena; Lee, Kuei-Chuan; Eckmann, Lars; Schnabl, Bernd

    2015-01-01

    Background Chronic alcohol abuse is associated with intestinal bacterial overgrowth, increased intestinal permeability, and translocation of microbial products from the intestine to the portal circulation and liver. Translocated microbial products contribute to experimental alcoholic liver disease. Aim To investigate the physiological relevance of the intestinal microbiota in alcohol-induced liver injury. Methods We subjected germ-free and conventional C57BL/6 mice to a model of acute alcohol exposure that mimics binge drinking. Results Germ-free mice showed significantly greater liver injury and inflammation after oral gavage of ethanol compared with conventional mice. In parallel, germ-free mice exhibited increased hepatic steatosis and upregulated expression of genes involved in fatty acid and triglyceride synthesis compared with conventional mice after acute ethanol administration. The absence of microbiota was also associated with increased hepatic expression of ethanol metabolizing enzymes, which led to faster ethanol elimination from the blood and lower plasma ethanol concentrations. Intestinal levels of ethanol metabolizing genes showed regional expression differences, and were overall higher in germ-free relative to conventional mice. Conclusion Our findings indicate that absence of the intestinal microbiota increases hepatic ethanol metabolism and the susceptibility to binge-like alcohol drinking. PMID:26556636

  4. Bio-mimetic Flow Control

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  5. Colchicine protects mice from the lethal effect of an agonistic anti-Fas antibody

    PubMed Central

    Feng, Guoping; Kaplowitz, Neil

    2000-01-01

    The aim of this study was to determine whether colchicine, which has been reported to protect against various hepatotoxic insults, influences the susceptibility of mice to the agonistic anti-Fas antibody, Jo2. All mice that were pretreated with colchicine (2 mg/kg) survived the lethal challenge of intraperitoneal administration of 10 μg of Jo2, whereas all control mice pretreated with γ-lumicolchicine succumbed to the challenge. Twelve micrograms of Jo2 killed less than half of colchicine-pretreated mice and its lethal effects were delayed relative to control mice, which all died within 8 hours. Other microtubule-disrupting agents such as Taxol, vinblastine, and nocodazole also improved the survival of mice treated with the lethal dose of Jo2. Histologic examination showed that colchicine protected against Jo2-induced fulminant liver injury, and TUNEL assay demonstrated that colchicine protected against massive apoptosis of hepatocytes. Hepatocytes isolated from colchicine-pretreated mice exhibited decreased susceptibility to Jo2-induced apoptosis. In addition, colchicine pretreatment reduced surface expression of Fas and decreased Jo2- and TNF-α–induced apoptosis of cultured hepatocytes in the presence of actinomycin D, but did not affect the susceptibility of cultured sinusoidal endothelial cells to Jo2-induced apoptosis. Remarkably, Fas and TNF receptor-1 mRNA and intracellular protein levels increased after colchicine treatment, indicating that colchicine protects against death ligand–induced apoptosis in the liver by decreasing death-receptor targeting to the cell surface. PMID:10675359

  6. Immune responses in mice against herpes simplex virus: mechanisms of protection against facial and ganglionic infections.

    PubMed Central

    Zweerink, H J; Martinez, D; Lynch, R J; Stanton, L W

    1981-01-01

    We performed experiments with mice to determine the nature of the immune response(s) that prevents primary infections of the skin and the trigeminal ganglia with herpes simplex virus. Immunization with infectious herpes simplex virus, inactivated virus, or material enriched for viral glycoproteins protected hairless mice against primary facial and ganglionic infections. Live and inactivated viruses induced neutralizing antibodies, whereas glycoprotein material did not. Instead, glycoprotein material induced antibodies that were largely directed against two glycopolypeptides with molecular weights of 120,000 to 130,000. Hairless mice immunized with glycoprotein material responded faster than control mice in the synthesis of neutralizing antibodies after challenge with infectious virus. Congenital athymic BALB/c (nu/nu) mice were protected against primary facial infections after immunization with glycoprotein material, but glycoprotein-specific antibodies were not induced. Images PMID:6260662

  7. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function

    PubMed Central

    Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Medigeshi, Guruprasad R.

    2017-01-01

    Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β–T cells (TCRβ–null) are highly susceptible and die over 10–18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage. PMID:28151989

  8. Type I interferon signaling protects mice from lethal henipavirus infection.

    PubMed

    Dhondt, Kévin P; Mathieu, Cyrille; Chalons, Marie; Reynaud, Joséphine M; Vallve, Audrey; Raoul, Hervé; Horvat, Branka

    2013-01-01

    Hendra virus (HeV) and Nipah virus (NiV) are closely related, recently emerged paramyxoviruses that form Henipavirus genus and are capable of causing considerable morbidity and mortality in a number of mammalian species, including humans. However, in contrast to many other species and despite expression of functional virus entry receptors, mice are resistant to henipavirus infection. We report here the susceptibility of mice deleted for the type I interferon receptor (IFNAR-KO) to both HeV and NiV. Intraperitoneally infected mice developed fatal encephalitis, with pathology and immunohistochemical features similar to what was found in humans. Viral RNA was found in the majority of analyzed organs, and sublethally infected animals developed virus-specific neutralizing antibodies. Altogether, these results reveal IFNAR-KO mice as a new small animal model to study HeV and NiV pathogenesis, prophylaxis, and treatment and suggest the critical role of type I interferon signaling in the control of henipavirus infection.

  9. Perilipin overexpression in mice protects against diet-induced obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perilipin A is the most abundant phosphoprotein on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Perilipin null mice exhibit diminished adipose tissue, elevated basal lipolysis, reduced catecholamine-stimulated lipolysis, and increased insulin resistance. To understand t...

  10. Pathogenicity of different rabies virus isolates and protection test in vaccinated mice.

    PubMed

    Cunha, Elenice M S; Nassar, Alessandra F C; Lara, Maria do Carmo C S H; Villalobos, Eliana C M; Sato, Go; Kobayashi, Yuki; Shoji, Youko; Itou, Takuya; Sakai, Takeo; Ito, Fumio H

    2010-01-01

    This study was aimed to evaluate and compare the pathogenicity of rabies virus isolated from bats and dogs, and to verify the efficacy of a commercial rabies vaccine against these isolates. For evaluation of pathogenicity, mice were inoculated by the intramuscular route (IM) with 500MICLD₅₀/0.03 mL of the viruses. The cross-protection test was performed by vaccinating groups of mice by the subcutaneous route and challenged through the intracerebral (IC) route. Isolates were fully pathogenic when inoculated by the IC route. When inoculated intramuscularly, the pathogenicity observed showed different death rates: 60.0% for the Desmodus rotundus isolate; 50.0% for dog and Nyctinomops laticaudatus isolates; 40.0% for Artibeus lituratus isolate; 9.5% Molossus molossus isolate; and 5.2% for the Eptesicus furinalis isolate. Mice receiving two doses of the vaccine and challenged by the IC route with the isolates were fully protected. Mice receiving only one dose of vaccine were partially protected against the dog isolate. The isolates from bats were pathogenic by the IC route in mice. However, when inoculated through the intramuscular route, the same isolates were found with different degrees of pathogenicity. The results of this work suggest that a commercial vaccine protects mice from infection with bat rabies virus isolates, in addition to a canine rabies virus isolate.

  11. Protective effects of sunscreening agents on photocarcinogenesis, photoaging, and DNA damage in XPA gene knockout mice.

    PubMed

    Horiki, S; Miyauchi-Hashimoto, H; Tanaka, K; Nikaido, O; Horio, T

    2000-10-01

    We investigated the protective effects of commercial sunscreening agents against UVB-induced photoresponses in group A xeroderma pigmentosum (XPA) model mice. XPA gene-deficient mice are defective in nucleotide excision repair and show a high incidence of skin tumors and severe acute inflammation in response to UVB irradiation, in a similar manner to XP patients. SPF 10 and SPF 60 sunscreens protected partially and almost completely, respectively, ear swelling responses produced by UVB up to 200 mJ/cm2 in (-/-) mice. XPA (-/-) mice were irradiated three times a week to a cumulative dose of 2.6 J/cm2 UVB for a period of 24 weeks with or without SPF 10 or SPF 60 sunscreen. UV-induced skin tumors had developed in all unprotected (-/-) mice (13.3 tumors per mouse) at the completion of UVB irradiation. The SPF 60 sunscreen afforded stronger protection against photocarcinogenesis (1.0 tumors per mouse) than the SPF 10 sunscreen (4.4 tumors per mouse). Regarding photoaging, SPF 60 sunscreen also protected against mast cell infiltration (79% inhibition), elastic fiber accumulation, and dermal cyst proliferation in XPA (-/-) mice compared with unprotected (-/-) mice. In (-/-) mice, the SPF 60 sunscreen provided stronger protection against cyclobutane pyrimidine dimer formation shown immunohistologically following irradiation with 200 mJ/cm2 UVB than the SPF 10 sunscreen. The XPA model mouse is a useful animal for the evaluation of the photoprotective ability of sunscreens because photoresponses, even chronic changes, can be easily and quickly induced experimentally.

  12. Arginine butyrate per os protects mdx mice against cardiomyopathy, kyphosis and changes in axonal excitability.

    PubMed

    Vianello, Sara; Bouyon, Sophie; Benoit, Evelyne; Sebrié, Catherine; Boerio, Delphine; Herbin, Marc; Roulot, Morgane; Fromes, Yves; de la Porte, Sabine

    2014-11-01

    Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by lack of dystrophin, a sub-sarcolemmal protein, which leads to dramatic muscle deterioration. We studied in mdx mice, the effects of oral administration of arginine butyrate (AB), a compound currently used for the treatment of sickle cell anemia in children, on cardiomyopathy, vertebral column deformation and electromyographic abnormalities. Monthly follow-up by echocardiography from the 8th month to the 14th month showed that AB treatment protected the mdx mice against drastic reduction (20-23%) of ejection fraction and fractional shortening, and also against the ≈20% ventricular dilatation and 25% cardiac hypertrophy observed in saline-treated mdx mice. The phenotypic improvement was corroborated by the decrease in serum CK level and by better fatigue resistance. Moreover, AB treatment protected against the progressive spinal deformity observed in mdx mice, another similarity with DMD patients. The value of the kyphosis index in AB-treated mice reached 94% of the value in C57BL/10 mice. Finally, axonal excitability parameters such as the membrane resting potential, the threshold and amplitude of the action potential, the absolute and relative refractory periods and the supernormal and subnormal periods, recorded from caudal and plantar muscles in response to excitability tests, that were modified in saline-treated mdx mice were not significantly changed, compared with wild-type animals, in AB-treated mdx mice. All of these results suggest that AB could be a potential treatment for DMD patients.

  13. Treatment with Isorhamnetin Protects the Brain Against Ischemic Injury in Mice.

    PubMed

    Zhao, Jin-Jing; Song, Jin-Qing; Pan, Shu-Yi; Wang, Kai

    2016-08-01

    Ischemic stroke is a major cause of morbidity and mortality, yet lacks effective neuroprotective treatments. The aim of this work was to investigate whether treatment with isorhamnetin protected the brain against ischemic injury in mice. Experimental stroke mice underwent the filament model of middle cerebral artery occlusion with reperfusion. Treatment with isorhamnetin or vehicle was initiated immediately at the onset of reperfusion. It was found that treatment of experimental stroke mice with isorhamnetin reduced infarct volume and caspase-3 activity (a biomarker of apoptosis), and improved neurological function recovery. Treatment of experimental stroke mice with isorhamnetin attenuated cerebral edema, improved blood-brain barrier function, and upregulated gene expression of tight junction proteins including occludin, ZO-1, and claudin-5. Treatment of experimental stroke mice with isorhamnetin activated Nrf2/HO-1, suppressed iNOS/NO, and led to reduced formation of MDA and 3-NT in ipsilateral cortex. In addition, treatment of experimental stroke mice with isorhamnetin suppressed activity of MPO (a biomarker of neutrophil infiltration) and reduced protein levels of IL-1β, IL-6, and TNF-α in ipsilateral cortex. Furthermore, it was found that treatment of experimental stroke mice with isorhamnetin reduced mRNA and protein expression of NMDA receptor subunit NR1 in ipsilateral cortex. In conclusion, treatment with isorhamnetin protected the brain against ischemic injury in mice. Isorhamnetin could thus be envisaged as a countermeasure for ischemic stroke but remains to be tested in humans.

  14. The Inductive Coupling of the Magnets in MICE and its Effect onQuench Protection

    SciTech Connect

    Green, Michael A.; Witte, Holger

    2005-09-08

    The inductive coupling between various MICE magnet circuits is described. The consequences of this coupling on magnet charging and quenching are discussed. Magnet quench protection is achieved through the use of quench-back. Calculations of the quenching of a magnet due to quench-back resulting from circulating currents induced in the magnet mandrel due to quenching of an adjacent magnet are discussed. This report describes how the MICE magnet channel will react when magnets in that channel are quenched.

  15. Enriched endogenous omega-3 fatty acids in mice protect against global ischemia injury

    PubMed Central

    Luo, Chuanming; Ren, Huixia; Wan, Jian-Bo; Yao, Xiaoli; Zhang, Xiaojing; He, Chengwei; So, Kwok-Fai; Kang, Jing X.; Pei, Zhong; Su, Huanxing

    2014-01-01

    Transient global cerebral ischemia, one of the consequences of cardiac arrest and cardiovascular surgery, usually leads to delayed death of hippocampal cornu Ammonis1 (CA1) neurons and cognitive deficits. Currently, there are no effective preventions or treatments for this condition. Omega-3 (ω-3) PUFAs have been shown to have therapeutic potential in a variety of neurological disorders. Here, we report that the transgenic mice that express the fat-1 gene encoding for ω-3 fatty acid desaturase, which leads to an increase in endogenous ω-3 PUFAs and a concomitant decrease in ω-6 PUFAs, were protected from global cerebral ischemia injury. The results of the study show that the hippocampal CA1 neuronal loss and cognitive deficits induced by global ischemia insult were significantly less severe in fat-1 mice than in WT mice controls. The protection against global cerebral ischemia injury was closely correlated with increased production of resolvin D1, suppressed nuclear factor-kappa B activation, and reduced generation of pro-inflammatory mediators in the hippocampus of fat-1 mice compared with WT mice controls. Our study demonstrates that fat-1 mice with high endogenous ω-3 PUFAs exhibit protective effects on hippocampal CA1 neurons and cognitive functions in a global ischemia injury model. PMID:24875538

  16. Protective effects of phyllanthus emblica leaf extract on sodium arsenite-mediated adverse effects in mice.

    PubMed

    Sayed, Sadia; Ahsan, Nazmul; Kato, Masashi; Ohgami, Nobutaka; Rashid, Abdur; Akhand, Anwarul Azim

    2015-02-01

    Groundwater contamination of arsenic is the major cause of a serious health hazard in Bangladesh. No specific treatment is yet available to manage the large number of individuals exposed to arsenic. In this study, we evaluated the protective effects of Phyllanthus emblica (Indian gooseberry or Amla) leaf extract (PLE) on arsenic-mediated toxicity in experimental mice. Male Swiss albino mice were divided into three different groups (n=6/group). 'Control' mice received arsenic free water together with normal feed. Mice in the remaining two groups designated 'SA' and 'SA+PLE' were exposed to sodium arsenite (SA, 10 µg/g body weight/day) through drinking water in addition to receiving normal feed and PLE-supplemented feed, respectively. The weight gain of SA-exposed mice was decreased compared with the controls; however, this decrease in body weight gain was prevented when the feed was supplemented with PLE. A secondary effect of arsenic was enlargement of the liver, kidney and spleen of SA-group mice. Deposition of arsenic in those organs was demonstrated by ICP-MS. When PLE was supplemented in the feed the enlargement of the organs was minimized; however, the deposition of arsenic was not significantly reduced. These results indicated that PLE may not block arsenic deposition in tissue directly but rather may play a protective role to reduce arsenic-induced toxicity. Therefore, co-administration of PLE in arsenic-exposed animals might have a future therapeutic application for protecting against arsenic-mediated toxicity.

  17. Quench Protection for the MICE Cooling Channel CouplingMagnet

    SciTech Connect

    Green, M.A.; Wang, L.; Guo, X.L.

    2007-11-20

    The MICE coupling coil is fabricated from Nb-Ti, which hashigh quench propagation velocities within the coil in all directionscompared to coils fabricated with other superconductors such as niobiumtin. The time for the MICE coupling coil to become fully normal throughnormal region propagation in the coil is shorter than the time needed fora safe quench (as defined by a hot-spot temperature that is less than 300K). A MICE coupling coil quench was simulated using a code written at theInstitute of Cryogenics and Superconductive Technology (ICST) at theHarbin Institute of Technology (HIT). This code simulates quench backfrom the mandrel as well as normal region propagation within the coil.The simulations included sub-division of the coil. Each sub-division hasa back to back diodes and resistor across the coil. Current flows in theresistor when there is enough voltage across the coil to cause current toflow through the diodes in the forward direction. The effects of thenumber of coil sub-divisions and the value of the resistor across thesub-division on the quench were calculated with and without quench back.Sub-division of the coupling coil reduces the peak voltage to ground, thelayer-to-layer voltage and the magnet hot-spot temperature. Quench backreduces the magnet hot-spot temperature, but the peak voltage to groundand layer-to-layer voltage are increased, because the magnet quenchesfaster. The resistance across the coil sub-division affects both thehot-spot temperature and the peak voltage to ground.

  18. Eicosapentaenoic acid decreases TNF-α and protects dystrophic muscles of mdx mice from degeneration.

    PubMed

    Machado, Rafael Ventura; Mauricio, Adriana Fogagnolo; Taniguti, Ana Paula Tiemi; Ferretti, Renato; Neto, Humberto Santo; Marques, Maria Julia

    2011-03-01

    In dystrophin-deficient fibers of mdx mice and in Duchenne muscular dystrophy, inflammation and increased production of tumor necrosis factor alpha (TNF-α) contribute to myonecrosis. We examined the effects of eicosapentaenoic acid (EPA) on dystrophic muscle degeneration. Mdx mice (14 days old) received EPA for 16 days. The sternomastoid, diaphragm and biceps brachii muscles were removed. Control mdx mice received vehicle. EPA decreased creatine kinase and myonecrosis and reduced the levels of TNF-α. These results suggest that EPA plays a protective role in dystrophic muscle degeneration, possibly by reducing TNF-α, and support further investigations of EPA as a potential therapy for dystrophinopathies.

  19. Pancreatic STAT3 protects mice against caerulein-induced pancreatitis via PAP1 induction.

    PubMed

    Shigekawa, Minoru; Hikita, Hayato; Kodama, Takahiro; Shimizu, Satoshi; Li, Wei; Uemura, Akio; Miyagi, Takuya; Hosui, Atsushi; Kanto, Tatsuya; Hiramatsu, Naoki; Tatsumi, Tomohide; Takeda, Kiyoshi; Akira, Shizuo; Takehara, Tetsuo

    2012-12-01

    The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that controls expressions of several genes involved in cell survival, proliferation and differentiation, and tissue inflammation. However, the significance of pancreatic STAT3 in acute pancreatitis remains unclear. We generated conditional STAT3 knockout (stat3(Δ/Δ)) mice by crossing stat3(flox/flox) mice with Pdx1-promoter Cre transgenic mice. Caerulein administration activated pancreatic STAT3 and induced acute pancreatitis as early as 3 hours in wild-type mice, and full recovery from the induced pancreatic injury was observed within 7 days. The levels of serum amylase and lipase and histologic scores of pancreatic necrosis and inflammatory cell infiltration were significantly higher at 3 hours in stat3(Δ/Δ) mice than in stat3(flox/flox) mice. Pancreatic recovery after pancreatitis was significantly delayed in stat3(Δ/Δ) mice compared with stat3(flox/flox) mice. Although stat3(flox/flox) mice had marked production in the pancreas of pancreatitis-associated protein 1 (PAP1), a serum acute phase protein, this induction was completely abrogated in stat3(Δ/Δ) mice. Enforced production of PAP1 by a hydrodynamic procedure in the liver significantly suppressed pancreatic necrosis and inflammation and also promoted pancreatic regeneration and recovery in stat3(Δ/Δ) mice to levels similar to those observed in stat3(flox/flox) mice. In conclusion, pancreatic STAT3 is indispensable for PAP1 production, and this STAT3/PAP1 pathway plays a protective role in caerulein-induced pancreatitis.

  20. Protective Effects of Royal Jelly on Oxymetholone- Induced Liver Injury in Mice

    PubMed Central

    Nejati, Vahid; Zahmatkesh, Ensieh; Babaei, Mohammad

    2016-01-01

    Background: The present study was carried out to investigate the possible protective effects of royal jelly (RJ) on oxymetholone (OXM)-induced oxidative liver injuries in mice. Methods: In total, 32 adult male NMRI mice were divided into four groups of eight mice each. Mice in groups 1 and 2 were orally administered 5 mg/kg/day OXM for 30 days. At the same time, mice in group 3 received RJ at a dose of 100 mg/kg/day. Saline control and RJ control groups were also included in this study. Results: Administration of 5 mg/kg OXM resulted in a significant decrease in total antioxidant capacity and catalase activity, as well as a significant increase in malondialdehyde (P<0.05). In addition, OXM-administrated mice showed a slight increase in liver enzymes, including alanine amino transferase, aspartate amino transferase, and alkaline phosphatase. Although OXM caused histopathological changes in the liver, RJ could significantly improve all of the above-mentioned parameters at a dose of 100 mg/kg. Conclusion: The results of the present study indicated that RJ has a partially protective effect on OXM-induced liver toxicity in mice. PMID:27178489

  1. Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity

    PubMed Central

    Hartmann, Phillipp; Seebauer, Caroline T.; Mazagova, Magdalena; Horvath, Angela; Wang, Lirui; Llorente, Cristina; Varki, Nissi M.; Brandl, Katharina; Ho, Samuel B.

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) and obesity are characterized by altered gut microbiota, inflammation, and gut barrier dysfunction. Here, we investigated the role of mucin-2 (Muc2) as the major component of the intestinal mucus layer in the development of fatty liver disease and obesity. We studied experimental fatty liver disease and obesity induced by feeding wild-type and Muc2-knockout mice a high-fat diet (HFD) for 16 wk. Muc2 deficiency protected mice from HFD-induced fatty liver disease and obesity. Compared with wild-type mice, after a 16-wk HFD, Muc2-knockout mice exhibited better glucose homeostasis, reduced inflammation, and upregulated expression of genes involved in lipolysis and fatty acid β-oxidation in white adipose tissue. Compared with wild-type mice that were fed the HFD as well, Muc2-knockout mice also displayed higher intestinal and plasma levels of IL-22 and higher intestinal levels of the IL-22 target genes Reg3b and Reg3g. Our findings indicate that absence of the intestinal mucus layer activates the mucosal immune system. Higher IL-22 levels protect mice from diet-induced features of the metabolic syndrome. PMID:26702135

  2. Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity.

    PubMed

    Hartmann, Phillipp; Seebauer, Caroline T; Mazagova, Magdalena; Horvath, Angela; Wang, Lirui; Llorente, Cristina; Varki, Nissi M; Brandl, Katharina; Ho, Samuel B; Schnabl, Bernd

    2016-03-01

    Nonalcoholic fatty liver disease (NAFLD) and obesity are characterized by altered gut microbiota, inflammation, and gut barrier dysfunction. Here, we investigated the role of mucin-2 (Muc2) as the major component of the intestinal mucus layer in the development of fatty liver disease and obesity. We studied experimental fatty liver disease and obesity induced by feeding wild-type and Muc2-knockout mice a high-fat diet (HFD) for 16 wk. Muc2 deficiency protected mice from HFD-induced fatty liver disease and obesity. Compared with wild-type mice, after a 16-wk HFD, Muc2-knockout mice exhibited better glucose homeostasis, reduced inflammation, and upregulated expression of genes involved in lipolysis and fatty acid β-oxidation in white adipose tissue. Compared with wild-type mice that were fed the HFD as well, Muc2-knockout mice also displayed higher intestinal and plasma levels of IL-22 and higher intestinal levels of the IL-22 target genes Reg3b and Reg3g. Our findings indicate that absence of the intestinal mucus layer activates the mucosal immune system. Higher IL-22 levels protect mice from diet-induced features of the metabolic syndrome.

  3. The protective role of tacrine and donepezil in the retina of acetylcholinesterase knockout mice

    PubMed Central

    Yi, Yun-Min; Cai, Li; Shao, Yi; Xu, Man; Yi, Jing-Lin

    2015-01-01

    AIM To determine the effect of different concentrations of the acetylcholinesterase (AChE) inhibitors tacrine and donepezil on retinal protection in AChE+/− mice (AChE knockout mice) of various ages. METHODS Cultured ARPE-19 cells were treated with hydrogen peroxide (H2O2) at concentrations of 0, 250, 500, 1000 and 2000 µmol/L and protein levels were measured using Western blot. Intraperitoneal injections of tacrine and donepezil (0.1 mg/mL, 0.2 mg/mL and 0.4 mg/mL) were respectively given to AChE+/− mice aged 2mo and 4mo and wild-type S129 mice for 7d; phosphate buffered saline (PBS) was administered to the control group. The mice were sacrificed after 30d by in vitro cardiac perfusion and retinal samples were taken. AChE-deficient mice were identified by polymerase chain reaction (PCR) analysis using specific genotyping protocols obtained from the Jackson Laboratory website. H&E staining, immunofluorescence and Western blot were performed to observe AChE protein expression changes in the retinal pigment epithelial (RPE) cell layer. RESULTS Different concentrations of H2O2 induced AChE expression during RPE cell apoptosis. AChE+/− mice retina were thinner than those in wild-type mice (P<0.05); the retinal structure was still intact at 2mo but became thinner with increasing age (P<0.05); furthermore, AChE+/− mice developed more slowly than wild-type mice (P<0.05). Increased concentrations of tacrine and donepezil did not significantly improve the protection of the retina function and morphology (P>0.05). CONCLUSION In vivo, tacrine and donepezil can inhibit the expression of AChE; the decrease of AChE expression in the retina is beneficial for the development of the retina. PMID:26558196

  4. Protective Effects of Fluoxetine on Decompression Sickness in Mice

    PubMed Central

    Blatteau, Jean-Eric; Barre, Sandrine; Pascual, Aurelie; Castagna, Olivier; Abraini, Jacques H.; Risso, Jean-Jacques; Vallee, Nicolas

    2012-01-01

    Massive bubble formation after diving can lead to decompression sickness (DCS) that can result in central nervous system disorders or even death. Bubbles alter the vascular endothelium and activate blood cells and inflammatory pathways, leading to a systemic pathophysiological process that promotes ischemic damage. Fluoxetine, a well-known antidepressant, is recognized as having anti-inflammatory properties at the systemic level, as well as in the setting of cerebral ischemia. We report a beneficial clinical effect associated with fluoxetine in experimental DCS. 91 mice were subjected to a simulated dive at 90 msw for 45 min before rapid decompression. The experimental group received 50 mg/kg of fluoxetine 18 hours before hyperbaric exposure (n = 46) while controls were not treated (n = 45). Clinical assessment took place over a period of 30 min after surfacing. At the end, blood samples were collected for blood cells counts and cytokine IL-6 detection. There were significantly fewer manifestations of DCS in the fluoxetine group than in the controls (43.5% versus 75.5%, respectively; p = 0.004). Survivors showed a better and significant neurological recovery with fluoxetine. Platelets and red cells were significantly decreased after decompression in controls but not in the treated mice. Fluoxetine reduced circulating IL-6, a relevant marker of systemic inflammation in DCS. We concluded that fluoxetine decreased the incidence of DCS and improved motor recovery, by limiting inflammation processes. PMID:23145072

  5. Hepatic scavenger receptor BI protects against polymicrobial-induced sepsis through promoting LPS clearance in mice.

    PubMed

    Guo, Ling; Zheng, Zhong; Ai, Junting; Huang, Bin; Li, Xiang-An

    2014-05-23

    Recent studies revealed that scavenger receptor BI (SR-BI or Scarb1) plays a critical protective role in sepsis. However, the mechanisms underlying this protection remain largely unknown. In this study, using Scarb1(I179N) mice, a mouse model specifically deficient in hepatic SR-BI, we report that hepatic SR-BI protects against cecal ligation and puncture (CLP)-induced sepsis as shown by 75% fatality in Scarb1(I179N) mice, but only 21% fatality in C57BL/6J control mice. The increase in fatality in Scarb1(I179N) mice was associated with an exacerbated inflammatory cytokine production. Further study demonstrated that hepatic SR-BI exerts its protection against sepsis through its role in promoting LPS clearance without affecting the inflammatory response in macrophages, the glucocorticoid production in adrenal glands, the leukocyte recruitment to peritoneum or the bacterial clearance in liver. Our findings reveal hepatic SR-BI as a critical protective factor in sepsis and point out that promoting hepatic SR-BI-mediated LPS clearance may provide a therapeutic approach for sepsis.

  6. Endothelial Nitric Oxide Synthase Deficient Mice Are Protected from Lipopolysaccharide Induced Acute Lung Injury

    PubMed Central

    Gross, Christine M.; Rafikov, Ruslan; Kumar, Sanjiv; Aggarwal, Saurabh; Ham III, P. Benson; Meadows, Mary Louise; Cherian-Shaw, Mary; Kangath, Archana; Sridhar, Supriya; Lucas, Rudolf; Black, Stephen M.

    2015-01-01

    Lipopolysaccharide (LPS) derived from the outer membrane of gram-negative bacteria induces acute lung injury (ALI) in mice. This injury is associated with lung edema, inflammation, diffuse alveolar damage, and severe respiratory insufficiency. We have previously reported that LPS-mediated nitric oxide synthase (NOS) uncoupling, through increases in asymmetric dimethylarginine (ADMA), plays an important role in the development of ALI through the generation of reactive oxygen and nitrogen species. Therefore, the focus of this study was to determine whether mice deficient in endothelial NOS (eNOS-/-) are protected against ALI. In both wild-type and eNOS-/- mice, ALI was induced by the intratracheal instillation of LPS (2 mg/kg). After 24 hours, we found that eNOS-/-mice were protected against the LPS mediated increase in inflammatory cell infiltration, inflammatory cytokine production, and lung injury. In addition, LPS exposed eNOS-/- mice had increased oxygen saturation and improved lung mechanics. The protection in eNOS-/- mice was associated with an attenuated production of NO, NOS derived superoxide, and peroxynitrite. Furthermore, we found that eNOS-/- mice had less RhoA activation that correlated with a reduction in RhoA nitration at Tyr34. Finally, we found that the reduction in NOS uncoupling in eNOS-/- mice was due to a preservation of dimethylarginine dimethylaminohydrolase (DDAH) activity that prevented the LPS-mediated increase in ADMA. Together our data suggest that eNOS derived reactive species play an important role in the development of LPS-mediated lung injury. PMID:25786132

  7. Preoperative Fasting Protects against Renal Ischemia-Reperfusion Injury in Aged and Overweight Mice

    PubMed Central

    Jongbloed, Franny; de Bruin, Ron W. F.; Pennings, Jeroen L. A.; Payán-Gómez, César; van den Engel, Sandra; van Oostrom, Conny T.; de Bruin, Alain; Hoeijmakers, Jan H. J.; van Steeg, Harry; IJzermans, Jan N. M.; Dollé, Martijn E. T.

    2014-01-01

    Ischemia-reperfusion injury (IRI) is inevitable during kidney transplantation leading to oxidative stress and inflammation. We previously reported that preoperative fasting in young-lean male mice protects against IRI. Since patients are generally of older age with morbidities possibly leading to a different response to fasting, we investigated the effects of preoperative fasting on renal IRI in aged-overweight male and female mice. Male and female F1-FVB/C57BL6-hybrid mice, average age 73 weeks weighing 47.2 grams, were randomized to preoperative ad libitum feeding or 3 days fasting, followed by renal IRI. Body weight, kidney function and survival of the animals were monitored until day 28 postoperatively. Kidney histopathology was scored for all animals and gene expression profiles after fasting were analyzed in kidneys of young and aged male mice. Preoperative fasting significantly improved survival after renal IRI in both sexes compared with normal fed mice. Fasted groups had a better kidney function shown by lower serum urea levels after renal IRI. Histopathology showed less acute tubular necrosis and more regeneration in kidneys from fasted mice. A mRNA analysis indicated the involvement of metabolic processes including fatty acid oxidation and retinol metabolism, and the NRF2-mediated stress response. Similar to young-lean, healthy male mice, preoperative fasting protects against renal IRI in aged-overweight mice of both genders. These findings suggest a general protective response of fasting against renal IRI regardless of age, gender, body weight and genetic background. Therefore, fasting could be a non-invasive intervention inducing increased oxidative stress resistance in older and overweight patients as well. PMID:24959849

  8. The androgen receptor confers protection against diet-induced atherosclerosis, obesity, and dyslipidemia in female mice

    PubMed Central

    Fagman, Johan B.; Wilhelmson, Anna S.; Motta, Benedetta M.; Pirazzi, Carlo; Alexanderson, Camilla; De Gendt, Karel; Verhoeven, Guido; Holmäng, Agneta; Anesten, Fredrik; Jansson, John-Olov; Levin, Malin; Borén, Jan; Ohlsson, Claes; Krettek, Alexandra; Romeo, Stefano; Tivesten, Åsa

    2015-01-01

    Androgens have important cardiometabolic actions in males, but their metabolic role in females is unclear. To determine the physiologic androgen receptor (AR)–dependent actions of androgens on atherogenesis in female mice, we generated female AR-knockout (ARKO) mice on an atherosclerosis-prone apolipoprotein E (apoE)–deficient background. After 8 weeks on a high-fat diet, but not on a normal chow diet, atherosclerosis in aorta was increased in ARKO females (+59% vs. control apoE-deficient mice with intact AR gene). They also displayed increased body weight (+18%), body fat percentage (+62%), and hepatic triglyceride levels, reduced insulin sensitivity, and a marked atherogenic dyslipidemia (serum cholesterol, +52%). Differences in atherosclerosis, body weight, and lipid levels between ARKO and control mice were abolished in mice that were ovariectomized before puberty, consistent with a protective action of ovarian androgens mediated via the AR. Furthermore, the AR agonist dihydrotestosterone reduced atherosclerosis (−41%; thoracic aorta), subcutaneous fat mass (−44%), and cholesterol levels (−35%) in ovariectomized mice, reduced hepatocyte lipid accumulation in hepatoma cells in vitro, and regulated mRNA expression of hepatic genes pivotal for lipid homeostasis. In conclusion, we demonstrate that the AR protects against diet-induced atherosclerosis in female mice and propose that this is mediated by modulation of body composition and lipid metabolism.—Fagman, J. B., Wilhelmson, A. S., Motta, B. M., Pirazzi, C., Alexanderson, C., De Gendt, K., Verhoeven, G., Holmäng, A., Anesten, F., Jansson, J.-O., Levin, M., Borén, J., Ohlsson, C., Krettek, A., Romeo, S., Tivesten, A. The androgen receptor confers protection against diet-induced atherosclerosis, obesity, and dyslipidemia in female mice. PMID:25550469

  9. Protective effect of berberine on serum glucose levels in non-obese diabetic mice.

    PubMed

    Chueh, Wei-Han; Lin, Jin-Yuarn

    2012-03-01

    Among the active components in traditional anti-diabetic herbal plants, berberine which is an isoquinoline alkaloid exhibits promising potential for its potent anti-inflammatory and hypoglycemic effects. However, the berberine effect on serum glucose levels in type 1 diabetes (T1D) subjects still remains unknown. This study investigated berberine's effects on serum glucose levels using non-obese diabetic (NOD) mice that spontaneously develop T1D. The NOD mice were randomly divided into four groups, administered water with 50, 150, and 500 mg berberine/kg bw, respectively, through 14 weeks. ICR mice were also selected as a species control group to compare with the NOD mice. Changes in body weight, oral glucose challenge, and serum glucose levels were determined to identify the protective effect of berberine on T1D. After the 14-week oral supplementation, berberine decreased fasting serum glucose levels in NOD mice close to the levels in normal ICR mice in a dose dependent manner. Serum berberine levels showed a significantly (P<0.05) negative and non-linear correlation with fasting glucose levels in berberine-administered NOD mice. Our results suggested that berberine supplemented at appropriate doses for 14 weeks did not cause toxic side effects, but improved hyperglycemia in NOD mice.

  10. Swim training does not protect mice from skeletal muscle oxidative damage following a maximum exercise test.

    PubMed

    Barreto, Tatiane Oliveira; Cleto, Lorena Sabino; Gioda, Carolina Rosa; Silva, Renata Sabino; Campi-Azevedo, Ana Carolina; de Sousa-Franco, Junia; de Magalhães, José Carlos; Penaforte, Claudia Lopes; Pinto, Kelerson Mauro de Castro; Cruz, Jader dos Santos; Rocha-Vieira, Etel

    2012-07-01

    We investigated whether swim training protects skeletal muscle from oxidative damage in response to a maximum progressive exercise. First, we investigated the effect of swim training on the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the gastrocnemius muscle of C57Bl/6 mice, 48 h after the last training session. Mice swam for 90 min, twice a day, for 5 weeks at 31°C (± 1°C). The activities of SOD and CAT were increased in trained mice (P < 0.05) compared to untrained group. However, no effect of training was observed in the activity of GPx. In a second experiment, trained and untrained mice were submitted to a maximum progressive swim test. Compared to control mice (untrained, not acutely exercised), malondialdehyde (MDA) levels were increased in the skeletal muscle of both trained and untrained mice after maximum swim. The activity of GPx was increased in the skeletal muscle of both trained and untrained mice, while SOD activity was increased only in trained mice after maximum swimming. CAT activity was increased only in the untrained compared to the control group. Although the trained mice showed increased activity of citrate synthase in skeletal muscle, swim performance was not different compared to untrained mice. Our results show an imbalance in the activities of SOD, CAT and GPx in response to swim training, which could account for the oxidative damage observed in the skeletal muscle of trained mice in response to maximum swim, resulting in the absence of improved exercise performance.

  11. Ostα−/− mice are not protected from western diet‐induced weight gain

    PubMed Central

    Hammond, Christine L.; Wheeler, Sadie G.; Ballatori, Nazzareno; Hinkle, Patricia M.

    2015-01-01

    Abstract Organic solute transporterα‐OSTβ is a bile acid transporter important for bile acid recycling in the enterohepatic circulation. In comparison to wild‐type mice, Ostα−/− mice have a lower bile acid pool and increased fecal lipids and they are relatively resistant to age‐related weight gain and insulin resistance. These studies tested whether Ostα−/− mice are also protected from weight gain, lipid changes, and insulin resistance which are normally observed with a western‐style diet high in both fat and cholesterol (WD). Wild‐type and Ostα−/− mice were fed a WD, a control defined low‐fat diet (LF) or standard laboratory chow (CH). Surprisingly, although the Ostα−/− mice remained lighter on LF and CH diets, they weighed the same as wild‐type mice after 12 weeks on the WD even though bile acid pool levels remained low and fecal lipid excretion remained elevated. Mice of both genotypes excreted relatively less lipid when switched from CH to LF or WD. WD caused slightly greater changes in expression of genes involved in lipid transport in the small intestines of Ostα−/− mice than wild‐type, but the largest differences were between CH and defined diets. After WD feeding, Ostα−/− mice had lower serum cholesterol and hepatic lipids, but Ostα−/− and wild‐type mice had equivalent levels of muscle lipids and similar responses in glucose and insulin tolerance tests. Taken together, the results show that Ostα−/− mice are able to adapt to a western‐style diet despite low bile acid levels. PMID:25626867

  12. Immunization of mice with a novel recombinant molecular chaperon confers protection against Brucella melitensis infection.

    PubMed

    Ghasemi, Amir; Jeddi-Tehrani, Mahmood; Mautner, Josef; Salari, Mohammad Hossein; Zarnani, Amir-Hassan

    2014-11-20

    Brucella spp. are zoonotic Gram-negative intracellular pathogens with the ability to survive and replicate in phagocytes. It has been shown that bacterial proteins expressed abundantly in this niche are stress-related proteins capable of triggering effective immune responses. BMEI1549 is a molecular chaperone designated DnaK that is expressed under stress conditions and helps to prevent formation of protein aggregates. In order to study the potential of DnaK as a prospective Brucella subunit vaccine, immunogenicity and protective efficacy of recombinant DnaK from Brucella melitensis was evaluated in BALB/c mice. The dnak gene was cloned, expressed in Escherichia coli, and the resulting recombinant protein used as subunit vaccine. DnaK-immunized mice showed a strong lymphocyte proliferative response to in vitro antigen stimulation. Although comparable levels of antigen-specific IgG2a and IgG1 were observed in immunized mice, high amounts of IFN-γ, IL-12 and IL-6, no detectable level of IL-4 and very low levels of IL-10 and IL-5 were produced by splenocytes of vaccinated mice suggesting induction of a Th1 dominant immune response by DnaK. Compared to control animals, mice vaccinated with DnaK exhibited a significant degree of protection against subsequent Brucella infection (p<0.001), albeit this protection was less than the protection conferred by Rev.1 (p<0.05). A further increase in protection was observed, when DnaK was combined with recombinant Omp31. Notably, this combination, as opposed to each component alone, induced statistically similar level of protection as induced by Rev.1 suggesting that DnaK could be viewed as a promising candidate for the development of a subunit vaccine against brucellosis.

  13. Protection against adriamycin (doxorubicin)-induced toxicity in mice by several clinically used drugs.

    PubMed

    Shinozawa, S; Gomita, Y; Araki, Y

    1987-02-01

    Protective effects of clinically used drugs against adriamycin (ADM)-induced toxicity were studied in ICR mice. The control mice, which were administered 15 mg/kg of ADM twice, survived 7.48 +/- 1.99 days (mean +/- S.D.). The survival times of mice treated with the following drugs, expressed as a percent of that of the control group, were 293.6% for coenzyme Q10 (Co Q10, 2 mg/kg), 402.2% for dextran sulfate (MDS, 300 mg/kg), 121.6% for flavin adenine dinucleotide (20 mg/kg), 236.3% for adenosine triphosphate disodium (50 mg/kg), 213.7% for reduced glutathione (100 mg/kg), 121.6% for phytonadione (50 mg/kg), 155.2% for inositol nicotinate (Ino-N, 500 mg/kg), 335.5% for nicomol (1000 mg/kg), 157.5% for nicardipine (10 mg/kg) and 123.3% for dipyridamol (50 mg/kg). Anti-hyperlipemic agents such as MDS, nicomol, Ino-N and Co Q10 strongly protected against the ADM-induced toxicity, and the mice administered these drugs lived significantly longer than the control mice. The mechanism of the protective effect was discussed.

  14. Exercise Does Not Protect against MPTP-Induced Neurotoxicity in BDNF Happloinsufficent Mice

    PubMed Central

    Gerecke, Kim M.; Jiao, Yun; Pagala, Viswajeeth; Smeyne, Richard J.

    2012-01-01

    Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN) dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF), have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is dependent upon BDNF, we compared the neuroprotective effects of voluntary exercise in mice heterozygous for the BDNF gene (BDNF+/−) with strain-matched wild-type (WT) mice. Stereological estimates of SNpc DA neurons from WT mice allowed 90 days exercise via unrestricted running demonstrated complete protection against the MPTP-induced neurotoxicity. However, BDNF+/− mice allowed 90 days of unrestricted exercise were not protected from MPTP-induced SNpc DA neuron loss. Proteomic analysis comparing SN and striatum from 90 day exercised WT and BDNF+/− mice showed differential expression of proteins related to energy regulation, intracellular signaling and trafficking. These results suggest that a full genetic complement of BDNF is critical for the exercise-induced neuroprotection of SNpc DA neurons. PMID:22912838

  15. Protective effect of taraxasterol against rheumatoid arthritis by the modulation of inflammatory responses in mice.

    PubMed

    Jiang, Shu-Hua; Ping, Li-Feng; Sun, Feng-Yan; Wang, Xiao-Lei; Sun, Zhi-Juan

    2016-12-01

    Taraxasterol is an effective component of dandelion that has anti-inflammatory effects in vivo and in vitro. The present study was performed to explore whether taraxasterol exhibits a protective effect against rheumatoid arthritis through the modulation of inflammatory responses in mice. Eight-week-old CCR9-deficient mice were injected with a collagen II monoclonal antibody cocktail to create a rheumatoid arthritis model. In the experimental group, arthritic model mice were treated with 10 mg/kg taraxasterol once per day for 5 days. Treatment with taraxasterol significantly increased the pain thresholds and reduced the clinical arthritic scores of the mice in the experimental group compared with those of the model group. Furthermore, treatment with taraxasterol significantly suppressed tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and nuclear factor-κB protein expression levels compared with those in the rheumatoid arthritis model mice. Taraxasterol treatment also significantly reduced nitric oxide, prostaglandin E2 and cyclooxygenase-2 levels compared with those in the rheumatoid arthritis model group. These observations indicate that the protective effect of taraxasterol against rheumatoid arthritis is mediated via the modulation of inflammatory responses in mice.

  16. Protective effect of taraxasterol against rheumatoid arthritis by the modulation of inflammatory responses in mice

    PubMed Central

    Jiang, Shu-Hua; Ping, Li-Feng; Sun, Feng-Yan; Wang, Xiao-Lei; Sun, Zhi-Juan

    2016-01-01

    Taraxasterol is an effective component of dandelion that has anti-inflammatory effects in vivo and in vitro. The present study was performed to explore whether taraxasterol exhibits a protective effect against rheumatoid arthritis through the modulation of inflammatory responses in mice. Eight-week-old CCR9-deficient mice were injected with a collagen II monoclonal antibody cocktail to create a rheumatoid arthritis model. In the experimental group, arthritic model mice were treated with 10 mg/kg taraxasterol once per day for 5 days. Treatment with taraxasterol significantly increased the pain thresholds and reduced the clinical arthritic scores of the mice in the experimental group compared with those of the model group. Furthermore, treatment with taraxasterol significantly suppressed tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and nuclear factor-κB protein expression levels compared with those in the rheumatoid arthritis model mice. Taraxasterol treatment also significantly reduced nitric oxide, prostaglandin E2 and cyclooxygenase-2 levels compared with those in the rheumatoid arthritis model group. These observations indicate that the protective effect of taraxasterol against rheumatoid arthritis is mediated via the modulation of inflammatory responses in mice. PMID:28101182

  17. MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice.

    PubMed

    Aguilo, Nacho; Uranga, Santiago; Marinova, Dessislava; Monzon, Marta; Badiola, Juan; Martin, Carlos

    2016-01-01

    Development of novel more efficient preventive vaccines against tuberculosis (TB) is crucial to achieve TB eradication by 2050, one of the Millennium Development Goals (MDG) for the current century. MTBVAC is the first and only live attenuated vaccine based on a human isolate of Mycobacterium tuberculosis developed as BCG-replacement strategy in newborns that has entered first-in-human adult clinical trials. In this work, we characterize the safety, immunogenicity and protective efficacy of MTBVAC in a model of newborn C57/BL6 mice. Our data clearly indicate that MTBVAC is safe for newborn mice, and does not affect animal growth or organ development. In addition, MTBVAC-vaccinated mice at birth showed enhanced immunogenicity and better protection against M. tuberculosis challenge in comparison with BCG.

  18. MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice

    PubMed Central

    Aguilo, Nacho; Uranga, Santiago; Marinova, Dessislava; Monzon, Marta; Badiola, Juan; Martin, Carlos

    2016-01-01

    Summary Development of novel more efficient preventive vaccines against tuberculosis (TB) is crucial to achieve TB eradication by 2050, one of the Millennium Development Goals (MDG) for the current century. MTBVAC is the first and only live attenuated vaccine based on a human isolate of Mycobacterium tuberculosis developed as BCG-replacement strategy in newborns that has entered first-in-human adult clinical trials. In this work, we characterize the safety, immunogenicity and protective efficacy of MTBVAC in a model of newborn C57/BL6 mice. Our data clearly indicate that MTBVAC is safe for newborn mice, and does not affect animal growth or organ development. In addition, MTBVAC-vaccinated mice at birth showed enhanced immunogenicity and better protection against M. tuberculosis challenge in comparison with BCG. PMID:26786657

  19. Identification of a new immunogenic candidate conferring protection against Brucella melitensis infection in mice.

    PubMed

    Ghasemi, Amir; Zarnani, Amir-Hassan; Ghoodjani, Abolfazl; Rezania, Simin; Salari, Mohammad Hossein; Jeddi-Tehrani, Mahmood

    2014-11-01

    Identification of bacterial proteins that contribute to the replication and survival of the engulfed bacteria within phagolysosome is critical in the pathogenesis of intracellular bacteria. Heat shock proteins (HSPs) are molecular chaperones that prevent unwanted protein aggregation and protect the bacteria against cell stress. In order to study the potential of HspA for development of a Brucella subunit vaccine, immunogenicity and protective efficacy of recombinant HspA (rHspA) from Brucella melitensis was evaluated in BALB/c mice. The hspA gene was cloned in pDEST42 and the resulting recombinant protein was used as subunit vaccine. rHspA elicited mixed TH1/TH2 immune responses with higher titers of specific IgG1 than IgG2a. In lymphocyte transformation assay, splenocytes of immunized mice exhibited a strong recall proliferative response with high amounts of IFN-γ, IL-12, IL-10 and IL-6 and very low levels of IL-5 and IL-4 production. The protective effect of rHspA was evaluated by administering rHspA to mice that resulted in a significant reduction in bacterial load and high degree of protection against B. melitensis challenge compared to control mice (p<0.001). These results suggest that rHspA may be a useful candidate for the development of subunit vaccine against brucellosis.

  20. Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis.

    PubMed

    Lin, Wensheng; Lin, Yifeng; Li, Jin; Fenstermaker, Ali G; Way, Sharon W; Clayton, Benjamin; Jamison, Stephanie; Harding, Heather P; Ron, David; Popko, Brian

    2013-04-03

    There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.

  1. Humoral Immunity through Immunoglobulin M Protects Mice from an Experimental Actinomycetoma Infection by Nocardia brasiliensis

    PubMed Central

    Salinas-Carmona, Mario C.; Pérez-Rivera, Isabel

    2004-01-01

    An experimental model of infection with Nocardia brasiliensis, used as an example of a facultative intracellular pathogen, was tested. N. brasiliensis was injected into the rear foot pads of BALB/c mice to establish an infection. Within 30 days, infected animals developed a chronic actinomycetoma infection. Batch cultures of N. brasiliensis were used to purify P61, P38, and P24 antigens; P61 is a catalase, and P38 is a protease with strong caseinolytic activity. Active and passive immunizations of BALB/c mice with these three purified soluble antigens were studied. Protection was demonstrated for actively immunized mice. However, immunity lasted only 30 days. Other groups of immunized mice were bled at different times, and their sera were passively transferred to naive recipients that were then infected with N. brasiliensis. Sera collected 5, 6, and 7 days after donor immunization conferred complete, long-lasting protection. The protective effect of passive immunity decreased when sera were collected 2 weeks after donor immunization. However, neither the early sera (1-, 2-, and 3-day sera) nor the later sera (30- or 45-day sera) prevented the infection. Hyperimmune sera with the highest levels of immunoglobulin G (IgG) to N. brasiliensis antigens did not protect at all. The antigens tested induced two IgM peaks. The first peak was present 3 days after immunization but was not antigen specific and did not transfer protection. The second peak was evident 7 days after immunization, was an IgM response, was antigen specific, and conferred protection. This results clearly demonstrate that IgM antibodies protect the host against a facultative intracellular bacterium. PMID:15385456

  2. Characterization of IL-22 and antimicrobial peptide production in mice protected against pulmonary Cryptococcus neoformans infection.

    PubMed

    Wozniak, Karen L; Hole, Camaron R; Yano, Junko; Fidel, Paul L; Wormley, Floyd L

    2014-07-01

    Cryptococcus neoformans is a significant cause of fungal meningitis in patients with impaired T cell-mediated immunity (CMI). Experimental pulmonary infection with a C. neoformans strain engineered to produce IFN-γ, H99γ, results in the induction of Th1-type CMI, resolution of the acute infection, and protection against challenge with WT Cryptococcus. Given that individuals with suppressed CMI are highly susceptible to pulmonary C. neoformans infection, we sought to determine whether antimicrobial peptides were produced in mice inoculated with H99γ. Thus, we measured levels of antimicrobial peptides lipocalin-2, S100A8, S100A9, calprotectin (S100A8/A9 heterodimer), serum amyloid A-3 (SAA3), and their putative receptors Toll-like receptor 4 (TLR4) and the receptor for advanced glycation end products (RAGE) in mice during primary and recall responses against C. neoformans infection. Results showed increased levels of IL-17A and IL-22, cytokines known to modulate antimicrobial peptide production. We also observed increased levels of lipocalin-2, S100A8, S100A9 and SAA3 as well as TLR4(+) and RAGE(+) macrophages and dendritic cells in mice inoculated with H99γ compared with WT H99. Similar results were observed in the lungs of H99γ-immunized, compared with heat-killed C. neoformans-immunized, mice following challenge with WT yeast. However, IL-22-deficient mice inoculated with H99γ demonstrated antimicrobial peptide production and no change in survival rates compared with WT mice. These studies demonstrate that protection against cryptococcosis is associated with increased production of antimicrobial peptides in the lungs of protected mice that are not solely in response to IL-17A and IL-22 production and may be coincidental rather than functional.

  3. Caffeine protects Alzheimer's mice against cognitive impairment and reduces brain beta-amyloid production.

    PubMed

    Arendash, G W; Schleif, W; Rezai-Zadeh, K; Jackson, E K; Zacharia, L C; Cracchiolo, J R; Shippy, D; Tan, J

    2006-11-03

    A recent epidemiological study suggested that higher caffeine intake over decades reduces the risk of Alzheimer's disease (AD). The present study sought to determine any long-term protective effects of dietary caffeine intake in a controlled longitudinal study involving AD transgenic mice. Caffeine (an adenosine receptor antagonist) was added to the drinking water of amyloid precursor protein, Swedish mutation (APPsw) transgenic (Tg) mice between 4 and 9 months of age, with behavioral testing done during the final 6 weeks of treatment. The average daily intake of caffeine per mouse (1.5 mg) was the human equivalent of 500 mg caffeine, the amount typically found in five cups of coffee per day. Across multiple cognitive tasks of spatial learning/reference memory, working memory, and recognition/identification, Tg mice given caffeine performed significantly better than Tg control mice and similar to non-transgenic controls. In both behaviorally-tested and aged Tg mice, long-term caffeine administration resulted in lower hippocampal beta-amyloid (Abeta) levels. Expression of both Presenilin 1 (PS1) and beta-secretase (BACE) was reduced in caffeine-treated Tg mice, indicating decreased Abeta production as a likely mechanism of caffeine's cognitive protection. The ability of caffeine to reduce Abeta production was confirmed in SweAPP N2a neuronal cultures, wherein concentration-dependent decreases in both Abeta1-40 and Abeta1-42 were observed. Although adenosine A(1) or A(2A) receptor densities in cortex or hippocampus were not affected by caffeine treatment, brain adenosine levels in Tg mice were restored back to normal by dietary caffeine and could be involved in the cognitive protection provided by caffeine. Our data demonstrate that moderate daily intake of caffeine may delay or reduce the risk of AD.

  4. Absence of intestinal microbiota does not protect mice from diet-induced obesity.

    PubMed

    Fleissner, Christine K; Huebel, Nora; Abd El-Bary, Mohamed Mostafa; Loh, Gunnar; Klaus, Susanne; Blaut, Michael

    2010-09-01

    The gut microbiota has been implicated in host nutrient absorption and energy homeostasis. We studied the influence of different diets on body composition in germ-free (GF) and conventional (CV) mice. GF and CV male adult C3H mice were fed ad libitum a semi-synthetic low-fat diet (LFD; carbohydrate-protein-fat ratio: 41:42:17; 19.8 kJ/g), a high-fat diet (HFD; 41:16:43; 21.4 kJ/g) or a commercial Western diet (WD; 41:19:41; 21.5 kJ/g). There was no difference in body weight gain between GF and CV mice on the LFD. On the HFD, GF mice gained more body weight and body fat than CV mice, and had lower energy expenditure. GF mice on the WD gained significantly less body fat than GF mice on the HFD. GF mice on both HFD and WD showed increased intestinal mRNA expression of fasting-induced adipose factor/angiopoietin-like protein 4 (Fiaf/Angptl4), but they showed no major changes in circulating Fiaf/Angptl4 compared with CV mice. The faecal microbiota composition of the CV mice differed between diets: the proportion of Firmicutes increased on both HFD and WD at the expense of the Bacteroidetes. This increase in the Firmicutes was mainly due to the proliferation of one family within this phylum: the Erysipelotrichaceae. We conclude that the absence of gut microbiota does not provide a general protection from diet-induced obesity, that intestinal production of Fiaf/Angptl4 does not play a causal role in gut microbiota-mediated effects on fat storage and that diet composition affects gut microbial composition to larger extent than previously thought.

  5. Overexpression of Nrf2 protects against microcystin-induced hepatotoxicity in mice.

    PubMed

    Lu, Yuan-Fu; Liu, Jie; Wu, Kai Connie; Qu, Qiang; Fan, Fang; Klaassen, Curtis D

    2014-01-01

    Oxidative stress and glutathione (GSH) depletion are implicated in mycocystin hepatotoxicity. To investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in microcystin-induced liver injury, Nrf2-null, wild-type, and Keap1-hepatocyte knockout (Keap1-HKO) mice were treated with microcystin (50 μg/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Microcystin increased serum alanine aminotransferase and aspartate aminotransferase activities, and caused extensive inflammation and necrosis in Nrf2-null and wild-type mice, but not in Keap1-HKO mice. Oxidative stress and inflammation are implicated in microcystin-induced hepatotoxicity, as evidenced by increased lipid peroxidation and increased expression of pro-inflammatory genes, such as neutrophil-specific chemokines mKC and MIP-2, and pro-inflammatory cytokines IL-1β and IL-6. The increased expression of these pro-inflammatory genes was attenuated in Keap1-HKO mice. Nrf2 and Nqo1 mRNA and protein were higher in Keap1-HKO mice at constitutive levels and after microcystin. To further investigate the mechanism of the protection, hepatic GSH and the mRNA of GSH-related enzymes were determined. Microcystin markedly depleted liver GSH by 60-70% in Nrf2 and WT mice but only 35% in Keap1-HKO mice. The mRNAs of GSH conjugation and peroxide reduction enzymes, such as Gstα1, Gstα4, Gstμ, and Gpx2 were higher in livers of Keap1-HKO mice, together with higher expression of the rate-limiting enzyme for GSH synthesis (Gclc). Organic anion transport polypeptides were increased by microcystin with the most increase in Keap1-HKO mice. In conclusion, this study demonstrates that higher basal levels of Nrf2 and GSH-related genes in Keap1-HKO mice prevented microcystin-induced oxidative stress and liver injury.

  6. Protection against pneumococcal pneumonia in mice by monoclonal antibodies to pneumolysin.

    PubMed

    García-Suárez, María del Mar; Cima-Cabal, María Dolores; Flórez, Noelia; García, Pilar; Cernuda-Cernuda, Rafael; Astudillo, Aurora; Vázquez, Fernando; De los Toyos, Juan R; Méndez, F Javier

    2004-08-01

    Pneumolysin (PLY) is an important virulence factor of Streptococcus pneumoniae. We examined the ability of three murine monoclonal antibodies (MAbs) to PLY (PLY-4, PLY-5, and PLY-7) to affect the course of pneumococcal pneumonia in mice. The intravenous administration of antibodies PLY-4 and PLY-7 protected the mice from the lethal effect of the purified toxin. Mice treated with PLY-4 before intranasal inoculation of S. pneumoniae type 2 survived longer (median survival time, 100 h) than did untreated animals (median survival time, 60 h) (P < 0.0001). The median survival time for mice treated with a combination of PLY-4 and PLY-7 was 130 h, significantly longer than that for mice given isotype-matched indifferent MAbs (P = 0.0288) or nontreated mice (P = 0.0002). The median survival time for mice treated with a combination of three MAbs was significantly longer (>480 h) than that for mice treated with PLY-5 (48 h; P < 0.0001), PLY-7 (78 h; P = 0.0007), or PLY-4 (100 h; P = 0.0443) alone. Similarly, the survival rate for mice treated with three MAbs (10 of 20 mice) was significantly higher than the survival rate obtained with PLY-5 (1 of 20; P = 0.0033), PLY-4 (2 of 20; P = 0.0138), or PLY-7 (3 of 20; P = 0.0407) alone. These results suggest that anti-PLY MAbs act with a synergistic effect. Furthermore, MAb administration was associated with a significant decrease in bacterial lung colonization and lower frequencies of bacteremia and tissue injury with respect to the results for the control groups.

  7. Protective effect of carvacrol on acute lung injury induced by lipopolysaccharide in mice.

    PubMed

    Feng, Xiaosheng; Jia, Aiqing

    2014-08-01

    Carvacrol, the major component of Plectranthus amboinicus, has been known to exhibit anti-inflammatory activities. The aim of this study was to investigate the effects of carvacrol on lipopolysaccharide (LPS)-induced endotoxemia and acute lung injury (ALI) in mice. Mice were injected intraperitoneally (i.p.) with LPS and the mortality of mice for 7 days were observed twice a day. Meanwhile, the protective effect of carvacrol (20, 40 or 80 mg/kg) on LPS-induced endotoxemia were detected. Using an experimental model of LPS-induced ALI, we examined the effect of carvacrol in resolving lung injury. The results showed that carvacrol could improve survival during lethal endotoxemia and attenuate LPS-induced ALI in mice. The anti-inflammatory mechanisms of carvacrol may be due to its ability to inhibit NF-κB and MAPKs signaling pathways, thereby inhibiting inflammatory cytokines TNF-α, IL-6 and IL-1β production.

  8. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    SciTech Connect

    Wang, Jun; Cao, Hui; Wang, Hongjie; Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli; Xiang, Ming

    2015-06-15

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.

  9. Recombinant Toxoplasma gondii phosphoglycerate mutase 2 confers protective immunity against toxoplasmosis in BALB/c mice

    PubMed Central

    Wang, Hai-Long; Wen, Li-Min; Pei, Yan-Jiang; Wang, Fen; Yin, Li-Tian; Bai, Ji-Zhong; Guo, Rui; Wang, Chun-Fang; Yin, Guo-Rong

    2016-01-01

    Toxoplasmosis is one of the most widespread zoonoses worldwide. It has a high incidence and can result in severe disease in humans and livestock. Effective vaccines are needed to limit and prevent infection with Toxoplasma gondii. In this study, we evaluated the immuno-protective efficacy of a recombinant Toxoplasma gondii phosphoglycerate mutase 2 (rTgPGAM 2) against T. gondii infection in BALB/c mice. We report that the mice nasally immunised with rTgPGAM 2 displayed significantly higher levels of special IgG antibodies against rTgPGAM 2 (including IgG1, IgG2a and IgAs) and cytokines (including IFN-γ, IL-2 and IL-4) in their blood sera and supernatant of cultured spleen cells compared to those of control animals. In addition, an increased number of spleen lymphocytes and enhanced lymphocyte proliferative responses were observed in the rTgPGAM 2-immunised mice. After chronic infection and lethal challenge with the highly virulent T. gondii RH strain by oral gavage, the survival time of the rTgPGAM 2-immunised mice was longer (P < 0.01) and the survival rate (70%) was higher compared with the control mice (P < 0.01). The reduction rate of brain and liver tachyzoites in rTgPGAM 2-vaccinated mice reached approximately 57% and 69% compared with those of the control mice (P < 0.01). These results suggest that rTgPGAM 2 can generate protective immunity against T. gondii infection in BALB/c mice and may be a promising antigen in the further development of an effective vaccine against T. gondii infection. PMID:26984115

  10. Recombinant Toxoplasma gondii phosphoglycerate mutase 2 confers protective immunity against toxoplasmosis in BALB/c mice.

    PubMed

    Wang, Hai-Long; Wen, Li-Min; Pei, Yan-Jiang; Wang, Fen; Yin, Li-Tian; Bai, Ji-Zhong; Guo, Rui; Wang, Chun-Fang; Yin, Guo-Rong

    2016-01-01

    Toxoplasmosis is one of the most widespread zoonoses worldwide. It has a high incidence and can result in severe disease in humans and livestock. Effective vaccines are needed to limit and prevent infection with Toxoplasma gondii. In this study, we evaluated the immuno-protective efficacy of a recombinant Toxoplasma gondii phosphoglycerate mutase 2 (rTgPGAM 2) against T. gondii infection in BALB/c mice. We report that the mice nasally immunised with rTgPGAM 2 displayed significantly higher levels of special IgG antibodies against rTgPGAM 2 (including IgG1, IgG2a and IgAs) and cytokines (including IFN-γ, IL-2 and IL-4) in their blood sera and supernatant of cultured spleen cells compared to those of control animals. In addition, an increased number of spleen lymphocytes and enhanced lymphocyte proliferative responses were observed in the rTgPGAM 2-immunised mice. After chronic infection and lethal challenge with the highly virulent T. gondii RH strain by oral gavage, the survival time of the rTgPGAM 2-immunised mice was longer (P < 0.01) and the survival rate (70%) was higher compared with the control mice (P < 0.01). The reduction rate of brain and liver tachyzoites in rTgPGAM 2-vaccinated mice reached approximately 57% and 69% compared with those of the control mice (P < 0.01). These results suggest that rTgPGAM 2 can generate protective immunity against T. gondii infection in BALB/c mice and may be a promising antigen in the further development of an effective vaccine against T. gondii infection.

  11. Protective Effect of Lycium ruthenicum Murr. Against Radiation Injury in Mice

    PubMed Central

    Duan, Yabin; Chen, Fan; Yao, Xingchen; Zhu, Junbo; Wang, Cai; Zhang, Juanling; Li, Xiangyang

    2015-01-01

    The protective effect of Lycium ruthenicum Murr. against radiation injury was examined in mice. Kunming mice were randomly divided into a control group, model group, positive drug group and L. ruthenicum high dose (8 g/kg), L. ruthenicum middle dose (4 g/kg), L. ruthenicum low dose (2 g/kg) treatment groups, for which doses were administered the third day, seventh day and 14th day after irradiation. L. ruthenicum extract was administered orally to the mice in the three treatment groups and normal saline was administered orally to the mice in the control group and model group for 14 days. The positive group was treated with amifostine (WR-2721) at 30 min before irradiation. Except for the control group, the groups of mice received a 5 Gy quantity of X-radiation evenly over their whole body at one time. Body weight, hemogram, thymus and spleen index, DNA, caspase-3, caspase-6, and P53 contents were observed at the third day, seventh day, and 14th day after irradiation. L. ruthenicum could significantly increase the total red blood cell count, hemoglobin count and DNA contents (p < 0.05). The spleen index recovered significantly by the third day and 14th day after irradiation (p < 0.05). L. ruthenicum low dose group showed a significant reduction in caspase-3 and caspase-6 of serum in mice at the third day, seventh day, and 14th day after irradiation and L. ruthenicum middle dose group experienced a reduction in caspase-6 of serum in mice by the seventh day after irradiation. L. ruthenicum could decrease the expression of P53. The results showed that L. ruthenicum had protective effects against radiation injury in mice. PMID:26193298

  12. Protective immunity against Leishmania major induced by Leishmania tropica infection of BALB/c mice.

    PubMed

    Mahmoudzadeh-Niknam, Hamid; Kiaei, Simin Sadat; Iravani, Davood

    2011-02-01

    Leishmania (L.) tropica is a causative agent of human cutaneous and viscerotropic leishmaniasis. Immune response to L. tropica in humans and experimental animals are not well understood. We previously established that L. tropica infection induces partial protective immunity against subsequent challenge infection with Leishmania major in BALB/c mice. Aim of the present study was to study immunologic mechanisms of protective immunity induced by L. tropica infection, as a live parasite vaccine, in BALB/c mouse model. Mice were infected by L. tropica, and after establishment of the infection, they were challenged by L. major. Our findings shows that L. tropica infection resulted in protection against L. major challenge in BALB/c mice and this protective immunity is associated with: (1) a DTH response, (2) higher IFN-γ and lower IL-10 response at one week post-challenge, (3) lower percentage of CD4(+) lymphocyte at one month post-challenge, and (4) the source of IFN-γ and IL-10 were mainly CD4(-) lymphocyte up to one month post-challenge suggesting that CD4(-) lymphocytes may be responsible for protection induced by L. tropica infection in the studied intervals.

  13. Protection against Influenza Virus Infection of Mice Fed Bifidobacterium breve YIT4064

    PubMed Central

    Yasui, Hisako; Kiyoshima, Junko; Hori, Tetuji; Shida, Kan

    1999-01-01

    Mice fed Bifidobacterium breve YIT4064 and immunized orally with influenza virus were more strongly protected against influenza virus infection of the lower respiratory tract than ones immunized with influenza virus only. The number of mice with enhanced anti-influenza virus immunoglobulin G (IgG) in serum upon oral administration of B. breve YIT4064 and oral immunization with influenza virus was significantly greater than that upon oral immunization with influenza virus only. These findings demonstrated that the oral administration of B. breve YIT4064 increased anti-influenza virus IgG antibodies in serum and protected against influenza virus infection. The oral administration of B. breve YIT4064 may enhance antigen-specific IgG against various pathogenic antigens taken orally and induce protection against various virus infections. PMID:10066652

  14. ApoA-I mimetics.

    PubMed

    Stoekenbroek, R M; Stroes, E S; Hovingh, G K

    2015-01-01

    A wealth of evidence indicates that plasma levels of high-density lipoprotein cholesterol (HDL-C) are inversely related to the risk of cardiovascular disease (CVD). Consequently, HDL-C has been considered a target for therapy in order to reduce the residual CVD burden that remains significant, even after application of current state-of-the-art medical interventions. In recent years, however, a number of clinical trials of therapeutic strategies that increase HDL-C levels failed to show the anticipated beneficial effect on CVD outcomes. As a result, attention has begun to shift toward strategies to improve HDL functionality, rather than levels of HDL-C per se. ApoA-I, the major protein component of HDL, is considered to play an important role in many of the antiatherogenic functions of HDL, most notably reverse cholesterol transport (RCT), and several therapies have been developed to mimic apoA-I function, including administration of apoA-I, mutated variants of apoA-I, and apoA-I mimetic peptides. Based on the potential anti-inflammatory effects, apoA-I mimetics hold promise not only as anti-atherosclerotic therapy but also in other therapeutic areas.

  15. Energy restriction and potential energy restriction mimetics.

    PubMed

    Nikolai, Sibylle; Pallauf, Kathrin; Huebbe, Patricia; Rimbach, Gerald

    2015-12-01

    Energy restriction (ER; also known as caloric restriction) is the only nutritional intervention that has repeatedly been shown to increase lifespan in model organisms and may delay ageing in humans. In the present review we discuss current scientific literature on ER and its molecular, metabolic and hormonal effects. Moreover, criteria for the classification of substances that might induce positive ER-like changes without having to reduce energy intake are summarised. Additionally, the putative ER mimetics (ERM) 2-deoxy-d-glucose, metformin, rapamycin, resveratrol, spermidine and lipoic acid and their suggested molecular targets are discussed. While there are reports on these ERM candidates that describe lifespan extension in model organisms, data on longevity-inducing effects in higher organisms such as mice remain controversial or are missing. Furthermore, some of these candidates produce detrimental side effects such as immunosuppression or lactic acidosis, or have not been tested for safety in long-term studies. Up to now, there are no known ERM that could be recommended without limitations for use in humans.

  16. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    SciTech Connect

    Li, Guodong; Kong, Bo; Zhu, Yan; Zhan, Le; Williams, Jessica A.; Tawfik, Ossama; Kassel, Karen M.; Luyendyk, James P.; Wang, Li; Guo, Grace L.

    2013-10-15

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR{sup −/−} and SHP{sup −/−} mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR{sup −/−} mice and therefore, increased SHP expression in FXR{sup −/−} mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR{sup −/−} mice with overexpression of SHP in hepatocytes (FXR{sup −/−}/SHP{sup Tg}) and determined the contribution of SHP in HCC development in FXR{sup −/−} mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR{sup −/−} mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR{sup −/−} mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency.

  17. [Protective effects of human bone marrow mesenchymal stem cells on hematopoietic organs of irradiated mice].

    PubMed

    Chen, Ling-Zhen; Yin, Song-Mei; Zhang, Xiao-Ling; Chen, Jia-Yu; Wei, Bo-Xiong; Zhan, Yu; Yu, Wei; Wu, Jin-Ming; Qu, Jia; Guo, Zi-Kuan

    2012-12-01

    The objective of this study was to explore the protective effects of human bone marrow mesenchymal stem cells (MSC) on hematopoietic organs of irradiated mice. Human bone marrow MSC were isolated, ex vivo expanded, and identified by cell biological tests. Female BALB/c mice were irradiated with (60)Co γ-ray at a single dose of 6 Gy, and received different doses of human MSC and MSC lysates or saline via tail veins. The survival of mice was record daily, and the femurs and spleens were harvested on day 9 and 16 for pathologic examination. The histological changes were observed and the cellularity was scored. The results showed that the estimated survival time of MSC- and MSC lysate-treated mice was comparable to that of controls. The hematopoiesis in the bone marrow of mice that received high-dose (5×10(6)) of MSC or MSC lysates was partially restored on day 9 and the capacity of hemopoietic tissue and cellularity scorings were significantly elevated as compared with that of controls (P < 0.05). Proliferative nudes were also obviously observed in the spleens of mice that received high-dose of MSC or MSC lysates on d 9 after irradiation. The histological structures of the spleen and bone marrow of the mice that received high-doses (5×10(6)) of MSC or MSC lysates were restored to normal, the cell proliferation displayed extraordinarily active. Further, the cellularity scores of the bone marrow were not significantly different between the high-dose MSC and MSC lysate-treated mice. It is concluded that the bone marrow MSC can promote the hematopoietic recovery of the irradiated mice, which probably is associated with the bioactive materials inherently existed in bone marrow cells.

  18. NADPH oxidase-1 deficiency offers little protection in Salmonella typhimurium-induced typhlitis in mice

    PubMed Central

    Chu, Fong-Fong; Esworthy, R Steven; Doroshow, James H; Shen, Binghui

    2016-01-01

    AIM To test whether Nox1 plays a role in typhlitis induced by Salmonella enterica serovar Typhimurium (S. Tm) in a mouse model. METHODS Eight-week-old male wild-type (WT) and Nox1 knockout (KO) C57BL6/J (B6) mice were administered metronidazole water for 4 d to make them susceptible to S. Tm infection by the oral route. The mice were given plain water and administered with 4 different doses of S. Tm by oral gavage. The mice were followed for another 4 d. From the time of the metronidazole application, the mice were observed twice daily and weighed daily. The ileum, cecum and colon were removed for sampling at the fourth day post-inoculation. Portions of all three tissues were fixed for histology and placed in RNAlater for mRNA/cDNA preparation and quantitative real-time PCR. The contents of the cecum were recovered for estimation of S. Tm CFU. RESULTS We found Nox1-knockout (Nox1-KO) mice were not more sensitive to S. Tm colonization and infection than WT B6 mice. This conclusion is based on the following observations: (1) S. Tm-infection induced similar weight loss in Nox1-KO mice compared to WT mice; (2) the same S. Tm CFU was recovered from the cecal content of Nox1-KO and WT mice regardless of the inoculation dose, except the lowest inoculation dose (2 × 106 CFU) for which the Nox1-KO had one-log lower CFU than WT mice; (3) there is no difference in cecal pathology between WT and Nox1-KO groups; and (4) there are no S. Tm infection-induced changes in gene expression levels (IL-1b, TNF-α, and Duox2) between WT and Nox1-KO groups. The Alpi gene expression was more suppressed by S. Tm treatment in WT than the Nox1-KO cecum. CONCLUSION Nox1 does not protect mice from S. Tm colonization. Nox1-KO provides a very minor protective effect against S. Tm infection. Using NOX1-specific inhibitors for colitis therapy should not increase risks in bacterial infection. PMID:28028364

  19. Oral Immunization of Mice with Live Pneumocystis murina Protects against Pneumocystis Pneumonia.

    PubMed

    Samuelson, Derrick R; de la Rua, Nicholas M; Charles, Tysheena P; Ruan, Sanbao; Taylor, Christopher M; Blanchard, Eugene E; Luo, Meng; Ramsay, Alistair J; Shellito, Judd E; Welsh, David A

    2016-03-15

    Pneumocystis pneumonia is a major cause of morbidity and mortality in immunocompromised patients, particularly those infected with HIV. In this study, we evaluated the potential of oral immunization with live Pneumocystis to elicit protection against respiratory infection with Pneumocystis murina. C57BL/6 mice vaccinated with live P. murina using a prime-boost vaccination strategy were protected from a subsequent lung challenge with P. murina at 2, 7, 14, and 28 d postinfection even after CD4(+) T cell depletion. Specifically, vaccinated immunocompetent mice had significantly faster clearance than unvaccinated immunocompetent mice and unvaccinated CD4-depleted mice remained persistently infected with P. murina. Vaccination also increased numbers of CD4(+) T cells, CD8(+) T cells, CD19(+) B cells, and CD11b(+) macrophages in the lungs following respiratory infection. In addition, levels of lung, serum, and fecal P. murina-specific IgG and IgA were increased in vaccinated animals. Furthermore, administration of serum from vaccinated mice significantly reduced Pneumocystis lung burden in infected animals compared with control serum. We also found that the diversity of the intestinal microbial community was altered by oral immunization with P. murina. To our knowledge, our data demonstrate for the first time that an oral vaccination strategy prevents Pneumocystis infection.

  20. Oral immunization of mice with live Pneumocystis murina protects against Pneumocystis pneumonia

    PubMed Central

    Samuelson, Derrick R.; de la Rua, Nicholas M.; Charles, Tysheena P.; Ruan, Sanbao; Taylor, Christopher M.; Blanchard, Eugene E.; Luo, Meng; Ramsay, Alistair J.; Shellito, Judd E.; Welsh, David A.

    2016-01-01

    Pneumocystis pneumonia is a major cause of morbidity and mortality in immunocompromised patients; particularly those infected with human immunodeficiency virus. In this study, we evaluated the potential of oral immunization with live Pneumocystis to elicit protection against respiratory infection with Pneumocystis murina. C57BL/6 mice vaccinated with live P. murina using a prime-boost vaccination strategy were protected from a subsequent lung challenge with P. murina at 2, 7, 14, and 28 days post infection even after CD4+ T cell depletion. Specifically, vaccinated immunocompetent mice had significantly faster clearance than unvaccinated immunocompetent mice and unvaccinated CD4-depleted mice remained persistently infected with P. murina. Vaccination also increased numbers of CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD11b+ macrophages in the lungs following respiratory infection. In addition, levels of lung, serum, and fecal P. murina-specific IgG and IgA were increased in vaccinated animals. Further, administration of serum from vaccinated mice significantly reduced Pneumocystis lung burden in infected animals compared to control serum. We also found that the diversity of the intestinal microbial community was altered by oral immunization with P. murina. Our data demonstrate for the first time that an oral vaccination strategy prevents Pneumocystis infection. PMID:26864029

  1. Differential Immune Responses and Protective Effects in Avirulent Mycobacterial Strains Vaccinated BALB/c Mice.

    PubMed

    Liu, Laicheng; Fu, Ruiling; Yuan, Xuefeng; Shi, Chunwei; Wang, Shuling; Lu, Xianyu; Ma, Zhao; Zhang, Xiaoming; Qin, Weiyan; Fan, Xionglin

    2015-07-01

    Screening live mycobacterial vaccine candidates is the important strategy to develop new vaccines against adult tuberculosis (TB). In this study, the immunogenicity and protective efficacy of several avirulent mycobacterial strains including Mycobacterium smegmatis, M. vaccae, M. terrae, M. phlei, M. trivial, and M. tuberculosis H37Ra were compared with M. bovis BCG in BALB/c mice. Our results demonstrated that differential immune responses were induced in different mycobacterial species vaccinated mice. As BCG-vaccinated mice did, M. terrae immunization resulted in Th1-type responses in the lung, as well as splenocytes secreting IFN-γ against a highly conserved mycobacterial antigen Ag85A. M. smegmatis also induced the same splenocytes secreting IFN-γ as BCG and M. terrae did. In addition, M. terrae and M. smegmatis-immunized mice predominantly increased expression of IL-10 and TGF-β in the lung. Most importantly, mice vaccinated with H37Ra and M. vaccae could provide the same protection in the lung against virulent M. tuberculosis challenge as BCG. The result may have important implications in developing adult TB vaccine.

  2. Alpha-methyl-homocysteine thiolactone protects lung of BALB/c mice irradiated with 6 Gy

    NASA Astrophysics Data System (ADS)

    Lubec, G.; Foltinova, J.; Leplawy, T.; Mallinger, R.; Tichatschek, E.; Getoff, N.

    1996-06-01

    The radiation protective activity of intraperitoneally administered alpha-methyl-homocysteine thiolactone (α-MHCTL; 100 mg/kg body weight) in female BALB/c mice and such treated with cysteine treated (100 mg/kg body weight), using unirradiated and placebo treated irradiated mice were tested as controls. 6 Gy whole body irradiated was applied and after a period of three weeks the animals were sacrificed and lungs were taken for morphometry and the determination of o-tyrosine. Septal areas were highest in the irradiated, placebo treated mice (68.67 + 9.82% septal area to total area)and lowest in the α-MHCTL treated irradiated mice (55.67 +11.29%), significant at the p < 0.05 level. Morphometric data were accompanied by highest levels of o-tyrosine, a reliable parameter for OH-attack, in the irradiated, placebo treated group with 1.87 + 0.40 μM/g lung tissue and 0.32 + 0.13 gmM/g lung tissue in the αMHCTL treated group; the statistical difference was significant. Significant radiation protection in the mammalian system at the morphological and biochemical level were found. The potent effect could be explained by the influence of alpha-alkylation in homocysteine thiolactone (HCTL) which renders amino acids unmetabolizeable, nontoxic, increases lipophilicity and therefore improving permeability through membranes. The present report confirms morphological data on the radiation protective activity of this interesting thiol compound.

  3. Antioxidant properties of lutein contribute to the protection against lipopolysaccharide-induced uveitis in mice

    PubMed Central

    2011-01-01

    Background Lutein is an important eye-protective nutrient. This study investigates the protective effects and mechanisms of lutein on lipopolysaccharides (LPS)-induced uveitis in mice. Methods Lutein, suspended in drinking water at a final concentration of 12.5 and 25 mg/mL, was administered to mice at 0.1 mL/10 g body weight for five consecutive days. Control and model group received drinking water only. Uveitis was induced by injecting LPS (100 mg per mouse) into the footpad in the model and lutein groups on day 5 after the last drug administration. Eyes of the mice were collected 24 hours after the LPS injection for the detection of indicators using commercial kits and reverse transcription-polymerase chain reaction. Results LPS-induced uveitis was confirmed by significant pathological damage and increased the nitric oxide level in eye tissue of BALB/C mice 24 hours after the footpad injection. The elevated nitric oxide level was significantly reduced by oral administration of lutein (125 and 500 mg/kg/d for five days) before LPS injection. Moreover, lutein decreased the malondialdehyde content, increased the oxygen radical absorbance capacity level, glutathione, the vitamin C contents and total superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Lutein further increased expressions of copper-zinc SOD, manganese SOD and GPx mRNA. Conclusion The antioxidant properties of lutein contribute to the protection against LPS-induced uveitis, partially through the intervention of inflammation process. PMID:22040935

  4. Increased human AP endonuclease 1 level confers protection against the paternal age effect in mice

    PubMed Central

    Sanchez, Jamila R.; Reddick, Traci L.; Perez, Marissa; Centonze, Victoria E.; Mitra, Sankar; Izumi, Tadahide; McMahan, C. Alex; Walter, Christi A.

    2015-01-01

    Increased paternal age is associated with a greater risk of producing children with genetic disorders originating from de novo germline mutations. Mice mimic the human condition by displaying an age-associated increase in spontaneous mutant frequency in spermatogenic cells. The observed increase in mutant frequency appears to be associated with a decrease in the DNA repair protein, AP endonuclease1 (APEX1) and Apex1 heterozygous mice display an accelerated paternal age effect as young adults. In this study, we directly tested if APEX1 over-expression in cell lines and transgenic mice could prevent increases in mutagenesis. Cell lines with ectopic expression of APEX1 had increased APEX1 activity and lower spontaneous and induced mutations in the lacI reporter gene relative to the control. Spermatogenic cells obtained from mice transgenic for human APEX1 displayed increased APEX1 activity, were protected from the age-dependent increase in spontaneous germline mutagenesis, and exhibited increased apoptosis in the spermatogonial cell population. These results directly indicate that increases in APEX1 level confer protection against the murine paternal age effect, thus highlighting the role of APEX1 in preserving reproductive health with increasing age and in protection against genotoxin-induced mutagenesis in somatic cells. PMID:26201249

  5. Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection

    PubMed Central

    Hudault, S; Guignot, J; Servin, A

    2001-01-01

    BACKGROUND—Escherichia coli is part of the normal gastrointestinal microflora which exerts a barrier effect against enteropathogens. Several E coli strains develop a protective effect against other Enterobacteriaceae.
AIMS—Two E coli strains, EM0, a human faecal strain, and JM105 K-12 were tested for their ability to prevent in vivo and in vitro infection by Salmonella typhimurium C5.
METHODS—Inhibition of C5 cell invasion by E coli was investigated in vitro using Caco-2/TC7 cells. The protective effect of E coli was examined in vivo in germfree or conventional C3H/He/Oujco mice orally infected by the lethal strain C5.
RESULTS—EMO expresses haemolysin and cytotoxic necrotising factor in vitro. In vitro, the two strains did not prevent the growth of C5 by secreted microcins or modified cell invasion of C5. In vivo, establishment of EM0 or JM105 in the gut of germfree mice resulted in a significant increase in the number of surviving mice: 11/12 and 9/12, respectively, at 58 days after infection (2×106/mouse) versus 0/12 in control germfree group at 13 days after infection. Colonisation level and translocation rate of C5 were significantly reduced during the three days after infection. In contrast, no reduction in faecal C5 excretion was observed in C5 infected conventional mice (1×108/mouse) receiving the EM0 or JM105 cultures daily.
CONCLUSIONS—Establishment of E coli strains, which do not display antimicrobial activity, protects germfree mice against infection and delays the establishment of C5 in the gut. Possible mechanisms of defence are discussed.


Keywords: Escherichia coli; gastrointestinal infection; Salmonella; germfree mice; bacterial antagonism PMID:11413110

  6. Thrombomodulin Contributes to Gamma Tocotrienol-Mediated Lethality Protection and Hematopoietic Cell Recovery in Irradiated Mice

    PubMed Central

    Pathak, Rupak; Shao, Lijian; Ghosh, Sanchita P.; Zhou, Daohong; Boerma, Marjan; Weiler, Hartmut; Hauer-Jensen, Martin

    2015-01-01

    Systemic administration of recombinant thrombomodulin (TM) confers radiation protection partly by accelerating hematopoietic recovery. The uniquely potent radioprotector gamma tocotrienol (GT3), in addition to being a strong antioxidant, inhibits the enzyme hydroxy-methyl-glutaryl-coenzyme A reductase (HMGCR) and thereby likely modulates the expression of TM. We hypothesized that the mechanism underlying the exceptional radioprotective properties of GT3 partly depends on the presence of endothelial TM. In vitro studies confirmed that ionizing radiation suppresses endothelial TM (about 40% at 4 hr after 5 Gy γ-irradiation) and that GT3 induces TM expression (about 2 fold at the mRNA level after 5 μM GT3 treatment for 4 hr). In vivo survival studies showed that GT3 was significantly more effective as a radioprotector in TM wild type (TM+/+) mice than in mice with low TM function (TMPro/-). After exposure to 9 Gy TBI, GT3 pre-treatment conferred 85% survival in TM+/+ mice compared to only 50% in TMPro/-. Thus, GT3-mediated radiation lethality protection is partly dependent on endothelial TM. Significant post-TBI recovery of hematopoietic cells, particularly leukocytes, was observed in TM+/+ mice (p = 0.003), but not in TMPro/- mice, despite the fact that GT3 induced higher levels of granulocyte colony stimulating factor (G-CSF) in TMPro/- mice (p = 0.0001). These data demonstrate a critical, G-CSF-independent, role for endothelial TM in GT3-mediated lethality protection and hematopoietic recovery after exposure to TBI and may point to new strategies to enhance the efficacy of current medical countermeasures in radiological/nuclear emergencies. PMID:25860286

  7. Nrf2 activation protects the liver from ischemia/ reperfusion injury in mice

    PubMed Central

    Kudoh, Kazuhiro; Uchinami, Hiroshi; Yoshioka, Masato; Seki, Ekihiro; Yamamoto, Yuzo

    2014-01-01

    Objective To investigate the role of Nrf2 in the pathogenesis of hepatic ischemia-reperfusion (I/R) injury. Summary Background Data Hepatic I/R injury is a serious complication that leads to liver failure after liver surgery. NF-E2-related factor 2 (Nrf2) is a transcription factor that plays a critical role in protecting cells against oxidative stress. Therefore, it is suggested that Nrf2 activation protects the liver from I/R injury. Methods Wild-type (WT) and Nrf2-deficient mice were treated with 15-deoxy-Δ12, 14-prostaglandin J2 (15d-PGJ2), or a vehicle. Subsequently, these mice were subjected to 60 min hepatic 70% ischemia followed by reperfusion. Liver and blood samples were collected to evaluate liver injury and mRNA expressions. Results After hepatic I/R, Nrf2-deficient livers exhibited enhanced tissue damage, impaired GSTm1, NQO1, and GCLc inductions, disturbed redox state, and aggravated TNF-α mRNA expression in comparison to WT livers. 15d-PGJ2 treatment protected the livers of WT mice from I/R injury via increased expressions of GSTm1, NQO1 and GCLc, maintained redox status, and decreased TNF-α induction. These effects induced by 15d-PGJ2 were not seen in the livers of Nrf2−/− mice and were not annulled by PPARγ antagonist in Nrf2+/+ mice, suggesting that the protective effect of 15d-PGJ2 is mediated by Nrf2-dependent antioxidant response. Conclusions Nrf2 plays a critical role in the mechanism of hepatic I/R injury and would be a new therapeutic target for preventing hepatic I/R injury during liver surgery. PMID:24368646

  8. Molecular decoys: ligand-binding recombinant proteins protect mice from curarimimetic neurotoxins.

    PubMed Central

    Gershoni, J M; Aronheim, A

    1988-01-01

    Mimic ligand-binding sites of the nicotinic acetylcholine receptor bind d-tubocurarine and alpha-bungarotoxin in vitro. Injection of such binding sites into mice could act as molecular decoys in vivo, providing protection against toxic ligands. This hypothesis of molecular "decoyance" has been tested in greater than 250 mice. Bacterially produced cholinergic binding sites provided a 2-fold increase in the survival rate of animals challenged with curarimimetic neurotoxins. Possible considerations for decoy designs and their applications are discussed. Images PMID:3375254

  9. Generation of a Live Attenuated Influenza Vaccine that Elicits Broad Protection in Mice and Ferrets.

    PubMed

    Wang, Lulan; Liu, Su-Yang; Chen, Hsiang-Wen; Xu, Juan; Chapon, Maxime; Zhang, Tao; Zhou, Fan; Wang, Yao E; Quanquin, Natalie; Wang, Guiqin; Tian, Xiaoli; He, Zhanlong; Liu, Longding; Yu, Wenhai; Sanchez, David Jesse; Liang, Yuying; Jiang, Taijiao; Modlin, Robert; Bloom, Barry R; Li, Qihan; Deng, Jane C; Zhou, Paul; Qin, F Xiao-Feng; Cheng, Genhong

    2017-03-08

    New influenza vaccines that provide effective and broad protection are desperately needed. Live attenuated viruses are attractive vaccine candidates because they can elicit both humoral and cellular immune responses. However, recent formulations of live attenuated influenza vaccines (LAIVs) have not been protective. We combined high-coverage transposon mutagenesis of influenza virus with a rapid high-throughput screening for attenuation to generate W7-791, a live attenuated mutant virus strain. W7-791 produced only a transient asymptomatic infection in adult and neonatal mice even at doses 100-fold higher than the LD50 of the parent strain. A single administration of W7-791 conferred full protection to mice against lethal challenge with H1N1, H3N2, and H5N1 strains, and improved viral clearance in ferrets. Adoptive transfer of T cells from W7-791-immunized mice conferred heterologous protection, indicating a role for T cell-mediated immunity. These studies present an LAIV development strategy to rapidly generate and screen entire libraries of viral clones.

  10. Vectored antibody gene delivery protects against Plasmodium falciparum sporozoite challenge in mice.

    PubMed

    Deal, Cailin; Balazs, Alejandro B; Espinosa, Diego A; Zavala, Fidel; Baltimore, David; Ketner, Gary

    2014-08-26

    Malaria caused by Plasmodium falciparum kills nearly one million children each year and imposes crippling economic burdens on families and nations worldwide. No licensed vaccine exists, but infection can be prevented by antibodies against the circumsporozoite protein (CSP), the major surface protein of sporozoites, the form of the parasite injected by mosquitoes. We have used vectored immunoprophylaxis (VIP), an adeno-associated virus-based technology, to introduce preformed antibody genes encoding anti-P. falciparum CSP mAb into mice. VIP vector-transduced mice exhibited long-lived mAb expression at up to 1,200 µg/mL in serum, and up to 70% were protected from both i.v. and mosquito bite challenge with transgenic Plasmodium berghei rodent sporozoites that incorporate the P. falciparum target of the mAb in their CSP. Serum antibody levels and protection from mosquito bite challenge were dependent on the dose of the VIP vector. All individual mice expressing CSP-specific mAb 2A10 at 1 mg/mL or more were completely protected, suggesting that in this model system, exceeding that threshold results in consistent sterile protection. Our results demonstrate the potential of VIP as a path toward the elusive goal of immunization against malaria.

  11. STAT1 signaling is essential for protection against Cryptococcus neoformans infection in mice.

    PubMed

    Leopold Wager, Chrissy M; Hole, Camaron R; Wozniak, Karen L; Olszewski, Michal A; Wormley, Floyd L

    2014-10-15

    Nonprotective immune responses to highly virulent Cryptococcus neoformans strains, such as H99, are associated with Th2-type cytokine production, alternatively activated macrophages, and inability of the host to clear the fungus. In contrast, experimental studies show that protective immune responses against cryptococcosis are associated with Th1-type cytokine production and classical macrophage activation. The protective response induced during C. neoformans strain H99γ (C. neoformans strain H99 engineered to produce murine IFN-γ) infection correlates with enhanced phosphorylation of the transcription factor STAT1 in macrophages; however, the role of STAT1 in protective immunity to C. neoformans is unknown. The current studies examined the effect of STAT1 deletion in murine models of protective immunity to C. neoformans. Survival and fungal burden were evaluated in wild-type and STAT1 knockout (KO) mice infected with either strain H99γ or C. neoformans strain 52D (unmodified clinical isolate). Both strains H99γ and 52D were rapidly cleared from the lungs, did not disseminate to the CNS, or cause mortality in the wild-type mice. Conversely, STAT1 KO mice infected with H99γ or 52D had significantly increased pulmonary fungal burden, CNS dissemination, and 90-100% mortality. STAT1 deletion resulted in a shift from Th1 to Th2 cytokine bias, pronounced lung inflammation, and defective classical macrophage activation. Pulmonary macrophages from STAT1 KO mice exhibited defects in NO production correlating with inefficient inhibition of fungal proliferation. These studies demonstrate that STAT1 signaling is essential not only for regulation of immune polarization but also for the classical activation of macrophages that occurs during protective anticryptococcal immune responses.

  12. Toll-like receptor 4-positive macrophages protect mice from Pasteurella pneumotropica-induced pneumonia

    NASA Technical Reports Server (NTRS)

    Hart, Marcia L.; Mosier, Derek A.; Chapes, Stephen K.

    2003-01-01

    This study investigates Toll-like receptor 4 (TLR4)-positive macrophages in early recognition and clearance of pulmonary bacteria. TLR4 is a trans-membrane receptor that is the primary recognition molecule for lipopolysaccharide of gram-negative bacteria. The TLR4(Lps-del) mouse strains C57BL10/ScN (B10) and STOCK Abb(tm1) TLR4(Lps-del) Slc11a1(s)(B10 x C2D) are susceptible to pulmonary infections and develop pneumonia when naturally or experimentally infected by the opportunistic bacterium Pasteurella pneumotropica. Since these mice have the TLR4(Lps-del) genotype, we hypothesized that reconstitution of mice with TLR4-positive macrophages would provide resistance to this bacterium. A cultured macrophage cell line (C2D macrophages) and bone marrow cells from C2D mice were adoptively transferred to B10 and B10 x C2D mice by intraperitoneal injection. C2D macrophages increased B10 and B10 x C2D mouse resistance to P. pneumotropica. In C2D-recipient mice there was earlier transcription of tumor necrosis factor alpha and chemokines JE and macrophage inflammatory protein 2 (MIP-2) in the lungs of B10 and B10 x C2D mice, and there was earlier transcription of KC and MIP-1alpha in B10 x C2D mice. In addition, the course of inflammation following experimental Pasteurella challenge was altered in C2D recipients. C2D macrophages also protected B10 x C2D mice, which lack CD4(+) T cells. These data indicate that macrophages are critical for pulmonary immunity and can provide host resistance to P. pneumotropica. This study indicates that TLR4-positive macrophages are important for early recognition and clearance of pulmonary bacterial infections.

  13. Ectopic expression of gamma interferon in the eye protects transgenic mice from intraocular herpes simplex virus type 1 infections.

    PubMed Central

    Geiger, K; Howes, E L; Sarvetnick, N

    1994-01-01

    Transgenic (rho gamma) mice provide a model for studying the influence of gamma interferon (IFN-gamma) produced in the eye on ocular and cerebral viral infection. To establish this model, we injected BALB/c- and C57BL/6-derived transgenic and nontransgenic mice of different ages intravitreally with herpes simplex virus type 1 (HSV-1) strain F. Eye and brain tissues of these mice were assessed for pathological and immunocytochemical changes. HSV-1 infection induced severe retinitis of the injected eyes and infection of the brain in all mice. In transgenic mice inoculated with HSV-1, the left, nontreated eyes were protected from retinitis, whereas nontransgenic mice developed bilateral retinitis. Additional intravitreal injection of IFN-gamma with the virus protected the noninoculated eyes of nontransgenic mice. Three-week-old nontransgenic mice died from HSV-1 infection, whereas transgenic mice of the same age and nontransgenic mice intravitreally treated with IFN-gamma survived. Ocular IFN-gamma production increased the extent of inflammation in transgenic mice but did not have a significant influence on the growth of HSV-1 until day 3 after inoculation and did not influence the neuroinvasion of this virus. Thus, the effects of IFN-gamma were not caused by an early block of viral replication. Possible mechanisms of IFN-gamma action include activation of the immune response, alteration of the properties of the virus, and direct protection of neurons. Images PMID:8057437

  14. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    PubMed

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  15. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival

    PubMed Central

    Tinkum, Kelsey L.; Stemler, Kristina M.; White, Lynn S.; Loza, Andrew J.; Jeter-Jones, Sabrina; Michalski, Basia M.; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S.; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-01-01

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy. PMID:26644583

  16. Type I IFN Induction via Poly-ICLC Protects Mice against Cryptococcosis.

    PubMed

    Sionov, Edward; Mayer-Barber, Katrin D; Chang, Yun C; Kauffman, Keith D; Eckhaus, Michael A; Salazar, Andres M; Barber, Daniel L; Kwon-Chung, Kyung J

    2015-08-01

    Cryptococcus neoformans is the most common cause of fungal meningoencephalitis in AIDS patients. Depletion of CD4 cells, such as occurs during advanced AIDS, is known to be a critical risk factor for developing cryptococcosis. However, the role of HIV-induced innate inflammation in susceptibility to cryptococcosis has not been evaluated. Thus, we sought to determine the role of Type I IFN induction in host defense against cryptococci by treatment of C. neoformans (H99) infected mice with poly-ICLC (pICLC), a dsRNA virus mimic. Unexpectedly, pICLC treatment greatly extended survival of infected mice and reduced fungal burdens in the brain. Protection from cryptococcosis by pICLC-induced Type I IFN was mediated by MDA5 rather than TLR3. PICLC treatment induced a large, rapid and sustained influx of neutrophils and Ly6Chigh monocytes into the lung while suppressing the development of eosinophilia. The pICLC-mediated protection against H99 was CD4 T cell dependent and analysis of CD4 T cell polyfunctionality showed a reduction in IL-5 producing CD4 T cells, marginal increases in Th1 cells and dramatic increases in RORγt+ Th17 cells in pICLC treated mice. Moreover, the protective effect of pICLC against H99 was diminished in IFNγ KO mice and by IL-17A neutralization with blocking mAbs. Furthermore, pICLC treatment also significantly extended survival of C. gattii infected mice with reduced fungal loads in the lungs. These data demonstrate that induction of type I IFN dramatically improves host resistance against the etiologic agents of cryptococcosis by beneficial alterations in both innate and adaptive immune responses.

  17. Plasma-Mediated Gut Protection After Hemorrhagic Shock is Lessened in Syndecan-1-/- Mice.

    PubMed

    Ban, Kechen; Peng, Zhanglong; Pati, Shibani; Witkov, Richard B; Park, Pyong Woo; Kozar, Rosemary A

    2015-11-01

    We have shown in a rodent model of hemorrhagic shock (HS) that fresh frozen plasma (FFP) reduces lung inflammation and injury that are correlated with restitution of syndecan-1. As the gut is believed to contribute to distant organ injury and inflammation after shock, the current study sought to determine if the protective effects of plasma would extend to the gut and to elucidate the contribution of syndecan-1 to this protective effect. We also examined the potential role of TNFα, and a disintegrin and metalloproteinase (ADAM)-17, both intestinal sheddases of syndecan-1. Wild-type (WT) and syndecan-1 (KO) mice were subjected to HS followed by resuscitation with lactated Ringer's (LR) or FFP and compared with shock alone and shams. Small bowel and blood were obtained after 3  h for analysis of mucosal injury and inflammation and TNFα and ADAM-17 protein expression and activity. After HS, gut injury and inflammation were significantly increased compared with shams. Resuscitation with LR decreased both injury and inflammation that were further lessened by FFP. KO mice displayed worsened gut injury and inflammation after HS compared with WT mice, and LR and FFP equivalently inhibited injury and inflammation. Both systemic and intestinal TNFα and ADAM-17 followed similar trends, with increases after HS, reduction by LR, and a further decrease by FFP in WT but not KO mice. In conclusion, FFP decreased gut injury and inflammation after hemorrhagic shock, an effect that was abrogated in syndecan-1 mice. Plasma also decreased TNFα and ADAM-17, representing a potential mechanistic link to its protection via syndecan-1.

  18. Baicalein protects mice against radiation-induced DNA damages and genotoxicity.

    PubMed

    Gandhi, Nitin Motilal

    2013-07-01

    Baicalein is the major flavonoid extracted from the root of Scutellaria baicaleins. This flavonoid is used extensively in Chinese herbal medicine. In the present study baicalein is evaluated for its radioprotective properties. Human blood cells when exposed to the γ-radiation ex vivo in presence of baicalein underwent the reduced DNA damage compared to the control. Baicalein administration prior to the whole-body γ-radiation (4 Gy) exposure of mice resulted in protecting the damage to the DNA as measured in their blood cells by alkaline comet assay. Mice when exposed to the radiation (whole body; 1.7 Gy) resulted in damage to the bone marrow as measured by micronucleated reticulocyte (MNRET) formation. Baicalein pre-treatment reduces the radiation induced damage to the bone marrow cells, as there was decrease in the percentage MNRET formation. These findings indicate radio-protecting ability of baicalein.

  19. Passive Immunization against Cachectin/Tumor Necrosis Factor Protects Mice from Lethal Effect of Endotoxin

    NASA Astrophysics Data System (ADS)

    Beutler, B.; Milsark, I. W.; Cerami, A. C.

    1985-08-01

    A highly specific polyclonal rabbit antiserum directed against murine cachectin/tumor necrosis factor (TNF) was prepared. When BALB/c mice were passively immunized with the antiserum or with purified immune globulin, they were protected against the lethal effect of the endotoxin lipopolysaccharide produced by Escherichia coli. The prophylactic effect was dose-dependent and was most effective when the antiserum was administered prior to the injection of the endotoxin. Antiserum to cachectin/TNF did not mitigate the febrile response of endotoxin-treated animals, and very high doses of endotoxin could overcome the protective effect. The median lethal dose of endotoxin in mice pretreated with 50 microliters of the specific antiserum was approximately 2.5 times greater the median lethal dose for controls given nonimmune serum. The data suggest that cachectin/TNF is one of the principal mediators of the lethal effect of endotoxin.

  20. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection.

    PubMed

    Coleman, Christopher M; Venkataraman, Thiagarajan; Liu, Ye V; Glenn, Gregory M; Smith, Gale E; Flyer, David C; Frieman, Matthew B

    2017-03-14

    The Middle East respiratory syndrome coronavirus (MERS-CoV) was first discovered in late 2012 and has gone on to cause over 1800 infections and 650 deaths. There are currently no approved therapeutics or vaccinations for MERS-CoV. The MERS-CoV spike (S) protein is responsible for receptor binding and virion entry to cells, is immunodominant and induces neutralizing antibodies in vivo, all of which, make the S protein an ideal target for anti-MERS-CoV vaccines. In this study, we demonstrate protection induced by vaccination with a recombinant MERS-CoV S nanoparticle vaccine and Matrix-M1 adjuvant combination in mice. The MERS-CoV S nanoparticle vaccine produced high titer anti-S neutralizing antibody and protected mice from MERS-CoV infection in vivo.

  1. Lacteal immunity to enteric cryptosporidiosis in mice: immune dams do not protect their suckling pups.

    PubMed Central

    Moon, H W; Woodmansee, D B; Harp, J A; Abel, S; Ungar, B L

    1988-01-01

    The susceptibilities of passively immunized principal and nonimmunized control suckling mice to orogastric challenge with Cryptosporidium parvum oocysts were compared. Principals were suckled by dams that had recovered from C. parvum infection. Controls were suckled by dams reared free of C. parvum infection. Principals and controls were equally susceptible to challenge. Principals were susceptible even when their dams were hyperimmunized by oral and parenteral booster inoculations with C. parvum oocysts. Immune dams produced serum antibody against C. parvum, while nonimmune dams did not. Anti-cryptosporidia immunoglobulin G (IgG) and IgA were demonstrated in whey extracted from the stomachs of principals that had suckled immune dams but not in whey extracted from the stomachs of controls. It was concluded that passive lacteal immunity is not an efficient means of protection against cryptosporidiosis in mice. As in other coccidian infections, protective immunity against cryptosporidiosis may depend more on immune cells than on antibody. PMID:3343052

  2. Vaccinia Virus Recombinants: Expression of VSV Genes and Protective Immunization of Mice and Cattle

    NASA Astrophysics Data System (ADS)

    Mackett, M.; Yilma, T.; Rose, J. K.; Moss, B.

    1985-01-01

    Vesicular stomatitis virus (VSV) causes a contagious disease of horses, cattle, and pigs. When DNA copies of messenger RNA's for the G or N proteins of VSV were linked to a vaccinia virus promoter and inserted into the vaccinia genome, the recombinants retained infectivity and synthesized VSV polypeptides. After intradermal vaccination with live recombinant virus expressing the G protein, mice produced VSV-neutralizing antibodies and were protected against lethal encephalitis upon intravenous challenge with VSV. In cattle, the degree of protection against intradermalingually injected VSV was correlated with the level of neutralizing antibody produced following vaccination.

  3. Protective effect of naringin against ankylosing spondylitis via ossification, inflammation and oxidative stress in mice

    PubMed Central

    Liu, Kang; Wu, Lianguo; Shi, Xiaolin; Wu, Fengqing

    2016-01-01

    Naringin is an abundant flavanone in pomelo, grapefruit as well as lime and its variants, has been shown to exhibit certain antioxidative, anti-inflammatory, anti-cancer and hypoglycemic effects. The aim of the current study was to evaluate the protective effects of naringin against ankylosing spondylitis (AS) and to elucidate the potential underlying mechanism. Firstly, a mouse model of ankylosing spondylitis (AS) was established. Next, osteocalcin (OC), alkaline phosphatase (ALP) and triglyceride (TG) activity values, inflammatory factor and oxidative stress were evaluated in the AS mice. Then, the Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) protein expression levels in the AS mice were investigated using western blot analysis. The results showed that naringin increased OC, ALP and TG activity values in the AS mouse model. Furthermore, inflammatory factor and oxidative stress levels in the AS mice were restrained by treatment with naringin. Furthermore, JAK2 and STAT3 protein expression levels were reduced by treatment with naringin. In conclusion, the present results indicated that the protective effects of naringin against AS are exerted via the induction of ossification, suppression of inflammation and oxidative stress and the downregulation of JAK2/STAT3 in mice. PMID:27446336

  4. Oral immunization with recombinant enterovirus 71 VP1 formulated with chitosan protects mice against lethal challenge

    PubMed Central

    2014-01-01

    Background Enterovirus 71 (EV71) is the etiologic agent of hand-foot-and-mouth disease (HFMD) in the Asia-Pacific region, Many strategies have been applied to develop EV71 vaccines but no vaccines are currently available. Mucosal immunization of the VP1, a major immunogenic capsid protein of EV71, may be an alternative way to prevent EV71 infection. Results In this study, mucosal immunogenicity and protect function of recombinant VP1 protein (rVP1) in formulation with chitosan were tested and assessed in female ICR mouse model. The results showed that the oral immunization with rVP1 induced VP1-specific IgA antibodies in intestine, feces, vagina, and the respiratory tract and serum-specific IgG and neutralization antibodies in vaccinated mice. Splenocytes from rVP1-immunized mice induced high levels of Th1 (cytokine IFN-γ), Th2 (cytokine IL-4) and Th3 (cytokine TGF-β) type immune responses after stimulation. Moreover, rVP1-immunized mother mice conferred protection (survival rate up to 30%) on neonatal mice against a lethal challenge of 103 plaque-forming units (PFU) EV71. Conclusions These data indicated that oral immunization with rVP1 in formulation with chitosan was effective in inducing broad-spectrum immune responses and might be a promising subunit vaccine candidate for preventing EV71 infection. PMID:24885121

  5. Oral Administration of Fermented Soymilk Products Protects the Skin of Hairless Mice against Ultraviolet Damage

    PubMed Central

    Kano, Mitsuyoshi; Kubota, Norihiro; Masuoka, Norie; Hori, Tetsuji; Miyazaki, Kouji; Ishikawa, Fumiyasu

    2016-01-01

    The protective effect of isoflavones on skin damage from ultraviolet (UV) radiation and their bioavailability were investigated in ovariectomized hairless mice fed diets composed of fermented soymilk containing aglycone forms of isoflavones or control soymilk containing glucose-conjugated forms of isoflavones. The erythema intensity of dorsal skin was significantly higher in ovariectomized mice than in sham-operated mice (p < 0.05). The erythema intensity and epidermal thickness of dorsal skin were significantly lower in the fermented soymilk diet group than in the control diet group (each p < 0.05). Levels of cyclobutane pyrimidine dimers in dorsal skin were significantly lower in the fermented soymilk diet group than in the control group (p < 0.05). Serum and dorsal skin isoflavone concentrations were significantly higher in the fermented soymilk diet group than in the soymilk diet group (p < 0.05). These results indicate that oral administration of a fermented soymilk diet increases isoflavone concentrations in the blood and skin, effectively scavenging the reactive oxygen species generated by UV irradiation and exerting an estrogen-like activity, with a consequent protective effect on skin photodamage in hairless mice. PMID:27556484

  6. Renal Protective Effects of 17β-Estradiol on Mice with Acute Aristolochic Acid Nephropathy.

    PubMed

    Shi, Min; Ma, Liang; Zhou, Li; Fu, Ping

    2016-10-18

    Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by a Chinese herb containing aristolochic acid. Excessive death of renal tubular epithelial cells (RTECs) characterized the acute phase of AAN. Therapies for acute AAN were limited, such as steroids and angiotensin-receptor blockers (ARBs)/angiotensin-converting enzyme inhibitors (ACEIs). It was interesting that, in acute AAN, female patients showed relative slower progression to renal failure than males. In a previous study, female hormone 17β-estradiol (E2) was found to attenuate renal ischemia-reperfusion injury. Thus, the aim of this study was to investigate the potential protective role of E2 in acute AAN. Compared with male C57BL/6 mice of acute AAN, lower serum creatinine (SCr) and less renal injury, together with RTEC apoptosis in females, were found. Treatment with E2 in male AAN mice reduced SCr levels and attenuated renal tubular injury and RTEC apoptosis. In the mice kidney tissue and human renal proximal tubule cells (HK-2 cells), E2 both attenuated AA-induced cell apoptosis and downregulated the expression of phosphor-p53 (Ser15), p53, and cleaved-caspase-3. This study highlights that E2 exhibited protective effects on the renal injury of acute AAN in male mice by reducing RTEC apoptosis, which might be related to inhibiting the p53 signaling pathway.

  7. Dehydroepiandrosterone protects mice from endotoxin toxicity and reduces tumor necrosis factor production.

    PubMed Central

    Danenberg, H D; Alpert, G; Lustig, S; Ben-Nathan, D

    1992-01-01

    Recent reports have demonstrated an immunomodulating activity of dehydroepiandrosterone (DHEA) different from that described for glucocorticoids. The present study was designed to test DHEA's activity in endotoxic shock and to investigate its effect on endotoxin-induced production of tumor necrosis factor (TNF). Mortality of CD-1 mice exposed to a lethal dose of lipopolysaccharide (LPS; 800 micrograms per mouse) was reduced from 95 to 24% by treatment with a single dose of DHEA, given 5 min before LPS. LPS administration resulted in high levels of TNF, a response that was significantly blocked by DHEA, both in vivo and in vitro. DHEA treatment also reduced LPS-induced increments in serum corticosterone levels, a parameter considered not to be mediated by TNF. In another experimental model, mice sensitized with D-galactosamine, followed by administration of recombinant human TNF, were subjected to 89% mortality rate, which was reduced to 55% in DHEA-treated mice. These data show that DHEA protects mice from endotoxin lethality. The protective effect is probably mediated by reduction of TNF production as well as by effecting both TNF-induced and non-TNF-induced phenomena. PMID:1444309

  8. Dengue Type-2 Virus Envelope Protein Made Using Recombinant Baculovirus Protects Mice Against Virus Challenge

    DTIC Science & Technology

    1994-01-01

    the envelope (E) glycoprotein of dengue 2 virus was cloned into baculovirus (IAutographa californical nuclear polyhedrosis virus, AcNPV). The...polyclonal, anti- dengue type 2 antibody and a dengue type 2-specific, neutralizing monoclonal antibody. Balb/c mice immunized with the recombinant...antigen produced only non-neutralizing antibody against dengue 2 virus but were partially protected against morbidity and mortality after

  9. Humanized Monoclonal Antibody That Passively Protects Mice against Systemic and Intranasal Ricin Toxin Challenge

    PubMed Central

    Sully, Erin K.; Bohorova, Natasha; Bohorov, Ognian; Kim, Do; Pauly, Michael H.; Whaley, Kevin J.

    2016-01-01

    PB10 is a murine monoclonal antibody against an immunodominant epitope on ricin toxin's enzymatic subunit. Here, we characterize a fully humanized version of PB10 IgG1 (hPB10) and demonstrate that it has potent in vitro and in vivo toxin-neutralizing activities. We also report the minimum serum concentrations of hPB10 required to protect mice against 10 times the 50% lethal dose of ricin when delivered by injection and inhalation. PMID:27466351

  10. Significant In Vivo Anti-Inflammatory Activity of Pytren4Q-Mn a Superoxide Dismutase 2 (SOD2) Mimetic Scorpiand-Like Mn (II) Complex

    PubMed Central

    Serena, Carolina; Calvo, Enrique; Clares, Mari Paz; Diaz, María Luisa; Chicote, Javier U.; Beltrán-Debon, Raúl; Fontova, Ramón; Rodriguez, Alejandro; García-España, Enrique; García-España, Antonio

    2015-01-01

    Background The clinical use of purified SOD enzymes has strong limitations due to their large molecular size, high production cost and immunogenicity. These limitations could be compensated by using instead synthetic SOD mimetic compounds of low molecular weight. Background/Methodology We have recently reported that two SOD mimetic compounds, the MnII complexes of the polyamines Pytren2Q and Pytren4Q, displayed high antioxidant activity in bacteria and yeast. Since frequently molecules with antioxidant properties or free-radical scavengers also have anti-inflammatory properties we have assessed the anti-inflammatory potential of Pytren2Q and Pytren4Q MnII complexes, in cultured macrophages and in a murine model of inflammation, by measuring the degree of protection they could provide against the cellular injury produced by lipopolisacharide, a bacterial endotoxin. Principal Findings In this report we show that the MnII complex of Pytren4Q but not that of Pytren2Q effectively protected human cultured THP-1 macrophages and whole mice from the inflammatory effects produced by LPS. These results obtained with two molecules that are isomers highlight the importance of gathering experimental data from animal models of disease in assessing the potential of candidate molecules. Conclusion/Significance The effective anti-inflammatory activity of the MnII complex of Pytren4Q in addition to its low toxicity, water solubility and ease of production would suggest it is worth taking into consideration for future pharmacological studies. PMID:25742129

  11. Protective Effect of Selenium on Aflatoxin B1-Induced Testicular Toxicity in Mice.

    PubMed

    Cao, Zheng; Shao, Bing; Xu, Feibo; Liu, Yunfeng; Li, Yanfei; Zhu, Yanzhu

    2017-03-27

    Aflatoxins have been considered as one of the major risk factors of male infertility, and aflatoxin B1 (AFB1) is the most highly toxic and prevalent member of the aflatoxins family. Selenium (Se), an essential nutritional trace mineral for normal testicular development and male fertility, has received extensive intensive on protective effects of male reproductive system due to its potential antioxidant and activating testosterone synthesis. To investigate the protective effect of Se on AFB1-induced testicular toxicity, the mice were orally administered with AFB1 (0.75 mg/kg) and Se (0.2 mg/kg or 0.4 mg/kg) for 45 days. We found that that Se elevated testes index, sperm functional parameters (concentration, malformation, and motility), and the level of serum testosterone in AFB1-exposed mice. Moreover, our results showed that Se attenuated the AFB1-induced oxidative stress and the reduction of testicular testosterone synthesis enzyme protein expression such as steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage (P450scc), and 17β-hydroxysteroid dehydrogenase (17β-HSD) in AFB1-exposed mice. These results demonstrated that Se conferred protection against AFB1-induced testicular toxicity and can be attributed to its antioxidant and increased testosterone level by stimulating protein expression of StAR and testosterone synthetic enzymes.

  12. A plant based protective antigen [PA(dIV)] vaccine expressed in chloroplasts demonstrates protective immunity in mice against anthrax.

    PubMed

    Gorantala, Jyotsna; Grover, Sonam; Goel, Divya; Rahi, Amit; Jayadev Magani, Sri Krishna; Chandra, Subhash; Bhatnagar, Rakesh

    2011-06-15

    The currently available anthrax vaccines are limited by being incompletely characterized, potentially reactogenic and have an expanded dosage schedule. Plant based vaccines offer safe alternative for vaccine production. In the present study, we expressed domain IV of Bacillus anthracis protective antigen gene [PA(dIV)] in planta (by nuclear agrobacterium and chloroplast transformation) and E. coli [rPA(dIV)]. The presence of transgene and the expression of PA(dIV) in planta was confirmed by molecular analysis. Expression levels up to 5.3% of total soluble protein (TSP) were obtained with AT rich (71.8% AT content) PA(dIV) gene in transplastomic plants while 0.8% of TSP was obtained in nuclear transformants. Further, we investigated the protective response of plant and E. coli derived PA(dIV) in mice by intraperitoneal (i.p.) and oral immunizations with or without adjuvant. Antibody titers of >10(4) were induced upon i.p. and oral immunizations with plant derived PA(dIV) and oral immunization with E. coli derived PA(dIV). Intraperitoneal injections with adjuvanted E. coli derived PA(dIV), generated highest antibody titers of >10(5). All the immunized groups demonstrated predominant IgG1 titers over IgG2a indicating a polarized Th2 type response. We also evaluated the mucosal antibody response in orally immunized groups. When fecal extracts were analyzed, low sIgA titer was demonstrated in adjuvanted plant and E. coli derived PA(dIV) groups. Further, PA(dIV) antisera enhanced B. anthracis spore uptake by macrophages in vitro and also demonstrated an anti-germinating effect suggesting a potent role at mucosal surfaces. The antibodies from various groups were efficient in neutralizing the lethal toxin in vitro. When mice were challenged with B. anthracis, mice immunized with adjuvanted plant PA(dIV) imparted 60% and 40% protection while E. coli derived PA(dIV) conferred 100% and 80% protection upon i.p. and oral immunizations. Thus, our study is the first attempt in

  13. Protective effect of resveratrol against neuronal damage following transient global cerebral ischemia in mice.

    PubMed

    Hong, Jeong-Ho; Lee, Hyung; Lee, Seong-Ryong

    2016-01-01

    Resveratrol (3,5,4'-trihydroxystilbene) is a natural polyphenol which is rich in grape seeds and skin. Several studies have revealed that resveratrol possesses neuroprotective effects. In the case of global brain ischemia, there are few reports regarding the protective effect of resveratrol. Therefore, the influence of resveratrol on neuronal damage after transient global brain ischemia remains to be clarified. In the current study, C57BL/6 black mice were subjected to 20 min of transient global brain ischemia and followed by 72 h of reperfusion. Resveratrol (20 or 40 mg/kg, once daily, dissolved in 0.5% carboxymethylcellulose) was administered orally for 7 days before ischemia and daily until the mice were euthanized. The effect of lower or higher dose of resveratrol on neuronal damage, matrix metalloproteinase (MMP) activity and in situ DNA fragmentation (TUNEL) assay in the hippocampus after global ischemia was examined. Neuronal damages were remarkable in CA1 and CA2 pyramidal cell layers after global ischemia. In resveratrol-treated mice (40 mg/kg), neuronal damage was significantly reduced compared with vehicle-treated mice. Mice treated with resveratrol showed reduced MMP-9 activity. Resveratrol also inhibited TUNEL staining. These data suggest that resveratrol, a natural polyphenol, reduces hippocampal neuronal cell damage following transient global ischemia by reducing MMP-9 activity.

  14. Protective effect of boric acid against carbon tetrachloride-induced hepatotoxicity in mice.

    PubMed

    Ince, Sinan; Keles, Hikmet; Erdogan, Metin; Hazman, Omer; Kucukkurt, Ismail

    2012-07-01

    The protective effect of boric acid against liver damage was evaluated by its attenuation of carbon tetrachloride (CCl(4))-induced hepatotoxicity in mice. Male albino mice were treated intraperitoneally (i.p.) with boric acid (50, 100, and 200 mg/kg) or silymarin daily for 7 days and received 0.2% CCl(4) in olive oil (10 mL/kg, i.p.) on day 7. Results showed that administration of boric acid significantly reduced the elevation in serum levels of aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase, and the level of malondialdehyde in the liver that were induced by CCl(4) in mice. Boric acid treatment significantly increased glutathione content, as well as the activities of superoxide dismutase and catalase in the liver. Boric acid treatment improved the catalytic activity of cytochrome P450 2E1 and maintained activation of nuclear factor kappa light-chain enhancer of activated B cell gene expression, with no effect on inducible nitric oxide synthase gene expression in the livers of mice. Histopathologically, clear decreases in the severity of CCl(4)-induced lesions were observed, particularly at high boric acid concentrations. Results suggest that boric acid exhibits potent hepatoprotective effects on CCl(4)-induced liver damage in mice, likely the result of both the increase in antioxidant-defense system activity and the inhibition of lipid peroxidation.

  15. Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice.

    PubMed

    Tian, Fengwei; Xiao, Yue; Li, Xiaoxiao; Zhai, Qixiao; Wang, Gang; Zhang, Qiuxiang; Zhang, Hao; Chen, Wei

    2015-01-01

    Lactobacillus plantarum CCFM8246, which has a relatively strong copper binding capacity and tolerance to copper ions, was obtained by screening from 16 lactic acid bacteria in vitro. The selected strain was then applied to a mouse model to evaluate its protective function against copper intoxication in vivo. The experimental mice were divided into an intervention group and a therapy group; mice in the intervention group received co-administration of CCFM8246 and a copper ion solution by gavage, while mice in the therapy group were treated with CCFM8246 after 4 weeks of copper exposure. In both two groups, mice treated with copper alone and that treated with neither CCFM8246 nor copper served as positive and negative controls, respectively. At the end of the experimental period, the copper content in feces and tissues, the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum, and oxidation stress indices in liver and kidney tissue were determined. Learning and memory ability was evaluated by Morris water maze experiments. The results indicated that treatment with CCFM8246 significantly increased the copper content in feces to promote copper excretion, reduce the accumulation of copper in tissues, reverse oxidative stress induced by copper exposure, recover the ALT and AST in serum and improve the spatial memory of mice.

  16. ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis

    PubMed Central

    Cabrera, Sandra; Fernández, Álvaro F.; Mariño, Guillermo; Aguirre, Alina; Suárez, María F.; Español, Yaiza; Vega, José A.; Laurà, Rosaria; Fueyo, Antonio; Fernández-García, M. Soledad; Freije, José M.P.; Kroemer, Guido; López-Otín, Carlos

    2013-01-01

    The identification of inflammatory bowel disease (IBD) susceptibility genes by genome-wide association has linked this pathology to autophagy, a lysosomal degradation pathway that is crucial for cell and tissue homeostasis. Here, we describe autophagy-related 4B, cysteine peptidase/autophagin-1 (ATG4B) as an essential protein in the control of inflammatory response during experimental colitis. In this pathological condition, ATG4B protein levels increase in parallel with the induction of autophagy. Moreover, ATG4B expression is significantly reduced in affected areas of the colon from IBD patients. Consistently, atg4b−/− mice present Paneth cell abnormalities, as well as an increased susceptibility to DSS-induced colitis. atg4b-deficient mice exhibit significant alterations in proinflammatory cytokines and mediators of the immune response to bacterial infections, which are reminiscent of those found in patients with Crohn disease or ulcerative colitis. Additionally, antibiotic treatments and bone marrow transplantation from wild-type mice reduced colitis in atg4b−/− mice. Taken together, these results provided additional evidence for the importance of autophagy in intestinal pathologies and describe ATG4B as a novel protective protein in inflammatory colitis. Finally, we propose that atg4b-null mice are a suitable model for in vivo studies aimed at testing new therapeutic strategies for intestinal diseases associated with autophagy deficiency. PMID:23782979

  17. Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice

    PubMed Central

    Li, Xiaoxiao; Zhai, Qixiao; Wang, Gang; Zhang, Qiuxiang; Zhang, Hao; Chen, Wei

    2015-01-01

    Lactobacillus plantarum CCFM8246, which has a relatively strong copper binding capacity and tolerance to copper ions, was obtained by screening from 16 lactic acid bacteria in vitro. The selected strain was then applied to a mouse model to evaluate its protective function against copper intoxication in vivo. The experimental mice were divided into an intervention group and a therapy group; mice in the intervention group received co-administration of CCFM8246 and a copper ion solution by gavage, while mice in the therapy group were treated with CCFM8246 after 4 weeks of copper exposure. In both two groups, mice treated with copper alone and that treated with neither CCFM8246 nor copper served as positive and negative controls, respectively. At the end of the experimental period, the copper content in feces and tissues, the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum, and oxidation stress indices in liver and kidney tissue were determined. Learning and memory ability was evaluated by Morris water maze experiments. The results indicated that treatment with CCFM8246 significantly increased the copper content in feces to promote copper excretion, reduce the accumulation of copper in tissues, reverse oxidative stress induced by copper exposure, recover the ALT and AST in serum and improve the spatial memory of mice. PMID:26605944

  18. Defective IL-23/IL-17 Axis Protects p47phox−/− Mice from Colon Cancer

    PubMed Central

    Richter, Cornelia; Herrero San Juan, Martina; Weigmann, Benno; Bergis, Dominik; Dauber, Katrin; Muders, Michael H.; Baretton, Gustavo B.; Pfeilschifter, Josef Martin; Bonig, Halvard; Brenner, Sebastian; Radeke, Heinfried H.

    2017-01-01

    In the colon, a sophisticated balance between immune reaction and tolerance is absolutely required. Dysfunction may lead to pathologic phenotypes ranging from chronic inflammatory processes to cancer development. Two prominent modulators of colon inflammation are represented by the closely related cytokines interleukin (IL)-12 and IL-23, which initiate adaptive Th1 and Th17 immune responses, respectively. In this study, we investigated the impact of the NADPH oxidase protein p47phox, which negatively regulates IL-12 in dendritic cells, on colon cancer development in a colitis-associated colon cancer model. Initially, we found that IL-12−/− mice developed less severe colitis but are highly susceptible to colon cancer. By contrast, p47phox−/− mice showed lower tumor scores and fewer high grade tumors than wild-type (WT) littermates. Treatment with toll-like receptor 9 ligand CpG2216 significantly enhanced colitis in p47phox−/− mice, whereas tumor growth was simultaneously reduced. In tumor tissue of p47phox−/− mice, the IL-23/IL-17 axis was crucially hampered. IL-23p19 protein expression in tumor tissue correlated with tumor stage. Reconstitution of WT mice with IL-23p19−/− bone marrow protected these mice from colon cancer, whereas transplantation of WT hematopoiesis into IL-23p19−/− mice increased the susceptibility to tumor growth. Our study strengthens the divergent role of IL-12 and IL-23 in colon cancer development. With the characterization of p47phox as a novel modulator of both cytokines our investigation introduces a promising new target for antitumor strategies. PMID:28191009

  19. Uric Acid Is Protective After Cerebral Ischemia/Reperfusion in Hyperglycemic Mice.

    PubMed

    Justicia, Carles; Salas-Perdomo, Angélica; Pérez-de-Puig, Isabel; Deddens, Lisette H; van Tilborg, Geralda A F; Castellví, Clara; Dijkhuizen, Rick M; Chamorro, Ángel; Planas, Anna M

    2016-12-15

    Hyperglycemia at stroke onset is associated with poor long-term clinical outcome in numerous studies. Hyperglycemia induces intracellular acidosis, lipid peroxidation, and peroxynitrite production resulting in the generation of oxidative and nitrosative stress in the ischemic tissue. Here, we studied the effects of acute hyperglycemia on in vivo intercellular adhesion molecule-1 (ICAM-1) expression, neutrophil recruitment, and brain damage after ischemia/reperfusion in mice and tested whether the natural antioxidant uric acid was protective. Hyperglycemia was induced by i.p. administration of dextrose 45 min before transient occlusion of the middle cerebral artery. Magnetic resonance imaging (MRI) was performed at 24 h to measure lesion volume. A group of normoglycemic and hyperglycemic mice received an i.v. injection of micron-sized particles of iron oxide (MPIOs), conjugated with either anti-ICAM-1 antibody or control IgG, followed by T2*w MRI. Neutrophil infiltration was studied by immunofluorescence and flow cytometry. A group of hyperglycemic mice received an i.v. infusion of uric acid (16 mg/kg) or the vehicle starting after 45 min of reperfusion. ICAM-1-targeted MPIOs induced significantly larger MRI contrast-enhancing effects in the ischemic brain of hyperglycemic mice, which also showed more infiltrating neutrophils and larger lesions than normoglycemic mice. Uric acid reduced infarct volume in hyperglycemic mice but it did not prevent vascular ICAM-1 upregulation and did not significantly reduce the number of neutrophils in the ischemic brain tissue. In conclusion, hyperglycemia enhances stroke-induced vascular ICAM-1 and neutrophil infiltration and exacerbates the brain lesion. Uric acid reduces the lesion size after ischemia/reperfusion in hyperglycemic mice.

  20. Refined live attenuated Salmonella enterica serovar Typhimurium and Enteritidis vaccines mediate homologous and heterologous serogroup protection in mice.

    PubMed

    Tennant, Sharon M; Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F; Galen, James E; Levine, Myron M

    2015-12-01

    Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa.

  1. Refined Live Attenuated Salmonella enterica Serovar Typhimurium and Enteritidis Vaccines Mediate Homologous and Heterologous Serogroup Protection in Mice

    PubMed Central

    Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F.; Galen, James E.; Levine, Myron M.

    2015-01-01

    Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa. PMID:26351285

  2. Native flagellin does not protect mice against an experimental Proteus mirabilis ascending urinary tract infection and neutralizes the protective effect of MrpA fimbrial protein.

    PubMed

    Scavone, Paola; Umpiérrez, Ana; Rial, Analía; Chabalgoity, José A; Zunino, Pablo

    2014-06-01

    Proteus mirabilis expresses several virulence factors including MR/P fimbriae and flagella. Bacterial flagellin has frequently shown interesting adjuvant and protective properties in vaccine formulations. However, native P. mirabilis flagellin has not been analyzed so far. Native P. mirabilis flagellin was evaluated as a protective antigen and as an adjuvant in co-immunizations with MrpA (structural subunit of MR/P fimbriae) using an ascending UTI model in the mouse. Four groups of mice were intranasally treated with either MrpA, native flagellin, both proteins and PBS. Urine and blood samples were collected before and after immunization for specific antibodies determination. Cytokine production was assessed in immunized mice splenocytes cultures. Mice were challenged with P. mirabilis, and bacteria quantified in kidneys and bladders. MrpA immunization induced serum and urine specific anti-MrpA antibodies while MrpA coadministered with native flagellin did not. None of the animals developed significant anti-flagellin antibodies. Only MrpA-immunized mice showed a significant decrease of P. mirabilis in bladders and kidneys. Instead, infection levels in MrpA-flagellin or flagellin-treated mice showed no significant differences with the control group. IL-10 was significantly induced in splenocytes of mice that received native flagellin or MrpA-flagellin. Native P. mirabilis flagellin did not protect mice against an ascending UTI. Moreover, it showed an immunomodulatory effect, neutralizing the protective role of MrpA. P. mirabilis flagellin exhibits particular immunological properties compared to other bacterial flagellins.

  3. Comparative Analysis of the Immunogenicity and Protective Effects of Inactivated EV71 Vaccines in Mice

    PubMed Central

    Mao, Qunying; Dong, Chenghong; Li, Xiuling; Gao, Qiang; Guo, Zengbing; Yao, Xin; Wang, Yiping; Gao, Fan; Li, Fengxiang; Xu, Miao; Yin, Weidong; Li, Qihan; Shen, Xinliang; Liang, Zhenglun; Wang, Junzhi

    2012-01-01

    Background Enterovirus 71 (EV71) is the major causative agent of hand, foot, and mouth disease (HFMD). Three inactivated EV71 whole-virus vaccines of different strains developed by different manufacturers in mainland China have recently entered clinical trials. Although several studies on these vaccines have been published, a study directly comparing the immunogenicity and protective effects among them has not been carried out, which makes evaluating their relative effectiveness difficult. Thus, properly comparing newly developed vaccines has become a priority, especially in China. Methods and Findings This comparative immunogenicity study was carried out on vaccine strains (both live and inactivated), final container products (FCPs) without adjuvant, and corresponding FCPs containing adjuvant (FCP-As) produced by three manufacturers. These vaccines were evaluated by neutralizing antibody (NAb) responses induced by the same or different dosages at one or multiple time points post-immunization. The protective efficacy of the three vaccines was also determined in one-day-old ICR mice born to immunized female mice. Survival rates were observed in these suckling mice after challenge with 20 LD50 of EV71/048M3C2. Three FCP-As, in a dose of 200 U, generated nearly 100% NAb positivity rates and similar geometric mean titers (GMTs), especially at 14–21 days post-inoculation. However, the dynamic NAb responses were different among three vaccine strains or three FCPs. The FCP-As at the lowest dose used in clinical trials (162 U) showed good protective effects in suckling mice against lethal challenge (90–100% survival), while the ED50 of NAb responses and protective effects varied among three FCP-As. Conclusions These studies establish a standard method for measuring the immunogenicity of EV71 vaccines in mice. The data generated from our mouse model study indicated a clear dose-response relationship, which is important for vaccine quality control and assessment

  4. C/EBP homologous protein-induced macrophage apoptosis protects mice from steatohepatitis.

    PubMed

    Malhi, Harmeet; Kropp, Erin M; Clavo, Vinna F; Kobrossi, Christina R; Han, JaeSeok; Mauer, Amy S; Yong, Jing; Kaufman, Randal J

    2013-06-28

    Nonalcoholic fatty liver disease is a heterogeneous disorder characterized by liver steatosis; inflammation and fibrosis are features of the progressive form nonalcoholic steatohepatitis. The endoplasmic reticulum stress response is postulated to play a role in the pathogenesis of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. In particular, C/EBP homologous protein (CHOP) is undetectable under normal conditions but is induced by cellular stress, including endoplasmic reticulum stress. Chop wild type (Chop(+/+)) and knock-out (Chop(-/-)) mice were used in these studies to elucidate the role of CHOP in the pathogenesis of fatty liver disease. Paradoxically, Chop(-/-) mice developed greater liver injury, inflammation, and fibrosis than Chop(+/+) mice, with greater macrophage activation. Primary, bone marrow-derived, and peritoneal macrophages from Chop(+/+) and Chop(-/-) were challenged with palmitic acid, an abundant saturated free fatty acid in plasma and liver lipids. Where palmitic acid treatment activated Chop(+/+) and Chop(-/-) macrophages, Chop(-/-) macrophages were resistant to its lipotoxicity. Chop(-/-) mice were sensitized to liver injury in a second model of dietary steatohepatitis using the methionine-choline-deficient diet. Analysis of bone marrow chimeras between Chop(-/-) and Chop(+/+) mice demonstrated that Chop in macrophages protects from liver injury and inflammation when fed the methionine-choline-deficient diet. We conclude that Chop deletion has a proinflammatory effect in fatty liver injury apparently due to decreased cell death of activated macrophages, resulting in their net accumulation in the liver. Thus, macrophage CHOP plays a key role in protecting the liver from steatohepatitis likely by limiting macrophage survival during lipotoxicity.

  5. C/EBP Homologous Protein-induced Macrophage Apoptosis Protects Mice from Steatohepatitis*

    PubMed Central

    Malhi, Harmeet; Kropp, Erin M.; Clavo, Vinna F.; Kobrossi, Christina R.; Han, JaeSeok; Mauer, Amy S.; Yong, Jing; Kaufman, Randal J.

    2013-01-01

    Nonalcoholic fatty liver disease is a heterogeneous disorder characterized by liver steatosis; inflammation and fibrosis are features of the progressive form nonalcoholic steatohepatitis. The endoplasmic reticulum stress response is postulated to play a role in the pathogenesis of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. In particular, C/EBP homologous protein (CHOP) is undetectable under normal conditions but is induced by cellular stress, including endoplasmic reticulum stress. Chop wild type (Chop+/+) and knock-out (Chop−/−) mice were used in these studies to elucidate the role of CHOP in the pathogenesis of fatty liver disease. Paradoxically, Chop−/− mice developed greater liver injury, inflammation, and fibrosis than Chop+/+ mice, with greater macrophage activation. Primary, bone marrow-derived, and peritoneal macrophages from Chop+/+ and Chop−/− were challenged with palmitic acid, an abundant saturated free fatty acid in plasma and liver lipids. Where palmitic acid treatment activated Chop+/+ and Chop−/− macrophages, Chop−/− macrophages were resistant to its lipotoxicity. Chop−/− mice were sensitized to liver injury in a second model of dietary steatohepatitis using the methionine-choline-deficient diet. Analysis of bone marrow chimeras between Chop−/− and Chop+/+ mice demonstrated that Chop in macrophages protects from liver injury and inflammation when fed the methionine-choline-deficient diet. We conclude that Chop deletion has a proinflammatory effect in fatty liver injury apparently due to decreased cell death of activated macrophages, resulting in their net accumulation in the liver. Thus, macrophage CHOP plays a key role in protecting the liver from steatohepatitis likely by limiting macrophage survival during lipotoxicity. PMID:23720735

  6. Protective effects of Lactobacillus plantarum NDC 75017 against lipopolysaccharide-induced liver injury in mice.

    PubMed

    Peng, Xinyan; Jiang, Yujun

    2014-10-01

    This study investigated the protective effect of Lactobacillus plantarum NDC 75017 (L. plantarum NDC 75017) against acute liver injury induced by lipopolysaccharide (LPS). Thirty male mice were randomly divided into the control, LPS, and LPS + L. plantarum NDC 75017 groups. In the LPS + L. plantarum group, the mice were orally pretreated with L. plantarum NDC 75017 for 15 days. At 16 days, the mice in the LPS and LPS + L. plantarum NDC 75017 groups were intraperitoneally injected with LPS at 4 mg/kg body weight, whereas the control mice were treated with an equal amount of saline. After 8 h, the serum alanine transaminase (ALT), aspartate aminotransferase (AST), and histology changes were examined. The oxidative stress markers and pro-inflammatory cytokines in the liver were also examined. Meanwhile, the expression of nuclear factor κB (NF-κB) mRNA and toll-like receptor 4 (TLR4) in the liver was determined by qRT-PCR. The LPS group showed an increase in ALT and AST, whereas the LPS + L. plantarum NDC 75017 group showed a significant decrease. In addition, pretreatment with L. plantarum NDC 75017 can attenuate LPS-induced oxidative stress and inflammatory response. Furthermore, the increase of hepatic NF-κB and TLR4 mRNA induced by LPS was significantly downregulated by the pretreatment with L. plantarum NDC 75017. These data show that pretreatment with L. plantarum NDC 75017 protects against LPS-induced oxidative stress and inflammatory injury in the liver of mice, which may be attributed to the inhibition of the TLR4-NF-κB pathway.

  7. Simultaneous immunization of mice with Omp31 and TF provides protection against Brucella melitensis infection.

    PubMed

    Ghasemi, Amir; Jeddi-Tehrani, Mahmood; Mautner, Josef; Salari, Mohammad Hossein; Zarnani, Amir-Hassan

    2015-10-13

    Brucella vaccines consisting of live attenuated Brucella strains are currently used in livestock, but safety concerns preclude their application in humans. Subunit vaccines have recently emerged as safe and efficacious alternatives in both humans and animals. In this study, subunit vaccines were developed that consisted of a recombinant outer membrane protein (rOmp31) and the trigger factor chaperone protein (rTF) of Brucella melitensis, either alone or in combination. BALB/c mice that were immunized with rOmp31+rTF showed comparable but slightly higher TF-specific IgG1 and IgG2a antibodies as compared to mice with rTF alone. Indeed, mice given this combination had titers of rOmp31-specific antibodies similar to those immunized with rOmp31 alone. In lymphocyte reactivation experiments, the splenocytes of immunized mice, whether given either of these antigens alone or as a cocktail, exhibited a strong antigen-specific recall proliferative response and expressed high amounts of IFN-γ, IL-12, IL-10 and IL-6. Both rTF and rTF+rOmp31 vaccinated mice exhibited significantly higher CD4 and CD8 levels compared to the PBS group. The combination of rOmp31 and rTF provided protection against B. melitensis infection comparable to that of vaccine strain Rev.1. In comparison to rTF alone, combination of rTF and rOmp31 caused only a slight increase in protection level. Although combination of rTF and rOmp31 caused a non-significant increase in IFN-γ induction, antibody level, proliferation index and CD4 and CD8 frequencies compared to rTF alone, its cumulative effects on aforesaid parameters may be viewed as a better efficacy.

  8. Protective effect of alprazolam against sleep deprivation-induced behavior alterations and oxidative damage in mice.

    PubMed

    Singh, Anant; Kumar, Anil

    2008-04-01

    Sleep deprivation is considered as a risk factor for various diseases. Sleep deprivation leads to behavioral, hormonal, neurochemical and biochemical alterations in the animals. The present study was designed to explore the possible involvement of GABAergic mechanism in protective effect of alprazolam against 72h sleep deprivation-induced behavior alterations and oxidative damage in mice. In the present study, sleep deprivation caused anxiety-like behavior, weight loss, impaired ambulatory movements and oxidative damage as indicated by increase in lipid peroxidation, nitrite level and depletion of reduced glutathione and catalase activity in sleep-deprived mice brain. Treatment with alprazolam (0.25 and 0.5 mg/kg, ip) significantly improved behavioral alterations. Biochemically, alprazolam treatment significantly restored depleted reduced glutathione, catalase activity, reversed raised lipid peroxidation and nitrite level. Combination of flumazenil (0.5 mg/kg) and picrotoxin (0.5 mg/kg) with lower dose of alprazolam (0.25mg/kg) significantly antagonized protective effect of alprazolam. However, combination of muscimol (0.05 mg/kg) with alprazolam (0.25 mg/kg, ip) potentiated protective effect of alprazolam. On the basis of these results, it might be suggested that alprazolam might produce protective effect by involving GABAergic system against sleep deprivation-induced behavior alterations and related oxidative damage.

  9. The assembly conformation of rotavirus VP6 determines its protective efficacy against rotavirus challenge in mice.

    PubMed

    Pastor, Ana Ruth; Rodríguez-Limas, William A; Contreras, Martha A; Esquivel, Ernesto; Esquivel-Guadarrama, Fernando; Ramírez, Octavio T; Palomares, Laura A

    2014-05-19

    Viral protein assemblies have shown to be superior immunogens used in commercial vaccines. However, little is known about the effect of protein assembly structure in immunogenicity and the protection conferred by a vaccine. In this work, rotavirus VP6, a polymorphic protein that assembles into nanotubes, icosahedra (dlRLP) or trimers was used to compare the immune response elicited by three different assemblies. VP6 is the most antigenic and abundant rotavirus structural protein. It has been demonstrated that antibodies against VP6 interfere with the replication cycle of rotavirus, making it a vaccine candidate. Groups of mice were immunized with either nanotubes, dlRLP or trimers and the humoral response (IgG and IgA titers) was measured. Immunized mice were challenged with EDIM rotavirus and protection against rotavirus infection, measured as viral shedding, was evaluated. Immunization with nanotubes resulted in the highest IgG titers, followed by immunization with dlRLP. While immunization with one dose of nanotubes was sufficient to reduce viral shedding by 70%, two doses of dlRLP or trimers were required to obtain a similar protection. The results show that the type of assembly of VP6 results in different humoral responses and protection efficacies against challenge with live virus. This information is important for the design of recombinant vaccines in general.

  10. Intranasal administration of live Lactobacillus species facilitates protection against influenza virus infection in mice.

    PubMed

    Youn, Ha-Na; Lee, Dong-Hun; Lee, Yu-Na; Park, Jae-Keun; Yuk, Seong-Su; Yang, Si-Yong; Lee, Hyun-Jeong; Woo, Seo-Hyung; Kim, Hyoung-Moon; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2012-01-01

    Influenza virus infections continue to be a significant public health problem. For improved therapies and preventive measures against influenza, there has been an increased tendency in modern medicine involving the use of probiotics. In this study, we compared the protective efficacy of various live and dead Lactobacillus species against challenge with influenza virus in mice according to the administration route and dose. In addition, to understand the underlying mechanism behind this clinical protective effect, we performed immunologic assays including examination of IgA levels and cytokine profiles in the lung. The survival rate of mice receiving intranasal administration of Lactobacillus was higher than after oral administration, and administration of live bacteria was more protective than of dead bacteria. The lung levels of interleukin (IL)-12 and IgA were significantly increased (P<0.05). Conversely, the levels of the pro-inflammatory cytokines tumor necrosis factor-alpha and IL-6 were decreased. Interestingly, there were huge differences in protective effects of various Lactobacillus strains on influenza virus infection. Therefore, for clinical applications, selection of effective strains could be critical and individually optimized application regimens of the selected strains are required.

  11. Peroxisome Proliferator-Activated Receptor-α Inhibition Protects Against Doxorubicin-Induced Cardiotoxicity in Mice.

    PubMed

    Rahmatollahi, Mahdieh; Baram, Somayeh Mahmoodi; Rahimian, Reza; Saeedi Saravi, Seyed Soheil; Dehpour, Ahmad Reza

    2016-07-01

    Doxorubicin is an effective chemotherapeutic drug against a considerable number of malignancies. However, its toxic effects on myocardium are confirmed as major limit of utilization. PPAR-α is highly expressed in the heart, and its activation leads to an increased cardiac fatty acid oxidation and cardiomyocyte necrosis. This study was performed to adjust the hypothesis that PPAR-α receptor inhibition protects against doxorubicin-induced cardiac dysfunction in mice. Male Balb/c mice were used in this study. Left atria were isolated, and their contractility was measured in response to electrical field stimulation in a standard organ bath. PPAR-α activity was measured using specific PPAR-α antibody in an ELISA-based system coated with double-strand DNA containing PPAR-α response element sequence. Moreover, cardiac MDA and TNF-α levels were measured by ELISA method. Following incubation with doxorubicin (35 µM), a significant reduction in atrial contractility was observed (P < 0.001). Pretreatment of animals with a selective PPAR-α antagonist, GW6471, significantly improved doxorubicin-induced atrial dysfunction (P < 0.001). Furthermore, pretreatment of the mice with a non-selective cannabinoid agonist, WIN55212-2, significantly decreased PPAR-α activity in cardiac tissue, subsequently leading to significant improvement in doxorubicin-induced atrial dysfunction (P < 0.001). Also, GW6471 and WIN significantly reduced cardiac MDA and TNF-α levels compared with animals receiving doxorubicin (P < 0.001). The study showed that inhibition of PPAR-α is associated with protection against doxorubicin-induced cardiotoxicity in mice, and cannabinoids can potentiate the protection by PPAR-α blockade. Moreover, PPAR-α may be considered as a target to prevent cardiotoxicity induced by doxorubicin in patients undergoing chemotherapy.

  12. Protective effects of Huangqin Decoction against ulcerative colitis and associated cancer in mice

    PubMed Central

    Hu, Chunping; Cheng, Xiaolan; Xu, Yuehua; Cai, Xueting; Wang, Min; Yang, Chung S.; Cao, Peng

    2016-01-01

    Individuals with ulcerative colitis (UC) are at a high risk for developing colorectal cancer (CRC). Huangqin Decoction (HQD), a traditional Chinese medicinal formula chronicled in the Shang Han Lun, is commonly used to treat gastrointestinal symptoms. However, experimental evidence for supporting the clinical practice is lacking. This study used modern biomedical approaches to investigate the protective/preventive effects of HQD in dextran sulfate sodium (DSS)-induced acute/chronic UC and azoxymethane (AOM)/DSS-induced CRC in mice. HQDs were prepared in 4 different ways: HQD-1 and HQD-2 were prepared in boiling water, whereas HQD-3 and HQD-4 were prepared in heated ethanol (70%). For HQD-1 and HQD-3, the 4 constituent herbs were processed together, whereas for HQD-2 and HQD4, these herbs were processed individually and then combined. The mice were administered 9.1 g/kg HQD via oral gavage daily. HQD-1 significantly inhibited DSS-induced acute UC, whereas HQD-3 and HQD-4 exhibited mild ameliorative effects; but HQD-2 had no protective effect and resulted in a higher mortality rate. This higher mortality rate may be due to the greater abundance of baicalein and wogonin in HQD-2 than HQD-1. Furthermore, HQD-1 protected against DSS-induced chronic UC and significantly inhibited AOM/DSS-induced CRC in mice. HQD-1 also inhibited the production of inflammatory cytokines and increased antioxidant capacity both in chronic DSS and AOM/DSS treated mice. Overall, HQD-1 inhibits the development of acute/chronic colitis and prevents colitis-associated CRC, possibly by inhibiting inflammation and preventing oxidative stress induced cellular damage. PMID:27557503

  13. Dietary wolfberry supplementation enhances the protective effect of flu vaccine against influenza challenge in aged mice.

    PubMed

    Du, Xiaogang; Wang, Junpeng; Niu, Xinli; Smith, Donald; Wu, Dayong; Meydani, Simin Nikbin

    2014-02-01

    Current vaccines for influenza do not fully protect the aged against influenza infection. Although wolfberry (goji berry) has been shown to improve immune response, including enhanced antibody production, after vaccination in the aged, it is not known if this effect would translate to better protection after influenza infection, nor is its underlying mechanism well understood. To address these issues, we conducted a study using a 2 × 2 design in which aged male mice (20-22 mo) were fed a control or a 5% wolfberry diet for 30 d, then immunized with an influenza vaccine or saline (control) on days 31 and 52 of the dietary intervention, and finally challenged with influenza A/Puerto Rico/8/34 virus. Mice fed wolfberry had higher influenza antibody titers and improved symptoms (less postinfection weight loss) compared with the mice treated by vaccine alone. Furthermore, an in vitro mechanistic study showed that wolfberry supplementation enhanced maturation and activity of antigen-presenting dendritic cells (DCs) in aged mice, as indicated by phenotypic change in expression of DC activation markers major histocompatibility complex class II, cluster of differentiation (CD) 40, CD80, and CD86, and functional change in DC production of cytokines interleukin-12 and tumor necrosis factor-α as well as DC endocytosis. Also, adoptive transfer of wolfberry-treated bone marrow DCs (loaded with ovalbumin(323-339)-peptide) promoted antigen-specific T cell proliferation as well as interleukin-4 and interferon-γ production in CD4(+) T cells. In summary, our data indicate that dietary wolfberry enhances the efficacy of influenza vaccination, resulting in better host protection to prevent subsequent influenza infection; this effect may be partly attributed to improved DC function.

  14. Farnesoid X Receptor Protects against Kidney Injury in Uninephrectomized Obese Mice.

    PubMed

    Gai, Zhibo; Gui, Ting; Hiller, Christian; Kullak-Ublick, Gerd A

    2016-01-29

    Activation of the farnesoid X receptor (FXR) has indicated a therapeutic potential for this nuclear bile acid receptor in the prevention of diabetic nephropathy and obesity-induced renal damage. Here, we investigated the protective role of FXR against kidney damage induced by obesity in mice that had undergone uninephrectomy, a model resembling the clinical situation of kidney donation by obese individuals. Mice fed a high-fat diet developed the core features of metabolic syndrome, with subsequent renal lipid accumulation and renal injury, including glomerulosclerosis, interstitial fibrosis, and albuminuria. The effects were accentuated by uninephrectomy. In human renal biopsies, staining of 4-hydroxynonenal (4-HNE), glucose-regulated protein 78 (Grp78), and C/EBP-homologous protein, markers of endoplasmic reticulum stress, was more prominent in the proximal tubules of 15 obese patients compared with 16 non-obese patients. In mice treated with the FXR agonist obeticholic acid, renal injury, renal lipid accumulation, apoptosis, and changes in lipid peroxidation were attenuated. Moreover, disturbed mitochondrial function was ameliorated and the mitochondrial respiratory chain recovered following obeticholic acid treatment. Culturing renal proximal tubular cells with free fatty acid and FXR agonists showed that FXR activation protected cells from free fatty acid-induced oxidative stress and endoplasmic reticulum stress, as denoted by a reduction in the level of reactive oxygen species staining and Grp78 immunostaining, respectively. Several genes involved in glutathione metabolism were induced by FXR activation in the remnant kidney, which was consistent with a decreased glutathione disulfide/glutathione ratio. In summary, FXR activation maintains endogenous glutathione homeostasis and protects the kidney in uninephrectomized mice from obesity-induced injury.

  15. Targeting of rotavirus VP6 to DEC-205 induces protection against the infection in mice.

    PubMed

    Badillo-Godinez, O; Gutierrez-Xicotencatl, L; Plett-Torres, T; Pedroza-Saavedra, A; Gonzalez-Jaimes, A; Chihu-Amparan, L; Maldonado-Gama, M; Espino-Solis, G; Bonifaz, L C; Esquivel-Guadarrama, F

    2015-08-20

    Rotavirus (RV) is the primary etiologic agent of severe gastroenteritis in human infants. Although two attenuated RV-based vaccines have been licensed to be applied worldwide, they are not so effective in low-income countries, and the induced protection mechanisms have not been clearly established. Thus, it is important to develop new generation vaccines that induce long lasting heterotypic immunity. VP6 constitutes the middle layer protein of the RV virion. It is the most conserved protein and it is the target of protective T-cells; therefore, it is a potential candidate antigen for a new generation vaccine against the RV infection. We determined whether targeting the DEC-205 present in dendritic cells (DCs) with RV VP6 could induce protection at the intestinal level. VP6 was cross-linked to a monoclonal antibody (mAb) against murine DEC-205 (αDEC-205:VP6), and BALB/c mice were inoculated subcutaneously (s.c.) twice with the conjugated containing 1.5 μg of VP6 in the presence of polyinosinic-polycytidylic acid (Poly I:C) as adjuvant. As controls and following the same protocol, mice were immunized with ovalbumin (OVA) cross-linked to the mAb anti-DEC-205 (αDEC-205:OVA), VP6 cross-linked to a control isotype mAb (Isotype:VP6), 3 μg of VP6 alone, Poly I:C or PBS. Two weeks after the last inoculation, mice were orally challenged with a murine RV. Mice immunized with α-DEC-205:VP6 and VP6 alone presented similar levels of serum Abs to VP6 previous to the virus challenge. However, after the virus challenge, only α-DEC-205:VP6 induced up to a 45% IgA-independent protection. Memory T-helper (Th) cells from the spleen and the mesenteric lymph node (MLN) showed a Th1-type response upon antigen stimulation in vitro. These results show that when VP6 is administered parenterally targeting DEC-205, it can induce protection at the intestinal level at a very low dose, and this protection may be Th1-type cell dependent.

  16. GroEL provides protection against Bacillus anthracis infection in BALB/c mice.

    PubMed

    Sinha, Kanchan; Bhatnagar, Rakesh

    2010-01-01

    Heat shock proteins (Hsps) of the HSP60 and HSP70 family are highly conserved and essential to all living organisms. Hsps are immunodominant in numerous microbial infections and have been investigated for their vaccine potential. We investigated the immunogenicity and protective efficacy of GroEL and DnaK of B. anthracis in murine model. Both Hsps were found to be highly immunogenic with mixed antibody response (both IgG1 and IgG2a), indicating stimulation of both humoral and cell-mediated immunity. Cytokine profile also confirmed robust T-cell response with increase in lymphocyte proliferation. Immunization with GroEL conferred 100% protection to mice against B. anthracis infection whereas DnaK couldn't provide protection.

  17. G6PD protects from oxidative damage and improves healthspan in mice

    PubMed Central

    Nóbrega-Pereira, Sandrina; Fernandez-Marcos, Pablo J.; Brioche, Thomas; Gomez-Cabrera, Mari Carmen; Salvador-Pascual, Andrea; Flores, Juana M.; Viña, Jose; Serrano, Manuel

    2016-01-01

    Reactive oxygen species (ROS) are constantly generated by cells and ROS-derived damage contributes to ageing. Protection against oxidative damage largely relies on the reductive power of NAPDH, whose levels are mostly determined by the enzyme glucose-6-phosphate dehydrogenase (G6PD). Here, we report a transgenic mouse model with moderate overexpression of human G6PD under its endogenous promoter. Importantly, G6PD-Tg mice have higher levels of NADPH, lower levels of ROS-derived damage, and better protection from ageing-associated functional decline, including extended median lifespan in females. The G6PD transgene has no effect on tumour development, even after combining with various tumour-prone genetic alterations. We conclude that a modest increase in G6PD activity is beneficial for healthspan through increased NADPH levels and protection from the deleterious effects of ROS. PMID:26976705

  18. Immunization with live Neisseria lactamica protects mice against meningococcal challenge and can elicit serum bactericidal antibodies.

    PubMed

    Li, Yanwen; Zhang, Qian; Winterbotham, Megan; Mowe, Eva; Gorringe, Andrew; Tang, Christoph M

    2006-11-01

    Natural immunity against Neisseria meningitidis is thought to develop following nasopharyngeal colonization with this bacterium or other microbes expressing cross-reactive antigens. Neisseria lactamica is a commensal of the upper respiratory tract which is often carried by infants and young children; epidemiological evidence indicates that colonization with this bacterium can elicit serum bactericidal activity (SBA) against Neisseria meningitidis, the most validated correlate of protective immunity. Here we demonstrate experimentally that immunization of mice with live N. lactamica protects animals against lethal meningococcal challenge and that some, but not all, strains of N. lactamica elicit detectable SBA in immunized animals regardless of the serogroup of N. meningitidis. While it is unlikely that immunization with live N. lactamica will be implemented as a vaccine against meningococcal disease, understanding the basis for the induction of cross-protective immunity and SBA should be valuable in the design of subunit vaccines for the prevention of this important human infection.

  19. Protective effect of topically applied olive oil against photocarcinogenesis following UVB exposure of mice.

    PubMed

    Budiyanto, A; Ahmed, N U; Wu, A; Bito, T; Nikaido, O; Osawa, T; Ueda, M; Ichihashi, M

    2000-11-01

    Reactive oxygen species have been shown to play a role in ultraviolet light (UV)-induced skin carcinogenesis. Vitamin E and green tea polyphenols reduce experimental skin cancers in mice mainly because of their antioxidant properties. Since olive oil has also been reported to be a potent antioxidant, we examined its effect on UVB-induced skin carcinogenesis in hairless mice. Extra-virgin olive oil was applied topically before or after repeated exposure of mice to UVB. The onset of UVB-induced skin tumors was delayed in mice painted with olive oil compared with UVB control mice. However, with increasing numbers of UVB exposures, differences in the mean number of tumors between UVB control mice and mice pretreated with olive oil before UVB exposure (pre-UVB group) were lost. In contrast, mice that received olive oil after UVB exposure (post-UVB group) showed significantly lower numbers of tumors per mouse than those in the UVB control group throughout the experimental period. The mean number of tumors per mouse in the UVB control, pre-UVB and post-UVB groups was 7.33, 6.69 and 2.64, respectively, in the first experiment, and 8.53, 9.53 and 3.36 in the second experiment. Camellia oil was also applied, using the same experimental protocol, but did not have a suppressive effect. Immunohistochemical analysis of DNA damage in the form of cyclobutane pyrimidine dimers (CPD), (6-4) photoproducts and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in samples taken 30 min after a single exposure of UVB showed no significant difference between UVB-irradiated control mice and the pre-UVB group. In the post-UVB group, there were lower levels of 8-OHdG in epidermal nuclei, but the formation of CPD and (6-4) photoproducts did not differ. Exposure of olive oil to UVB before application abrogated the protective effect on 8-OHdG formation. These results indicate that olive oil topically applied after UVB exposure can effectively reduce UVB-induced murine skin tumors, possibly via its

  20. The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice

    PubMed Central

    Gomes, Isabele B. S.; Porto, Marcella L.; Santos, Maria C. L. F. S.; Campagnaro, Bianca P.; Gava, Agata L.; Meyrelles, Silvana S.; Pereira, Thiago M. C.; Vasquez, Elisardo C.

    2015-01-01

    Aims: Diabetic nephropathy (DN) is one of the most important causes of chronic renal disease, and the incidence of DN is increasing worldwide. Considering our previous report (Gomes et al., 2014) indicating that chronic treatment with oral low-dose quercetin (10 mg/Kg) demonstrated anti-oxidative, anti-apoptotic and renoprotective effects in the C57BL/6J model of DN, we investigated whether this flavonoid could also have beneficial effects in concurrent DN and spontaneous atherosclerosis using the apolipoprotein E-deficient mouse (apoE−/−). Methods: Streptozotocin was used to induce diabetes (100 mg/kg/day, 3 days) in male apoE−/− mice (8 week-old). After 6 weeks, the mice were randomly separated into DQ: diabetic apoE−/− mice treated with quercetin (10 mg/kg/day, 4 weeks, n = 8), DV: diabetic ApoE−/− mice treated with vehicle (n = 8) and ND: non-treated non-diabetic mice (n = 8). Results: Quercetin treatment diminished polyuria (~30%; p < 0.05), glycemia (~25%, p < 0.05), normalized the hypertriglyceridemia. Moreover, this bioflavonoid diminished creatininemia (~30%, p < 0.01) and reduced proteinuria but not to normal levels. We also observed protective effects on the renal structural changes, including normalization of the index of glomerulosclerosis and kidney weight/body weight. Conclusions: Our data revealed that quercetin treatment significantly reduced DN in hypercholesterolemic mice by inducing biochemical changes (decrease in glucose and triglycerides serum levels) and reduction of glomerulosclerosis. Thus, this study highlights the relevance of quercetin as an alternative therapeutic option for DN, including in diabetes associated with dyslipidemia. PMID:26388784

  1. Protective effects of Zhuyeqing liquor on the immune function of normal and immunosuppressed mice in vivo

    PubMed Central

    2013-01-01

    Background Zhuyeqing Liquor (ZYQL), a well-known Chinese traditional health liquor, has various biological properties, including anti-oxidant, anti-inflammatory, immunoenhancement and cardiovascular protective effects. Methods The protective effects of Zhuyeqing Liquor (ZYQL) on the immune function was investigated in vivo in normal healthy mice and immunosuppressed mice treated with Cyclophosphamide (Cy, 100 mg/kg) by intraperitoneal injection on days 4, 8 and 12. ZYQL (100, 200 and 400 mg/kg) was administered via gavage daily for 14 days. The phagocytotic function of mononuclear phagocytic system was detected with carbon clearance methods, the levels of interleukin-6 (IL-6) and interferon-gamma (IFN-γ) in serum were detected with Enzyme linked immunosorbent assay (ELISA). Immune organs were weighed and organ indexes (organ weight/body weight) of thymus and spleen were calculated. Meanwhile, the activity of lysozyme (LSZ) in serum and the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) in spleen tissue were measured. Results ZYQL significantly upgrades the K value for clearance of carbon particles in normal mice treated with ZYQL (400 mg/kg) and immunosuppressed mice treated with ZYQL (100, 200 and 400 mg/kg) together with Cy (100 mg/kg) in vivo. The treatment of ZYQL (100, 200 and 400 mg/kg) effectively increased the activity of serum lysozyme as well as promoted the serum levels of IL-6 and IFN-γ in normal mice and immunosuppressed mice. Furthermore, ZYQL (100, 200 and 400 mg/kg) had an antioxidant effects in immune system by enhancing the antioxidant enzyme activity of SOD, CAT and GSH-Px in vivo. In addition, ZYQL (100, 200 and 400 mg/kg) effectively elevated the Cy-induced decreased organ index (thymus and spleen). Conclusions The present work shows that the dose-dependent administration of ZYQL is capable of influencing immune responses, which implying that its valuable functional health may be attributed

  2. Topical Resiquimod Protects against Visceral Infection with Leishmania infantum chagasi in Mice

    PubMed Central

    Craft, Noah; Birnbaum, Ron; Quanquin, Natalie; Erfe, Marie Crisel B.; Quant, Cara; Haskell, Jacquelyn

    2014-01-01

    New prevention and treatment strategies are needed for visceral leishmaniasis, particularly ones that can be deployed simply and inexpensively in areas where leishmaniasis is endemic. Synthetic molecules that activate Toll-like receptor 7 and 8 (TLR7/8) pathways have previously been demonstrated to enhance protection against cutaneous leishmaniasis. We initially sought to determine whether the TLR7/8-activating molecule resiquimod might serve as an effective vaccine adjuvant targeting visceral leishmaniasis caused by infection with Leishmania infantum chagasi. Resiquimod was topically applied to the skin of mice either prior to or after systemic infection with L. infantum chagasi, and parasite burdens were assessed. Surprisingly, topical resiquimod application alone, in the absence of vaccination, conferred robust resistance to mice against future intravenous challenge with virulent L. infantum chagasi. This protection against L. infantum chagasi infection persisted as long as 8 weeks after the final topical resiquimod treatment. In addition, in mice with existing infections, therapeutic treatment with topical resiquimod led to significantly lower visceral parasite loads. Resiquimod increased trafficking of leukocytes, including B cells, CD4+ and CD8+ T cells, dendritic cells, macrophages, and granulocytes, in livers and spleens, which are the key target organs of visceralizing infection. We conclude that topical resiquimod leads to systemic immune modulation and confers durable protection against visceralizing L. infantum chagasi infection, in both prophylactic and therapeutic settings. These studies support continued studies of TLR-modulating agents to determine mechanisms of protection and also provide a rationale for translational development of a critically needed, novel class of topical, preventative, and therapeutic agents for these lethal infections. PMID:25030052

  3. MDP: A Deinococcus Mn2+-Decapeptide Complex Protects Mice from Ionizing Radiation

    PubMed Central

    Smith, Joan T.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Grichenko, Olga; Knollmann-Ritschel, Barbara; Daly, Michael J.; Kiang, Juliann G.

    2016-01-01

    The radioprotective capacity of a rationally-designed Mn2+-decapeptide complex (MDP), based on Mn antioxidants in the bacterium Deinococcus radiodurans, was investigated in a mouse model of radiation injury. MDP was previously reported to be extraordinarily radioprotective of proteins in the setting of vaccine development. The peptide-component (DEHGTAVMLK) of MDP applied here was selected from a group of synthetic peptides screened in vitro for their ability to protect cultured human cells and purified enzymes from extreme damage caused by ionizing radiation (IR). We show that the peptides accumulated in Jurkat T-cells and protected them from 100 Gy. MDP preserved the activity of T4 DNA ligase exposed to 60,000 Gy. In vivo, MDP was nontoxic and protected B6D2F1/J (female) mice from acute radiation syndrome. All irradiated mice treated with MDP survived exposure to 9.5 Gy (LD70/30) in comparison to the untreated mice, which displayed 63% lethality after 30 days. Our results show that MDP provides early protection of white blood cells, and attenuates IR-induced damage to bone marrow and hematopoietic stem cells via G-CSF and GM-CSF modulation. Moreover, MDP mediated the immunomodulation of several cytokine concentrations in serum including G-CSF, GM-CSF, IL-3 and IL-10 during early recovery. Our results present the necessary prelude for future efforts towards clinical application of MDP as a promising IR countermeasure. Further investigation of MDP as a pre-exposure prophylactic and post-exposure therapeutic in radiotherapy and radiation emergencies is warranted. PMID:27500529

  4. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    PubMed

    Pinzan, Camila Figueiredo; Sardinha-Silva, Aline; Almeida, Fausto; Lai, Livia; Lopes, Carla Duque; Lourenço, Elaine Vicente; Panunto-Castelo, Ademilson; Matthews, Stephen; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  5. Ursodeoxycholyl lysophosphatidylethanolamide protects against hepatic ischemia and reperfusion injury in mice.

    PubMed

    Wang, Jiliang; Deng, Xiuling; Yi, Shengen; Pathil, Anita; Zhang, Wujuan; Setchell, Kenneth; Stremmel, Wolfgang; Chamulitrat, Walee

    2015-04-01

    The ischemia and reperfusion (I/R) injury that occurs during liver transplantation causes severe complications leading to transplantation failure. We have designed a cytoprotective agent, ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE), which promotes the survival of cultured hepatocellular cell lines and inhibits apoptosis and inflammation in the in vivo models of liver injury. Here, we show that UDCA-LPE increased the viability of mouse hepatocytes by activating the Akt/glycogen synthase kinase 3β survival signaling pathways. We further tested whether UDCA-LPE could protect hepatic I/R injury in mice by clamping liver lobes of C57/BL6 mice for 90 min of ischemia followed by unclamping and reperfusion for 2 h. Two regimens for UDCA-LPE treatment were carried out; with a single dose of 100 mg/kg UDCA-LPE intraperitoneally injected 30 min prior to ischemia and a double dose of 50 mg/kg UDCA-LPE given 30 min prior to ischemia and just prior to reperfusion. Using histology and liver enzyme determination, we observed that hepatic I/R caused significant hepatic necrosis, which was decreased in UDCA-LPE-treated mice undergoing I/R. Ursodeoxycholyl LPE concomitantly protected against I/R-induced apoptosis (cleaved caspase 3, cleaved poly[ADP-ribose] polymerase 1), inflammation (IL-1β, CD11b, chemokine ligands 2 and 3, chemokine receptor 2), and portal fibrogenesis (α-smooth muscle actin, plasminogen activator inhibitor 1), as determined by Western blot, quantitative real-time polymerase chain reaction, and immunohistochemical analyses. The protection by UDCA-LPE was found to be better in the double-dose than in the single-dose regimen. Thus, UDCA-LPE promoted the survival of mouse hepatocytes and protected against hepatic I/R injury and thus may be of therapeutic use in liver transplantation settings.

  6. MDP: A Deinococcus Mn2+-Decapeptide Complex Protects Mice from Ionizing Radiation.

    PubMed

    Gupta, Paridhi; Gayen, Manoshi; Smith, Joan T; Gaidamakova, Elena K; Matrosova, Vera Y; Grichenko, Olga; Knollmann-Ritschel, Barbara; Daly, Michael J; Kiang, Juliann G; Maheshwari, Radha K

    2016-01-01

    The radioprotective capacity of a rationally-designed Mn2+-decapeptide complex (MDP), based on Mn antioxidants in the bacterium Deinococcus radiodurans, was investigated in a mouse model of radiation injury. MDP was previously reported to be extraordinarily radioprotective of proteins in the setting of vaccine development. The peptide-component (DEHGTAVMLK) of MDP applied here was selected from a group of synthetic peptides screened in vitro for their ability to protect cultured human cells and purified enzymes from extreme damage caused by ionizing radiation (IR). We show that the peptides accumulated in Jurkat T-cells and protected them from 100 Gy. MDP preserved the activity of T4 DNA ligase exposed to 60,000 Gy. In vivo, MDP was nontoxic and protected B6D2F1/J (female) mice from acute radiation syndrome. All irradiated mice treated with MDP survived exposure to 9.5 Gy (LD70/30) in comparison to the untreated mice, which displayed 63% lethality after 30 days. Our results show that MDP provides early protection of white blood cells, and attenuates IR-induced damage to bone marrow and hematopoietic stem cells via G-CSF and GM-CSF modulation. Moreover, MDP mediated the immunomodulation of several cytokine concentrations in serum including G-CSF, GM-CSF, IL-3 and IL-10 during early recovery. Our results present the necessary prelude for future efforts towards clinical application of MDP as a promising IR countermeasure. Further investigation of MDP as a pre-exposure prophylactic and post-exposure therapeutic in radiotherapy and radiation emergencies is warranted.

  7. Protective Effects of Apigenin Against Paraquat-Induced Acute Lung Injury in Mice.

    PubMed

    Luan, Rui-Ling; Meng, Xiang-Xi; Jiang, Wei

    2016-04-01

    This study aimed to investigate the protective effects of apigenin against paraquat (PQ)-induced acute lung injury (ALI) in mice. Male Kunming mice were randomly divided into five groups: group 1 (control), group 2 (PQ), group 3 (PQ + apigenin 25 mg/kg), group 4 (PQ + apigenin 50 mg/kg), and group 5 (PQ + apigenin 100 mg/kg). The PQ + apigenin group received apigenin by gavage daily for consecutive 7 days, respectively, while the mice in control and PQ groups were given an equivalent volume of saline. We detected the lung wet/dry weight ratios and the histopathology of the lung. The levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined using enzyme-linked immunosorbent assay (ELISA) kits. The activity of nuclear factor (NF)-κB was also determined. The results indicated that apigenin administration decreased biochemical parameters of inflammation and oxidative stress, and improved oxygenation and lung edema in a dose-dependent manner. These protective effects of apigenin were associated with inhibition of NF-κB. In conclusion, apigenin reduces PQ-induced ALI by inhibition of inflammation and oxidative stress.

  8. Protective effect of l-theanine on chronic restraint stress-induced cognitive impairments in mice.

    PubMed

    Tian, Xia; Sun, Lingyan; Gou, Lingshan; Ling, Xin; Feng, Yan; Wang, Ling; Yin, Xiaoxing; Liu, Yi

    2013-03-29

    The present work was aimed to study the protective effect of l-theanine on chronic restraint stress (CRS)-induced cognitive impairments in mice. The stress was produced by restraining the animals in well-ventilated polypropylene tubes (3.2 cm in diameter ×10.5 cm in length) for 8h once daily for 21 consecutive days. L-theanine (2 and 4 mg/kg) was administered 30 min before the animals subjected to acute immobilized stress. At week 4, mice were subjected to Morris water maze and step-through tests to measure the cognitive function followed by oxidative parameters and corticosterone as well as catecholamines (norepinephrine and dopamine) subsequently. Our results showed that the cognitive performances in CRS group were markedly deteriorated, accompanied by noticeable alterations in oxidative parameters and catecholamine levels in the hippocampus and the cerebral cortex as well as corticosterone and catecholamine levels in the serum. However, not only did l-theanine treatment exhibit a reversal of the cognitive impairments and oxidative damage induced by CRS, but also reversed the abnormal level of corticosterone in the serum as well as the abnormal levels of catecholamines in the brain and the serum. This study indicated the protective effect of l-theanine against CRS-induced cognitive impairments in mice.

  9. Protective effect of kombucha mushroom (KM) tea on phenol-induced cytotoxicity in albino mice.

    PubMed

    Yapar, Kursad; Cavusoglu, Kultigin; Oruc, Ertan; Yalcin, Emine

    2010-09-01

    The present study was carried out to evaluate the protective role of kombucha mushroom (KM) tea on cytotoxicity induced by phenol (PHE) in mice. We used weight gain and micronucleus (MN) frequency as indicators of cytotoxicity and supported these parameters with pathological findings. The animals were randomly divided into seven groups: (Group I) only tap water (Group II) 1000 microl kg(-1) b. wt KM-tea, (Group III) 35 mg kg(-1) body wt. PHE (Group IV) 35 mg kg(-1) body wt. PHE + 250 microl kg(-1) b. wt KM-tea (Group V) 35 mg kg(-1) b. wt PHE + 500 microl kg(-1) b. wt KM-tea (Group VI) 35 mg kg(-1) b. wt PHE + 750 microl kg(-1) b. wt KM-tea, (Group VII) 35 mg kg(-1) b. wt PHE + 1000 microl kg(-1) b. wt KM-tea, for 20 consecutive days by oral gavage. The results indicated that all KM-tea supplemented mice showed a lower MN frequency than erythrocytes in only PHE-treated group. There was an observable regression on account of lesions in tissues of mice supplemented with different doses of KM-tea in histopathological observations. In conclusion, the KM-tea supplementation decreases cytotoxicity induced by PHE and its protective role is dose-dependent.

  10. Protective effects of Moringa oleifera Lam. leaves against arsenic-induced toxicity in mice

    PubMed Central

    Sheikh, Afzal; Yeasmin, Fouzia; Agarwal, Smita; Rahman, Mashiur; Islam, Khairul; Hossain, Ekhtear; Hossain, Shakhawoat; Karim, Md Rezaul; Nikkon, Farjana; Saud, Zahangir Alam; Hossain, Khaled

    2014-01-01

    Objective To evaluate the protective role of leaves of Moringa oleifera (M. oleifera) Lam. against arsenic-induced toxicity in mice. Methods Swiss albino male mice were divided into four groups. The first group was used as non-treated control group while, the second, third, and fourth groups were treated with M. oleifera leaves (50 mg/kg body weight per day), sodium arsenite (10 mg/kg body weight per day) and sodium arsenite plus M. oleifera leaves, respectively. Serum indices related to cardiac, liver and renal functions were analyzed to evaluate the protective effect of Moringa leaves on arsenic-induced effects in mice. Results It revealed that food supplementation of M. oleifera leaves abrogated the arsenic-induced elevation of triglyceride, glucose, urea and the activities of alkaline phospatase, aspartate aminotransferase and alanine aminotransferase in serum. M. oleifera leaves also prevented the arsenic-induced perturbation of serum butyryl cholinesterase activity, total cholesterol and high density lipoprotein cholesterol. Conclusions The results indicate that the leaves of M. oleifera may be useful in reducing the effects of arsenic-induced toxicity. PMID:25183111

  11. Protective Effect of Silymarin against Acrolein-Induced Cardiotoxicity in Mice

    PubMed Central

    Taghiabadi, Elahe; Imenshahidi, Mohsen; Abnous, Khalil; Mosafa, Fatemeh; Sankian, Mojtaba; Memar, Bahram; Karimi, Gholamreza

    2012-01-01

    Reactive α,β-unsaturated aldehydes such as acrolein (ACR) are major components of environmental pollutants and have been implicated in the neurodegenerative and cardiac diseases. In this study, the protective effect of silymarin (SN) against cardiotoxicity induced by ACR in mice was evaluated. Studies were performed on seven groups of six animals each, including vehicle-control (normal saline + 0.5% w/v methylcellulose), ACR (7.5 mg/kg/day, gavage) for 3 weeks, SN (25, 50 and 100 mg/kg/day, i.p.) plus ACR, vitamin E (Vit E, 100 IU/kg, i.p.) plus ACR, and SN (100 mg/kg, i.p.) groups. Mice received SN 7 days before ACR and daily thereafter throughout the study. Pretreatment with SN attenuated ACR-induced increased levels of malondialdehyde (MDA), serum cardiac troponin I (cTnI), and creatine kinase-MB (CK-MB), as well as histopathological changes in cardiac tissues. Moreover, SN improved glutathione (GSH) content, superoxide dismutase (SOD), and catalase (CAT) activities in heart of ACR-treated mice. Western blot analysis showed that SN pretreatment inhibited apoptosis provoked by ACR through decreasing Bax/Bcl-2 ratio, cytosolic cytochrome c content, and cleaved caspase-3 level in heart. In conclusion, SN may have protective effects against cardiotoxicity of ACR by reducing lipid peroxidation, renewing the activities of antioxidant enzymes, and preventing apoptosis. PMID:23320028

  12. Protective effects of silymarin against acetaminophen-induced hepatotoxicity and nephrotoxicity in mice.

    PubMed

    Bektur, Nuriye Ezgi; Sahin, Erhan; Baycu, Cengiz; Unver, Gonul

    2016-04-01

    This study was designed to estimate protective effects of silymarin on acetaminophen (N-acetyl-p-aminophenol, paracetamol; APAP)-induced hepatotoxicity and nephrotoxicity in mice. Treatment of mice with overdose of APAP resulted in the elevation of aspartate aminotransferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), and serum creatinine (SCr) levels in serum, liver, and kidney nitric oxide (NO) levels and significant histological changes including decreased body weight, swelling of hepatocytes, cell infiltration, dilatation and congestion, necrosis and apoptosis in liver, and dilatation of Bowman's capsular space and glomerular capillaries, pale-stained tubules epithelium, cell infiltration, and apoptosis in kidney. Posttreatment with silymarin 1 h after APAP injection for 7 days, however, significantly normalized the body weight, histological damage, serum ALT, AST, BUN, SCr, and tissue NO levels. Our observation suggested that silymarin ameliorated the toxic effects of APAP-induced hepatotoxicity and nephrotoxicity in mice. The protective role of silymarin against APAP-induced damages might result from its antioxidative and anti-inflammatory effects.

  13. Protective Effect of Isorhamnetin on Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    PubMed

    Yang, Bo; Li, Xiao-Ping; Ni, Yun-Feng; Du, Hong-Yin; Wang, Rong; Li, Ming-Jiang; Wang, Wen-Chen; Li, Ming-Ming; Wang, Xu-Hui; Li, Lei; Zhang, Wei-Dong; Jiang, Tao

    2016-02-01

    Isorhamnetin has been reported to have anti-inflammatory, anti-oxidative, and anti-proliferative effects. The aim of this study was to investigate the protective effect of isorhamnetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice by inhibiting the expression of cyclooxygenase-2 (COX-2). The effects of isorhamnetin on LPS-induced lung pathological damage, wet/dry ratios and the total protein level in bronchoalveolar lavage fluid (BALF), inflammatory cytokine release, myeloperoxidase (MPO) and superoxide dismutase (SOD) activities, and malondialdehyde (MDA) level were examined. In addition, the COX-2 activation in lung tissues was detected by Western blot. Isorhamnetin pretreatment improved the mice survival rates. Moreover, isorhamnetin pretreatment significantly attenuated edema and the pathological changes in the lung and inhibited protein extravasation in BALF. Isorhamnetin also significantly decreased the levels of inflammatory cytokines in BALF. In addition, isorhamnetin markedly prevented LPS-induced oxidative stress. Furthermore, isorhamnetin pretreatment significantly suppressed LPS-induced activation of COX-2. Isorhamnetin has been demonstrated to protect mice from LPS-induced ALI by inhibiting the expression of COX-2.

  14. Protective effects of hydrogen sulfide anions against acetaminophen-induced hepatotoxicity in mice.

    PubMed

    Ishii, Isao; Kamata, Shotaro; Hagiya, Yoshifumi; Abiko, Yumi; Kasahara, Tadashi; Kumagai, Yoshito

    2015-12-01

    The key mechanism for hepatotoxicity resulting from acetaminophen (APAP) overdose is cytochrome P450-dependent formation of N-acetyl-p-benzoquinone imine (NAPQI), a potent electrophilic metabolite that forms protein adducts. The fundamental roles of glutathione in the effective conjugation/clearance of NAPQI have been established, giving a molecular basis for the clinical use of N-acetylcysteine as a sole antidote. Recent evidence from in vitro experiments suggested that sulfide anions (S(2-)) to yield hydrogen sulfide anions (HS(-)) under physiological pH could effectively react with NAPQI. This study evaluated the protective roles of HS(-) against APAP-induced hepatotoxicity in mice. We utilized cystathionine γ-lyase-deficient (Cth(-/-)) mice that are highly sensitive to acetaminophen toxicity. Intraperitoneal injection of acetaminophen (150 mg/kg) into Cth(-/-) mice resulted in highly elevated levels of serum alanine/aspartate aminotransferases and lactate dehydrogenase associated with marked increases in oncotic hepatocytes; all of which were significantly inhibited by intraperitoneal preadministration of sodium hydrosulfide (NaHS). NaHS preadministration significantly suppressed APAP-induced serum malondialdehyde level increases without abrogating APAP-induced rapid depletion of hepatic glutathione. These results suggest that exogenous HS(-) protects hepatocytes by directly scavenging reactive NAPQI rather than by increasing cystine uptake and thereby elevating intracellular glutathione levels, which provides a novel therapeutic approach against acute APAP poisoning.

  15. Active immunizations with peptide-DC vaccines and passive transfer with antibodies protect neutropenic mice against disseminated candidiasis.

    PubMed

    Xin, Hong

    2016-01-04

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi.

  16. Protective effect of L-theanine on carbon tetrachloride-induced acute liver injury in mice.

    PubMed

    Jiang, Wei; Gao, Min; Sun, Shuai; Bi, Aijing; Xin, Yinqiang; Han, Xiaodong; Wang, Liangbin; Yin, Zhimin; Luo, Lan

    2012-06-01

    We studied effects of L-theanine, a unique amino acid in tea, on carbon tetrachloride (CCl(4))-induced liver injury in mice. The mice were pre-treated orally with L-theanine (50, 100 or 200 mg/kg) once daily for seven days before CCl(4) (10 ml/kg of 0.2% CCl(4) solution in olive oil) injection. L-theanine dose-dependently suppressed the increase of serum activity of ALT and AST and bilirubin level as well as liver histopathological changes induced by CCl(4) in mice. L-theanine significantly prevented CCl(4)-induced production of lipid peroxidation and decrease of hepatic GSH content and antioxidant enzymes activities. Our further studies demonstrated that L-theanine inhibited metabolic activation of CCl(4) through down-regulating cytochrome P450 2E1 (CYP2E1). As a consequence, L-theanine inhibited oxidative stress-mediated inflammatory response which included the increase of TNF-α and IL-1β in sera, and expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in livers. CCl(4)-induced activation of apoptotic related proteins including caspase-3 and PARP in mouse livers was also prevented by L-theanine treatment. In summary, L-theanine protects mice against CCl(4)-induced acute liver injury through inhibiting metabolic activation of CCl(4) and preventing CCl(4)-induced reduction of anti-oxidant capacity in mouse livers to relieve inflammatory response and hepatocyte apoptosis.

  17. Long-term flaxseed oil supplementation diet protects BALB/c mice against Streptococcus pneumoniae infection.

    PubMed

    Saini, Archana; Harjai, Kusum; Mohan, Harsh; Punia, Raj Pal Singh; Chhibber, Sanjay

    2010-02-01

    Intense host immune response to infection contributes significantly to the pathology of pneumococcal pneumonia. Therefore, the regulation of host immune response is critical for the successful outcome of pneumonia in such patients. The aim of the present study was to investigate the effect of n-3 PUFA, i.e. flaxseed oil supplementation for short (4 weeks) as well as long (9 weeks) term, on the course of S. pneumoniae D39 serotype 2 infection in mice. The efficacy of flaxseed oil supplementation was investigated in terms of survival of animals and production of various inflammatory molecules (malondialdehyde, myeloperoxidase, nitric oxide) in the lung homogenate of animals. This was correlated with bacteriological and histopathological parameters. The immunomodulation was studied in terms of cytokines in the lungs following infection with Streptococcus pneumoniae. Results suggest that long-term flaxseed supplementation protected the mice against bacterial colonization of lungs with Streptococcus pneumoniae with reduced histopathological involvement of lung tissue. Moderate pneumonia was observed in supplemented, infected mice compared to severe pneumonia seen in control mice. This was accompanied by decreased inflammatory markers (malondialdehyde, myeloperoxidase, nitric oxide) as the disease progressed. In addition, difference in the levels of pro-inflammatory (TNF-alpha and IL-1beta) and anti-inflammatory (IL-10) cytokines was observed in the flaxseed fed animals. On the contrary, short-term supplementation did not show such an effect on lung colonization.

  18. Glutathione reductase targeted to type II cells does not protect mice from hyperoxic lung injury.

    PubMed

    Heyob, Kathryn M; Rogers, Lynette K; Welty, Stephen E

    2008-12-01

    Exposure of the lung epithelium to reactive oxygen species without adequate antioxidant defenses leads to airway inflammation, and may contribute to lung injury. Glutathione peroxidase catalyzes the reduction of peroxides by oxidation of glutathione (GSH) to glutathione disulfide (GSSG), which can in turn be reduced by glutathione reductase (GR). Increased levels of GSSG have been shown to correlate negatively with outcome after oxidant exposure, and increased GR activity has been protective against hyperoxia in lung epithelial cells in vitro. We tested the hypothesis that increased GR expression targeted to type II alveolar epithelial cells would improve outcome in hyperoxia-induced lung injury. Human GR with a mitochondrial targeting sequence was targeted to mouse type II cells using the SPC promoter. Two transgenic lines were identified, with Line 2 having higher lung GR activities than Line 1. Both transgenic lines had lower lung GSSG levels and higher GSH/GSSG ratios than wild-type. Six-week-old wild-type and transgenic mice were exposed to greater than 95% O2 or room air (RA) for 84 hours. After exposure, Line 2 mice had higher right lung/body weight ratios and lavage protein concentrations than wild-type mice, and both lines 1 and 2 had lower GSSG levels than wild-type mice. These findings suggest that GSSG accumulation in the lung may not play a significant role in the development of hyperoxic lung injury, or that compensatory responses to unregulated GR expression render animals more susceptible to hyperoxic lung injury.

  19. Administration of kefir-fermented milk protects mice against Giardia intestinalis infection.

    PubMed

    Franco, Mariana Correa; Golowczyc, Marina A; De Antoni, Graciela L; Pérez, Pablo F; Humen, Martín; Serradell, María de los Angeles

    2013-12-01

    Giardiasis, caused by the protozoan Giardia intestinalis, is one of the most common intestinal diseases worldwide and constitutes an important problem for the public health systems of various countries. Kefir is a probiotic drink obtained by fermenting milk with 'kefir grains', which consist mainly of bacteria and yeasts that coexist in a complex symbiotic association. In this work, we studied the ability of kefir to protect mice from G. intestinalis infection, and characterized the host immune response to this probiotic in the context of the intestinal infection. Six- to 8-week-old C75BL/6 mice were separated into four groups: controls, kefir mice (receiving 1 : 100 dilution of kefir in drinking water for 14 days), Giardia mice (infected orally with 4×10(7) trophozoites of G. intestinalis at day 7) and Giardia-kefir mice (kefir-treated G. intestinalis-infected mice), and killed at 2 or 7 days post-infection. Kefir administration was able to significantly reduce the intensity of Giardia infection at 7 days post-infection. An increase in the percentage of CD4(+) T cells at 2 days post-infection was observed in the Peyer's patches (PP) of mice belonging to the Giardia group compared with the control and kefir groups, while the percentage of CD4(+) T cells in PP in the Giardia-kefir group was similar to that of controls. At 2 days post-infection, a reduction in the percentage of B220-positive major histocompatibility complex class II medium cells in PP was observed in infected mice compared with the other groups. At 7 days post-infection, Giardia-infected mice showed a reduction in RcFcε-positive cells compared with the control group, suggesting a downregulation of the inflammatory response. However, the percentages of RcFcε-positive cells did not differ from controls in the kefir and Giardia-kefir groups. An increase in IgA-positive cells was observed in the lamina propria of the kefir group compared with controls at 2 days post-infection. Interestingly, the

  20. [Incretin mimetic drugs: therapeutic positioning].

    PubMed

    López Simarro, F

    2014-07-01

    Type 2 diabetes is a chronic and complex disease, due to the differences among affected individuals, which affect choice of treatment. The number of drug families has increased in the last few years, and these families have widely differing mechanisms of action, which contributes greatly to the individualization of treatment according to the patient's characteristics and comorbidities. The present article discusses incretin mimetic drugs. Their development has been based on knowledge of the effects of natural incretin hormones: GLP-1 (glucagon-like peptide 1), GIP (glucose-dependent insulinotropic peptide) and dipeptidyl peptidase enzyme 4 (DPP4), which rapidly degrade them in the systemic circulation. This group is composed of 2 different types of molecules: GLP-1 analogs and DPP4 enzyme inhibitors. The benefits of these molecules include a reduction in plasma glucose without the risk of hypoglycemias or weight gain. There are a series of questions that require new studies to establish a possible association between the use of these drugs and notification of cases of pancreatitis, as well as their relationship with pancreatic and thyroid cancer. Also awaited is the publication of several studies that will provide information on the relationship between these drugs and cardiovascular risk in people with diabetes. All these questions will probably be progressively elucidated with greater experience in the use of these drugs.

  1. Sustained Protection in Mice Immunized with Fractional Doses of Salmonella Enteritidis Core and O Polysaccharide-Flagellin Glycoconjugates

    PubMed Central

    Simon, Raphael; Wang, Jin Y.; Boyd, Mary A.; Tulapurkar, Mohan E.; Ramachandran, Girish; Tennant, Sharon M.; Pasetti, Marcela; Galen, James E.; Levine, Myron M.

    2013-01-01

    Non-typhoidal Salmonella (NTS) serovars S. Enteritidis and S. Typhimurium are a major cause of invasive bacterial disease (e.g., bacteremia, meningitis) in infants and young children in sub-Saharan Africa and also occasionally cause invasive disease in highly susceptible hosts (young infants, the elderly, and immunocompromised subjects) in industrialized countries. No licensed vaccines exist against human NTS infections. NTS core and O polysaccharide (COPS) and FliC (Phase 1 flagellin subunits) each constitute protective antigens in murine models. S. Enteritidis COPS conjugated to FliC represents a promising vaccine approach that elicits binding and opsonophagocytic antibodies and protects mice against lethal challenge with virulent S. Enteritidis. We examined the protective efficacy of fractional dosages of S. Enteritidis COPS:FliC conjugate vaccines in mice, and also established that protection can be passively transferred to naïve mice by administering sera from mice immunized with conjugate. Mice were immunized with three doses of either 10 µg, 2.5 µg (full dose), 0.25 µg, or 0.025 µg S. Enteritidis COPS:FliC conjugate at 28 day intervals. Antibody titers to COPS and FliC measured by ELISA fell consonant with progressively smaller vaccine dosage levels; anti-FliC IgG responses remained robust at fractional dosages for which anti-COPS serum IgG titers were decreased. Nevertheless, >90% protection against intraperitoneal challenge was observed in mice immunized with fractional dosages of conjugate that elicited diminished titers to both FliC and COPS. Passive transfer of immune sera from mice immunized with the highest dose of COPS:FliC to naïve mice was also protective, demonstrating the role of antibodies in mediating protection. These results provide important insights regarding the potency of Salmonella glycoconjugate vaccines that use flagellin as a carrier protein. PMID:23741368

  2. Purified recombinant organophosphorus acid anhydrase protects mice against soman. (Reannouncement with new availability information)

    SciTech Connect

    Broomfield, C.A.

    1992-12-31

    Since pharmacologic treatments of organophosphorus anticholinesterases (OPs) are nearing their practical limit other types of treatment are being sought. One approach is the prophylactic administration of scavengers that will detoxify OPs before they reach their critical target site. Using mice that were sensitized to OPs by depletion of their serum carboxylesterase with cresylbenzodioxaphosphorin oxide (CBDP), we have shown that animals pretreated intravenously with a purified organophosphorus acid anhydride hydrolase (parathionase) (0.10 mg per g body wt.) are not measurably affected by up to 34.4 microgram soman per kg, a dose more than double that which is lethal to untreated animals. This result indicates that this approach is worthy of exploration and development for protecting military personnel and agricultural workers against OP intoxication. Scavengers, pretreatment, soman, OP intoxication, mice.

  3. Aqueous Extract of Clerodendranthus spicatus Exerts Protective Effect on UV-Induced Photoaged Mice Skin

    PubMed Central

    Li, Cai-lan

    2016-01-01

    Clerodendranthus spicatus (Thunb.) C.Y.Wu (CS) is commonly used to treat kidney diseases in traditional Chinese medicine for its prominent anti-inflammatory effect and nourishing function to kidneys. In this study, aqueous extract of CS was assessed for its protective effect on UV-induced skin damage of mice. The chemical compositions of CS aqueous extract were determined by HPLC-ESI-MS/MS, in which 10 components were identified. During the experimental period, CS (0.9, 1.8, and 3.6 g/mL) was externally applied to shaved dorsal skins of mice prior to UV irradiation, daily for ten weeks. The results presented that CS (3.6 g/mL) apparently improved photodamaged skin appearance such as erythema, edema, and coarseness. The abnormal epidermal thickening was significantly reduced, and the dermal structures became more complete. The underlying protective mechanisms were associated with improving antioxidant enzymes activities including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), downregulating inflammatory cytokines (IL-1β, IL-6, TNF-α, COX-2, and PGE2) expressions, recovering collagen density, and reducing matrix metalloproteinases productions. Sun protection factor of CS (3.6 g/mL) was 16.21 ± 0.03. Our findings for the first time demonstrated that CS had therapeutic effect on the photoaged skin. The results indicated that CS is a potential agent for photoprotective cosmetics. PMID:27847530

  4. Irsogladine maleate, a gastric mucosal protectant, suppresses intestinal polyp development in Apc-mutant mice

    PubMed Central

    Onuma, Wakana; Tomono, Susumu; Miyamoto, Shinngo; Fujii, Gen; Hamoya, Takahiro; Fujimoto, Kyoko; Miyoshi, Noriyuki; Fukai, Fumio; Wakabayashi, Keiji; Mutoh, Michihiro

    2016-01-01

    This study aimed to identify gastric mucosal protectants that suppress intestinal tumorigenesis in a mouse model. We chose six gastric mucosal protectants (ecabet sodium hydrate, irsogladine maleate, rebamipide, sofalcone, teprenone and troxipide) and examined their effects on the activity of oxidative stress-related transcriptional factors, including AP-1, NF-jB, NRF2, p53 and STAT3, in Caco-2 cells using a luciferase reporter gene assay. Among the six protectants, irsogladine maleate clearly inhibited NF-jB and AP-1 transcriptional activity. Furthermore, the chemopreventive property of irsogladine maleate was examined in a Min mouse model of familial adenomatous polyposis. Treatment with irsogladine maleate at doses of 5 and 50 ppm significantly reduced the number of intestinal polyps to 69% and 66% of the untreated control value, respectively. In these polyps, mRNA levels of the downstream targets of NF-jB, such as IL-1β and IL-6, were decreased by irsogladine maleate treatment. Moreover, the levels of oxidative stress-related markers, reactive carbonyl species, in the livers of Min mice were clearly decreased following the administration of irsogladine maleate. This study demonstrated that irsogladine maleate suppresses intestinal polyp formation in Min mice partly through the NF-jB signaling pathway, thus reducing oxidative stress. PMID:26840084

  5. Calcitonin gene-related peptide inhibits local acute inflammation and protects mice against lethal endotoxemia.

    PubMed

    Gomes, Rachel Novaes; Castro-Faria-Neto, Hugo C; Bozza, Patricia T; Soares, Milena B P; Shoemaker, Charles B; David, John R; Bozza, Marcelo T

    2005-12-01

    Calcitonin gene-related peptide (CGRP), a potent vasodilatory peptide present in central and peripheral neurons, is released at inflammatory sites and inhibits several macrophage, dendritic cell, and lymphocyte functions. In the present study, we investigated the role of CGRP in models of local and systemic acute inflammation and on macrophage activation induced by lipopolysaccharide (LPS). Intraperitoneal pretreatment with synthetic CGRP reduces in approximately 50% the number of neutrophils in the blood and into the peritoneal cavity 4 h after LPS injection. CGRP failed to inhibit neutrophil recruitment induced by the direct chemoattractant platelet-activating factor, whereas it significantly inhibited LPS-induced KC generation, suggesting that the effect of CGRP on neutrophil recruitment is indirect, acting on chemokine production by resident cells. Pretreatment of mice with 1 mug of CGRP protects against a lethal dose of LPS. The CGRP-induced protection is receptor mediated because it is completely reverted by the CGRP receptor antagonist, CGRP 8-37. The protective effect of CGRP correlates with an inhibition of TNF-alpha and an induction of IL-6 and IL-10 in mice sera 90 min after LPS challenge. Finally, CGRP significantly inhibits LPS-induced TNF-alpha released from mouse peritoneal macrophages. These results suggest that activation of the CGRP receptor on macrophages during acute inflammation could be part of the negative feedback mechanism controlling the extension of acute inflammatory responses.

  6. Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice

    PubMed Central

    Ye, Jian-Hong; Liu, Meng-Hua; Zhang, Xu-Lin; He, Jing-Yu

    2015-01-01

    Protective effect of Hedyotis diffusa (H. diffusa) Willd against lipopolysaccharide (LPS)-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography -diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight) obviously protected renal tissues, significantly suppressed the productions of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1, as well as significantly promoted the production of IL-10 in serum and renal tissues. According the chemical profiles of H. diffusa, flavonoids, iridoid glycosides and anthraquinones were greatly detected in serum from H. diffusa extract treatment mice. Two main chemotypes, including eight flavonoids and four iridoid glycosides were found in renal tissues from H. diffusa extract treatment mice. The results demonstrated that water extract of H. diffusa had protective effect on renal inflammation, which possibly resulted from the bioactive constituents consisting of flavonoids, iridoids and anthraquinones. PMID:26580602

  7. Synthetic glycoprotein D-related peptides protect mice against herpes simplex virus challenge.

    PubMed Central

    Eisenberg, R J; Cerini, C P; Heilman, C J; Joseph, A D; Dietzschold, B; Golub, E; Long, D; Ponce de Leon, M; Cohen, G H

    1985-01-01

    Glycoprotein D (gD) of herpes simplex virus (HSV) protects mice from a lethal challenge by either HSV type 1 (HSV-1; oral) or HSV-2 (genital). We evaluated whether synthetic peptides representing residues 1 through 23 of gD (mature protein) can be used as a potential synthetic herpesvirus vaccine. The immunogenicity of the peptides was demonstrated by the biological reactivity of antipeptide sera in immunoprecipitation and neutralization assays. All sera which immunoprecipitated gD had neutralizing against both HSV-1 and HSV-2. The highest titers were found in animals immunized with the longest peptides. The region of residues 1 through 23 was immunogenic regardless of whether the type 1 or type 2 sequence was presented to the animal. Immunization of mice with gD or synthetic peptides conferred solid protection against a footpad challenge with HSV-2. However, the peptides were not as effective as gD in protection against an intraperitoneal challenge. The results suggested that synthetic vaccines based on gD show promise and should be more rigorously tested in a variety of animal models. Images PMID:2999419

  8. A recombinant capsid protein from Dengue-2 induces protection in mice against homologous virus.

    PubMed

    Lazo, Laura; Hermida, Lisset; Zulueta, Aída; Sánchez, Jorge; López, Carlos; Silva, Ricardo; Guillén, Gerardo; Guzmán, María G

    2007-01-22

    In the present work, we study the immunogenicity and protective capacity of a recombinant capsid protein from Dengue-2 virus. The capsid gene was cloned under the T5 phage promoter and expressed in Escherichia coli. The recombinant protein was obtained mainly associated to the soluble fraction upon cellular disruption and exhibited a pattern of high aggregation, determined by gel filtration chromatography. The semipurified preparation was inoculated in mice and after three doses, no antiviral antibodies were induced. On the other hand, mice intracranially challenged with homologous lethal virus, exhibited statistically significant protection with respect to the control group. These results describe, for the first time, the protective capacity of the capsid protein of Dengue virus indicating the existence of a protector mechanism, which is totally independent of the antibodies. This lack of induction of antiviral antibodies makes the capsid protein an attractive vaccine candidate against dengue since eliminates the potential risk of the induction of antibody dependent enhancement associated to the current vaccines under study.

  9. ApoA-I mimetic administration, but not increased apoA-I-containing HDL, inhibits tumour growth in a mouse model of inherited breast cancer

    PubMed Central

    Cedó, Lídia; García-León, Annabel; Baila-Rueda, Lucía; Santos, David; Grijalva, Victor; Martínez-Cignoni, Melanie Raquel; Carbó, José M.; Metso, Jari; López-Vilaró, Laura; Zorzano, Antonio; Valledor, Annabel F.; Cenarro, Ana; Jauhiainen, Matti; Lerma, Enrique; Fogelman, Alan M.; Reddy, Srinivasa T.; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2016-01-01

    Low levels of high-density lipoprotein cholesterol (HDLc) have been associated with breast cancer risk, but several epidemiologic studies have reported contradictory results with regard to the relationship between apolipoprotein (apo) A-I and breast cancer. We aimed to determine the effects of human apoA-I overexpression and administration of specific apoA-I mimetic peptide (D-4F) on tumour progression by using mammary tumour virus-polyoma middle T-antigen transgenic (PyMT) mice as a model of inherited breast cancer. Expression of human apoA-I in the mice did not affect tumour onset and growth in PyMT transgenic mice, despite an increase in the HDLc level. In contrast, D-4F treatment significantly increased tumour latency and inhibited the development of tumours. The effects of D-4F on tumour development were independent of 27-hydroxycholesterol. However, D-4F treatment reduced the plasma oxidized low-density lipoprotein (oxLDL) levels in mice and prevented oxLDL-mediated proliferative response in human breast adenocarcinoma MCF-7 cells. In conclusion, our study shows that D-4F, but not apoA-I-containing HDL, hinders tumour growth in mice with inherited breast cancer in association with a higher protection against LDL oxidative modification. PMID:27808249

  10. Mutant Brucella abortus membrane fusogenic protein induces protection against challenge infection in mice.

    PubMed

    de Souza Filho, Job Alves; de Paulo Martins, Vicente; Campos, Priscila Carneiro; Alves-Silva, Juliana; Santos, Nathalia V; de Oliveira, Fernanda Souza; Menezes, Gustavo B; Azevedo, Vasco; Cravero, Silvio Lorenzo; Oliveira, Sergio Costa

    2015-04-01

    Brucella species can cause brucellosis, a zoonotic disease that causes serious livestock economic losses and represents a public health threat. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that serve as virulence factors to better understand this host-pathogen interplay. Here, we evaluated the role of the Brucella membrane fusogenic protein (Mfp) and outer membrane protein 19 (Omp19) in bacterial pathogenesis. In this study, we showed that B. abortus Δmfp::kan and Δomp19::kan deletion mutant strains have reduced persistence in vivo in C57BL/6 and interferon regulatory factor 1 (IRF-1) knockout (KO) mice. Additionally, 24 h after macrophage infection with a Δmfp::kan or Δomp19::kan strain expressing green fluorescent protein (GFP) approximately 80% or 65% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP-1, respectively, whereas around 60% of BCVs containing wild-type S2308 were found in LAMP-1-negative compartments. B. abortus Δomp19::kan was attenuated in vivo but had a residual virulence in C57BL/6 and IRF-1 KO mice, whereas the Δmfp::kan strain had a lower virulence in these same mouse models. Furthermore, Δmfp::kan and Δomp19::kan strains were used as live vaccines. Challenge experiments revealed that in C57BL/6 and IRF-1 KO mice, the Δmfp::kan strain induced greater protection than the vaccine RB51 and protection similar that of vaccine S19. However, a Δomp19::kan strain induced protection similar to that of RB51. Thus, these results demonstrate that Brucella Mfp and Omp19 are critical for full bacterial virulence and that the Δmfp::kan mutant may serve as a potential vaccine candidate in future studies.

  11. Human CD8+ T cells mediate protective immunity induced by a human malaria vaccine in human immune system mice.

    PubMed

    Li, Xiangming; Huang, Jing; Zhang, Min; Funakoshi, Ryota; Sheetij, Dutta; Spaccapelo, Roberta; Crisanti, Andrea; Nussenzweig, Victor; Nussenzweig, Ruth S; Tsuji, Moriya

    2016-08-31

    A number of studies have shown that CD8+ T cells mediate protective anti-malaria immunity in a mouse model. However, whether human CD8+ T cells play a role in protection against malaria remains unknown. We recently established human immune system (HIS) mice harboring functional human CD8+ T cells (HIS-CD8 mice) by transduction with HLA-A∗0201 and certain human cytokines using recombinant adeno-associated virus-based gene transfer technologies. These HIS-CD8 mice mount a potent, antigen-specific HLA-A∗0201-restricted human CD8+ T-cell response upon immunization with a recombinant adenovirus expressing a human malaria antigen, the Plasmodium falciparum circumsporozoite protein (PfCSP), termed AdPfCSP. In the present study, we challenged AdPfCSP-immunized HIS-CD8 mice with transgenic Plasmodium berghei sporozoites expressing full-length PfCSP and found that AdPfCSP-immunized (but not naïve) mice were protected against subsequent malaria challenge. The level of the HLA-A∗0201-restricted, PfCSP-specific human CD8+ T-cell response was closely correlated with the level of malaria protection. Furthermore, depletion of human CD8+ T cells from AdPfCSP-immunized HIS-CD8 mice almost completely abolished the anti-malaria immune response. Taken together, our data show that human CD8+ T cells mediate protective anti-malaria immunity in vivo.

  12. The Polyphenol Oleuropein Aglycone Protects TgCRND8 Mice against Aß Plaque Pathology

    PubMed Central

    Grossi, Cristina; Rigacci, Stefania; Ambrosini, Stefano; Ed Dami, Teresa; Luccarini, Ilaria; Traini, Chiara; Failli, Paola; Berti, Andrea; Casamenti, Fiorella; Stefani, Massimo

    2013-01-01

    The claimed beneficial effects of the Mediterranean diet include prevention of several age-related dysfunctions including neurodegenerative diseases and Alzheimer-like pathology. These effects have been related to the protection against cognitive decline associated with aging and disease by a number of polyphenols found in red wine and extra virgin olive oil. The double transgenic TgCRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 1.5 and 4, and age-matched wild type control mice were used to examine in vivo the effects of 8 weeks dietary supplementation of oleuropein aglycone (50 mg/kg of diet), the main polyphenol found in extra virgin olive oil. We report here that dietary supplementation of oleuropein aglycone strongly improves the cognitive performance of young/middle-aged TgCRND8 mice, a model of amyloid-ß deposition, respect to age-matched littermates with un-supplemented diet. Immunofluorescence analysis of cerebral tissue in oleuropein aglycone-fed transgenic mice showed remarkably reduced ß-amyloid levels and plaque deposits, which appeared less compact and “fluffy”; moreover, microglia migration to the plaques for phagocytosis and a remarkable reduction of the astrocyte reaction were evident. Finally, oleuropein aglycone-fed mice brain displayed an astonishingly intense autophagic reaction, as shown by the increase of autophagic markers expression and of lysosomal activity. Data obtained with cultured cells confirmed the latter evidence, suggesting mTOR regulation by oleuropein aglycone. Our results support, and provide mechanistic insights into, the beneficial effects against Alzheimer-associated neurodegeneration of a polyphenol enriched in the extra virgin olive oil, a major component of the Mediterranean diet. PMID:23951225

  13. Protective effect of sugar cane extract against dextran sulfate sodium-induced colonic inflammation in mice.

    PubMed

    Wang, Bin; Li, Yansen; Mizu, Masami; Furuta, Toma; Li, ChunMei

    2017-02-01

    Sugar cane extract (SCE) exhibits various biological effects and has been reported to enhance animal growth performance. However, the effect of SCE on inflammation in animals is still obscure. To study the effects and underlying mechanism of SCE on dextran sulfate sodium (DSS)-induced colonic inflammation, forty female ICR mice (26.63±0.19g, 6-week-old) were assigned into four groups: a control group (Cont), a DSS-challenged group (DSS), a SCE-supplemented group (SCE), and a DSS+SCE group (DSS+SCE). Mice in Cont group and DSS group were fed basic diet and other mice received 1% SCE supplemented in basic diet from 6-week to 8-week-old. Mice in DSS and DSS+SCE groups were also given a 4% DSS solution from 7-week to 8-week-old via drinking water to induce colonic inflammation. After 2 weeks, mice were sacrificed and samples were collected. The results showed that dietary SCE alleviated DSS induced growth suppression, splenic damage, colonic histological changes, colonic inflammation, oxidative stress, and colonic dysfunction of tight junctions. Meanwhile, the DSS exposure activated nuclear transcription factor kappa B p65 and inhibited nuclear factor E2-related factor 2 (Nrf2), while SCE markedly attenuated the DSS-promoted effect on the p65 nuclear accumulation and the DSS-inhibited effect on the Nrf2 nuclear accumulation. In conclusion, SCE conferred a protective role in the DSS-induced inflammation and the mechanism might be associated with the activated signals of the nuclear factor kappa B p65 and Nrf2.

  14. Carnitine Palmitoyltransferase 1b Deficiency Protects Mice from Diet-Induced Insulin Resistance

    PubMed Central

    Kim, Teayoun; He, Lan; Johnson, Maria S.; Li, Yan; Zeng, Ling; Ding, Yishu; Long, Qinqiang; Moore, John F.; Sharer, Jon D.; Nagy, Tim R.; Young, Martin E.; Wood, Philip A.; Yang, Qinglin

    2014-01-01

    Background Carnitine Palmitoyl Transferase 1 (CPT1) is the rate-limiting enzyme governing long-chain fatty acid entry into mitochondria. CPT1 inhibitors have been developed and exhibited beneficial effects against type II diabetes in short-term preclinical animal studies. However, the long-term effects of treatment remain unclear and potential non-specific effects of these CPT1 inhibitors hamper in-depth understanding of the potential molecular mechanisms involved. Methods We investigated the effects of restricting the activity of the muscle isoform CPT1b in mice using heterozygous CPT1b deficient (Cpt1b+/−) and Wild Type (WT) mice fed with a High Fat Diet (HFD) for 22 weeks. Insulin sensitivity was assessed using Glucose Tolerance Test (GTT), insulin tolerance test and hyperinsulinemic euglycemic clamps. We also examined body weight/composition, tissue and systemic metabolism/energetic status, lipid profile, transcript analysis, and changes in insulin signaling pathways. Results We found that Cpt1b+/− mice were protected from HFD-induced insulin resistance compared to WT littermates. Cpt1b+/− mice exhibited elevated whole body glucose disposal rate and skeletal muscle glucose uptake. Furthermore, Cpt1b+/− skeletal muscle showed diminished ex vivo palmitate oxidative capacity by ~40% and augmented glucose oxidation capacity by ~50% without overt change in whole body energy metabolism. HFD feeding Cpt1b+/− but not WT mice exhibited well-maintained insulin signaling in skeletal muscle, heart, and liver. Conclusion The present study on a genetic model of CPT1b restriction supports the concept that partial CPT1b inhibition is a potential therapeutic strategy. PMID:25309812

  15. Physical exercise protects against Alzheimer's disease in 3xTg-AD mice.

    PubMed

    García-Mesa, Yoelvis; López-Ramos, Juan Carlos; Giménez-Llort, Lydia; Revilla, Susana; Guerra, Rafael; Gruart, Agnès; Laferla, Frank M; Cristòfol, Rosa; Delgado-García, José M; Sanfeliu, Coral

    2011-01-01

    Physical exercise is considered to exert a positive neurophysiological effect that helps to maintain normal brain activity in the elderly. Expectations that it could help to fight Alzheimer's disease (AD) were recently raised. This study analyzed the effects of different patterns of physical exercise on the 3xTg-AD mouse. Male and female 3xTg-AD mice at an early pathological stage (4-month-old) have had free access to a running wheel for 1 month, whereas mice at a moderate pathological stage(7-month-old) have had access either during 1 or 6 months. The non-transgenic mouse strain was used as a control. Parallel animal groups were housed in conventional conditions. Cognitive loss and behavioral and psychological symptoms of dementia (BPSD)-like behaviors were present in the 3xTg-AD mice along with alteration in synaptic function and ong-term potentiation impairment in vivo. Brain tissue showed AD-pathology and oxidative-related changes. Disturbances were more severe at the older age tested. Oxidative stress was higher in males but other changes were similar or higher in females. Exercise treatment ameliorated cognitive deterioration and BPSD-like behaviors such as anxiety and the startle response. Synaptic changes were partially protected by exercise. Oxidative stress was reduced. The best neuroprotection was generally obtained after 6 months of exercise in 7-month-old 3xTg-AD mice. Improved sensorimotor function and brain tissue antioxidant defence were induced in both 3xTg-AD and NonTg mice. Therefore, the benefits of aerobic physical exercise on synapse, redox homeostasis, and general brain function demonstrated in the 3xTg-AD mouse further support the value of this healthy life-style against neurodegeneration.

  16. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology.

    PubMed

    Grossi, Cristina; Rigacci, Stefania; Ambrosini, Stefano; Ed Dami, Teresa; Luccarini, Ilaria; Traini, Chiara; Failli, Paola; Berti, Andrea; Casamenti, Fiorella; Stefani, Massimo

    2013-01-01

    The claimed beneficial effects of the Mediterranean diet include prevention of several age-related dysfunctions including neurodegenerative diseases and Alzheimer-like pathology. These effects have been related to the protection against cognitive decline associated with aging and disease by a number of polyphenols found in red wine and extra virgin olive oil. The double transgenic TgCRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 1.5 and 4, and age-matched wild type control mice were used to examine in vivo the effects of 8 weeks dietary supplementation of oleuropein aglycone (50 mg/kg of diet), the main polyphenol found in extra virgin olive oil. We report here that dietary supplementation of oleuropein aglycone strongly improves the cognitive performance of young/middle-aged TgCRND8 mice, a model of amyloid-ß deposition, respect to age-matched littermates with un-supplemented diet. Immunofluorescence analysis of cerebral tissue in oleuropein aglycone-fed transgenic mice showed remarkably reduced ß-amyloid levels and plaque deposits, which appeared less compact and "fluffy"; moreover, microglia migration to the plaques for phagocytosis and a remarkable reduction of the astrocyte reaction were evident. Finally, oleuropein aglycone-fed mice brain displayed an astonishingly intense autophagic reaction, as shown by the increase of autophagic markers expression and of lysosomal activity. Data obtained with cultured cells confirmed the latter evidence, suggesting mTOR regulation by oleuropein aglycone. Our results support, and provide mechanistic insights into, the beneficial effects against Alzheimer-associated neurodegeneration of a polyphenol enriched in the extra virgin olive oil, a major component of the Mediterranean diet.

  17. Nitric oxide exerts protective effects against bleomycin-induced pulmonary fibrosis in mice

    PubMed Central

    2014-01-01

    Background Increased expression of nitric oxide synthase (NOS) and an increase in plasma nitrite plus nitrate (NOx) have been reported in patients with pulmonary fibrosis, suggesting that nitric oxide (NO) plays an important role in its development. However, the roles of the entire NO and NOS system in the pathogenesis of pulmonary fibrosis still remain to be fully elucidated. The aim of the present study is to clarify the roles of NO and the NOS system in pulmonary fibrosis by using the mice lacking all three NOS isoforms. Methods Wild-type, single NOS knockout and triple NOS knockout (n/i/eNOS−/−) mice were administered bleomycin (BLM) intraperitoneally at a dose of 8.0 mg/kg/day for 10 consecutive days. Two weeks after the end of the procedure, the fibrotic and inflammatory changes of the lung were evaluated. In addition, we evaluated the effects of long-term treatment with isosorbide dinitrate, a NO donor, on the n/i/eNOS−/− mice with BLM-induced pulmonary fibrosis. Results The histopathological findings, collagen content and the total cell number in bronchoalveolar lavage fluid were the most severe/highest in the n/i/eNOS−/− mice. Long-term treatment with the supplemental NO donor in n/i/eNOS−/− mice significantly prevented the progression of the histopathological findings and the increase of the collagen content in the lungs. Conclusions These results provide the first direct evidence that a lack of all three NOS isoforms led to a deterioration of pulmonary fibrosis in a BLM-treated murine model. We speculate that the entire endogenous NO and NOS system plays an important protective role in the pathogenesis of pulmonary fibrosis. PMID:25092105

  18. Parainfluenza Virus 5 Expressing the G Protein of Rabies Virus Protects Mice after Rabies Virus Infection

    PubMed Central

    Huang, Ying; Chen, Zhenhai; Huang, Junhua

    2014-01-01

    Rabies remains a major public health threat around the world. Once symptoms appear, there is no effective treatment to prevent death. In this work, we tested a recombinant parainfluenza virus 5 (PIV5) strain expressing the glycoprotein (G) of rabies (PIV5-G) as a therapy for rabies virus infection: we have found that PIV5-G protected mice as late as 6 days after rabies virus infection. PIV5-G is a promising vaccine for prevention and treatment of rabies virus infection. PMID:25552723

  19. Helminth protection against autoimmune diabetes in NOD mice is independent of a type 2 immune shift and requires TGFβ

    PubMed Central

    Hübner, Marc P; Shi, Yinghui; Torrero, Marina N; Mueller, Ellen; Larson, David; Soloviova, Kateryna; Gondorf, Fabian; Hoerauf, Achim; Killoran, Kristin E.; Stocker, J Thomas; Davies, Stephen J; Tarbell, Kristin V; Mitre, Edward

    2011-01-01

    Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient nonobese diabetic (NOD) mice and whether depletion or absence of regulatory T cells, IL-10, or TGFβ alters helminth-mediated protection. In contrast to IL-4-competent NOD mice, IL-4-deficient NOD mice failed to develop a type 2 shift in either cytokine or antibody production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4-deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4-deficient NOD mice were accompanied by increases in CD4+CD25+FoxP3+ regulatory T cell frequencies and numbers, respectively, and helminth infection increased proliferation of CD4+FoxP3+ cells. However, depletion of CD25+ cells in NOD mice or FoxP3+ T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGFβ, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity as helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGFβ. PMID:22174447

  20. Protective Effects of Platycodon grandiflorum Aqueous Extract on Thioacetamide-induced Fulminant Hepatic Failure in Mice

    PubMed Central

    Lim, Jong-Hwan; Kim, Tae-Won; Park, Sang-Jin; Song, In-Bae; Kim, Myoung-Seok; Kwon, Hyo-Jung; Cho, Eun-Sang; Son, Hwa-Young; Lee, Sang-Wook; Suh, Joo-Won; Kim, Jong-Woo; Yun, Hyo-In

    2011-01-01

    The aim of the present study was to evaluate the protective activity of aqueous extract from Platycodon grandiflorum (BC703) on thioacetamide (TA)-induced hepatotoxicity in mice. We found that BC703 significantly decreased mortality and the change in serum transaminase following TA administration. The group treated with BC703 at doses of 1, 5, and 10 mg/kg produced significant hepatoprotective effects against TA-induced liver damage by decreasing the activities of serum enzymes, nitric oxide and lipid peroxidation in dose-dependent manners. Histopathological studies further substantiated the protective effect of BC703. These results show the hepatoprotective activity of aqueous extract from Platycodon grandiflorum on thioacetamide-induced fulminant hepatic failure. PMID:22319234

  1. Protective effects of Ganoderma lucidum spore on cadmium hepatotoxicity in mice.

    PubMed

    Jin, Hai; Jin, Feng; Jin, Jia-Xing; Xu, Jie; Tao, Ting-Ting; Liu, Jie; Huang, Hou-Jin

    2013-02-01

    The medicinal fungus Ganoderma lucidum has been shown to have hepatoprotective effects. G. lucidum contains triterpenes and polysaccharides, and the Sporoderm-broken G. lucidum powder is particular beneficial. This study utilized G. lucidum spore to examine its effect on [Cd(II)]-induced hepatotoxicity in mice and the mechanism of the protection. Mice were pretreated with G. lucidum spore (0.1, 0.5, and 1.0 g/kg, po, for 7 days), and subsequently challenged with a hepatotoxic dose of Cd(II) (3.7 mg/kg, ip). Liver injury was evaluated 8h later. G. lucidum spore protected against Cd(II)-induced liver injury in a dose-dependent manner, as evidenced by serum alanine aminotransferase, aspartate aminotransferase and histopathology. To examine the mechanism of protection, subcellular distribution of Cd(II) was determined. G. lucidum spore decreased Cd(II) accumulation in hepatic nuclei, mitochondria, and microsomes, but increased Cd(II) distribution to the cytosol, where Cd(II) is sequestered by metallothionein, a protein against Cd(II) toxicity. Indeed, G. lucidum spore induced hepatic metallothionein-1 mRNA 8-fold, and also increased metallothionein protein as determined by the Cd(II)/hemoglobin assay. Cd(II)-induced oxidative stress was also decreased by G. lucidum spore, as evidenced by decreased formation of malondialdehyde. In summary, G. lucidum spore is effective in protection against Cd(II)-induced hepatotoxicity, and this effect is due, at least in part, to the induction of hepatic metallothionein to achieve beneficial effects.

  2. Mitochondrial apoptosis and BH3 mimetics

    PubMed Central

    2016-01-01

    The BCL2-selective BH3 mimetic venetoclax was recently approved for the treatment of relapsed, chromosome 17p-deleted chronic lymphocytic leukemia (CLL) and is undergoing extensive testing, alone and in combination, in lymphomas, acute leukemias, and solid tumors. Here we summarize recent advances in understanding of the biology of BCL2 family members that shed light on the action of BH3 mimetics, review preclinical and clinical studies leading to the regulatory approval of venetoclax, and discuss future investigation of this new class of antineoplastic agent. PMID:27990281

  3. Mitochondrial apoptosis and BH3 mimetics.

    PubMed

    Dai, Haiming; Meng, X Wei; Kaufmann, Scott H

    2016-01-01

    The BCL2-selective BH3 mimetic venetoclax was recently approved for the treatment of relapsed, chromosome 17p-deleted chronic lymphocytic leukemia (CLL) and is undergoing extensive testing, alone and in combination, in lymphomas, acute leukemias, and solid tumors. Here we summarize recent advances in understanding of the biology of BCL2 family members that shed light on the action of BH3 mimetics, review preclinical and clinical studies leading to the regulatory approval of venetoclax, and discuss future investigation of this new class of antineoplastic agent.

  4. Fluoxetine Protection in Decompression Sickness in Mice is Enhanced by Blocking TREK-1 Potassium Channel with the "spadin" Antidepressant.

    PubMed

    Vallée, Nicolas; Lambrechts, Kate; De Maistre, Sébastien; Royal, Perrine; Mazella, Jean; Borsotto, Marc; Heurteaux, Catherine; Abraini, Jacques; Risso, Jean-Jacques; Blatteau, Jean-Eric

    2016-01-01

    In mice, disseminated coagulation, inflammation, and ischemia induce neurological damage that can lead to death. These symptoms result from circulating bubbles generated by a pathogenic decompression. Acute fluoxetine treatment or the presence of the TREK-1 potassium channel increases the survival rate when mice are subjected to an experimental dive/decompression protocol. This is a paradox because fluoxetine is a blocker of TREK-1 channels. First, we studied the effects of an acute dose of fluoxetine (50 mg/kg) in wild-type (WT) and TREK-1 deficient mice (knockout homozygous KO and heterozygous HET). Then, we combined the same fluoxetine treatment with a 5-day treatment protocol with spadin, in order to specifically block TREK-1 activity (KO-like mice). KO and KO-like mice were regarded as antidepressed models. In total, 167 mice (45 WTcont 46 WTflux 30 HETflux and 46 KOflux) constituting the flux-pool and 113 supplementary mice (27 KO-like 24 WTflux2 24 KO-likeflux 21 WTcont2 17 WTno dive) constituting the spad-pool were included in this study. Only 7% of KO-TREK-1 treated with fluoxetine (KOflux) and 4% of mice treated with both spadin and fluoxetine (KO-likeflux) died from decompression sickness (DCS) symptoms. These values are much lower than those of WT control (62%) or KO-like mice (41%). After the decompression protocol, mice showed significant consumption of their circulating platelets and leukocytes. Spadin antidepressed mice were more likely to exhibit DCS. Nevertheless, mice which had both blocked TREK-1 channels and fluoxetine treatment were better protected against DCS. We conclude that the protective effect of such an acute dose of fluoxetine is enhanced when TREK-1 is inhibited. We confirmed that antidepressed models may have worse DCS outcomes, but concomitant fluoxetine treatment not only decreased DCS severity but increased the survival rate.

  5. A CpG oligonucleotide can protect mice from a low aerosol challenge dose of Burkholderia mallei.

    PubMed

    Waag, David M; McCluskie, Michael J; Zhang, Ningli; Krieg, Arthur M

    2006-03-01

    Treatment with an oligodeoxynucleotide (ODN) containing CPG motifs (CpG ODN 7909) was found to protect BALB/c mice from lung infection or death after aerosol challenge with Burkholderia mallei. Protection was associated with enhanced levels of gamma interferon (IFN-gamma)-inducible protein 10, interleukin-12 (IL-12), IFN-gamma, and IL-6. Preexposure therapy with CpG ODNs may protect victims of a biological attack from glanders.

  6. Protective Effects of Luteolin on Lipopolysaccharide-Induced Acute Renal Injury in Mice

    PubMed Central

    Xin, Shao-bin; Yan, Hao; Ma, Jing; Sun, Qiang; Shen, Li

    2016-01-01

    Background Sepsis can cause serious acute kidney injury in bacterium-infected patients, especially in intensive care patients. Luteolin, a bioactive flavonoid, has renal protection and anti-inflammatory effects. This study aimed to investigate the effect and underlying mechanism of luteolin in attenuating lipopolysaccharide (LPS)-induced renal injury. Material/Methods ICR mice were treated with LPS (25 mg/kg) with or without luteolin pre-treatment (40 mg/kg for three days). The renal function, histological changes, degree of oxidative stress, and tubular apoptosis in these mice were examined. The effects of luteolin on LPS-induced expression of renal tumor necrosis factor-α (TNF-α), NF-κB, MCP-1, ICAM-1, and cleaved caspase-3 were evaluated. Results LPS resulted in rapid renal damage of mice, increased level of blood urea nitrogen (BUN), and serum creatinine (Scr), tubular necrosis, and increased oxidative stress, whereas luteolin pre-treatment could attenuate this renal damage and improve the renal functions significantly. Treatment with LPS increased TNF-α, NF-κB, IL-1β, cleaved caspase-3, MCP-1, and ICAM-1 expression, while these disturbed expressions were reversed by luteolin pre-treatment. Conclusions These results indicate that luteolin ameliorates LPS-mediated nephrotoxicity via improving renal oxidant status, decreasing NF-κB activation and inflammatory and apoptosis factors, and then disturbing the expression of apoptosis-related proteins. PMID:28029146

  7. Characterization of Outer Membrane Vesicles from Brucella melitensis and Protection Induced in Mice

    PubMed Central

    Avila-Calderón, Eric Daniel; Lopez-Merino, Ahidé; Jain, Neeta; Peralta, Humberto; López-Villegas, Edgar Oliver; Sriranganathan, Nammalwar; Boyle, Stephen M.; Witonsky, Sharon; Contreras-Rodríguez, Araceli

    2012-01-01

    The outer membrane vesicles (OMVs) from smooth B. melitensis 16 M and a derived rough mutant, VTRM1 strain, were purified and characterized with respect to protein content and induction of immune responses in mice. Proteomic analysis showed 29 proteins present in OMVs from B. melitensis 16 M; some of them are well-known Brucella immunogens such as SOD, GroES, Omp31, Omp25, Omp19, bp26, and Omp16. OMVs from a rough VTRM1 induced significantly higher expression of IL-12, TNFα, and IFNγ genes in bone marrow dendritic cells than OMVs from smooth strain 16 M. Relative to saline control group, mice immunized intramuscularly with rough and smooth OMVs were protected from challenge with virulent strain B. melitensis 16 M just as well as the group immunized with live strain B. melitensis Rev1 (P < 0.005). Additionally, the levels of serum IgG2a increased in mice vaccinated with OMVs from rough strain VTRM1 consistent with the induction of cell-mediated immunity. PMID:22242036

  8. Protective Effect of Royal Jelly on In Vitro Fertilization (IVF) in Male Mice Treated with Oxymetholone

    PubMed Central

    Zahmatkesh, Ensieh; Najafi, Gholamreza; Nejati, Vahid

    2015-01-01

    Objective This study aimed to investigate the effects of royal jelly (RJ) on catalase, total antioxidant capacity and embryo development in adult mice treated with oxymetholone (OXM). Materials and Methods In this exprimental study, 32 male and 96 female adult Naval Medical Research Institute (NMRI) mice (7-9 weeks of age) with a ratio of 1:3 for fertili- zation purposes were randomly divided into 4 groups as follows: i. Control group (n=8) receiving 0.1 ml/mice saline daily by gavage for 30 day, ii. RJ group (n=8) treated with RJ at a dose of 100 mg/kg daily by gavage for 30 days, iii. OXM group (n=8) receiving OXM at the dose of 5 mg/kg daily by gavage for 30 days and iv. RJ+OXM group (n=8) receiving RJ at the dose of 100 mg/kg daily by gavage concomitant with 100 mg/kg OXM adminis- tration for 30 days. Results Analysis revealed a significant reduction in catalase, total antioxidant, as well as embryo development in OXM group (P<0.05). However, RJ group showed a salient recovery in the all of the above mentioned parameters and embryo toxicity. Conclusion The results of this study indicated a partially protective effect of RJ against OXM-induced embryo toxicity. PMID:26464831

  9. Myristica fragrans seed extract protects against dextran sulfate sodium-induced colitis in mice.

    PubMed

    Kim, Hyojung; Bu, Youngmin; Lee, Beom-Joon; Bae, Jinhyun; Park, Sujin; Kim, Jinsung; Lee, Kyungjin; Cha, Jae-Myung; Ryu, Bongha; Ko, Seok-Jae; Han, Gajin; Min, Byungil; Park, Jae-Woo

    2013-10-01

    Nutmeg (seed of Myristica fragrans [MF]) is one of the most commonly used spices in the world and also a well-known herb for the treatment of various intestinal diseases, including colitis in traditional Korean medicine. The purpose of the current study was to investigate whether water extract of MF (MFE) can protect against dextran sulfate sodium (DSS) induced colitis in a mouse model. Colitis was induced by 5% DSS in balb/c mice. MFE (100, 300 or 1000 mg/kg) was orally administered to the mice twice a day for 7 days. Body weight, colon length, clinical score, and histological score were assessed to determine the effects on colitis. Proinflammatory cytokines (interferon-γ, tumor necrosis factor-α, interleukin [IL]-1β, and IL-6) were measured to investigate the mechanisms of action. MFE dose dependently inhibited the colon shortening and histological damage to the colon. However, it did not prevent weight loss. MFE also inhibited proinflammatory cytokines. The current results suggest that MFE ameliorates DSS-induced colitis in mice by inhibiting inflammatory cytokines. Further investigation, including the exact mechanisms is needed.

  10. Inactivated and live, attenuated influenza vaccines protect mice against influenza: Streptococcus pyogenes super-infections.

    PubMed

    Chaussee, Michael S; Sandbulte, Heather R; Schuneman, Margaret J; Depaula, Frank P; Addengast, Leslie A; Schlenker, Evelyn H; Huber, Victor C

    2011-05-12

    Mortality associated with influenza virus super-infections is frequently due to secondary bacterial complications. To date, super-infections with Streptococcus pyogenes have been studied less extensively than those associated with Streptococcus pneumoniae. This is significant because a vaccine for S. pyogenes is not clinically available, leaving vaccination against influenza virus as our only means for preventing these super-infections. In this study, we directly compared immunity induced by two types of influenza vaccine, either inactivated influenza virus (IIV) or live, attenuated influenza virus (LAIV), for the ability to prevent super-infections. Our data demonstrate that both IIV and LAIV vaccines induce similar levels of serum antibodies, and that LAIV alone induces IgA expression at mucosal surfaces. Upon super-infection, both vaccines have the ability to limit the induction of pro-inflammatory cytokines within the lung, including IFN-γ which has been shown to contribute to mortality in previous models of super-infection. Limiting expression of these pro-inflammatory cytokines within the lungs subsequently limits recruitment of macrophages and neutrophils to pulmonary surfaces, and ultimately protects both IIV- and LAIV-vaccinated mice from mortality. Despite their overall survival, both IIV- and LAIV-vaccinated mice demonstrated levels of bacteria within the lung tissue that are similar to those seen in unvaccinated mice. Thus, influenza virus:bacteria super-infections can be limited by vaccine-induced immunity against influenza virus, but the ability to prevent morbidity is not complete.

  11. Black Soybean Extract Protects Against TMT-Induced Cognitive Defects in Mice

    PubMed Central

    Jeong, Ji Hee; Jo, Yu Na; Kim, Hyeon Ju; Jin, Dong Eun; Kim, Dae-Ok

    2014-01-01

    Abstract To find a neuroactive compound with a potent inhibitory effect on acetylcholinesterase (AChE) and in vivo anti-amnesic activity from natural resources, we evaluated anthocyanins and nonanthocyanins from black soybean extract. Nonanthocyanins from black soybean extract were the most potent and dose-dependent AChE inhibitors. Intracellular reactive oxygen species accumulation resulting from H2O2 treatment was significantly decreased compared with cells treated with H2O2 only. Nonanthocyanins were also neuroprotective against H2O2 treated neurotoxicity by 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay. Finally, nonanthocyanins from black soybean in the preadministration group attenuated trimethyltin (TMT)-induced memory injury in both in vivo tests. AChE, prepared from mice brain tissues, was inhibited by nonanthocyanins from black soybean in a dose-dependent manner. Malondialdehyde generation in the brain homogenates of mice treated with nonanthocyanins from black soybean was decreased. We concluded that nonanthocyanins from black soybean had an efficacious in vitro AChE inhibitory activity, and protected against H2O2-induced neurotoxicity. In addition, our findings suggest that nonanthocyanins from black soybean may improve the TMT-induced learning and memory deficit because of AChE inhibition of mice brain tissue. Consequently, these results demonstrate that the nonanthocyanins from black soybean could possess a wide range of beneficial activities for neurodegenerative disorders. PMID:24456358

  12. Polychlorinated biphenyls induce proinflammatory cytokine release and dopaminergic dysfunction: protection in interleukin-6 knockout mice.

    PubMed

    Goodwill, Meleik Hebert; Lawrence, David A; Seegal, Richard F

    2007-02-01

    Proinflammatory cytokines are not only important mediators of brain development, but also pose an increased risk for neurodegeneration following exposure to neurotoxicants or trauma. We have used the ubiquitous environmental and occupational neurotoxicant polychlorinated biphenyls (PCBs) to investigate the putative role of inflammatory agents in mediating processes involved in basal ganglia dysfunctions. PCBs induced inflammatory responses in C57BL/6 adult male mice, significantly elevating serum levels of IL-6 (31%), IL-1beta (71%) and TNF-alpha (22%) and significantly reducing striatal dopamine (DA, 21%), tyrosine hydroxylase (TH, 26%), dopamine transporter (DAT, 39%), and synaptophysin (29%) concentrations. We also exposed mice deficient in the proinflammatory cytokine interleukin-6 (IL-6-/-) to PCBs, to explore the role of this specific cytokine in mediating PCB-induced DA neurodegeneration. Not only did the PCB-treated IL-6-/- mice exhibit a decrease in serum levels of IL-1beta and TNF-alpha, but they were also protected from PCB-induced striatal dopaminergic dysfunction, displaying no signs of toxicant-induced reductions in DA levels, or TH, DAT or synaptophysin expression. Taken together, these results suggest that: (1) PCB exposure results in a peripheral inflammatory response associated with striatal terminal degeneration; and (2) the absence of IL-6 prevents PCB-induced dopaminergic losses in the striatum.

  13. Protective effect of Ginkgo biloba L. leaf extract against glyphosate toxicity in Swiss albino mice.

    PubMed

    Cavuşoğlu, Kültiğin; Yapar, Kürşad; Oruç, Ertan; Yalçın, Emine

    2011-10-01

    The aim of the present study was to investigate the protective role of Ginkgo biloba L. leaf extract against the active agent of Roundup® herbicide (Monsanto, Creve Coeur, MO, USA). The Swiss Albino mice were randomly divided into six groups, with each group consisting of six animals: Group I (control) received an intraperitoneal injection of dimethyl sulfoxide (0.2 mL, once only), Group II received glyphosate at a dose of 50 mg/kg of body weight, Group III received G. biloba at a dose of 50 mg/kg of body weight, Group IV received G. biloba at a dose of 150 mg/kg of body weight, Group V received G. biloba (50 mg/kg of body weight) and glyphosate (50 mg/kg of body weight), and Group VI received G. biloba (150 mg/kg of body weight) and glyphosate (50 mg/kg of body weight). The single dose of glyphosate was given intraperitoneally. Animals from all the groups were sacrificed at the end of 72 hours, and their blood, bone marrow, and liver and kidney tissues were analyzed for aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), creatinine, malondialdehyde (MDA), and glutathione (GSH) levels and the presence of micronucleus (MN), chromosomal aberrations (CAs), and pathological damages. The results indicated that serum AST, ALT, BUN, and creatinine levels significantly increased in mice treated with glyphosate alone compared with the other groups (P<.05). Besides, glyphosate-induced oxidative damage caused a significant decrease in GSH levels and a significant increase in MDA levels of the liver and kidney tissues. Moreover, glyphosate alone-treated mice presented higher frequencies of CAs, MNs, and abnormal metaphases compared with the controls (P<.05). These mice also displayed a lower mean mitotic index than the controls (P<.05). Treatment with G. biloba produced amelioration in indices of hepatotoxicity, nephrotoxicity, lipid peroxidation, and genotoxicity relative to Group II. Each dose of G. biloba provided significant

  14. The Protective Effect of Selenium on Chronic Zearalenone-Induced Reproductive System Damage in Male Mice.

    PubMed

    Long, Miao; Yang, Shuhua; Wang, Yuan; Li, Peng; Zhang, Yi; Dong, Shuang; Chen, Xinliang; Guo, Jiayi; He, Jianbin; Gao, Zenggui; Wang, Jun

    2016-12-07

    This study aims to explore the protective effect of selenium (Se) on chronic zearalenone (ZEN)-induced reproductive system damage in male mice and the possible protective molecular mechanism against this. The chronic ZEN-induced injury mouse model was established with the continuous intragastric administration of 40 mg/kg body mass (B.M.) ZEN for 28 days. Then, interventions with different doses (0.1, 0.2, and 0.4 mg/kg B.M.) of Se were conducted on mice to analyse the changes in organ indexes of epididymis and testis, antioxidant capability of testis, serum level of testosterone, sperm concentration and motility parameters, and the expression levels of apoptosis-associated genes and blood testis barrier- (BTB) related genes. Our results showed that Se could greatly improve the ZEN-induced decrease of epididymis indexes and testis indexes. Results also showed that the decrease in sperm concentration, sperm normality rate, and sperm motility parameters, including percentage of motile sperm (motile), tropism percentage (progressive) and sperm average path velocity (VAP), caused by ZEN were elevated upon administration of the higher dose (0.4 mg/kg) and intermediate dose (0.2 mg/kg) of Se. Selenium also significantly reduced the content of malondialdehyde (MDA) but enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the testis tissue. Further research demonstrated that ZEN increased the level of mRNA expression of BCL2-associated X protein (Bax) and caspase 3 (Casp3), decreased the level of mRNA expression of B cell leukemia/lymphoma 2 (Bcl2), vimentin (Vim) and cadherin 2 (Cdh2), whereas the co-administration of Se reversed these gene expression levels. Our results indicated that high levels of Se could protect against reproductive system damage in male mice caused by ZEN and the mechanism might such be that Se improved mice antioxidant ability, inhibited reproductive cell apoptosis, and increased the decrease

  15. Sublingual vaccination with influenza virus protects mice against lethal viral infection.

    PubMed

    Song, Joo-Hye; Nguyen, Huan H; Cuburu, Nicolas; Horimoto, Taisuke; Ko, Sung-Youl; Park, Se-Ho; Czerkinsky, Cecil; Kweon, Mi-Na

    2008-02-05

    We assessed whether the sublingual (s.l.) route would be an effective means of delivering vaccines against influenza virus in mice by using either formalin-inactivated or live influenza A/PR/8 virus (H1N1). Sublingual administration of inactivated influenza virus given on two occasions induced both systemic and mucosal antibody responses and conferred protection against a lethal intranasal (i.n.) challenge with influenza virus. Coadministration of a mucosal adjuvant (mCTA-LTB) enhanced these responses and resulted in complete protection against respiratory viral challenge. In addition, s.l. administration of formalin-inactivated A/PR/8 plus mCTA-LTB induced systemic expansion of IFN-gamma-secreting T cells and virus-specific cytotoxic T lymphocyte responses. Importantly, a single s.l. administration of live A/PR/8 virus was not pathogenic and induced protection mediated by both acquired and innate immunity. Moreover, s.l. administration of live A/PR/8 virus conferred heterosubtypic protection against respiratory challenge with H3N2 virus. Unlike the i.n. route, the A/PR/8 virus, whether live or inactivated, did not migrate to or replicate in the CNS after s.l. administration. Based on these promising findings, we propose that the s.l. mucosal route offers an attractive alternative to mucosal routes for administering influenza vaccines.

  16. Cross-protection induced by Japanese encephalitis vaccines against different genotypes of Dengue viruses in mice.

    PubMed

    Li, Jieqiong; Gao, Na; Fan, Dongying; Chen, Hui; Sheng, Ziyang; Fu, Shihong; Liang, Guodong; An, Jing

    2016-01-28

    Dengue viruses (DENVs) and Japanese encephalitis virus (JEV) are closely related mosquito-borne flaviviruses that cause very high global disease burdens. Although cross-reactivity and cross-protection within flaviviruses have been demonstrated, the effect of JEV vaccination on susceptibility to DENV infection has not been well elucidated. In this study, we found that vaccination with the JEV inactivated vaccine (INV) and live attenuated vaccine (LAV) could induce cross-immune responses and cross-protection against DENV1-4 in mice. Despite the theoretical risk of immune enhancement, no increased mortality was observed in our mouse model. Additionally, low but consistently detectable cross-neutralizing antibodies against DENV2 and DENV3 were also observed in the sera of JEV vaccine-immunized human donors. The results suggested that both JEV-LAV and JEV-INV could elicit strong cross-immunity and protection against DENVs, indicating that inoculation with JEV vaccines may influence the distribution of DENVs in co-circulated areas and that the cross-protection induced by JEV vaccines against DENVs might provide important information in terms of DENV prevention.

  17. Immunization of Mice with Anthrax Protective Antigen Limits Cardiotoxicity but Not Hepatotoxicity Following Lethal Toxin Challenge.

    PubMed

    Devera, T Scott; Prusator, Dawn K; Joshi, Sunil K; Ballard, Jimmy D; Lang, Mark L

    2015-06-25

    Protective immunity against anthrax is inferred from measurement of vaccine antigen-specific neutralizing antibody titers in serum samples. In animal models, in vivo challenges with toxin and/or spores can also be performed. However, neither of these approaches considers toxin-induced damage to specific organ systems. It is therefore important to determine to what extent anthrax vaccines and existing or candidate adjuvants can provide organ-specific protection against intoxication. We therefore compared the ability of Alum, CpG DNA and the CD1d ligand α-galactosylceramide (αGC) to enhance protective antigen-specific antibody titers, to protect mice against challenge with lethal toxin, and to block cardiotoxicity and hepatotoxicity. By measurement of serum cardiac Troponin I (cTnI), and hepatic alanine aminotransferase (ALT), and aspartate aminotransferase (AST), it was apparent that neither vaccine modality prevented hepatic intoxication, despite high Ab titers and ultimate survival of the subject. In contrast, cardiotoxicity was greatly diminished by prior immunization. This shows that a vaccine that confers survival following toxin exposure may still have an associated morbidity. We propose that organ-specific intoxication should be monitored routinely during research into new vaccine modalities.

  18. Cross-protection induced by Japanese encephalitis vaccines against different genotypes of Dengue viruses in mice

    PubMed Central

    Li, Jieqiong; Gao, Na; Fan, Dongying; Chen, Hui; Sheng, Ziyang; Fu, Shihong; Liang, Guodong; An, Jing

    2016-01-01

    Dengue viruses (DENVs) and Japanese encephalitis virus (JEV) are closely related mosquito-borne flaviviruses that cause very high global disease burdens. Although cross-reactivity and cross-protection within flaviviruses have been demonstrated, the effect of JEV vaccination on susceptibility to DENV infection has not been well elucidated. In this study, we found that vaccination with the JEV inactivated vaccine (INV) and live attenuated vaccine (LAV) could induce cross-immune responses and cross-protection against DENV1-4 in mice. Despite the theoretical risk of immune enhancement, no increased mortality was observed in our mouse model. Additionally, low but consistently detectable cross-neutralizing antibodies against DENV2 and DENV3 were also observed in the sera of JEV vaccine-immunized human donors. The results suggested that both JEV-LAV and JEV-INV could elicit strong cross-immunity and protection against DENVs, indicating that inoculation with JEV vaccines may influence the distribution of DENVs in co-circulated areas and that the cross-protection induced by JEV vaccines against DENVs might provide important information in terms of DENV prevention. PMID:26818736

  19. Rapid CD8+ Function Is Critical for Protection of Neonatal Mice from an Extracellular Bacterial Enteropathogen

    PubMed Central

    Siefker, David T.; Adkins, Becky

    2017-01-01

    Both human and murine neonates are characteristically highly susceptible to bacterial infections. However, we recently discovered that neonatal mice are surprisingly highly resistant to oral infection with Yersinia enterocolitica. This resistance was linked with activation of both innate and adaptive responses, involving innate phagocytes, CD4+ cells, and B cells. We have now extended these studies and found that CD8+ cells also contribute importantly to neonatal protection from Y. enterocolitica. Strikingly, neonatal CD8+ cells in the mesenteric lymph nodes (MLN) are rapidly mobilized, increasing in proportion, number, and IFNγ production as early as 48 h post infection. This early activation appears to be critical for protection since B2m−/− neonates are significantly more susceptible than wt neonates to primary Y. enterocolitica infection. In the absence of CD8+ cells, Y. enterocolitica rapidly disseminated to peripheral tissues. Within 48 h of infection, both the spleens and livers of B2m−/−, but not wt, neonates became heavily colonized, likely leading to their deaths from sepsis. In contrast to primary infection, CD8+ cells were dispensable for the generation of immunological memory protective against secondary infection. These results indicate that CD8+ cells in the neonatal MLN contribute importantly to protection against an extracellular bacterial enteropathogen but, notably, they appear to act during the early innate phase of the immune response. PMID:28119902

  20. Protective effects of Fructus sophorae extract on collagen-induced arthritis in BALB/c mice

    PubMed Central

    Han, Hyoung-Min; Hong, Su-Hyun; Park, Heung-Sik; Jung, Jae-Chul; Kim, Jong-Sik; Lee, Yong-Tae; Lee, Eun-Woo; Choi, Yung-Hyun; Kim, Byung-Woo; Kim, Cheol-Min; Kang, Kyung-Hwa

    2017-01-01

    Styphnolobium japonicum (L.) is utilized in Korean medicine for the treatment of various inflammatory diseases. The aim of the present study was to explore the effects of Fructus sophorae extract (FSE) isolated from the dried ripe fruit of S. japonicum (L.) on the development of type II collagen-induced arthritis (CIA) in BALB/c mice. The CIA mice were orally administered FSE or saline daily for 2 weeks. The incidence and severity of disease and the inflammatory response in the serum and the joint tissues were assessed. Macroscopic and histological investigation indicated that FSE protected against CIA development. FSE was associated with a significant reduction in the levels of total immunoglobulin G2a and proinflammatory cytokines and mediators in the serum. In addition, FSE suppressed the gene expression levels of proinflammatory cytokines and mediators, the mediator of osteoclastic bone remodeling, the receptor activator of nuclear factor κ-B ligand and matrix metalloproteinases in the joint tissues. The present results suggest that FSE may protect against inflammation and bone damage, and would be a valuable candidate for further investigation as a novel anti-arthritic agent. PMID:28123483

  1. Protective effect of spermine against pentylenetetrazole kindling epilepsy induced comorbidities in mice.

    PubMed

    Kumar, Mandeep; Kumar, Puneet

    2017-02-14

    Nitric oxide (NO), an important intracellular signaling molecule is involved in modulation of neuronal transmission. The NO level increases during epileptic activity in animal models of epilepsy. However, its role in epileptic activity remains controversial. Spermine is an endogenous polyamine; possesses anti-oxidant property and has ability to modulate ion channels and NO synthase activity. Therefore, the present study was designed to investigate the role of NO pathway in the neuroprotective effect of spermine, in Pentylenetetrazol (PTZ) induced kindling epilepsy in mice. PTZ (35mg/kg; intraperitoneal, i.p.) was administered on every alternate day up to 29days and challenge test was performed on 33rd day. From 15th day, spermine (5 and 10mg/kg; i.p.), L-NAME (10mg/kg; i.p), l-Arginine (50mg/kg; i.p) and sodium valproate (400mg/kg; i.p.) were administered up to 33rd day. Animals were sacrificed on 34th day for estimation of biochemical and neurotransmitters. Pretreatment with spermine, considerably, reversed the PTZ induced alterations. Further, pretreatment of L-NAME and l-Arginine with 5 and 10mg/kg; i.p. spermine, respectively, leads to an increase and decrease in its protective effects. The present study suggests the involvement of NO pathway in the protective effect of spermine against PTZ-induced kindling epilepsy in mice.

  2. Immunogenicity and protective efficacy of DNA vaccine against visceral leishmaniasis in BALB/c mice

    PubMed Central

    Kaur, Sukhbir; Kaur, Tejinder; Joshi, Jyoti

    2016-01-01

    Abstract The current study was designed to examine the protective efficacy of DNA vaccines based on gp63 and Hsp70 against murine visceral leishmaniasis. Inbred BALB/c mice were immunized subcutaneously twice at an interval of three weeks with pcDNA3.1(+) encoding T cell epitopes of gp63 and Hsp70 individually and in combination. Animals were challenged intracardially with 107 promastigotes of Leishmania donovani 10 days post immunization and sacrificed 1, 2 and 3 months post challenge. The immunized animals revealed a significant reduction (P < 0.05) in splenic and hepatic parasite burden as compared to the infected controls. Maximum reduction in parasite load (P < 0.05) was observed in animals treated with a combination of pcDNA/gp63 and pcDNA/Hsp70. These animals also showed heightened DTH response, increased IgG2a, elevated Th1 cytokines (IFN-γ and IL-2) and reduced IgG1 and IL-10 levels. Thus, mice immunized with the cocktail vaccine exhibited significantly greater protection in comparison to those immunized with individual antigens. PMID:27533939

  3. Cerebrosides from Sea Cucumber Protect Against Oxidative Stress in SAMP8 Mice and PC12 Cells.

    PubMed

    Che, Hongxia; Du, Lei; Cong, Peixu; Tao, Suyuan; Ding, Ning; Wu, Fengjuan; Xue, Changhu; Xu, Jie; Wang, Yuming

    2017-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder. Emerging evidence implicates β-amyloid (Aβ) plays a critical role in the progression of AD. In this study, we investigated the protective effect of cerebrosides obtained from sea cucumber against senescence-accelerated mouse prone 8 (SAMP8) mice in vivo. We also studied the effect of cerebrosides on Aβ-induced cytotoxicity on the rat pheochromocytoma cell (PC12) and the underlying molecular mechanisms. Cerebrosides ameliorated learning and memory deficits and the Aβ accumulation in demented mice, decreased the content of malondialdehyde (MDA), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG), 8-hydroxy-2'-deoxyguanosine (8-oxo-G), and nitric oxide (NO), and enhanced the superoxide dismutase (SOD) activity significantly. The neuroprotective effect of sea cucumber cerebrosides (SCC) was also verified in vitro: the cerebrosides increased the survival rate of PC12 cells, recovered the cellular morphology, downregulated the protein levels of Caspase-9, cleaved Caspase-3, total Caspase-3, and Bax, and upregulated the protein level of Bcl-2, revealing that cerebrosides could inhibit Aβ-induced cell apoptosis. The results showed the protective effect of SCC was regulated by the mitochondria-dependent apoptotic pathway. Our results provide a new approach to developing the marine organisms as functional foods for neuroprotection.

  4. Neurogenic differentiation factor NeuroD confers protection against radiation-induced intestinal injury in mice

    PubMed Central

    Li, Ming; Du, Aonan; Xu, Jing; Ma, Yanchao; Cao, Han; Yang, Chao; Yang, Xiao-Dong; Xing, Chun-Gen; Chen, Ming; Zhu, Wei; Zhang, Shuyu; Cao, Jianping

    2016-01-01

    The gastrointestinal tract, especially the small intestine, is particularly sensitive to radiation, and is prone to radiation-induced injury as a result. Neurogenic differentiation factor (NeuroD) is an evolutionarily-conserved basic helix-loop-helix (bHLH) transcription factor. NeuroD contains a protein transduction domain (PTD), which allows it to be exogenously delivered across the membrane of mammalian cells, whereupon its transcription activity can be unleashed. Whether NeuroD has therapeutic effects for radiation-induced injury remains unclear. In the present study, we prepared a NeuroD-EGFP recombinant protein, and explored its protective effects on the survival and intestinal damage induced by ionizing radiation. Our results showed that NeuroD-EGFP could be transduced into small intestine epithelial cells and tissues. NeuroD-EGFP administration significantly increased overall survival of mice exposed to lethal total body irradiation (TBI). This recombinant NeuroD also reduced radiation-induced intestinal mucosal injury and apoptosis, and improved crypt survival. Expression profiling of NeuroD-EGFP-treated mice revealed upregulation of tissue inhibitor of metalloproteinase 1 (TIMP-1), a known inhibitor of apoptosis in mammalian cells. In conclusion, NeuroD confers protection against radiation-induced intestinal injury, and provides a novel therapeutic clinical option for the prevention of intestinal side effects of radiotherapy and the treatment of victims of incidental exposure. PMID:27436572

  5. Oral vaccination with a liposome-encapsulated influenza DNA vaccine protects mice against respiratory challenge infection.

    PubMed

    Liu, Jing; Wu, Jianqi; Wang, Bing; Zeng, Sheng; Qi, Feifei; Lu, Changlong; Kimura, Yoshinobu; Liu, Beixing

    2014-05-01

    It is well accepted that vaccination by oral administration has many advantages over injected parenteral immunization. The present study focuses on whether oral vaccination with a DNA vaccine could induce protective immunity against respiratory challenge infection. The M1 gene of influenza A virus was used to construct DNA vaccine using pcDNA 3.1(+) plasmid, a eukaryotic expression vector. The cationic liposomes were used to deliver the constructed DNA vaccine. In vitro and in vivo expression of M1 gene was observed in the cell line and in the intestine of orally vaccinated C57BL/6 mice, respectively. It became clear that this type of oral DNA vaccination was capable of inducing both humoral and cellular immune responses, together with an augmentation of IFN-γ production. In addition, oral vaccination with liposome-encapsulated DNA vaccine could protect the mice against respiratory challenge infection. These results suggest that gastrointestinal tract, a constituent member of the common mucosal immune system, is a potent candidate applicable as a DNA vaccine route against virus respiratory diseases.

  6. Mechanism underlying mitochondrial protection of asiatic acid against hepatotoxicity in mice.

    PubMed

    Gao, Jing; Chen, Jin; Tang, Xinhui; Pan, Liya; Fang, Feng; Xu, Lizhi; Zhao, Xiaoning; Xu, Qiang

    2006-02-01

    Asiatic acid (AA) is one of the triterpenoid components of Terminalia catappa L., which has antioxidative, anti-inflammatory and hepatoprotective activity. This research focused on the mitochondrial protection of AA against acute liver injury induced by lipopolysaccharide (LPS) and D-galactosamine (D-GalN) in mice. It was found that pretreatment with 25, 50 or 100 mg kg(-1) AA significantly blocked the LPS + D-GalN-induced increase in both serum aspartate aminotransferase (sAST) and serum alanine aminotransferase (sALT) levels, which was confirmed by ultrastructural observation under an electron microscope, showing improved nuclear condensation, ameliorated mitochondrion proliferation and less lipid deposition. Meanwhile, different doses of AA could decrease both the transcription and the translation level of voltage-dependent anion channels (VDACs), the most important mitochondrial PTP component protein, and block the translocation of cytochrome c from mitochondria to cytosol. On the other hand, pre-incubation with 25, 50 and 100 microg mL(-1) AA inhibited the Ca(2+)-induced mitochondrial permeability transition (MPT), including mitochondrial swelling, membrane potential dissipation and releasing of matrix Ca(2+) in liver mitochondria separated from normal mice, indicating the direct role of AA on mitochondria. Collectively, the above data suggest that AA could protect liver from damage and the mechanism might be related to up-regulating mitochondrial VDACs and inhibiting the process of MPT.

  7. Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice.

    PubMed

    Lin, Chia-Yu; Lin, Chia-Yun; Yin, Mei-Chin

    2012-09-01

    This study analyzed the content of phenolic acids and flavonoids in extracts of guava fruit (Psidium guajava L.), and examined the renal protective effects of guava aqueous extract (GAE) and ethanol extract (GEE) in diabetic mice. GAE had more caffeic acid, myricetin, and quercetin; and GEE had more cinnamic, coumaric and ferulic acids. GAE or GEE at 1 and 2 % was supplied in diet for 12 weeks. GAE or GEE intake at 2 % significantly reduced glucose and blood urea nitrogen levels, increased insulin level in plasma of diabetic mice (p < 0.05). GAE or GEE treatments dose-dependently reserved glutathione content, retained activity of catalase and glutathione peroxidase, and decreased reactive oxygen species, interleukin (IL)-6, tumor necrosis factor-α and IL-1β levels in kidney (p < 0.05). GAE and GEE treatments at 2 % significantly declined renal N (ε)-(carboxymethyl)lysine, pentosidine and fructose levels (p < 0.05), and suppressed renal activity of aldose reductase (p < 0.05). These findings support that guava fruit could protect kidney against diabetic progression via its anti-oxidative, anti-inflammatory and anti-glycative effects.

  8. Protective Effects of Red Guava on Inflammation and Oxidative Stress in Streptozotocin-Induced Diabetic Mice.

    PubMed

    Li, Pei-Ying; Hsu, Cheng-Chin; Yin, Mei-Chin; Kuo, Yueh-Hsiung; Tang, Feng-Yao; Chao, Che-Yi

    2015-12-12

    Diabetes is an important chronic disease and the 4th leading cause of death in Taiwan. Hyperglycemia-induced oxidative and inflammatory damage are the main causes of chronic complications in diabetic patients. The red guava (red-fleshed guava cultivar of Psidium guajava L.) is a tropical fruit belonging to the Myrtaceae family and an important commercial crop in Taiwan. In this study, the protective effects of a diet containing red guava on inflammation and oxidative stress in streptozotocin (STZ)-induced diabetic mice were examined. The experimental group was divided into seven subgroups: normal (N), diabetes mellitus (DM), diabetes + red guava 1% (L), 2% (M), and 5% (H), diabetes + 5% red guava + anti-diabetic rosiglitazone (HR), and diabetes + anti-diabetic rosiglitazone (R). The mice were fed for 8 weeks and sacrificed by decapitation. Compared with the DM group, the experimental groups with diets containing red guava as well as rosiglitazone all showed significant improvements in blood glucose control, insulin resistance, creatinine, blood urea nitrogen, triglycerides, non-esterified fatty acids, cholesterol, c-reactive protein, TNF-α, and IL-10. Furthermore, the expression of inflammatory proteins, such as iNOS and NF-κB, was suppressed via activated PPARγ, and the expression levels of GPx3 and ACO increased. In summary, red guava can significantly suppress inflammatory and oxidative damage caused by diabetes and alleviate diabetic symptoms; thus, it exerts protective effects and has potential applications for the development of a dietary supplement.

  9. Protective Effect of Amphipterygium adstringens Extract on Dextran Sulphate Sodium-Induced Ulcerative Colitis in Mice

    PubMed Central

    Rodriguez-Canales, Mario; Jimenez-Rivas, Ruben; Canales-Martinez, Maria Margarita; Garcia-Lopez, Ana Judith; Rivera-Yañez, Nelly; Nieto-Yañez, Oscar; Ledesma-Soto, Yadira; Sanchez-Torres, Luvia Enid; Rodriguez-Sosa, Miriam; Terrazas, Luis Ignacio

    2016-01-01

    Amphipterygium adstringens is an endemic species in Mexico commonly known as “cuachalalate.” Healers to treat gastritis, gastric ulcers, and gastrointestinal cancer have traditionally used the bark. We investigated the effects of alcoholic extract of A. adstringens (AaEE) in DSS-induced colitis in mice. The protective effect of AaEE was determined at 200 mg/kg by oral gavage for 10 days. We determine the effect of AaEE on clinical features (disease activity index), antioxidants, anti-inflammatory, and immunomodulatory activities in relation to the activity of SOD, CAT, and GPx, levels of proinflammatory cytokines, and changes both macroscopic and microscopic of the colonic mucosa. AaEE significantly reduced the inflammation of colon and significantly increased SOD and GPx activities. AaEE also significantly decreased TNF-α, IFN-γ, and IL-1β cytokine levels compared to DSS-treated mice and reduced both infiltration of inflammatory cells and the mucosal damage in colon. The results suggested the protective potential of AaEE in DSS-induced colitis and this might be attributed to its phytochemicals compounds that have been found to induce a wide spectrum of activities such as reduction in oxidative stress, suppression of inflammation, modulating numerous signal transduction pathways, and induction of apoptosis. The findings of this study suggest that AaEE has substantial potential for the treatment of inflammatory colitis. PMID:27635116

  10. Reactive Oxygen Species Produced by the NOX2 Complex in Monocytes Protect Mice from Bacterial Infections1, 2, 3

    PubMed Central

    Pizzolla, Angela; Hultqvist, Malin; Nilson, Bo; Grimm, Melissa J.; Eneljung, Tove; Jonsson, Ing-Marie; Verdrengh, Margareta; Kelkka, Tiina; Gjertsson, Inger; Segal, Brahm H.; Holmdahl, Rikard

    2012-01-01

    Chronic granulomatous disease (CGD) is an inherited disorder characterized by recurrent life-threatening bacterial and fungal infections. CGD results from defective production of reactive oxygen species (ROS) by phagocytes caused by mutations in genes encoding the NADPH oxidase 2 (NOX2) complex subunits. Mice with a spontaneous mutation in Ncf1, which encodes the NCF1 (p47phox) subunit of NOX2, have defective phagocyte NOX2 activity. These mice occasionally develop local spontaneous infections by Staphylococcus xylosus or by the common CGD pathogen S. aureus. Ncf1 mutant mice were more susceptible to systemic challenge with these bacteria than wild type mice. Transgenic Ncf1 mutant mice harboring wild type Ncf1 gene under the human CD68 promoter (MN+ mice) gained the expression of NCF1 and functional NOX2 activity specifically in monocyte/macrophages, although minimal NOX2 activity was detected also in some CD11b+Ly6G+ cells defined as neutrophils. MN+ mice did not develop spontaneous infection and were more resistant to administered staphylococcal infections compared to MN− mice. Most strikingly, MN+ mice survived after administered Burkholderia cepacia, an opportunistic pathogen in CGD patients, whereas MN− mice died. Thus, monocyte/macrophage expression of functional NCF1 protected against spontaneous and administered bacterial infections. PMID:22491245

  11. Stimulation of Lung Innate Immunity Protects against Lethal Pneumococcal Pneumonia in Mice

    PubMed Central

    Clement, Cecilia G.; Evans, Scott E.; Evans, Christopher M.; Hawke, David; Kobayashi, Ryuji; Reynolds, Paul R.; Moghaddam, Seyed J.; Scott, Brenton L.; Melicoff, Ernestina; Adachi, Roberto; Dickey, Burton F.; Tuvim, Michael J.

    2008-01-01

    Rationale: The lungs are a common site of serious infection in both healthy and immunocompromised subjects, and the most likely route of delivery of a bioterror agent. Since the airway epithelium shows great structural plasticity in response to inflammatory stimuli, we hypothesized it might also show functional plasticity. Objectives: To test the inducibility of lung defenses against bacterial challenge. Methods: Mice were treated with an aerosolized lysate of ultraviolet-killed nontypeable (unencapsulated) Haemophilus influenzae (NTHi), then challenged with a lethal dose of live Streptococcus pneumoniae (Spn) delivered by aerosol. Measurements and Main Results: Treatment with the NTHi lysate induced complete protection against challenge with a lethal dose of Spn if treatment preceded challenge by 4 to 24 hours. Lesser levels of protection occurred at shorter (83% at 2 h) and longer (83% at 48–72 h) intervals between treatment and challenge. There was also some protection when treatment was given 2 hours after challenge (survival increased from 14 to 57%), but not 24 hours after challenge. Protection did not depend on recruited neutrophils or resident mast cells and alveolar macrophages. Protection was specific to the airway route of infection, correlated in magnitude and time with rapid bacterial killing within the lungs, and was associated with increases of multiple antimicrobial polypeptides in lung lining fluid. Conclusions: We infer that protection derives from stimulation of local innate immune mechanisms, and that activated lung epithelium is the most likely cellular effector of this response. Augmentation of innate antimicrobial defenses of the lungs might have therapeutic value. PMID:18388354

  12. Protective effect of genistein on radiation-induced intestinal injury in tumor bearing mice

    PubMed Central

    2013-01-01

    Background Radiation therapy is the most widely used treatment for cancer, but it causes the side effect of mucositis due to intestinal damage. We examined the protective effect of genistein in tumor-bearing mice after abdominal irradiation by evaluation of apoptosis and intestinal morphological changes. Methods Mouse colon cancer CT26 cells were subcutaneously injected at the flank of BALB/c mice to generate tumors. The tumor-bearing mice were treated with abdominal radiation at 5 and 10 Gy, and with genistein at 200 mg/kg body weight per day for 1 d before radiation. The changes in intestinal histology were evaluated 12 h and 3.5 d after irradiation. To assess the effect of the combination treatment on the cancer growth, the tumor volume was determined at sacrifice before tumor overgrowth occurred. Results Genistein significantly decreased the number of apoptotic nuclei compared with that in the irradiation group 12 h after 5 Gy irradiation. Evaluation of histological changes showed that genistein ameliorated intestinal morphological changes such as decreased crypt survival, villus shortening, and increased length of the basal lamina 3.5 d after 10 Gy irradiation. Moreover, the genistein-treated group exhibited more Ki-67-positive proliferating cells in the jejunum than the irradiated control group, and crypt depths were greater in the genistein-treated group than in the irradiated control group. The mean weight of the CT26 tumors was reduced in the group treated with genistein and radiation compared with the control group. Conclusion Genistein had a protective effect on intestinal damage induced by irradiation and delayed tumor growth. These results suggest that genistein is a useful candidate for preventing radiotherapy-induced intestinal damage in cancer patients. PMID:23672582

  13. Recombinant tandem multi-linear neutralizing epitopes of human enterovirus 71 elicited protective immunity in mice

    PubMed Central

    2014-01-01

    Background Human Enterovirus 71 (EV71) has emerged as the leading cause of viral encephalitis in children, especially in the Asia-Pacific regions. EV71 vaccine development is of high priority at present, and neutralization antibodies have been documented to play critical roles during in vitro and in vivo protection against EV71 infection. Results In this study, a novel strategy to produce EV71 vaccine candidate based on recombinant multiple tandem linear neutralizing epitopes (mTLNE) was proposed. The three well identified EV71 linear neutralizing epitopes in capsid proteins, VP1-SP55, VP1-SP70 and VP2-SP28, were sequentially linked by a Gly-Ser linker ((G4S)3), and expressed in E.coli in fusion with the Trx and His tag at either terminal. The recombinant protein mTLNE was soluble and could be purified by standard affinity chromatography. Following three dosage of immunization in adult mice, EV71-specific IgG and neutralization antibodies were readily induced by recombinant mTLNE. IgG subtyping demonstrated that lgG1 antibodies dominated the mTLNE-induced humoral immune response. Especially, cytokine profiling in spleen cells from the mTLNE-immunized mice revealed high production of IL-4 and IL-6. Finally, in vivo challenge experiments showed that passive transfer with anti-mTLNE sera conferred full protection against lethal EV71 challenge in neonatal mice. Conclusion Our results demonstrated that this rational designed recombinant mTLNE might have the potential to be further developed as an EV71 vaccine in the future. PMID:24885030

  14. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies

    PubMed Central

    Patial, Sonika; Curtis, Alan D.; Lai, Wi S.; Stumpo, Deborah J.; Hill, Georgette D.; Flake, Gordon P.; Mannie, Mark D.; Blackshear, Perry J.

    2016-01-01

    Tristetraprolin (TTP) is an inducible, tandem zinc-finger mRNA binding protein that binds to adenylate-uridylate–rich elements (AREs) in the 3′-untranslated regions (3′UTRs) of specific mRNAs, such as that encoding TNF, and increases their rates of deadenylation and turnover. Stabilization of Tnf mRNA and other cytokine transcripts in TTP-deficient mice results in the development of a profound, chronic inflammatory syndrome characterized by polyarticular arthritis, dermatitis, myeloid hyperplasia, and autoimmunity. To address the hypothesis that increasing endogenous levels of TTP in an intact animal might be beneficial in the treatment of inflammatory diseases, we generated a mouse model (TTPΔARE) in which a 136-base instability motif in the 3′UTR of TTP mRNA was deleted in the endogenous genetic locus. These mice appeared normal, but cultured fibroblasts and macrophages derived from them exhibited increased stability of the otherwise highly labile TTP mRNA. This resulted in increased TTP protein expression in LPS-stimulated macrophages and increased levels of TTP protein in mouse tissues. TTPΔARE mice were protected from collagen antibody-induced arthritis, exhibited significantly reduced inflammation in imiquimod-induced dermatitis, and were resistant to induction of experimental autoimmune encephalomyelitis, presumably by dampening the excessive production of proinflammatory mediators in all cases. These data suggest that increased systemic levels of TTP, secondary to increased stability of its mRNA throughout the body, can be protective against inflammatory disease in certain models and might be viewed as an attractive therapeutic target for the treatment of human inflammatory diseases. PMID:26831084

  15. A genetically engineered live attenuated vaccine of Coccidioides posadasii protects BALB/c mice against coccidioidomycosis.

    PubMed

    Xue, Jianmin; Chen, Xia; Selby, Dale; Hung, Chiung-Yu; Yu, Jieh-Juen; Cole, Garry T

    2009-08-01

    Coccidioidomycosis (also known as San Joaquin Valley fever) is an occupational disease. Workers exposed to outdoor dust which contains spores of the soil-inhabiting fungus have a significantly increased risk of respiratory infection. In addition, people with compromised T-cell immunity, the elderly, and certain racial groups, particularly African-Americans and Filipinos, who live in regions of endemicity in the southwestern United States have an elevated incidence of symptomatic infection caused by inhalation of spores of Coccidioides posadasii or Coccidioides immitis. Recurring epidemics and escalation of medical costs have helped to motivate production of a vaccine against valley fever. The major focus has been the development of a defined, T-cell-reactive, recombinant protein vaccine. However, none of the products described to date have provided full protection to coccidioidal disease-susceptible BALB/c mice. Here we describe the first genetically engineered, live, attenuated vaccine that protects both BALB/c and C57BL/6 mice against coccidioidomycosis. Two chitinase genes (CTS2 and CTS3) were disrupted to yield the attenuated strain, which was unable to endosporulate and was no longer infectious. Vaccinated survivors mounted an immune response characterized by production of both T-helper-1- and T-helper-2-type cytokines. Histology revealed well-formed granulomas and markedly diminished inflammation. Significantly fewer organisms were observed in the lungs of survivors than in those of nonvaccinated mice. Additional investigations are required to further define the nature of the live, attenuated vaccine-induced immunity against Coccidioides infection.

  16. Human immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective human humoral immunity against malaria.

    PubMed

    Huang, Jing; Li, Xiangming; Coelho-dos-Reis, Jordana G A; Zhang, Min; Mitchell, Robert; Nogueira, Raquel Tayar; Tsao, Tiffany; Noe, Amy R; Ayala, Ramses; Sahi, Vincent; Gutierrez, Gabriel M; Nussenzweig, Victor; Wilson, James M; Nardin, Elizabeth H; Nussenzweig, Ruth S; Tsuji, Moriya

    2015-12-01

    In this study, we developed human immune system (HIS) mice that possess functional human CD4+ T cells and B cells, named HIS-CD4/B mice. HIS-CD4/B mice were generated by first introducing HLA class II genes, including DR1 and DR4, along with genes encoding various human cytokines and human B cell activation factor (BAFF) to NSG mice by adeno-associated virus serotype 9 (AAV9) vectors, followed by engrafting human hematopoietic stem cells (HSCs). HIS-CD4/B mice, in which the reconstitution of human CD4+ T and B cells resembles to that of humans, produced a significant level of human IgG against Plasmodium falciparum circumsporozoite (PfCS) protein upon immunization. CD4+ T cells in HIS-CD4/B mice, which possess central and effector memory phenotypes like those in humans, are functional, since PfCS protein-specific human CD4+ T cells secreting IFN-γ and IL-2 were detected in immunized HIS-CD4/B mice. Lastly, PfCS protein-immunized HIS-CD4/B mice were protected from in vivo challenge with transgenic P. berghei sporozoites expressing the PfCS protein. The immune sera collected from protected HIS-CD4/B mice reacted against transgenic P. berghei sporozoites expressing the PfCS protein and also inhibited the parasite invasion into hepatocytes in vitro. Taken together, these studies show that our HIS-CD4/B mice could mount protective human anti-malaria immunity, consisting of human IgG and human CD4+ T cell responses both specific for a human malaria antigen.

  17. Protective effect of the orientin on noise-induced cognitive impairments in mice.

    PubMed

    Wang, Shuting; Yu, Yinghua; Feng, Yan; Zou, Fang; Zhang, Xiaofei; Huang, Jie; Zhang, Yuyun; Zheng, Xian; Huang, Xu-Feng; Zhu, Yufu; Liu, Yi

    2016-01-01

    There is increasing evidence that chronic noise stress impairs cognition and induces oxidative stress in the brain. Recently, orientin, a phenolic compound abundant in some fruits, millet, and herbs, has been shown to have antioxidant properties. This study investigated the potential effects of orientin against chronic noise-induced cognitive decline and its underlying mechanisms. A moderate-intensity noise exposure model was used to investigate the effects of orientin on behavior and biochemical alterations in mice. After 3 weeks of the noise exposure, the mice were treated with orientin (20mg/kg and 40 mg/kg, oral gavage) for 3 weeks. The chronic noise exposure impaired the learning and memory in mice in the Morris water maze and step-through tests. The noise exposure also decreased exploration and interest in a novel environment in the open field test. The administration of orientin significantly reversed noise-induced alterations in these behavior tests. Moreover, the orientin treatment significantly improved the noise-induced alteration of serum corticosterone and catecholamine levels and oxidative stress in the hippocampus and prefrontal cortex. Furthermore, the orientin treatment ameliorated the noise-induced decrease in brain-derived neurotrophic factor and synapse-associated proteins (synaptophysin and postsynaptic density protein 95) in the hippocampus and prefrontal cortex. Thus, orientin exerts protective effects on noise-induced cognitive decline in mice, specifically by improving central oxidative stress, neurotransmission, and increases synapse-associated proteins. Therefore, supplementation with orientin-enriched food or fruit could be beneficial as a preventive strategy for chronic noise-induced cognitive decline.

  18. Mode of action of FK-506 on protective immunity to Hymenolepis nana in mice.

    PubMed

    Asano, K; Taki, M; Matsuo, S; Yamada, K

    1996-01-01

    FK-506 (Tacrolimus) has been shown to block T cell proliferation in vitro by inhibiting the generation of several lymphokines, especially interleukin (IL)-2, but little direct evidence is available to support the view that the immunosuppressive effects of FK-506 in vivo are mediated by a similar inhibition of lymphokine cascade. To investigate the mechanisms of FK-506-induced immunosuppression, the effects of FK-506 on cell-mediated immunity to Hymenolepis nana were examined in mice. FK-506 administration into BALB/c mice daily at a dose of 10.0 mg/kg (but not 5.0 mg/kg) for 5 days caused suppression of protective immunity against H. nana challenge infection. During the infection of mice with H. nana, IL-2 and interferon (IFN)-gama were produced by mesenteric lymph node (MLN) cells with a time course corresponding to that of MLN T cell proliferation. These responses were completely suppressed by repeated administration of FK-506 for 5 days at a dose of 10.0 mg/kg/day (but not 5.0 mg/kg/day). In contrast to the effects of FK-506 on IL-2 and IFN-gamma productions in MLN, IL-1 and tumor necrosis factor-alpha in the intestinal wall, which were enhanced by H. nana infection, were not completely decreased as a result of 10.0 mg/kg FK-506 treatment. The reverse transcriptase-PCR revealed complete inhibition of IL-2 and IFN-gamma mRNA expression on mesenteric L3T4+ cells that were induced by H. nana infection, when mice were given 10.0 mg/kg/day FK-506 for 5 days. These results strongly suggest that FK-506 affects cell-mediated immunity in vivo with mechanisms similar to those observed in vitro.

  19. Potential protective effects of Clostridium butyricum on experimental gastric ulcers in mice

    PubMed Central

    Wang, Fang-Yan; Liu, Jia-Ming; Luo, Hai-Hua; Liu, Ai-Hua; Jiang, Yong

    2015-01-01

    AIM: To investigate the effects of Clostridium butyricum (C. butyricum) on experimental gastric ulcers (GUs) induced by alcohol, restraint cold stress, or pyloric ligation in mice, respectively. METHODS: One hundred and twenty mice were randomly allocated into three types of gastric ulcer models (n = 40 each), induced by alcohol, restraint cold stress, or pyloric ligation. In each GU model, 40 mice were allocated into four groups (n = 10 each): the sham control group; model group (GU induction without pretreatment); C. butyricum group (GU induction with C. butyricum pretreatment); and Omeprazole group (GU induction with Omeprazole pretreatment). The effects of C. butyricum were evaluated by examining the histological changes in the gastric mucosal erosion area, the activities of superoxide dismutase (SOD) and catalase (CAT), the level of malondialdehyde (MDA), and the contents of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, leukotriene B4 (LTB4) and 6-keto-PGF-1α (degradation product of PGI2) in the gastric tissue. RESULTS: Our data showed that C. butyricum significantly reduced the gastric mucosal injury area and ameliorated the pathological conditions of the gastric mucosa. C. butyricum not only minimized the decreases in activity of SOD and CAT, but also reduced the level of MDA in all three GU models used in this study. The accumulation of IL1-β, TNF-α and LBT4 decreased, while 6-keto-PGF-1α increased with pretreatment by C. butyricum in all three GU models. CONCLUSION: Our data demonstrated the protective effects of pretreatment with C. butyricum on anti-oxidation and anti-inflammation in different types of GU models in mice. Further studies are needed to explore its potential clinical benefits. PMID:26217085

  20. Regulatory T cells are protective in systemic inflammation response syndrome induced by zymosan in mice.

    PubMed

    Jia, Wenyuan; Cao, Li; Yang, Shuangwen; Dong, Hailong; Zhang, Yun; Wei, Haidong; Jing, Wei; Hou, Lichao; Wang, Chen

    2013-01-01

    Systemic inflammation response syndrome (SIRS) is a key and mainly detrimental process in the pathophysiology of multiple organ dysfunction syndrome. The balance of pro-inflammation and anti-inflammation controls the initiation and development of SIRS. However, the endogenous counterregulatory immune mechanisms that are involved in the development of SIRS are not well understood. CD4(+)CD25(+)Foxp3 (forkhead box P3)(+) regulatory T lymphocytes (Treg cells) play a key role in the immunological balance of the body. Thus, our aim was to investigate the contribution of these key immunomodulators (Treg cells) to the immune dysfunction that is observed in zymosan-induced SIRS in mice. We first evaluated the level of Treg cells in the lung of mice 6 h, 1 d, 2 d, 3 d, 5 d, and 7 d after the injection of zymosan or normal saline by western blot, real-time PCR and flow cytometry. We found that the number of Treg cells and the levels of the Treg cell-related transcription factor (Foxp3) and cytokines (IL-10) in the zymosan-treated group significantly decreased on day 1 and day 2 and significantly increased on day 5 compared with the NS-treated group. In the next experiment, the mice were injected with 200 μg of anti-CD25 mAb (clone PC61) to deplete the Treg cells and then injected with zymosan 2 days later. The number of Treg cells decreased by more than 50% after the injection of the PC61 mAb. In addition, the expression of the anti-inflammatory cytokine IL-10 also decreased. Moreover, the depletion of the Treg cells profoundly increased the mice'mortality and the degree of lung tissue injury. In conclusion, Treg cells tend to play a protective role in pathogenesis of the zymosan-induced generalized inflammation, and IL-10 signaling is associated with their immunomodulatory effect.

  1. Immunosuppressive therapy exacerbates autoimmunity in NOD mice and diminishes the protective activity of regulatory T cells.

    PubMed

    Kaminitz, Ayelet; Mizrahi, Keren; Yaniv, Isaac; Stein, Jerry; Askenasy, Nadir

    2010-09-01

    Mounting evidence indicates that immunosuppressive therapy and autologous bone marrow transplantation are relatively inefficient approaches to treat autoimmune diabetes. In this study we assessed the impact of immunosuppression on inflammatory insulitis in NOD mice, and the effect of radiation on immunomodulation mediated by adoptive transfer of various cell subsets. Sublethal radiation of NOD females at the age of 14 weeks (onset of hyperglycemia) delayed the onset of hyperglycemia, however two thirds of the mice became diabetic. Adoptive transfer of splenocytes into irradiated NON and NOD mice precipitated disease onset despite increased contents of CD25(+)FoxP3(+) T cells in the pancreas and regional lymphatics. Similar phenotypic changes were observed when CD25(+) T cells were infused after radiation, which also delayed disease onset without affecting its incidence. Importantly, irradiation increased the susceptibility to diabetes in NOD and NON mice (71-84%) as compared to immunomodulation with splenocytes and CD25(+) T cells in naïve recipients (44-50%). Although irradiation had significant and durable influence on pancreatic infiltrates and the fractions of functional CD25(+)FoxP3(+) Treg cells were elevated by adoptive cell transfer, this approach conferred no protection from disease progression. Irradiation was ineffective both in debulking of pathogenic clones and in restoring immune homeostasis, and the consequent homeostatic expansion evolves as an unfavorable factor in attempts to restore self-tolerance and might even provoke uncontrolled proliferation of pathogenic clones. The obstacles imposed by immunosuppression on abrogation of autoimmune insulitis require replacement of non-specific immunosuppressive therapy by selective immunomodulation that does not cause lymphopenia.

  2. Antibody mimetics: promising complementary agents to animal-sourced antibodies.

    PubMed

    Baloch, Abdul Rasheed; Baloch, Abdul Wahid; Sutton, Brian J; Zhang, Xiaoying

    2016-01-01

    Despite their wide use as therapeutic, diagnostic and detection agents, the limitations of polyclonal and monoclonal antibodies have inspired scientists to design the next generation biomedical agents, so-called antibody mimetics that offer many advantages over conventional antibodies. Antibody mimetics can be constructed by protein-directed evolution or fusion of complementarity-determining regions through intervening framework regions. Substantial progress in exploiting human, butterfly (Pieris brassicae) and bacterial systems to design and select mimetics using display technologies has been made in the past 10 years, and one of these mimetics [Kalbitor® (Dyax)] has made its way to market. Many challenges lie ahead to develop mimetics for various biomedical applications, especially those for which conventional antibodies are ineffective, and this review describes the current characteristics, construction and applications of antibody mimetics compared to animal-sourced antibodies. The possible limitations of mimetics and future perspectives are also discussed.

  3. Protective role of taurine against genotoxic damage in mice treated with methotrexate and tamoxfine.

    PubMed

    Alam, Sally S; Hafiz, Nagla A; Abd El-Rahim, Abeer H

    2011-01-01

    The genotoxic actions of anti-neoplastic drugs can lead to the development of secondary cancers in patients in extended remission. One of the most attractive approaches to disease prevention involves the use of natural antioxidants to protect tissue against toxic injury. We investigated the modulatory effects of exogenously administered taurine, on the genotoxicity of two well known anti-neoplastic drugs methotrexate (MTX) and tamoxifen (TAM) in Swiss albino mice. The animals were randomly divided into six groups consisting of ten mice each. Two groups were received single intraperitoneal injection of MTX (10 mg/kgb.wt.) and TAM (50 mg/kgb.wt.) to induce genotoxicity. Two other groups were treated orally with taurine (100 mg/kgb.wt.) for nine days prior to MTX and TAM administration. A vehicle treated control group and taurine control groups were also included. The protective effects of taurine were monitored by apoptosis assays and level of reduced glutathione (GSH), a key antioxidant, in liver, chromosomal aberrations in somatic and germ cells as well as sperm count, motility and morphology. The results indicated that taurine pre-treatment showed significant increment in the levels of GSH content, reduction in DNA fragmentation and ladder formation in hepatic tissue, suggesting the antioxidant activity of taurine may reduce the toxic effects of MTX and TAM. Treatment with taurine showed also significant reduction in the frequency of chromosomal aberrations in both somatic and germ cells. Moreover, it increases sperm count and motility, and decreases the incidence of sperm abnormalities. In conclusion, it appears that taurine protects against anti-neoplastic drugs-induced genotoxicity in somatic and germ tissues and may be of therapeutic potential in alleviating the risk of secondary tumors in chemotherapy.

  4. The protective and therapeutic effects of alpha-solanine on mice breast cancer.

    PubMed

    Mohsenikia, Maryam; Alizadeh, Ali Mohammad; Khodayari, Saeed; Khodayari, Hamid; Kouhpayeh, Seyed Amin; Karimi, Aliasghar; Zamani, Mina; Azizian, Saleh; Mohagheghi, Mohammad Ali

    2013-10-15

    Alpha-solanine, a naturally steroidal glycoalkaloid, is found in leaves and fruits of plants as a defensive agent against fungi, bacteria and insects. Herein, we investigated solanine toxicity in vitro and in vivo, and assessed its protective and the therapeutic effects on a typical animal model of breast cancer. The study conducted in three series of experiments to obtain (i) solanine effects on cell viability of mammary carcinoma cells, (ii) in vivo toxicity of solanine, and (iv) the protective and therapeutic effects of solanine on animal model of breast cancer. Alpha-solanine significantly suppressed proliferation of mouse mammary carcinoma cells both in vitro and in vivo (P<0.05). Under the dosing procedure, 5 mg/kg solanine has been chosen for assessing its protective and therapeutic effects in mice breast cancer. Tumor take rate in the solanine-treated group was zero compared with a 75% rate in its respective control group (P<0.05). The average tumor size and weight were significantly lower in solanine-treated animals than its respective control ones (P<0.05). Proapoptotic Bax protein expression increased in breast tumor by solanine compared with its respective control group (P<0.05). Antiapoptotic Bcl-2 protein expression found to be lower in solanine-treated animals (P<0.05). Proliferative and angiogenic parameters greatly decreased in solanine-treated mice (P<0.05). Data provide evidence that solanine exerts a significant chemoprotective and chemotherapeutic effects on an animal model of breast cancer through apoptosis induction, cell proliferation and angiogenesis inhibition. These findings reveal a new therapeutic potential for solanine in cancer.

  5. Wood mimetic hydrogel beads for enzyme immobilization.

    PubMed

    Park, Saerom; Kim, Sung Hee; Won, Keehoon; Choi, Joon Weon; Kim, Yong Hwan; Kim, Hyung Joo; Yang, Yung-Hun; Lee, Sang Hyun

    2015-01-22

    Wood component-based composite hydrogels have potential applications in biomedical fields owing to their low cost, biodegradability, and biocompatibility. The controllable properties of wood mimetic composites containing three major wood components are useful for enzyme immobilization. Here, lipase from Candida rugosa was entrapped in wood mimetic beads containing cellulose, xylan, and lignin by dissolving wood components with lipase in [Emim][Ac], followed by reconstitution. Lipase entrapped in cellulose/xylan/lignin beads in a 5:3:2 ratio showed the highest activity; this ratio is very similar to that in natural wood. The lipase entrapped in various wood mimetic beads showed increased thermal and pH stability. The half-life times of lipase entrapped in cellulose/alkali lignin hydrogel were 31- and 82-times higher than those of free lipase during incubation under denaturing conditions of high temperature and low pH, respectively. Owing to their biocompatibility, biodegradability, and controllable properties, wood mimetic hydrogel beads can be used to immobilize various enzymes for applications in the biomedical, bioelectronic, and biocatalytic fields.

  6. Huperzine A Provides Robust and Sustained Protection against Induced Seizures in Scn1a Mutant Mice

    PubMed Central

    Wong, Jennifer C.; Dutton, Stacey B. B.; Collins, Stephen D.; Schachter, Steven; Escayg, Andrew

    2016-01-01

    De novo loss-of-function mutations in the voltage-gated sodium channel (VGSC) SCN1A (encoding Nav1.1) are the main cause of Dravet syndrome (DS), a catastrophic early-life encephalopathy associated with prolonged and recurrent early-life febrile seizures (FSs), refractory afebrile epilepsy, cognitive and behavioral deficits, and a 15–20% mortality rate. SCN1A mutations also lead to genetic epilepsy with febrile seizures plus (GEFS+), which is an inherited disorder characterized by early-life FSs and the development of a range of adult epilepsy subtypes. Current antiepileptic drugs often fail to protect against the severe seizures and behavioral and cognitive deficits found in patients with SCN1A mutations. To address the need for more efficacious treatments for SCN1A-derived epilepsies, we evaluated the therapeutic potential of Huperzine A, a naturally occurring reversible acetylcholinesterase inhibitor. In CF1 mice, Hup A (0.56 or 1 mg/kg) was found to confer protection against 6 Hz-, pentylenetetrazole (PTZ)-, and maximal electroshock (MES)-induced seizures. Robust protection against 6 Hz-, MES-, and hyperthermia-induced seizures was also achieved following Hup A administration in mouse models of DS (Scn1a+/−) and GEFS+ (Scn1aRH/+). Furthermore, Hup A-mediated seizure protection was sustained during 3 weeks of daily injections in Scn1aRH/+ mutants. Finally, we determined that muscarinic and GABAA receptors play a role in Hup A-mediated seizure protection. These findings indicate that Hup A might provide a novel therapeutic strategy for increasing seizure resistance in DS and GEFS+, and more broadly, in other forms of refractory epilepsy. PMID:27799911

  7. Evidence for a protective role of tumor necrosis factor in the acute phase of Trypanosoma cruzi infection in mice.

    PubMed Central

    Lima, E C; Garcia, I; Vicentelli, M H; Vassalli, P; Minoprio, P

    1997-01-01

    A possible role for tumor necrosis factor (TNF) alpha during Trypanosoma cruzi infection was explored by using transgenic mice expressing in blood high levels of a soluble TNFR1-FcIgG3 fusion protein, which neutralizes the effects of TNF in vivo. Nontransgenic littermates were used as controls. The transgenic mice showed high susceptibility to T. cruzi infection. Inocula sublethal for control mice resulted in over 80% mortality associated with higher levels of parasites in the blood. In histological sections of the hearts of transgenic mice, large parasitic clusters without inflammatory cell infiltrates around the parasites were seen, while smaller parasitic clusters associated with leukocytes were seen in control mice. No difference in specific antibody response or lymphocyte composition of the spleen was found between transgenic and control mice, although the unresponsiveness of spleen cells to concanavalin A stimulation in vitro, typical of the acute phase of T. cruzi infection, was less pronounced in transgenic mice. Infected transgenic mice produced higher levels of gamma interferon than did control mice. These results confirm that TNF is involved in mechanisms leading to parasite clearance and protection from death in the acute phase of T. cruzi infection. More importantly, the data reveal that TNF is necessary for the establishment of effective tissue inflammation and parasite load control in acute experimental Chagas' disease myocarditis. PMID:9009297

  8. Phloroglucinol Protects Small Intestines of Mice from Ionizing Radiation by Regulating Apoptosis-Related Molecules

    PubMed Central

    Ha, Danbee; Bing, So Jin; Cho, Jinhee; Ahn, Ginnae; Kim, Dae Seung; Al-Amin, Mohammad; Park, Suk Jae

    2013-01-01

    Phloroglucinol (PG) is a phenolic compound isolated from Ecklonia cava, a brown algae abundant on Jeju island, Korea. Previous reports have suggested that PG exerts antioxidative and cytoprotective effects against oxidative stress. In this study, we confirmed that PG protected against small intestinal damage caused by ionizing radiation, and we investigated its protective mechanism in detail. Regeneration of intestinal crypts in the PG-treated irradiated group was significantly promoted compared with that in irradiated controls. The expression level of proapoptotic molecules such as p53, Bax, and Bak in the small intestine was downregulated and that of antiapoptotic molecules such as Bcl-2 and Bcl-XS/L was augmented in the PG-treated group. On histological observation of the small intestine, PG inhibited the immunoreactivity of p53, Bax, and Bak and increased that of Bcl-2 and Bcl-XS/L. These results demonstrate the protective mechanisms of PG in mice against intestinal damage from ionizing radiation, providing the benefit of raising the apoptosis threshold of jejunal crypt cells. PMID:23117934

  9. Protective effect of CR 1409 (cholecystokinin antagonist) on experimental pancreatitis in rats and mice.

    PubMed

    Makovec, F; Bani, M; Cereda, R; Chistè, R; Revel, L; Rovati, L C; Setnikar, I; Rovati, L A

    1986-01-01

    CR 1409, a glutaramic acid derivative with competitive cholecystokinin-antagonistic activity, was administered IP and evaluated in comparison with proglumide (the model CCK-receptor antagonist), gabexate (protease inhibitor) and PGE2 (cytoprotective) on two different models of experimental pancreatitis. Acute pancreatitis was induced in mice by six IP injections of 50 micrograms/kg caerulein at hourly intervals. The drugs were administered 30 minutes before each caerulein administration. Blood samples and pancreata were collected 3 hours after the last caerulein injection. In the second experiment, pancreatitis was induced in rats by injecting 0.3 ml 6% sodium taurocholate interstitially into the pancreas. The drugs were administered twice, 30 minutes before and 3 hours after taurocholate. The animals were killed 6 hours after laparotomy and blood samples and pancreata were collected. CR 1409 exhibited on both pancreatitis models a protective effect in a dose range of 0.3-10 mg/kg. Proglumide exhibited a protective activity at higher doses (200-400 mg/kg). Gabexate and PGE2 were effective only in pancreatitis induced by taurocholate in a dose range of 30-60 mg/kg and 60-130 micrograms/kg respectively. These results, showing a high protective effect of CR 1409 on different models of acute pancreatitis, suggest an important role of CCK in the pathogenesis of pancreatitis.

  10. [Comparative protective action of radiorotectors and shielding in gamma-irradiated mice].

    PubMed

    Shashkov, V S; Karsanova, S K; Iasnetsov, V V

    2007-01-01

    Experiments with male mice were performed to evaluate comparative effectiveness of radioprotectors cystamine, aminoethyl isothiuronium, mexamine and indralin against minimal absolutely lethal gamma-doses (9 Gy). The best protective effect was demonstrated by indralin at a dose of 75 mg/kg. Supportive data were received in experiments with rats. The radioprotective action of indralin consists mainly in quite successful preservation of the blood-forming components, i.e. the pool of stem cells in the marrow and spleen. Gamma-irradiation at superlethal doses (10 Gy and higher) weakens significantly or fully neutralizes these protectors in rodents. Shielding of radiosensitive organs with the help of lead and plastics proved to be a good protection of animals from minimal lethal gamma-doses. However, the superlethal doses of gamma-irradiation penetrated the shielding materials and disabled them to a large and full extent. Evaluation of effectiveness of the combined protection against superlethal gamma-doses by pharmaceutical agents and shielding revealed a potentiating effect. For instance, mexamine and shielding of the abdomen together increased survivability of rats to 76.7%. An even stronger effect was noted when shielding was combined with indraline which raised survivability to 100%. It should be emphasized that this combination is effective against superlethal gamma-doses that usually unassailable to radioprotectors and shielding.

  11. Bordetella pertussis Infection or Vaccination Substantially Protects Mice against B. bronchiseptica Infection

    PubMed Central

    Goebel, Elizabeth M.; Zhang, Xuqing; Harvill, Eric T.

    2009-01-01

    Although B. bronchiseptica efficiently infects a wide range of mammalian hosts and efficiently spreads among them, it is rarely observed in humans. In contrast to the many other hosts of B. bronchiseptica, humans are host to the apparently specialized pathogen B. pertussis, the great majority having immunity due to vaccination, infection or both. Here we explore whether immunity to B. pertussis protects against B. bronchiseptica infection. In a murine model, either infection or vaccination with B. pertussis induced antibodies that recognized antigens of B. bronchiseptica and protected the lower respiratory tract of mice against three phylogenetically disparate strains of B. bronchiseptica that efficiently infect naïve animals. Furthermore, vaccination with purified B. pertussis-derived pertactin, filamentous hemagglutinin or the human acellular vaccine, Adacel, conferred similar protection against B. bronchiseptica challenge. These data indicate that individual immunity to B. pertussis affects B. bronchiseptica infection, and suggest that the high levels of herd immunity against B. pertussis in humans could explain the lack of observed B. bronchiseptica transmission. This could also explain the apparent association of B. bronchiseptica infections with an immunocompromised state. PMID:19707559

  12. Intranasal antibody gene transfer in mice and ferrets elicits broad protection against pandemic influenza.

    PubMed

    Limberis, Maria P; Adam, Virginie S; Wong, Gary; Gren, Jason; Kobasa, Darwyn; Ross, Ted M; Kobinger, Gary P; Tretiakova, Anna; Wilson, James M

    2013-05-29

    The emergence of a new influenza pandemic remains a threat that could result in a substantial loss of life and economic disruption worldwide. Advances in human antibody isolation have led to the discovery of monoclonal antibodies (mAbs) that have broad neutralizing activity against various influenza strains, although their direct use for prophylaxis is impractical. To overcome this limitation, our approach is to deliver antibody via adeno-associated virus (AAV) vectors to the site of initial infection, which, for respiratory viruses such as influenza, is the nasopharyngeal mucosa. AAV vectors based on serotype 9 were engineered to express a modified version of the previously isolated broadly neutralizing mAb to influenza A, FI6. We demonstrate that intranasal delivery of AAV9.FI6 into mice afforded complete protection and log reductions in viral load to 100 LD₅₀ (median lethal dose) of three clinical isolates of H5N1 and two clinical isolates of H1N1, all of which have been associated with historic human pandemics (including H1N1 1918). Similarly, complete protection was achieved in ferrets challenged with lethal doses of H5N1 and H1N1. This approach serves as a platform for the prevention of natural or deliberate respiratory diseases for which a protective antibody is available.

  13. Reduction of Influenza Virus Titer and Protection against Influenza Virus Infection in Infant Mice Fed Lactobacillus casei Shirota

    PubMed Central

    Yasui, Hisako; Kiyoshima, Junko; Hori, Tetsuji

    2004-01-01

    We investigated whether oral administration of Lactobacillus casei strain Shirota to neonatal and infant mice ameliorates influenza virus (IFV) infection in the upper respiratory tract and protects against influenza infection. In a model of upper respiratory IFV infection, the titer of virus in the nasal washings of infant mice administered L. casei Shirota (L. casei Shirota group) was significantly (P < 0.05) lower than that in infant mice administered saline (control group) (102.48 ± 100.31 and 102.78 ± 100.4, respectively). Further, the survival rate of the L. casei Shirota group was significantly (P < 0.05) higher than that of the control group (14.3 versus 40.0%). One day after infection, pulmonary NK cell activity and interleukin-12 production by mediastinal lymph node cells of mice in the L. casei Shirota group were significantly greater than those of mice in the control group. These findings suggest that oral administration of L. casei Shirota activates the immature immune system of neonatal and infant mice and protects against IFV infection. Therefore, oral administration of L. casei Shirota may accelerate the innate immune response of the respiratory tract and protect against various respiratory infections in neonates, infants, and children, a high risk group for viral and bacterial infections. PMID:15242940

  14. IL-23 protection against Plasmodium berghei infection in mice is partially dependent on IL-17 from macrophages.

    PubMed

    Ishida, Hidekazu; Imai, Takashi; Suzue, Kazutomo; Hirai, Makoto; Taniguchi, Tomoyo; Yoshimura, Akihiko; Iwakura, Yoichiro; Okada, Hiroko; Suzuki, Tomohisa; Shimokawa, Chikako; Hisaeda, Hajime

    2013-10-01

    Although IL-12 is believed to contribute to protective immune responses, the role played by IL-23 (a member of the IL-12 family) in malaria is elusive. Here, we show that IL-23 is produced during infection with Plasmodium berghei NK65. Mice deficient in IL-23 (p19KO) had higher parasitemia and died earlier than wild-type (WT) controls. Interestingly, p19KO mice had lower numbers of IL-17-producing splenic cells than their WT counterparts. Furthermore, mice deficient in IL-17 (17KO) suffered higher parasitemia than the WT controls, indicating that IL-23-mediated protection is dependent on induction of IL-17 during infection. We found that macrophages were responsible for IL-17 production in response to IL-23. We observed a striking reduction in splenic macrophages in the p19KO and 17KO mice, both of which became highly susceptible to infection. Thus, IL-17 appears to be crucial for maintenance of splenic macrophages. Adoptive transfer of macrophages into macrophage-depleted mice confirmed that macrophage-derived IL-17 is required for macrophage accumulation and parasite eradication in the recipient mice. We also found that IL-17 induces CCL2/7, which recruit macrophages. Our findings reveal a novel protective mechanism whereby IL-23, IL-17, and macrophages reduce the severity of infection with blood-stage malaria parasites.

  15. Loss of Nlrp3 Does Not Protect Mice from Western Diet-Induced Adipose Tissue Inflammation and Glucose Intolerance

    PubMed Central

    Ringling, Rebecca E.; Gastecki, Michelle L.; Woodford, Makenzie L.; Lum-Naihe, Kelly J.; Grant, Ryan W.; Pulakat, Lakshmi; Vieira-Potter, Victoria J.; Padilla, Jaume

    2016-01-01

    We tested the hypothesis that loss of Nlrp3 would protect mice from Western diet-induced adipose tissue (AT) inflammation and associated glucose intolerance and cardiovascular complications. Five-week old C57BL6J wild-type (WT) and Nlrp3 knockout (Nlrp3-/-) mice were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 24 weeks (n = 8/group). Contrary to our hypothesis that obesity-mediated white AT inflammation is Nlrp3-dependent, we found that Western diet-induced expression of AT inflammatory markers (i.e., Cd68, Cd11c, Emr1, Itgam, Lgals, Il18, Mcp1, Tnf, Ccr2, Ccl5 mRNAs, and Mac-2 protein) were not accompanied by increased caspase-1 cleavage, a hallmark feature of NLRP3 inflammasome activation. Furthermore, Nlrp3 null mice were not protected from Western diet-induced white or brown AT inflammation. Although Western diet promoted glucose intolerance in both WT and Nlrp3-/- mice, Nlrp3-/- mice were protected from Western diet-induced aortic stiffening. Additionally, Nlrp3-/- mice exhibited smaller cardiomyocytes and reduced cardiac fibrosis, independent of diet. Collectively, these findings suggest that presence of the Nlrp3 gene is not required for Western diet-induced AT inflammation and/or glucose intolerance; yet Nlrp3 appears to play a role in potentiating arterial stiffening, cardiac hypertrophy and fibrosis. PMID:27583382

  16. Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice

    SciTech Connect

    Wang, Jian-Qing; Chen, Xi; Zhang, Cheng; Tao, Li; Zhang, Zhi-Hui; Liu, Xiao-Qian; Xu, Yuan-Bao; Wang, Hua; Li, Jun; Xu, De-Xiang

    2013-01-15

    A recent report showed that the unfolded protein response (UPR) signaling was activated in the pathogenesis of carbon tetrachloride (CCl{sub 4})-induced hepatic fibrosis. Phenylbutyric acid (PBA) is a well-known chemical chaperone that inhibits endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling. In the present study, we investigated the effects of PBA on CCl{sub 4}-induced hepatic fibrosis in mice. All mice were intraperitoneally (i.p.) injected with CCl{sub 4} (0.15 ml/kg BW, twice per week) for 8 weeks. In CCl{sub 4} + PBA group, mice were i.p. injected with PBA (150 mg/kg, twice per day) from the beginning of CCl{sub 4} injection to the end. As expected, PBA significantly attenuated CCl{sub 4}-induced hepatic ER stress and UPR activation. Although PBA alleviated, only to a less extent, hepatic necrosis, it obviously inhibited CCl{sub 4}-induced tumor necrosis factor alpha (TNF-α) and transforming growth factor beta (TGF-β). Moreover, PBA inhibited CCl{sub 4}-induced hepatic nuclear factor kappa B (NF-κB) p65 translocation and extracellular signal-regulated kinase (ERK) and c-Jun N-terminal Kinase (JNK) phosphorylation. Interestingly, CCl{sub 4}-induced α-smooth muscle actin (α-SMA), a marker for the initiation phase of HSC activation, was significantly attenuated in mice pretreated with PBA. Correspondingly, CCl{sub 4}-induced hepatic collagen (Col)1α1 and Col1α2, markers for the perpetuation phase of HSC activation, were inhibited in PBA-treated mice. Importantly, CCl{sub 4}-induced hepatic fibrosis, as determined using Sirius red staining, was obviously attenuated by PBA. In conclusion, PBA prevents CCl{sub 4}-induced hepatic fibrosis through inhibiting hepatic inflammatory response and HSC activation. Highlights: ► CCl{sub 4} induces hepatic ER stress, inflammation, HSC activation and hepatic fibrosis. ► PBA alleviates CCl{sub 4}-induced hepatic ER stress and UPR signaling activation. ► PBA inhibits CCl{sub 4}-induced

  17. Petiveria alliacea L. extract protects mice against Listeria monocytogenes infection--effects on bone marrow progenitor cells.

    PubMed

    Quadros, M R; Souza Brito, A R; Queiroz, M L

    1999-02-01

    In this study we have investigated the effects of Petiveria alliacea on the hematopoietic response of mice infected with Listeria monocytogenes. Our results demonstrate a protective effect of the crude extract of P. alliacea since the survival of the treated/infected was higher than that in the infected group. Moreover, the number of granulocyte/macrophage colonies (CFU-GM) and the serum colony stimulating activity levels were increased in the treated/infected mice in relation to the infected group. These results suggest an immunomodulation of Petiveria alliacea extract on hematopoiesis, which may be responsible, at least in part, for the increased resistance of mice to Listeria monocytogenes infection.

  18. Macrophage activation as an immune correlate to protective immunity against schistosomiasis in mice immunized with an irradiated, cryopreserved live vaccine.

    PubMed Central

    Lewis, F A; Winestock, J; James, S L

    1987-01-01

    Immune responses against Schistosoma mansoni were evaluated in C57BL/6 mice injected with one of two populations of irradiated schistosomules, the larval preparations differing only in the degree of freezing-induced damage sustained upon cryopreservation. Mice injected with larvae which successfully withstood cryopreservation showed a significant reduction in worm burden following cercarial challenge. No protection was achieved in mice which received larvae damaged by a suboptimal thawing rate. Parallel comparison of several humoral and cellular responses in mice which received either inoculum revealed that induction of activated macrophages and production of macrophage-activating lymphokine activity were the strongest correlates to development of protective immunity. Protected mice also showed marginal 30-min skin test reactivity and weak but transient 24-h delayed-type hypersensitivity to a soluble adult worm preparation. In contrast, indistinguishable levels of circulating antibodies to soluble and tegumental antigens developed in the two immunization groups, and antigen-stimulated lymphocyte blastogenic responses were strong and essentially equivalent in magnitude. These studies strongly suggested that in this new model for investigating anti-schistosome effector mechanisms, responses contributing to the development of activated macrophages may be essential for induction of protective immunity. PMID:3106218

  19. The Protective Effect of Selenium on Oxidative Stress Induced by Waterpipe (Narghile) Smoke in Lungs and Liver of Mice.

    PubMed

    Charab, Mohamad A; Abouzeinab, Noura S; Moustafa, Mohamed E

    2016-12-01

    Waterpipe smoking is common in the Middle East populations and results in health problems. In this study, we investigated the effects of exposure of mice to waterpipe smoke on oxidative stress in lungs and liver and the effects of selenium administration before smoke exposure on the oxidative stress. Twenty-four mice were divided equally into four groups: (i) the control mice received no exposure or treatment; (ii) mice exposed to waterpipe smoke; (iii) mice received intraperitoneal injection of 0.59 μg selenium/kg body weight as sodium selenite 15 min before the exposure to waterpipe smoke; and (iv) mice received intraperitoneal injection of 1.78 μg selenium/kg body weight as sodium selenite 15 min before the exposure to waterpipe smoke. Mice were exposed to waterpipe smoke every other day for four times within 8 successive days. Malondialdehyde and nitric oxide levels were significantly higher in the lungs and liver, while the activities of superoxide dismutase, glutathione peroxidase-1, and catalase were significantly lower in the waterpipe smoke group when compared to control mice. Treating mice with 1.78 μg selenium/kg body weight significantly restored the normal levels of these parameters. Histological examinations of lungs and liver confirmed the protective actions of selenium against the effects of exposure to waterpipe smoke. In conclusion, exposure of mice to waterpipe smoke-induced oxidative stress in lungs and liver. Administration of low level of selenium, 1.78 μg selenium/kg body weight as sodium selenite, exerted protective effects against oxidative stress induced by exposure to waterpipe smoke.

  20. Protection against translocating Salmonella typhimurium infection in mice by feeding the immuno-enhancing probiotic Lactobacillus rhamnosus strain HN001.

    PubMed

    Gill, H S; Shu, Q; Lin, H; Rutherfurd, K J; Cross, M L

    2001-12-01

    The probiotic lactic acid bacterium Lactobacillus rhamnosus (strain HN001) is known to stimulate enhanced innate and acquired immune responses in mice. following oral delivery. Here, the ability of HN001 to confer immune enhancement and protection against an oral challenge of Salmonella tYphimurium was investigated. HN001-fed and non-probiotic-fed control BALB/c mice were challenged with either a single dose of S. typhimurium (ATCC strain 1772), or with five repeated daily doses of the pathogen; post-challenge clinical, behavioural, bacteriological and immunological parameters were assessed. Mice began to show ostensible signs of infection 3-4 days following the initiation of Salmonella challenge, and the first mortalities were observed after 6 days. Following single-dose Salmonella challenge, HN001-fed mice maintained a higher mean pre-mortality general health score than control mice; retained significantly greater food and water intake and weight gain, produced higher titres of serum and intestinal tract anti-Salmonella antibodies, and showed greater overall survival of infection (27/30 mice surviving at 21 days post-challenge, compared to 2/29 in the control group). Following repeated-dose Salmonella challenge, HN001-fed mice had significantly lower mean pathogen burdens in visceral organs (spleen, liver) compared to controls, and additionally, blood and peritoneal leucocytes obtained from HN001-fed mice exhibited significantly higher ex vivo phagocytic capacity compared to control-mice. This study affirms that Lb. rhamnosus strain HN001 displays immuno-enhancing properties in S. typhimurium-infected mice, and demonstrates that oral delivery of this probiotic can promote increased protection against a highly virulent enteric bacterial pathogen.

  1. Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation

    PubMed Central

    Wang, Xinwei; Wei, Liang; Cramer, Julie M.; Leibowitz, Brian J.; Judge, Colleen; Epperly, Michael; Greenberger, Joel; Wang, Fengchao; Li, Linheng; Stelzner, Matthias G.; Dunn, James C. Y.; Martin, Martin G.; Lagasse, Eric; Zhang, Lin; Yu, Jian

    2015-01-01

    Exposure to high levels of ionizing radiation (IR) leads to debilitating and dose-limiting gastrointestinal (GI) toxicity. Using three-dimensional mouse crypt culture, we demonstrated that p53 target PUMA mediates radiation-induced apoptosis via a cell-intrinsic mechanism, and identified the GSK-3 inhibitor CHIR99021 as a potent radioprotector. CHIR99021 treatment improved Lgr5+ cell survival and crypt regeneration after radiation in culture and mice. CHIR99021 treatment specifically blocked apoptosis and PUMA induction and K120 acetylation of p53 mediated by acetyl-transferase Tip60, while it had no effect on p53 stabilization, phosphorylation or p21 induction. CHIR99021 also protected human intestinal cultures from radiation by PUMA but not p21 suppression. These results demonstrate that p53 posttranslational modifications play a key role in the pathological and apoptotic response of the intestinal stem cells to radiation and can be targeted pharmacologically. PMID:25858503

  2. Equine Immunoglobulin and Equine Neutralizing F(ab')₂ Protect Mice from West Nile Virus Infection.

    PubMed

    Cui, Jiannan; Zhao, Yongkun; Wang, Hualei; Qiu, Boning; Cao, Zengguo; Li, Qian; Zhang, Yanbo; Yan, Feihu; Jin, Hongli; Wang, Tiecheng; Sun, Weiyang; Feng, Na; Gao, Yuwei; Sun, Jing; Wang, Yanqun; Perlman, Stanley; Zhao, Jincun; Yang, Songtao; Xia, Xianzhu

    2016-12-18

    West Nile virus (WNV) is prevalent in Africa, Europe, the Middle East, West Asia, and North America, and causes epidemic encephalitis. To date, no effective therapy for WNV infection has been developed; therefore, there is urgent need to find an efficient method to prevent WNV disease. In this study, we prepared and evaluated the protective efficacy of immune serum IgG and pepsin-digested F(ab')₂ fragments from horses immunized with the WNV virus-like particles (VLP) expressing the WNV M and E proteins. Immune equine F(ab')₂ fragments and immune horse sera efficiently neutralized WNV infection in tissue culture. The passive transfer of equine immune antibodies significantly accelerated the virus clearance in the spleens and brains of WNV infected mice, and reduced mortality. Thus, equine immunoglobulin or equine neutralizing F(ab')₂ passive immunotherapy is a potential strategy for the prophylactic or therapeutic treatment of patients infected with WNV.

  3. Protective Effect of Artemisia annua L. Extract against Galactose-Induced Oxidative Stress in Mice

    PubMed Central

    Kim, Mi Hye; Seo, Ji Yeon; Liu, Kwang Hyun; Kim, Jong-Sang

    2014-01-01

    Artemisia annua L. (also called qinghao) has been well known as a source of antimalarial drug artemisinins. In addition, the herb was reported to have in vitro antioxidative activity. The present study investigated the protective effect of aqueous ethanol extract of Qinghao (AA extract) against D-galactose-induced oxidative stress in C57BL/6J mice. Feeding AA extract-containing diet lowered serum levels of malondialdehyde and 8-OH-dG that are biomarkers for lipid peroxidation and DNA damage, respectively. Furthermore, AA extract feeding enhanced the activity of NQO1, a typical antioxidant marker enzyme, in tissues such as kidney, stomach, small intestine, and large intestine. In conclusion, AA extract was found to have antioxidative activity in mouse model. PMID:24988450

  4. Mitochondrial ATP transporter depletion protects mice against liver steatosis and insulin resistance

    PubMed Central

    Cho, Joonseok; Zhang, Yujian; Park, Shi-Young; Joseph, Anna-Maria; Han, Chul; Park, Hyo-Jin; Kalavalapalli, Srilaxmi; Chun, Sung-Kook; Morgan, Drake; Kim, Jae-Sung; Someya, Shinichi; Mathews, Clayton E.; Lee, Young Jae; Wohlgemuth, Stephanie E.; Sunny, Nishanth E.; Lee, Hui-Young; Choi, Cheol Soo; Shiratsuchi, Takayuki; Oh, S. Paul; Terada, Naohiro

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder in obese individuals. Adenine nucleotide translocase (ANT) exchanges ADP/ATP through the mitochondrial inner membrane, and Ant2 is the predominant isoform expressed in the liver. Here we demonstrate that targeted disruption of Ant2 in mouse liver enhances uncoupled respiration without damaging mitochondrial integrity and liver functions. Interestingly, liver specific Ant2 knockout mice are leaner and resistant to hepatic steatosis, obesity and insulin resistance under a lipogenic diet. Protection against fatty liver is partially recapitulated by the systemic administration of low-dose carboxyatractyloside, a specific inhibitor of ANT. Targeted manipulation of hepatic mitochondrial metabolism, particularly through inhibition of ANT, may represent an alternative approach in NAFLD and obesity treatment. PMID:28205519

  5. Chloroquine Inhibits HMGB1 Inflammatory Signaling and Protects Mice from Lethal Sepsis

    PubMed Central

    Yang, Minghua; Cao, Lizhi; Xie, Min; Yu, Yan; Kang, Rui; Yang, Liangchun; Zhao, Mingyi; Tang, Daolin

    2013-01-01

    Sepsis is caused by an overwhelming immune response to bacterial infection. The discovery of high mobility group box 1 (HMGB1) as a late mediator of lethal sepsis has prompted investigation into the development of new therapeutics which specifically target this protein. Here, we show that chloroquine, an anti-malarial drug, prevents lethality in mice with established endotoxemia or sepsis. This effect is still observed even if administration of chloroquine is delayed. The protective effects of chloroquine were mediated through inhibition of HMGB1 release in macrophages, monocytes, and endothelial cells, thereby preventing its cytokine-like activities. As an inhibitor of autophagy, chloroquine specifically inhibited HMGB1-induced Iκ-B degradation and NF-κB activation. These findings define a novel mechanism for the anti-inflammatory effects of chloroquine and also suggest a new potential clinical use for this drug in the setting of sepsis. PMID:23707973

  6. Protective effects of shikonin on brain injury induced by carbon ion beam irradiation in mice.

    PubMed

    Gan, Lu; Wang, Zhen Hua; Zhang, Hong; Zhou, Rong; Sun, Chao; Liu, Yang; Si, Jing; Liu, Yuan Yuan; Wang, Zhen Guo

    2015-02-01

    Radiation encephalopathy is the main complication of cranial radiotherapy. It can cause necrosis of brain tissue and cognitive dysfunction. Our previous work had proved that a natural antioxidant shikonin possessed protective effect on cerebral ischemic injury. Here we investigated the effects of shikonin on carbon ion beam induced radiation brain injury in mice. Pretreatment with shikonin significantly increased the SOD and CAT activities and the ratio of GSH/GSSG in mouse brain tissues compared with irradiated group (P<0.01), while obviously reduced the MDA and PCO contents and the ROS levels derived from of the brain mitochondria. The shikonin also noticeably improved the spatial memory deficits caused by carbon ion beam irradiation. All results demonstrated that shikonin could improve the irradiated brain injury which might resulted from its modulation effects on the oxidative stress induced by the 12C6+ ion beam.

  7. Equine Immunoglobulin and Equine Neutralizing F(ab′)2 Protect Mice from West Nile Virus Infection

    PubMed Central

    Cui, Jiannan; Zhao, Yongkun; Wang, Hualei; Qiu, Boning; Cao, Zengguo; Li, Qian; Zhang, Yanbo; Yan, Feihu; Jin, Hongli; Wang, Tiecheng; Sun, Weiyang; Feng, Na; Gao, Yuwei; Sun, Jing; Wang, Yanqun; Perlman, Stanley; Zhao, Jincun; Yang, Songtao; Xia, Xianzhu

    2016-01-01

    West Nile virus (WNV) is prevalent in Africa, Europe, the Middle East, West Asia, and North America, and causes epidemic encephalitis. To date, no effective therapy for WNV infection has been developed; therefore, there is urgent need to find an efficient method to prevent WNV disease. In this study, we prepared and evaluated the protective efficacy of immune serum IgG and pepsin-digested F(ab′)2 fragments from horses immunized with the WNV virus-like particles (VLP) expressing the WNV M and E proteins. Immune equine F(ab′)2 fragments and immune horse sera efficiently neutralized WNV infection in tissue culture. The passive transfer of equine immune antibodies significantly accelerated the virus clearance in the spleens and brains of WNV infected mice, and reduced mortality. Thus, equine immunoglobulin or equine neutralizing F(ab′)2 passive immunotherapy is a potential strategy for the prophylactic or therapeutic treatment of patients infected with WNV. PMID:27999340

  8. Protection against radiation-induced testicular damage in Swiss albino mice by Mentha piperita (Linn.).

    PubMed

    Samarth, Ravindra M; Samarth, Meenakshi

    2009-04-01

    The protective effects of Mentha piperita leaf extract against radiation-induced damage in testis of Swiss albino mice have been studied. Animals (Male Swiss albino mice) were given M. piperita leaf extract orally (1 g/kg body weight/day) for three consecutive days before radiation exposure (8 Gy gamma-radiation). Mice were autopsied at 1, 3, 7, 14, and 30 days after irradiation to evaluate the radiomodulatory effect in terms of histological alterations, lipid peroxidation, and acid and alkaline phosphatases levels in testis. Radiation treatment showed reduction in the testis weight during all days of observation, however, in the M. piperita leaf extract-pretreated irradiated group there was a significant increase in testis weight. Radiation treatment induced moderate to severe testicular atrophy with degeneration of germ cells in seminiferous tubules. The tubules were shrunken and greatly depleted of germ cells. Sertoli cells with few germ cells were observed in the lumen. However, animals pre-treated with M. piperita leaf extract and exposed to radiation showed normal testicular morphology with regular arrangement of germ cells and slight degeneration of seminiferous epithelium. Significant decreases in the lipid peroxidation and acid phosphatase level and increase in level of alkaline phosphatase were observed in testis. The M. piperita leaf extract showed high amount of phenolic content, flavonoids content and flavonols. The results of the present study suggest that M. piperita has a significant radioprotective effect and the amount of phenolic compounds, the content of flavonoids and flavonols of M. piperita leaf extract may be held responsible for radioprotective effect due to their antioxidant and radical scavenging activity.

  9. Beneficial protective effect of pramipexole on light-induced retinal damage in mice.

    PubMed

    Shibagaki, Keiichi; Okamoto, Kazuyoshi; Katsuta, Osamu; Nakamura, Masatsugu

    2015-10-01

    We investigated the effects of pramipexole, a potent dopamine receptor D2/D3 agonist, on light-induced retinal damage in mice, H2O2-induced retinal pigment epithelium ARPE-19 cell injury in humans, and hydroxyl radical scavenging activity in a cell-free system. Pramipexole (0.1 and 1 mg/kg body weight) was orally administered to mice 1 h before light exposure (5000 lux, 2 h). Electrophysiological and morphologic studies were performed to evaluate the effects of the pramipexole on light-induced retinal damage in mice. Pramipexole significantly prevented the reduction of the a- and b-wave electroretinogram (ERG) amplitudes caused by light exposure in a dose-dependent manner. In parallel, damage to the inner and outer segments (IS/OS) of the photoreceptors, loss of photoreceptor nuclei, and the number of Tdt-mediated dUTP nick-end labeling (TUNEL)-positive cells in the outer nuclear layer (ONL) caused by light exposure were notably ameliorated by pramipexole. Additionally, pramipexole suppressed H2O2-induced ARPE-19 cell death in vitro in a concentration-dependent manner. The effect of pramipexole was significant at concentrations of 10(-6) M or higher. Pramipexole also significantly prevented H2O2-induced activation of caspases-3/7 and the intracellular accumulation of reactive oxygen species (ROS) in a concentration-dependent manner ranging from 10(-5) to 10(-3) M. Furthermore, pramipexole increased the scavenging activity toward a hydroxyl radical generated from H2O2 in a Fenton reaction. Our results suggest that pramipexole protects against light-induced retinal damage as an antioxidant and that it may be a novel and effective therapy for retinal degenerative disorders, such as dry age-related macular degeneration.

  10. The protective effect of amifostine on ultraviolet B-exposed xeroderma pigmentosum mice

    PubMed Central

    Henry, SL; Christiansen, D; Kazmier, FR; Besch-Williford, CL; Concannon, MJ

    2010-01-01

    Background: Amifostine is a pharmaceutical agent that is used clinically to counteract the side-effects of chemotherapy and radiotherapy. It acts as a free radical scavenger that protects against harmful DNA cross-linking. The purpose of this study was to determine the effect of amifostine on the development of skin cancer in xeroderma pigmentosum (XP) mice exposed to ultraviolet B radiation (UVB). Methods: Twenty-five XP mice were equally divided into five groups. Group 1 (control) received no amifostine and no UVB exposure. Group 2 also received no amifostine, but was exposed to UVB at a dose of 200 mJ/cm2 every other day. The remaining groups were subjected to the same irradiation, but were given amifostine at a dose of 50 mg/kg (group 3), 100 mg/kg (group 4), or 200 mg/kg (group 5) immediately prior to each exposure. Results: No tumours were seen in the control group. The animals in group 2 (no amifostine) developed squamous cell carcinoma (SCC) at 3.5–4.5 months (mean 3.9 months). Groups 3 and 4 (low- and medium-dose amifostine) developed SCC at 4.0–7.0 months (mean 5.3 months), representing a statistically significant delay in tumour presentation (p = 0.04). An even greater delay was seen in group 5 (high-dose amifostine), which developed SCC at 7.0–9.0 months (mean 8.5 months, p < 0.001 versus groups 3 and 4). Ocular keratitis developed in all animals except the unexposed controls and the high-dose treatment group. Conclusion: Treatment with amifostine significantly delays the onset of skin cancer and prevents ocular keratitis in UVB-exposed XP mice. PMID:22276030

  11. Vaccinations with Recombinant Variants of Aspergillus fumigatus Allergen Asp f 3 Protect Mice against Invasive Aspergillosis†

    PubMed Central

    Ito, James I.; Lyons, Joseph M.; Hong, Teresa B.; Tamae, Daniel; Liu, Yi-Kuang; Wilczynski, Sharon P.; Kalkum, Markus

    2006-01-01

    A vaccine that effectively protects immunocompromised patients against invasive aspergillosis is a novel approach to a universally fatal disease. Here we present a rationale for selection and in vivo testing of potential protein vaccine candidates, based on the modification of an immunodominant fungal allergen for which we demonstrate immunoprotective properties. Pulmonary exposure to viable Aspergillus fumigatus conidia as well as vaccination with crude hyphal extracts protects corticosteroid-immunosuppressed mice against invasive aspergillosis (J. I. Ito and J. M. Lyons, J. Infect. Dis. 186:869-871, 2002). Sera from the latter animals contain antibodies with numerous and diverse antigen specificities, whereas sera from conidium-exposed mice contain antibodies predominantly against allergen Asp f 3 (and some against Asp f 1), as identified by mass spectrometry. Subcutaneous immunization with recombinant Asp f 3 (rAsp f 3) but not with Asp f 1 was protective. The lungs of Asp f 3-vaccinated survivors were free of hyphae and showed only a patchy low-density infiltrate of mononuclear cells. In contrast, the nonimmunized animals died with invasive hyphal elements and a compact peribronchial infiltrate of predominately polymorphonuclear leukocytes. Three truncated versions of rAsp f 3, spanning amino acid residues 15 to 168 [rAsp f 3(15-168)], 1 to 142, and 15 to 142 and lacking the known bipartite sequence required for IgE binding, were also shown to be protective. Remarkably, vaccination with either rAsp f 3(1-142) or rAsp f 3(15-168) drastically diminished the production of antigen-specific antibodies compared to vaccination with the full-length rAsp f 3(1-168) or the double-truncated rAsp f 3(15-142) version. Our findings point to a possible mechanism in which Asp f 3 vaccination induces a cellular immune response that upon infection results in the activation of lymphocytes that in turn enhances and/or restores the function of corticosteroid-suppressed macrophages

  12. Follistatin-like 1 protects against hypoxia-induced pulmonary hypertension in mice

    PubMed Central

    Zhang, Wei; Wang, Wang; Liu, Jie; Li, Jinna; Wang, Juan; Zhang, Yunxia; Zhang, Zhifei; Liu, Yafei; Jin, Yankun; Li, Jifeng; Cao, Jie; Wang, Chen; Ning, Wen; Wang, Jun

    2017-01-01

    Pulmonary hypertension (PH) remains a life-limiting disease characterized by pulmonary vascular remodelling due to aberrant proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), thus leading to raised pulmonary arterial pressure and right ventricular hypertrophy. Secreted glycoprotein follistatin-like 1 (FSTL1) has been reported to ameliorate tissue remodelling in cardiovascular injuries. However, the role of FSTL1 in deranged pulmonary arteries remains elusive. We found that there were higher serum levels of FSTL1 in patients with PH related to chronic obstructive pulmonary diseases (COPD) and in mice model of hypoxia-induced PH (HPH). Haploinsufficiency of Fstl1 in mice contributed to an exacerbated HPH, as demonstrated by increased right ventricular systolic pressure, pulmonary arterial muscularization and right ventricular hypertrophy index. Conversely, FSTL1 administration attenuated HPH. In cultured human PASMCs, hypoxia-promoted cellular viability, DNA synthesis and migration were suppressed by exogenous FSTL1 but enhanced by small interfering RNA targeting FSTL1. Additionally, FSTL1 inhibited the proliferation and migration of PASMCs via extracellular regulated kinase (ERK) signal pathway. All these findings indicate that FSTL1 imposed a protective modulation on pulmonary vascular remodelling, thereby suggesting its role in the regulation of HPH. PMID:28361925

  13. Protective Role of Grape Seed Proanthocyanidins Against Ccl4 Induced Acute Liver Injury in Mice

    PubMed Central

    Zou, Jinfa; Qi, Fengjie; Ye, Liping; Yao, Suyan

    2016-01-01

    Background We investigated the effect of grape seed proanthocyanidins (GSPs) on carbon tetrachloride (CCl4)-induced acute liver injury. Material/Methods Sixty SPF KM mice were randomly divided into 6 groups: the control group, CCl4-model group, bifendate group (DDB group), and low-, moderate-, and high-dose GSP groups. The following parameters were measured: serum levels of alanine aminotransferase (ALT); aspartate aminotransferase (AST); tumor necrosis factor (TNF)-α; interleukin-6 (IL-6); high-mobility group box (HMGB)-1; body weight; liver, spleen, and thymus indexes; superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity; HMGB1 mRNA; malondialdehyde (MDA) content; hepatocyte proliferation; and changes in liver histology. Results Compared to the CCl4-model group, decreases in liver index and increases in thymus index significantly increased SOD and GSH-Px activities and reduced MDA content, and higher hepatocyte proliferative activity was found in all GSP dose groups and the DDB group (all P<0.001). Compared with the CCl4-model group, serum TNF-α and IL-6 levels and HMGB 1 mRNA and protein expressions decreased significantly in the high GSP dose group (all P<0.05). Conclusions Our results provide strong evidence that administration of GSPs might confer significant protection against CCl4-induced acute liver injury in mice. PMID:26986029

  14. Growth hormone secretagogue receptor deficiency in mice protects against obesity‐induced hypertension

    PubMed Central

    Harris, Louise E.; Morgan, David G.; Balthasar, Nina

    2014-01-01

    Abstract Growth hormone secretagogue receptor (GHS‐R) signaling has been associated with growth hormone release, increases in food intake and pleiotropic cardiovascular effects. Recent data demonstrated that acute GHS‐R antagonism leads to increases in mean arterial pressure mediated by the sympathetic nervous system in rats; a highly undesirable effect if GHS‐R antagonism was to be used as a therapeutic approach to reducing food intake in an already obese, hypertensive patient population. However, our data in conscious, freely moving GHS‐R deficient mice demonstrate that chronic absence of GHS‐R signaling is protective against obesity‐induced hypertension. GHS‐R deficiency leads to reduced systolic blood pressure variability (SBPV); in response to acute high‐fat diet (HFD)‐feeding, increases in the sympathetic control of SBPV are suppressed in GHS‐R KO mice. Our data further suggest that GHS‐R signaling dampens the immediate HFD‐mediated increase in spontaneous baroreflex sensitivity. In diet‐induced obesity, absence of GHS‐R signaling leads to reductions in obesity‐mediated hypertension and tachycardia. Collectively, our findings thus suggest that chronic blockade of GHS‐R signaling may not result in adverse cardiovascular effects in obesity. PMID:24760503

  15. Probucol-Induced α-Tocopherol Deficiency Protects Mice against Malaria Infection

    PubMed Central

    Ishida, Noriko; Kume, Aiko; Hagihara, Yoshihisa; Yoshida, Yasukazu; Suzuki, Hiroshi

    2015-01-01

    The emergence of malaria pathogens having resistance against antimalarials implies the necessity for the development of new drugs. Recently, we have demonstrated a resistance against malaria infection of α-tocopherol transfer protein knockout mice showing undetectable plasma levels of α-tocopherol, a lipid-soluble antioxidant. However, dietary restriction induced α-tocopherol deficiency is difficult to be applied as a clinical antimalarial therapy. Here, we report on a new strategy to potentially treat malaria by using probucol, a drug that can reduce the plasma α-tocopherol concentration. Probucol pre-treatment for 2 weeks and treatment throughout the infection rescued from death of mice infected with Plasmodium yoelii XL-17 or P. berghei ANKA. In addition, survival was extended when the treatment started immediately after parasite inoculation. The ratio of lipid peroxidation products to parent lipids increased in plasma after 2 weeks treatment of probucol. This indicates that the protective effect of probucol might be mediated by the oxidative stressful environment induced by α-tocopherol deficiency. Probucol in combination with dihydroartemisin suppressed the proliferation of P. yoelii XL-17. These results indicated that probucol might be a candidate for a drug against malaria infection by inducing α-tocopherol deficiency without dietary α-tocopherol restriction. PMID:26296197

  16. Protective Effect of N-Acetylserotonin against Acute Hepatic Ischemia-Reperfusion Injury in Mice

    PubMed Central

    Yu, Shuna; Zheng, Jie; Jiang, Zhengchen; Shi, Caixing; Li, Jin; Du, Xiaodong; Wang, Hailiang; Jiang, Jiying; Wang, Xin

    2013-01-01

    The purpose of this study was to investigate the possible protective effect of N-acetylserotonin (NAS) against acute hepatic ischemia-reperfusion (I/R) injury in mice. Adult male mice were randomly divided into three groups: sham, I/R, and I/R + NAS. The hepatic I/R injury model was generated by clamping the hepatic artery, portal vein, and common bile duct with a microvascular bulldog clamp for 30 min, and then removing the clamp and allowing reperfusion for 6 h. Morphologic changes and hepatocyte apoptosis were evaluated by hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, respectively. Activated caspase-3 expression was evaluated by immunohistochemistry and Western blot. The activation of aspartate aminotransferase (AST), malondialdehyde (MDA), and superoxide dismutase (SOD) was evaluated by enzyme-linked immunosorbent assay (ELISA). The data show that NAS rescued hepatocyte morphological damage and dysfunction, decreased the number of apoptotic hepatocytes, and reduced caspase-3 activation. Our work demonstrates that NAS ameliorates hepatic IR injury. PMID:23994834

  17. Probucol-Induced α-Tocopherol Deficiency Protects Mice against Malaria Infection.

    PubMed

    Herbas, Maria Shirely; Shichiri, Mototada; Ishida, Noriko; Kume, Aiko; Hagihara, Yoshihisa; Yoshida, Yasukazu; Suzuki, Hiroshi

    2015-01-01

    The emergence of malaria pathogens having resistance against antimalarials implies the necessity for the development of new drugs. Recently, we have demonstrated a resistance against malaria infection of α-tocopherol transfer protein knockout mice showing undetectable plasma levels of α-tocopherol, a lipid-soluble antioxidant. However, dietary restriction induced α-tocopherol deficiency is difficult to be applied as a clinical antimalarial therapy. Here, we report on a new strategy to potentially treat malaria by using probucol, a drug that can reduce the plasma α-tocopherol concentration. Probucol pre-treatment for 2 weeks and treatment throughout the infection rescued from death of mice infected with Plasmodium yoelii XL-17 or P. berghei ANKA. In addition, survival was extended when the treatment started immediately after parasite inoculation. The ratio of lipid peroxidation products to parent lipids increased in plasma after 2 weeks treatment of probucol. This indicates that the protective effect of probucol might be mediated by the oxidative stressful environment induced by α-tocopherol deficiency. Probucol in combination with dihydroartemisin suppressed the proliferation of P. yoelii XL-17. These results indicated that probucol might be a candidate for a drug against malaria infection by inducing α-tocopherol deficiency without dietary α-tocopherol restriction.

  18. Opuntia ficus indica extract protects against chlorpyrifos-induced damage on mice liver.

    PubMed

    Ncibi, Saida; Ben Othman, Mahmoud; Akacha, Amira; Krifi, Mohamed Naceur; Zourgui, Lazhar

    2008-02-01

    This original study investigates the role of Opuntia ficus indica (cactus) cladodes extract against liver damage induced in male SWISS mice by an organophosphorous insecticide, the chlorpyrifos (CPF). Liver damage was evaluated by the measure of its weight and the quantification of some biochemical parameters, such as alanine amino transferase (ALAT), aspartate amino transferase (ASAT), phosphatase alkaline (PAL), lactate dehydrogenase (LDH), cholesterol and albumin in serum by spectrophotometric techniques. The experimental approach lasted 48 h and consisted of 6 treatments of six mice each one; (1) control, (2) 10 mg/kg (b.w) CPF, (3) 10mg/kg (b.w) CPF with 100 mg/kg (b.w) cactus, (4) 150 mg/kg (b.w)CPF, (5) 150 mg/kg (b.w) CPF with 1.5 g/kg cactus, (6) 1.5 g/kg cactus. Both chlorpyrifos and cactus were administrated orally via gavages. Our results showed that CPF affects significantly all parameters studied. However, when this pesticide was administrated associated to cactus, we noticed a recovery of all their levels. In the other hand, cactus alone did not affect the studied parameters. These results allow us to conclude firstly that CPF is hepatotoxic and secondly that Opuntia ficus indica stem extract protects the liver and decreases the toxicity induced by this organophosphorous pesticide.

  19. A recombinant pseudotyped lentivirus expressing the envelope glycoprotein of Hantaan virus induced protective immunity in mice

    PubMed Central

    2013-01-01

    Background Hantaviruses cause acute hemorrhagic fever with renal syndrome (HFRS). Currently, several types of inactivated HFRS vaccines are widely used, however the limited ability of these immunogen to elicit neutralizing antibodies restricts vaccine efficacy. Development of an effective vaccine to overcome this weakness is must. Methods In the present study, a recombinant pseudotyped lentivirus bearing the hantaan virus (HTNV) envelope glycoproteins (GP), rLV-M, was constructed. C57BL/6 mice were immunized with the rLV-M and a series of immunological assays were conducted to determine the immunogenicity of the recombinant pseudotyped lentivirus. The humoral and cell-mediated immune responses induced by rLV-M were compared with those of the inactivated HFRS vaccine. Results Indirect immunofluorescence assay (IFA) showed the rLV-M expressed target proteins in HEK-293cells. In mice, the rLV-M efficiently induced GP-specific humoral responses and protection against HTNV infection. Furthermore, the rLV-M induced higher neutralizing antibody titers than the inactivated HFRS vaccine control. Conclusions The results indicated the potential of using a pseudotyped lentivirus as a delivery vector for a hantavirus vaccine immunogen. PMID:24093752

  20. Protective effect of tetrahydrocoptisine against ethanol-induced gastric ulcer in mice

    SciTech Connect

    Li, Weifeng Huang, Huimin; Niu, Xiaofeng Fan, Ting; Mu, Qingli; Li, Huani

    2013-10-01

    Excessive alcohol consumption can lead to gastric ulcer and the present work was aimed to examine the protective effect of tetrahydrocoptisine (THC) in the model of ethanol-induced gastric ulcer in mice. Fasted mice treated with ethanol 75% (0.5 ml/100 g) were pre-treated with THC (10 or 20 mg/kg, ip), cimetidine (100 mg/kg, ip) or saline in different experimental sets for a period of 3 days, and animals were euthanized 4 h after ethanol ingestion. Gross and microscopic lesions, immunological and biochemical parameters were taken into consideration. The results showed that ethanol induced gastric damage, improving nitric oxide (NO) level, increased pro-inflammatory cytokine (TNF-α and IL-6) levels and myeloperoxidase (MPO) activity, as well as the expression of nuclear factor-κB (NF-κB) in the ethanol group. Pretreatment of THC at doses of 10 and 20 mg/kg bodyweight significantly attenuated the gastric lesions as compared to the ethanol group. These results suggest that the gastroprotective activity of THC is attributed to reducing NO production and adjusting the pro-inflammatory cytokine, inhibited neutrophil accumulation and NF-κB expression. - Highlights: • THC decreased ethanol-induced pro-inflammatory cytokine release. • THC inhibited the production of NO in serum and gastric tissue. • THC reduced NF-κB expression and MPO accumulation in ethanol-induced gastric tissue.

  1. Protective effects of icariin on cisplatin-induced acute renal injury in mice

    PubMed Central

    Ma, Pei; Zhang, Sen; Su, Xinlin; Qiu, Guixing; Wu, Zhihong

    2015-01-01

    Cisplatin chemotherapy often causes acute kidney injury in cancer patients. Icariin is a bioactive flavonoid, which has renal protection and anti-inflammation effects. This study investigated the mechanism underlying the attenuation of cisplatin-induced renal injury by icariin. BALB/c mice were treated with cisplatin (15 mg/kg) with or without treatment with icariin (30 or 60 mg/kg for 5 days). Renal function, histological changes, degree of oxidative stress and tubular apoptosis were examined. The effects of icariin on cisplatin-induced expression of renal TNF-α, NF-κB, cleaved caspase-3 and Bcl-2 family proteins were evaluated. Treatment of mice with cisplatin resulted in renal damage, showing an increase in blood urea nitrogen and creatinine levels, tubular damage, oxidative stress and apoptosis. These renal changes could be significantly improved by icariin treatment, especially in high dose of icariin group. Examination of molecules involving inflammation and apoptosis of the kidney revealed that treatment of icariin reduced expression of TNF-α, NF-κB, cleaved caspase-3, and Bax, increased the expression of BCL-2. These results indicate that icariin ameliorates the cisplatin-mediated nephrotoxicity via improving renal oxidant status, consequent NF-κB activation and inflammation cascade and apoptosis, and the following disturbed expression of apoptosis related proteins. PMID:26692955

  2. The protective effect of propylthiouracil against hepatotoxicity induced by chromium in adult mice.

    PubMed

    Ben Hamida, Fatma; Troudi, Afef; Sefi, Madiha; Boudawara, Tahia; Zeghal, Najiba

    2016-02-01

    Environmental and occupational exposure to chromium compounds, especially hexavalent chromium (Cr(VI)), is widely recognized as potentially hepatotoxic in humans and animals. Its toxicity is associated with overproduction of free radicals, which induces oxidative damage. This study focused on the possible protective effect of propylthiouracil (PTU) against potassium dichromate (K2Cr2O7). Female mice were divided into four groups (groups I-IV) with seven animals in each group. Group I served as a control, which received tap water; group II received K2Cr2O7 alone (75 mg kg(-1) body weight (b.w.)) via drinking water; group III received both K2Cr2O7 via drinking water and PTU by intramuscular injection at a dose 2.5 mg/100 g(-1) b.w. twice a week, and group IV received PTU alone twice a week for 30 days. Exposure of mice to Cr promoted oxidative stress with an increase in malondialdehyde, protein carbonyl, and advanced oxidation protein product levels. Nonenzymatic antioxidants such as glutathione, nonprotein thiol, vitamin C levels and enzymatic antioxidant activities such as glutathione peroxidase and superoxide dismutase were decreased, while catalase activity was increased. Biomarkers of liver injury such as aspartate and alanine transaminases, lactate dehydrogenase activities, bilirubin, albumin, and glucose levels were increased, while triglyceride and cholesterol levels decreased. Coadministration of PTU restored the above-mentioned parameters to near-normal values. The histological findings confirmed the biochemical results.

  3. Protective effect of grapefruit juice on the teratogenic and genotoxic damage induced by cadmium in mice.

    PubMed

    Argüelles, Nancy; Alvarez-González, Isela; Chamorro, Germán; Madrigal-Bujaidar, Eduardo

    2012-10-01

    In the present study, we injected pregnant mice at Day 7 of gestation with cadmium chloride (CC) (1.5 mg/kg) intraperitoneally and determined its effect on the frequency of fetal malformations at Day 17 of pregnancy. On the same day, we also determined the level of micronucleated polychromatic erythrocytes (MNPEs) and of micronucleated normochromatic erythrocytes (MNNEs) in blood cells of both the mothers and their fetuses. A significant increase in the number of malformations was found, mainly exencephaly, micrognathia, ablephary, microphthalmia, and clubfoot, as well as a significant increase in the amount of MNPEs and MNNEs. In addition, pregnant mice were administered grapefruit juice (GJ) orally from Days 0 to 17 of the experiment (from 200 to 800 μL/g) to evaluate the potential of the juice in preventing the damage induced by CC. We found a dose-dependent decrease in the number of visceral and skeletal malformations, as well as in the number of MNPEs and MNNEs, in both the mothers and their fetuses. Furthermore, we determined the level of DNA oxidation by measuring levels of the adduct 8-hydroxy-2'-deoxyguanosine, and we found a significant increase in such level induced by CC; in contrast, there was a significant decrease when we added GJ. Therefore, the observed teratogenic and genotoxic protection can probably be related with the antioxidant potential of GJ.

  4. Oral intake of beet extract provides protection against skin barrier impairment in hairless mice.

    PubMed

    Kawano, Ken-Ichi; Umemura, Kazuo

    2013-05-01

    The epidermis acts as a functional barrier against the external environment. Disturbances in the function of this barrier cause water loss and increase the chances of penetration by various irritable stimuli, leading to skin diseases such as dry skin, atopic dermatitis, and psoriasis. Ceramides are a critical natural element of the protective epidermal barrier. The aim of this study was to evaluate whether the oral intake of beet (Beta vulgaris) extract, a natural product rich in glucosylceramide (GlcCer), may prevent disturbance in skin barrier function. When HR-1 hairless mice were fed a special diet (HR-AD), transepidermal water loss (TEWL) from the dorsal skin increased, with a compensatory increase in water intake after 5 weeks. Mice fed with HR-AD had dry skin with erythema and showed increased scratching behaviour. Histological examinations revealed a remarkable increase in the thickness of the skin at 8 weeks. Supplemental addition of beet extract, which contained GlcCer at a final concentration of 0.1%, significantly prevented an increase TEWL, water intake, cumulative scratching time, and epidermal thickness at 8 weeks. These results indicate that oral intake of beet extract shows potential for preventing skin diseases associated with impaired skin barrier function.

  5. Anti-Staphylococcus aureus single-chain variable region fragments provide protection against mastitis in mice.

    PubMed

    Wang, Man; Zhang, Yan; Zhu, Jianguo

    2016-03-01

    Staphylococcus aureus is a leading causative agent of bovine mastitis, which can result in significant economic losses to the dairy industry. However, available vaccines against bovine mastitis do not confer adequate protection, although passive immunization with antibodies may be useful to prevent disease. Hence, we constructed a bovine single-chain variable region fragment (scFv) phage display library using cDNAs from peripheral blood lymphocytes of cows with S. aureus-induced mastitis. After four rounds of selection, eight scFvs that bound S. aureus antigens with high affinity were obtained. The framework regions of the variable domains (VH and VL) of the eight scFvs were highly conserved, and the complementarity-determining regions (CDRs) displayed significant diversity, especially CDR3 of the VH domain. All eight scFvs inhibited S. aureus growth in culture medium. Lactating mice were challenged by injecting S. aureus into the fourth mammary gland. Histopathological analysis showed that treatment with these scFvs prior to bacterial challenge maintained the structure of the mammary acini, decreased infiltration of polymorphonuclear neutrophils, increased levels of interferon-gamma and interleukin-4, and reduced tumor necrosis factor-alpha levels in mammary tissues, as compared with mice treatment with physiological saline (P < 0.05). These novel bovine scFvs may be suitable candidates for therapeutic agents for the prevention of S. aureus-induced bovine mastitis.

  6. Platycodin D protects against cigarette smoke-induced lung inflammation in mice.

    PubMed

    Gao, Wei; Guo, Ying; Yang, Hongxia

    2017-03-28

    Cigarette smoke is the one of the major factors that leads to chronic obstructive pulmonary disease (COPD). Inflammation and oxidant stress have been known to play critical roles in the development of COPD. Platycodin D (PLD) has been reported to have anti-inflammatory and anti-oxidant effects. In this study, we aimed to investigate the protective effects of PLD on cigarette smoke (CS)-induced lung inflammation in mice. PLD was adminstrated i.p. to mice 2h before CS exposure daily for five consecutive days. The production of inflammatory cytokines TNF-α and IL-1β were measured by ELISA. The levels of malonaldehyde (MDA) and nitric oxide (NO) were also detected in this study. The expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NF-κB, and IκBα were detected by western blot analysis. The results showed that PLD significantly attenuated CS-induced lung pathological changes, inflammatory cells infiltration, as well as TNF-α and IL-1β production. CS-induced MDA and NO production were also inhibited by treatment of PLD. Western blot analysis showed that PLD significantly suppressed CS-induced NF-κB activation. In addition, PLD was found to increase the expression of Nrf2 and HO-1. Taken together, these results indicated that PLD protected against CS-induced lung inflammation by inhibiting inflammatory and oxidative response through activating Nrf2 signaling pathway. PLD might be an effective treatment for CS-induced lung inflammation.

  7. Protective Role of Crocin Against Nicotine-induced Damages on Male Mice Liver

    PubMed Central

    Jalili, Cyrus; Tabatabaei, Hadis; Kakaberiei, Seyran; Roshankhah, Shiva; Salahshoor, Mohammad Reza

    2015-01-01

    Background: Nicotine is a major pharmacologically active substance in cigarette smoke. It is mainly metabolized in liver and causes devastating effects. Crocin is the chemical ingredient primarily responsible for the color of saffron. It has different pharmacological effects such as antioxidant and anticancer. This study was designed to evaluate the protective role of crocin against nicotine on the liver of mice. Methods: Forty-eight mice were equally divided into 8 groups; control (normal saline), nicotine (2.5 mg/kg), crocin (12.5, 25 and 50 mg/kg) and crocin plus nicotine treated groups. Saline, crocin, nicotine and crocin/nicotine (once a day) were intraperitoneally injected for 4 weeks. The liver weight and histology, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and serum nitric oxide levels have been studied. Results: The results indicated that nicotine administration significantly decreased liver weight (48.37%) and increased the mean diameter of hepatocyte (239%), central hepatic vein (28.45%), liver enzymes level (ALP 29.43%, AST 21.81%, ALT 21.55%), and blood serum nitric oxide level (57.18%) compared to saline group (P < 0.05). However, crocin and crocin plus nicotine administration significantly boosted liver weight (49.54%) and decreased the mean diameter of hepatocyte (40.48%), central hepatic vein (15.44%), liver enzymes (ALP 22.02%, AST 19.05%, ALT 23.11%), and nitric oxide levels (35.80%) in all groups compared to nicotine group (percentages represent the maximum dose) (P < 0.05). Conclusions: Crocin showed its partly protective effect against nicotine-induced liver toxicity. PMID:26442615

  8. High-Fat Feeding Does Not Disrupt Daily Rhythms in Female Mice because of Protection by Ovarian Hormones

    PubMed Central

    Palmisano, Brian T.; Stafford, John M.; Pendergast, Julie S.

    2017-01-01

    Obesity in women is increased by the loss of circulating estrogen after menopause. Shift work, which disrupts circadian rhythms, also increases the risk for obesity. It is not known whether ovarian hormones interact with the circadian system to protect females from obesity. During high-fat feeding, male C57BL/6J mice develop profound obesity and disruption of daily rhythms. Since C57BL/6J female mice did not develop diet-induced obesity (during 8 weeks of high-fat feeding), we first determined if daily rhythms in female mice were resistant to disruption from high-fat diet. We fed female PERIOD2:LUCIFERASE mice 45% high-fat diet for 1 week and measured daily rhythms. Female mice retained robust rhythms of eating behavior and locomotor activity during high-fat feeding that were similar to chow-fed females. In addition, the phase of the liver molecular timekeeping (PER2:LUC) rhythm was not altered by high-fat feeding in females. To determine if ovarian hormones protected daily rhythms in female mice from high-fat feeding, we analyzed rhythms in ovariectomized mice. During high-fat feeding, the amplitudes of the eating behavior and locomotor activity rhythms were reduced in ovariectomized females. Liver PER2:LUC rhythms were also advanced by ~4 h by high-fat feeding, but not chow, in ovariectomized females. Together these data show circulating ovarian hormones protect the integrity of daily rhythms in female mice during high-fat feeding. PMID:28352249

  9. Rickettsia rickettsii outer membrane protein YbgF induces protective immunity in C3H/HeN mice.

    PubMed

    Gong, Wenping; Qi, Yong; Xiong, Xiaolu; Jiao, Jun; Duan, Changsong; Wen, Bohai

    2015-01-01

    Rickettsia rickettsii is the etiological agent of Rocky Mountain spotted fever (RMSF). YbgF and TolC are outer membrane-associated proteins of R. rickettsii that play important roles in its interaction with host cells. We investigated the immunogenicity of YbgF and TolC for protection against RMSF. We immunized C3H/HeN mice with recombinant R. rickettsii YbgF (rYbgF) or TolC (rTolC). Rickettsial burden and impairment in the lungs, spleens, and livers of rYbgF-immunized mice were significantly lower than in rTolC-immunized mice. The ratio of IgG2a to IgG1 in rYbgF-immunized mice continued to increase over the course of our experiments, while that in rTolC-immunized mice was reduced. The proliferation and cytokine secretion of CD4(+) and CD8(+) T cells isolated from R. rickettsii-infected mice were analyzed following antigen stimulation. The results indicated that proliferation and interferon (IFN)-γ secretion of CD4(+) or CD8(+) T cells in R. rickettsii-infected mice were significantly greater than in uninfected mice after stimulation with rYbgF. YbgF is a novel protective antigen of R. rickettsii. Protection conferred by YbgF is dependent upon IFN-γ-producing CD4(+) and CD8(+) T cells and IgG2a, which act in synergy to control R. rickettsii infection.

  10. High-Fat Feeding Does Not Disrupt Daily Rhythms in Female Mice because of Protection by Ovarian Hormones.

    PubMed

    Palmisano, Brian T; Stafford, John M; Pendergast, Julie S

    2017-01-01

    Obesity in women is increased by the loss of circulating estrogen after menopause. Shift work, which disrupts circadian rhythms, also increases the risk for obesity. It is not known whether ovarian hormones interact with the circadian system to protect females from obesity. During high-fat feeding, male C57BL/6J mice develop profound obesity and disruption of daily rhythms. Since C57BL/6J female mice did not develop diet-induced obesity (during 8 weeks of high-fat feeding), we first determined if daily rhythms in female mice were resistant to disruption from high-fat diet. We fed female PERIOD2:LUCIFERASE mice 45% high-fat diet for 1 week and measured daily rhythms. Female mice retained robust rhythms of eating behavior and locomotor activity during high-fat feeding that were similar to chow-fed females. In addition, the phase of the liver molecular timekeeping (PER2:LUC) rhythm was not altered by high-fat feeding in females. To determine if ovarian hormones protected daily rhythms in female mice from high-fat feeding, we analyzed rhythms in ovariectomized mice. During high-fat feeding, the amplitudes of the eating behavior and locomotor activity rhythms were reduced in ovariectomized females. Liver PER2:LUC rhythms were also advanced by ~4 h by high-fat feeding, but not chow, in ovariectomized females. Together these data show circulating ovarian hormones protect the integrity of daily rhythms in female mice during high-fat feeding.

  11. Overexpression of apolipoprotein A5 in mice is not protective against body weight gain and aberrant glucose homeostasis.

    PubMed

    Pamir, Nathalie; McMillen, Timothy S; Li, Yu-I; Lai, Ching-Mei; Wong, Howard; LeBoeuf, Renée C

    2009-04-01

    Apolipoprotein A5 (APOA5) is expressed primarily in the liver and modulates plasma triglyceride levels in mice and humans. Mice overexpressing APOA5 exhibit reduced plasma triglyceride levels. Because there is a tight association between plasma triglyceride concentration and traits of the metabolic syndrome, we used transgenic mice overexpressing human APOA5 to test the concept that these mice would be protected from diet-induced obesity and insulin resistance. Male and female transgenic and wild-type mice on the FVB/N genetic background were fed standard rodent chow or a diet rich in fat and sucrose for 18 weeks, during which time clinical phenotypes associated with obesity and glucose homeostasis were measured. We found that APOA5 transgenic (A5tg) mice were resistant to diet-induced changes in plasma triglyceride but not total cholesterol levels. Body weights were similar between the genotypes for females and males, although male A5tg mice showed a modest but significant increase in the relative size of inguinal fat pads. Although male A5tg mice showed a significantly increased ratio of plasma glucose to insulin, profiles of glucose clearance as evaluated after injections of glucose or insulin failed to reveal any differences between genotypes. Overall, our data showed that there was no advantage to responses to diet-induced obesity with chronic reduction of plasma triglyceride levels as mediated by overexpression of APOA5.

  12. Addition of açaí (Euterpe oleracea) to cigarettes has a protective effect against emphysema in mice.

    PubMed

    de Moura, Roberto Soares; Pires, Karla Maria Pereira; Santos Ferreira, Thiago; Lopes, Alan Aguiar; Nesi, Renata Tiscoski; Resende, Angela Castro; Sousa, Pergentino Jose Cunha; da Silva, Antonio Jorge Ribeiro; Porto, Luis Cristóvão; Valenca, Samuel Santos

    2011-04-01

    Chronic inhalation of cigarette smoke (CS) induces emphysema by the damage contributed by oxidative stress during inhalation of CS. Ingestion of açai fruits (Euterpe oleracea) in animals has both antioxidant and anti-inflammatory effects. This study compared lung damage in mice induced by chronic (60-day) inhalation of regular CS and smoke from cigarettes containing 100mg of hydroalcoholic extract of açai berry stone (CS + A). Sham smoke-exposed mice served as the control group. Mice were sacrificed on day 60, bronchoalveolar lavage was performed, and the lungs were removed for histological and biochemical analyses. Histopathological investigation showed enlargement of alveolar space in CS mice compared to CS + A and control mice. The increase in leukocytes in the CS group was higher than the increase observed in the CS + A group. Oxidative stress, as evaluated by antioxidant enzyme activities, mieloperoxidase, glutathione, and 4-hydroxynonenal, was reduced in mice exposed to CS+A versus CS. Macrophage and neutrophil elastase levels were reduced in mice exposed to CS + A versus CS. Thus, the presence of açai extract in cigarettes had a protective effect against emphysema in mice, probably by reducing oxidative and inflammatory reactions. These results raise the possibility that addition of açaí extract to normal cigarettes could reduce their harmful effects.

  13. A live attenuated human metapneumovirus vaccine strain provides complete protection against homologous viral infection and cross-protection against heterologous viral infection in BALB/c mice.

    PubMed

    Liu, Ping; Shu, Zhou; Qin, Xian; Dou, Ying; Zhao, Yao; Zhao, Xiaodong

    2013-08-01

    A live attenuated vaccine candidate strain (M2) of human metapneumovirus (hMPV) was generated by removing the N-linked carbohydrate at amino acid 172 in the fusion (F) protein. Previously, replication of M2 in mouse lungs could be detected by molecular assays but not by viral titration. In the present study, the protective effects of M2 against infection by homologous or heterologous viruses were evaluated in BALB/c mice. Immunization with M2 produced a high titer of serum virus-neutralizing antibodies in BALB/c mice at 4 and 8 weeks postimmunization, with the titers against the homologous virus being higher than those against the heterologous virus. Challenges at 4 and 8 weeks postinoculation with M2 or wild-type virus led to no replication when mice were challenged with a homologous virus and extremely reduced replication when mice were challenged with a heterologous virus, as determined by the detection of viral genomic RNA copies in the lungs, as well as significantly milder pulmonary pathology. Thus, M2, with only one N-linked carbohydrate removed in the F protein, provides complete protection from homologous virus infection and substantial cross-protection from heterologous virus infection for at least 56 days after inoculation. This vaccine strain may therefore be a candidate for further preclinical study. Furthermore, this attenuating strategy (changing the glycosylation of a major viral protein) may be useful in the development of other viral vaccines.

  14. Toll-like receptor 4 protects against stress-induced ulcers via regulation of glucocorticoid production in mice.

    PubMed

    Wang, Liang; Luo, Pengfei; Zhang, Fang; Zhang, Yuelu; Wang, Xingtong; Chang, Fei; Zhang, Yuechan; Tang, Hongtai; Xia, Zhaofan

    2017-01-01

    Stress-induced gastric ulcer is an important life-threatening condition, while the molecular basis of its development is incompletely understood. Toll-like receptor 4 (TLR4), an innate immune pattern recognition receptor, can induce pro-inflammatory transcription, aggravating a stress ulcer. The present study found that TLR4 played a protective role in a mouse model of water immersion (23 °C) restraint stress. Wild-type (WT) and TLR4(-/-) male mice were respectively divided into five groups (5 per group), and exposed to the stressor for 0, 0.5, 1, 2, or 4 hours. Gastric ulcer index, determined post mortem, increased with time in both types of mice but was greater in TLR4(-/-) mice. Furthermore, increased serum cortisol and corticosterone concentrations were observed in WT mice only, and such increases were detected only in WT mice 4 h after lipopolysaccharide (LPS) treatment (2 mg/kg, intraperitoneal injection). Moreover, the administration of cortisol alleviated the gastric injury in TLR4(-/-) mice. Western blotting showed expression in the adrenal of P450scc (CYP11A1), the first rate-limiting enzyme in the synthesis of steroids, was increased 4 h after water immersion restraint stress or LPS treatment in WT mice, but was conversely decreased in TLR4(-/-) mice after either stressor. Furthermore, in adrenal glands of TLR4(-/-) mice, structural distortion of mitochondria (which contain CYP11A1) was found with electron microscopy, and lack of lipid-storing droplets was found using light microscopy on adrenal cryosections stained with Oil red O. These data indicate that TLR4 plays a protective role in stress-induced gastric ulcer that is exerted via impacting synthesis of glucocorticoid in the adrenal gland.

  15. Resveratrol as a calorie restriction mimetic: therapeutic implications

    PubMed Central

    Chung, Jay H.; Manganiello, Vincent; Dyck, Jason R.B.

    2012-01-01

    It is widely believed that calorie restriction (CR) can extend the lifespan of model organisms and protect against aging-related diseases. A potential CR mimetic is resveratrol, which may have beneficial effects against numerous diseases such as type 2 diabetes, cardiovascular diseases, and cancer in tissue culture and animal models. However, resveratrol in its current form is not ideal as therapy, because even at very high doses it has modest efficacy and many downstream effects. Identifying the cellular targets responsible for the effects of resveratrol and developing target-specific therapies will be helpful in increasing the efficacy of this drug without increasing its potential adverse effects. A recent discovery suggests that the metabolic effects of resveratrol may be mediated by inhibiting cAMP phosphodiesterases (PDEs), particularly PDE4. Here, we review the current literature on the metabolic and cardiovascular effects of resveratrol and attempt to shed light on the controversies surrounding its action. PMID:22885100

  16. Genes controlling mimetic colour pattern variation in butterflies.

    PubMed

    Nadeau, Nicola J

    2016-10-01

    Butterfly wing patterns are made up of arrays of coloured scales. There are two genera in which within-species variation in wing patterning is common and has been investigated at the molecular level, Heliconius and Papilio. Both of these species have mimetic relationships with other butterfly species that increase their protection from predators. Heliconius have a 'tool-kit' of five genetic loci that control colour pattern, three of which have been identified at the gene level, and which have been repeatedly used to modify colour pattern by different species in the genus. By contrast, the three Papilio species that have been investigated each have different genetic mechanisms controlling their polymorphic wing patterns.

  17. Adenoviral Expression of a Bispecific VHH-Based Neutralizing Agent That Targets Protective Antigen Provides Prophylactic Protection from Anthrax in Mice

    PubMed Central

    Moayeri, Mahtab; Tremblay, Jacqueline M.; Debatis, Michelle; Dmitriev, Igor P.; Kashentseva, Elena A.; Yeh, Anthony J.; Cheung, Gordon Y. C.; Curiel, David T.; Leppla, Stephen

    2016-01-01

    Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 μg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 μg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 μg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors. PMID:26740390

  18. Adenoviral Expression of a Bispecific VHH-Based Neutralizing Agent That Targets Protective Antigen Provides Prophylactic Protection from Anthrax in Mice.

    PubMed

    Moayeri, Mahtab; Tremblay, Jacqueline M; Debatis, Michelle; Dmitriev, Igor P; Kashentseva, Elena A; Yeh, Anthony J; Cheung, Gordon Y C; Curiel, David T; Leppla, Stephen; Shoemaker, Charles B

    2016-01-06

    Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 μg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 μg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 μg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors.

  19. Protective Effect of Grape Seed Proanthocyanidins against Liver Ischemic Reperfusion Injury: Particularly in Diet-Induced Obese Mice

    PubMed Central

    Song, Xiaoyu; Xu, Hongde; Feng, Yanling; Li, Xiaoman; Lin, Meina; Cao, Liu

    2012-01-01

    Background: Hepatic ischemia and reperfusion injury (IRI) is a major complication in liver surgery, and hepatic steatosis is a primary factor aggravating cellular injury during IRI. Both pro-inflammatory cytokines and reactive oxygen species (ROS) are key mediators of hepatic IRI. Ischemic preconditioning (IpreC), remote ischemia preconditioning (RIPC) and ischemic postconditioning (IpostC) have offered protections on hepatic IRI, but all these methods have their own shortcomings. Grape seed proanthocyanidins (GSP) has a broad spectrum of pharmacological properties against oxidative stress. Thus, GSP has potential protective effects against hepatic IRI. Methods: C57BL/6 mice suffering 30mins hepatic ischemia process were sacrificed after 1h reperfusion to build murine warm hepatic IRI model. The mice were injected GSP intraperitoneally 10, 20, 40mg/kg/day for 3 weeks as pharmacological preconditioning. Obese mice fed with high-fat diet for 24 weeks before used. Three pathways related to IRI, including ROS elimination, pro-inflammatory cytokines release and hypoxia responses were examined. Results: Our data show that GSP could significantly reduce hepatic IRI by protecting hepatocyte function and increasing the activity of ROS scavengers, as well as decreasing cytokines levels. At the same time, GSP also enhance the hypoxia tolerance response. Combined GSP and postconditioning can provided synergistic protection. In the obese mice suffering hepatic IRI group, GSP was more effective than postconditioning on protecting liver against IRI, and the combined strategy was obviously superior to the solo treatment. Conclusion: GSP could protect liver against IRI: particularly in high-fat diet induced obese mice. GSP used as pharmacological preconditioning and combined with other protocols have huge potential to be used in clinical. PMID:23139633

  20. Neonatal motoneurons overexpressing the bcl-2 protooncogene in transgenic mice are protected from axotomy-induced cell death.

    PubMed Central

    Dubois-Dauphin, M; Frankowski, H; Tsujimoto, Y; Huarte, J; Martinou, J C

    1994-01-01

    In vitro, the overexpression of the bcl-2 protooncogene in cultured neurons has been shown to prevent apoptosis induced by neurotrophic factor deprivation. We have generated transgenic mice overexpressing the Bcl-2 protein in neurons, including motoneurons of the facial nucleus. We have tested whether Bcl-2 could protect these motoneurons from experimentally induced cell death in new born mice. To address this question, we performed unilateral lesion of the facial nerve of wild-type and transgenic 2-day-old mice. In wild-type mice, the lesioned nerve and the corresponding motoneuron cell bodies in the facial nucleus underwent rapid degeneration. In contrast, in transgenic mice, facial motoneurons survived axotomy. Not only their cell bodies but also their axons were protected up to the lesion site. These results demonstrate that in vivo Bcl-2 protects neonatal motoneurons from degeneration after axonal injury. A better understanding of the mechanisms by which Bcl-2 prevents neuronal cell death in vivo could lead to the development of strategies for the treatment of motoneuron degenerative diseases. Images PMID:8159744

  1. Short-Term Long Chain Omega3 Diet Protects from Neuroinflammatory Processes and Memory Impairment in Aged Mice

    PubMed Central

    Joffre, Corinne; Costes, Laurence; Aubert, Agnès; Grégoire, Stéphane; Bretillon, Lionel; Layé, Sophie

    2012-01-01

    Regular consumption of food enriched in omega3 polyunsaturated fatty acids (ω3 PUFAs) has been shown to reduce risk of cognitive decline in elderly, and possibly development of Alzheimer's disease. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the most likely active components of ω3-rich PUFAs diets in the brain. We therefore hypothesized that exposing mice to a DHA and EPA enriched diet may reduce neuroinflammation and protect against memory impairment in aged mice. For this purpose, mice were exposed to a control diet throughout life and were further submitted to a diet enriched in EPA and DHA during 2 additional months. Cytokine expression together with a thorough analysis of astrocytes morphology assessed by a 3D reconstruction was measured in the hippocampus of young (3-month-old) and aged (22-month-old) mice. In addition, the effects of EPA and DHA on spatial memory and associated Fos activation in the hippocampus were assessed. We showed that a 2-month EPA/DHA treatment increased these long-chain ω3 PUFAs in the brain, prevented cytokines expression and astrocytes morphology changes in the hippocampus and restored spatial memory deficits and Fos-associated activation in the hippocampus of aged mice. Collectively, these data indicated that diet-induced accumulation of EPA and DHA in the brain protects against neuroinflammation and cognitive impairment linked to aging, further reinforcing the idea that increased EPA and DHA intake may provide protection to the brain of aged subjects. PMID:22662127

  2. Adoptive transfer of helminth antigen-pulsed dendritic cells protects against the development of experimental colitis in mice.

    PubMed

    Matisz, Chelsea E; Leung, Gabriella; Reyes, Jose Luis; Wang, Arthur; Sharkey, Keith A; McKay, Derek M

    2015-11-01

    Infection with helminth parasites and treatment with worm extracts can suppress inflammatory disease, including colitis. Postulating that dendritic cells (DCs) participated in the suppression of inflammation and seeking to move beyond the use of helminths per se, we tested the ability of Hymenolepis diminuta antigen-pulsed DCs to suppress colitis as a novel cell-based immunotherapy. Bone marrow derived DCs pulsed with H. diminuta antigen (HD-DCs), or PBS-, BSA-, or LPS-DCs as controls, were transferred into wild-type (WT), interleukin-10 (IL-10) knock-out (KO), and RAG-1 KO mice, and the impact on dinitrobenzene sulphonic acid (DNBS)-induced colitis and splenic cytokine production assessed 72 h later. Mice receiving HD-DCs were significantly protected from DNBS-induced colitis and of the experimental groups only these mice displayed increased Th2 cytokines and IL-10 production. Adoptive transfer of HD-DCs protected neither RAG-1 nor IL-10 KO mice from DNBS-colitis. Furthermore, the transfer of CD4(+) splenocytes from recipients of HD-DCs protected naïve mice against DNBS-colitis, in an IL-10 dependent manner. Thus, HD-DCs are a novel anti-colitic immunotherapy that can educate anti-colitic CD4(+) T cells: mechanistically, the anti-colitic effect of HD-DCs requires that the host has an adaptive immune response and the ability to mobilize IL-10.

  3. PGE2 receptor agonist misoprostol protects brain against intracerebral hemorrhage in mice

    PubMed Central

    Wu, He; Wu, Tao; Hua, Wei; Dong, Xianghui; Gao, Yufeng; Zhao, Xiaochun; Chen, Wenwu; Cao, Wangsen; Yang, Qingwu; Qi, Jiping; Zhou, Jin; Wang, Jian

    2015-01-01

    Intracerebral hemorrhage (ICH) is a devastating form of stroke. Misoprostol, a synthetic PGE1 analog and PGE2 receptor agonist, has shown protection against cerebral ischemia. In this study, we tested the efficacy of misoprostol in 12-month-old mice subjected to one of two complementary ICH models, the collagenase model (primary study) and blood model (secondary study, performed in an independent laboratory). We also investigated its potential mechanism of action. Misoprostol post-treatment decreased brain lesion volume, edema, and brain atrophy and improved long-term functional outcomes. In the collagenase-induced ICH model, misoprostol decreased cellular inflammatory response; attenuated oxidative brain damage and gelatinolytic activity; and decreased HMGB1 expression, Src kinase activity, and interleukin-1β expression without affecting cyclooxygenase-2 expression. Further, HMGB1 inhibition with glycyrrhizin decreased Src kinase activity, gelatinolytic activity, neuronal death, and brain lesion volume. Src kinase inhibition with PP2 decreased gelatinolytic activity and brain edema and improved neurologic function, but did not decrease HMGB1 protein level. These results indicate that misoprostol protects brain against ICH injury through mechanisms that may involve the HMGB1, Src kinase, and MMP-2/9 pathway. PMID:25623334

  4. Systemic Administration of Proteoglycan Protects BALB/c Retired Breeder Mice from Experimental Arthritis.

    PubMed

    Ishikawa, Larissa Lumi Watanabe; Colavite, Priscila Maria; Fraga-Silva, Thais Fernanda de Campos; Mimura, Luiza Ayumi Nishiyama; França, Thais Graziela Donegá; Zorzella-Pezavento, Sofia Fernanda Gonçalves; Chiuso-Minicucci, Fernanda; Marcolino, Larissa Doddi; Marques, Camila; Ikoma, Maura Rosane Valerio; Sartori, Alexandrina

    2016-01-01

    This study was undertaken to evaluate the prophylactic potential of proteoglycan (PG) administration in experimental arthritis. Female BALB/c retired breeder mice received two (2xPG50 and 2xPG100 groups) or three (3xPG50 group) intraperitoneal doses of bovine PG (50 μg or 100 μg) every three days. A week later the animals were submitted to arthritis induction by immunization with three i.p. doses of bovine PG associated with dimethyldioctadecylammonium bromide adjuvant at intervals of 21 days. Disease severity was daily assessed after the third dose by score evaluation. The 3xPG50 group showed significant reduction in prevalence and clinical scores. This protective effect was associated with lower production of IFN-γ and IL-17 and increased production of IL-5 and IL-10 by spleen cells restimulated in vitro with PG. Even though previous PG administration restrained dendritic cells maturation this procedure did not alter the frequency of regulatory Foxp3(+) T cells. Lower TNF-α and IL-6 levels and higher expression of ROR-γ and GATA-3 were detected in the paws of protected animals. A delayed-type hypersensitivity reaction confirmed specific tolerance induction. Taken together, these results indicate that previous PG inoculation determines a specific tolerogenic effect that is able to decrease severity of subsequently induced arthritis.

  5. Systemic Administration of Proteoglycan Protects BALB/c Retired Breeder Mice from Experimental Arthritis

    PubMed Central

    Ishikawa, Larissa Lumi Watanabe; Colavite, Priscila Maria; Fraga-Silva, Thais Fernanda de Campos; Mimura, Luiza Ayumi Nishiyama; França, Thais Graziela Donegá; Zorzella-Pezavento, Sofia Fernanda Gonçalves; Chiuso-Minicucci, Fernanda; Marcolino, Larissa Doddi; Marques, Camila; Ikoma, Maura Rosane Valerio; Sartori, Alexandrina

    2016-01-01

    This study was undertaken to evaluate the prophylactic potential of proteoglycan (PG) administration in experimental arthritis. Female BALB/c retired breeder mice received two (2xPG50 and 2xPG100 groups) or three (3xPG50 group) intraperitoneal doses of bovine PG (50 μg or 100 μg) every three days. A week later the animals were submitted to arthritis induction by immunization with three i.p. doses of bovine PG associated with dimethyldioctadecylammonium bromide adjuvant at intervals of 21 days. Disease severity was daily assessed after the third dose by score evaluation. The 3xPG50 group showed significant reduction in prevalence and clinical scores. This protective effect was associated with lower production of IFN-γ and IL-17 and increased production of IL-5 and IL-10 by spleen cells restimulated in vitro with PG. Even though previous PG administration restrained dendritic cells maturation this procedure did not alter the frequency of regulatory Foxp3+ T cells. Lower TNF-α and IL-6 levels and higher expression of ROR-γ and GATA-3 were detected in the paws of protected animals. A delayed-type hypersensitivity reaction confirmed specific tolerance induction. Taken together, these results indicate that previous PG inoculation determines a specific tolerogenic effect that is able to decrease severity of subsequently induced arthritis. PMID:27294161

  6. The protective effect of astaxanthin on fetal alcohol spectrum disorder in mice.

    PubMed

    Zheng, Dong; Li, Yi; He, Lei; Tang, Yamei; Li, Xiangpen; Shen, Qingyu; Yin, Deling; Peng, Ying

    2014-09-01

    Astaxanthin is a strong antioxidant with the ability of reducing the markers of inflammation. To explore the protective effect of astaxanthin on maternal ethanol induced embryonic deficiency, and to investigate the underlying mechanisms, we detected the morphology, expression of neural marker genes, oxidative stress indexes, and inflammatory factors in mice model of fetal alcohol spectrum disorder with or without astaxanthin pretreatment. Our results showed that astaxanthin blocked maternal ethanol induced retardation of embryonic growth, and the down-regulation of neural marker genes, Otx1 and Sox2. Moreover, astaxanthin also reversed the increases of malondialdehyde (MDA), hydrogen peroxide (H2O2), and the decrease of glutathione peroxidase (GPx) in fetal alcohol spectrum disorder. In addition, maternal ethanol induced up-regulation of toll-like receptor 4 (TLR4), and the down-streaming myeloid differentiation factor 88 (MyD88), NF-κB, TNF-α, and IL-1β in embryos, and this was inhibited by astaxanthin pretreatment. These results demonstrated a protective effect of astaxanthin on fetal alcohol spectrum disorder, and suggested that oxidative stress and TLR4 signaling associated inflammatory reaction are involved in this process.

  7. Prolonged treatment of fair-skinned mice with topical forskolin causes persistent tanning and UV protection.

    PubMed

    Spry, Malinda L; Vanover, Jillian C; Scott, Timothy; Abona-Ama, Osama; Wakamatsu, Kazumasa; Ito, Shosuke; D'Orazio, John A

    2009-04-01

    We previously reported that topical application of forskolin to the skin of fair-skinned MC1R-defective mice with epidermal melanocytes resulted in accumulation of eumelanin in the epidermis and was highly protective against UV-mediated cutaneous injury. In this report, we describe the long-term effects of chronic topical forskolin treatment in this animal model. Forskolin-induced eumelanin production persisted through 3 months of daily applications, and forskolin-induced eumelanin remained protective against UV damage as assessed by minimal erythematous dose (MED). No obvious toxic changes were noted in the skin or overall health of animals exposed to prolonged forskolin therapy. Body weights were maintained throughout the course of topical forskolin application. Topical application of forskolin was associated with an increase in the number of melanocytes in the epidermis and thickening of the epidermis due, at least in part, to an accumulation of nucleated keratinocytes. Together, these data suggest in this animal model, short-term topical regular application of forskolin promotes eumelanin induction and that over time, topical forskolin treatment is associated with persistent melanization, epidermal cell accumulation, and skin thickening.

  8. Vectored ImmunoProphylaxis Protects Humanized Mice from Mucosal HIV Transmission

    PubMed Central

    Balazs, Alejandro B.; Ouyang, Yong; Hong, Christin M.; Chen, Joyce; Nguyen, Steven M.; Rao, Dinesh S.; An, Dong Sung; Baltimore, David

    2014-01-01

    The vast majority of new HIV infections result from relatively inefficient transmission1,2 of the virus across mucosal surfaces during sexual intercourse3. A consequence of this inefficiency is that small numbers of transmitted founder viruses initiate most heterosexual infections4. This natural bottleneck to transmission has stimulated efforts to develop interventions aimed at blocking this step of the infection process5. Despite the promise of this strategy, clinical trials of pre-exposure prophylaxis have had limited degrees of success in humans, due in part to lack of adherence to the recommended pre-exposure treatment regimens6,7. In contrast, a number of existing vaccines elicit systemic immunity that protects against mucosal infections, such as the vaccines for influenza8 and HPV9. We recently demonstrated the ability of vectored immunoprophylaxis (VIP) to prevent intravenous transmission of HIV using broadly neutralizing antibodies10. Here we demonstrate that VIP is capable of protecting humanized mice from intravenous as well as vaginal challenge with diverse viral strains, despite repeated exposures. Moreover, animals receiving VIP that expresses a modified VRC07 antibody were completely resistant to repetitive intravaginal challenge by a heterosexually transmitted founder HIV strain11, suggesting that VIP may be effective in preventing vaginal transmission of HIV between humans. PMID:24509526

  9. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice.

    PubMed

    Shao, Guoxi; Tian, Yinggang; Wang, Haiyu; Liu, Fangning; Xie, Guanghong

    2015-12-01

    Melatonin, a secretory product of the pineal gland, has been reported to have antioxidant and anti-inflammatory effects. However, the protective effects of melatonin on lipopolysaccharide (LPS)-induced mastitis have not been reported. The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of melatonin on LPS-induced mastitis both in vivo and in vitro. In vivo, our results showed that melatonin attenuated LPS-induced mammary histopathologic changes and myeloperoxidase (MPO) activity. Melatonin also inhibited LPS-induced inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) production in mammary tissues. In vitro, melatonin was found to inhibit LPS-induced TNF-α and IL-6 production in mouse mammary epithelial cells. Melatonin also suppressed LPS-induced Toll-like receptor 4 (TLR4) expression and nuclear factor-kappaB (NF-κB) activation in a dose-dependent manner. In addition, melatonin was found to up-regulate the expression of PPAR-γ. Inhibition of PPAR-γ by GW9662 reduced the anti-inflammatory effects of melatonin. In conclusion, we found that melatonin, for the first time, had protective effects on LPS-induced mastitis in mice. The anti-inflammatory mechanism of melatonin was through activating PPAR-γ which subsequently inhibited LPS-induced inflammatory responses.

  10. β-glucans from Coriolus versicolor protect mice against S. typhimurium challenge by activation of macrophages.

    PubMed

    Shi, Shao-Hua; Yang, Wen-Tao; Huang, Ke-Yan; Jiang, Yan-Long; Yang, Gui-Lian; Wang, Chun-Feng; Li, Yu

    2016-05-01

    The effects of β-glucans from Coriolus versicolor (CVP), which are extracted from a well-known immune stimulator C. versicolor, have been demonstrated extensively in vitro and in vivo. However, until now, the phagocytic activity has not been elucidated. Hence, the objective of the present study was to identify the antibacterial activity of CVP or CVP-treated macrophages by an analysis of cell cytotoxicity, phagocytic activity, intracellular bacterial survival, macrophage activation, production of nitric oxide (NO) and expression of inducible nitric oxide synthase (iNOS) in CVP-treated macrophages using flow cytometry, RT-PCR, a gentamicin protection assay, a Nitric oxide assay and an iNOS enzymatic activity assay. The results indicate that CVP-treated macrophages can phagocytize and kill bacteria, probably due to the production of NO and iNOS. More importantly, CVP-treated macrophages are effective at protecting mice against the challenge of Salmonella typhimurium. The results of this study suggest that the antibacterial effects of CVP are probably caused by the activation of innate immune cells, especially macrophages, because the activated macrophage produces NO, which kills bacteria. These phenomena indicate the possibility of CVP as a potential alternative for antibiotics against resistant bacteria.

  11. Immune responses and protection induced by Brucella suis S2 bacterial ghosts in mice.

    PubMed

    Liu, Jun; Li, Yi; Sun, Yang; Ji, Xue; Zhu, Lingwei; Guo, Xuejun; Zhou, Wei; Zhou, Bo; Liu, Shuang; Zhang, Ruian; Feng, Shuzhang

    2015-08-15

    With the purpose of generating Brucella suis bacterial ghosts and investigating the immunogenicity of bacterial ghosts as a vaccine candidate, the lysis gene E and temperature-sensitive regulator cassette were cloned into a shuttle plasmid, pBBR1MCS-2, for construction of a recombinant temperature-sensitive shuttle lysis plasmid, pBBR1MCS-E. pBBR1MCS-E was then introduced into attenuated B. suis live vaccine S2 bacteria, and the resultant transformants were used for production of B. suis ghosts (BSGs) by inducing lysis gene E expression. The BSGs were characterized by observing their morphology by transmission electron microscopy. The safety and immunogenicity of BSGs were further evaluated using a murine model, the result suggested that BSG was as safe as formalin-killed B. suis. In mice, BSG demonstrated a similar capacity of inducing pathogen-specific serum IgG antibody response, spleen CD3(+) and CD4(+) T cell responses, induce secretion of gamma interferon and interleukin-4, and protection levels against Brucella melitensis 16M challenge, as the attenuated B. suis live vaccine. These data suggesting that BSG could confer protection against Brucella infection in a mouse model of disease and may be developed as a new vaccine candidate against Brucella infection.

  12. CD8 knockout mice are protected from challenge by vaccination with WR201, a live attenuated mutant of Brucella melitensis.

    PubMed

    Yingst, Samuel L; Izadjoo, Mina; Hoover, David L

    2013-01-01

    CD8+ T cells have been reported to play an important role in defense against B. abortus infection in mouse models. In the present report, we use CD8 knockout mice to further elucidate the role of these cells in protection from B. melitensis infection. Mice were immunized orally by administration of B. melitensis WR201, a purine auxotrophic attenuated vaccine strain, then challenged intranasally with B. melitensis 16M. In some experiments, persistence of WR201 in the spleens of CD8 knockout mice was slightly longer than that in the spleens of normal mice. However, development of anti-LPS serum antibody, antigen-induced production of γ-interferon (IFN-γ) by immune splenic lymphocytes, protection against intranasal challenge, and recovery of nonimmunized animals from intranasal challenge were similar between normal and knockout animals. Further, primary Brucella infection was not exacerbated in perforin knockout and Fas-deficient mice and these animals' anti-Brucella immune responses were indistinguishable from those of normal mice. These results indicate that CD8+ T cells do not play an essential role as either cytotoxic cells or IFN-γ producers, yet they do participate in a specific immune response to immunization and challenge in this murine model of B. melitensis infection.

  13. Estrogen receptor-alpha mediates estrogen protection from angiotensin II-induced hypertension in conscious female mice.

    PubMed

    Xue, Baojian; Pamidimukkala, Jaya; Lubahn, Dennis B; Hay, Meredith

    2007-04-01

    It has been shown that the female sex hormones have a protective role in the development of angiotensin II (ANG II)-induced hypertension. The present study tested the hypotheses that 1) the estrogen receptor-alpha (ERalpha) is involved in the protective effects of estrogen against ANG II-induced hypertension and 2) central ERs are involved. Blood pressure (BP) was measured in female mice with the use of telemetry implants. ANG II (800 ng.kg(-1).min(-1)) was administered subcutaneously via an osmotic pump. Baseline BP in the intact, ovariectomized (OVX) wild-type (WT) and ERalpha knockout (ERalphaKO) mice was similar; however, the increase in BP induced by ANG II was greater in OVX WT (23.0 +/- 1.0 mmHg) and ERalphaKO mice (23.8 +/- 2.5 mmHg) than in intact WT mice (10.1 +/- 4.5 mmHg). In OVX WT mice, central infusion of 17beta-estradiol (E(2); 30 microg.kg(-1).day(-1)) attenuated the pressor effect of ANG II (7.0 +/- 0.4 mmHg), and this protective effect of E(2) was prevented by coadministration of ICI-182,780 (ICI; 1.5 microg.kg(-1).day(-1), 18.8 +/- 1.5 mmHg), a nonselective ER antagonist. Furthermore, central, but not peripheral, infusions of ICI augmented the pressor effects of ANG II in intact WT mice (17.8 +/- 4.2 mmHg). In contrast, the pressor effect of ANG II was unchanged in either central E(2)-treated OVX ERalphaKO mice (19.0 +/- 1.1 mmHg) or central ICI-treated intact ERalphaKO mice (19.6 +/- 1.6 mmHg). Lastly, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction in BP in OVX WT, central ER antagonist-treated intact WT, central E(2) + ICI-treated OVX WT, ERalphaKO, and central E(2)- or ICI-treated ERalphaKO mice compared with that in intact WT mice given just ANG II. Together, these data indicate that ERalpha, especially central expression of the ER, mediates the protective effects of estrogen against ANG II-induced hypertension.

  14. A multiagent filovirus DNA vaccine delivered by intramuscular electroporation completely protects mice from ebola and Marburg virus challenge.

    PubMed

    Grant-Klein, Rebecca J; Van Deusen, Nicole M; Badger, Catherine V; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S

    2012-11-01

    We evaluated the immunogenicity and protective efficacy of DNA vaccines expressing the codon-optimized envelope glycoprotein genes of Zaire ebolavirus, Sudan ebolavirus, and Marburg marburgvirus (Musoke and Ravn). Intramuscular or intradermal delivery of the vaccines in BALB/c mice was performed using the TriGrid™ electroporation device. Mice that received DNA vaccines against the individual viruses developed robust glycoprotein-specific antibody titers as determined by ELISA and survived lethal viral challenge with no display of clinical signs of infection. Survival curve analysis revealed there was a statistically significant increase in survival compared to the control groups for both the Ebola and Ravn virus challenges. These data suggest that further analysis of the immune responses generated in the mice and additional protection studies in nonhuman primates are warranted.

  15. Protective effect of N-acetylcysteine against ethanol-induced gastric ulcer: A pharmacological assessment in mice

    PubMed Central

    Jaccob, Ausama Ayoob

    2015-01-01

    Aim: Since there is an increasing need for gastric ulcer therapies with optimum benefit-risk profile. This study was conducted to investigate gastro-protective effects of N-acetylcysteine (NAC) against ethanol-induced gastric ulcer models in mice. Materials and Methods: A total of 41 mice were allocated into six groups consisted of 7 mice each. Groups 1 (normal control) and 2 (ulcer control) received distilled water at a dose of 10 ml/kg, groups 3, 4 and 5 were given NAC at doses 100, 300 and 500 mg/kg, respectively, and the 6th group received ranitidine (50 mg/kg). All drugs administered orally once daily for 7 days, on the 8th day absolute ethanol (7 ml/kg) was administrated orally to all mice to induce the acute ulcer except normal control group. Then 3 h after, all animals were sacrificed then consequently the stomachs were excised for examination. Results: NAC administration at the tested doses showed a dose-related potent gastro-protective effect with significant increase in curative ratio, PH of gastric juice and mucus content viscosity seen with the highest dose of NAC and it is comparable with that observed in ranitidine group. Conclusion: The present findings demonstrate that, oral NAC shows significant gastro-protective effects comparable to ranitidine confirmed by anti-secretory, cytoprotective, histological and biochemical data, but the molecular mechanisms behind such protection are complex. PMID:26401392

  16. The protein DIIIC-2, aggregated with a specific oligodeoxynucleotide and adjuvanted in alum, protects mice and monkeys against DENV-2.

    PubMed

    Gil, Lázaro; Marcos, Ernesto; Izquierdo, Alienys; Lazo, Laura; Valdés, Iris; Ambala, Peris; Ochola, Lucy; Hitler, Rikoi; Suzarte, Edith; Álvarez, Mayling; Kimiti, Prisilla; Ndung'u, James; Kariuki, Thomas; Guzmán, María Guadalupe; Guillén, Gerardo; Hermida, Lisset

    2015-01-01

    Previously, we reported the ability of the chimeric protein DIIIC-2 (domain III of the dengue envelope protein fused to the capsid protein of dengue-2 virus), to induce immunity and protection in mice, when it is highly aggregated with a non-defined oligodeoxynucleotide (ODN) and adjuvanted in alum. In this work, three different defined ODNs were studied as aggregating agents. Our results suggest that the nature of the ODN influences the capacity of protein DIIIC-2 to activate cell-mediated immunity in mice. Consequently, the ODN 39M was selected to perform further experiments in mice and nonhuman primates. Mice receiving the preparation 39M-DIIIC-2 were solidly protected against dengue virus (DENV) challenge. Moreover, monkeys immunized with the same preparation developed neutralizing antibodies, as measured by four different neutralization tests varying the virus strains and the cell lines used. Two of the immunized monkeys were completely protected against challenge, whereas the third animal had a single day of low-titer viremia. This is the first work describing the induction of short-term protection in monkeys by a formulation that is suitable for human use combining a recombinant protein from DENV with alum.

  17. Bacillus anthracis Capsular Conjugates Elicit Chimpanzee Polyclonal Antibodies That Protect Mice from Pulmonary Anthrax.

    PubMed

    Chen, Zhaochun; Schneerson, Rachel; Lovchik, Julie A; Dai, Zhongdong; Kubler-Kielb, Joanna; Agulto, Liane; Leppla, Stephen H; Purcell, Robert H

    2015-08-01

    The immunogenicity of Bacillus anthracis capsule (poly-γ-D-glutamic acid [PGA]) conjugated to recombinant B. anthracis protective antigen (rPA) or to tetanus toxoid (TT) was evaluated in two anthrax-naive juvenile chimpanzees. In a previous study of these conjugates, highly protective monoclonal antibodies (MAbs) against PGA were generated. This study examines the polyclonal antibody response of the same animals. Preimmune antibodies to PGA with titers of >10(3) were detected in the chimpanzees. The maximal titer of anti-PGA was induced within 1 to 2 weeks following the 1st immunization, with no booster effects following the 2nd and 3rd immunizations. Thus, the anti-PGA response in the chimpanzees resembled a secondary immune response. Screening of sera from nine unimmunized chimpanzees and six humans revealed antibodies to PGA in all samples, with an average titer of 10(3). An anti-PA response was also observed following immunization with PGA-rPA conjugate, similar to that seen following immunization with rPA alone. However, in contrast to anti-PGA, preimmune anti-PA antibody titers and those following the 1st immunization were ≤300, with the antibodies peaking above 10(4) following the 2nd immunization. The polyclonal anti-PGA shared the MAb 11D epitope and, similar to the MAbs, exerted opsonophagocytic killing of B. anthracis. Most important, the PGA-TT-induced antibodies protected mice from a lethal challenge with virulent B. anthracis spores. Our data support the use of PGA conjugates, especially PGA-rPA targeting both toxin and capsule, as expanded-spectrum anthrax vaccines.

  18. Angiotensin-(1-7) protects against the development of aneurysmal subarachnoid hemorrhage in mice

    PubMed Central

    Shimada, Kenji; Furukawa, Hajime; Wada, Kosuke; Wei, Yuan; Tada, Yoshiteru; Kuwabara, Atsushi; Shikata, Fumiaki; Kanematsu, Yasuhisa; Lawton, Michael T; Kitazato, Keiko T; Nagahiro, Shinji; Hashimoto, Tomoki

    2015-01-01

    Angiotensin-(1-7) (Ang-(1-7)) can regulate vascular inflammation and remodeling, which are processes that have important roles in the pathophysiology of intracranial aneurysms. In this study, we assessed the effects of Ang-(1-7) in the development of intracranial aneurysm rupture using a mouse model of intracranial aneurysms in which aneurysmal rupture (i.e., aneurysmal subarachnoid hemorrhage) occurs spontaneously and causes neurologic symptoms. Treatment with Ang-(1-7) (0.5 mg/kg/day), Mas receptor antagonist (A779 0.5 mg/kg/day or 2.5 mg/kg/day), or angiotensin II type 2 receptor (AT2R) antagonist (PD 123319, 10 mg/kg/day) was started 6 days after aneurysm induction and continued for 2 weeks. Angiotensin-(1-7) significantly reduced the rupture rate of intracranial aneurysms without affecting the overall incidence of aneurysms. The protective effect of Ang-(1-7) was blocked by the AT2R antagonist, but not by the Mas receptor antagonist. In AT2R knockout mice, the protective effect of Ang-(1-7) was absent. While AT2R mRNA was abundantly expressed in the cerebral arteries and aneurysms, Mas receptor mRNA expression was very scarce in these tissues. Angiotensin-(1-7) reduced the expression of tumor necrosis factor-α and interleukin-1β in cerebral arteries. These findings indicate that Ang-(1-7) can protect against the development of aneurysmal rupture in an AT2R-dependent manner. PMID:25757758

  19. P2X7 receptor inhibition protects against ischemic acute kidney injury in mice.

    PubMed

    Yan, Yanli; Bai, Jianwen; Zhou, Xiaoxu; Tang, Jinhua; Jiang, Chunming; Tolbert, Evelyn; Bayliss, George; Gong, Rujun; Zhao, Ting C; Zhuang, Shougang

    2015-03-15

    Activation of the purinergic P2X7 receptor (P2X7R) has been associated with the development of experimental nephritis and diabetic and hypertensive nephropathy. However, its role in acute kidney injury (AKI) remains unknown. In this study, we examined the effects of P2X7R inhibition in a murine model of ischemia-reperfusion (I/R)-induced AKI using A438079, a selective inhibitor of P2X7R. At 24 h after I/R, mice developed renal dysfunction and renal tubular damage, which was accompanied by elevated expression of P2X7R. Early administration of A438079 immediately or 6 h after the onset of reperfusion protected against renal dysfunction and attenuated kidney damage whereas delayed administration of A438079 at 24 h after restoration of perfusion had no protective effects. The protective actions of A438079 were associated with inhibition of renal tubule injury and cell death and suppression of renal expression of monocyte chemotactic protein-1 and regulated upon expression normal T cell expressed and secreted (RANTES). Moreover, I/R injury led to an increase in phosphorylation (activation) of extracellular signal-regulated kinases 1/2 in the kidney; treatment with A438079 diminished this response. Collectively, these results indicate that early P2X7R inhibition is effective against renal tubule injury and proinflammatory response after I/R injury and suggest that targeting P2X7R may be a promising therapeutic strategy for treatment of AKI.

  20. Immunization with Attenuated Equine Herpesvirus 1 Strain KyA Induces Innate Immune Responses That Protect Mice from Lethal Challenge

    PubMed Central

    Shakya, Akhalesh K.; O'Callaghan, Dennis J.

    2016-01-01

    ABSTRACT Equine herpesvirus 1 (EHV-1) is a major pathogen affecting equines worldwide. The virus causes respiratory disease, abortion, and, in some cases, neurological disease. EHV-1 strain KyA is attenuated in the mouse and equine, whereas wild-type strain RacL11 induces severe inflammation of the lung, causing infected mice to succumb at 4 to 6 days postinfection. Our previous results showed that KyA immunization protected CBA mice from pathogenic RacL11 challenge at 2 and 4 weeks postimmunization and that KyA infection elicited protective humoral and cell-mediated immune responses. To investigate the protective mechanisms of innate immune responses to KyA, KyA-immunized mice were challenged with RacL11 at various times postvaccination. KyA immunization protected mice from RacL11 challenge at 1 to 7 days postimmunization. Immunized mice lost less than 10% of their body weight and rapidly regained weight. Virus titers in the lungs of KyA-immunized mice were 1,000-fold lower at 2 days post-RacL11 challenge than virus titers in the lungs of nonimmunized mice, indicating accelerated virus clearance. Affymetrix microarray analysis revealed that gamma interferon (IFN-γ) and 16 antiviral interferon-stimulated genes (ISGs) were upregulated 3.1- to 48.2-fold at 8 h postchallenge in the lungs of RacL11-challenged mice that had been immunized with KyA. Murine IFN-γ inhibited EHV-1 infection of murine alveolar macrophages and protected mice against lethal EHV-1 challenge, suggesting that IFN-γ expression is important in mediating the protection elicited by KyA immunization. These results suggest that EHV-1 KyA may be used as a live attenuated EHV-1 vaccine as well as a prophylactic agent in horses. IMPORTANCE Viral infection of cells initiates a signal cascade of events that ultimately attempts to limit viral replication and prevent infection through the expression of host antiviral proteins. In this study, we show that EHV-1 KyA immunization effectively protected CBA

  1. Alisol B 23-acetate protects against non-alcoholic steatohepatitis in mice via farnesoid X receptor activation

    PubMed Central

    Meng, Qiang; Duan, Xing-ping; Wang, Chang-yuan; Liu, Zhi-hao; Sun, Peng-yuan; Huo, Xiao-kui; Sun, Hui-jun; Peng, Jin-yong; Liu, Ke-xin

    2017-01-01

    Alisol B 23-acetate (AB23A) is a natural triterpenoid isolated from the traditional Chinese medicine rhizoma alismatis, which exhibits a number of pharmacological activities, including anti-hepatitis virus, anti-cancer and antibacterial effects. In this study we examined whether AB23A protected against non-alcoholic steatohepatitis (NASH) in mice, and the mechanisms underlying the protective effects. NASH was induced in mice fed a methionine and choline-deficient (MCD) diet for 4 weeks. The mice were simultaneously treated with AB23A (15, 30, and 60 mg·kg−1·d−1, ig) for 4 weeks. On the last day, blood samples and livers were collected. Serum liver functional enzymes, inflammatoru markers were assessed. The livers were histologically examined using H&E, Oil Red O, Masson's trichrome and Sirius Red staining. Mouse primary hepatocytes were used for in vitro experiments. The mechanisms underlying AB23A protection were analyzed using siRNA, qRT-PCR, and Western blot assays. AB23A treatment significantly and dose-dependently decreased the elevated levels of serum ALT and AST in MCD diet-fed mice. Furthermore, AB23A treatment significantly reduced hepatic triglyceride accumulation, inflammatory cell infiltration and hepatic fibrosis in the mice. AB23A-induced decreases in serum and hepatic lipids were related to decreased hepatic lipogenesis through decreasing hepatic levels of SREBP-1c, FAS, ACC1 and SCD1 and increased lipid metabolism via inducing PPARα, CPT1α, ACADS and LPL. The reduction in inflammatory cell infiltration corresponded to deceased serum levels of mKC and MCP-1 and decreased hepatic gene expression of MCP-1 and VCAM-1. The reduction in hepatic fibrosis was correlated with decreased hepatic gene expression of fibrosis markers. The protective effects of AB23A were FXR-dependent, because treatment with the FXR agonist CDCA mimicked AB23A-induced hepato-protection in the mice, whereas co-administration of FXR antagonist guggulsterone abrogated AB23A

  2. MAPK phosphotase 5 deficiency contributes to protection against blood-stage Plasmodium yoelii 17XL infection in mice.

    PubMed

    Cheng, Qianqian; Zhang, Qingfeng; Xu, Xindong; Yin, Lan; Sun, Lin; Lin, Xin; Dong, Chen; Pan, Weiqing

    2014-04-15

    Cell-mediated immunity plays a crucial role in the development of host resistance to asexual blood-stage malaria infection. However, little is known of the regulatory factors involved in this process. In this study, we investigated the impact of MAPK phosphotase 5 (MKP5) on protective immunity against a lethal Plasmodium yoelii 17XL blood-stage infection using MKP5 knockout C57BL/6 mice. Compared with wild-type control mice, MKP5 knockout mice developed significantly lower parasite burdens with prolonged survival times. We found that this phenomenon correlated with a rapid and strong IFN-γ-dependent cellular immune response during the acute phase of infection. Inactivation of IFN-γ by the administration of a neutralizing Ab significantly reduced the protective effects in MKP5 knockout mice. By analyzing IFN-γ production in innate and adaptive lymphocyte subsets, we observed that MKP5 deficiency specifically enhanced the IFN-γ response mediated by CD4+ T cells, which was attributable to the increased stimulatory capacity of splenic CD11c+ dendritic cells. Furthermore, following vaccination with whole blood-stage soluble plasmodial Ag, MKP5 knockout mice acquired strongly enhanced Ag-specific immune responses and a higher level of protection against subsequent P. yoelii 17XL challenge. Finally, we found the enhanced response mediated by MKP5 deficiency resulted in a lethal consequence in mice when infected with nonlethal P. yoelii 17XNL. Thus, our data indicate that MKP5 is a potential regulator of immune resistance against Plasmodium infection in mice, and that an understanding of the role of MKP5 in manipulating anti-malaria immunity may provide valuable information on the development of better control strategies for human malaria.

  3. Dietary coenzyme Q10 does not protect against cigarette smoke-augmented atherosclerosis in apoE-deficient mice.

    PubMed

    Gairola, C Gary; Howatt, Deborah A; Daugherty, Alan

    2010-06-01

    Dietary coenzyme Q10 reduces spontaneous atherosclerosis in the apoE-deficient mouse model of experimental atherosclerosis. We have shown previously that exposure to sidestream cigarette smoke (SSCS) enhances atherosclerotic lesion formation in apoE-deficient mice. The aim of the present study was to determine if CoQ10 protected against SSCS-mediated atherosclerosis. Female apoE-deficient mice were fed a saturated fat-enriched diet (SFD) alone, or supplemented with 1% wt/wt coenzyme Q10 (SFD-Q10). Mice in each diet group were exposed to SSCS for 4hrs/day, 5days/week in a whole-body exposure chamber maintained at 35+/-4mg smoke particulates/m(3). Mice kept in filtered ambient air served as controls. Mice were euthanized after either 6 or 15weeks of SSCS exposure and following measurements were performed: i) lung 7-ethoxyresorufin-O-deethylase (EROD) activity; ii) plasma cholesterol and CoQ10 concentrations; iii) aortic intimal area covered by atherosclerotic lesions; and, iv) pathological characterization of lesions. Lung EROD activity increased in SSCS mice of both diet groups, confirming SSCS exposure. Plasma concentrations of CoQ10 in SFD-Q10-fed mice were increased markedly in comparison to SFD-fed mice. Plasma cholesterol concentrations and distributions of cholesterol in lipoprotein fractions were unaffected by SSCS exposure. Dietary supplementation with CoQ10 significantly reduced atherosclerotic lesions in control mice. As reported previously, exposure to SSCS increased the size of lesions in apoE-/- mice at both time points. However, dietary supplementation with CoQ10 had no effect on atherosclerotic lesions augmented by SSCS exposure. The results suggest a role of oxidative processes in smoke-augmented atherosclerosis that are different than those mitigated by CoQ10.

  4. Nonalcoholic steatohepatitic (NASH) mice are protected from higher hepatotoxicity of acetaminophen upon induction of PPAR{alpha} with clofibrate

    SciTech Connect

    Donthamsetty, Shashikiran; Bhave, Vishakha S.; Mitra, Mayurranjan S.; Latendresse, John R.; Mehendale, Harihara M.

    2008-08-01

    The objective was to investigate if the hepatotoxic sensitivity in nonalcoholic steatohepatitic mice to acetaminophen (APAP) is due to downregulation of nuclear receptor PPAR{alpha} via lower cell division and tissue repair. Male Swiss Webster mice fed methionine and choline deficient diet for 31 days exhibited NASH. On the 32nd day, a marginally toxic dose of APAP (360 mg/kg, ip) yielded 70% mortality in steatohepatitic mice, while all non steatohepatitic mice receiving the same dose survived. {sup 14}C-APAP covalent binding, CYP2E1 protein, and enzyme activity did not differ from the controls, obviating increased APAP bioactivation as the cause of amplified APAP hepatotoxicity. Liver injury progressed only in steatohepatitic livers between 6 and 24 h. Cell division and tissue repair assessed by {sup 3}H-thymidine incorporation and PCNA were inhibited only in the steatohepatitic mice given APAP suggesting that higher sensitivity of NASH liver to APAP-induced hepatotoxicity was due to lower tissue repair. The hypothesis that impeded liver tissue repair in steatohepatitic mice was due to downregulation of PPAR{alpha} was tested. PPAR{alpha} was downregulated in NASH. To investigate whether downregulation of PPAR{alpha} in NASH is the critical mechanism of compromised liver tissue repair, PPAR{alpha} was induced in steatohepatitic mice with clofibrate (250 mg/kg for 3 days, ip) before injecting APAP. All clofibrate pretreated steatohepatitic mice receiving APAP exhibited lower liver injury, which did not progress and the mice survived. The protection was not due to lower bioactivation of APAP but due to higher liver tissue repair. These findings suggest that inadequate PPAR{alpha} expression in steatohepatitic mice sensitizes them to APAP hepatotoxicity.

  5. Immune responses and protective effect in mice vaccinated orally with surface sporozoite protein of Eimeria falciformis in ISCOMs.

    PubMed

    Kazanji, M; Laurent, F; Péry, P

    1994-07-01

    Immunostimulating complexes (ISCOMs) were built after treatment of a purified surface protein from Eimeria falciformis sporozoites with a palmitic acid derivation, leading to a high ratio (33-64%) of P27 incorporation in these cage-like structures. P27 kept its antigenicity after incorporation in ISCOMs, which induced, after iterative intubations by the oral route to groups of mice, a systemic IgG response, a local IgA response, and a local enhanced cellular response as demonstrated by lymphoproliferation of mesenteric lymph node cells upon in vitro stimulation with antigen. This immunization (120 micrograms in six oral doses at 2-day intervals) afforded mice a partial protection (60%) against a subsequent 400 oocyst challenge. The reduction in daily oocyst excretion was corroborated by significantly different weight losses between immunized and control mice on days 9 and 10 postinfection and the subsequent death of these control mice. These observations provide the first application of ISCOMs to parasitic intestinal diseases.

  6. Modulation of IL-12 and IFNγ by probiotic supplementation promotes protection against Toxocara canis infection in mice.

    PubMed

    de Avila, L F D C; de Leon, P M M; de Moura, M Q; Berne, M E A; Scaini, C J; Leivas Leite, F P

    2016-05-01

    In this study, supplementation with the probiotic Saccharomyces boulardii promoted a reduction in intensity of infection by Toxocara canis and modulates cytokines mRNA expression in experimentally infected mice. IL-12 gene transcription had 40-fold increase in S. boulardii supplemented uninfected mice and sevenfold increase in supplemented infected mice comparing with not supplemented group. Regarding IFNγ, similar results were observed, since probiotic supplementation induced approximately 43-fold increase, but only in uninfected mice (P < 0·05). T. canis infection upregulated IL-10 expression while S. boulardii downregulated it and no change was observed for IL-4. Thus, based in these findings; we suggest that one possible mechanism responsible for S. boulardii protection effect against T. canis infection is by the modulation of cytokines expression, especially IL-12.

  7. Protective response to Leishmania major in BALB/c mice requires antigen processing in the absence of DM.

    PubMed

    Kamala, Tirumalai; Nanda, Navreet K

    2009-04-15

    Protection from the parasite Leishmania major is mediated by CD4 T cells. BALB/c mice are susceptible to L. major and show a nonprotective immunodominant CD4 T cell response to Leishmania homolog of activated receptor for c-kinase (LACK) 158-173. Host genes that underlie BALB/c susceptibility to L. major infections are poorly defined. DM, a nonclassical MHC class II molecule, due to its peptide editing properties has been shown to 1) edit the repertoire of peptides displayed by APC, and 2) focus the display of epitopes by APC to the immunodominant ones. We tested the hypothesis that deficiency of DM, by causing presentation of a different array of epitopes by infected APC than that presented by DM-sufficient APC, may change the course of L. major infection in the susceptible BALB/c mice. We show herein that unlike their susceptible wild-type counterparts, BALB/c mice deficient in DM are protected from infections with L. major. Furthermore, DM-deficient mice fail to display the immunodominant LACK 158-173 on infected APC. In its place, infected DM(-/-) hosts show elicitation of CD4 T cells specific for newer epitopes not presented by wild-type L. major-infected APC. Protection of BALB/c DM(-/-) mice is dependent on IFN-gamma. DM is thus a host susceptibility gene in BALB/c mice, and Ag processing in the absence of DM results in elicitation of a protective T cell response against L. major infections. This report suggests a novel mechanism to trigger host resistance against pathogens.

  8. Liposome-Antigen-Nucleic Acid Complexes Protect Mice from Lethal Challenge with Western and Eastern Equine Encephalitis Viruses

    PubMed Central

    Phillips, Aaron T.; Schountz, Tony; Toth, Ann M.; Rico, Amber B.; Jarvis, Donald L.; Powers, Ann M.

    2014-01-01

    Alphaviruses are mosquito-borne viruses that cause significant disease in animals and humans. Western equine encephalitis virus (WEEV) and eastern equine encephalitis virus (EEEV), two New World alphaviruses, can cause fatal encephalitis, and EEEV is a select agent of concern in biodefense. However, we have no antiviral therapies against alphaviral disease, and current vaccine strategies target only a single alphavirus species. In an effort to develop new tools for a broader response to outbreaks, we designed and tested a novel alphavirus vaccine comprised of cationic lipid nucleic acid complexes (CLNCs) and the ectodomain of WEEV E1 protein (E1ecto). Interestingly, we found that the CLNC component, alone, had therapeutic efficacy, as it increased survival of CD-1 mice following lethal WEEV infection. Immunization with the CLNC-WEEV E1ecto mixture (lipid-antigen-nucleic acid complexes [LANACs]) using a prime-boost regimen provided 100% protection in mice challenged with WEEV subcutaneously, intranasally, or via mosquito. Mice immunized with LANACs mounted a strong humoral immune response but did not produce neutralizing antibodies. Passive transfer of serum from LANAC E1ecto-immunized mice to nonimmune CD-1 mice conferred protection against WEEV challenge, indicating that antibody is sufficient for protection. In addition, the LANAC E1ecto immunization protocol significantly increased survival of mice following intranasal or subcutaneous challenge with EEEV. In summary, our LANAC formulation has therapeutic potential and is an effective vaccine strategy that offers protection against two distinct species of alphavirus irrespective of the route of infection. We discuss plausible mechanisms as well the potential utility of our LANAC formulation as a pan-alphavirus vaccine. PMID:24257615

  9. Non-local F(R)-mimetic gravity

    NASA Astrophysics Data System (ADS)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo

    2016-06-01

    In this paper, we study non-local F(R)-mimetic gravity. We implement mimetic gravity in the framework of non-local F(R)-theories of gravity. Given some specific class of models and using a potential on the mimetic field, we investigate some scenarios related to the early-time universe, namely the inflation and the cosmological bounce, which bring to Einstein's gravity with cold dark matter at the late-time.

  10. NEC violation in mimetic cosmology revisited

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna; Ripley, Justin; Steinhardt, Paul J.

    2016-09-01

    In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in expanding space-times always decreases while in contracting space-times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this letter, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show that mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is always the Einstein-Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. We also show that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving higher-derivative kinetic terms and discuss ways of removing the instability.

  11. Mast cells control insulitis and increase Treg cells to confer protection against STZ-induced type 1 diabetes in mice.

    PubMed

    Carlos, Daniela; Yaochite, Juliana N U; Rocha, Fernanda A; Toso, Vanina D; Malmegrim, Kelen C R; Ramos, Simone G; Jamur, Maria C; Oliver, Constance; Camara, Niels O; Andrade, Marcus V M; Cunha, Fernando Q; Silva, João S

    2015-10-01

    Quantitative alterations in mast cell numbers in pancreatic lymph nodes (PLNs) have been reported to be associated with type 1 diabetes (T1D) progression, but their potential role during T1D remains unclear. In this study, we evaluated the role of mast cells in T1D induced by multiple low-dose streptozotocin (MLD-STZ) treatments, using two strains of mast cell-deficient mice (W/W(v) or Wsh/Wsh) and the adoptive transfer of mast cells. Mast cell deficient mice developed severe insulitis and accelerated hyperglycemia, with 100% of mice becoming diabetic compared to their littermates. In parallel, these diabetic mice had decreased numbers of T regulatory (Treg) cells in the PLNs. Additionally, mast cell deficiency caused a significant reduction in IL-10, TGF-β, and IL-6 expression in the pancreatic tissue. Interestingly, IL-6-deficient mice are more susceptible to T1D associated with reduced Treg-cell numbers in the PLNs, but mast cell transfer from wild-type mice induced protection to T1D in these mice. Finally, mast cell adoptive transfer prior to MLD-STZ administration conferred resistance to T1D, promoted increased Treg cells, and decreased IL-17-producing T cells in the PLNs. Taken together, our results indicate that mast cells are implicated in resistance to STZ-induced T1D via an immunological tolerance mechanism mediated by Treg cells.

  12. Radiation-induced cognitive dysfunction and cerebellar oxidative stress in mice: protective effect of alpha-lipoic acid.

    PubMed

    Manda, Kailash; Ueno, Megumi; Moritake, Takashi; Anzai, Kazunori

    2007-02-12

    Reactive oxygen species are implicated in neurodegeneration and cognitive disorders due to higher vulnerability of neuronal tissues. The cerebellum is recently reported to be involved in cognitive function. Therefore, present study aimed at investigating the role alpha-lipoic acid against radiation-induced oxidative stress and antioxidant status in cerebellum and its correlation with cognitive dysfunction. We observed spontaneous motor activities and spatial memory task of mice using pyroelectric infrared sensor and programmed video tracking system, respectively. Whole body X-irradiation (6 Gy) of mice substantially impaired the reference memory and motor activities of mice. However, acute intraperitoneal treatment of mice with alpha-lipoic acid prior to irradiation significantly attenuated such cognitive dysfunction. Alpha-lipoic acid pretreatment exerted a very high magnitude of protection against radiation-induced augmentation of protein carbonyls and thiobarbituric acid reactive substance (TBARS) in mice cerebellum. Further, radiation-induced deficit of total, nonprotein and protein-bound sulfhydryl (T-SH, NP-SH, PB-SH) contents of cerebellum and plasma ferric reducing power (FRAP) was also inhibited by alpha-lipoic acid pre-treatment. Moreover, alpha-lipoic acid treated mice showed an intact cytoarchitecture of cerebellum, higher counts of intact Purkinje cells and granular cells in comparison to untreated irradiated mice. Results clearly indicate that alpha-lipoic acid is potent neuroprotective antioxidant.

  13. Allicin protects traumatic spinal cord injury through regulating the HSP70/Akt/iNOS pathway in mice

    PubMed Central

    Wang, Shunyi; Ren, Dongliang

    2016-01-01

    Allicin is a major component of garlic, extracted as an oily liquid. The present study was designed to investigate the beneficial effects of allicin on traumatic spinal cord injury (TSCI) in mice, and whether the effects are mediated via regulation of the heat shock protein 70 (HSP70), v-akt murine thymoma viral oncogene homolog 1 (Akt) and inducible nitric oxide synthase (iNOS) pathways. Adult BALB/c mice (30–40 g) received a laminectomy at the T9 vertebral level as a model of TSCI. In the present study, treatment of the TSCI mice with allicin significantly increased their Basso, Beattie and Bresnahan (BBB) scores (P<0.01) and reduced the spinal cord water content (P<0.01). This protective effect was associated with the inhibition of oxidative stress and inflammatory responses in TSCI mice. Western blot analysis demonstrated that allicin increased the protein levels of HSP70, increased the phosphorylation of Akt and reduced the iNOS protein expression levels in TSCI mice. Additionally, treatment with allicin significantly reduced the levels of ROS and enhanced the NADH levels in TSCI mice. Collectively, these data demonstrate that the effects of allicin on TSCI are mediated via regulation of the HSP70, Akt and iNOS pathways in mice. PMID:27573340

  14. Gender-specific reduction of hepatic Mrp2 expression by high-fat diet protects female mice from ANIT toxicity

    SciTech Connect

    Kong, Bo; Csanaky, Iván L.; Aleksunes, Lauren M.; Patni, Meghan; Chen, Qi; Ma, Xiaochao; Jaeschke, Hartmut; Weir, Scott; Broward, Melinda; Klaassen, Curtis D.; Guo, Grace L.

    2012-06-01

    Emerging evidence suggests that feeding a high-fat diet (HFD) to rodents affects the expression of genes involved in drug transport. However, gender-specific effects of HFD on drug transport are not known. The multidrug resistance-associated protein 2 (Mrp2, Abcc2) is a transporter highly expressed in the hepatocyte canalicular membrane and is important for biliary excretion of glutathione-conjugated chemicals. The current study showed that hepatic Mrp2 expression was reduced by HFD feeding only in female, but not male, C57BL/6J mice. In order to determine whether down-regulation of Mrp2 in female mice altered chemical disposition and toxicity, the biliary excretion and hepatotoxicity of the Mrp2 substrate, α-naphthylisothiocyanate (ANIT), were assessed in male and female mice fed control diet or HFD for 4 weeks. ANIT-induced biliary injury is a commonly used model of experimental cholestasis and has been shown to be dependent upon Mrp2-mediated efflux of an ANIT glutathione conjugate that selectively injures biliary epithelial cells. Interestingly, HFD feeding significantly reduced early-phase biliary ANIT excretion in female mice and largely protected against ANIT-induced liver injury. In summary, the current study showed that, at least in mice, HFD feeding can differentially regulate Mrp2 expression and function and depending upon the chemical exposure may enhance or reduce susceptibility to toxicity. Taken together, these data provide a novel interaction between diet and gender in regulating hepatobiliary excretion and susceptibility to injury. -- Highlights: ► High-fat diet decreases hepatic Mrp2 expression only in female but not in male mice. ► HFD significantly reduces early-phase biliary ANIT excretion in female mice. ► HFD protects female mice against ANIT-induced liver injury.

  15. DNA vaccination with a gene encoding Toxoplasma gondii Rhoptry Protein 17 induces partial protective immunity against lethal challenge in mice

    PubMed Central

    Wang, Hai-Long; Wang, Yu-Jing; Pei, Yan-Jiang; Bai, Ji-Zhong; Yin, Li-Tian; Guo, Rui; Yin, Guo-Rong

    2016-01-01

    Toxoplasma gondii is an obligate intracellular apicomplexan parasite that affects humans and various vertebrate livestock and causes serious economic losses. To develop an effective vaccine against T. gondii infection, we constructed a DNA vaccine encoding the T. gondii rhoptry protein 17 (TgROP17) and evaluated its immune protective efficacy against acute T. gondii infection in mice. The DNA vaccine (p3×Flag-CMV-14-ROP17) was intramuscularly injected to BALB/c mice and the immune responses of the vaccinated mice were determined. Compared to control mice treated with empty vector or PBS, mice immunized with the ROP17 vaccine showed a relatively high level of specific anti-T. gondii antibodies, and a mixed IgG1/IgG2a response with predominance of IgG2a production. The immunized mice also displayed a specific lymphocyte proliferative response, a Th1-type cellular immune response with production of IFN-γ and interleukin-2, and increased number of CD8+ T cells. Immunization with the ROP17 DNA significantly prolonged the survival time (15.6 ± 5.4 days, P < 0.05) of mice after challenge infection with the virulent T. gondii RH strain (Type I), compared with the control groups which died within 8 days. Therefore, our data suggest that DNA vaccination with TgROP17 triggers significant humoral and cellular responses and induces effective protection in mice against acute T. gondii infection, indicating that TgROP17 is a promising vaccine candidate against acute toxoplasmosis. PMID:26842927

  16. Inoculation of Balb/c mice with live attenuated tachyzoites protects against a lethal challenge of Neospora caninum.

    PubMed

    Bartley, P M; Wright, S; Chianini, F; Buxton, D; Innes, E A

    2008-01-01

    Neospora caninum tachyzoites attenuated through passage in tissue culture were tested for their ability to induce protective immunity against a lethal challenge dose of parasites. Balb/c mice were each inoculated with either 1x10(6) live virulent tachyzoites (Group 1) or 1x10(6) live attenuated tachyzoites (Group 2), while (Group 3) received a control inoculum. All mice were each challenged 28 days later with 5x10(6) virulent parasites. Histopathological lesions in the brains including necrosis and microgliosis were observed following post-mortem on day 28 post-challenge (p.c.) in 71% of Group 1 and 56% of Group 2. Immunohistochemistry (IHC) of these lesions showed tachyzoites and Neospora antigens to be associated with moderate brain lesions in 17% of Group 1, while in 11% of Group 2 N. caninum tissue cysts were detected, but these were not associated with lesions, Parasite DNA was detected by PCR in the brains of 86% of mice in Group 1 and 56% of mice in Group 2. Following challenge the mice in Group 3 showed high morbidity and 100% mortality within 17 days p.c. Positive IHC for N. caninum was seen in 88% of the Group 3 mice and parasite DNA was detected in all brain samples. This study shows that it is possible to protect against a lethal challenge of N. caninum through inoculation with attenuated or virulent tachyzoites. However, more severe pathology developed in mice initially inoculated with virulent parasites following a secondary challenge, compared to mice initially inoculated with attenuated parasites.

  17. Progress of Mimetic Enzymes and Their Applications in Chemical Sensors.

    PubMed

    Yang, Bin; Li, Jianping; Deng, Huan; Zhang, Lianming

    2016-11-01

    The need to develop innovative and reformative approaches to synthesize chemical sensors has increased in recent years because of demands for selectivity, stability, and reproducibility. Mimetic enzymes provide an efficient and convenient method for chemical sensors. This review summarizes the application of mimetic enzymes in chemical sensors. Mimetic enzymes can be classified into five categories: hydrolases, oxidoreductases, transferases, isomerases, and induced enzymes. Potential and recent applications of mimetic enzymes in chemical sensors are reviewed in detail, and the outlook of profound development has been illustrated.

  18. The protective effect of thymoquinone against sepsis syndrome morbidity and mortality in mice.

    PubMed

    Alkharfy, Khalid M; Al-Daghri, Nasser M; Al-Attas, Omar S; Alokail, Majed S

    2011-02-01

    Sepsis and septic shock are life threatening complications and most common cause of death in intensive care units. Thymoquinone, a constituent of Nigella sativa (black seed), holds exceptional promise as an anti-cancer and anti-inflammatory agent. No evidence has been published, however, whether this compound has a protective effect from sepsis-related morbidity, mortality and associated organ dysfunction. To examine this, two sets of mice (n=12 per group), with parallel control groups, were acutely treated with thymoquinone intraperitoneal injections of 1.0 and 2.0mg/kg body weight, and were subsequently challenged with endotoxin Gram-negative bacteria (LPS O111:B4). In another set of experiments, thymoquinone was administered at doses of 0.75 and 1.0mg/kg/day for three consecutive days prior to sepsis induction with live Escherichia coli. Survival of various groups was computed, and renal, hepatic and sepsis markers were quantified. Thymoquinone reduced mortality by 80-90% and improved both renal and hepatic biomarker profiles. The concentrations of IL-1α with 0.75 mg/kg thymoquinone dose was 310.8 ± 70.93 and 428.3 ± 71.32 pg/ml in the 1mg/kg group as opposed to controls (1187.0 ± 278.64 pg/ ml; P<0.05). Likewise, IL-10 levels decreased significantly with 0.75 mg/kg thymoquinone treatment compared to controls (2885.0 ± 553.98 vs. 5505.2 ± 333.96 pg/ml; P<0.01). Mice treated with thymoquinone also exhibited relatively lower levels of TNF-α and IL-2 (P values=0.1817 and 0.0851, respectively). This study gives strength to the potential clinical relevance of thymoquinone in sepsis-related morbidity and mortality reduction and suggests that human studies should be performed.

  19. Podophyllum hexandrum-Mediated Survival Protection and Restoration of Other Cellular Injuries in Lethally Irradiated Mice

    PubMed Central

    Sankhwar, Sanghmitra; Gupta, Manju Lata; Gupta, Vanita; Verma, Savita; Suri, Krishna Avtar; Devi, Memita; Sharma, Punita; Khan, Ehsan Ahmed; Alam, M. Sarwar

    2011-01-01

    This study aims at the development of a safe and effective formulation to counter the effects of lethal irradiation. The sub-fraction (G-001M), prepared from Podophyllum hexandrum has rendered high degree of survival (>90%) at a dose of 6 mg kg−1 body weight (intramuscular) in lethally irradiated mice. Therapeutic dose of G-001M, at about 20 times lower concentration than its LD100, has revealed a DRF of 1.62. Comet assay studies in peripheral blood leukocytes have reflected that, treatment of G-001M before irradiation has significantly reduced DNA tail length (P < .001) and DNA damage score (P < .001), as compared to radiation-only group. Spleen cell counts in irradiated animals had declined drastically at the very first day of exposure, and the fall continued till the 5th day (P < .001). In the treated irradiated groups, there was a steep reduction in the counts initially, but this phase did not prolong. More than 60% decline in thymocytes of irradiated group animals was registered at 5 h of irradiation when compared with controls, and the fall progressed further downwards with the similar pace till 5th day of exposure (P < .001). At later intervals, thymus was found fully regressed. In G-001M pre-treated irradiated groups also, thymocytes decreased till the 5th day but thereafter rejuvenated and within 30 days of treatment the values were close to normal. Current studies have explicitly indicated that, G-001M in very small doses has not only rendered high survivability in lethally irradiated mice, but also protected their cellular DNA, besides supporting fast replenishment of the immune system. PMID:19553386

  20. Antibodies against nonstructural protein 1 protect mice from dengue virus-induced mast cell activation.

    PubMed

    Chu, Ya-Ting; Wan, Shu-Wen; Chang, Yu-Chang; Lee, Chien-Kuo; Wu-Hsieh, Betty A; Anderson, Robert; Lin, Yee-Shin

    2017-02-27

    Dengue virus (DENV) infection causes dengue fever, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). DHF/DSS patients have been reported to have increased levels of urinary histamine, chymase, and tryptase, which are major granule-associated mediators from mast cells. Previous studies also showed that DENV-infected human mast cells induce production of proinflammatory cytokines and chemokines, suggesting a role played by mast cells in vascular perturbation as well as leukocyte recruitment. In this study, we show that DENV but not UV-inactivated DENV enhanced degranulation of mast cells and production of chemokines (MCP-1, RANTES, and IP-10) in a mouse model. We have previously shown that antibodies (Abs) against a modified DENV nonstructural protein 1 (NS1), designated DJ NS1, provide protection in mice against DENV challenge. In the present study, we investigate the effects of DJ NS1 Abs on mast cell-associated activities. We showed that administration of anti-DJ NS1 Abs into mice resulted in a reduction of mast cell degranulation and macrophage infiltration at local skin DENV infection sites. The production of DENV-induced chemokines (MCP-1, RANTES, and IP-10) and the percentages of tryptase-positive activated mast cells were also reduced by treatment with anti-DJ NS1 Abs. These results indicate that Abs against NS1 protein provide multiple therapeutic benefits, some of which involve modulating DENV-induced mast cell activation.Laboratory Investigation advance online publication, 27 February 2017; doi:10.1038/labinvest.2017.10.

  1. A Genetically Engineered Attenuated Coxsackievirus B3 Strain Protects Mice against Lethal Infection

    PubMed Central

    Dan, M.; Chantler, J. K.

    2005-01-01

    Coxsackievirus B3 (CVB3) is a common human pathogen that is endemic throughout the world. There is currently no vaccine available, although the virus is known to be highly lethal to newborns and has been associated with heart disease and pancreatitis in older children and adults. Previously, we showed that the virulence of CVB3 is reduced by a lysine-to-arginine substitution in the capsid protein VP2 (K2168R) or a glutamic acid-to-glycine substitution in VP3 (E3060G). In this report, we show that the double mutant virus CVB3(KR/EG) displays additional attenuation, particularly for the pancreas, in A/J mice. In addition, two other attenuating mutations have been identified in the capsid protein VP1. When either the aspartic acid residue D1155 was replaced with glutamic acid or the proline residue P1126 was replaced with methionine, the resulting mutant also possessed an attenuated phenotype. Moreover, when either of these mutations was incorporated into CVB3(KR/EG), the resulting triple mutant viruses, CVB3(KR/EG/DE) and CVB3(KR/EG/PM), were completely noncardiovirulent and caused only small foci of damage to the pancreas, even at a high dose. Both triple mutants were found to be immunogenic, and a single injection of young A/J mice with either was found to protect them from a subsequent lethal challenge with wild-type CVB3. These findings indicate that the triple mutants could be exploited for the development of a live attenuated vaccine against CVB3. PMID:15994822

  2. Protective effects of Scrophularia striata in Ovalbumin-induced mice asthma model

    PubMed Central

    2013-01-01

    Background Scrophularia striata Boiss. (Scrophulariaceae) is a plant growing in the northeastern part of Iran and being used as a traditional herb for various inflammatory disorders. This study was designed to investigate the protective effects of the Scrophularia striata extract in Ovalbumin (OVA) induced-asthma mice model. Methods OVA-sensitized mice were intrapritonealy treated with two doses (100 and 200 mg/kg) of the extract on days 8 to 14 separately. Broncoalveolar lavage fluids (BALF) was collected 48 h after the final OVA challenge and then the number of eosinophils and other inflammatory cells were assessed by direct microscopic counting. In addition, total immunoglubolin (Ig) E and OVA-specific IgE levels in serum, IL-4 and IL-5 cytokines in BALF were determined by Enzyme-Linked Immunosorbent Assay. Moreover, phytochemical assay by thin layer chromatography (TLC) and the 2, 2 diphenyl-1-picrylhydrazyl (DPPH) were used to evaluate the main compounds and the antioxidant capacity of the plant extract, respectively. Results The results showed that the main components; including flavonoids, phenolic compounds and phenyl propanoids were presented in the S. striata extract. In addition, the treatment with extract significantly reduced the number of inflammatory cells and suppressed T-helper 2 (Th2) cytokines including IL-4 and IL-5 in BALF. Also, total IgE and OVA-specific IgE levels in the serum decreased. Conclusion Collectively, it is concluded that the extract has the potential to modulate the Th2 cytokines and could be used as immunomodulatory agent in the treatment of allergic asthma. PMID:23837463

  3. Cystathionine γ-Lyase Deficiency Protects Mice from Galactosamine/Lipopolysaccharide-Induced Acute Liver Failure

    PubMed Central

    Shirozu, Kazuhiro; Tokuda, Kentaro; Marutani, Eizo; Lefer, David; Wang, Rui

    2014-01-01

    Abstract Aims: Acute liver failure (ALF) is a fatal syndrome attributed to massive hepatocyte death. Hydrogen sulfide (H2S) has been reported to exert cytoprotective or cytotoxic effects. Here, we examined the role of cystathionine γ-lyase (CSE, an enzyme produces H2S) in ALF induced by D-Galactosamine (GalN) and lipopolysaccharide (LPS). Results: Wild-type (WT) mice exhibited high mortality rate, prominent liver injury, and increased plasma alanine aminotransferase levels after GalN/LPS challenge. Congenital deficiency or chemical inhibition of CSE by DL-propargylglycine attenuated GalN/LPS-induced liver injury. CSE deficiency markedly improved survival rate and attenuated GalN/LPS-induced upregulation of inflammatory cytokines and activation of caspase 3 and poly (ADP-ribose) polymerase (PARP) in the liver. CSE deficiency protected primary hepatocytes from GalN/tumor necrosis factor-α (TNF-α)-induced cell death without affecting LPS-induced TNF-α production from primary peritoneal macrophages. Beneficial effects of CSE deficiency were associated with markedly elevated homocysteine and thiosulfate levels, upregulation of NF-E2 p45-related factor 2 (Nrf2) and antioxidant proteins, activation of Akt-dependent anti-apoptotic signaling, and inhibition of GalN/LPS-induced JNK phosphorylation in the liver. Finally, administration of sodium thiosulfate (STS) attenuated GalN/LPS-induced liver injury via activation of Akt- and Nrf2-dependent signaling and inhibition of GalN/LPS-induced JNK phosphorylation in WT mice. Innovation: These results suggest that inhibition of CSE or administration of STS prevents acute inflammatory liver failure by augmenting thiosulfate levels and upregulating antioxidant and anti-apoptotic defense in the liver. Conclusion: Congenital deficiency or chemical inhibition of CSE increases thiosulfate levels in the liver and prevents ALF at least in part by augmentation of antioxidant and anti-apoptotic mechanisms. Antioxid. Redox Signal. 20, 204

  4. Preclinical pharmacokinetic analysis of NOV-002, a glutathione disulfide mimetic.

    PubMed

    Uys, J D; Manevich, Y; Devane, L C; He, L; Garret, T E; Pazoles, C J; Tew, K D; Townsend, D M

    2010-09-01

    NOV-002 is a glutathione disulfide (GSSG) mimetic that is the subject of clinical investigation in oncology indications. GSSG is reduced by glutathione reductase (GR) to form glutathione (GSH), thereby maintaining redox homeostasis. The purpose of the study was to report the pharmacokinetic properties of NOV-002 and evaluate the effect that NOV-002 elicits in redox homeostasis. The pharmacokinetic analysis and tissue distribution of NOV-002 and GSH was evaluated in mice following a dose of 250 mg/kg, i.p. The redox potential and total protein thiol status was calculated. Here we show that NOV-002 is a substrate for GR and that GSH is a primary metabolite. Non-linear pharmacokinetic modeling predicted that the estimated absorption and elimination rate constants correspond to a half-life of approximately 13 min with an AUC of 1.18 μgh/mL, a C(max) of 2.16 μg/ml and a volume of distribution of 42.61 L/kg. In addition, measurement of the redox potential and total protein thiol status indicated the generation of a transient oxidative signal in the plasma compartment after administration of NOV-002. These results indicate that NOV-002 exerts kinetic and dynamic effects in mice consistent with the GSSG component as the active pharmacological constituent of the drug. A longer-lasting decrease in total plasma free thiol content was also seen, suggesting that the oxidative effect of the GSSG from NOV-002 was impacting redox homeostasis.

  5. Possible role of NO modulators in protective effect of trazodone and citalopram (antidepressants) in acute immobilization stress in mice.

    PubMed

    Kumar, Anil; Garg, Ruchika; Gaur, Vaibhav; Kumar, Puneet

    2010-11-01

    Stress is an aversive stimulus which disturbs physiological homeostasis and is reflected on a variety of biological systems. The present study was designed to investigate the nitric oxide mechanism in neuroprotective effect of trazodone and citalopram against acute immobilization-induced behavioral and biochemical alteration in mice. Mice were immobilized for a 6 h. Acute immobilization stress caused anxiety, hyperalgesia, impaired locomotor activity and oxidative damage. Pretreatment with trazodone and citalopram significantly reversed immobilized stress-induced behavioral and biochemical alterations. L-arginine, pretreatment with trazodone or citalopram significantly reversed their protective effects. However, L-NAME or methylene blue pretreatment with trazodone or citalopram significantly potentiated their protective effects alone. Results suggest the involvement of nitric oxide pathways in the protective effect of trazodone and citalopram against immobilization stress induced behavioral and biochemical alterations.

  6. Preclinical identification of vaccine induced protective correlates in human leukocyte antigen expressing transgenic mice infected with Coccidioides posadasii.

    PubMed

    Hurtgen, Brady J; Castro-Lopez, Natalia; Jiménez-Alzate, Maria Del Pilar; Cole, Garry T; Hung, Chiung-Yu

    2016-10-17

    There is an emerging interest to develop human vaccines against medically-important fungal pathogens and a need for a preclinical animal model to assess vaccine efficacies and protective correlates. HLA-DR4 (DRB1∗0401 allele) transgenic mice express a human major histocompatibility complex class II (MHC II) receptor in such a way that CD4(+) T-cell response is solely restricted by this human molecule. In this study HLA-DR4 transgenic mice were immunized with a live-attenuated vaccine (ΔT) and challenged by the intranasal route with 50-70 Coccidioides posadasii spores, a potentially lethal dose. The same vaccination regimen offers 100% survival for C57BL/6 mice. Conversely, ΔT-vaccinated HLA-DR4 mice displayed 3 distinct manifestations of Coccidioides infection including 40% fatal acute (FAD), 30% disseminated (DD) and 30% pulmonary disease (PD). The latter 2 groups of mice had reduced loss of body weight and survived to at least 50days postchallenge (dpc). These results suggest that ΔT vaccinated HLA-DR4 mice activated heterogeneous immunity against pulmonary Coccidioides infection. Vaccinated HLA-DR4 mice displayed early expansion of Th1 and Th17 cells and recruitment of inflammatory innate cells into Coccidioides-infected lungs during the first 9dpc. While contraction rates of Th cells and the inflammatory response during 14-35dpc significantly differed among the 3 groups of vaccinated HLA-DR4 mice. The FAD group displayed a sharply reduced Th1 and Th17 response, while overwhelmingly recruiting neutrophils into lungs during 9-14days. The FAD group approached moribund by 14dpc. In contrast, vaccinated HLA-DR4 survivors gradually contracted Th cells and inflammatory response with the greatest rate in the PD group. While vaccinated HLA-DR4 mice are susceptible to Coccidioides infection, they are useful for evaluation of vaccine efficacy and identification of immunological correlates against this mycosis.

  7. Interleukin 10 regulates inflammatory cytokine synthesis to protect against lipopolysaccharide-induced abortion and fetal growth restriction in mice.

    PubMed

    Robertson, Sarah A; Care, Alison S; Skinner, Rebecca J

    2007-05-01

    Interleukin 10 (IL10) is a potent immune-regulating cytokine and inhibitor of inflammatory cytokine synthesis. To evaluate the anti-inflammatory role of IL10 in pregnancy, the response of genetically IL10-deficient mice to low-dose lipopolysaccharide (LPS)-induced abortion was examined. When IL10-null mutant C57Bl/6 (Il10(-/-)) and control (Il10(+/+)) mice were administered low-dose LPS on Day 9.5 of gestation, IL10 deficiency predisposed to fetal loss accompanied by growth restriction in remaining viable fetuses, with an approximately 10-fold reduction in the threshold dose for 100% abortion. After LPS administration, inflammatory cytokines tumor necrosis factor-alpha (TNFA) and IL6 were markedly increased in serum, uterine, and conceptus tissues in Il10(-/-) mice compared with Il10(+/+) mice, with elevated local synthesis of Tnfa and Il6 mRNAs in the gestational tissues. IL1A and IL12p40 were similarly elevated in serum and gestational tissues, whereas interferon gamma (IFNG) and soluble TNFRII content were unchanged in the absence of IL10. Recombinant IL10 rescued the increased susceptibility to LPS-induced fetal loss in Il10(-/-) mice but did not improve outcomes in Il10(+/+) mice. IL10 genotype also influenced the responsiveness of mice to a TNFA antagonist, etanercept. Fetal loss in Il10(-/-) mice was partly alleviated by moderate or high doses of etanercept, whereas Il10(+/+) mice were refractory to high-dose etanercept, consistent with attenuation by IL10 status of TNFA bioavailability after etanercept treatment. These data show that IL10 modulates resistance to inflammatory stimuli by downregulating expression of proinflammatory cytokines TNFA, IL6, IL1A, and IL12, acting to protect against inflammation-induced pathology in the implantation site.

  8. β-Catenin is Essential for Ethanol Metabolism and Protection Against Alcohol-mediated Liver Steatosis in Mice

    PubMed Central

    Liu, Shiguang; Yeh, Tzu-Hsuan; Singh, Vijay P.; Shiva, Sruti; Krauland, Lindsay; Li, Huanan; Zhang, Pili; Kharbanda, Kusum; Ritov, Vladimir; Monga, Satdarshan P. S.; Scott, Donald K.; Eagon, Patricia K.; Behari, Jaideep

    2011-01-01

    The liver plays a central role in ethanol metabolism and oxidative stress is implicated in alcohol-mediated liver injury. β-Catenin regulates hepatic metabolic zonation and adaptive response to oxidative stress. We hypothesized that β-catenin regulates the hepatic response to ethanol ingestion. Female liver-specific β-catenin knockout (KO) mice and wild type (WT) littermates were fed the Lieber-Decarli liquid diet (5% ethanol) in a pair-wise fashion. Liver histology, biochemistry, and gene expression studies were performed. Plasma alcohol and ammonia levels were measured using standard assays. Ethanol-fed KO mice exhibited systemic toxicity and early mortality. KO mice exhibited severe macrovesicular steatosis and five to six-fold higher serum ALT and AST levels. KO mice had modest increase in hepatic oxidative stress, lower expression of mitochondrial superoxide dismutase (SOD-2), and lower citrate synthase activity, the first step in the tricarboxylic acid cycle. N-Acetyl cysteine (NAC) did not prevent ethanol-induced mortality in KO mice. In WT livers, β-catenin was found to co-precipitate with FoxO3, the upstream regulator of SOD-2. Hepatic alcohol dehydrogenase and aldehyde dehydrogenase activities and expression were lower in KO mice. Hepatic cytochrome P450 2E1 protein levels were upregulated in ethanol-fed WT mice but were nearly undetectable in KO mice. These changes in ethanol-metabolizing enzymes were associated with 30-fold higher blood alcohol levels in KO mice. Conclusion β-catenin is essential for hepatic ethanol metabolism and plays a protective role in alcohol-mediated liver steatosis. Our results strongly suggest that integration of these functions by β-catenin is critical for adaptation to ethanol ingestion in vivo. PMID:22031168

  9. Protective effects of cannabidiol against hippocampal cell death and cognitive impairment induced by bilateral common carotid artery occlusion in mice.

    PubMed

    Schiavon, Angélica Pupin; Soares, Lígia Mendes; Bonato, Jéssica Mendes; Milani, Humberto; Guimarães, Francisco Silveira; Weffort de Oliveira, Rúbia Maria

    2014-11-01

    The present study investigated whether cannabidiol (CBD), a major non-psychoactive constituent of marijuana, protects against hippocampal neurodegeneration and cognitive deficits induced by brain ischemia in adult mice. Male Swiss mice were subjected to a 17 min of bilateral common carotid artery occlusion (BCCAO) and tested in the Morris water maze 7 days later. CBD (3, 10, and 30 mg/kg) was administered 30 min before and 3, 24, and 48 h after BCCAO. After behavioral testing, the brains were removed and processed to evaluate hippocampal cell survival and degeneration using Nissl staining and FluoroJade C histochemistry, respectively. Astroglial response was examined using immunohistochemistry for glial fibrillary acidic protein (GFAP). CBD (3-30 mg/kg) improved spatial learning performance in BCCAO mice. The Nissl and FJC staining results showed a decrease in hippocampal neurodegeneration after CBD (10 and 30 mg/kg) treatment. GFAP immunoreactivity was also decreased in ischemic mice treated with CBD (30 mg/kg). These findings suggest a protective effect of CBD on neuronal death induced by ischemia and indicate that CBD might exert beneficial therapeutic effects in brain ischemia. The mechanisms that underlie the neuroprotective effects of CBD in BCCAO mice might involve the inhibition of reactive astrogliosis.

  10. Overexpression of natural killer T cells protects Valpha14- Jalpha281 transgenic nonobese diabetic mice against diabetes.

    PubMed

    Lehuen, A; Lantz, O; Beaudoin, L; Laloux, V; Carnaud, C; Bendelac, A; Bach, J F; Monteiro, R C

    1998-11-16

    Progression to destructive insulitis in nonobese diabetic (NOD) mice is linked to the failure of regulatory cells, possibly involving T helper type 2 (Th2) cells. Natural killer (NK) T cells might be involved in diabetes, given their deficiency in NOD mice and the prevention of diabetes by adoptive transfer of alpha/beta double-negative thymocytes. Here, we evaluated the role of NK T cells in diabetes by using transgenic NOD mice expressing the T cell antigen receptor (TCR) alpha chain Valpha14-Jalpha281 characteristic of NK T cells. Precise identification of NK1.1(+) T cells was based on out-cross with congenic NK1.1 NOD mice. All six transgenic lines showed, to various degrees, elevated numbers of NK1.1(+) T cells, enhanced production of interleukin (IL)-4, and increased levels of serum immunoglobulin E. Only the transgenic lines with the largest numbers of NK T cells and the most vigorous burst of IL-4 production were protected from diabetes. Transfer and cotransfer experiments with transgenic splenocytes demonstrated that Valpha14-Jalpha281 transgenic NOD mice, although protected from overt diabetes, developed a diabetogenic T cell repertoire, and that NK T cells actively inhibited the pathogenic action of T cells. These results indicate that the number of NK T cells strongly influences the development of diabetes.

  11. Protective effects of recombinant Brucella abortus Omp28 against infection with a virulent strain of Brucella abortus 544 in mice.

    PubMed

    Lim, Jeong Ju; Kim, Dong Hyeok; Lee, Jin Ju; Kim, Dae Geun; Min, Wongi; Lee, Hu Jang; Rhee, Man Hee; Kim, Suk

    2012-09-01

    The outer membrane proteins (OMPs) of Brucella (B.) abortus have been extensively studied, but their immunogenicity and protective ability against B. abortus infection are still unclear. In the present study, B. abortus Omp28, a group 3 antigen, was amplified by PCR and cloned into a maltose fusion protein expression system. Recombinant Omp28 (rOmp28) was expressed in Escherichia coli and was then purified. Immunogenicity of rOmp28 was confirmed by Western blot analysis with Brucella-positive mouse serum. Furthermore, humoral- or cell-mediated immune responses measured by the production of IgG1 or IgG2a in rOmp28-immunized mice and the ability of rOmp28 immunization to protect against B. abortus infection were evaluated in a mouse model. In the immunogenicity analysis, the mean titers of IgG1 and IgG2a produced by rOmp28-immunized mice were 20-fold higher than those of PBS-treated mice throughout the entire experimental period. Furthermore, spleen proliferation and bacterial burden in the spleen of rOmp28-immunized mice were approximately 1.5-fold lower than those of PBS-treated mice when challenged with virulent B. abortus. These findings suggest that rOmp28 from B. abortus is a good candidate for manufacturing an effective subunit vaccine against B. abortus infection in animals.

  12. Protective Effect of Aqueous Crude Extract of Neem (Azadirachta indica) Leaves on Plasmodium berghei-Induced Renal Damage in Mice.

    PubMed

    Somsak, Voravuth; Chachiyo, Sukanya; Jaihan, Ubonwan; Nakinchat, Somrudee

    2015-01-01

    Malaria is a major public health problem in the world because it can cause of death in patients. Malaria-associated renal injury is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. Therefore, new plant extracts to protect against renal injury induced by malaria infection are urgently needed. In this study, we investigated the protective effect of aqueous crude extract of Azadirachta indica (neem) leaves on renal injury induced by Plasmodium berghei ANKA infection in mice. ICR mice were injected intraperitoneally with 1 × 10(7) parasitized erythrocytes of PbANKA, and neem extracts (500, 1,000, and 2,000 mg/kg) were given orally for 4 consecutive days. Plasma blood urea nitrogen (BUN) and creatinine levels were subsequently measured. Malaria-induced renal injury was evidenced as marked increases of BUN and creatinine levels. However, the oral administration of neem leaf extract to PbANKA infected mice for 4 days brought back BUN and creatinine levels to near normalcy, and the highest activity was observed at doses of 1,000 and 2,000 mg/kg. Additionally, no toxic effects were found in normal mice treated with this extract. Hence, neem leaf extract can be considered a potential candidate for protection against renal injury induced by malaria.

  13. IL-15 promotes regulatory T cell function and protects against diabetes development in NK-depleted NOD mice.

    PubMed

    Xia, Jinxing; Liu, Wentao; Hu, Biliang; Tian, Zhigang; Yang, Yongguang

    2010-02-01

    IL-15, an anti-apoptotic cytokine, has been reported to promote the survival and function of NK cells and T cells, including regulatory T cells (Tregs). Here we examined the effect of repeated injections of IL-15 on the development of diabetes in NOD mice. Injection of recombinant murine IL-15, once a day for 2 weeks, neither inhibited nor accelerated diabetes development in untreated NOD mice. However, treatment with IL-15 significantly reduced the incidence and delayed the onset of diabetes in NOD mice that were depleted of NK cells, while NK cell depletion alone had no protection against the disease development. The protective effect in IL-15-treated, NK cell-depleted NOD mice was associated with an increase in immunosuppressive activity of CD4(+)CD25(+) Tregs. IL-15 also enhanced Foxp3 expression in CD4(+)CD25(+) cells in an in vitro culture system, and such an effect of IL-15 was abrogated by IL-15-activated NK cells. Inhibition of IL-15-induced Foxp3 expression by IL-15-activated NK cells likely resulted from their IFN-gamma production, as recombinant IFN-gamma, or the culture supernatant of IL-15-activated wild-type mouse NK cells but not of IL-15-activated IFN-gamma-deficient NK cells, mediated a similar inhibition. IFN-gamma also diminished the stimulatory effect of IL-15 on Treg function in vitro. These results indicate that IL-15 has the potential to promote Treg function and protect against diabetes development in NOD mice, but such an activity can be eliminated by simultaneous activation of NK cells in IL-15-treated mice.

  14. Intraperitoneal prophylaxis with CpG oligodeoxynucleotides protects neutropenic mice against intracerebral Escherichia coli K1 infection

    PubMed Central

    2014-01-01

    Background Prophylaxis with unmethylated cytosine phosphate guanidine (CpG) oligodeoxynucleotides (ODN) protects against several systemic experimental infections. Escherichia coli is a major cause of Gram-negative neonatal bacterial meningitis and also causes meningitis and meningoencephalitis in older and immunocompromised patients. Methods Wild-type (wt) and Toll-like receptor 9 (TLR9)-deficient mice were rendered neutropenic by intraperitoneal administration of the anti-Ly-6G monoclonal antibody. Immunocompetent and neutropenic mice received intraperitoneal CpG ODN or vehicle 72 h prior to induction of E. coli K1 meningoencephalitis. Results Pre-treatment with CpG ODN significantly increased survival of neutropenic wt mice from 33% to 75% (P = 0.0003) but did not protect neutropenic TLR9-/- mice. The protective effect of CpG ODN was associated with an enhanced production of interleukin (IL)-12/IL-23p40 with sustained increased levels in serum and spleen at least for 17 days after conditioning compared to buffer-treated animals. CpG-treated neutropenic wt mice showed reduced bacterial concentrations and increased recruitment of Ly6ChighCCR2+ monocytes in brain and spleen 42 h after infection. The levels of macrophage inflammatory protein 1α (MIP-1α) and interferon gamma (IFN-γ) in spleen were higher 42 h after infection in CpG-treated compared to buffer-treated neutropenic animals. In immunocompetent mice, prophylaxis with CpG ODN did not significantly increase survival compared to the buffer group (60% vs. 45%, P = 0.2). Conclusions These findings suggest that systemic administration of CpG ODN may help to prevent bacterial CNS infections in immunocompromised individuals. PMID:24456653

  15. Protective effect of Selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice.

    PubMed

    Bhattacharjee, Arin; Basu, Abhishek; Ghosh, Prosenjit; Biswas, Jaydip; Bhattacharya, Sudin

    2014-08-01

    Cyclophosphamide (CP) is the most commonly used chemotherapeutic drug for various types of cancer. However, its use causes severe cytotoxicity to normal cells in human. It is well known that the undesirable side effects are caused due to the formation of reactive oxygen species. Selenium is an essential micronutrient for both animals and humans and has antioxidant and membrane stabilizing property, but selenium is also toxic above certain level. Nano selenium has been well proved to be less toxic than inorganic selenium as well as certain organoselenium compounds. The objective of the study is to evaluate the protective role of Nano-Se against CP-induced hepatotoxicity and genotoxicity in Swiss albino mice. CP was administered intraperitoneally (25 mg/kg b.w.) and Nano-Se was given by oral gavages (2 mg Se/kg b.w.) in concomitant and pretreatment scheme. Intraperitoneal administration of CP induced hepatic damage as indicated by the serum marker enzymes aspartate and alanine transaminases and increased the malonaldehyde level, depleted the glutathione content and antioxidant enzyme activity (glutathione peroxidase, glutathione-s-transferase, superoxide dismutase and catalase), and induced DNA damage and chromosomal aberration. Oral administration of Nano-Se caused a significant reduction in malonaldehyde, ROS level and glutathione levels, restoration of antioxidant enzyme activity, reduction in chromosomal aberration in bone marrow, and DNA damage in lymphocytes and also in bone marrow. Moreover, the chemoprotective efficiency of Nano-Se against CP induced toxicity was confirmed by histopathological evaluation. The results support the protective effect of Nano-Se against CP-induced hepatotoxicity and genotoxicity.

  16. Protective effects of ghrelin on cisplatin-induced nephrotoxicity in mice.

    PubMed

    Nojiri, Takashi; Hosoda, Hiroshi; Kimura, Toru; Tokudome, Takeshi; Miura, Koichi; Takabatake, Hiroyuki; Miyazato, Mikiya; Okumura, Meinoshin; Kangawa, Kenji

    2016-08-01

    Cisplatin is a potent chemotherapeutic agent that has activity against malignant tumors. However, cisplatin causes various adverse effects, such as nephrotoxicity, which are associated with high morbidity and mortality. Recent studies have revealed that the mechanism of cisplatin nephrotoxicity includes a robust inflammatory response. Since ghrelin has been shown to have anti-inflammatory properties, we hypothesized that ghrelin might have protective effects against cisplatin nephrotoxicity. Mice were randomly divided into three groups: control, cisplatin with vehicle, and cisplatin with ghrelin. Ghrelin (0.8μg/kg/min via osmotic-pump, subcutaneously) or vehicle administration was started one day before cisplatin injection. At 72h after cisplatin administration (20mg/kg, intraperitoneally), we measured serum blood urea nitrogen and creatinine, urine albumin/creatinine, renal mRNA levels of monocyte chemoattractant protein-1, interleukin-6, tumor necrosis factor-α, interleukin-1β, kidney injury molecule-1, and neutrophil gelatinase-associated lipocalin by real-time polymerase chain reaction, and histological changes. Ghrelin significantly attenuated the increase in serum blood urea nitrogen and creatinine induced by cisplatin. Ghrelin tended to attenuate the increase in urine albumin/creatinine, although not significantly. Cisplatin-induced renal tubular injury and apoptosis were significantly attenuated by ghrelin pretreatment. Consequently, ghrelin significantly attenuated renal mRNA levels of monocyte chemoattractant protein-1, interleukin-6, kidney injury molecule-1, and neutrophil gelatinase-associated lipocalin. In conclusion, ghrelin produces protective effects in cisplatin-induced nephrotoxicity through inhibition of inflammatory reactions. Pretreatment with ghrelin may become a new prophylactic candidate for cisplatin-induced nephrotoxicity.

  17. Protective Effect of Lactobacillus casei on DMH-Induced Colon Carcinogenesis in Mice.

    PubMed

    Irecta-Nájera, Cesar Antonio; Del Rosario Huizar-López, María; Casas-Solís, Josefina; Castro-Félix, Patricia; Santerre, Anne

    2017-03-18

    The administration of probiotics is a promising approach to reduce the prevalence of colon cancer, a multifactorial disease, with hereditary factors, as well as environmental lifestyle-related risk factors. Biogenic polyamines, putrescine, spermidine, and spermine are small cationic molecules with great roles in cell proliferation and differentiation as well as regulation of gene expression. Ornithine decarboxylase is the first rate-limiting enzyme for polyamine synthesis, and upregulation of ornithine decarboxylase activity and polyamine metabolism has been associated with abnormal cell proliferation. This paper is focused on studying the protective role of Lactobacillus casei ATCC 393 in a chemically induced mouse model of colon carcinogenesis, directing our attention on aberrant crypt foci as preneoplastic markers, and on polyamine metabolism as a possible key player in carcinogenesis. BALB/c mice were administered 1,2-dimethylhydrazine dihydrochloride (DMH) to induce colon cancer (20 mg/kg body weight, subcutaneous, twice a week for 24 weeks). L. casei ATCC 393 was given orally (10(6) CFU, twice a week), 2 weeks before DMH administration. Hematoxylin and eosin staining, high-performance liquid chromatography, and Western blotting were used to evaluate aberrant crypt foci, urinary polyamines, and ornithine decarboxylase expression in the colon. The experimental data showed that the preventive administration of L. casei ATCC 393 may delay the onset of cancer as it significantly reduced the number of DMH-induced aberrant crypt foci, the levels of putrescine, and the expression of ornithine decarboxylase. Hence, this probiotic strain has a prospective role in protection against colon carcinogenesis, and its antimutagenic activity may be associated with the maintenance of polyamine metabolism.

  18. Evaluation of safety and protective effects of Potentilla fulgens root extract in experimentally induced diarrhea in mice

    PubMed Central

    Tangpu, Vareishang; Deori, Khirod; Yadav, Arun Kumar

    2014-01-01

    Aim: The roots of Potentilla fulgens Wall. ex Hook. (Rosaceae) have been used in the indigenous system of medicine in Northeast India to treat diarrhea. The aim of this study was to investigate the safety and protective effects of P. fulgens root extract in experimentally induced diarrhea in mice. Materials and Methods: The protective effects of P. fulgens root extract was investigated against experimentally induced diarrhea in mice, using four experimental models, that is the measurement of fecal output, castor oil model, prostaglandin E2 (PGE2) enteropooling assay, and gastrointestinal transit test. The safety assessment of root extract was done in mice on the basis of general signs and symptoms of toxicity, food water intake and mortality of animals following their treatment with various doses of extract (100-3200 mg/kg). In addition, the serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase, cholesterol and total protein of experimental mice were also monitored to assess the toxicity of root extract. Results: In the safety assessment studies, P. fulgens root extract did not showed any visible signs of toxicity, but mortality was observed in a single animal at 3200 mg/kg dose of extract. The extract also did not showed any adverse effects on the studied serum parameters of experimental animals. In the antidiarrheal tests, administration of 800 mg/kg dose of extract to mice showed 50% protection from diarrhea evoked by castor oil. In addition, the extract also showed 29.27% reduction in PGE2-induced intestinal secretion as compared with 30.31% recorded for loperamide, a standard antidiarrheal drug. Conclusions: The results of this study indicate that P. fulgens root extract possesses significant antidiarrheal properties. Therefore, the roots of this plant can be an effective traditional medicine for protection from diarrhea. PMID:26401356

  19. Protective effect of meloxicam-loaded nanocapsules against amyloid-β peptide-induced damage in mice.

    PubMed

    Ianiski, Francine R; Alves, Catiane B; Souza, Ana Cristina G; Pinton, Simone; Roman, Silvane S; Rhoden, Cristiano R B; Alves, Marta P; Luchese, Cristiane

    2012-04-21

    The objective of present study was to investigate the protective effect of M-NC against aβ (25-35) peptide-induced damage in mice, as the first step to evaluate their potential value for the treatment of AD. Moreover, we compared the effects of M-NC with free meloxicam (M-F). Mice were divided into six groups: (I) sham, (II) aβ, (III) M-NC, (IV) M-F, (V) M-NC+aβ and (VI) M-F+aβ. Mice were pre-treated with M-NC (5mg/kg, by gavage), M-F (5mg/kg, by gavage) or blank nanocapsules (B-NC). Thirty minutes after treatments, aβ peptide (3nmol) or filtered water were i.c.v. injected. Learning and memory were assessed with the Morris water maze (MWM) (days 4-7) and step-down-type passive-avoidance (SDPA) (days 7-8) tasks. At the end of the experimental protocol (day 8), animals were euthanized and brains were removed for biochemical determinations (reactive species (RS), non-protein thiols (NPSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST)) and histological examination. Our results confirmed that aβ peptide caused learning and memory deficits in mice. Histological analysis demonstrated neuronal loss, intense cellular accumulation and chromatolysis caused by aβ peptide. Furthermore, this study showed that oxidative stress was increased in mice that received aβ peptide. An important finding of the present study was the protective effect of M-NC in damage induced by aβ peptide. However, M-F did not have protective effect. In summary, the data reported herein clearly demonstrate that meloxicam carried by polymeric nanocapsules protected against learning and memory impairments, loss neuronal and oxidative stress in a mouse model of AD induced by aβ peptide.

  20. A novel snake venom-derived GPIb antagonist, anfibatide, protects mice from acute experimental ischaemic stroke and reperfusion injury

    PubMed Central

    Li, Ting-Ting; Fan, Man-Li; Hou, Shi-Xiang; Li, Xiao-Yi; Barry, Devin M; Jin, Hui; Luo, Sheng-Yong; Kong, Feng; Lau, Lit-Fui; Dai, Xiang-Rong; Zhang, Guo-Hui; Zhou, Lan-Lan

    2015-01-01

    Background and Purpose Ischaemic stroke is a serious disease with limited therapy options. Glycoprotein (GP)Ib binding to von Willebrand factor (vWF) exposed at vascular injury initiates platelet adhesion and contributes to platelet aggregation. GPIb has been suggested as an effective target for antithrombotic therapy in stroke. Anfibatide is a GPIb antagonist derived from snake venom and we investigated its protective effect on experimental brain ischaemia in mice. Experimental Approach Focal cerebral ischaemia was induced by 90 min of transient middle cerebral artery occlusion (MCAO). These mice were then treated with anfibatide (4, 2, 1 μg·kg−1), injected i.v., after 90 min of MCAO, followed by 1 h of reperfusion. Tirofiban, a GPIIb/IIIα antagonist, was used as a positive control. Key Results Twenty-four hours after MCAO, anfibatide-treated mice showed significantly improved ischaemic lesions in a dose-dependent manner. The mice had smaller infarct volumes, less severe neurological deficits and histopathology of cerebrum tissues compared with the untreated MCAO mice. Moreover, anfibatide decreased the amount of GPIbα, vWF and accumulation of fibrin(ogen) in the vasculature of the ischaemic hemisphere. Tirofiban had similar effects on infarct size and fibrin(ogen) deposition compared with the MCAO group. Importantly, the anfibatide-treated mice showed a lower incidence of intracerebral haemorrhage and shorter tail bleeding time compared with the tirofiban-treated mice. Conclusions and Implications Our data indicate anfibatide is a safe GPIb antagonist that exerts a protective effect on cerebral ischaemia and reperfusion injury. Anfibatide is a promising candidate that could be beneficial for the treatment of ischaemic stroke. PMID:25917571

  1. Orally administered live attenuated Salmonella Typhimurium protects mice against lethal infection with H1N1 influenza virus.

    PubMed

    Kamble, Nitin Machindra; Hajam, Irshad Ahmed; Lee, John Hwa

    2017-03-01

    Pre-stimulation of toll-like receptors (TLRs) by agonists has been shown to increase protection against influenza virus infection. In this study, we evaluated the protective response generated against influenza A/Puerto Rico/8/1934 (PR8; H1N1) virus by oral and nasal administration of live attenuated Salmonella enterica serovar Typhimurium, JOL911 strain, in mice. Oral and nasal inoculation of JOL911 significantly increased the mRNA copy number of TLR-2, TLR4 and TLR5, and downstream type I interferon (IFN) molecules, IFN-α and IFN-β, both in peripheral blood mononuclear cells (PBMCs) and in lung tissue. Similarly, the mRNA copy number of interferon-inducible genes (ISGs), Mx and ISG15, were significantly increased in both the orally and the nasally inoculated mice. Post PR8 virus lethal challenge, the nasal JOL911 and the PBS control group mice showed significant loss of body weight with 70% and 100% mortality, respectively, compared to only 30% mortality in the oral JOL911 group mice. Post sub-lethal challenge, the significant reduction in PR8 virus copy number in lung tissue was observed in oral [on day 4 and 6 post-challenge (dpc)] and nasal (on 4dpc) than the PBS control group mice. The lethal and sub-lethal challenge showed that the generated stimulated innate resistance (StIR) in JOL911 inoculated mice conferred resistance to acute and initial influenza infection but might not be sufficient to prevent the PR8 virus invasion and replication in the lung. Overall, the present study indicates that oral administration of attenuated S. Typhimurium can pre-stimulate multiple TLR pathways in mice to provide immediate early StIR against a lethal H1N1 virus challenge.

  2. Protection of mice against Clostridium chauvoei infection by anti-idiotype antibody to a monoclonal antibody to flagella.

    PubMed

    Kijima-Tanaka, M; Nakamura, M; Nagamine, N; Takahashi, T; Aoki, A; Tamura, Y

    1994-03-01

    Polyclonal rabbit anti-idiotypic antibody (anti-Id) against the protective monoclonal antibody specific to the flagella of Clostridium chauvoei was produced, purified, and characterized. Anti-Id inhibited the binding of its related monoclonal antibody to the flagellar antigen, suggesting that the anti-Id bore an internal image of the flagellar antigen. When mice were immunized with anti-Id intraperitoneally, the survival rate increased significantly, compared with mice immunized with normal rabbit IgG (P < 0.01), and specific anti-flagellar antibodies were induced.

  3. Suppression of sulfoconjugation reduces the protective effect of ortho-aminoazotoluene on hepatocarcinogenesis induced by diethylnitrosamine in mice.

    PubMed

    Kaledin, V I; Il'nitskaya, S I; Popova, N A; Bogdanova, L A

    2014-07-01

    The effects of ortho-aminoazotoluene on carcinogenic activity of diethylnitrosamine were studied in CBA and ICR mice. Injection of ortho-aminoazotoluene before and after diethylnitrosamine led to a significant reduction of its anticarcinogenic effect, judging from significantly lower level of liver tumors. Pentachlorophenol, inhibitor of sulfotransferase (catalyzing the terminal stage of ortho-aminoazotoluene metabolic activity), stimulated its carcinogenic effect on mouse liver. On the other hand, pentachlorophenol reduced the protective effect of ortho-aminoazotoluene on diethylnitrosamine-induced hepatocarcinogenesis in mice. Presumably, the carcinogenic and anticarcinogenic effects of ortho-aminoazotoluene were realized by its initial form or intermediate (non-sulfated) metabolites.

  4. Apigenin protects mice from pneumococcal pneumonia by inhibiting the cytolytic activity of pneumolysin.

    PubMed

    Song, Meng; Li, Li; Li, Meng; Cha, Yonghong; Deng, Xuming; Wang, Jianfeng

    2016-12-01

    Streptococcus pneumoniae is an important human pathogenic bacterium that can cause various life-threatening infections. Pneumolysin (PLY), the pore-forming toxin that forms large pores in the cell membrane, is a key virulence factor secreted by S. pneumoniae that penetrates the physical defenses of the host and plays an important role in the pathogenesis of pneumococcal diseases, such as pneumonia, meningitis, bacteremia and otitis media. This study showed that apigenin, one of the bioflavonoids widely found in herbs, inhibits PLY-induced hemolysis by inhibiting the oligomerization of PLY and has no anti-S. pneumoniae activity. In addition, when PLY was incubated with human alveolar epithelial (A549) cells, apigenin could effectively alleviate PLY-mediated cell injury. In vivo studies further demonstrated that apigenin could protect mice against S. pneumoniae pneumonia. These results imply that apigenin could directly interact with PLY to decrease the pathogenicity of S. pneumoniae and that novel therapeutics against S. pneumoniae PLY might provide greater effectiveness in combatting S. pneumoniae pneumonia.

  5. Myricitrin Alleviates Oxidative Stress-induced Inflammation and Apoptosis and Protects Mice against Diabetic Cardiomyopathy

    PubMed Central

    Zhang, Bin; Shen, Qiang; Chen, Yaping; Pan, Ruile; Kuang, Shihuan; Liu, Guiyan; Sun, Guibo; Sun, Xiaobo

    2017-01-01

    Diabetic cardiomyopathy (DCM) has been increasingly considered as a main cause of heart failure and death in diabetic patients. At present, no effective treatment exists to prevent its development. In the present study, we describe the potential protective effects and mechanisms of myricitrin (Myr) on the cardiac function of streptozotosin-induced diabetic mice and on advanced glycation end products (AGEs)-induced H9c2 cardiomyocytes. In vitro experiments revealed that pretreatment with Myr significantly decreased AGEs-induced inflammatory cytokine expression, limited an increase in ROS levels, and reduced cell apoptosis, fibrosis, and hypertrophy in H9c2 cells. These effects are correlated with Nrf2 activation and NF-κB inhibition. In vivo investigation demonstrated that oral administration of Myr at 300 mg/kg/day for 8 weeks remarkably decreased the expression of enzymes associated with cardiomyopathy, as well as the expression of inflammatory cytokines and apoptotic proteins. Finally, Myr improved diastolic dysfunction and attenuated histological abnormalities. Mechanistically, Myr attenuated diabetes-induced Nrf2 inhibition via the regulation of Akt and ERK phosphorylation in the diabetic heart. Collectively, these results strongly indicate that Myr exerts cardioprotective effects against DCM through the blockage of inflammation, oxidative stress, and apoptosis. This suggests that Myr might be a potential therapeutic agent for the treatment of DCM. PMID:28287141

  6. Keratinocyte growth factor protects against elastase-induced pulmonary emphysema in mice.

    PubMed

    Plantier, Laurent; Marchand-Adam, Sylvain; Antico Arciuch, Valeria G; Antico, Valeria G; Boyer, Laurent; De Coster, Cécile; Marchal, Joëlle; Bachoual, Rafik; Mailleux, Arnaud; Boczkowski, Jorge; Crestani, Bruno

    2007-11-01

    Pulmonary emphysema is characterized by persistent inflammation and progressive alveolar destruction. The keratinocyte growth factor (KGF) favorably influences alveolar maintenance and repair and possesses anti-inflammatory properties. We aimed to determine whether exogenous KGF prevented or corrected elastase-induced pulmonary emphysema in vivo. Treatment with 5 mg x kg(-1) x day(-1) KGF before elastase instillation prevented pulmonary emphysema. This effect was associated with 1) a sharp reduction in bronchoalveolar lavage fluid total protein and inflammatory cell recruitment, 2) a reduction in the pulmonary expression of the chemokines CCL2 (or monocyte chemoattractant protein-1) and CXCL2 (or macrophage inflammatory protein-2alpha) and of the adhesion molecules ICAM-1 and VCAM-1, 3) a reduction in matrix metalloproteinase (MMP)-2 and MMP-9 activity at day 3, and 4) a major reduction in DNA damage detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) in alveolar cells at day 7. Treatment with KGF after elastase instillation had no effect on elastase-induced emphysema despite the conserved expression of the KGF receptor in the lungs of elastase-instilled animals as determined by immunohistochemistry. In vitro, KGF abolished the elastase-induced increase in CCL2, CXCL2, and ICAM-1 mRNA in the MLE-12 murine alveolar epithelial cell line. We conclude that KGF pretreatment protected against elastase-induced pulmonary inflammation, activation of MMPs, alveolar cell DNA damage, and subsequent emphysema in mice.

  7. Protective effect of daidzin against D-galactosamine and lipopolysaccharide-induced hepatic failure in mice.

    PubMed

    Kim, Sung-Hwa; Heo, Jeong-Haing; Kim, Yeong Shik; Kang, Sam Sik; Choi, Jae Sue; Lee, Sun-Mee

    2009-05-01

    This study examined the effects of daidzin, a major isoflavone from Puerariae Radix, on D-galactosamine (D-GalN) and lipopolysaccharide (LPS)-induced liver failure. Mice were given an intraperitoneal injection of daidzin (25, 50, 100 and 200 mg/kg) 1 h before receiving an injection of D-GalN (700 mg/kg)/LPS (10 microg/kg). Daidzin markedly reduced the elevated serum aminotransferase activity and the levels of lipid peroxidation and tumor necrosis factor-alpha. The glutathione content was lower in the D-GalN/LPS group, which was attenuated by daidzin. The daidzin pretreatment attenuated the swollen mitochondria observed in the d-GalN/LPS group. Daidzin attenuated the apoptosis of hepatocytes, which was confirmed using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling method and a caspase-3 assay. Overall, these results suggest that the liver protection of daidzin is due to reduced oxidative stress and its antiapoptotic activity.

  8. IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology.

    PubMed

    Aychek, Tegest; Mildner, Alexander; Yona, Simon; Kim, Ki-Wook; Lampl, Nardy; Reich-Zeliger, Shlomit; Boon, Louis; Yogev, Nir; Waisman, Ari; Cua, Daniel J; Jung, Steffen

    2015-03-12

    Gut homeostasis and mucosal immune defense rely on the differential contributions of dendritic cells (DC) and macrophages. Here we show that colonic CX3CR1(+) mononuclear phagocytes are critical inducers of the innate response to Citrobacter rodentium infection. Specifically, the absence of IL-23 expression in macrophages or CD11b(+) DC results in the impairment of IL-22 production and in acute lethality. Highlighting immunopathology as a death cause, infected animals are rescued by the neutralization of IL-12 or IFNγ. Moreover, mice are also protected when the CD103(+) CD11b(-) DC compartment is rendered deficient for IL-12 production. We show that IL-12 production by colonic CD103(+) CD11b(-) DC is repressed by IL-23. Collectively, in addition to its role in inducing IL-22 production, macrophage-derived or CD103(-) CD11b(+) DC-derived IL-23 is required to negatively control the otherwise deleterious production of IL-12 by CD103(+) CD11b(-) DC. Impairment of this critical mononuclear phagocyte crosstalk results in the generation of IFNγ-producing former TH17 cells and fatal immunopathology.

  9. Plumbagin Protects Mice from Lethal Sepsis by Modulating Immunometabolism Upstream of PKM2

    PubMed Central

    Zhang, Zhaoxia; Deng, Wenjun; Kang, Rui; Xie, Min; Billiar, Timothy; Wang, Haichao; Cao, Lizhi; Tang, Daolin

    2016-01-01

    Sepsis is characterized by dysregulated systemic inflammation with release of early (for example, interleukin (IL)-1β) and late (for example, HMGB1) proinflammatory mediators from macrophages. Plumbagin, a medicinal plant-derived naphthoquinone, has been reported to exhibit antiinflammatory activity, but the underling mechanisms remain unclear. Here, we have demonstrated that plumbagin inhibits the inflammatory response through interfering with the immunometabolism pathway in activated macrophages. Remarkably, plumbagin inhibited lipopolysaccharide (LPS)-induced aerobic glycolysis by downregulating the expression of pyruvate kinase M2 (PKM2), a protein kinase responsible for the final and rate-limiting reaction step of the glycolytic pathway. Moreover, the NADPH oxidase 4 (NOX4)-mediated oxidative stress was required for LPS-induced PKM2 expression, because pharmacologic or genetic inhibition of NOX4 by plumbagin or RNA interference limited LPS-induced PKM2 expression, lactate production and subsequent proinflammatory cytokine (IL-1β and HMGB1) release in macrophages. Finally, plumbagin protected mice from lethal endotoxemia and polymicrobial sepsis induced by cecal ligation and puncture. These findings identify a new approach for inhibiting the NOX4/PKM2-dependent immunometabolism pathway in the treatment of sepsis and inflammatory diseases. PMID:26982513

  10. Protective effect of Millettia pulchra polysaccharide on cognitive impairment induced by D-galactose in mice.

    PubMed

    Lin, Xing; Huang, Zhongshi; Chen, Xiaoyu; Rong, Yanping; Zhang, Shijun; Jiao, Yang; Huang, Quanfang; Huang, Renbin

    2014-01-30

    A polysaccharide (PMP) was isolated from Millettia pulchra and purified by DEAE-cellulose and Sephadex G-75 chromatography. The results showed that PMP was composed of d-glucose and d-arabinose in a molar ratio of 90.79% and 9.21%, with an average molecular weight of about 14,301 Da. Furthermore, the effect of PMP on cognitive impairment induced by d-galactose in mice was evaluated. Treatment with PMP significantly reversed d-galactose-induced learning and memory impairments, as measured by behavioral tests. One of the potential mechanisms of this action was to reduce oxidative stress and suppress inflammatory responses. Furthermore, our results also showed that PMP markedly reduced the content and deposition of β-amyloid peptide, improved the dysfunction of synaptic plasticity, increased the levels of acetylcholine, but decreased cholinesterase activity. These results suggest that PMP exerts an effective protection against d-galactose-induced cognitive impairment, and PMP may be a major bioactive ingredient in M. pulchra.

  11. Demethyleneberberine Protects against Hepatic Fibrosis in Mice by Modulating NF-κB Signaling

    PubMed Central

    Wang, Yongchen; Zhao, Zheng; Yan, Yan; Qiang, Xiaoyan; Zhou, Cuisong; Li, Ruiyan; Chen, Huan; Zhang, Yubin

    2016-01-01

    Demethyleneberberine (DMB) is an essential metabolite of Berberine (BBR) in vivo. Recent reports have revealed multiple novel therapeutic applications of BBR. However, the pharmacological activities of DMB remain to be elucidated. This study aimed to demonstrate the hepatoprotective and anti-fibrotic effects of DMB both in vitro and in vivo. Here we showed that DMB protects against thioacetamide (TAA)-induced hepatic fibrosis in mice and exhibits a higher safety profile as compared to BBR. Flow cytometry and Western blotting analysis showed that DMB is able to suppress the activation of hepatic stellate cells (HSCs) and induce cell apoptosis through the nuclear factor-κB (NF-κB) cascade. Immunohistochemical (IHC) and quantitative polymerase chain reaction (qPCR) analysis indicated that DMB also has inhibitory effects on collagen synthesis and is able to increase collagen degradation by blocking the transforming growth factor β 1 (TGF-β1)-Smad signaling and reducing the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMP (TIMPs). These findings indicate that DMB has the potential to attenuate hepatic fibrosis via suppressing HSC activation. PMID:27376272

  12. Testing in Mice the Hypothesis That Melanin Is Protective in Malaria Infections

    PubMed Central

    Waisberg, Michael; Vickers, Brandi K.; Yager, Stephanie B.; Lin, Christina K.; Pierce, Susan K.

    2012-01-01

    Malaria has had the largest impact of any infectious disease on shaping the human genome, exerting enormous selective pressure on genes that improve survival in severe malaria infections. Modern humans originated in Africa and lost skin melanization as they migrated to temperate regions of the globe. Although it is well documented that loss of melanization improved cutaneous Vitamin D synthesis, melanin plays an evolutionary ancient role in insect immunity to malaria and in some instances melanin has been implicated to play an immunoregulatory role in vertebrates. Thus, we tested the hypothesis that melanization may be protective in malaria infections using mouse models. Congenic C57BL/6 mice that differed only in the gene encoding tyrosinase, a key enzyme in the synthesis of melanin, showed no difference in the clinical course of infection by Plasmodium yoelii 17XL, that causes severe anemia, Plasmodium berghei ANKA, that causes severe cerebral malaria or Plasmodium chabaudi AS that causes uncomplicated chronic disease. Moreover, neither genetic deficiencies in vitamin D synthesis nor vitamin D supplementation had an effect on survival in cerebral malaria. Taken together, these results indicate that neither melanin nor vitamin D production improve survival in severe malaria. PMID:22242171

  13. Folic acid supplementation during pregnancy protects against lipopolysaccharide-induced neural tube defects in mice.

    PubMed

    Zhao, Mei; Chen, Yuan-Hua; Chen, Xue; Dong, Xu-Ting; Zhou, Jun; Wang, Hua; Wu, Shu-Xian; Zhang, Cheng; Xu, De-Xiang

    2014-01-13

    Folic acid is a water-soluble B-complex vitamin. Increasing evidence demonstrates that physiological supply of folic acid during pregnancy prevents folic acid deficiency-related neural tube defects (NTDs). Previous studies showed that maternal lipopolysaccharide (LPS) exposure caused NTDs in rodents. The aim of this study was to investigate the effects of high-dose folic acid supplementation during pregnancy on LPS-induced NTDs. Pregnant mice were intraperitoneally injected with LPS (20 μg/kg/d) from gestational day (GD) 8 to GD12. As expected, a five-day LPS injection resulted in 19.96% of fetuses with NTDs. Interestingly, supplementation with folic acid (3mg/kg/d) during pregnancy significantly alleviated LPS-induced NTDs. Additionally, folic acid significantly attenuated LPS-induced fetal growth restriction and skeletal malformations. Additional experiment showed that folic acid attenuated LPS-induced glutathione (GSH) depletion in maternal liver and placentas. Moreover, folic acid significantly attenuated LPS-induced expression of placental MyD88. Additionally, folic acid inhibited LPS-induced c-Jun NH2-terminal kinase (JNK) phosphorylation and nuclear factor kappa B (NF-κB) activation in placentas. Correspondingly, folic acid significantly attenuated LPS-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in placentas, maternal serum and amniotic fluid. In conclusion, supplementation with high-dose folic acid during pregnancy protects against LPS-induced NTDs through its anti-inflammatory and anti-oxidative effects.

  14. Myricitrin Alleviates Oxidative Stress-induced Inflammation and Apoptosis and Protects Mice against Diabetic Cardiomyopathy.

    PubMed

    Zhang, Bin; Shen, Qiang; Chen, Yaping; Pan, Ruile; Kuang, Shihuan; Liu, Guiyan; Sun, Guibo; Sun, Xiaobo

    2017-03-13

    Diabetic cardiomyopathy (DCM) has been increasingly considered as a main cause of heart failure and death in diabetic patients. At present, no effective treatment exists to prevent its development. In the present study, we describe the potential protective effects and mechanisms of myricitrin (Myr) on the cardiac function of streptozotosin-induced diabetic mice and on advanced glycation end products (AGEs)-induced H9c2 cardiomyocytes. In vitro experiments revealed that pretreatment with Myr significantly decreased AGEs-induced inflammatory cytokine expression, limited an increase in ROS levels, and reduced cell apoptosis, fibrosis, and hypertrophy in H9c2 cells. These effects are correlated with Nrf2 activation and NF-κB inhibition. In vivo investigation demonstrated that oral administration of Myr at 300 mg/kg/day for 8 weeks remarkably decreased the expression of enzymes associated with cardiomyopathy, as well as the expression of inflammatory cytokines and apoptotic proteins. Finally, Myr improved diastolic dysfunction and attenuated histological abnormalities. Mechanistically, Myr attenuated diabetes-induced Nrf2 inhibition via the regulation of Akt and ERK phosphorylation in the diabetic heart. Collectively, these results strongly indicate that Myr exerts cardioprotective effects against DCM through the blockage of inflammation, oxidative stress, and apoptosis. This suggests that Myr might be a potential therapeutic agent for the treatment of DCM.

  15. Protective effects of bilberry ( Vaccinium myrtillus L.) extract against endotoxin-induced uveitis in mice.

    PubMed

    Yao, Nan; Lan, Fang; He, Rong-Rong; Kurihara, Hiroshi

    2010-04-28

    Endotoxin-induced uveitis (EIU), a useful animal model of ocular inflammation, is induced by injection of lipopolysacharide (LPS). These experiments showed that the nitric oxide (NO) level significantly increased in the whole eye homogenate of BALB/C mice 24 h after footpad injection of LPS at a dosage of 100 mg/mouse. However, the elevated NO level was significantly reduced by oral administration of bilberry extract (containing 42.04% anthocyanins) at dosages of 50, 100, and 200 mg/kg/day for 5 days before the LPS injection. In addition, bilberry extract decreased malondialdehyde (MDA) level and increased oxygen radical absorbance capacity (ORAC) level, glutathione (GSH) level, vitamin C level, and total superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Moreover, bilberry extract increased expression of copper/zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), and GPx mRNA. Taken together, bilberry extract showed protective effects against EIU, whereas the effects of bilberry extract (100 and 200 mg/kg/day, 5 days) were dose-dependent. In conclusion, these results provide new evidence to elucidate the beneficial effects of bilberry extract on eye health.

  16. The antidiabetic agent glibenclamide protects airway hyperresponsiveness and inflammation in mice.

    PubMed

    Cui, Wei; Zhang, Shufang; Cai, Zhijian; Hu, Xinlei; Zhang, Ruifeng; Wang, Yong; Li, Na; Chen, Zhihua; Zhang, Gensheng

    2015-04-01

    Glibenclamide has a newly discovered role in inflammation regulation besides its antidiabetic effect. As an inhibitor of ATP-sensitive potassium (KATP) channel, glibenclamide antagonizes the relaxation of the tracheal smooth muscle. This indicates that glibenclamide might attenuate airway inflammation while aggravate airway hyperresponsiveness (AHR) in asthmatics. Clinically, many diabetics with asthma are prescribed with glibenclamide to control blood glucose. However, whether glibenclamide could exert any effects on asthmatic inflammation remains unknown. Using an ovalbumin (OVA)-induced mouse model of asthma, we evaluated the effects of glibenclamide on the AHR and inflammation. Interestingly, glibenclamide reduced all the cardinal features of asthma in OVA-challenged mice, including AHR, airway inflammation, and T-helper type 2 (Th2) cytokines. Glibenclamide also downregulated OVA-induced expressions of vascular cell adhesion molecule 1 (VCAM-1) and phosphorylated signal transducer and activator of transcription 6 (p-STAT6) in the lung. In addition, increased sulfonylurea receptor 1 (SUR1) expression in the lung was observed after the OVA challenge. These findings suggest that the classic sulfonylurea glibenclamide plays an important protective role in the development of asthma, which not only provides the evidence for the safety of prescribed glibenclamide in diabetics combined with asthma but also indicates a possible new therapeutic for asthma via targeting glibenclamide-related pathways.

  17. Stepwise engineering of heterodimeric single domain camelid VHH antibodies that passively protect mice from ricin toxin.

    PubMed

    Vance, David J; Tremblay, Jacqueline M; Mantis, Nicholas J; Shoemaker, Charles B

    2013-12-20

    In an effort to engineer countermeasures for the category B toxin ricin, we produced and characterized a collection of epitopic tagged, heavy chain-only antibody VH domains (VHHs) specific for the ricin enzymatic (RTA) and binding (RTB) subunits. Among the 20 unique ricin-specific VHHs we identified, six had toxin-neutralizing activity: five specific for RTA and one specific for RTB. Three neutralizing RTA-specific VHHs were each linked via a short peptide spacer to the sole neutralizing anti-RTB VHH to create VHH "heterodimers." As compared with equimolar concentrations of their respective monovalent monomers, all three VHH heterodimers had higher affinities for ricin and, in the case of heterodimer D10/B7, a 6-fold increase in in vitro toxin-neutralizing activity. When passively administered to mice at a 4:1 heterodimer:toxin ratio, D10/B7 conferred 100% survival in response to a 10 × LD50 ricin challenge, whereas a 2:1 heterodimer:toxin ratio conferred 20% survival. However, complete survival was achievable when the low dose of D10/B7 was combined with an IgG1 anti-epitopic tag monoclonal antibody, possibly because decorating the toxin with up to four IgGs promoted serum clearance. The two additional ricin-specific heterodimers, when tested in vivo, provided equal or greater passive protection than D10/B7, thereby warranting further investigation of all three heterodimers as possible therapeutics.

  18. Ephedrine hydrochloride protects mice from LPS challenge by promoting IL-10 secretion and inhibiting proinflammatory cytokines.

    PubMed

    Zheng, Yuejuan; Guo, Ziyi; He, Weigang; Yang, Yang; Li, Yuhu; Zheng, Aoxiang; Li, Ping; Zhang, Yan; Ma, Jinzhu; Wen, Mingyue; Yang, Muyi; An, Huazhang; Ji, Guang; Yu, Yizhi

    2012-05-01

    Sepsis and its derivative endotoxic shock are still serious conditions with high mortality in the intensive care unit. The mechanisms that ensure the balance of proinflammatory cytokines and anti-inflammatory cytokine production are of particular importance. As an active α- and β-adrenergic agonist, ephedrine hydrochloride (EH) is a widely used agent for cardiovascular diseases, especially boosting blood pressure. Here we demonstrate that EH increased Toll-like receptor 4 (TLR4)-mediated production of interleukin 10 (IL-10) through p38 MAPK activation. Simultaneously, EH negatively regulated the production of proinflammatory cytokines. Consistently, EH increased lipopolysaccharide (LPS)-induced serum IL-10 and inhibited tumor necrotic factor-α (TNFα) production in vivo. As a result, EH treatment protected mice from endotoxic shock by lethal LPS challenge. In brief, our data demonstrated that EH could contribute to immune homeostasis by balancing the production of proinflammatory cytokines and anti-inflammatory cytokine in TLR4 signaling. This study provides a potential usage of EH in autoimmunologic diseases or other severe inflammations.

  19. Boswellic acids synergize antitumor activity and protect against the cardiotoxicity of doxorubicin in mice bearing Ehrlich's carcinoma.

    PubMed

    Ali, Shimaa A; Zaitone, Sawsan A; Moustafa, Yasser M

    2015-08-01

    This study aimed to test whether boswellic acids add to the antitumor effects of doxorubicin against solid tumors of Ehrlich's ascites carcinoma (EAC) grown in mice, and to investigate the protective effects of boswellic acids against doxorubicin-induced cardiotoxicity. Sixty-four female Swiss albino mice bearing EAC solid tumors were distributed among 8 groups as follows: group 1, EAC control group; group 2, doxorubicin treatment group [mice were injected with doxorubicin (6 mg·(kg body mass)(-1)·week(-1)) for 3 weeks]; groups 3-5, these mice were treated with boswellic acids (125, 250, or 500 mg·kg(-1)·day(-1)), respectively; groups 6-8, these mice were treated with a combination of doxorubicin and boswellic acids (125, 250, or 500 mg·kg(-1)·day(-1)), respectively, for 3 weeks. The results indicated that boswellic acids synergized the antitumor activity of doxorubicin. Doxorubicin-treated mice showed elevated serum activities of lactate dehydrogenase and creatine kinase isoenzyme MB as well as cardiac malondialdehyde. Further, decreases in cardiac levels of reduced glutathione, superoxide dismutase, and catalase activities were observed. These effects were accompanied by an increase in cardiac expression of caspase 3. Thus, treatment with boswellic acids attenuated doxorubicin-evoked disturbances in the above-mentioned parameters, highlighting antioxidant and antiapoptotic activities. Therefore, boswellic acids could be potential candidates for ameliorating the cardiotoxicity of doxorubicin.

  20. Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice*

    PubMed Central

    Su, Hong-ming; Feng, Li-na; Zheng, Xiao-dong; Chen, Wei

    2016-01-01

    Background: Myricetin is a naturally occurring antioxidant commonly found in various plants. However, little information is available with respect to its direct anti-obesity effects. Objective: This study was undertaken to investigate the effect of myricetin on high-fat diet (HFD)-induced obesity in C57BL/6 mice. Results: Administration of myricetin dramatically reduced the body weight of diet-induced obese mice compared with solely HFD-induced mice. Several parameters related to obesity including serum glucose, triglyceride, and cholesterol were significantly decreased in myricetin-treated mice. Moreover, obesity-associated oxidative stress (glutathione peroxidase (GPX) activity, total antioxidant capacity (T-AOC), and malondialdehyde (MDA)) and inflammation (tumor necrosis factor-α (TNF-α)) were ameliorated in myricetin-treated mice. Further investigation revealed that the protective effect of myricetin against HFD-induced obesity in mice appeared to be partially mediated through the down-regulation of mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and lipogenic transcription factor sterol regulatory element-binding protein 1c (SREBP-1c). Conclusions: Consumption of myricetin may help to prevent obesity and obesity-related metabolic complications. PMID:27256677

  1. An Apolipoprotein E-Mimetic Stimulates Axonal Regeneration and Remyelination after Peripheral Nerve Injury

    PubMed Central

    Fowler, Kenneth A.; Neil, Jessica E.; Colton, Carol A.; Vitek, Michael P.

    2010-01-01

    Elevated apolipoprotein E (apoE) synthesis within crushed sciatic nerves advocates that apoE could benefit axonal repair and reconstruction of axonal and myelin membranes. We created an apoE-mimetic peptide, COG112 (acetyl-RQIKIWFQNRRMKWKKCLRVRLASHLRKLRKRLL-amide), and found that postinjury treatment with COG112 significantly improved recovery of motor and sensory function following sciatic nerve crush in C57BL/6 mice. Morphometric analysis of injured sciatic nerves revealed that COG112 promoted axonal regrowth after 2 weeks of treatment. More strikingly, the thickness of myelin sheaths was increased by COG112 treatment. Consistent with these histological findings, COG112 potently elevated growth associated protein 43 (GAP-43) and peripheral myelin protein zero (P0), which are markers of axon regeneration and remyelination, respectively. Electron microscopic examination further suggested that the apoE-mimetic COG112 may increase clearance of myelin debris. Schwann cell uptake of cholesterol-containing low-density lipoprotein particles was selectively enhanced by COG112 treatment in a Schwann cell line S16. Moreover, COG112 significantly promoted axon elongation in primary dorsal root ganglion cultures from rat pups. Considering that cholesterol and lipids are needed for reconstructing myelin sheaths and axon extension, these data support a hypothesis where supplementation with exogenous apoE-mimetics such as COG112 may be a promising strategy for restoring lost functional and structural elements following nerve injury. PMID:20406857

  2. An apolipoprotein E-mimetic stimulates axonal regeneration and remyelination after peripheral nerve injury.

    PubMed

    Li, Feng-Qiao; Fowler, Kenneth A; Neil, Jessica E; Colton, Carol A; Vitek, Michael P

    2010-07-01

    Elevated apolipoprotein E (apoE) synthesis within crushed sciatic nerves advocates that apoE could benefit axonal repair and reconstruction of axonal and myelin membranes. We created an apoE-mimetic peptide, COG112 (acetyl-RQIKIWFQNRRMKWKKCLRVRLASHLRKLRKRLL-amide), and found that postinjury treatment with COG112 significantly improved recovery of motor and sensory function following sciatic nerve crush in C57BL/6 mice. Morphometric analysis of injured sciatic nerves revealed that COG112 promoted axonal regrowth after 2 weeks of treatment. More strikingly, the thickness of myelin sheaths was increased by COG112 treatment. Consistent with these histological findings, COG112 potently elevated growth associated protein 43 (GAP-43) and peripheral myelin protein zero (P0), which are markers of axon regeneration and remyelination, respectively. Electron microscopic examination further suggested that the apoE-mimetic COG112 may increase clearance of myelin debris. Schwann cell uptake of cholesterol-containing low-density lipoprotein particles was selectively enhanced by COG112 treatment in a Schwann cell line S16. Moreover, COG112 significantly promoted axon elongation in primary dorsal root ganglion cultures from rat pups. Considering that cholesterol and lipids are needed for reconstructing myelin sheaths and axon extension, these data support a hypothesis where supplementation with exogenous apoE-mimetics such as COG112 may be a promising strategy for restoring lost functional and structural elements following nerve injury.

  3. Protective role of antibodies induced by Brucella melitensis B115 against B. melitensis and Brucella abortus infections in mice.

    PubMed

    Adone, Rosanna; Francia, Massimiliano; Pistoia, Claudia; Petrucci, Paola; Pesciaroli, Michele; Pasquali, Paolo

    2012-06-08

    It has been demonstrated that antibodies specific for O-PS antigen of Brucella smooth strains are involved in the protective immunity of brucellosis. Since the rough strain Brucella melitensis B115 was able to protect mice against wild Brucella strains brucellosis despite the lack of anti-OPS antibodies, in this study we evaluated the biological significance of antibodies induced by this strain, directed to antigens other than O-PS, passively tranferred to untreated mice prior to infection with Brucella abortus 2308 and B. melitensis 16M virulent strains. The protective ability of specific antisera collected from mice vaccinated with B. melitensis B115, B. abortus RB51 and B. abortus S19 strains was compared. The results indicated that antibodies induced by B115 were able to confer a satisfactory protection, especially against B. abortus 2308, similar to that conferred by the antiserum S19, while the RB51 antiserum was ineffective. These findings suggest that antibodies induced by B115 could act as opsonins as well as antibodies anti-O-PS, thus triggering more efficient internalization and degradation of bacteria within phagocytes. This is the first study assessing the efficacy of antibodies directed to antigens other than O-PS in the course of brucellosis infection.

  4. Cell mediated immune response after challenge in Omp25 liposome immunized mice contributes to protection against virulent Brucella abortus 544.

    PubMed

    Goel, Divya; Rajendran, Vinoth; Ghosh, Prahlad C; Bhatnagar, Rakesh

    2013-02-06

    Brucellosis is a disease affecting various domestic and wild life species, and is caused by a bacterium Brucella. Keeping in view the serious economic and medical consequences of brucellosis, efforts have been made to prevent the infection through the use of vaccines. Cell-mediated immune responses [CMI] involving interferon gamma and cytotoxic CD4(+) and CD8(+) T cells are required for removal of intracellular Brucella. Omp25 has been reported to be involved in virulence of Brucella melitensis, Brucella abortus and Brucella ovis. In our previous study, we have shown the protective efficacy of recombinant Omp25, when administered intradermally. In this study, the recombinant Omp25 was formulated in PC-PE liposomes and PLGA microparticles, to enhance the protective immunity generated by it. Significant protection was seen with prime and booster liposome immunization in Balb/c mice against virulent B. abortus 544 as it was comparable to B. abortus S-19 vaccine strain. However, microparticle prime and booster immunization failed to give better protection when compared to B. abortus S-19 vaccine strain. This difference can be attributed to the stimulation of cell mediated immune response in PC-PE liposome immunized mice even after challenge which converted to cytotoxicity seen in CD4(+) and CD8(+) enriched lymphocytes. However, in PLGA microparticle immunized mice, cell mediated immunity was not generated after challenge as observed by decreased cytotoxicity of CD4(+) and CD8(+) enriched lymphocytes. Our study emphasizes on the importance of liposome encapsulating Omp25 immunization in conferring protection against B. abortus 544 challenge in Balb/c mice with a single dose immunization regimen.

  5. Infection of influenza virus neuraminidase-vaccinated mice with homologous influenza virus leads to strong protection against heterologous influenza viruses.

    PubMed

    He, Biao; Chang, Haiyan; Liu, Zhihua; Huang, Chaoyang; Liu, Xueying; Zheng, Dan; Fang, Fang; Sun, Bing; Chen, Ze

    2014-12-01

    Vaccination is the best measure to prevent influenza pandemics. Here, we studied the protective effect against heterologous influenza viruses, including A/reassortant/NYMC X-179A (pH1N1), A/Chicken/Henan/12/2004 (H5N1), A/Chicken/Jiangsu/7/2002 (H9N2) and A/Guizhou/54/89×A/PR/8/34 (A/Guizhou-X) (H3N2), in mice first vaccinated with a DNA vaccine of haemagglutinin (HA) or neuraminidase (NA) of A/PR/8/34 (PR8) and then infected with the homologous virus. We showed that PR8 HA or NA vaccination both protected mice against a lethal dose of the homologous virus; PR8 HA or NA DNA vaccination and then PR8 infection in mice offered poor or excellent protection, respectively, against a second, heterologous influenza virus challenge. In addition, before the second heterologous influenza infection, the highest antibody level against nucleoprotein (NP) and matrix (M1 and M2) proteins was found in the PR8 NA-vaccinated and PR8-infected group. The level of induced cellular immunity against NP and M1 showed a trend consistent with that seen in antibody levels. However, PR8 HA+NA vaccination and then PR8 infection resulted in limited protection against heterologous influenza virus challenge. Results of the present study demonstrated that infection of the homologous influenza virus in mice already immunized with a NA vaccine could provide excellent protection against subsequent infection of a heterologous influenza virus. These findings suggested that NA, a major antigen of influenza virus, could be an important candidate antigen for universal influenza vaccines.

  6. Identification of Schistosoma mansoni glycoproteins recognized by protective antibodies from mice immunized with irradiated cercariae

    SciTech Connect

    Dalton, J.P.; Strand, M.; Mangold, B.L.; Dean, D.A.

    1986-06-15

    The humoral immune response of mice patently infected with Schistosoma mansoni and of mice vaccinated with radiation-attenuated cercariae were compared by radioimmunoassays and one-and two-dimensional polyacrylamide gel analyses of radioimmunoprecipitates. The binding observed with antibodies of mice vaccinated twice with radiation-attenuated cercariae over a period of 7 to 11 wk was less than 50% of the binding observed with antibodies of mice patently infected for 20 wk, but three to four times greater than that obtained with antibodies of mice infected for 6 wk, irrespective of whether the test extracts were derived from schistosomula or adult worms. Sera of vaccinated mice precipitated a restricted number of predominantly high m.w. glycoproteins of both schistosomula and adult worms metabolically labeled with sulfur-35 methionine. Each of the glycoproteins of 36 hr in vitro-cultured schistosomula that was precipitated by the sera of vaccinated mice was also precipitated by the sera of infected mice. Although radiation-attenuated larvae do not reach the adult stage, mice vaccinated with these still elicit a strong immune response against egg glycoproteins. These results show that the antibody response in mice vaccinated with radiation-attenuated larvae differs qualitatively and quantitatively from that of infected mice.

  7. Identification of Schistosoma mansoni glycoproteins recognized by protective antibodies from mice immunized with irradiated cercariae

    SciTech Connect

    Dalton, J.P.; Strand, M.; Mangold, B.L.; Dean, D.A.

    1986-01-01

    The humoral immune responses of mice patently infected with Schistosoma mansoni and of mice vaccinated with radiation-attenuated cercariae were compared by radioimmunoassays and one-and two-dimensional polyacrylamide gel analyses of radioimmunoprecipitates. Sera of vaccinated mice precipitated a restricted number of predominantly high m.w. glycoproteins of both schistosomula and adult worms metabolically labeled with (/sup 35/S) methinonine. Each of the glycoproteins of 36 hr in vitro-cultured schistosomula that was precipitated by the sera of vaccinated mice was also precipitated by sera of infected mice. In contrast, sera of vaccinated mice uniquely precipitated a 38,000 m.w. glycoprotein of schistosomula cultured for 5 days and a 94,000 m.w. glycoprotein of adult male worms. Although radiation-attenuated larvae do not reach the adult stage, mice vaccinated with these still elicit a strong immune response against egg glycoproteins. In particular, an egg glycoprotein of 85,000 to 70,000 and isoelectric point of 4.8 showed an enhanced reactivity with sera of vaccinated mice in comparison with infected mice. These results show that the antibody response in mice vaccinated with radiation-attenuated larvae differs qualitatively and quantitatively from that of infected mice.

  8. Rubicon deficiency enhances cardiac autophagy and protects mice from lipopolysaccharide-induced lethality and reduction in stroke volume.

    PubMed

    Zi, Zhenguo; Song, Zongpei; Zhang, Shasha; Ye, Yong; Li, Can; Xu, Mingqing; Zou, Yunzeng; He, Lin; Zhu, Hongxin

    2015-03-01

    : Rubicon has been suggested to suppress autophagosome maturation by negatively regulating PI3KC3/Vps34 activity. However, the physiological function of Rubicon remains elusive. We hypothesized that Rubicon deficiency enhances autophagic flux in the heart and affects cardiac function. Rubicon knockout (KO) mice were generated by piggyBac transposition. Loss of Rubicon was demonstrated at both mRNA and protein levels. Rubicon KO mice were born in Mendelian ratios. Autophagic flux, assessed by bafilomycin A1-induced changes in LC3 II protein abundance, was enhanced in the heart of Rubicon KO mice compared with wild-type (WT) controls. Hematoxylin-eosin staining and picrosirius red staining showed that Rubicon KO mice exhibited normal baseline cardiac morphology. Echocardiography revealed that ejection fraction and fractional shortening, 2 indices of cardiac function, were comparable between Rubicon KO mice at 2, 8, and 12 months of age (n = 6-8 for each age group) and the corresponding WT controls (n = 6-8 for each age group). In a mouse model of lipopolysaccharide (LPS)-induced sepsis, the survival time of LPS-treated Rubicon KO mice (n = 10) was prolonged compared with LPS-treated WT controls (n = 11). Echocardiography revealed that Rubicon deficiency partially normalized LPS-induced reduction in stroke volume and cardiac output 12 hours after LPS administration compared with LPS-treated WT controls (n = 6 for each group). Autophagic flux was enhanced in Rubicon-deficient hearts 12 hours after LPS treatment compared with LPS-treated WT controls. Real-time quantitative polymerase chain reaction suggested that proinflammatory cytokine expression was not significantly different between LPS-treated Rubicon KO mice and WT controls (n = 3 for each group). Our data demonstrate for the first time that Rubicon deficiency enhances autophagic flux in the heart and protects mice from lethality and reduction in stroke volume induced by LPS.

  9. CRYAB and HSPB2 deficiency alters cardiac metabolism and paradoxically confers protection against myocardial ischemia in aging mice

    PubMed Central

    Benjamin, Ivor J.; Guo, Yiru; Srinivasan, Sathyanarayanan; Boudina, Sihem; Taylor, Ryan P.; Rajasekaran, Namakkal S.; Gottlieb, Roberta; Wawrousek, Eric F.; Abel, E. Dale; Bolli, Roberto

    2013-01-01

    The abundantly expressed small molecular weight proteins, CRYAB and HSPB2, have been implicated in cardioprotection ex vivo. However, the biological roles of CRYAB/HSPB2 coexpression for either ischemic preconditioning and/or protection in situ remain poorly defined. Wild-type (WT) and age-matched (~5–9 mo) CRYAB/HSPB2 double knockout (DKO) mice were subjected either to 30 min of coronary occlusion and 24 h of reperfusion in situ or preconditioned with a 4-min coronary occlusion/4-min reperfusion × 6, before similar ischemic challenge (ischemic preconditioning). Additionally, WT and DKO mice were subjected to 30 min of global ischemia in isolated hearts ex vivo. All experimental groups were assessed for area at risk and infarct size. Mitochondrial respiration was analyzed in isolated permeabilized cardiac skinned fibers. As a result, DKO mice modestly altered heat shock protein expression. Surprisingly, infarct size in situ was reduced by 35% in hearts of DKO compared with WT mice (38.8 ± 17.9 vs. 59.8 ± 10.6% area at risk, P < 0.05). In DKO mice, ischemic preconditioning was additive to its infarct-sparing phenotype. Similarly, infarct size after ischemia and reperfusion ex vivo was decreased and the production of superoxide and creatine kinase release was decreased in DKO compared with WT mice (P < 0.05). In permeabilized fibers, ADP-stimulated respiration rates were modestly reduced and calcium-dependent ATP synthesis was abrogated in DKO compared with WT mice. In conclusion, contrary to expectation, our findings demonstrate that CRYAB and HSPB2 deficiency induces profound adaptations that are related to 1) a reduction in calcium-dependent metabolism/respiration, including ATP production, and 2) decreased superoxide production during reperfusion. We discuss the implications of these disparate results in the context of phenotypic responses reported for CRYAB/HSPB2-deficient mice to different ischemic challenges. PMID:17873008

  10. Vaccination with lentiviral vector expressing the nfa1 gene confers a protective immune response to mice infected with Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Yang, Hee-Jong; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun; Shin, Ho-Joon

    2013-07-01

    Naegleria fowleri, a pathogenic free-living amoeba, causes fatal primary amoebic meningoencephalitis (PAM) in humans and