Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics
NASA Astrophysics Data System (ADS)
Weiss, Marian; Frohnmayer, Johannes Patrick; Benk, Lucia Theresa; Haller, Barbara; Janiesch, Jan-Willi; Heitkamp, Thomas; Börsch, Michael; Lira, Rafael B.; Dimova, Rumiana; Lipowsky, Reinhard; Bodenschatz, Eberhard; Baret, Jean-Christophe; Vidakovic-Koch, Tanja; Sundmacher, Kai; Platzman, Ilia; Spatz, Joachim P.
2018-01-01
Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed `droplet-stabilized giant unilamellar vesicles (dsGUVs)’. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.
Hattori, Yoshiyuki; Arai, Shohei; Kikuchi, Takuto; Ozaki, Kei-Ichi; Kawano, Kumi; Yonemochi, Etsuo
2016-04-01
Previously, we developed a novel siRNA transfer method to the liver by sequential intravenous injection of anionic polymer and cationic liposome/siRNA complex (cationic lipoplex). In this study, we investigated whether siRNA delivered by this sequential injection could significantly suppress mRNA expression of the targeted gene in liver metastasis and inhibit tumor growth. When cationic lipoplex was intravenously injected into mice bearing liver metastasis of human breast tumor MCF-7 at 1 min after intravenous injection of chondroitin sulfate C (CS) or poly-l-glutamic acid (PGA), siRNA was accumulated in tumor-metastasized liver. In terms of a gene silencing effect, sequential injections of CS or PGA plus cationic lipoplex of luciferase siRNA could reduce luciferase activity in liver MCF-7-Luc metastasis. Regarding the side effects, sequential injections of CS plus cationic lipoplex did not exhibit hepatic damage or induction of inflammatory cytokines in serum after repeated injections, but sequential injections of PGA plus cationic lipoplex did. Finally, sequential injections of CS plus cationic lipoplex of protein kinase N3 siRNA could suppress tumor growth in the mice bearing liver metastasis. From these findings, sequential injection of CS and cationic lipoplex of siRNA might be a novel systemic method of delivering siRNA to liver metastasis.
Hattori, Yoshiyuki; Arai, Shohei; Okamoto, Ryou; Hamada, Megumi; Kawano, Kumi; Yonemochi, Etsuo
2014-12-10
In this study, we developed novel siRNA transfer method to the liver by sequential intravenous injection of anionic polymer and cationic liposome/cholesterol-modified siRNA complex (cationic lipoplex). When cationic lipoplex was intravenously injected into mice, the accumulation of siRNA was mainly observed in the lungs. In contrast, when cationic lipoplex was intravenously injected at 1 min after intravenous injection of poly-L-glutamic acid (PGA) or chondroitin sulfate C (CS), siRNA was accumulated in the liver. In terms of suppression of gene expression in vivo, apolipoprotein B (ApoB) mRNA in the liver and low-density-lipoprotein (LDL) and very low-density-lipoprotein (VLDL) cholesterol level in serum were reduced at 48 h after single sequential injection of PGA or CS plus cationic lipoplex of cholesterol-modified ApoB siRNA. Furthermore, sequential injections of PGA plus cationic lipoplex of cholesterol-modified luciferase siRNA could reduce luciferase activity in tumor xenografts bearing liver metastasis of human breast tumor MCF-7-Luc. From these findings, sequential injection of anionic polymer and cationic lipoplex of siRNA might produce a systemic vector of siRNA to the liver. Copyright © 2014 Elsevier B.V. All rights reserved.
Cressman, Erik N K; Shenoi, Mithun M; Edelman, Theresa L; Geeslin, Matthew G; Hennings, Leah J; Zhang, Yan; Iaizzo, Paul A; Bischof, John C
2012-01-01
To investigate simultaneous and sequential injection thermochemical ablation in a porcine model, and compare them to sham and acid-only ablation. This IACUC-approved study involved 11 pigs in an acute setting. Ultrasound was used to guide placement of a thermocouple probe and coaxial device designed for thermochemical ablation. Solutions of 10 M acetic acid and NaOH were used in the study. Four injections per pig were performed in identical order at a total rate of 4 mL/min: saline sham, simultaneous, sequential, and acid only. Volume and sphericity of zones of coagulation were measured. Fixed specimens were examined by H&E stain. Average coagulation volumes were 11.2 mL (simultaneous), 19.0 mL (sequential) and 4.4 mL (acid). The highest temperature, 81.3°C, was obtained with simultaneous injection. Average temperatures were 61.1°C (simultaneous), 47.7°C (sequential) and 39.5°C (acid only). Sphericity coefficients (0.83-0.89) had no statistically significant difference among conditions. Thermochemical ablation produced substantial volumes of coagulated tissues relative to the amounts of reagents injected, considerably greater than acid alone in either technique employed. The largest volumes were obtained with sequential injection, yet this came at a price in one case of cardiac arrest. Simultaneous injection yielded the highest recorded temperatures and may be tolerated as well as or better than acid injection alone. Although this pilot study did not show a clear advantage for either sequential or simultaneous methods, the results indicate that thermochemical ablation is attractive for further investigation with regard to both safety and efficacy.
Yang, Qiang; Ma, Yanling; Zhao, Yongxue; She, Zhennan; Wang, Long; Li, Jie; Wang, Chunling; Deng, Yihui
2013-01-01
Background Sequential low-dose chemotherapy has received great attention for its unique advantages in attenuating multidrug resistance of tumor cells. Nevertheless, it runs the risk of producing new problems associated with the accelerated blood clearance phenomenon, especially with multiple injections of PEGylated liposomes. Methods Liposomes were labeled with fluorescent phospholipids of 1,2-dipalmitoyl-snglycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) and epirubicin (EPI). The pharmacokinetics profile and biodistribution of the drug and liposome carrier following multiple injections were determined. Meanwhile, the antitumor effect of sequential low-dose chemotherapy was tested. To clarify this unexpected phenomenon, the production of polyethylene glycol (PEG)-specific immunoglobulin M (IgM), drug release, and residual complement activity experiments were conducted in serum. Results The first or sequential injections of PEGylated liposomes within a certain dose range induced the rapid clearance of subsequently injected PEGylated liposomal EPI. Of note, the clearance of EPI was two- to three-fold faster than the liposome itself, and a large amount of EPI was released from liposomes in the first 30 minutes in a complement-activation, direct-dependent manner. The therapeutic efficacy of liposomal EPI following 10 days of sequential injections in S180 tumor-bearing mice of 0.75 mg EPI/kg body weight was almost completely abolished between the sixth and tenth day of the sequential injections, even although the subsequently injected doses were doubled. The level of PEG-specific IgM in the blood increased rapidly, with a larger amount of complement being activated while the concentration of EPI in blood and tumor tissue was significantly reduced. Conclusion Our investigation implied that the accelerated blood clearance phenomenon and its accompanying rapid leakage and clearance of drug following sequential low-dose injections may reverse the unique pharmacokinetic–toxicity profile of liposomes which deserved our attention. Therefore, a more reasonable treatment regime should be selected to lessen or even eliminate this phenomenon. PMID:23576868
Gaudry, Adam J; Nai, Yi Heng; Guijt, Rosanne M; Breadmore, Michael C
2014-04-01
A dual-channel sequential injection microchip capillary electrophoresis system with pressure-driven injection is demonstrated for simultaneous separations of anions and cations from a single sample. The poly(methyl methacrylate) (PMMA) microchips feature integral in-plane contactless conductivity detection electrodes. A novel, hydrodynamic "split-injection" method utilizes background electrolyte (BGE) sheathing to gate the sample flows, while control over the injection volume is achieved by balancing hydrodynamic resistances using external hydrodynamic resistors. Injection is realized by a unique flow-through interface, allowing for automated, continuous sampling for sequential injection analysis by microchip electrophoresis. The developed system was very robust, with individual microchips used for up to 2000 analyses with lifetimes limited by irreversible blockages of the microchannels. The unique dual-channel geometry was demonstrated by the simultaneous separation of three cations and three anions in individual microchannels in under 40 s with limits of detection (LODs) ranging from 1.5 to 24 μM. From a series of 100 sequential injections the %RSDs were determined for every fifth run, resulting in %RSDs for migration times that ranged from 0.3 to 0.7 (n = 20) and 2.3 to 4.5 for peak area (n = 20). This system offers low LODs and a high degree of reproducibility and robustness while the hydrodynamic injection eliminates electrokinetic bias during injection, making it attractive for a wide range of rapid, sensitive, and quantitative online analytical applications.
NASA Astrophysics Data System (ADS)
Nashida, Norihiro; Suzuki, Hiroaki
A microfluidic system with injecting and flushing functions was developed. In the system, hydrophilic flow channels have a dry-film photoresist layer which facilitates the introduction of solutions from four injection ports. The injection and flushing of solutions are controlled by valves operated by electrowetting. The valves consist of gold working electrodes in the flow channels or a through-hole in the glass substrate. Solutions can be sequentially introduced through the injection ports into a reaction chamber and flushed through a valve in the through-hole. Necessary immunoassay steps can be conducted on the chip, and a target antibody can be detected electrochemically.
Shanmugam, Victoria K; Tassi, Elena; Schmidt, Marcel O; McNish, Sean; Baker, Stephen; Attinger, Christopher; Wang, Hong; Shara, Nawar; Wellstein, Anton
2015-12-01
To study the complex cellular interactions involved in wound healing, it is essential to have an animal model that adequately mimics the human wound microenvironment. Currently available murine models are limited because wound contraction introduces bias into wound surface area measurements. The purpose of this study was to demonstrate utility of a human-mouse xenograft model for studying human wound healing. Normal human skin was harvested from elective abdominoplasty surgery, xenografted onto athymic nude (nu/nu) mice, and allowed to engraft for 3 months. The graft was then wounded using a 2-mm punch biopsy. Wounds were harvested on sequential days to allow tissue-based markers of wound healing to be followed sequentially. On the day of wound harvest, mice were injected with XenoLight RediJect cyclooxygenase-2 (COX-2) probe and imaged according to package instructions. Immunohistochemistry confirms that this human-mouse xenograft model is effective for studying human wound healing in vivo. Additionally, in vivo fluorescent imaging for inducible COX-2 demonstrated upregulation from baseline to day 4 (P = 0·03) with return to baseline levels by day 10, paralleling the reepithelialisation of the wound. This human-mouse xenograft model, combined with in vivo fluorescent imaging provides a useful mechanism for studying molecular pathways of human wound healing. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Economou, A.; Tzanavaras, P. D.; Themelis, D. G.
2005-01-01
The sequential-injection analysis (SIA) is an approach to sample handling that enables the automation of manual wet-chemistry procedures in a rapid, precise and efficient manner. The experiments using SIA fits well in the course of Instrumental Chemical Analysis and especially in the section of Automatic Methods of analysis provided by chemistry…
ERIC Educational Resources Information Center
Penteado, Jose C.; Masini, Jorge Cesar
2011-01-01
Influence of the solvent strength determined by the addition of a mobile-phase organic modifier and pH on chromatographic separation of sorbic acid and vanillin has been investigated by the relatively new technique, liquid sequential injection chromatography (SIC). This technique uses reversed-phase monolithic stationary phase to execute fast…
Silvaieh, Hossein; Schmid, Martin G; Hofstetter, Oliver; Schurig, Volker; Gübitz, Gerald
2002-01-01
The development of an enantioselective flow-through chemiluminescence immunosensor for amino acids is described. The approach is based on a competitive assay using enantioselective antibodies. Two different instrumental approaches, a flow-injection (FIA) and a sequential-injection system (SIA), are used. Compared to the flow-injection technique, the sequential injection-mode showed better repeatability. Both systems use an immunoreactor consisting of a flow cell packed with immobilized haptens. The haptens (4-amino-L- or D-phenylalanine) are immobilized onto a hydroxysuccinimide-activated polymer (Affi-prep 10) via a tyramine spacer. Stereoselective antibodies, raised against 4-amino-L- or D-phenylalanine, are labeled with an acridinium ester. Stereoselective inhibition of binding of the acridinum-labeled antibodies to the immobilized hapten by amino acids takes place. Chiral recognition was observed not only for the hapten molecule but also for a series of different amino acids. One assay cycle including regeneration takes 6:30 min in the FIA mode and 4:40 min in the SIA mode. Using D-phenylalanine as a sample, the detection limit was found to be 6.13 pmol/ml (1.01 ng/ml) for the flow-injection immunoassay (FIIA) and 1.76 pmol/ml (0.29 ng/ml ) for the sequential-injection immunoassay (SIIA) which can be lowered to 0.22 pmol/ml (0.036 ng/ml) or 0.064 pmol/ml (0.01 ng/ml) by using a stopped flow system. The intra-assay repeatability was found to be about 5% RSD and the inter-assay repeatability below 6% (within 3 days).
Vichapong, Jitlada; Burakham, Rodjana; Srijaranai, Supalax; Grudpan, Kate
2011-07-01
A sequential injection-bead injection-lab-on-valve system was hyphenated to HPLC for online renewable micro-solid-phase extraction of carbamate insecticides. The carbamates studied were isoprocarb, methomyl, carbaryl, carbofuran, methiocarb, promecarb, and propoxur. LiChroprep(®) RP-18 beads (25-40 μm) were employed as renewable sorbent packing in a microcolumn situated inside the LOV platform mounted above the multiposition valve of the sequential injection system. The analytes sorbed by the microcolumn were eluted using 80% acetonitrile in 0.1% acetic acid before online introduction to the HPLC system. Separation was performed on an Atlantis C-18 column (4.6 × 150 mm, 5 μm) utilizing gradient elution with a flow rate of 1.0 mL/min and a detection wavelength at 270 nm. The sequential injection system offers the means of performing automated handling of sample preconcentration and matrix removal. The enrichment factors ranged between 20 and 125, leading to limits of detection (LODs) in the range of 1-20 μg/L. Good reproducibility was obtained with relative standard deviations of <0.7 and 5.4% for retention time and peak area, respectively. The developed method has been successfully applied to the determination of carbamate residues in fruit, vegetable, and water samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Satínský, Dalibor; Huclová, Jitka; Ferreira, Raquel L C; Montenegro, Maria Conceição B S M; Solich, Petr
2006-02-13
The porous monolithic columns show high performance at relatively low pressure. The coupling of short monoliths with sequential injection technique (SIA) results in a new approach to implementation of separation step to non-separation low-pressure method. In this contribution, a new separation method for simultaneous determination of ambroxol, methylparaben and benzoic acid was developed based on a novel reversed-phase sequential injection chromatography (SIC) technique with UV detection. A Chromolith SpeedROD RP-18e, 50-4.6 mm column with 10 mm precolumn and a FIAlab 3000 system with a six-port selection valve and 5 ml syringe were used for sequential injection chromatographic separations in our study. The mobile phase used was acetonitrile-tetrahydrofuran-0.05M acetic acid (10:10:90, v/v/v), pH 3.75 adjusted with triethylamine, flow rate 0.48 mlmin(-1), UV-detection was at 245 nm. The analysis time was <11 min. A new SIC method was validated and compared with HPLC. The method was found to be useful for the routine analysis of the active compounds ambroxol and preservatives (methylparaben or benzoic acid) in various pharmaceutical syrups and drops.
Somnam, Sarawut; Jakmunee, Jaroon; Grudpan, Kate; Lenghor, Narong; Motomizu, Shoji
2008-12-01
An automated hydrodynamic sequential injection (HSI) system with spectrophotometric detection was developed. Thanks to the hydrodynamic injection principle, simple devices can be used for introducing reproducible microliter volumes of both sample and reagent into the flow channel to form stacked zones in a similar fashion to those in a sequential injection system. The zones were then pushed to the detector and a peak profile was recorded. The determination of nitrite and nitrate in water samples by employing the Griess reaction was chosen as a model. Calibration graphs with linearity in the range of 0.7 - 40 muM were obtained for both nitrite and nitrate. Detection limits were found to be 0.3 muM NO(2)(-) and 0.4 muM NO(3)(-), respectively, with a sample throughput of 20 h(-1) for consecutive determination of both the species. The developed system was successfully applied to the analysis of water samples, employing simple and cost-effective instrumentation and offering higher degrees of automation and low chemical consumption.
Liu, Xiaoxia; Tian, Miaomiao; Camara, Mohamed Amara; Guo, Liping; Yang, Li
2015-10-01
We present sequential CE analysis of amino acids and L-asparaginase-catalyzed enzyme reaction, by combing the on-line derivatization, optically gated (OG) injection and commercial-available UV-Vis detection. Various experimental conditions for sequential OG-UV/vis CE analysis were investigated and optimized by analyzing a standard mixture of amino acids. High reproducibility of the sequential CE analysis was demonstrated with RSD values (n = 20) of 2.23, 2.57, and 0.70% for peak heights, peak areas, and migration times, respectively, and the LOD of 5.0 μM (for asparagine) and 2.0 μM (for aspartic acid) were obtained. With the application of the OG-UV/vis CE analysis, sequential online CE enzyme assay of L-asparaginase-catalyzed enzyme reaction was carried out by automatically and continuously monitoring the substrate consumption and the product formation every 12 s from the beginning to the end of the reaction. The Michaelis constants for the reaction were obtained and were found to be in good agreement with the results of traditional off-line enzyme assays. The study demonstrated the feasibility and reliability of integrating the OG injection with UV/vis detection for sequential online CE analysis, which could be of potential value for online monitoring various chemical reaction and bioprocesses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I
2002-09-01
An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawai, T., E-mail: t-kawai@hosp.yoka.hyogo.jp; Kaminou, T., E-mail: kaminout@grape.med.tottori-u.ac.jp; Sugiura, K.
2010-02-15
To evaluate the efficacy of radiofrequency lung ablation with transbronchial saline injection. The bilateral lungs of eight living swine were used. A 13-gauge bone biopsy needle was inserted percutaneously into the lung, and 1 ml of muscle paste was injected to create a tumor mimic. In total, 21 nodules were ablated. In the saline injection group (group A), radiofrequency ablation (RFA) was performed for 11 nodules after transbronchial saline injection under balloon occlusion with a 2-cm active single internally cooled electrode. In the control group (group B), conventional RFA was performed for 10 nodules as a control. The infused salinemore » liquid showed a wedge-shaped and homogeneous distribution surrounding a tumor mimic. All 21 RFAs were successfully completed. The total ablation time was significantly longer (13.4 {+-} 2.8 min vs. 8.9 {+-} 3.5 min; P = 0.0061) and the tissue impedance was significantly lower in group A compared with group B (73.1 {+-} 8.8 {Omega} vs. 100.6 {+-} 16.6 {Omega}; P = 0.0002). The temperature of the ablated area was not significantly different (69.4 {+-} 9.1{sup o}C vs. 66.0 {+-} 7.9{sup o}C; P = 0.4038). There was no significant difference of tumor mimic volume (769 {+-} 343 mm{sup 3} vs. 625 {+-} 191 mm{sup 3}; P = 0.2783). The volume of the coagulated area was significantly larger in group A than in group B (3886 {+-} 1247 mm{sup 3} vs. 2375 {+-} 1395 mm{sup 3}; P = 0.0221). Percutaneous radiofrequency lung ablation combined with transbronchial saline injection can create an extended area of ablation.« less
Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering
Singelyn, Jennifer M.; DeQuach, Jessica A.; Seif-Naraghi, Sonya B.; Littlefield, Robert B.; Schup-Magoffin, Pamela J.; Christman, Karen L.
2009-01-01
Myocardial tissue lacks the ability to significantly regenerate itself following a myocardial infarction, thus tissue engineering strategies are required for repair. Several injectable materials have been examined for cardiac tissue engineering; however, none have been designed specifically to mimic the myocardium. The goal of this study was to investigate the in vitro properties and in vivo potential of an injectable myocardial matrix designed to mimic the natural myocardial extracellular environment. Porcine myocardial tissue was decellularized and processed to form a myocardial matrix with the ability to gel in vitro at 37°C and in vivo upon injection into rat myocardium. The resulting myocardial matrix maintained a complex composition, including glycosaminoglycan content, and was able to self-assemble to form a nanofibrous structure. Endothelial cells and smooth muscle cells were shown to migrate towards the myocardial matrix both in vitro and in vivo, with a significant increase in arteriole formation at 11 days post-injection. The matrix was also successfully pushed through a clinically used catheter, demonstrating its potential for minimally invasive therapy. Thus, we have demonstrated the initial feasibility and potential of a naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. PMID:19608268
Yoo, Myung Hoon; Lim, Won Sub; Park, Joo Hyun; Kwon, Joong Keun; Lee, Tae-Hoon; An, Yong-Hwi; Kim, Young-Jin; Kim, Jong Yang; Lim, Hyun Woo; Park, Hong Ju
2016-01-01
Severe-to-profound sudden sensorineural hearing loss (SSNHL) has a poor prognosis. We aimed to compare the efficacy of simultaneous and sequential oral and intratympanic steroids for this condition. Fifty patients with severe-to-profound SSNHL (>70 dB HL) were included from 7 centers. The simultaneous group (27 patients) received oral and intratympanic steroid injections for 2 weeks. The sequential group (23 patients) was treated with oral steroids for 2 weeks and intratympanic steroids for the subsequent 2 weeks. Pure-tone averages (PTA) and word discrimination scores (WDS) were compared before treatment and 2 weeks and 1 and 2 months after treatment. Treatment outcomes according to the modified American Academy of Otolaryngology-Head and Neck Surgery (AAO-HNS) criteria were also analyzed. The improvement in PTA and WDS at the 2-week follow-up was 23 ± 21 dB HL and 20 ± 39% in the simultaneous group and 31 ± 29 dB HL and 37 ± 42% in the sequential group; this was not statistically significant. Complete or partial recovery at the 2-week follow-up was observed in 26% of the simultaneous group and 30% of the sequential group; this was also not significant. The improvement in PTA and WDS at the 2-month follow-up was 40 ± 20 dB HL and 37 ± 35% in the simultaneous group and 41 ± 25 dB HL and 48 ± 41% in the sequential group; this was not statistically significant. Complete or partial recovery at the 2-month follow-up was observed in 33% of the simultaneous group and 35% of the sequential group; this was also not significant. Seven patients in the sequential group did not need intratympanic steroid injections for sufficient improvement after oral steroids alone. Simultaneous oral/intratympanic steroid treatment yielded a recovery similar to that produced by sequential treatment. Because the addition of intratympanic steroids can be decided upon based on the improvement after an oral steroid, the sequential regimen can be recommended to avoid unnecessary intratympanic injections. © 2017 S. Karger AG, Basel.
Reese, Tiffany A.; Bi, Kevin; Kambal, Amal; Filali-Mouhim, Ali; Beura, Lalit K.; Bürger, Matheus C.; Pulendran, Bali; Sekaly, Rafick; Jameson, Stephen C.; Masopust, David; Haining, W. Nicholas; Virgin, Herbert W.
2016-01-01
Summary Immune responses differ between laboratory mice and humans. Chronic infection with viruses and parasites are common in humans, but are absent in laboratory mice, and thus represent potential contributors to inter-species differences in immunity. To test this, we sequentially infected laboratory mice with herpesviruses, influenza, and an intestinal helminth, and compared their blood immune signatures to mock-infected mice before and after vaccination against Yellow Fever Virus (YFV-17D). Sequential infection altered pre- and post-vaccination gene expression, cytokines, and antibodies in blood. Sequential pathogen exposure induced gene signatures that recapitulated those seen in blood from pet store-raised versus laboratory mice, and adult versus cord blood in humans. Therefore basal and vaccine-induced murine immune responses are altered by infection with agents common outside of barrier facilities. This raises the possibility that we can improve mouse models of vaccination and immunity by selective microbial exposure of laboratory animals to mimic that of humans. PMID:27107939
Werk, Tobias; Mahler, Hanns-Christian; Ludwig, Imke Sonja; Luemkemann, Joerg; Huwyler, Joerg; Hafner, Mathias
Dual-chamber syringes were originally designed to separate a solid substance and its diluent. However, they can also be used to separate liquid formulations of two individual drug products, which cannot be co-formulated due to technical or regulatory issues. A liquid/liquid dual-chamber syringe can be designed to achieve homogenization and mixing of both solutions prior to administration, or it can be used to sequentially inject both solutions. While sequential injection can be easily achieved by a dual-chamber syringe with a bypass located at the needle end of the syringe barrel, mixing of the two fluids may provide more challenges. Within this study, the mixing behavior of surrogate solutions in different dual-chamber syringes is assessed. Furthermore, the influence of parameters such as injection angle, injection speed, agitation, and sample viscosity were studied. It was noted that mixing was poor for the commercial dual-chamber syringes (with a bypass designed as a longitudinal ridge) when the two liquids significantly differ in their physical properties (viscosity, density). However, an optimized dual-chamber syringe design with multiple bypass channels resulted in improved mixing of liquids. Dual-chamber syringes were originally designed to separate a solid substance and its diluent. However, they can also be used to separate liquid formulations of two individual drug products. A liquid/liquid dual-chamber syringe can be designed to achieve homogenization and mixing of both solutions prior to administration, or it can be used to sequentially inject both solutions. While sequential injection can be easily achieved by a dual-chamber syringe with a bypass located at the needle end of the syringe barrel, mixing of the two fluids may provide more challenges. Within this study, the mixing behavior of surrogate solutions in different dual-chamber syringes is assessed. Furthermore, the influence of parameters such as injection angle, injection speed, agitation, and sample viscosity were studied. It was noted that mixing was poor for the commercially available dual-chamber syringes when the two liquids significantly differ in viscosity and density. However, an optimized dual-chamber syringe design resulted in improved mixing of liquids. © PDA, Inc. 2017.
dos Santos, Luciana B O; Infante, Carlos M C; Masini, Jorge C
2010-03-01
This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h(-1). Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 µL s(-1). For a concentration range between 0.010 and 0.25 mg L(-1), the current (i(p), µA) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L(-1)): i(p) = (-20.5 ± 0.3)C (paraquat) - (0.02 ± 0.03). The limits of detection and quantification were 2.0 and 7.0 µg L(-1), respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level.
Chisvert, A; Salvador, A; Pascual-Martí, M C; March, J G
2001-04-01
Spectrophotometric determination of a widely used UV-filter, such as oxybenzone, is proposed. The method is based on the complexation reaction between oxybenzone and Ni(II) in ammoniacal medium. The stoichiometry of the reaction, established by the Job method, was 1:1. Reaction conditions were studied and the experimental parameters were optimized, for both flow injection (FI) and sequential injection (SI) determinations, with comparative purposes. Sunscreen formulations containing oxybenzone were analyzed by the proposed methods and results compared with those obtained by HPLC. Data show that both FI and SI procedures provide accurate and precise results. The ruggedness, sensitivity and LOD are adequate to the analysis requirements. The sample frequency obtained by FI is three-fold higher than that of SI analysis. SI is less reagent-consuming than FI.
Recent Electrochemical and Optical Sensors in Flow-Based Analysis
Chailapakul, Orawon; Ngamukot, Passapol; Yoosamran, Alongkorn; Siangproh, Weena; Wangfuengkanagul, Nattakarn
2006-01-01
Some recent analytical sensors based on electrochemical and optical detection coupled with different flow techniques have been chosen in this overview. A brief description of fundamental concepts and applications of each flow technique, such as flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA), and multipumped FIA (MPFIA) were reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luong, Minh Bau; Sankaran, Ramanan; Yu, Gwang Hyeon
2017-06-09
The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated in this paper by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C 8H 18) with a pseudo-iso-octane (PC 8H 18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC 8H 18more » model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C 8H 18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C 8H 18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C 8H 18. Finally, a misfire is observed for the DDFS combustion when the direct injection of i-C 8H 18 occurs during the intermediate-temperature chemistry (ITC) regime between the first- and second-stage ignition. Finally, this is because the temperature drop induced by the direct injection of i-C 8H 18 impedes the main ITC reactions, and hence, the main combustion fails to occur.« less
NASA Astrophysics Data System (ADS)
Frederice, Rafael; Lencione, Diego; Gehlen, Marcelo H.
2017-03-01
The combination of a sensitizer and TiO2 nanoparticles forming a photocatalytic material is a central issue in many fields of applied photochemistry. The charge injection of emissive sensitizers into the conduction band of the semiconductor TiO2 may form a photoactive region that becomes dark, or it has a very low emission signal due to the generation of sensitizer radicals. However, by sequential coupling of a selected photoredox dye, such as resazurin, the dark region may become fluorescent at the interfaces where the charge injection has taken place due to the concomitant formation of fluorescent resorufin by cascade electron transfer. Using this strategy and a total internal reflection fluorescence microscopy (TIRFM) image, the charge injection in TiO2/CdS and SiO2/TiO2/CdS nanoparticles is investigated The method allows the charge injection efficiency of the excited CdS into TiO2 to be evaluated qualitatively, explaining the differences observed for these photocatalytic materials in H2 generation.
Frederice, Rafael; Lencione, Diego; Gehlen, Marcelo H
2017-02-10
The combination of a sensitizer and TiO 2 nanoparticles forming a photocatalytic material is a central issue in many fields of applied photochemistry. The charge injection of emissive sensitizers into the conduction band of the semiconductor TiO 2 may form a photoactive region that becomes dark, or it has a very low emission signal due to the generation of sensitizer radicals. However, by sequential coupling of a selected photoredox dye, such as resazurin, the dark region may become fluorescent at the interfaces where the charge injection has taken place due to the concomitant formation of fluorescent resorufin by cascade electron transfer. Using this strategy and a total internal reflection fluorescence microscopy (TIRFM) image, the charge injection in TiO 2 /CdS and SiO 2 /TiO 2 /CdS nanoparticles is investigated The method allows the charge injection efficiency of the excited CdS into TiO 2 to be evaluated qualitatively, explaining the differences observed for these photocatalytic materials in H 2 generation.
Sequential Injection Analysis for Optimization of Molecular Biology Reactions
Allen, Peter B.; Ellington, Andrew D.
2011-01-01
In order to automate the optimization of complex biochemical and molecular biology reactions, we developed a Sequential Injection Analysis (SIA) device and combined this with a Design of Experiment (DOE) algorithm. This combination of hardware and software automatically explores the parameter space of the reaction and provides continuous feedback for optimizing reaction conditions. As an example, we optimized the endonuclease digest of a fluorogenic substrate, and showed that the optimized reaction conditions also applied to the digest of the substrate outside of the device, and to the digest of a plasmid. The sequential technique quickly arrived at optimized reaction conditions with less reagent use than a batch process (such as a fluid handling robot exploring multiple reaction conditions in parallel) would have. The device and method should now be amenable to much more complex molecular biology reactions whose variable spaces are correspondingly larger. PMID:21338059
Sequential growth for lifetime extension in biomimetic polypyrrole actuator systems
NASA Astrophysics Data System (ADS)
Sarrazin, J. C.; Mascaro, Stephen A.
2015-04-01
Electroactive polymers (EAPs) present prospective use in actuation and manipulation devices due to their low electrical activation requirements, biocompatibility, and mechanical performance. One of the main drawbacks with EAP actuators is a decrease in performance over extended periods of operation caused by over-oxidation of the polymer and general polymer degradation. Synthesis of the EAP material, polypyrrole with an embedded metal helix allows for sequential growth of the polymer during operation. The helical metal electrode acts as a scaffolding to support the polymer, and direct the 3-dimensional change in volume of the polymer along the axis of the helix during oxidative and reductive cycling. The metal helix also provides a working metal electrode through the entire length of the polymer actuator to distribute charge for actuation, as well as for sequential growth steps during the lifetime of operation of the polymer. This work demonstrates the method of sequential growth can be utilized after extended periods of use to partially restore electrical and mechanical performance of polypyrrole actuators. Since the actuation must be temporarily stopped to allow for a sequential growth cycle to be performed and reverse some of the polymer degradation, these actuator systems more closely mimic natural muscle in their analogous maintenance and repair.
Sequential injection spectrophotometric determination of oxybenzone in lipsticks.
Salvador, A; Chisvert, A; Camarasa, A; Pascual-Martí, M C; March, J G
2001-08-01
A sequential injection (SI) procedure for the spectrophotometric determination of oxybenzone in lipsticks is reported. The colorimetric reaction between nickel and oxybenzone was used. SI parameters such as sample solution volume, reagent solution volume, propulsion flow rate and reaction coil length were studied. The limit of detection was 3 microg ml(-1). The sensitivity was 0.0108+/-0.0002 ml microg(-1). The relative standard deviations of the results were between 6 and 12%. The real concentrations of samples and the values obtained by HPLC were comparable. Microwave sample pre-treatment allowed the extraction of oxybenzone with ethanol, thus avoiding the use of toxic organic solvents. Ethanol was also used as carrier in the SI system. Seventy-two injections per hour can be performed, which means a sample frequency of 24 h(-1) if three replicates are measured for each sample.
Stefan-van Staden, Raluca-Ioana; Bokretsion, Rahel Girmai; van Staden, Jacobus F; Aboul-Enein, Hassan Y
2006-01-01
Carbon paste based biosensors for the determination of creatine and creatinine have been integrated into a sequential injection system. Applying the multi-enzyme sequence of creatininase (CA), and/or creatinase (CI) and sarcosine oxidase (SO), hydrogen peroxide has been detected amperometrically. The linear concentration ranges are of pmol/L to nmol/L magnitude, with very low limits of detection. The proposed SIA system can be utilized reliably for the on-line simultaneous detection of creatine and creatinine in pharmaceutical products, as well as in serum samples, with a rate of 34 samples per hour and RSD values better than 0.16% (n=10).
Leaf mimicry in a climbing plant protects against herbivory.
Gianoli, Ernesto; Carrasco-Urra, Fernando
2014-05-05
Mimicry refers to adaptive similarity between a mimic organism and a model. Mimicry in animals is rather common, whereas documented cases in plants are rare, and the associated benefits are seldom elucidated [1, 2]. We show the occurrence of leaf mimicry in a climbing plant endemic to a temperate rainforest. The woody vine Boquila trifoliolata mimics the leaves of its supporting trees in terms of size, shape, color, orientation, petiole length, and/or tip spininess. Moreover, sequential leaf mimicry occurs when a single individual vine is associated with different tree species. Leaves of unsupported vines differed from leaves of climbing plants closely associated with tree foliage but did not differ from those of vines climbing onto leafless trunks. Consistent with an herbivory-avoidance hypothesis, leaf herbivory on unsupported vines was greater than that on vines climbing on trees but was greatest on vines climbing onto leafless trunks. Thus, B. trifoliolata gains protection against herbivory not merely by climbing and thus avoiding ground herbivores [3] but also by climbing onto trees whose leaves are mimicked. Unlike earlier cases of plant mimicry or crypsis, in which the plant roughly resembles a background or color pattern [4-7] or mimics a single host [8, 9], B. trifoliolata is able to mimic several hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Functionalized Anodic Aluminum Oxide Membrane–Electrode System for Enzyme Immobilization
2015-01-01
A nanoporous membrane system with directed flow carrying reagents to sequentially attached enzymes to mimic nature’s enzyme complex system was demonstrated. Genetically modified glycosylation enzyme, OleD Loki variant, was immobilized onto nanometer-scale electrodes at the pore entrances/exits of anodic aluminum oxide membranes through His6-tag affinity binding. The enzyme activity was assessed in two reactions—a one-step “reverse” sugar nucleotide formation reaction (UDP-Glc) and a two-step sequential sugar nucleotide formation and sugar nucleotide-based glycosylation reaction. For the one-step reaction, enzyme specific activity of 6–20 min–1 on membrane supports was seen to be comparable to solution enzyme specific activity of 10 min–1. UDP-Glc production efficiencies as high as 98% were observed at a flow rate of 0.5 mL/min, at which the substrate residence time over the electrode length down pore entrances was matched to the enzyme activity rate. This flow geometry also prevented an unwanted secondary product hydrolysis reaction, as observed in the test homogeneous solution. Enzyme utilization increased by a factor of 280 compared to test homogeneous conditions due to the continuous flow of fresh substrate over the enzyme. To mimic enzyme complex systems, a two-step sequential reaction using OleD Loki enzyme was performed at membrane pore entrances then exits. After UDP-Glc formation at the entrance electrode, aglycon 4-methylumbelliferone was supplied at the exit face of the reactor, affording overall 80% glycosylation efficiency. The membrane platform showed the ability to be regenerated with purified enzyme as well as directly from expression crude, thus demonstrating a single-step immobilization and purification process. PMID:25025628
Wu, Jun; Tang, Huiqin; Liu, Qun; Gan, Dingyun; Zhou, Man
2016-08-08
To investigate the effect of α-lipoic acid on the oxidative stress of wound tissues and diabetic wound healing in mice with diabetic feet. Sixty male C57BL/6J mice weighting 200-300 g were randomly divided into model group (control group, n =15), α-lipoic acid-treated model group ( n =15), miR-29b mimic group ( n =15), and miR-29b mimic negative control group (NC group, n =15). All animals received intraperitoneal injection of streptozocin to establish the diabetic model. Then, a full thickness wound of 5 mm×2 mm in size was created at 4 weeks after modeling. All mice were administrated with high-sugar-fat-diet. At the same day after modeling, α-lipoic acid-treated model group was continuously given intravenous injection of 100 mg/(kg·d) α-lipoic acid for 14 days; miR-29b mimic group and NC group received the tail intravenous injection of lentiviral vector for miR-29b mimic and miR-29b mimic negative control (a total of 2×10 7 TU), respectively, with the treatment of α-lipoic acid. The wound healing was observed and wound area was measured at 7 and 14 days. The wound tissues were harvested to detect the levels of superoxide dismutase (SOD) and glutathione (GSH) using xanthine oxidase method and 5, 5-dithiobis-2-nitrobenzoic acid staining method at 14 days. At the same day, 7, and 14 days after modeling, the relative miR-29b expression in wound tissues from control and α-lipoic acid-treated model groups was detected by real-time fluorescence quantitative PCR. All mice survived to the experiment end. The wound healing was faster in α-lipoic acid-treated group than control group. At 7 and 14 days, the relative wound area and miR-29b expression level were significantly lower, while the contents of SOD and GSH were significantly higher in α-lipoic acid-treated group than control group ( P <0.05). In addition, miR-29b mimic group had significantly increased relative wound area and significantly decreased the contents of SOD and GSH when compared with NC group at 7 and 14 days ( P <0.05). α-lipoic acid could inhibit oxidative stress and promote diabetic wound healing by suppressing expression of miR-29b in mice.
Kingsley, I.S.
1987-01-06
A process and apparatus are disclosed for the separation of complex mixtures of carbonaceous material by sequential elution with successively stronger solvents. In the process, a column containing glass beads is maintained in a fluidized state by a rapidly flowing stream of a weak solvent, and the sample is injected into this flowing stream such that a portion of the sample is dissolved therein and the remainder of the sample is precipitated therein and collected as a uniform deposit on the glass beads. Successively stronger solvents are then passed through the column to sequentially elute less soluble materials. 1 fig.
Nanocomposites for bone tissue regeneration.
Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin
2013-04-01
Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.
Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J
2015-01-27
Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05-1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed.
Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J.
2015-01-01
Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05–1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed. PMID:25633600
Gonzalez, Aroa Garcia; Taraba, Lukáš; Hraníček, Jakub; Kozlík, Petr; Coufal, Pavel
2017-01-01
Dasatinib is a novel oral prescription drug proposed for treating adult patients with chronic myeloid leukemia. Three analytical methods, namely ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis, were developed, validated, and compared for determination of the drug in the tablet dosage form. The total analysis time of optimized ultra high performance liquid chromatography and capillary zone electrophoresis methods was 2.0 and 2.2 min, respectively. Direct ultraviolet detection with detection wavelength of 322 nm was employed in both cases. The optimized sequential injection analysis method was based on spectrophotometric detection of dasatinib after a simple colorimetric reaction with folin ciocalteau reagent forming a blue-colored complex with an absorbance maximum at 745 nm. The total analysis time was 2.5 min. The ultra high performance liquid chromatography method provided the lowest detection and quantitation limits and the most precise and accurate results. All three newly developed methods were demonstrated to be specific, linear, sensitive, precise, and accurate, providing results satisfactorily meeting the requirements of the pharmaceutical industry, and can be employed for the routine determination of the active pharmaceutical ingredient in the tablet dosage form. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gao, Wei; Sha, Baoyong; Zhao, Yuan; Fan, Zhe; Liu, Lin; Shen, Xin
2017-08-01
Propofol lipid emulsion (PLE) is a nanosized sedative, and it is used with a combination of salted antalgic prodrug, fentanyl citrate (FC). To illustrate the synergistic effect of mixing, we compared the sedation/analgesia resulting from simultaneous and sequential administration in surgically induced abortion (No. ChiCTR-IPC-15006153). Simultaneous group showed lower bispectral index, blood pressure, and heart rate, when cannula was inserted into the uterus. It also showed less frequency of hypertension, sinus tachycardia, movement, pain at the injection site, and additional FC. Therefore, premixing of PLE and FC enhanced the sedation and analgesia; stabilized the hemodynamics; lessened the incidence of movement and injection pain; and reduced the requirement of drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guodong; Riechers, Shawn L.; Timchalk, Chuck
2005-12-04
An automated and sensitive sequential injection electrochemical immunoassay was developed to monitor a potential insecticide biomarker, 3, 5, 6-trichloro-2-pyridinol. The current method involved a sequential injection analysis (SIA) system equipped with a thin-layer electrochemical flow cell and permanent magnet, which was used to fix 3,5,6-trichloro-2-pyridinol (TCP) antibody coated magnetic beads (TCP-Ab-MBs) in the reaction zone. After competitive immunoreactions among TCP-Ab-MBs, TCP analyte, and horseradish peroxidase (HRP) labeled TCP, a 3, 3?, 5, 5?-tetramethylbenzidine dihydrochloride and hydrogen peroxide (TMB-H2O2) substrate solution was injected to produce an electroactive enzymatic product. The activity of HRP tracers was monitored by a square wave voltammetricmore » scanning electroactive enzymatic product in the thin-layer flow cell. The voltammetric characteristics of the substrate and the enzymatic product were investigated under batch conditions, and the parameters of the immunoassay were optimized in the SIA system. Under the optimal conditions, the system was used to measure as low as 6 ng L-1 (ppt) TCP, which is around 50-fold lower than the value indicated by the manufacturer of the TCP RaPID Assay? kit (0.25 ug/L, colorimetric detection). The performance of the developed immunoassay system was successfully evaluated on tap water and river water samples spiked with TCP. This technique could be readily used for detecting other environmental contaminants by developing specific antibodies against contaminants and is expected to open new opportunities for environmental and biological monitoring.« less
Automated Discovery and Modeling of Sequential Patterns Preceding Events of Interest
NASA Technical Reports Server (NTRS)
Rohloff, Kurt
2010-01-01
The integration of emerging data manipulation technologies has enabled a paradigm shift in practitioners' abilities to understand and anticipate events of interest in complex systems. Example events of interest include outbreaks of socio-political violence in nation-states. Rather than relying on human-centric modeling efforts that are limited by the availability of SMEs, automated data processing technologies has enabled the development of innovative automated complex system modeling and predictive analysis technologies. We introduce one such emerging modeling technology - the sequential pattern methodology. We have applied the sequential pattern methodology to automatically identify patterns of observed behavior that precede outbreaks of socio-political violence such as riots, rebellions and coups in nation-states. The sequential pattern methodology is a groundbreaking approach to automated complex system model discovery because it generates easily interpretable patterns based on direct observations of sampled factor data for a deeper understanding of societal behaviors that is tolerant of observation noise and missing data. The discovered patterns are simple to interpret and mimic human's identifications of observed trends in temporal data. Discovered patterns also provide an automated forecasting ability: we discuss an example of using discovered patterns coupled with a rich data environment to forecast various types of socio-political violence in nation-states.
Simultaneous injection-effective mixing analysis of palladium.
Teshima, Norio; Noguchi, Daisuke; Joichi, Yasutaka; Lenghor, Narong; Ohno, Noriko; Sakai, Tadao; Motomizu, Shoji
2010-01-01
A novel concept of simultaneous injection-effective mixing analysis (SIEMA) is proposed, and a SIEMA method applied to the spectrophotometric determination of palladium using a water-soluble chromogenic reagent has been demonstrated. The flow configuration of SIEMA is a hybrid format of flow injection analysis (FIA), sequential injection analysis (SIA) and multicommutation in flow-based analysis. Sample and reagent solutions are aspirated into each holding coil through each solenoid valve by a syringe pump, and then the zones are simultaneously dispensed (injected) into a mixing coil by reversed flow toward a detector through a confluence point. This results in effective mixing and rapid detection with low reagent consumption.
Gómez-Camarillo, Madaí A; Beyer, Carlos; Lucio, Rosa Angélica; García-Juárez, Marcos; González-Arenas, Aliesha; Camacho-Arroyo, Ignacio; Komisaruk, Barry R; González-Flores, Oscar
2011-05-30
The effect of genital stimulation, either by vaginocervical stimulation (VCS) using a calibrated vaginal probe combined with manual flank stimulation (FS), or by mounts performed by the male, on the hypothalamus and preoptic area concentration of the progesterone receptors A (PR-A) and B (PR-B) was assessed in ovariectomized (ovx) estrogen-primed rats. VCS/FS or stimulation provided by male mounts, even without intromission, significantly decreased PR-B concentration in the hypoythalamus. Down regulation of PR produced by genital stimulation was quantitatively similar to that elicited by progesterone (P) administration. Bilateral or unilateral transection of the pelvic or the pudendal nerves prevented down regulation elicited by VCS/FS. Repeated VCS/FS elicited lordosis behavior in most ovx estrogen primed rats, but the lordosis intensity was lower than that observed in response to P. P administered to ovx estrogen primed rats, induced sequential inhibition, i.e., failure to display estrous behavior in response to a second P injection (24h after the initial P injection). VCS/FS failed to elicit sequential inhibition, since rats responded with normal estrous behavior to the second injection of P. This suggests that down regulation by VCS, by contrast with P, failed to inhibit the subpopulation of PR involved in the facilitation of estrous behavior by P. Copyright © 2011 Elsevier Inc. All rights reserved.
Radiation-transparent windows, method for imaging fluid transfers
Shu, Deming [Darien, IL; Wang, Jin [Burr Ridge, IL
2011-07-26
A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.
Sequential injection gas guns for accelerating projectiles
Lacy, Jeffrey M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID
2011-11-15
Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.
Energetic electron injections and dipolarization events in Mercury's magnetotail: Substorm dynamics
NASA Astrophysics Data System (ADS)
Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Imber, S.; Baker, D. N.; Lawrence, D. J.
2017-12-01
Despite its small size, Mercury's terrestrial-like magnetosphere experiences brief, yet intense, substorm intervals characterized by features similar to at Earth: loading/unloading of the tail lobes with open magnetic flux, dipolarization of the magnetic field at the inner edge of the plasma sheet, and, the focus of this presentation, energetic electron injection. We use the Gamma-Ray Spectrometer's high-time resolution (10 ms) energetic electron measurements to determine the relationship between substorm activity and energetic electron injections coincident with dipolarization fronts in the magnetotail. These dipolarizations were detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. We estimate the typical flow channel to be 0.15 RM, planetary convection speed of 750 km/s, cross-tail potential drop of 7 kV, and flux transport of 0.08 MWb for each dipolarization event, suggesting multiple simultaneous and sequential dipolarizations are required to unload the >1 MWb of magnetic flux typically returned to the dayside magnetosphere during a substorm interval. Indeed, while we observe most dipolarization-injections to be isolated or in small chains of events (i.e., 1-3 events), intervals of sawtooth-like injections with >20 sequential events are also present. The typical separation between dipolarization-injection events is 10 s. Magnetotail dipolarization, in addition to being a powerful source of electron acceleration, also plays a significant role in the substorm process at Mercury.
Optimal medication dosing from suboptimal clinical examples: a deep reinforcement learning approach.
Nemati, Shamim; Ghassemi, Mohammad M; Clifford, Gari D
2016-08-01
Misdosing medications with sensitive therapeutic windows, such as heparin, can place patients at unnecessary risk, increase length of hospital stay, and lead to wasted hospital resources. In this work, we present a clinician-in-the-loop sequential decision making framework, which provides an individualized dosing policy adapted to each patient's evolving clinical phenotype. We employed retrospective data from the publicly available MIMIC II intensive care unit database, and developed a deep reinforcement learning algorithm that learns an optimal heparin dosing policy from sample dosing trails and their associated outcomes in large electronic medical records. Using separate training and testing datasets, our model was observed to be effective in proposing heparin doses that resulted in better expected outcomes than the clinical guidelines. Our results demonstrate that a sequential modeling approach, learned from retrospective data, could potentially be used at the bedside to derive individualized patient dosing policies.
Choi, Hyunbong; Santra, Pralay K; Kamat, Prashant V
2012-06-26
Manipulation of energy and electron transfer processes in a light harvesting assembly is an important criterion to mimic natural photosynthesis. We have now succeeded in sequentially assembling CdSe quantum dot (QD) and squaraine dye (SQSH) on TiO(2) film and couple energy and electron transfer processes to generate photocurrent in a hybrid solar cell. When attached separately, both CdSe QDs and SQSH inject electrons into TiO(2) under visible-near-IR irradiation. However, CdSe QD if linked to TiO(2) with SQSH linker participates in an energy transfer process. The hybrid solar cells prepared with squaraine dye as a linker between CdSe QD and TiO(2) exhibited power conversion efficiency of 3.65% and good stability during illumination with global AM 1.5 solar condition. Transient absorption spectroscopy measurements provided further insight into the energy transfer between excited CdSe QD and SQSH (rate constant of 6.7 × 10(10) s(-1)) and interfacial electron transfer between excited SQSH and TiO(2) (rate constant of 1.2 × 10(11) s(-1)). The synergy of covalently linked semiconductor quantum dots and near-IR absorbing squaraine dye provides new opportunities to harvest photons from selective regions of the solar spectrum in an efficient manner.
Lenehan, Claire E.; Lewis, Simon W.
2002-01-01
LabVIEW®-based software for the automation of a sequential injection analysis instrument for the determination of morphine is presented. Detection was based on its chemiluminescence reaction with acidic potassium permanganate in the presence of sodium polyphosphate. The calibration function approximated linearity (range 5 × 10-10 to 5 × 10-6 M) with a line of best fit of y=1.05x+8.9164 (R2 =0.9959), where y is the log10 signal (mV) and x is the log10 morphine concentration (M). Precision, as measured by relative standard deviation, was 0.7% for five replicate analyses of morphine standard (5 × 10-8 M). The limit of detection (3σ) was determined as 5 × 10-11 M morphine. PMID:18924729
Lenehan, Claire E; Barnett, Neil W; Lewis, Simon W
2002-01-01
LabVIEW-based software for the automation of a sequential injection analysis instrument for the determination of morphine is presented. Detection was based on its chemiluminescence reaction with acidic potassium permanganate in the presence of sodium polyphosphate. The calibration function approximated linearity (range 5 x 10(-10) to 5 x 10(-6) M) with a line of best fit of y=1.05(x)+8.9164 (R(2) =0.9959), where y is the log10 signal (mV) and x is the log10 morphine concentration (M). Precision, as measured by relative standard deviation, was 0.7% for five replicate analyses of morphine standard (5 x 10(-8) M). The limit of detection (3sigma) was determined as 5 x 10(-11) M morphine.
Injectable Hydrogel Scaffold from Decellularized Human Lipoaspirate
Young, D. Adam; Ibrahim, Dina O.; Hu, Diane; Christman, Karen L.
2010-01-01
Soft tissue fillers are rapidly gaining popularity for aesthetic improvements or repair of adipose tissue deficits. Several injectable biopolymers have been investigated for this purpose but often face rapid resorption or limited adipogenesis, and do not mimic the native adipose extracellular matrix (ECM). We have generated an injectable adipose matrix scaffold by efficiently removing both the cellular and lipid contents of human lipoaspirate. The decellularized material retained a complex composition of peptides and glycosaminoglycans found in native adipose ECM. This matrix can be further processed by solubilizing the extracted ECM to generate a thermally-responsive hydrogel that self-assembles upon subcutaneous injection. This hydrogel also supports the growth and survival of patient matched adipose - derived stem cells in vitro. The development of an injectable hydrogel from human lipoaspirate represents a minimally-invasive option for adipose tissue engineering in terms of both the collection of source material and delivery of the scaffold. PMID:20932943
Induction of Maternal Immune Activation in Mice at Mid-gestation Stage with Viral Mimic Poly(I:C)
Wu, Wei-Li
2016-01-01
Maternal immune activation (MIA) model is increasingly well appreciated as a rodent model for the environmental risk factor of various psychiatric disorders. Numerous studies have demonstrated that MIA model is able to show face, construct, and predictive validity that are relevant to autism and schizophrenia. To model MIA, investigators often use viral mimic polyinosinic:polycytidylic acid (poly(I:C)) to activate the immune system in pregnant rodents. Generally, the offspring from immune activated dam exhibit behavioral abnormalities and physiological alterations that are associated with autism and schizophrenia. However, poly(I:C) injection with different dosages and at different time points could lead to different outcomes by perturbing brain development at different stages. Here we provide a detailed method of inducing MIA by intraperitoneal (i.p.) injection of 20 mg/kg poly(I:C) at mid-gestational embryonic 12.5 days (E12.5). This method has been shown to induce acute inflammatory response in the maternal-placental-fetal axis, which ultimately results in the brain perturbations and behavioral phenotypes that are associated with autism and schizophrenia. PMID:27078638
Induction of Maternal Immune Activation in Mice at Mid-gestation Stage with Viral Mimic Poly(I:C).
Chow, Ke-Huan; Yan, Zihao; Wu, Wei-Li
2016-03-25
Maternal immune activation (MIA) model is increasingly well appreciated as a rodent model for the environmental risk factor of various psychiatric disorders. Numerous studies have demonstrated that MIA model is able to show face, construct, and predictive validity that are relevant to autism and schizophrenia. To model MIA, investigators often use viral mimic polyinosinic:polycytidylic acid (poly(I:C)) to activate the immune system in pregnant rodents. Generally, the offspring from immune activated dam exhibit behavioral abnormalities and physiological alterations that are associated with autism and schizophrenia. However, poly(I:C) injection with different dosages and at different time points could lead to different outcomes by perturbing brain development at different stages. Here we provide a detailed method of inducing MIA by intraperitoneal (i.p.) injection of 20 mg/kg poly(I:C) at mid-gestational embryonic 12.5 days (E12.5). This method has been shown to induce acute inflammatory response in the maternal-placental-fetal axis, which ultimately results in the brain perturbations and behavioral phenotypes that are associated with autism and schizophrenia.
Influence of gas injection on viscous and viscoelastic properties of Xanthan gum.
Bobade, Veena; Cheetham, Madalyn; Hashim, Jamal; Eshtiaghi, Nicky
2018-05-01
Xanthan gum is widely used as a model fluid for sludge to mimic the rheological behaviour under various conditions including impact of gas injection in sludge. However, there is no study to show the influence of gas injection on rheological properties of xanthan gum specifically at the concentrations at which it is used as a model fluid for sludge with solids concentration above 2%. In this paper, the rheological properties of aqueous xanthan gum solutions at different concentrations were measured over a range of gas injection flow rates. The effect of gas injection on both the flow and viscoelastic behaviour of Xanthan gum (using two different methods - a creep test and a time sweep test) was evaluated. The viscosity curve of different solid concentrations of digested sludge and waste activated sludge were compared with different solid concentrations of Xanthan gum and the results showed that Xanthan gum can mimic the flow behaviour of sludge in flow regime. The results in linear viscoelastic regime showed that increasing gas flow rate increases storage modulus (G'), indicating an increase in the intermolecular associations within the material structure leading to an increase in material strength and solid behaviour. Similarly, in creep test an increase in the gas flow rate decreased strain%, signifying that the material has become more resistant to flow. Both observed behaviour is opposite to what occurs in sludge under similar conditions. The results of both the creep test and the time sweep test indicated that choosing Xanthan gum aqueous solution as a transparent model fluid for sludge in viscoelastic regime under similar conditions involving gas injection in a concentration range studied is not feasible. However Xanthan gum can be used as a model material for sludge in flow regime; because it shows a similar behaviour to sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tenascin-C Prevents Articular Cartilage Degeneration in Murine Osteoarthritis Models.
Matsui, Yuriyo; Hasegawa, Masahiro; Iino, Takahiro; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Sudo, Akihiro
2018-01-01
Objective The objective of this study was to determine whether intra-articular injections of tenascin-C (TNC) could prevent cartilage damage in murine models of osteoarthritis (OA). Design Fluorescently labeled TNC was injected into knee joints and its distribution was examined at 1 day, 4 days, 1 week, 2 weeks, and 4 weeks postinjection. To investigate the effects of TNC on cartilage degeneration after surgery to knee joints, articular spaces were filled with 100 μg/mL (group I), 10 μg/mL (group II) of TNC solution, or control (group III). TNC solution of 10 μg/mL was additionally injected twice after 3 weeks (group IV) or weekly after 1 week, 2 weeks, and 3 weeks (group V). Joint tissues were histologically assessed using the Mankin score and the modified Chambers system at 2 to 8 weeks after surgery. Results Exogenous TNC was maintained in the cartilage and synovium for 1 week after administration. Histological scores in groups I and II were better than scores in group III at 4 and 6 weeks, but progressive cartilage damage was seen in all groups 8 weeks postoperatively. Sequential TNC injections (groups IV and V) showed significantly better Mankin score than single injection (group II) at 8 weeks. Conclusion TNC administered exogenously remained in the cartilage of knee joints for 1 week, and could decelerate articular cartilage degeneration in murine models of OA. We also showed that sequential administration of TNC was more effective than a single injection. TNC could be an important molecule for prevention of articular cartilage damage.
Rosende, Maria; Savonina, Elena Yu; Fedotov, Petr S; Miró, Manuel; Cerdà, Víctor; Wennrich, Rainer
2009-09-15
Dynamic fractionation has been recognized as an appealing alternative to conventional equilibrium-based sequential extraction procedures (SEPs) for partitioning of trace elements (TE) in environmental solid samples. This paper reports the first attempt for harmonization of flow-through dynamic fractionation using two novel methods, the so-called sequential injection microcolumn (SIMC) extraction and rotating coiled column (RCC) extraction. In SIMC extraction, a column packed with the solid sample is clustered in a sequential injection system, while in RCC, the particulate matter is retained under the action of centrifugal forces. In both methods, the leachants are continuously pumped through the solid substrates by the use of either peristaltic or syringe pumps. A five-step SEP was selected for partitioning of Cu, Pb and Zn in water soluble/exchangeable, acid-soluble, easily reducible, easily oxidizable and moderately reducible fractions from 0.2 to 0.5 g samples at an extractant flow rate of 1.0 mL min(-1) prior to leachate analysis by inductively coupled plasma-atomic emission spectrometry. Similarities and discrepancies between both dynamic approaches were ascertained by fractionation of TE in certified reference materials, namely, SRM 2711 Montana Soil and GBW 07311 sediment, and two real soil samples as well. Notwithstanding the different extraction conditions set by both methods, similar trends of metal distribution were in generally found. The most critical parameters for reliable assessment of mobilizable pools of TE in worse-case scenarios are the size-distribution of sample particles, the density of particles, the content of organic matter and the concentration of major elements. For reference materials and a soil rich in organic matter, the extraction in RCC results in slightly higher recoveries of environmentally relevant fractions of TE, whereas SIMC leaching is more effective for calcareous soils.
Cui, Xizhong; Nolen, Leisha D; Sun, Junfeng; Booth, Malcolm; Donaldson, Lindsay; Quinn, Conrad P; Boyer, Anne E; Hendricks, Katherine; Shadomy, Sean; Bothma, Pieter; Judd, Owen; McConnell, Paul; Bower, William A; Eichacker, Peter Q
2017-01-01
We studied anthrax immune globulin intravenous (AIG-IV) use from a 2009-2010 outbreak of Bacillus anthracis soft tissue infection in injection drug users in Scotland, UK, and we compared findings from 15 AIG-IV recipients with findings from 28 nonrecipients. Death rates did not differ significantly between recipients and nonrecipients (33% vs. 21%). However, whereas only 8 (27%) of 30 patients at low risk for death (admission sequential organ failure assessment score of 0-5) received AIG-IV, 7 (54%) of the 13 patients at high risk for death (sequential organ failure assessment score of 6-11) received treatment. AIG-IV recipients had surgery more often and, among survivors, had longer hospital stays than did nonrecipients. AIG-IV recipients were sicker than nonrecipients. This difference and the small number of higher risk patients confound assessment of AIG-IV effectiveness in this outbreak.
Contributions of substorm injections to SYM-H depressions in the main phase of storms
NASA Astrophysics Data System (ADS)
He, Zhaohai; Dai, Lei; Wang, Chi; Duan, Suping; Zhang, Lingqian; Chen, Tao; Roth, I.
2016-12-01
Substorm injections bring energetic particles to the inner magnetosphere. But the role of the injected population in building up the storm time ring current is not well understood. By surveying Los Alamos National Laboratory geosynchronous data during 34 storm main phases, we show evidence that at least some substorm injections can contribute to substorm-time scale SYM-H/Dst depressions in the main phase of storms. For event studies, we analyze two typical events in which the main-phase SYM-H index exhibited stepwise depressions that are correlated with particle flux enhancement due to injections and with AL index. A statistical study is performed based on 95 storm time injection events. The flux increases of the injected population (50-400 keV) are found proportional to the sharp SYM-H depressions during the injection interval. By identifying dispersionless and dispersive injection signals, we estimate the azimuthal extent of the substorm injection. Statistical results show that the injection regions of these storm time substorms are characterized with an azimuthal extent larger than 06:00 magnetic local time. These results suggest that at least some substorm injections may mimic the large-scale enhanced convection and contribute to sharp decreases of Dst in the storm main phase.
Mineral Oil-induced Sclerosing Lipogranuloma of the Penis
Bjurlin, Marc A.; Carlsen, Jens; Grevious, Mark; Jordan, Michael D.; Taylor, Aisha; Divakaruni, Naveen
2010-01-01
Sclerosing lipogranuloma of the penis results from injection of high viscosity fluid for the purpose of penile augmentation and may have devastating cosmetic and sexual function consequences. Although rare, sclerosing lipogranuloma should be considered in the differential diagnosis of subcutaneous induration or nodules of the male genitalia as it may mimic carcinoma and poses a diagnostic challenge in patients reluctant to admit to injection therapy. Surgical excision with penile reconstruction is the mainstay of treatment. The authors present a case of a 35-year-old Myanmarese man with a sclerosing lipogranuloma of the penis due to injection of mineral oil successfully managed with penile biopsy and excision with split-thickness skin graft phalloplasty and provide a review of the current literature. PMID:20877525
Lichtenhan, J T; Hartsock, J; Dornhoffer, J R; Donovan, K M; Salt, A N
2016-11-01
Administering pharmaceuticals to the scala tympani of the inner ear is a common approach to study cochlear physiology and mechanics. We present here a novel method for in vivo drug delivery in a controlled manner to sealed ears. Injections of ototoxic solutions were applied from a pipette sealed into a fenestra in the cochlear apex, progressively driving solutions along the length of scala tympani toward the cochlear aqueduct at the base. Drugs can be delivered rapidly or slowly. In this report we focus on slow delivery in which the injection rate is automatically adjusted to account for varying cross sectional area of the scala tympani, therefore driving a solution front at uniform rate. Objective measurements originating from finely spaced, low- to high-characteristic cochlear frequency places were sequentially affected. Comparison with existing methods(s): Controlled administration of pharmaceuticals into the cochlear apex overcomes a number of serious limitations of previously established methods such as cochlear perfusions with an injection pipette in the cochlear base: The drug concentration achieved is more precisely controlled, drug concentrations remain in scala tympani and are not rapidly washed out by cerebrospinal fluid flow, and the entire length of the cochlear spiral can be treated quickly or slowly with time. Controlled administration of solutions into the cochlear apex can be a powerful approach to sequentially effect objective measurements originating from finely spaced cochlear regions and allows, for the first time, the spatial origin of CAPs to be objectively defined. Copyright © 2016 Elsevier B.V. All rights reserved.
Lichtenhan, JT; Hartsock, J; Dornhoffer, JR; Donovan, KM; Salt, AN
2016-01-01
Background Administering pharmaceuticals to the scala tympani of the inner ear is a common approach to study cochlear physiology and mechanics. We present here a novel method for in vivo drug delivery in a controlled manner to sealed ears. New method Injections of ototoxic solutions were applied from a pipette sealed into a fenestra in the cochlear apex, progressively driving solutions along the length of scala tympani toward the cochlear aqueduct at the base. Drugs can be delivered rapidly or slowly. In this report we focus on slow delivery in which the injection rate is automatically adjusted to account for varying cross sectional area of the scala tympani, therefore driving a solution front at uniform rate. Results Objective measurements originating from finely spaced, low- to high-characteristic cochlear frequency places were sequentially affected. Comparison with existing methods(s): Controlled administration of pharmaceuticals into the cochlear apex overcomes a number of serious limitations of previously established methods such as cochlear perfusions with an injection pipette in the cochlear base: The drug concentration achieved is more precisely controlled, drug concentrations remain in scala tympani and are not rapidly washed out by cerebrospinal fluid flow, and the entire length of the cochlear spiral can be treated quickly or slowly with time. Conclusions Controlled administration of solutions into the cochlear apex can be a powerful approach to sequentially effect objective measurements originating from finely spaced cochlear regions and allows, for the first time, the spatial origin of CAPs to be objectively defined. PMID:27506463
Prudnikova, K; Lightfoot Vidal, S E; Sarkar, S; Yu, T; Yucha, R W; Ganesh, N; Penn, L S; Han, L; Schauer, C L; Vresilovic, E J; Marcolongo, M S
2018-05-10
Biomimetic proteoglycans (BPGs) were designed to mimic the three-dimensional (3D) bottlebrush architecture of natural extracellular matrix (ECM) proteoglycans, such as aggrecan. BPGs were synthesized by grafting native chondroitin sulfate bristles onto a synthetic poly(acrylic acid) core to form BPGs at a molecular weight of approximately ∼1.6 MDa. The aggrecan mimics were characterized chemically, physically, and structurally, confirming the 3D bottlebrush architecture as well as a level of water uptake, which is greater than that of the natural proteoglycan, aggrecan. Aggrecan mimics were cytocompatible at physiological concentrations. Fluorescently labeled BPGs were injected into the nucleus pulposus of the intervertebral disc ex vivo and were retained in tissue before and after static loading and equilibrium conditioning. BPGs infiltrated the tissue, distributed and integrated with the ECM on a molecular scale, in the absence of a bolus, thus demonstrating a new molecular approach to tissue repair: molecular matrix engineering. Molecular matrix engineering may compliment or offer an acellular alternative to current regenerative medicine strategies. Aggrecan is a natural biomolecule that is essential for connective tissue hydration and mechanics. Aggrecan is composed of negatively charged chondroitin sulfate bristles attached to a protein core in a bottlebrush configuration. With age and degeneration, enzymatic degradation of aggrecan outpaces cellular synthesis resulting in a loss of this important molecule. We demonstrate a novel biomimetic molecule composed of natural chondroitin sulfate bristles grafted onto an enzymatically-resistant synthetic core. Our molecule mimics a 3D architecture and charge density of the natural aggrecan, can be delivered via a simple injection and is retained in tissue after equilibrium conditioning and loading. This novel material can serve as a platform for molecular repair, drug delivery and tissue engineering in regenerative medicine approaches. Copyright © 2018. Published by Elsevier Ltd.
[Laryngological experiences in treatment of Bell's palsy].
Obrebowski, A; Pruszewicz, A
2001-01-01
Between 1990-2000 15 cases of unilateral Bell paresis of the VIIth nerve were treated using local injection of hydrocortisone in the region of the foramen stylomastoideum. Paralelly were administered iontophoresis, galvanisation of the facial mimic muscles together with vasodilating drugs. Early introduced treatment gave complete return of facialis function. The usefulness of treatment monitoring with topodiagnostic tests is stressed.
In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10, two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol...
N'Djin, William Apoutou; Melodelima, David; Parmentier, Hubert; Chesnais, Sabrina; Rivoire, Michel; Chapelon, Jean Yves
2008-12-01
Presented in this article is a tumor-mimic model that allows the evaluation, before clinical trials, of the targeting accuracy of a high intensity focused ultrasound (HIFU) device for the treatment of the liver. The tumor-mimic models are made by injecting a warm solution that polymerizes in hepatic tissue and forms a 1 cm discrete lesion that is detectable by ultrasound imaging and gross pathology. First, the acoustical characteristics of the tumor-mimics model were measured in order to determine if this model could be used as a target for the evaluation of the accuracy of HIFU treatments without modifying HIFU lesions in terms of size, shape and homogeneity. On average (n = 10), the attenuation was 0.39 +/- 0.05 dB.cm(-1) at 1 MHz, the ultrasound propagation velocity was 1523 +/- 1 m.s(-1) and the acoustic impedance was 1.84 +/- 0.00 MRayls. Next, the tumor-mimic models were used in vitro in order to verify, at a preclinical stage, that lesions created by HIFU devices guided by ultrasound imaging are properly positioned in tissues. The HIFU device used in this study is a 256-element phased-array toroid transducer working at a frequency of 3 MHz with an integrated ultrasound imaging probe working at a frequency of 7.5 MHz. An initial series of in vitro experiments has shown that there is no significant difference in the dimensions of the HIFU lesions created in the liver with or without tumor-mimic models (p = 0.3049 and p = 0.8796 for the diameter and depth, respectively). A second in vitro study showed that HIFU treatments performed on five tumor-mimics with safety margins of at least 1 mm were properly positioned. The margins obtained were on average 9.3 +/- 2.7 mm (min. 3.0 - max. 20.0 mm). This article presents in vitro evidence that these tumor-mimics are identifiable by ultrasound imaging, they do not modify the geometry of HIFU lesions and, thus, they constitute a viable model of tumor-mimics indicated for HIFU therapy.
Li, Tengchao; Chen, Jie; Fan, Xiaobin; Chen, Weiwen; Zhang, Wenqing
2017-07-01
Two RNA silencing pathways in insects are known to exist that are mediated by short interfering RNAs (siRNAs) and microRNAs (miRNAs), which have been hypothesised to be promising methods for insect pest control. However, a comparison between miRNA and siRNA in pest control is still unavailable, particularly in targeting chitin synthase gene A (CHSA). The dsRNA for Nilaparvata lugens CHSA (dsNlCHSA) and the microR-2703 (miR-2703) mimic targeting NlCHSA delivered via feeding affected the development of nymphs, reduced their chitin content and led to lethal phenotypes. The protein level of NlCHSA was downregulated after female adults were injected with dsNlCHSA or the miR-2703 mimic, but there were no significant differences in vitellogenin (NlVg) expression or in total oviposition relative to the control group. However, 90.68 and 46.13% of the eggs laid by the females injected with dsNlCHSA and miR-2703 mimic were unable to hatch, respectively. In addition, a second-generation miRNA and RNAi effect on N. lugens was observed. Ingested miR-2703 seems to be a good option for killing N. lugens nymphs, while NlCHSA may be a promising target for RNAi-based pest management. These findings provide important evidence for applications of small non-coding RNAs (snRNAs) in insect pest management. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Takayanagi, Toshio; Inaba, Yuya; Kanzaki, Hiroyuki; Jyoichi, Yasutaka; Motomizu, Shoji
2009-09-15
Catalytic effect of metal ions on luminol chemiluminescence (CL) was investigated by sequential injection analysis (SIA). The SIA system was set up with two solenoid micropumps, an eight-port selection valve, and a photosensor module with a fountain-type chemiluminescence cell. The SIA system was controlled and the CL signals were collected by a LabVIEW program. Aqueous solutions of luminol, H(2)O(2), and a sample solution containing metal ion were sequentially aspirated to the holding coil, and the zones were immediately propelled to the detection cell. After optimizing the parameters using 1 x 10(-5)M Fe(3+) solution, catalytic effect of some metal species was compared. Among 16 metal species examined, relatively strong CL responses were obtained with Fe(3+), Fe(2+), VO(2+), VO(3)(-), MnO(4)(-), Co(2+), and Cu(2+). The limits of detection by the present SIA system were comparable to FIA systems. Permanganate ion showed the highest CL sensitivity among the metal species examined; the calibration graph for MnO(4)(-) was linear at the concentration level of 10(-8)M and the limit of detection for MnO(4)(-) was 4.0 x 10(-10)M (S/N=3).
The role of MiR-324-3p in polycystic ovary syndrome (PCOS) via targeting WNT2B.
Jiang, Y-C; Ma, J-X
2018-06-01
To investigate the expression of microRNA-324-3p (miR-324-3p) in polycystic ovary syndrome (PCOS) and its effects on the proliferation and apoptosis of ovarian granulosa cells. A total of 60 Sprague-Dawley (SD) rats were randomly divided into normal group (n=30) and experimental group (n=30). Rats in the experimental group were intramuscularly injected with dehydroepiandrosterone (DHEA) (6 mg/100 g of body weight) and 0.2 mL oil for injection, while those in normal group were intramuscularly injected with 0.2 mL oil for injection. The ovarian tissues of PCOS model rats were removed to extract the total ribose nucleic acid (RNA). The expression of miR-324-3p was detected via reverse transcription-polymerase chain reaction (RT-PCR). Primary ovarian granulosa cells were isolated and cultured, and NC-miRNA and miR-324-3p mimic were transfected into cells. After 48 h, cell proliferation and apoptosis were detected via cell counting kit 8 (CCK-8) and flow cytometry assay, respectively. The targeted molecule of miR-324-3p was explored using bioinformatics, and dual-luciferase assay was performed to verify the effect of miR-324-3p on WNT2B expression. Granulosa cells were co-transfected with WNT2B-small-interfering RNA (siRNA) and miR-324-3p mimic, and then cell proliferation and apoptosis were detected via CCK-8 and flow cytometry assay, respectively. The expression of miR-324-3p in ovarian tissues of PCOS group was significantly lower than that of normal group (p < 0.01). After transfection with miR-324-3p mimic into granulosa cells, cell proliferation was significantly inhibited and cell apoptosis was promoted (p < 0.01). MiR-324-3p exerted its effect on granulosa cells by directly targeting WNT2B. Silencing WNT2B expression could reverse the effects of miR-324-3p on proliferation and apoptosis of granulosa cells (p < 0.05). The expression of miR-324-3p in the ovary of PCOS rats is decreased significantly. Overexpression of miR-324-3p can reduce the proliferation and induce the apoptosis of granulosa cells via targeting of WNT2B.
NASA Astrophysics Data System (ADS)
Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng
2018-03-01
A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.
Efficient spin-current injection in single-molecule magnet junctions
NASA Astrophysics Data System (ADS)
Xie, Haiqing; Xu, Fuming; Jiao, Hujun; Wang, Qiang; Liang, J.-Q.
2018-01-01
We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normal-metallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.
Lesizza, Pierluigi; Prosdocimo, Giulia; Martinelli, Valentina; Sinagra, Gianfranco; Zacchigna, Serena; Giacca, Mauro
2017-04-14
Recent evidence indicates that a few human microRNAs (miRNAs), in particular hsa-miR-199a-3p and hsa-miR-590-3p, stimulate proliferation of cardiomyocytes and, once expressed in the mouse heart using viral vectors, induce cardiac regeneration after myocardial infarction. Viral vectors, however, are not devoid of safety issues and, more notably, drive expression of the encoded miRNAs for indefinite periods of time, which might not be desirable in light of human therapeutic application. As an alternative to the use of viral vectors, we wanted to assess the efficacy of synthetic miRNA mimics in inducing myocardial repair after single intracardiac injection using synthetic lipid formulations. We comparatively analyzed the efficacy of different lipid formulations in delivering hsa-miR-199a-3p and hsa-miR-590-3p both in primary neonatal mouse cardiomyocytes and in vivo. We established a transfection protocol allowing persistence of these 2 mimics for at least 12 days after a single intracardiac injection, with minimal dispersion to other organs and long-term preservation of miRNA functional activity, as assessed by monitoring the expression of 2 mRNA targets. Administration of this synthetic formulation immediately after myocardial infarction in mice resulted in marked reduction of infarct size and persistent recovery of cardiac function. A single administration of synthetic miRNA-lipid formulations is sufficient to stimulate cardiac repair and restoration of cardiac function. © 2017 American Heart Association, Inc.
Effectiveness of leukocyte immunotherapy in primary recurrent spontaneous abortion (RSA).
Gharesi-Fard, Behrouz; Zolghadri, Jaleh; Foroughinia, Leila; Tavazoo, Fahimeh; Samsami Dehaghani, Alamtaj
2007-09-01
Recurrent spontaneous abortion (RSA) is defined as three or more sequential abortions before the twentieth week of gestation. There are evidences to support an allo-immunologic mechanism for RSA. One of the methods for treatment of RSA is leukocyte therapy; however there is still controversy about effectiveness of this method. To evaluate the effectiveness of leukocyte therapy for treatment of RSA. Ninety two non-pregnant women with at least three sequential abortions (60 primary & 32 secondary aborters) recognized as RSA were referred to our Laboratory for immunotherapy. All the cases were immunized by isolated lymphocytes from their husbands. Fifty to 100 million washed and resuspended mononuclear cells were injected by I.V., S.C., and I.D. route. The result of each injection was checked by WBC cross matching between couples after four weeks of injections. Immunization was repeated in fifth week to a maximum of 3 times if needed. Eighty one age-matched non-pregnant RSA women (52 primary and 29 secondary aborters) with at least three sequential abortions were also included in this study as controls. The control group was not immunized. 67 out of 92 (72.8%) immunized cases and 44 out of 81 controls (54.3%) showed a successful outcome of pregnancy (p<0.02). Comparison of primary and secondary aborters indicated a significantly better outcome only in primary (75% vs. 42.3%. p<0.001) but not in secondary aborters (68.8% vs. 75.9%, p = 0.7). The present investigation showed the effectiveness of leukocyte therapy in primary but not in secondary RSA patients. Despite the current controversy and limitation of leukocyte therapy in RSA, the results of our investigation provide evidence supporting the use of allo-immunization in improving the outcome of pregnancy in primary RSA patients.
Davletbaeva, Polina; Chocholouš, Petr; Bulatov, Andrey; Šatínský, Dalibor; Solich, Petr
2017-09-05
Sequential Injection Chromatography (SIC) evolved from fast and automated non-separation Sequential Injection Analysis (SIA) into chromatographic separation method for multi-element analysis. However, the speed of the measurement (sample throughput) is due to chromatography significantly reduced. In this paper, a sub-1min separation using medium polar cyano monolithic column (5mm×4.6mm) resulted in fast and green separation with sample throughput comparable with non-separation flow methods The separation of three synthetic water-soluble dyes (sunset yellow FCF, carmoisine and green S) was in a gradient elution mode (0.02% ammonium acetate, pH 6.7 - water) with flow rate of 3.0mLmin -1 corresponding with sample throughput of 30h -1 . Spectrophotometric detection wavelengths were set to 480, 516 and 630nm and 10Hz data collection rate. The performance of the separation was described and discussed (peak capacities 3.48-7.67, peak symmetries 1.72-1.84 and resolutions 1.42-1.88). The method was represented by validation parameters: LODs of 0.15-0.35mgL -1 , LOQs of 0.50-1.25mgL -1 , calibration ranges 0.50-150.00mgL -1 (r>0.998) and repeatability at 10.0mgL -1 of RSD≤0.98% (n=6). The method was used for determination of the dyes in "forest berries" colored pharmaceutical cough-cold formulation. The sample matrix - pharmaceuticals and excipients were not interfering with vis determination because of no retention in the separation column and colorless nature. The results proved the concept of fast and green chromatography approach using very short medium polar monolithic column in SIC. Copyright © 2017 Elsevier B.V. All rights reserved.
Simultaneous determination of rutin and ascorbic acid in a sequential injection lab-at-valve system.
Al-Shwaiyat, Mohammed Khair E A; Miekh, Yuliia V; Denisenko, Tatyana A; Vishnikin, Andriy B; Andruch, Vasil; Bazel, Yaroslav R
2018-02-05
A green, simple, accurate and highly sensitive sequential injection lab-at-valve procedure has been developed for the simultaneous determination of ascorbic acid (Asc) and rutin using 18-molybdo-2-phosphate Wells-Dawson heteropoly anion (18-MPA). The method is based on the dependence of the reaction rate between 18-MPA and reducing agents on the solution pH. Only Asc is capable of interacting with 18-MPA at pH 4.7, while at pH 7.4 the reaction with both Asc and rutin proceeds simultaneously. In order to improve the precision and sensitivity of the analysis, to minimize reagent consumption and to remove the Schlieren effect, the manifold for the sequential injection analysis was supplemented with external reaction chamber, and the reaction mixture was segmented. By the reduction of 18-MPA with reducing agents one- and two-electron heteropoly blues are formed. The fraction of one-electron heteropoly blue increases at low concentrations of the reducer. Measurement of the absorbance at a wavelength corresponding to the isobestic point allows strictly linear calibration graphs to be obtained. The calibration curves were linear in the concentration ranges of 0.3-24mgL -1 and 0.2-14mgL -1 with detection limits of 0.13mgL -1 and 0.09mgL -1 for rutin and Asc, respectively. The determination of rutin was possible in the presence of up to a 20-fold molar excess of Asc. The method was applied to the determination of Asc and rutin in ascorutin tablets with acceptable accuracy and precision (1-2%). Copyright © 2017 Elsevier B.V. All rights reserved.
Néri-Quiroz, José; Canto, Fabrice; Guillerme, Laurent; Couston, Laurent; Magnaldo, Alastair; Dugas, Vincent
2016-10-01
A miniaturized and automated approach for the determination of free acidity in solutions containing uranium (VI) is presented. The measurement technique is based on the concept of sequential injection analysis with on-line spectroscopic detection. The proposed methodology relies on the complexation and alkalimetric titration of nitric acid using a pH 5.6 sodium oxalate solution. The titration process is followed by UV/VIS detection at 650nm thanks to addition of Congo red as universal pH indicator. Mixing sequence as well as method validity was investigated by numerical simulation. This new analytical design allows fast (2.3min), reliable and accurate free acidity determination of low volume samples (10µL) containing uranium/[H(+)] moles ratio of 1:3 with relative standard deviation of <7.0% (n=11). The linearity range of the free nitric acid measurement is excellent up to 2.77molL(-1) with a correlation coefficient (R(2)) of 0.995. The method is specific, presence of actinide ions up to 0.54molL(-1) does not interfere on the determination of free nitric acid. In addition to automation, the developed sequential injection analysis method greatly improves the standard off-line oxalate complexation and alkalimetric titration method by reducing thousand fold the required sample volume, forty times the nuclear waste per analysis as well as the analysis time by eight fold. These analytical parameters are important especially in nuclear-related applications to improve laboratory safety, personnel exposure to radioactive samples and to drastically reduce environmental impacts or analytical radioactive waste. Copyright © 2016 Elsevier B.V. All rights reserved.
Claus, James R; Sawyer, Christopher A; Vogel, Kurt D
2010-04-01
An experiment was conducted to test sequential injection of sodium tripolyphosphate (STP; 0.5% meat weight basis, mwb) followed by injection with or without addition of calcium chloride (CaCl(2), 500 ppm mwb), and to test the effect of post-injection delay prior to cooking. A second experiment evaluated the impact of injection order and delay time between independent addition of CaCl(2) (500 ppm mwb) and STP (0.5% mwb). Turkey was formulated without an added pink generating ligand (NONE), with nicotinamide (NIC; 0.1% mwb), or with sodium nitrite (NIT; 10 ppm mwb). A white colloid was observed in the extracellular space of treatments containing both STP and CaCl(2.) Addition of CaCl(2) decreased nitrosylhemochrome but did not reduce levels of nicotinamide hemochrome or CIE a(*) values. Injection order or delay between injections did not contribute to controlling the pink defect in cooked, intact turkey breast. Published by Elsevier Ltd.
Nakashima, Kei; Aoshima, Masahiro; Ohfuji, Satoko; Yamawaki, Satoshi; Nemoto, Masahiro; Hasegawa, Shinya; Noma, Satoshi; Misawa, Masafumi; Hosokawa, Naoto; Yaegashi, Makito; Otsuka, Yoshihito
2018-03-21
It is unclear whether simultaneous administration of a 23-valent pneumococcal polysaccharide vaccine (PPSV23) and a quadrivalent influenza vaccine (QIV) produces immunogenicity in older individuals. This study tested the hypothesis that the pneumococcal antibody response elicited by simultaneous administration of PPSV23 and QIV in older individuals is not inferior to that elicited by sequential administration of PPSV23 and QIV. We performed a single-center, randomized, open-label, non-inferiority trial comprising 162 adults aged ≥65 years randomly assigned to either the simultaneous (simultaneous injections of PPSV23 and QIV) or sequential (control; PPSV23 injected 2 weeks after QIV vaccination) groups. Pneumococcal immunoglobulin G (IgG) titers of serotypes 23F, 3, 4, 6B, 14, and 19A were assessed. The primary endpoint was the serotype 23F response rate (a ≥2-fold increase in IgG concentrations 4-6 weeks after PPSV23 vaccination). With the non-inferiority margin set at 20% fewer patients, the response rate of serotype 23F in the simultaneous group (77.8%) was not inferior to that of the sequential group (77.6%; difference, 0.1%; 90% confidence interval, -10.8% to 11.1%). None of the pneumococcal IgG serotype titers were significantly different between the groups 4-6 weeks after vaccination. Simultaneous administration did not show a significant decrease in seroprotection odds ratios for H1N1, H3N2, or B/Phuket influenza strains other than B/Texas. Additionally, simultaneous administration did not increase adverse reactions. Hence, simultaneous administration of PPSV23 and QIV shows an acceptable immunogenicity that is comparable to sequential administration without an increase in adverse reactions. (This study was registered with ClinicalTrials.gov [NCT02592486]).
Visual detection and sequential injection determination of aluminium using a cinnamoyl derivative.
Elečková, Lenka; Alexovič, Michal; Kuchár, Juraj; Balogh, Ioseph S; Andruch, Vasil
2015-02-01
A cinnamoyl derivative, 3-[4-(dimethylamino)cinnamoyl]-4-hydroxy-6-methyl-3,4-2H-pyran-2-one, was used as a ligand for the determination of aluminium. Upon the addition of an acetonitrile solution of the ligand to an aqueous solution containing Al(III) and a buffer solution at pH 8, a marked change in colour from yellow to orange is observed. The colour intensity is proportional to the concentration of Al(III); thus, the 'naked-eye' detection of aluminium is possible. The reaction is also applied for sequential injection determination of aluminium. Beer׳s law is obeyed in the range from 0.055 to 0.66 mg L(-1) of Al(III). The limit of detection, calculated as three times the standard deviation of the blank test (n=10), was found to be 4 μg L(-1) for Al(III). The method was applied for the determination of aluminium in spiked water samples and pharmaceutical preparations. Copyright © 2014 Elsevier B.V. All rights reserved.
Thaithet, Sujitra; Kradtap Hartwell, Supaporn; Lapanantnoppakhun, Somchai
2017-01-01
A low-pressure separation procedure of α-tocopherol and γ-oryzanol was developed based on a sequential injection chromatography (SIC) system coupled with an ultra-short (5 mm) C-18 monolithic column, as a lower cost and more compact alternative to the HPLC system. A green sample preparation, dilution with a small amount of hexane followed by liquid-liquid extraction with 80% ethanol, was proposed. Very good separation resolution (R s = 3.26), a satisfactory separation time (10 min) and a total run time including column equilibration (16 min) were achieved. The linear working range was found to be 0.4 - 40 μg with R 2 being more than 0.99. The detection limits of both analytes were 0.28 μg with the repeatability within 5% RSD (n = 7). Quantitative analyses of the two analytes in vegetable oil and nutrition supplement samples, using the proposed SIC method, agree well with the results from HPLC.
Pfaunmiller, Erika L.; Anguizola, Jeanethe A.; Milanuk, Mitchell L.; Carter, NaTasha; Hage, David S.
2016-01-01
Affinity microcolumns containing protein G were used as general platforms for creating chromatographic-based competitive binding immunoassays. Human serum albumin (HSA) was used as a model target for this work and HSA tagged with a near infrared fluorescent dye was utilized as the label. The protein G microcolumns were evaluated for use in several assay formats, including both solution-based and column-based competitive binding immunoassays and simultaneous or sequential injection formats. All of these methods were characterized by using the same amounts of labeled HSA and anti-HSA antibodies per sample, as chosen for the analysis of a protein target in the low-to-mid ng/mL range. The results were used to compare these formats in terms of their response, precision, limits of detection, and analysis time. All these methods gave detection limits in the range of 8–19 ng/mL and precisions ranging from ± 5% to ± 10% when using an injection flow rate of 0.10 mL/min. The column-based sequential injection immunoassay provided the best limit of detection and the greatest change in response at low target concentrations, while the solution-based simultaneous injection method had the broadest linear and dynamic ranges. These results provided valuable guidelines that can be employed to develop and extend the use of protein G microcolumns and these competitive binding formats to other protein biomarkers or biological agents of clinical or pharmaceutical interest. PMID:26777776
Ciray, Haydar Nadir; Aksoy, Turan; Goktas, Cihan; Ozturk, Bilgen; Bahceci, Mustafa
2012-09-01
To compare the dynamics of early development between embryos cultured in single and sequential media. Randomized, comparative study. Private IVF centre. A total of 446 metaphase II oocytes from 51 couples who underwent oocyte retrieval procedure for intracytoplasmic sperm injection. Forty-nine resulted in embryo transfer. Oocytes were split between single and sequential media produced by the same manufacturer and cultured in a time-lapse incubator. Morphokinetic parameters until the embryos reached the 5-cell stage (t5), utilization, clinical pregnancy and implantation rates. Embryos cultured in single media were advanced from the first mitosis cycle and reached 2- to 5-cell stages earlier. There was not any difference between the durations for cell cycle two (cc2 = t3-t2) and s2 (t4-t3). The utilization, clinical pregnancy and implantation rates did not differ between groups. The proportion of cryopreserved day 6 embryos to two pronuclei oocytes was significantly higher in sequential than in single media. Morphokinetics of embryo development vary between single and sequential culture media at least until the 5-cell stage. The overall clinical and embryological parameters remain similar regardless of the culture system.
Saetear, Phoonthawee; Khamtau, Kittiwut; Ratanawimarnwong, Nuanlaor; Sereenonchai, Kamonthip; Nacapricha, Duangjai
2013-10-15
This work presents the simultaneous determination of sucrose and phosphate by using sequential injection (SI) system with a low cost paired emitter-detector diode (PEDD) light sensor. The PEDD uses two 890 nm LEDs. Measurement of sucrose in Brix unit was carried out based on the detection of light refraction occurring at the liquid interface (the schlieren effect) between the sucrose solution and water. Phosphate was measured from the formation of calcium phosphate with turbidimetric detection. With careful design of the loading sequence and volume (sample--precipitating reagent--sample), simultaneous detection of sucrose and phosphate was accomplished with the single PEDD detector. At the optimized condition, linear calibrations from 1 to 7 Brix sucrose and from 50 to 200mg PO4(3-)L(-1) were obtained. Good precision at lower than 2% RSD (n=10) for both analytes with satisfactory throughput of 21 injections h(-1) was achieved. The method was successfully applied for the determination of sucrose and phosphate in cola drinks. The proposed method is readily applicable for automation and is found to be an alternative method to conventional procedures for on-line quality control process in cola drink industry. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Sequential enzymatic epoxidation involved in polyether lasalocid biosynthesis.
Minami, Atsushi; Shimaya, Mayu; Suzuki, Gaku; Migita, Akira; Shinde, Sandip S; Sato, Kyohei; Watanabe, Kenji; Tamura, Tomohiro; Oguri, Hiroki; Oikawa, Hideaki
2012-05-02
Enantioselective epoxidation followed by regioselective epoxide opening reaction are the key processes in construction of the polyether skeleton. Recent genetic analysis of ionophore polyether biosynthetic gene clusters suggested that flavin-containing monooxygenases (FMOs) could be involved in the oxidation steps. In vivo and in vitro analyses of Lsd18, an FMO involved in the biosynthesis of polyether lasalocid, using simple olefin or truncated diene of a putative substrate as substrate mimics demonstrated that enantioselective epoxidation affords natural type mono- or bis-epoxide in a stepwise manner. These findings allow us to figure out enzymatic polyether construction in lasalocid biosynthesis. © 2012 American Chemical Society
Zhou, Heling; Zhao, Dawen
2014-03-06
Breast cancer brain metastasis, occurring in 30% of breast cancer patients at stage IV, is associated with high mortality. The median survival is only 6 months. It is critical to have suitable animal models to mimic the hemodynamic spread of the metastatic cells in the clinical scenario. Here, we are introducing the use of small animal ultrasound imaging to guide an accurate injection of brain tropical breast cancer cells into the left ventricle of athymic nude mice. Longitudinal MRI is used to assessing intracranial initiation and growth of brain metastases. Ultrasound-guided intracardiac injection ensures not only an accurate injection and hereby a higher successful rate but also significantly decreased mortality rate, as compared to our previous manual procedure. In vivo high resolution MRI allows the visualization of hyperintense multifocal lesions, as small as 310 µm in diameter on T2-weighted images at 3 weeks post injection. Follow-up MRI reveals intracranial tumor growth and increased number of metastases that distribute throughout the whole brain.
Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels.
Boland, Thomas; Mironov, Vladimir; Gutowska, Anna; Roth, Elisabeth A; Markwald, Roger R
2003-06-01
We recently developed a cell printer (Wilson and Boland, 2003) that enables us to place cells in positions that mimic their respective positions in organs. However, this technology was limited to the printing of two-dimensional (2D) tissue constructs. Here we describe the use of thermosensitive gels to generate sequential layers for cell printing. The ability to drop cells on previously printed successive layers provides a real opportunity for the realization of three-dimensional (3D) organ printing. Organ printing will allow us to print complex 3D organs with computer-controlled, exact placing of different cell types, by a process that can be completed in several minutes. To demonstrate the feasibility of this novel technology, we showed that cell aggregates can be placed in the sequential layers of 3D gels close enough for fusion to occur. We estimated the optimum minimal thickness of the gel that can be reproducibly generated by dropping the liquid at room temperature onto a heated substrate. Then we generated cell aggregates with the corresponding (to the minimal thickness of the gel) size to ensure a direct contact between printed cell aggregates during sequential printing cycles. Finally, we demonstrated that these closely-placed cell aggregates could fuse in two types of thermosensitive 3D gels. Taken together, these data strongly support the feasibility of the proposed novel organ-printing technology. Copyright 2003 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.
We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approachmore » to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.« less
Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.; ...
2015-09-12
We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approachmore » to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.« less
Fluid-driven Fractures and Backflow in a Multilayered Elastic Matrix
NASA Astrophysics Data System (ADS)
Smiddy, Samuel; Lai, Ching-Yao; Stone, Howard
2016-11-01
We study the dynamics when pressurized fluid is injected at a constant flow rate into a multi-layered elastic matrix. In particular, we report experiments of such crack propagation as a function of orientation and distance from the contact of the layers. Subsequently we study the shape and propagation of the fluid along the contact of layers as well as volume of fluid remaining in the matrix once the injection pressure is released and "flowback" occurs. The experiments presented here may mimic the interaction between hydraulic fractures and pre-existing fractures and the dynamics of flowback in hydraulic fracturing. Study made possible by the Andlinger Center for Energy and the Environment and the Fred Fox Fund.
Kim, H J; Kwon, S B; Whang, K U; Lee, J S; Park, Y L; Lee, S Y
2018-02-01
Hyaluronidase injection is a commonly performed treatment for overcorrection or misplacement of hyaluronic acid (HA) filler. Many patients often wants the HA filler reinjection after the use of hyaluronidase, though the optimal timing of reinjection of HA filler still remains unknown. To provide the optimal time interval between hyaluronidase injections and HA filler reinjections. 6 Sprague-Dawley rats were injected with single monophasic HA filler. 1 week after injection, the injected sites were treated with hyaluronidase. Then, HA fillers were reinjected sequentially with differing time intervals from 30 minutes to 14 days. 1 hour after the reinjection of the last HA filler, all injection sites were excised for histologic evaluation. 3 hours after reinjection of HA filler, the appearance of filler material became evident again, retaining its shape and volume. 6 hours after reinjection, the filler materials restored almost its original volume and there were no significant differences from the positive control. Our data suggest that the hyaluronidase loses its effect in dermis and subcutaneous tissue within 3-6 hours after the injection and successful engraftment of reinjected HA filler can be accomplished 6 hours after the injection.
Schnars, Jeanette L; Voss, Margaret A; Stauffer, Jay R
2011-04-01
Embryos of oviparous organisms are exposed to contaminants by two pathways: contaminant uptake from the surrounding environment, and the transfer from female to offspring (maternal transfer). The initial source of contaminant exposure for most embryos is likely to be maternal transfer; therefore, maternal transfer studies are critical in determining the effects of contaminants on future populations. Injection of contaminants directly into eggs is one route of experimental contaminant exposure that permits controlled doses and potential reliable replication. This technique, however, has been used in the past with little success in reptiles. The objective of the present study was to evaluate egg injection as a means of mimicking maternal transfer of polychlorinated biphenyls (PCBs) to snapping turtle eggs. Eggs from several clutches were injected with a PCB solution and incubated at several temperatures and moisture levels to measure interactive effects of injection, environmental condition, and contaminant load on hatching success. The injection technique allowed for application of consistent and specific doses among replicates. Overall hatching success in this study was 61% and was as high as 71% within specific treatments. Hatching success was much higher in this study than in other studies using egg injections to mimic maternal transfer in chelonians and crocodilians. Copyright © 2010 SETAC.
9 CFR 113.43 - Detection of chlamydial agents.
Code of Federal Regulations, 2014 CFR
2014-01-01
... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...
9 CFR 113.43 - Detection of chlamydial agents.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...
9 CFR 113.43 - Detection of chlamydial agents.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...
9 CFR 113.43 - Detection of chlamydial agents.
Code of Federal Regulations, 2012 CFR
2012-01-01
... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...
Pistón, Mariela; Mollo, Alicia; Knochen, Moisés
2011-01-01
A fast and efficient automated method using a sequential injection analysis (SIA) system, based on the Griess, reaction was developed for the determination of nitrate and nitrite in infant formulas and milk powder. The system enables to mix a measured amount of sample (previously constituted in the liquid form and deproteinized) with the chromogenic reagent to produce a colored substance whose absorbance was recorded. For nitrate determination, an on-line prereduction step was added by passing the sample through a Cd minicolumn. The system was controlled from a PC by means of a user-friendly program. Figures of merit include linearity (r2 > 0.999 for both analytes), limits of detection (0.32 mg kg−1 NO3-N, and 0.05 mg kg−1 NO2-N), and precision (sr%) 0.8–3.0. Results were statistically in good agreement with those obtained with the reference ISO-IDF method. The sampling frequency was 30 hour−1 (nitrate) and 80 hour−1 (nitrite) when performed separately. PMID:21960750
Economou, Anastasios; Voulgaropoulos, Anastasios
2003-01-01
The development of a dedicated automated sequential-injection analysis apparatus for anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) is reported. The instrument comprised a peristaltic pump, a multiposition selector valve and a home-made potentiostat and used a mercury-film electrode as the working electrodes in a thin-layer electrochemical detector. Programming of the experimental sequence was performed in LabVIEW 5.1. The sequence of operations included formation of the mercury film, electrolytic or adsorptive accumulation of the analyte on the electrode surface, recording of the voltammetric current-potential response, and cleaning of the electrode. The stripping step was carried out by applying a square-wave (SW) potential-time excitation signal to the working electrode. The instrument allowed unattended operation since multiple-step sequences could be readily implemented through the purpose-built software. The utility of the analyser was tested for the determination of copper(II), cadmium(II), lead(II) and zinc(II) by SWASV and of nickel(II), cobalt(II) and uranium(VI) by SWAdSV.
Economou, Anastasios; Voulgaropoulos, Anastasios
2003-01-01
The development of a dedicated automated sequential-injection analysis apparatus for anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) is reported. The instrument comprised a peristaltic pump, a multiposition selector valve and a home-made potentiostat and used a mercury-film electrode as the working electrodes in a thin-layer electrochemical detector. Programming of the experimental sequence was performed in LabVIEW 5.1. The sequence of operations included formation of the mercury film, electrolytic or adsorptive accumulation of the analyte on the electrode surface, recording of the voltammetric current-potential response, and cleaning of the electrode. The stripping step was carried out by applying a square-wave (SW) potential-time excitation signal to the working electrode. The instrument allowed unattended operation since multiple-step sequences could be readily implemented through the purpose-built software. The utility of the analyser was tested for the determination of copper(II), cadmium(II), lead(II) and zinc(II) by SWASV and of nickel(II), cobalt(II) and uranium(VI) by SWAdSV. PMID:18924623
Sequential injection system with multi-parameter analysis capability for water quality measurement.
Kaewwonglom, Natcha; Jakmunee, Jaroon
2015-11-01
A simple sequential injection (SI) system with capability to determine multi-parameter has been developed for the determination of iron, manganese, phosphate and ammonium. A simple and compact colorimeter was fabricated in the laboratory to be employed as a detector. The system was optimized for suitable conditions for determining each parameter by changing software program and without reconfiguration of the hardware. Under the optimum conditions, the methods showed linear ranges of 0.2-10 mg L(-1) for iron and manganese determinations, and 0.3-5.0 mg L(-1) for phosphate and ammonium determinations, with correlation coefficients of 0.9998, 0.9973, 0.9987 and 0.9983, respectively. The system provided detection limits of 0.01, 0.14, 0.004 and 0.02 mg L(-1) for iron, manganese, phosphate and ammonium, respectively. The proposed system has good precision, low chemical consumption and high throughput. It was applied for monitoring water quality of Ping river in Chiang Mai, Thailand. Recoveries of the analysis were obtained in the range of 82-119%. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pragourpun, Kraivinee; Sakee, Uthai; Fernandez, Carlos; Kruanetr, Senee
2015-05-01
We present for the first time the use of deferiprone as a non-toxic complexing agent for the determination of iron by sequential injection analysis in pharmaceuticals and food samples. The method was based on the reaction of Fe(III) and deferiprone in phosphate buffer at pH 7.5 to give a Fe(III)-deferiprone complex, which showed a maximum absorption at 460 nm. Under the optimum conditions, the linearity range for iron determination was found over the range of 0.05-3.0 μg mL-1 with a correlation coefficient (r2) of 0.9993. The limit of detection and limit of quantitation were 0.032 μg mL-1 and 0.055 μg mL-1, respectively. The relative standard deviation (%RSD) of the method was less than 5.0% (n = 11), and the percentage recovery was found in the range of 96.0-104.0%. The proposed method was satisfactorily applied for the determination of Fe(III) in pharmaceuticals, water and food samples with a sampling rate of 60 h-1.
NASA Astrophysics Data System (ADS)
Coman, Tudor; Timpu, Daniel; Nica, Valentin; Vitelaru, Catalin; Rambu, Alicia Petronela; Stoian, George; Olaru, Mihaela; Ursu, Cristian
2017-10-01
Highly conductive transparent Al-doped ZnO (AZO) thin films were obtained at room temperature through sequential PLD (SPLD) from Zn and Al metallic targets in an oxygen/argon gas mixture. We have investigated the structural, electrical and optical properties as a function of the oxygen/argon pressure ratio in the chamber. The measured Hall carrier concentration was found to increase with argon injection from 1.3 × 1020 to 6.7 × 1020 cm-3, while the laser shots ratio for Al/Zn targets ablation was kept constant. This increase was attributed to an enhancement of the substitution doping into the ZnO lattice. The argon injection also leads to an increase of the Hall mobility up to 20 cm2 V-1 s-1, attributed to a reduction of interstitial-type defects. Thus, the approach of using an oxygen/argon gas mixture during SPLD from metallic targets allows obtaining at room temperature AZO samples with high optical transmittance (about 90%) and low electrical resistivity (down to 5.1 × 10-4 Ω cm).
Alhusban, Ala A; Gaudry, Adam J; Breadmore, Michael C; Gueven, Nuri; Guijt, Rosanne M
2014-01-03
Cell culture has replaced many in vivo studies because of ethical and regulatory measures as well as the possibility of increased throughput. Analytical assays to determine (bio)chemical changes are often based on end-point measurements rather than on a series of sequential determinations. The purpose of this work is to develop an analytical system for monitoring cell culture based on sequential injection-capillary electrophoresis (SI-CE) with capacitively coupled contactless conductivity detection (C(4)D). The system was applied for monitoring lactate production, an important metabolic indicator, during mammalian cell culture. Using a background electrolyte consisting of 25mM tris(hydroxymethyl)aminomethane, 35mM cyclohexyl-2-aminoethanesulfonic acid with 0.02% poly(ethyleneimine) (PEI) at pH 8.65 and a multilayer polymer coated capillary, lactate could be resolved from other compounds present in media with relative standard deviations 0.07% for intraday electrophoretic mobility and an analysis time of less than 10min. Using the human embryonic kidney cell line HEK293, lactate concentrations in the cell culture medium were measured every 20min over 3 days, requiring only 8.73μL of sample per run. Combining simplicity, portability, automation, high sample throughput, low limits of detection, low sample consumption and the ability to up- and outscale, this new methodology represents a promising technique for near real-time monitoring of chemical changes in diverse cell culture applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Khongpet, Wanpen; Pencharee, Somkid; Puangpila, Chanida; Kradtap Hartwell, Supaporn; Lapanantnoppakhun, Somchai; Jakmunee, Jaroon
2018-01-15
A microfluidic hydrodynamic sequential injection (μHSI) spectrophotometric system was designed and fabricated. The system was built by laser engraving a manifold pattern on an acrylic block and sealing with another flat acrylic plate to form a microfluidic channel platform. The platform was incorporated with small solenoid valves to obtain a portable setup for programmable control of the liquid flow into the channel according to the HSI principle. The system was demonstrated for the determination of phosphate using a molybdenum blue method. An ascorbic acid, standard or sample, and acidic molybdate solutions were sequentially aspirated to fill the channel forming a stack zone before flowing to the detector. Under the optimum condition, a linear calibration graph in the range of 0.1-6mg P L -1 was obtained. The detection limit was 0.1mgL -1 . The system is compact (5.0mm thick, 80mm wide × 140mm long), durable, portable, cost-effective, and consumes little amount of chemicals (83μL each of molybdate and ascorbic acid, 133μL of the sample solution and 1.7mL of water carrier/run). It was applied for the determination of phosphate content in extracted soil samples. The percent recoveries of the analysis were obtained in the range of 91.2-107.3. The results obtained agreed well with those of the batch spectrophotometric method. Copyright © 2017 Elsevier B.V. All rights reserved.
del Río, Vanessa; Larrechi, M Soledad; Callao, M Pilar
2010-06-15
A new concept of flow titration is proposed and demonstrated for the determination of total acidity in plant oils and biodiesel. We use sequential injection analysis (SIA) with a diode array spectrophotometric detector linked to chemometric tools such as multivariate curve resolution-alternating least squares (MCR-ALS). This system is based on the evolution of the basic specie of an acid-base indicator, alizarine, when it comes into contact with a sample that contains free fatty acids. The gradual pH change in the reactor coil due to diffusion and reaction phenomenona allows the sequential appearance of both species of the indicator in the detector coil, recording a data matrix for each sample. The SIA-MCR-ALS method helps to reduce the amounts of sample, the reagents and the time consumed. Each determination consumes 0.413ml of sample, 0.250ml of indicator and 3ml of carrier (ethanol) and generates 3.333ml of waste. The frequency of the analysis is high (12 samples h(-1) including all steps, i.e., cleaning, preparing and analysing). The utilized reagents are of common use in the laboratory and it is not necessary to use the reagents of perfect known concentration. The method was applied to determine acidity in plant oil and biodiesel samples. Results obtained by the proposed method compare well with those obtained by the official European Community method that is time consuming and uses large amounts of organic solvents.
Notochord-derived BMP antagonists inhibit endothelial cell generation and network formation.
Bressan, Michael; Davis, Patricia; Timmer, John; Herzlinger, Doris; Mikawa, Takashi
2009-02-01
Embryonic blood vessel formation is initially mediated through the sequential differentiation, migration, and assembly of endothelial cells (ECs). While many molecular signals that promote vascular development have been identified, little is known about suppressors of this process. In higher vertebrates, including birds and mammals, the vascular network forms throughout the embryonic disk with the exception of a region along the midline. We have previously shown that the notochord is responsible for the generation and maintenance of the avascular midline and that BMP antagonists expressed by this embryonic tissue, including Noggin and Chordin, can mimic this inhibitory role. Here we report that the notochord suppresses the generation of ECs from the mesoderm both in vivo and in vitro. We also report that the notochord diminishes the ability of mature ECs to organize into a primitive plexus. Furthermore, Noggin mimics notochord-based inhibition by preventing mesodermal EC generation and mature EC network formation. These findings suggest that the mesoderm surrounding the midline is competent to give rise to ECs and to form blood vessels, but that notochord derived-BMP antagonists suppress EC differentiation and maturation processes leading to inhibition of midline vessel formation.
Injectable 3-D Fabrication of Medical Electronics at the Target Biological Tissues
NASA Astrophysics Data System (ADS)
Jin, Chao; Zhang, Jie; Li, Xiaokang; Yang, Xueyao; Li, Jingjing; Liu, Jing
2013-12-01
Conventional transplantable biomedical devices generally request sophisticated surgery which however often causes big trauma and serious pain to the patients. Here, we show an alternative way of directly making three-dimensional (3-D) medical electronics inside the biological body through sequential injections of biocompatible packaging material and liquid metal ink. As the most typical electronics, a variety of medical electrodes with different embedded structures were demonstrated to be easily formed at the target tissues. Conceptual in vitro experiments provide strong evidences for the excellent performances of the injectable electrodes. Further in vivo animal experiments disclosed that the formed electrode could serve as both highly efficient ECG (Electrocardiograph) electrode and stimulator electrode. These findings clarified the unique features and practicability of the liquid metal based injectable 3-D fabrication of medical electronics. The present strategy opens the way for directly manufacturing electrophysiological sensors or therapeutic devices in situ via a truly minimally invasive approach.
Tadano, Toshihiro; Kakuta, Yoichi; Hamada, Shin; Shimodaira, Yosuke; Kuroha, Masatake; Kawakami, Yoko; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Masamune, Atsushi; Takahashi, Seiichi; Kinouchi, Yoshitaka; Shimosegawa, Tooru
2016-07-15
To investigate the microRNA (miRNA) expression during histological progression from colorectal normal mucosa through adenoma to carcinoma within a lesion. Using microarray, the sequential changes in miRNA expression profiles were compared in colonic lesions from matched samples; histologically, non-neoplastic mucosa, adenoma, and submucosal invasive carcinoma were microdissected from a tissue sample. Cell proliferation assay was performed to observe the effect of miRNA, and its target genes were predicted using bioinformatics approaches and the expression profile of SW480 transfected with the miRNA mimics. mRNA and protein levels of the target gene in colon cancer cell lines with a mimic control or miRNA mimics were measured using qRT-PCR and Western blotting. The expression levels of miRNA and target gene in colorectal tissue samples were also measured. Microarray analysis identified that the miR-320 family, including miR-320a, miR-320b, miR-320c, miR-320d and miR-320e, were differentially expressed in adenoma and submucosal invasive carcinoma. The miR-320 family, which inhibits cell proliferation, is frequently downregulated in colorectal adenoma and submucosal invasive carcinoma tissues. Seven genes including CDK6 were identified to be common in the results of gene expression array and bioinformatics analyses performed to find the target gene of the miR-320 family. We confirmed that mRNA and protein levels of CDK6 were significantly suppressed in colon cancer cell lines with miR-320 family mimics. CDK6 expression was found to increase from non-neoplastic mucosa through adenoma to submucosal invasive carcinoma tissues and showed an inverse correlation with miR-320 family expression. MiR-320 family affects colorectal tumor proliferation by targeting CDK6, plays important role in its growth, and is considered to be a biomarker for its early detection.
Tadano, Toshihiro; Kakuta, Yoichi; Hamada, Shin; Shimodaira, Yosuke; Kuroha, Masatake; Kawakami, Yoko; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Masamune, Atsushi; Takahashi, Seiichi; Kinouchi, Yoshitaka; Shimosegawa, Tooru
2016-01-01
AIM: To investigate the microRNA (miRNA) expression during histological progression from colorectal normal mucosa through adenoma to carcinoma within a lesion. METHODS: Using microarray, the sequential changes in miRNA expression profiles were compared in colonic lesions from matched samples; histologically, non-neoplastic mucosa, adenoma, and submucosal invasive carcinoma were microdissected from a tissue sample. Cell proliferation assay was performed to observe the effect of miRNA, and its target genes were predicted using bioinformatics approaches and the expression profile of SW480 transfected with the miRNA mimics. mRNA and protein levels of the target gene in colon cancer cell lines with a mimic control or miRNA mimics were measured using qRT-PCR and Western blotting. The expression levels of miRNA and target gene in colorectal tissue samples were also measured. RESULTS: Microarray analysis identified that the miR-320 family, including miR-320a, miR-320b, miR-320c, miR-320d and miR-320e, were differentially expressed in adenoma and submucosal invasive carcinoma. The miR-320 family, which inhibits cell proliferation, is frequently downregulated in colorectal adenoma and submucosal invasive carcinoma tissues. Seven genes including CDK6 were identified to be common in the results of gene expression array and bioinformatics analyses performed to find the target gene of the miR-320 family. We confirmed that mRNA and protein levels of CDK6 were significantly suppressed in colon cancer cell lines with miR-320 family mimics. CDK6 expression was found to increase from non-neoplastic mucosa through adenoma to submucosal invasive carcinoma tissues and showed an inverse correlation with miR-320 family expression. CONCLUSION: MiR-320 family affects colorectal tumor proliferation by targeting CDK6, plays important role in its growth, and is considered to be a biomarker for its early detection. PMID:27559432
Lane, J.W.; Day-Lewis, F. D.; Harris, J.M.; Haeni, F.P.; Gorelick, S.M.
2000-01-01
Attenuation-difference, borehole-radar tomography was used to monitor a series of sodium chloride tracer injection tests conducted within the FSE, wellfield at the U.S. Geological Survey Fractured-Rock Hydrology Research Site in Grafton County, New Hampshire, USA. Borehole-radar tomography surveys were conducted using the sequential-scanning and injection method in three boreholes that form a triangular prism of adjoining tomographic image planes. Results indicate that time-lapse tomography methods provide high-resolution images of tracer distribution in permeable zones.
Phantom auditory sensation in rats: an animal model for tinnitus.
Jastreboff, P J; Brennan, J F; Coleman, J K; Sasaki, C T
1988-12-01
In order to measure tinnitus induced by sodium salicylate injections, 84 pigmented rats, distributed among 14 groups in five experiments, were used in a conditioned suppression paradigm. In Experiment 1, all groups were trained with a conditioned stimulus (CS) consisting of the offset of a continuous background noise. One group began salicylate injections before Pavlovian training, a second group started injections after training, and a control group received daily saline injections. Resistance to extinction was profound when injections started before training, but minimal when initiated after training, which suggests that salicylate-induced effects acquired differential conditioned value. In Experiment 2 we mimicked the salicylate treatments by substituting a 7 kHz tone in place of respective injections, resulting in effects equivalent to salicylate-induced behavior. In a third experiment we included a 3 kHz CS, and again replicated the salicylate findings. In Experiment 4 we decreased the motivational level, and the sequential relation between salicylate-induced effects and suppression training was retained. Finally, no salicylate effects emerged when the visual modality was used. These findings support the demonstration of phantom auditory sensations in animals.
Effects of neostriatal 6-OHDA lesion on performance in a rat sequential reaction time task.
Domenger, D; Schwarting, R K W
2008-10-31
Work in humans and monkeys has provided evidence that the basal ganglia, and the neurotransmitter dopamine therein, play an important role for sequential learning and performance. Compared to primates, experimental work in rodents is rather sparse, largely due to the fact that tasks comparable to the human ones, especially serial reaction time tasks (SRTT), had been lacking until recently. We have developed a rat model of the SRTT, which allows to study neural correlates of sequential performance and motor sequence execution. Here, we report the effects of dopaminergic neostriatal lesions, performed using bilateral 6-hydroxydopamine injections, on performance of well-trained rats tested in our SRTT. Sequential behavior was measured in two ways: for one, the effects of small violations of otherwise well trained sequences were examined as a measure of attention and automation. Secondly, sequential versus random performance was compared as a measure of sequential learning. Neurochemically, the lesions led to sub-total dopamine depletions in the neostriatum, which ranged around 60% in the lateral, and around 40% in the medial neostriatum. These lesions led to a general instrumental impairment in terms of reduced speed (response latencies) and response rate, and these deficits were correlated with the degree of striatal dopamine loss. Furthermore, the violation test indicated that the lesion group conducted less automated responses. The comparison of random versus sequential responding showed that the lesion group did not retain its superior sequential performance in terms of speed, whereas they did in terms of accuracy. Also, rats with lesions did not improve further in overall performance as compared to pre-lesion values, whereas controls did. These results support previous results that neostriatal dopamine is involved in instrumental behaviour in general. Also, these lesions are not sufficient to completely abolish sequential performance, at least when acquired before lesion as tested here.
Dessì, M; Alvarez-Perez, M A; De Santis, R; Ginebra, M P; Planell, J A; Ambrosio, L
2014-02-01
An alternative approach to bone repair for less invasive surgical techniques, involves the development of biomaterials directly injectable into the injury sites and able to replicate a spatially organized platform with features of bone tissue. Here, the preparation and characterization of an innovative injectable bone analogue made of calcium deficient hydroxyapatite and foamed gelatin is presented. The biopolymer features and the cement self-setting reaction were investigated by rheological analysis. The porous architecture, the evolution of surface morphology and the grains dimension were analyzed with electron microscopy (SEM/ESEM/TEM). The physico-chemical properties were characterized by X-ray diffraction and FTIR analysis. Moreover, an injection test was carried out to prove the positive effect of gelatin on the flow ensuing that cement is fully injectable. The cement mechanical properties are adequate to function as temporary substrate for bone tissue regeneration. Furthermore, MG63 cells and bone marrow-derived human mesenchymal stem cells (hMSCs) were able to migrate and proliferate inside the pores, and hMSCs differentiated to the osteoblastic phenotype. The results are paving the way for an injectable bone substitute with properties that mimic natural bone tissue allowing the successful use as bone filler for craniofacial and orthopedic reconstructions in regenerative medicine.
Kombian, Samuel B; Ananthalakshmi, Kethireddy V V; Zidichouski, Jeffrey A; Saleh, Tarek M
2012-02-01
Substance P (SP) and cocaine employ similar mechanisms to modify excitatory synaptic transmission in the nucleus accumbens (NAc), a region implicated in substance abuse. Here we explored, using NAc slices, whether SP effects on these synaptic responses were altered in rats that have been sensitized to cocaine and whether SP could mimic cocaine in triggering increased locomotion in sensitized rats. Intraperitoneal (IP) injection of naïve rats with cocaine (15 mg/kg) caused increased locomotion by 408.5 ± 85.9% (n = 5) which further increased by 733.1 ± 157.8% (n = 5) following a week of cocaine sensitization. A similar challenge with 10 mg/kg of SP after cocaine sensitization did not produce significant changes in locomotion (170.6 ± 61.0%; n = 4). In contrast to cocaine, IP injection of rats with SP or SP(5-11) (10-100 mg/kg) with or without phosphoramidon did not elicit changes in locomotion. In electrophysiological studies, both cocaine and SP depressed evoked NMDA and non-NMDA receptor-mediated excitatory synaptic currents (EPSCs) in slices obtained from naïve rats. In slices derived from cocaine-sensitized rats, cocaine but not SP produced a more profound decrease in non-NMDA compared to NMDA responses. Similar to that in naïve rats, cocaine's effect on the EPSCs in these sensitized rats occluded those of SP. Thus, although SP and cocaine may employ similar mechanisms to depress EPSCs in the NAc, IP injection of SP does not mimic cocaine-induced hyperlocomotion indicating that not all of cocaine's effects are mimicked by SP. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.
West, Andrea J.; Brown, Gregory P.; Fanson, Kerry V.; Addison, BriAnne; Rollins, Lee A.; Shine, Richard
2017-01-01
The cane toad (Rhinella marina) has undergone rapid evolution during its invasion of tropical Australia. Toads from invasion front populations (in Western Australia) have been reported to exhibit a stronger baseline phagocytic immune response than do conspecifics from range core populations (in Queensland). To explore this difference, we injected wild-caught toads from both areas with the experimental antigen lipopolysaccharide (LPS, to mimic bacterial infection) and measured whole-blood phagocytosis. Because the hypothalamic-pituitary-adrenal axis is stimulated by infection (and may influence immune responses), we measured glucocorticoid response through urinary corticosterone levels. Relative to injection of a control (phosphate-buffered saline), LPS injection increased both phagocytosis and the proportion of neutrophils in the blood. However, responses were similar in toads from both populations. This null result may reflect the ubiquity of bacterial risks across the toad’s invaded range; utilization of this immune pathway may not have altered during the process of invasion. LPS injection also induced a reduction in urinary corticosterone levels, perhaps as a result of chronic stress. PMID:29018604
Effect of nicergoline on cerebral blood flow
Iliff, L. D.; Boulay, G. H. Du; Marshall, John; Russell, R. W. Ross; Symon, Lindsay
1977-01-01
Cerebral blood flow (CBF) was measured before and after intravenous injection of the cerebral vasodilator nicergoline in 13 patients with cerebrovascular disease. CBF increased in seven. The possibility that the effect of the drug in the remainder may have been masked by a fall of CBF which occurs during sequential measurement of patients at rest is discussed. PMID:925694
Blanco, Gustavo A; Nai, Yi H; Hilder, Emily F; Shellie, Robert A; Dicinoski, Greg W; Haddad, Paul R; Breadmore, Michael C
2011-12-01
A simple sequential injection capillary electrophoresis (SI-CE) instrument with capacitively coupled contactless conductivity detection (C(4)D) has been developed for the rapid separation of anions relevant to the identification of inorganic improvised explosive devices (IEDs). Four of the most common explosive tracer ions, nitrate, perchlorate, chlorate, and azide, and the most common background ions, chloride, sulfate, thiocyanate, fluoride, phosphate, and carbonate, were chosen for investigation. Using a separation electrolyte comprising 50 mM tris(hydroxymethyl)aminomethane, 50 mM cyclohexyl-2-aminoethanesulfonic acid, pH 8.9 and 0.05% poly(ethyleneimine) (PEI) in a hexadimethrine bromide (HDMB)-coated capillary it was possible to partially separate all 10 ions within 90 s. The combination of two cationic polymer additives (PEI and HDMB) was necessary to achieve adequate selectivity with a sufficiently stable electroosmotic flow (EOF), which was not possible with only one polymer. Careful optimization of variables affecting the speed of separation and injection timing allowed a further reduction of separation time to 55 s while maintaining adequate efficiency and resolution. Software control makes high sample throughput possible (60 samples/h), with very high repeatability of migration times [0.63-2.07% relative standard deviation (RSD) for 240 injections]. The separation speed does not compromise sensitivity, with limits of detection ranging from 23 to 50 μg·L(-1) for all the explosive residues considered, which is 10× lower than those achieved by indirect absorbance detection and 2× lower than those achieved by C(4)D using portable benchtop instrumentation. The combination of automation, high sample throughput, high confidence of peak identification, and low limits of detection makes this methodology ideal for the rapid identification of inorganic IED residues.
Coupled Hydro-Mechanical Modeling of Fluid Geological Storage
NASA Astrophysics Data System (ADS)
Castelletto, N.; Garipov, T.; Tchelepi, H. A.
2013-12-01
The accurate modeling of the complex coupled physical processes occurring during the injection and the post-injection period is a key factor for assessing the safety and the feasibility of anthropogenic carbon dioxide (CO2) sequestration in subsurface formations. In recent years, it has become widely accepted the importance of the coupling between fluid flow and geomechanical response in constraining the sustainable pressure buildup caused by fluid injection relative to the caprock sealing capacity, induced seismicity effects and ground surface stability [e.g., Rutqvist, 2012; Castelletto et al., 2013]. Here, we present a modeling approach based on a suitable combination of Finite Volumes (FVs) and Finite Elements (FEs) to solve the coupled system of partial differential equations governing the multiphase flow in a deformable porous medium. Specifically, a FV method is used for the flow problem while the FE method is adopted to address the poro-elasto-plasticity equations. The aim of the present work is to compare the performance and the robustness of unconditionally stable sequential-implicit schemes [Kim et al., 2011] and the fully-implicit method in solving the algebraic systems arising from the discretization of the governing equations, for both normally conditioned and severely ill-conditioned problems. The two approaches are tested against well-known analytical solutions and experimented with in a realistic application of CO2 injection in a synthetic aquifer. References: - Castelletto N., G. Gambolati, and P. Teatini (2013), Geological CO2 sequestration in multi-compartment reservoirs: Geomechanical challenges, J. Geophys. Res. Solid Earth, 118, 2417-2428, doi:10.1002/jgrb.50180. - Kim J., H. A. Tchelepi, and R. Juanes (2011), Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, SPE J., 16(2), 249-262. - Rutqvist J. (2012), The geomechanics of CO2 storage in deep sedimentary formations, Geotech. Geol. Eng., 30, 525-551.
Müller-Deile, Janina; Dannenberg, Jan; Schroder, Patricia; Lin, Meei-Hua; Miner, Jeffrey H; Chen, Rongjun; Bräsen, Jan-Hinrich; Thum, Thomas; Nyström, Jenny; Staggs, Lynne Beverly; Haller, Hermann; Fiedler, Jan; Lorenzen, Johan M; Schiffer, Mario
2017-10-01
The pathophysiology of many proteinuric kidney diseases is poorly understood, and microRNAs (miRs) regulation of these diseases has been largely unexplored. Here, we tested whether miR-378a-3p is a novel regulator of glomerular diseases. MiR-378a-3p has two predicted targets relevant to glomerular function, the glomerular basement membrane matrix component, nephronectin (NPNT), and vascular endothelial growth factor VEGF-A. In zebrafish (Danio rerio), miR-378a-3p mimic injection or npnt knockdown by a morpholino oligomer caused an identical phenotype consisting of edema, proteinuria, podocyte effacement, and widening of the glomerular basement membrane in the lamina rara interna. Zebrafish vegf-A protein could not rescue this phenotype. However, mouse Npnt constructs containing a mutated 3'UTR region prevented the phenotype caused by miR-378a-3p mimic injection. Overexpression of miR-378a-3p in mice confirmed glomerular dysfunction in a mammalian model. Biopsies from patients with focal segmental glomerulosclerosis and membranous nephropathy had increased miR-378a-3p expression and reduced glomerular levels of NPNT. Thus, miR-378a-3p-mediated suppression of the glomerular matrix protein NPNT is a novel mechanism for proteinuria development in active glomerular diseases. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Li, Junjie; Cona, Marlein Miranda; Chen, Feng; Feng, Yuanbo; Zhou, Lin; Zhang, Guozhi; Nuyts, Johan; de Witte, Peter; Zhang, Jian; Yu, Jie; Oyen, Raymond; Verbruggen, Alfons; Ni, Yicheng
2013-01-01
Objectives: Based on the soil-to-seeds principle, we explored the small-molecular sequential dual-targeting theranostic strategy (SMSDTTS) for prolonged survival and imaging detectability in a xenograft tumor model. Materials and Methods: Thirty severe combined immunodeficiency (SCID) mice bearing bilateral radiation-induced fibrosarcoma-1 (RIF-1) subcutaneously were divided into group A of SMSDTTS with sequential intravenous injections of combretastatin A4 phosphate (CA4P) and 131I-iodohypericin (131I-Hyp) at a 24 h interval; group B of single targeting control with CA4P and vehicle of 131I-Hyp; and group C of vehicle control (10 mice per group). Tumoricidal events were monitored by in vivo magnetic resonance imaging (MRI) and planar gamma scintiscan, and validated by ex vivo autoradiography and histopathology. Besides, 9 mice received sequential intravenous injections of CA4P and 131I-Hyp were subjected to biodistribution analysis at 24, 72 and 120 h. Results: Gamma counting revealed fast clearance of 131I-Hyp from normal organs but intense accumulation in necrotic tumor over 120 h. After only one treatment, significantly prolonged survival (p<0.001) was found in group A compared to group B and C with median survival of 33, 22, and 21 days respectively. Tumor volume on day 15 was 2.0 ± 0.89, 5.66 ± 1.66, and 5.02 ± 1.0 cm3 with tumor doubling time 7.8 ± 2.8, 4.4 ± 0.67, and 4.5 ± 0.5 days respectively. SMSDTTS treated tumors were visualized as hot spots on gamma scintiscans, and necrosis over tumor ratio remained consistently high on MRI, autoradiography and histology. Conclusion: The synergistic antitumor effects, multifocal targetability, simultaneous theranostic property, and good tolerance of the SMSDTTS were evident in this experiment, which warrants further development for preclinical and clinical applications. PMID:23423247
NASA Astrophysics Data System (ADS)
Murakami, H.; Chen, X.; Hahn, M. S.; Over, M. W.; Rockhold, M. L.; Vermeul, V.; Hammond, G. E.; Zachara, J. M.; Rubin, Y.
2010-12-01
Subsurface characterization for predicting groundwater flow and contaminant transport requires us to integrate large and diverse datasets in a consistent manner, and quantify the associated uncertainty. In this study, we sequentially assimilated multiple types of datasets for characterizing a three-dimensional heterogeneous hydraulic conductivity field at the Hanford 300 Area. The datasets included constant-rate injection tests, electromagnetic borehole flowmeter tests, lithology profile and tracer tests. We used the method of anchored distributions (MAD), which is a modular-structured Bayesian geostatistical inversion method. MAD has two major advantages over the other inversion methods. First, it can directly infer a joint distribution of parameters, which can be used as an input in stochastic simulations for prediction. In MAD, in addition to typical geostatistical structural parameters, the parameter vector includes multiple point values of the heterogeneous field, called anchors, which capture local trends and reduce uncertainty in the prediction. Second, MAD allows us to integrate the datasets sequentially in a Bayesian framework such that it updates the posterior distribution, as a new dataset is included. The sequential assimilation can decrease computational burden significantly. We applied MAD to assimilate different combinations of the datasets, and then compared the inversion results. For the injection and tracer test assimilation, we calculated temporal moments of pressure build-up and breakthrough curves, respectively, to reduce the data dimension. A massive parallel flow and transport code PFLOTRAN is used for simulating the tracer test. For comparison, we used different metrics based on the breakthrough curves not used in the inversion, such as mean arrival time, peak concentration and early arrival time. This comparison intends to yield the combined data worth, i.e. which combination of the datasets is the most effective for a certain metric, which will be useful for guiding the further characterization effort at the site and also the future characterization projects at the other sites.
Deltoid Injections of Risperidone Long-acting Injectable in Patients with Schizophrenia
Quiroz, Jorge A.; Rusch, Sarah; Thyssen, An; Kushner, Stuart
2011-01-01
Background Risperidone long-acting injectable was previously approved for treatment of schizophrenia as biweekly injections in the gluteal muscle only. We present data on local injection-site tolerability and safety of risperidone long-acting injectable and comparability of systemic exposure of deltoid versus gluteal injections. Methods Risperidone long-acting injectable was administered in an open-label, single-dose, two-way crossover study, with patients randomized to receive either 25mg gluteal/37.5mg deltoid crossover in two treatment periods or 50mg gluteal/50mg deltoid injections crossover; each treatment period was separated by an 85-day observation period (Study 1) and an open-label, multiple-dose study (4 sequential 37.5mg or 50mg deltoid injections every 2 weeks) (Study 2). The pharmacokinetic results from both the studies have already been published. Results In Study 1 (n=170), the majority of patients had no local injection-site findings, based on investigator and patient-rated evaluations. In Study 2 (n=53), seven of the 51 patients who received at least two deltoid injections discontinued (primary endpoint). However, none of the discontinuations were due to injection-site related reasons. The 90-percent upper confidence limit of the true proportion of injection-site issue withdrawals was 5.7 percent. No moderate or severe injection-site reactions were reported. Conclusion Intramuscular injections via the deltoid and gluteal sites are equivalent routes of administration of risperidone long-acting injectable with respect to local injection-site tolerability. The overall safety and tolerability profile of risperidone long-acting injectable was comparable when administered as an intramuscular injection in the deltoid (37.5mg and 50mg) and gluteal (25mg and 50mg) sites. PMID:21779538
Ishigooka, Jun; Noda, Takamasa; Nishiyama, Kosuke; Tamaru, Noriko; Shima, Tomoko; Yamasaki, Yumiko; Tadori, Yoshihiro
2016-06-01
Aripiprazole once-monthly (AOM) was previously approved for treatment of schizophrenia as monthly injections in the gluteal muscle. The deltoid muscle provides a more accessible injection site. The present study was conducted in Japanese schizophrenia patients as a 24-week, open-label trial that assessed the pharmacokinetics and safety of 5 sequential doses of AOM 400 mg (AOM 400) once every 4 weeks administered in the deltoid muscle. Patients treated with an oral atypical antipsychotic (other than aripiprazole) continued to receive their pre-study medication up to 14 days after the first AOM 400 injection. The completion rate was 76.5% (n = 13/17). Mean aripiprazole plasma C(min) almost reached steady-state by the fourth AOM 400 injection. After the fifth AOM 400 injection, mean aripiprazole AUC(28d), C(max) and C(min) were 165 μg x h/ml, 331 ng/ml and 201 ng/ml, respectively, which were similar to previously published pharmacokinetic parameters after the fifth gluteal injection of AOM 400. The most common treatment-emergent adverse event (TEAE) was injection site pain (35.3%). Most TEAEs were classified as mild in intensity. In conclusion, the deltoid injection of AOM can be considered an alternative route of administration, as deltoid and gluteal injections are interchangeable in terms of aripiprazole plasma concentrations, with no additional safety issues.
Chocholouš, Petr; Kosařová, Lucie; Satínský, Dalibor; Sklenářová, Hana; Solich, Petr
2011-08-15
In the Sequential Injection Chromatography (SIC) only monolithic columns for chromatographic separations have been used so far. This article presents the first use of fused-core particle packed column in an attempt to extend of the chromatographic capabilities of the SIC system. A new fused-core particle column (2.7 μm) Ascentis(®) Express C18 (Supelco™ Analytical) 30 mm × 4.6 mm brings high separation efficiency within flow rates and pressures comparable to monolithic column Chromolith(®) Performance RP-18e 100-3 (Merck(®)) 100 mm × 3 mm. Both columns matches the conditions of the commercially produced SIC system - SIChrom™ (8-port high-pressure selection valve and medium-pressure Sapphire™ syringe pump with 4 mL reservoir - maximal work pressure 1000 PSI) (FIAlab(®), USA). The system was tested by the separation of four estrogens with similar structure and an internal standard - ethylparaben. The mobile phase composed of acetonitrile/water (40/60 (v/v)) was pumped isocratic at flow rate 0.48 mL min(-1). Spectrophotometric detection was performed at wavelength of 225 nm and injected volume of sample solutions was 10 μL. The chromatographic characteristics of both columns were compared. Obtained results and conclusions have shown that both fused-core particle column and longer narrow shaped monolithic column bring benefits into the SIC method. Copyright © 2011 Elsevier B.V. All rights reserved.
Dowers, Kristy L; Uhrig, Samantha R; Mama, Khursheed R; Gaynor, James S; Hellyer, Peter W
2006-10-01
To evaluate effects of injection with a nonsteroidal anti-inflammatory drug (NSAID) followed by oral administration of an NSAID on the gastrointestinal tract (GIT) of healthy dogs. 6 healthy Walker Hounds. In a randomized, crossover design, dogs were administered 4 treatments consisting of an SC injection of an NSAID or control solution (day 0), followed by oral administration of an NSAID or inert substance for 4 days (days 1 through 4). Treatment regimens included carprofen (4 mg/kg) followed by inert substance; saline (0.9% NaCl) solution followed by deracoxib (4 mg/kg); carprofen (4 mg/kg) followed by carprofen (4 mg/kg); and carprofen (4 mg/kg) followed by deracoxib (4 mg/kg). Hematologic, serum biochemical, and fecal evaluations were conducted weekly, and clinical scores were obtained daily. Endoscopy of the GIT was performed before and on days 1, 2, and 5 for each treatment. Lesions were scored by use of a 6-point scale. No significant differences existed for clinical data, clinicopathologic data, or lesion scores in the esophagus, cardia, or duodenum. For the gastric fundus, antrum, and lesser curvature, an effect of time was observed for all treatments, with lesions worsening from before to day 2 of treatments but improving by day 5. Sequential administration of NSAIDs in this experiment did not result in clinically important gastroduodenal ulcers. A larger study to investigate the effect of sequential administration of NSAIDs for longer durations and in dogs with signs of acute and chronic pain is essential to substantiate these findings.
Alibolandi, Mona; Abnous, Khalil; Mohammadi, Marzieh; Hadizadeh, Farzin; Sadeghi, Fatemeh; Taghavi, Sahar; Jaafari, Mahmoud Reza; Ramezani, Mohammad
2017-10-28
Due to the severe cardiotoxicity of doxorubicin, its usage is limited. This shortcoming could be overcome by modifying pharmacokinetics of the drugs via preparation of various nanoplatforms. Doxil, a well-known FDA-approved nanoplatform of doxorubicin as antineoplastic agent, is frequently used in clinics in order to reduce cardiotoxicity of doxorubicin. Since Doxil shows some shortcomings in clinics including hand and food syndrome and very slow release pattern thus, there is a demand for the development and preparation of new doxorubicin nanoformulation with fewer side effects. The new formulation of the doxorubicin, synthesized previously by our group was extensively examined in the current study. This new formulation is doxorubicin encapsulated in PEG-PLGA polymersomes (PolyDOX). The main aim of the study was to compare the distribution and treatment efficacy of a new doxorubicin-polymersomal formulation (PolyDOX) with regular liposomal formulation (Doxil-mimic) in murine colon adenocarcinoma model. Additionally, the pathological, hematological changes, pharmacodynamics, biodistribution, tolerated dose and survival rate in vivo were evaluated and compared. Murine colon cancer model was induced by subcutaneous inoculation of BALB/c mice with C26 cells. Afterwards, either Doxil-mimic or PolyDOX was administered intravenously. The obtained results from biodistribution study showed a remarkable difference in the distribution of drugs in murine organs. In this regard, Doxil-mimic exhibited prolonged (48h) presence within liver tissues while PolyDOX preferentially accumulate in tumor and the presence in liver 48h post-treatment was significantly lower than that of Doxil-mimic. Obtained results demonstrated comparable final length of life for mice receiving either Doxil-mimic or PolyDOX formulations whereas tolerated dose of mice receiving Doxil-mimic was remarkably higher than those receiving PolyDOX. Therapeutic efficacy of formulation in term of tumor growth rate after one injection of formulations (5mg/kg, 10mg/kg or 15mg/kg) demonstrated better efficacy at lower dose for PolyDOX. Analysis of Kaplan Meier curve was in favor of both formulations in their treatment-dose. Pathological and hematological surveys of mice treated with both formulations did not show considerable difference except for a small atrophy in liver observed after successive administration of Doxil-mimic. It could be concluded that PolyDOX can potentially limit off-site effects of Doxil due to its biodegradability and sustained release properties while it exhibited favorable safety profile comparable to Doxil. Copyright © 2017 Elsevier B.V. All rights reserved.
Parallel discrete event simulation: A shared memory approach
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.
1987-01-01
With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models.
Soft, Rotating Pneumatic Actuator.
Ainla, Alar; Verma, Mohit S; Yang, Dian; Whitesides, George M
2017-09-01
This article describes a soft pneumatic actuator that generates cyclical motion. The actuator consists of several (three, four, or five) chambers (arranged around the circumference of a circle surrounding a central rod) that can be actuated independently using negative pressure (or partial vacuum). Sequential actuation of the four-chamber device using reduced pressure moves the central rod cyclically in an approximately square path. We characterize the trajectory of the actuator and the force exerted by it, as we vary the material used for fabrication, the number of chambers, and the size of the actuator. We demonstrate two applications of this actuator: to deliver fluid while stirring (by replacing the central rod with a needle) and for locomotion that mimics a reptilian gait (by combining four actuators together).
Brain serotonin content - Increase following ingestion of carbohydrate diet.
NASA Technical Reports Server (NTRS)
Fernstrom, J. D.; Wurtman, R. J.
1971-01-01
In the rat, the injection of insulin or the consumption of carbohydrate causes sequential increases in the concentrations of tryptophan in the plasma and the brain and of serotonin in the brain. Serotonin-containing neurons may thus participate in systems whereby the rat brain integrates information about the metabolic state in its relation to control of homeostasis and behavior.
Jickling, Glen C; Ander, Bradley P; Hull, Heather; Zhan, Xinhua; Cox, Christopher; Shroff, Natasha; Dykstra-Aiello, Cheryl; Stamova, Boryana; Sharp, Frank R
2015-01-01
Because our recent studies have demonstrated that miR-122 decreased in whole blood of patients and in whole blood of rats following ischemic stroke, we tested whether elevating blood miR-122 would improve stroke outcomes in rats. Young adult rats were subjected to a temporary middle cerebral artery occlusion (MCAO) or sham operation. A polyethylene glycol-liposome-based transfection system was used to administer a miR-122 mimic after MCAO. Neurological deficits, brain infarction, brain vessel integrity, adhesion molecule expression and expression of miR-122 target and indirect-target genes were examined in blood at 24 h after MCAO with or without miR-122 treatment. miR-122 decreased in blood after MCAO, whereas miR-122 mimic elevated miR-122 in blood 24 h after MCAO. Intravenous but not intracerebroventricular injection of miR-122 mimic decreased neurological deficits and brain infarction, attenuated ICAM-1 expression, and maintained vessel integrity after MCAO. The miR-122 mimic also down-regulated direct target genes (e.g. Vcam1, Nos2, Pla2g2a) and indirect target genes (e.g. Alox5, Itga2b, Timp3, Il1b, Il2, Mmp8) in blood after MCAO which are predicted to affect cell adhesion, diapedesis, leukocyte extravasation, eicosanoid and atherosclerosis signaling. The data show that elevating miR-122 improves stroke outcomes and we postulate this occurs via downregulating miR-122 target genes in blood leukocytes. PMID:26661204
Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G
2012-08-01
A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr(4)(-) complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 μg L(-1) and a precision (RSD) of 2.7% at 20.0 μg L(-1) Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications.
Muik, Barbara; Edelmann, Andrea; Lendl, Bernhard; Ayora-Cañada, María José
2002-09-01
An automated method for measuring the primary amino acid concentration in wine fermentations by sequential injection analysis with spectrophotometric detection was developed. Isoindole-derivatives from the primary amino acid were formed by reaction with o-phthaldialdehyde and N-acetyl- L-cysteine and measured at 334 nm with respect to a baseline point at 700 nm to compensate the observed Schlieren effect. As the reaction kinetic was strongly matrix dependent the analytical readout at the final reaction equilibrium has been evaluated. Therefore four parallel reaction coils were included in the flow system to be capable of processing four samples simultaneously. Using isoleucine as the representative primary amino acid in wine fermentations a linear calibration curve from 2 to 10 mM isoleucine, corresponding to 28 to 140 mg nitrogen/L (N/L) was obtained. The coefficient of variation of the method was 1.5% at a throughput of 12 samples per hour. The developed method was successfully used to monitor two wine fermentations during alcoholic fermentation. The results were in agreement with an external reference method based on high performance liquid chromatography. A mean-t-test showed no significant differences between the two methods at a confidence level of 95%.
Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.
Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate
2002-12-06
Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.
Santos, Inês C; Mesquita, Raquel B R; Bordalo, Adriano A; Rangel, António O S S
2015-02-01
The present work describes the development of a sequential injection standard addition method for iodine speciation in bathing waters and seaweeds extracts without prior sample treatment. Iodine speciation was obtained by assessing the iodide and iodate content, the two inorganic forms of iodine in waters. For the determination of iodide, an iodide ion selective electrode (ISE) was used. The indirect determination of iodate was based on the spectrophotometric determination of nitrite (Griess reaction). For the iodate measurement, a mixing chamber was employed (flow batch approach) to explore the inherent efficient mixing, essential for the indirect determination of iodate. The application of the standard addition method enabled detection limits of 0.14 µM for iodide and 0.02 µM for iodate, together with the direct introduction of the target water samples, coastal and inland bathing waters. The results obtained were in agreement with those obtained by ICP-MS and a colorimetric reference procedure. Recovery tests also confirmed the accuracy of the developed method which was effectively applied to bathing waters and seaweed extracts. Copyright © 2014 Elsevier B.V. All rights reserved.
Marker retention in the cochlea following injections through the round window membrane
Salt, Alec N.; Sirjani, Davud B.; Hartsock, Jared J.; Gill, Ruth M.; Plontke, Stefan K.
2007-01-01
Local delivery of drugs to the inner ear is increasingly being used in both clinical and experimental studies. Although direct injection of drugs into perilymph appears to be the most promising way of administering drugs quantitatively, no studies have yet demonstrated the pharmacokinetics in perilymph following direct injections. In this study, we have investigated the retention of substance in perilymph following a single injection into the basal turn of scala tympani (ST). The substance injected was a marker, trimethylphenylammonium (TMPA) that can be detected in low concentrations with ion-selective microelectrodes. Perilymph pharmacokinetics of TMPA was assessed using sequential apical sampling to obtain perilymph for analysis. The amount of TMPA retained in perilymph was compared for different injection and sampling protocols. TMPA concentrations measured in fluid samples were close to those predicted by simulations when the injection pipette was sealed into the bony wall of ST but were systematically lower when the injection pipette was inserted through the round window membrane (RWM). In the latter condition it was estimated that over 60% of the injected TMPA was lost due to leakage of perilymph around the injection pipette at a rate estimated to be 0.09 μL/min. The effects of leakage during and after injections through the RWM were dramatically reduced when the round window niche was filled with 1% sodium hyaluronate gel before penetrating the RWM with the injection pipette. The findings demonstrate that in order to perform quantitative drug injections into perilymph, even small rates of fluid leakage at the injection site must be controlled. PMID:17662546
Thoracopulmonary actinomycosis: the masquerader.
Prabhu, S; Sripathi, H; Rao, R; Hameed, S
2008-05-01
Thoracopulmonary actinomycosis can mimic various lung pathologies such as bronchogenic carcinoma, tuberculosis and fungal pneumonia, to name but a few. The common causative agent is Actinomyces israelii. The disease is successfully diagnosed only if there is a high index of suspicion and a thorough evaluation with multidisciplinary involvement. We present a case of thoracopulmonary actinomycosis in a young immunocompetent man who did not have any predisposing illness, and who was treated initially for pulmonary tuberculosis. He showed good response to injection crystalline penicillin, which was later changed to oral amoxicillin.
Combined treatment in punctate inner choroidopathy
Terelak-Borys, Barbara; Zagajewska, Katarzyna; Jankowska-Lech, Irmina; Tesla, Piotr; Grabska-Liberek, Iwona
2016-01-01
Purpose The purpose of this study was to describe a combination treatment for choroidal neovascular (CNV) membrane, secondary to punctate inner choroidopathy (PIC). Patient and methods A 44-year-old female patient was diagnosed with PIC complicated by the development of recurrent juxtafoveal neovascular membrane. The treatment included a sequence of monotherapy regimens: systemic steroid therapy, photodynamic therapy, and intravitreal injections of vascular endothelial growth factor (VEGF) inhibitor (anti-VEGF). Owing to the CNV membrane resistance to various types of monotherapy, a combination treatment consisting of local injections of steroid underneath the Tenon’s capsule and intravitreal anti-VEGF injections was used. Results Systemic steroid therapy resulted in rapid local improvement with a very short remission period. No positive effects of photodynamic therapy were observed. Sequential anti-VEGF injections led to remission periods of several months. Permanent regression of CNV membrane was achieved following combined local application of steroid and intravitreal anti-VEGF injections. Conclusion A combination treatment including steroid and anti-VEGF medication characterized by anti-inflammatory and antiangiogenic effects may be a very beneficial option for the treatment of recurrent CNV membrane as a complication of PIC. PMID:27729795
Issues surrounding lethal injection as a means of capital punishment.
Romanelli, Frank; Whisman, Tyler; Fink, Joseph L
2008-12-01
Lethal injection as a method of state-sanctioned capital punishment was initially proposed in the United States in 1977 and used for the first time in 1982. Most lethal injection protocols use a sequential drug combination of sodium thiopental, pancuronium bromide, and potassium chloride. Lethal injection was originally introduced as a more humane form of execution compared with existing mechanical methods such as electrocution, toxic gassing, hanging, or firing squad. Lethal injection has not, however, been without controversy. Several states are considering whether lethal injection meets constitutional scrutiny forbidding cruel and unusual punishment. Recently in the case of Ralph Baze and Thomas C. Bowling, Petitioners, v John D. Rees, Commissioner, Kentucky Department of Corrections et al, the United States Supreme Court upheld the constitutionality of the lethal injection protocol as carried out in the Commonwealth of Kentucky. Most of the debate has surrounded the dosing and procedures used in lethal injection and whether the drug combinations and measures for administering the drugs truly produce a timely, pain-free, and fail-safe death. Many have also raised issues regarding the "medicalization" of execution and the ethics of health care professionals' participation in any part of the lethal injection process. As a result of all these issues, the future of lethal injection as a means of execution in the United States is under significant scrutiny. Outcomes of ongoing legislative and judicial reviews might result in cessation of lethal injection in totality or in alterations involving specific drug combinations or administration procedures.
Massengill, L W; Mundie, D B
1992-01-01
A neural network IC based on a dynamic charge injection is described. The hardware design is space and power efficient, and achieves massive parallelism of analog inner products via charge-based multipliers and spatially distributed summing buses. Basic synaptic cells are constructed of exponential pulse-decay modulation (EPDM) dynamic injection multipliers operating sequentially on propagating signal vectors and locally stored analog weights. Individually adjustable gain controls on each neutron reduce the effects of limited weight dynamic range. A hardware simulator/trainer has been developed which incorporates the physical (nonideal) characteristics of actual circuit components into the training process, thus absorbing nonlinearities and parametric deviations into the macroscopic performance of the network. Results show that charge-based techniques may achieve a high degree of neural density and throughput using standard CMOS processes.
Injectable Hydrogels for Spinal Cord Repair: A Focus on Swelling and Intraspinal Pressure.
Khaing, Zin Z; Ehsanipour, Arshia; Hofstetter, Christoph P; Seidlits, Stephanie K
Spinal cord injury (SCI) is a devastating condition that leaves patients with limited motor and sensory function at and below the injury site, with little to no hope of a meaningful recovery. Because of their ability to mimic multiple features of central nervous system (CNS) tissues, injectable hydrogels are being developed that can participate as therapeutic agents in reducing secondary injury and in the regeneration of spinal cord tissue. Injectable biomaterials can provide a supportive substrate for tissue regeneration, deliver therapeutic factors, and regulate local tissue physiology. Recent reports of increasing intraspinal pressure after SCI suggest that this physiological change can contribute to injury expansion, also known as secondary injury. Hydrogels contain high water content similar to native tissue, and many hydrogels absorb water and swell after formation. In the case of injectable hydrogels for the spinal cord, this process often occurs in or around the spinal cord tissue, and thus may affect intraspinal pressure. In the future, predictable swelling properties of hydrogels may be leveraged to control intraspinal pressure after injury. Here, we review the physiology of SCI, with special attention to the current clinical and experimental literature, underscoring the importance of controlling intraspinal pressure after SCI. We then discuss how hydrogel fabrication, injection, and swelling can impact intraspinal pressure in the context of developing injectable biomaterials for SCI treatment. © 2016 S. Karger AG, Basel.
A new rat model of portal hypertension induced by intraportal injection of microspheres
Li, Xiang-Nong; Benjamin, IS; Alexander, B
1998-01-01
AIM: To produce a new rat model of portal hypertension by intraportal injection of microspheres. METHODS: Measured aliquots of single or different-sized microspheres (15, 40, 80μm) were injected into the portal vein to block intrahepatic portal radicals. The resultant changes in arterial,portal,hepatic venous and splenic pulp pressures were monitored. The liver and lungs were excised for histological examination. RESULTS: Portal venous pressure was elevated from basal value of 0.89-1.02 kPa to a steady-state of 1.98-3.19 kPa following the sequential injections of single- or different-sized microspheres, with a markedly lowered mean arterial pressure. However, a small-dose injection of 80 μm microspheres (1.8 × 105) produced a steady-state portal venous pressure of 2.53 × 0.17 kPa, and all rats showed normal arterial pressures. In addition, numerous microspheres were found in the lungs in all experimental groups. CONCLUSION: Portal hypertension can be reproduced in rats by intraportal injection of microspheres at a small dose of 80 μm (1.8 × 105). Intrahepatic portal-systemic shunts probably exist in the normal rat liver. PMID:11819236
Single well tracer method to evaluate enhanced recovery
Sheely, Jr., Clyde Q.; Baldwin, Jr., David E.
1978-01-01
Data useful to evaluate the effectiveness of or to design an enhanced recovery process (the recovery process involving mobilizing and moving hydrocarbons through a hydrocarbon-bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well) are obtained by a process which comprises sequentially: determining hydrocarbon saturation in the formation in a volume in the formation near a well bore penetrating the formation, injecting sufficient of the mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore penetrating the formation, and determining by the single well tracer method a hydrocarbon saturation profile in a volume from which hydrocarbons are moved. The single well tracer method employed is disclosed by U.S. Pat. No. 3,623,842. The process is useful to evaluate surfactant floods, water floods, polymer floods, CO.sub.2 floods, caustic floods, micellar floods, and the like in the reservoir in much less time at greatly reduced costs, compared to conventional multi-well pilot test.
Cholecystokinin actions in the parabrachial nucleus: effects on thirst and salt appetite
NASA Technical Reports Server (NTRS)
Menani, J. V.; Johnson, A. K.
1998-01-01
The present study investigated the effects of bilateral injections of the nonselective CCK receptor antagonist proglumide or CCK-8 into the lateral parabrachial nuclei (LPBN) on the ingestion of 0.3 M NaCl and water induced by intracerebroventricular injection of ANG II or by a combined treatment with subcutaneous furosemide (Furo) + captopril (Cap). Compared with the injection of saline (vehicle), bilateral LPBN injections of proglumide (50 micrograms . 200 nl-1 . site-1) increased the intake of 0.3 M NaCl induced by intracerebroventricular ANG II (50 ng/1 microliter). Bilateral injections of proglumide into the LPBN also increased ANG II-induced water intake when NaCl was simultaneously available, but not when only water was present. Similarly, the ingestion of 0.3 M NaCl and water induced by the treatment with Furo (10 mg/kg) + Cap (5 mg/kg) was increased by bilateral LPBN proglumide pretreatment. Bilateral CCK-8 (0.5 microgram . 200 nl-1 . site-1) injections into the LPBN did not change Furo + Cap-induced 0.3 M NaCl intake but reduced water consumption. When only water was available after intracerebroventricular ANG II, bilateral LPBN injections of proglumide or CCK-8 had no effect or significantly reduced water intake compared with LPBN vehicle-treated rats. Taken together, these results suggest that CCK actions in the LPBN play a modulatory role on the control of NaCl and water intake induced by experimental treatments that induce hypovolemia and/or hypotension or that mimic those states.
2012-01-01
Background Atlantic cod (Gadus morhua) reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days) impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC). Results The temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI), respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%), including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC. Conclusions The temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen’s transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with pIC at 10°C vs. 16°C at 6HPI. These results substantially increase our understanding of the genes and molecular pathways involved in the negative impacts of elevated ambient temperature on fish health, and may also be valuable to our understanding of how accelerated global climate change could impact cold-water marine finfish species. PMID:22928584
Hori, Tiago S; Gamperl, A Kurt; Booman, Marije; Nash, Gordon W; Rise, Matthew L
2012-08-28
Atlantic cod (Gadus morhua) reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days) impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC). The temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI), respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%), including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC. The temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen's transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with pIC at 10°C vs. 16°C at 6HPI. These results substantially increase our understanding of the genes and molecular pathways involved in the negative impacts of elevated ambient temperature on fish health, and may also be valuable to our understanding of how accelerated global climate change could impact cold-water marine finfish species.
Ceschin, Ianae I; Ribas, Mariana H; Ceschin, Alvaro P; Nishikawa, Lucileine; Rocha, Claudia C; Pic-Taylor, Aline; Baroneza, José Eduardo
2016-03-01
To check the efficacy of two types of commercially available embryo culture medium: G1-PLUS™/G2-PLUS™ sequential (Vitrolife, Gothenburg, Sweden) and GV BLAST™ sole (Ingamed, Maringá, Brazil) with regards to fertilization, cleavage, blastocyst and pregnancy rates. Prospective and randomized study conducted from March to July 2015, using the medical records of 60 patients submitted to Intracytoplasmic Sperm Injection techniques (ICSI). Data regarding the age of patients, together with fertilization, cleavage, blastocyst and pregnancy rates, were collected and compared in relation to the: G1-PLUS™/G2-PLUS™ sequential and GV BLAST™ sole mediums. The data were tabulated and compared using the Pearson's Chi-Square test (95% CI). There was no significant difference when comparing patients divided into higher and lower fertility age. No significant statistical difference was noted between the fertilization rates (P=0.59), cleavage (P=0.91), evolution to blastocyst (P=0.33) and total pregnancy (P=0.83) when comparing the embryos cultured in the different media analysed. We conclude that the G1-PLUS™/G2-PLUS™ sequential and GV BLAST™ sole mediums are equally effective with regards to fertilization, cleavage, blastocyst development and total pregnancy rates.
A novel sequential process for remediating rare-earth wastewater.
Cui, Mingcan; Jang, Min; Kang, Kyounglim; Kim, Dukmin; Snyder, Shane A; Khim, Jeehyeong
2016-02-01
A novel and economic sequential process consisting of precipitation, adsorption, and oxidation was developed to remediate actual rare-earth (RE) wastewater containing various toxic pollutants, including radioactive species. In the precipitation step, porous air stones (PAS) containing waste oyster shell (WOS), PASWOS, was prepared and used to precipitate most heavy metals with >97% removal efficiencies. The SEM-EDS analysis revealed that PAS plays a key role in preventing the surface coating of precipitants on the surface of WOS and in releasing the dissolved species of WOS successively. For the adsorption step, a polyurethane (PU) impregnated by coal mine drainage sludge (CMDS), PUCMDS, was synthesized and applied to deplete fluoride (F), arsenic (As), uranium (U), and thorium (Th) that remained after precipitation. The continuous-mode sequential process using PAS(WOS), PU(CMDS), and ozone (O3) had 99.9-100% removal efficiencies of heavy metals, 99.3-99.9% of F and As, 95.8-99.4% of U and Th, and 92.4% of COD(Cr) for 100 days. The sequential process can treat RE wastewater economically and effectively without stirred-tank reactors, pH controller, continuous injection of chemicals, and significant sludge generation, as well as the quality of the outlet met the EPA recommended limits. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lakshmi, Chembolli; Srinivas, Chakravarthi Rangachari
2014-01-01
Lepromatous leprosy is associated with suppressed cell-mediated immunity (CMI). This results in failure of the body to mount an efficient immune response and may render chemotherapy ineffective. The lack of sufficient response may mimic drug resistance. Three case reports in which the immunity was stimulated by administering Injection BCG are presented. All three patients were initially anergic and showed no reaction at the Mantoux testing site, showing an inability to mount type IV hypersensitivity and characterized by live bacilli in smears. Following 1-4 doses of Injection BCG, all three showed dead bacilli in smears. The first case, a 61-year-old man with lepromatous leprosy who continued to show live bacilli in smears after prolonged chemotherapy, was administered a total of four BCG injections, following which he achieved clearance. The second, a 40-year-old man with borderline lepromatous leprosy and severe type 2 reactions, achieved bacterial clearance and control of severe reactions following a single injection. The third, a 67-year-old man with histoid leprosy, achieved effective bacterial killing with a single dose of Injection BCG. All three patients achieved good results when chemotherapy was combined with Injection BCG. Following Injection BCG, all three showed a reaction at the Mantoux testing site. Suppressed CMI may be responsible for the lack of response in recalcitrant cases of lepromatous leprosy. These case reports would lead to the trend in combination therapy (immunotherapy combined with chemotherapy) for such cases, and help lower the tendency for inappropriate diagnosis of drug-resistant leprosy. © 2013 The International Society of Dermatology.
Marais, M; Gugushe, N; Maloney, S K; Gray, D A
2011-06-01
Poultry, like mammals and other birds, develop fever when exposed to compounds from gram-negative bacteria. Mammals also develop fever when exposed to the constituents of viruses or gram-positive bacteria, and the fevers stimulated by these different pathogenic classes have discrete characteristics. It is not known whether birds develop fever when infected by viruses or gram-positive bacteria. Therefore, we injected Pekin ducks with muramyl dipeptide, the cell walls of heat-killed Staphylococcus aureus, or the viral mimic polyinosinic:polycytidylic acid and monitored their body temperature (T(b)). For comparative purposes we also injected a group of ducks with lipopolysaccharide, the only known pyrogen in birds. We then compared the T(b) invoked by each injection with the T(b) after an injection of saline. Muramyl dipeptide did not affect T(b). The cell walls of heat-killed S. aureus invoked long-lasting, dose-dependent fevers with relatively low magnitudes. Polyinosinic:polycytidylic acid invoked dose-dependent fevers with high febrile peaks. Fever is a well-known clinical sign of infection in mammals, and the results of this study indicate that the pattern of increase in T(b) could serve as an indicator for diverse pathogenic diseases in birds.
Jaikumar, Dhanya; Sajesh, K M; Soumya, S; Nimal, T R; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R
2015-03-01
Injectable, biodegradable scaffolds are required for soft tissue reconstruction owing to its minimally invasive approach. Such a scaffold can mimic the native extracellular matrix (ECM), provide uniform distribution of cells and overcome limitations like donor site morbidity, volume loss, etc. So, here we report two classes of biocompatible and biodegradable hydrogel blend systems namely, Alginate/O-carboxymethyl chitosan (O-CMC) and Alginate/poly (vinyl alcohol) (PVA) with the inclusion of fibrin nanoparticles in each. The hydrogels were prepared by ionic cross-linking method. The developed hydrogels were compared in terms of its swelling ratio, degradation profile, compressive strength and elastic moduli. From these preliminary findings, it was concluded that Alginate/O-CMC formed a better blend for tissue engineering applications. The potential of the formed hydrogel as an injectable scaffold was revealed by the survival of adipose derived stem cells (ADSCs) on the scaffold by its adhesion, proliferation and differentiation into adipocytes. Cell differentiation studies of fibrin incorporated hydrogel scaffolds showed better differentiation was confirmed by Oil Red O staining technique. These injectable gels have potential in soft tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.
Shattered Pellet Injection Simulations With NIMROD
NASA Astrophysics Data System (ADS)
Kim, Charlson; Parks, Paul; Lao, Lang; Lehnan, Michael; Loarte, Alberto; Izzo, Valerie; Nimrod Team
2017-10-01
Shattered Pellet Injection (SPI) will be the Disruption Mitigation System in ITER. SPI propels a cryo-pellet of high-Z and deuterium into a sharp bend of the flight tube, shattering the pellet into a plume of shards. These shards are injected into the plasma to quench it and mitigate forces and heat loads that may damage in-vessel components. We use NIMROD to perform 3-D nonlinear MHD simulations of SPI to study the thermal quench. This work builds upon prior Massive Gas Injection (MGI) studies by Izzo. A Particle-in-Cell (PIC) model is implemented to mimic the shards, providing a discrete moving source. Observations indicate that the quench proceeds in two phases. Initially, the outer plasma is shed via interchange-like instabilities while preserving the core temperature. This results in a steep gradient and triggers the second phase, an external kink-like event that collapses the core. We report on the radiation efficiency and toroidal peaking as well as fueling efficiency and other metrics that assess the efficacy of the SPI system. Work supported by GA ITER Contract ITER/CT/14/4300001108 and US DOE DE-FG02-95ER54309.
A non-covalent peptide-based carrier for in vivo delivery of DNA mimics.
Morris, May C; Gros, Edwige; Aldrian-Herrada, Gudrun; Choob, Michael; Archdeacon, John; Heitz, Frederic; Divita, Gilles
2007-01-01
The dramatic acceleration in identification of new nucleic-acid-based therapeutic molecules has provided new perspectives in pharmaceutical research. However, their development is limited by their poor cellular uptake and inefficient trafficking. Here we describe a short amphipathic peptide, Pep-3, that combines a tryptophan/phenylalanine domain with a lysine/arginine-rich hydrophilic motif. Pep-3 forms stable nano-size complexes with peptide-nucleic acid analogues and promotes their efficient delivery into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. We demonstrate that Pep-3-mediated delivery of antisense-cyclin B1-charged-PNA blocks tumour growth in vivo upon intratumoral and intravenous injection. Moreover, we show that PEGylation of Pep-3 significantly improves complex stability in vivo and consequently the efficiency of antisense cyclin B1 administered intravenously. Given the biological characteristics of these vectors, we believe that peptide-based delivery technologies hold a true promise for therapeutic applications of DNA mimics.
A non-covalent peptide-based carrier for in vivo delivery of DNA mimics
Morris, May C.; Gros, Edwige; Aldrian-Herrada, Gudrun; Choob, Michael; Archdeacon, John; Heitz, Frederic; Divita, Gilles
2007-01-01
The dramatic acceleration in identification of new nucleic-acid-based therapeutic molecules has provided new perspectives in pharmaceutical research. However, their development is limited by their poor cellular uptake and inefficient trafficking. Here we describe a short amphipathic peptide, Pep-3, that combines a tryptophan/phenylalanine domain with a lysine/arginine-rich hydrophilic motif. Pep-3 forms stable nano-size complexes with peptide-nucleic acid analogues and promotes their efficient delivery into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. We demonstrate that Pep-3-mediated delivery of antisense-cyclin B1-charged-PNA blocks tumour growth in vivo upon intratumoral and intravenous injection. Moreover, we show that PEGylation of Pep-3 significantly improves complex stability in vivo and consequently the efficiency of antisense cyclin B1 administered intravenously. Given the biological characteristics of these vectors, we believe that peptide-based delivery technologies hold a true promise for therapeutic applications of DNA mimics. PMID:17341467
Cabotegravir long acting injection protects macaques against intravenous challenge with SIVmac251.
Andrews, Chasity D; Bernard, Leslie St; Poon, Amanda Yee; Mohri, Hiroshi; Gettie, Natanya; Spreen, William R; Gettie, Agegnehu; Russell-Lodrigue, Kasi; Blanchard, James; Hong, Zhi; Ho, David D; Markowitz, Martin
2017-02-20
We evaluated the effectiveness of cabotegravir (CAB; GSK1265744 or GSK744) long acting as preexposure prophylaxis (PrEP) against intravenous simian immunodeficiency virus (SIV) challenge in a model that mimics blood transfusions based on the per-act probability of infection. CAB long acting is an integrase strand transfer inhibitor formulated as a 200 mg/ml injectable nanoparticle suspension that is an effective PrEP agent against rectal and vaginal simian/human immunodeficiency virus transmission in macaques. Three groups of rhesus macaques (n = 8 per group) were injected intramuscularly with CAB long acting and challenged intravenously with 17 animal infectious dose 50% SIVmac251 on week 2. Group 1 was injected with 50 mg/kg on week 0 and 4 to evaluate the protective efficacy of the CAB long-acting dose used in macaque studies mimicking sexual transmission. Group 2 was injected with 50 mg/kg on week 0 to evaluate the necessity of the second injection of CAB long acting for protection against intravenous challenge. Group 3 was injected with 25 mg/kg on week 0 and 50 mg/kg on week 4 to correlate CAB plasma concentrations at the time of challenge with protection. Five additional macaques remained untreated as controls. CAB long acting was highly protective with 21 of the 24 CAB long-acting-treated macaques remaining aviremic, resulting in 88% protection. The plasma CAB concentration at the time of virus challenge appeared to be more important for protection than sustaining therapeutic plasma concentrations with the second CAB long acting injection. These results support the clinical investigation of CAB long acting as PrEP in people who inject drugs.
Continuous inline blending of antimisting kerosene
NASA Technical Reports Server (NTRS)
Parikh, P.; Yavrouian, A.; Sarohia, V.
1985-01-01
A continuous inline blender was developed to blend polymer slurries with a stream of jet A fuel. The viscosity of the slurries ranged widely. The key element of the blender was a static mixer placed immediately downstream of the slurry injection point. A positive displacement gear pump for jet A was employed, and a progressive cavity rotary screw pump was used for slurry pumping. Turbine flow meters were employed for jet A metering while the slurry flow rate was calibrated against the pressure drop in the injection tube. While using one of the FM-9 variant slurries, a provision was made for a time delay between the addition of slurry and the addition of amine sequentially into the jet A stream.
Portnoy, Orith; Guranda, Larisa; Apter, Sara; Eiss, David; Amitai, Marianne Michal; Konen, Eli
2011-11-01
The purpose of this study was to compare opacification of the urinary collecting system and radiation dose associated with three-phase 64-MDCT urographic protocols and those associated with a split-bolus dual-phase protocol including furosemide. Images from 150 CT urographic examinations performed with three scanning protocols were retrospectively evaluated. Group A consisted of 50 sequentially registered patients who underwent a three-phase protocol with saline infusion. Group B consisted of 50 sequentially registered patients who underwent a reduced-radiation three-phase protocol with saline. Group C consisted of 50 sequentially registered patients who underwent a dual-phase split-bolus protocol that included a low-dose furosemide injection. Opacification of the urinary collecting system was evaluated with segmental binary scoring. Contrast artifacts were evaluated, and radiation doses were recorded. Results were compared by analysis of variance. A significant reduction in mean effective radiation dose was found between groups A and B (p < 0.001) and between groups B and C (p < 0.001), resulting in 65% reduction between groups A and C (p < 0.001). This reduction did not significantly affect opacification score in any of the 12 urinary segments (p = 0.079). In addition, dense contrast artifacts overlying the renal parenchyma observed with the three-phase protocols (groups A and B) were avoided with the dual-phase protocol (group C) (p < 0.001). A dual-phase protocol with furosemide injection is the preferable technique for CT urography. In comparison with commonly used three-phase protocols, the dual-phase protocol significantly reduces radiation exposure dose without reduction in image quality.
SR high-speed K-edge subtraction angiography in the small animal (abstract)
NASA Astrophysics Data System (ADS)
Takeda, T.; Akisada, M.; Nakajima, T.; Anno, I.; Ueda, K.; Umetani, K.; Yamaguchi, C.
1989-07-01
To assess the ability of the high-speed K-edge energy subtraction system which was made at beamline 8C of Photon Factory, Tsukuba, we performed an animal experiment. Rabbits were used for the intravenous K-edge subtraction angiography. In this paper, the actual images of the artery obtained by this system, are demonstrated. The high-speed K-edge subtraction system consisted of movable silicon (111) monocrystals, II-ITV, and digital memory system. Image processing was performed by 68000-IP computer. The monochromatic x-ray beam size was 50×60 mm. Photon energy above and below iodine K edge was changed within 16 ms and 32 frames of images were obtained sequentially. The rabbits were anaesthetized by phenobarbital and a 5F catheter was inserted into inferior vena cava via the femoral vein. 1.5 ml/kg of contrast material (Conlaxin H) was injected at the rate of 0.5 ml/kg/s. TV images were obtained 3 s after the starting point of injection. By using this system, the clear K-edge subtracted images were obtained sequentially as a conventional DSA system. The quality of the images were better than that obtained by DSA. The dynamical blood flow was analyzed, and the best arterial image could be selected from the sequential images. The structures of aortic arch, common carotid arteries, right subclavian artery, and internal thoracic artery were obtained at the chest. Both common carotid arteries and vertebral arteries were recorded at the neck. The diameter of about 0.3-0.4 mm artery could be clearly revealed. The high-speed K-edge subtraction system demonstrates the very sharp arterial images clearly and dynamically.
Nasveld, Peter E; Marjason, Joanne; Bennett, Sonya; Aaskov, John; Elliott, Suzanne; McCarthy, Karen; Kanesa-thasan, Niranjan; Feroldi, Emmanuel
2010-01-01
A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever (YF) vaccine (YF-17D strain; Stamaril®, Sanofi Pasteur) or administered sequentially. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE virus strains was determined using a 50% serum-dilution plaque reduction neutralization test (PRNT50). Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82–100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart. PMID:20864814
Hirakawa, Koji; Katayama, Masaaki; Soh, Nobuaki; Nakano, Koji; Imato, Toshihiko
2006-01-01
A rapid and sensitive immunoassay for the determination of vitellogenin (Vg) is described. The method involves a sequential injection analysis (SIA) system equipped with an amperometric detector and a neodymium magnet. Magnetic beads, onto which an antigen (Vg) was immobilized, were used as a solid support in an immunoassay. The introduction, trapping and release of magnetic beads in an immunoreaction cell were controlled by means of the neodymium magnet and by adjusting the flow of the carrier solution. The immunoassay was based on an indirect competitive immunoreaction of an alkaline phosphatase (ALP) labeled anti-Vg monoclonal antibody between the fraction of Vg immobilized on the magnetic beads and Vg in the sample solution. The immobilization of Vg on the beads involved coupling an amino group moiety of Vg with the magnetic beads after activation of a carboxylate moiety on the surface of magnetic beads that had been coated with a polylactate film. The Vg-immobilized magnetic beads were introduced and trapped in the immunoreaction cell equipped with the neodymium magnet; a Vg sample solution containing an ALP labeled anti-Vg antibody at a constant concentration and a p-aminophenyl phosphate (PAPP) solution were sequentially introduced into the immunoreaction cell. The product of the enzyme reaction of PAPP with ALP on the antibody, paminophenol, was transported to an amperometric detector, the applied voltage of which was set at +0.2 V vs. an Ag/AgCl reference electrode. A sigmoid calibration curve was obtained when the logarithm of the concentration of Vg was plotted against the peak current of the amperometric detector using various concentrations of standard Vg sample solutions (0-500 ppb). The time required for the analysis is less than 15 min.
Sequential variable fuel injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weglarz, M.W.; Vincent, M.T.; Prestel, J.F.
This patent describes a fuel injection system for an engine of an automotive vehicle including cylinders, a spark plug for each of the cylinders, a distributor electrically connected to the spark plug, a throttle body having a throttle valve connected to the engine to allow or prevent air to the cylinders, a fuel source at least one fuel line connected to the fuel source, fuel injectors connected to the fuel line for delivering fuel to the cylinders, a sensor located near the distributor for sensing predetermined states of the distributor, and an electronic control unit (ECU) electrically connected to themore » sensor, distributor and fuel injectors. It comprises calculating a desired total injector on time for current engine conditions; calculating a variable injection time (VIT) and a turn on time based on the VIT; and firing the fuel injectors at the calculated turn on time for the calculated total injector on time.« less
Seals, Shanna L; Kearney, Michael; Del Piero, Fabio; Hammerberg, Bruce; Pucheu-Haston, Cherie M
2014-05-15
Immunoglobulin-E (IgE) mediated reactions can be induced by intradermal injection of anti-IgE antibodies in both humans and dogs. These reactions grossly and histologically mimic changes seen in naturally occurring allergic dermatitis in these species. Similar studies have not been conducted in the cat. Purified polyclonal rabbit-origin IgG specific for canine IgE (anti-IgE) and rabbit immunoglobulin G (IgG) were injected intradermally in 7 non-allergic laboratory colony cats. Wheal measurements were obtained and biopsies collected before injection and at injection sites after 20 min, 6, 24, and 48 h. Injection of anti-IgE induced an immediate wheal response which was significantly larger than that seen after injection of rabbit IgG. Anti-IgE injected skin was also significantly thicker than IgG-injected skin. This corresponded with a significant increase in number of visibly degranulated mast cells in anti-IgE samples when compared to IgG samples. Injection of anti-IgE was associated with the rapid recruitment of inflammatory cells to the injected dermis. The number of inflammatory cells and mononuclear cells were significantly elevated after the injection of anti-IgE when compared to IgG-injected skin. Both eosinophils and neutrophils were significantly increased in anti-IgE samples relative to IgG, although neutrophils were only transiently increased. The high eosinophil and relatively low neutrophil cell counts in these samples were consistent with previously documented histologic features of naturally occurring feline allergic skin disease. Immunohistochemistry identified a significantly overall increased CD1a(+) cells after the intradermal injection of anti-IgE when compared to IgG and non-injected skin. CD3(+), CD8(+) and CD4(+) were also significantly increased overall in anti-IgE injected skin relative to IgG injected skin. These data document the gross and cellular response to injection of anti-IgE in the skin of healthy, non-allergic cats and support a possible role for IgE in the development of feline allergic dermatitis. Copyright © 2014 Elsevier B.V. All rights reserved.
In Vivo Evaluation of Lung Microwave Ablation in a Porcine Tumor Mimic Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Planche, Olivier, E-mail: oli.hrp@gmail.com; Teriitehau, Christophe; Boudabous, Sana
2013-02-15
To evaluate the microwave ablation of created tumor mimics in the lung of a large animal model (pigs), with examination of the ablative synergy of multiple antennas. Fifty-six tumor-mimic models of various sizes were created in 15 pigs by using barium-enriched minced collected thigh muscle injected into the lung of the same animal. Tumors were ablated under fluoroscopic guidance by single-antenna and multiple-antenna microwaves. Thirty-five tumor models were treated in 11 pigs with a single antenna at 75 W for 15 min, with 15 measuring 20 mm in diameter, 10 measuring 30 mm, and 10 measuring 40 mm. Mean circularitymore » of the single-antenna ablation zones measured 0.64 {+-} 0.12, with a diameter of 35.7 {+-} 8.7 mm along the axis of the antenna and 32.7 {+-} 12.8 mm perpendicular to the feeding point. Multiple-antenna delivery of 75 W for 15 min caused intraprocedural death of 2 animals; modified protocol to 60 W for 10 min resulted in an ablation zone with a diameter of 43.0 {+-} 7.7 along the axis of the antenna and 54.8 {+-} 8.5 mm perpendicular to the feeding point; circularity was 0.70 {+-} 0.10. A single microwave antenna can create ablation zones large enough to cover lung tumor mimic models of {<=}4 cm with no heat sink effect from vessels of {<=}6 mm. Synergic use of 3 antennas allows ablation of larger volumes than single-antenna or radiofrequency ablation, but great caution must be taken when 3 antennas are used simultaneously in the lung in clinical practice.« less
NASA Astrophysics Data System (ADS)
Ben-Naim, E.; Redner, S.; Vazquez, F.
2007-02-01
We study a stochastic process that mimics single-game elimination tournaments. In our model, the outcome of each match is stochastic: the weaker player wins with upset probability q<=1/2, and the stronger player wins with probability 1-q. The loser is eliminated. Extremal statistics of the initial distribution of player strengths governs the tournament outcome. For a uniform initial distribution of strengths, the rank of the winner, x*, decays algebraically with the number of players, N, as x*~N-β. Different decay exponents are found analytically for sequential dynamics, βseq=1-2q, and parallel dynamics, \\beta_par=1+\\frac{\\ln (1-q)}{\\ln 2} . The distribution of player strengths becomes self-similar in the long time limit with an algebraic tail. Our theory successfully describes statistics of the US college basketball national championship tournament.
Pretreatment of lignocellulosic biomass using Fenton chemistry.
Kato, Dawn M; Elía, Noelia; Flythe, Michael; Lynn, Bert C
2014-06-01
In an attempt to mimic white-rot fungi lignin degradation via in vivo Fenton chemistry, solution phase Fenton chemistry (10 g biomass, 176 mmol hydrogen peroxide and 1.25 mmol Fe(2+) in 200 mL of water) was applied to four different biomass feedstocks. An enzymatic saccharification of Fenton pretreated biomass showed an average 212% increase relative to untreated control across all four feedstocks (P<0.05, statistically significant). A microbial fermentation of the same Fenton pretreated biomass showed a threefold increase in gas production upon a sequential co-culture with Clostridium thermocellum and Clostridium beijerinckii. These results demonstrate the use of solution phase Fenton chemistry as a viable pretreatment method to make cellulose more bioavailable for microbial biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Solid State Television Camera (CID)
NASA Technical Reports Server (NTRS)
Steele, D. W.; Green, W. T.
1976-01-01
The design, development and test are described of a charge injection device (CID) camera using a 244x248 element array. A number of video signal processing functions are included which maximize the output video dynamic range while retaining the inherently good resolution response of the CID. Some of the unique features of the camera are: low light level performance, high S/N ratio, antiblooming, geometric distortion, sequential scanning and AGC.
Jawarneh, Sana; Abdullah, Salwani
2015-01-01
This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon’s 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158
Li, Haiou; Lu, Liyao; Chen, Rong; Quan, Lijun; Xia, Xiaoyan; Lü, Qiang
2014-01-01
Structural information related to protein-peptide complexes can be very useful for novel drug discovery and design. The computational docking of protein and peptide can supplement the structural information available on protein-peptide interactions explored by experimental ways. Protein-peptide docking of this paper can be described as three processes that occur in parallel: ab-initio peptide folding, peptide docking with its receptor, and refinement of some flexible areas of the receptor as the peptide is approaching. Several existing methods have been used to sample the degrees of freedom in the three processes, which are usually triggered in an organized sequential scheme. In this paper, we proposed a parallel approach that combines all the three processes during the docking of a folding peptide with a flexible receptor. This approach mimics the actual protein-peptide docking process in parallel way, and is expected to deliver better performance than sequential approaches. We used 22 unbound protein-peptide docking examples to evaluate our method. Our analysis of the results showed that the explicit refinement of the flexible areas of the receptor facilitated more accurate modeling of the interfaces of the complexes, while combining all of the moves in parallel helped the constructing of energy funnels for predictions.
Quantum Otto engine using a single ion and a single thermal bath
NASA Astrophysics Data System (ADS)
Biswas, Asoka; Chand, Suman
2016-05-01
Quantum heat engines employ a quantum system as the working fluid, that gives rise to large work efficiency, beyond the limit for classical heat engines. Existing proposals for implementing quantum heat engines require that the system interacts with the hot bath and the cold bath (both modelled as a classical system) in an alternative fashion and therefore assumes ability to switch off the interaction with the bath during a certain stage of the heat-cycle. However, it is not possible to decouple a quantum system from its always-on interaction with the bath without use of complex pulse sequences. It is also hard to identify two different baths at two different temperatures in quantum domain, that sequentially interact with the system. Here, we show how to implement a quantum Otto engine without requiring to decouple the bath in a sequential manner. This is done by considering a single thermal bath, coupled to a single trapped ion. The electronic degree of freedom of the ion is chosen as a two-level working fluid while the vibrational degree of freedom plays the role of the cold bath. Measuring the electronic state mimics the release of heat into the cold bath. Thus, our model is fully quantum and exhibits very large work efficiency, asymptotically close to unity.
Rosales-Corral, Sergio; Tan, Dun-Xian; Reiter, Russel J; Valdivia-Velázquez, Miguel; Acosta-Martínez, J Pablo; Ortiz, Genaro G
2004-05-01
The purpose of this study was to describe-following the injection of a single intracerebral dose of fibrillar amyloid-beta(1-40) in vivo-some correlations between proinflammatory cytokines and oxidative stress indicators in function of time, as well as how these variables fit in a regression model. We found a positive, significant correlation between interleukin (IL)-1beta or IL-6 and the activity of the glutathione peroxidase enzyme (GSH-Px), but IL-1beta or IL-6 maintained a strong, negative correlation with the lipid peroxidation (LPO). The first 12 h marked a positive correlation between IL-6 and tumor necrosis factor-alpha (TNF-alpha), but starting from the 36 h, this relationship became negative. We found also particular patterns of behavior through the time for IL-1beta, nitrites and IL-6, with parallel or sequential interrelationships. Results shows clearly that, in vivo, the fibrillar amyloid-beta (Abeta) disrupts the oxidative balance and initiate a proinflammatory response, which in turn feeds the oxidative imbalance in a coordinated, sequential way. This work contributes to our understanding of the positive feedbacks, focusing the "cytokine cycle" along with the oxidative stress mediators in a complex, multicellular, and interactive environment.
The sequential injection system with adsorptive stripping voltammetric detection.
Kubiak, W W; Latonen, R M; Ivaska, A
2001-03-16
Two sequential injection systems have been developed for adsorptive stripping voltammetric measurement. One is for substances adsorbing at mercury, e.g. riboflavin. In this case, a simple arrangement with only sample aspiration is needed. Reproducibility was 3% and detection limit 0.07 muM. The measuring system was applied to determination of riboflavin in vitamin pills and to study the photodegradation process of riboflavin in aqueous solutions. In the second case, metal ions were determined. They have to be complexed before deposition on the mercury surface. Thus, both the sample and the ligand have to be aspirated in the system. In this case, the reproducibility was approximately 6% and the detection limit <0.1 ppm for cadmium, lead and copper when complexation with oxine was used. Dimethylglyoxime was used in determination of nickel and cobalt and nioxime complexes were used in determination of nickel and copper. With these complexing agents, the reproducibility was the same as with oxine, but the metals could be determined at concentrations lower than 0.01 ppm. Application of two ligands in a SIA system with AdSV detection was also studied. Simultaneous determination of copper, lead, cadmium and cobalt was possible by using oxine and dimethylglyoxime. Copper and nickel were simultaneously determined by using dimethylglyoxime and nioxime.
Teng, Kok-Hin; Wu, Tong; Liu, Xiayun; Yang, Zhi; Heng, Chun-Huat
2017-06-01
An 8-channel wireless neural signal processing IC, which can perform real-time spike detection, alignment, and feature extraction, and wireless data transmission is proposed. A reconfigurable BFSK/QPSK transmitter (TX) at MICS/MedRadio band is incorporated to support different data rate requirement. By using an Exponential Component-Polynomial Component (EC-PC) spike processing unit with an incremental principal component analysis (IPCA) engine, the detection of neural spikes with poor SNR is possible while achieving 625× data reduction. For the TX, a dual-channel at 401 MHz and 403.8 MHz are supported by applying sequential injection locked techniques while attaining phase noise of -102 dBc/Hz at 100 kHz offset. From the measurement, error vector magnitude (EVM) of 4.60%/9.55% with power amplifier (PA) output power of -15 dBm is achieved for the QPSK at 8 Mbps and the BFSK at 12.5 kbps. Fabricated in 65 nm CMOS with an active area of 1 mm 2 , the design consumes a total current of 5 ∼ 5.6 mA with a maximum energy efficiency of 0.7 nJ/b.
Liu, Tongzhou; Zhang, Zhen; Dong, Wenyi; Wu, Xiaojing; Wang, Hongjie
2017-11-01
In this study, the feasibility of employing an integrated bioremediation approach in contaminated river sediment was evaluated. Sequential addition of co-substrate (acetate) and electron acceptor (NO 3 - ) in a two-phase treatment was capable of effectively removing polycyclic aromatic hydrocarbons (PAHs) in river sediment. The residual concentration of total PAHs decreased to far below effect range low (ERL) value within 91 days of incubation, at which concentration it could rarely pose biological impairment. The biodegradation of high molecular weight PAHs were found to be mainly occurred in the sediment treated with co-substrates (i.e. acetate or methanol), in which acetate was found to be more suitable for PAHs degradation. The role of co-substrates in influencing PAHs biodegradation was tentatively discussed herein. Additionally, the sediment odorous problem and blackish appearance were intensively addressed by NO 3 - injection. The results of this study demonstrated that integrating two or more approaches/processes would be a helpful option in sediment remediation. It can lead to a more effective remediation performance, handle multiple contamination issues, as well as mitigate environmental risks caused by one of the single methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Xiaoyan; Wang, Jian-Ping; Rao, Xiao-Mei; Price, Janet E; Zhou, Heshan S; Lachman, Lawrence B
2005-01-01
Once metastasis has occurred, the possibility of completely curing breast cancer is unlikely, particularly for the 30 to 40% of cancers overexpressing the gene for HER2/neu. A vaccine targeting p185, the protein product of the HER2/neu gene, could have therapeutic application by controlling the growth and metastasis of highly aggressive HER2/neu+ cells. The purpose of this study was to determine the effectiveness of two gene vaccines targeting HER2/neu in preventive and therapeutic tumor models. The mouse breast cancer cell line A2L2, which expresses the gene for rat HER2/neu and hence p185, was injected into the mammary fat pad of mice as a model of solid tumor growth or was injected intravenously as a model of lung metastasis. SINCP-neu, a plasmid containing Sindbis virus genes and the gene for rat HER2/neu, and Adeno-neu, an E1,E2a-deleted adenovirus also containing the gene for rat HER2/neu, were tested as preventive and therapeutic vaccines. Vaccination with SINCP-neu or Adeno-neu before tumor challenge with A2L2 cells significantly inhibited the growth of the cells injected into the mammary fat or intravenously. Vaccination 2 days after tumor challenge with either vaccine was ineffective in both tumor models. However, therapeutic vaccination in a prime-boost protocol with SINCP-neu followed by Adeno-neu significantly prolonged the overall survival rate of mice injected intravenously with the tumor cells. Naive mice vaccinated using the same prime-boost protocol demonstrated a strong serum immunoglobulin G response and p185-specific cellular immunity, as shown by the results of ELISPOT (enzyme-linked immunospot) analysis for IFNgamma. We report herein that vaccination of mice with a plasmid gene vaccine and an adenovirus gene vaccine, each containing the gene for HER2/neu, prevented growth of a HER2/neu-expressing breast cancer cell line injected into the mammary fat pad or intravenously. Sequential administration of the vaccines in a prime-boost protocol was therapeutically effective when tumor cells were injected intravenously before the vaccination. The vaccines induced high levels of both cellular and humoral immunity as determined by in vitro assessment. These findings indicate that clinical evaluation of these vaccines, particularly when used sequentially in a prime-boost protocol, is justified.
Faydaci, G; Ozgul, A; Kuyumcuoglu, U; Aktoz, T; Oder, M
2012-05-01
Penile fracture is an uncommon and emergent urologic condition defined as traumatic rupture of the corpus cavernosum secondary to a blunt trauma of the erect penis. Tunica albuginea is thinned and stretched in the erect state, and a transverse tear in the corpus cavernosums may occur by a buckling force. However, penile dorsal vein tears may mimic penile fracture. Also, corporeal infection and purulent cavernositis are associated with trauma, cavernosography, priapism, intracavernosal injection therapy and penile prosthesis. © 2011 Blackwell Verlag GmbH.
de Jesus, E B; de Andrade Lima, L R P
2016-08-01
Souring of oil fields during secondary oil recovery by water injection occurs mainly due to the action of sulfate-reducing bacteria (SRB) adhered to the rock surface in the vicinity of injection wells. Upflow packed-bed bioreactors have been used in petroleum microbiology because of its similarity to the oil field near the injection wells or production. However, these reactors do not realistically describe the regions near the injection wells, which are characterized by the presence of a saturated zone and a void region close to the well. In this study, the hydrodynamics of the two-compartment packing-free/packed-bed pilot bioreactor that mimics an oil reservoir was studied. The packed-free compartment was modeled using a continuous stirred tank model with mass exchange between active and stagnant zones, whereas the packed-bed compartment was modeled using a piston-dispersion-exchange model. The proposed model adequately represents the hydrodynamic of the packed-free/packed-bed bioreactor while the simulations provide important information about the characteristics of the residence time distribution (RTD) curves for different sets of model parameters. Simulations were performed to represent the control of the sulfate-reducing bacteria activity in the bioreactor with the use of molybdate in different scenarios. The simulations show that increased amounts of molybdate cause an effective inhibition of the souring sulfate-reducing bacteria activity.
Injectable nano-network for glucose-mediated insulin delivery.
Gu, Zhen; Aimetti, Alex A; Wang, Qun; Dang, Tram T; Zhang, Yunlong; Veiseh, Omid; Cheng, Hao; Langer, Robert S; Anderson, Daniel G
2013-05-28
Diabetes mellitus, a disorder of glucose regulation, is a global burden affecting 366 million people across the world. An artificial "closed-loop" system able to mimic pancreas activity and release insulin in response to glucose level changes has the potential to improve patient compliance and health. Herein we develop a glucose-mediated release strategy for the self-regulated delivery of insulin using an injectable and acid-degradable polymeric network. Formed by electrostatic interaction between oppositely charged dextran nanoparticles loaded with insulin and glucose-specific enzymes, the nanocomposite-based porous architecture can be dissociated and subsequently release insulin in a hyperglycemic state through the catalytic conversion of glucose into gluconic acid. In vitro insulin release can be modulated in a pulsatile profile in response to glucose concentrations. In vivo studies validated that these formulations provided improved glucose control in type 1 diabetic mice subcutaneously administered with a degradable nano-network. A single injection of the developed nano-network facilitated stabilization of the blood glucose levels in the normoglycemic state (<200 mg/dL) for up to 10 days.
Monomeric insulins obtained by protein engineering and their medical implications.
Brange, J; Ribel, U; Hansen, J F; Dodson, G; Hansen, M T; Havelund, S; Melberg, S G; Norris, F; Norris, K; Snel, L
1988-06-16
The use of insulin as an injected therapeutic agent for the treatment of diabetes has been one of the outstanding successes of modern medicine. The therapy has, however, had its associated problems, not least because injection of insulin does not lead to normal diurnal concentrations of insulin in the blood. This is especially true at meal times when absorption from subcutaneous tissue is too slow to mimic the normal rapid increments of insulin in the blood. In the neutral solutions used for therapy, insulin is mostly assembled as zinc-containing hexamers and this self-association, which under normal physiological circumstances functions to facilitate proinsulin transport, conversion and intracellular storage, may limit the rate of absorption. We now report that it is possible, by single amino-acid substitutions, to make insulins which are essentially monomeric at pharmaceutical concentrations (0.6 mM) and which have largely preserved their biological activity. These monomeric insulins are absorbed two to three times faster after subcutaneous injection than the present rapid-acting insulins. They are therefore capable of giving diabetic patients a more physiological plasma insulin profile at the time of meal consumption.
Successful pregnancy after spermatid injection.
Bernabeu, R; Cremades, N; Takahashi, K; Sousa, M
1998-07-01
We present nine cases of spermatid intracytoplasmic injection for the treatment of non-obstructive azoospermia. In eight cases, no elongated spermatids or spermatozoa were found in previous spermiograms or testicular biopsies. In these patients, treatment was performed using ejaculated (n = 6) and testicular (n = 2) retrieved round spermatids (Sa type). In cases where ejaculated round spermatids were used, they were isolated on the day before oocyte retrieval and left in culture for 24 h before intracytoplasmic sperm injection (ICSI). No pregnancy was obtained in either group, although culturing seemed to increase the fertilization rate. In one other case, elongated spermatids were observed in the previous spermiogram and thus a normal ICSI procedure was scheduled. However, on the day of oocyte retrieval, no spermatids could be recovered from fresh sequential ejaculates, and a testicular open biopsy was then performed. Both round and elongated spermatids were found in the testicular tissue, but only the more mature germinal cells (Sb2) were injected. From this case, a normal pregnancy was obtained which resulted in the birth by Caesarean section at 37 weeks of gestation of a normal healthy baby girl, weighing 2700 g.
Domain-general neural correlates of dependency formation: Using complex tones to simulate language.
Brilmayer, Ingmar; Sassenhagen, Jona; Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias
2017-08-01
There is an ongoing debate whether the P600 event-related potential component following syntactic anomalies reflects syntactic processes per se, or if it is an instance of the P300, a domain-general ERP component associated with attention and cognitive reorientation. A direct comparison of both components is challenging because of the huge discrepancy in experimental designs and stimulus choice between language and 'classic' P300 experiments. In the present study, we develop a new approach to mimic the interplay of sequential position as well as categorical and relational information in natural language syntax (word category and agreement) in a non-linguistic target detection paradigm using musical instruments. Participants were instructed to (covertly) detect target tones which were defined by instrument change and pitch rise between subsequent tones at the last two positions of four-tone sequences. We analysed the EEG using event-related averaging and time-frequency decomposition. Our results show striking similarities to results obtained from linguistic experiments. We found a P300 that showed sensitivity to sequential position and a late positivity sensitive to stimulus type and position. A time-frequency decomposition revealed significant effects of sequential position on the theta band and a significant influence of stimulus type on the delta band. Our results suggest that the detection of non-linguistic targets defined via complex feature conjunctions in the present study and the detection of syntactic anomalies share the same underlying processes: attentional shift and memory based matching processes that act upon multi-feature conjunctions. We discuss the results as supporting domain-general accounts of the P600 during natural language comprehension. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cardoso, Sara D; Gonçalves, David; Goesmann, Alexander; Canário, Adelino V M; Oliveira, Rui F
2018-02-01
Distinct patterns of gene expression often underlie intra- and intersexual differences, and the study of this set of coregulated genes is essential to understand the emergence of complex behavioural phenotypes. Here, we describe the development of a de novo transcriptome and brain gene expression profiles of wild-caught peacock blenny, Salaria pavo, an intertidal fish with sex-role reversal in courtship behaviour (i.e., females are the courting sex) and sequential alternative reproductive tactics in males (i.e., larger and older nest-holder males and smaller and younger sneaker males occur). Sneakers mimic both female's courtship behaviour and nuptial coloration to get access to nests and sneak fertilizations, and later in life transition into nest-holder males. Thus, this species offers the unique opportunity to study how the regulation of gene expression can contribute to intersex phenotypes and to the sequential expression of male and female behavioural phenotypes by the same individual. We found that at the whole brain level, expression of the sneaker tactic was paralleled by broader and divergent gene expression when compared to either females or nest-holder males, which were more similar between themselves. When looking at sex-biased transcripts, sneaker males are intersex rather than being either nest-holder or female-like, and their transcriptome is simultaneously demasculinized for nest-holder-biased transcripts and feminized for female-biased transcripts. These results indicate that evolutionary changes in reproductive plasticity can be achieved through regulation of gene expression, and in particular by varying the magnitude of expression of sex-biased genes, throughout the lifetime of the same individual. © 2017 John Wiley & Sons Ltd.
Method for gasification of deep, thin coal seams. [DOE patent
Gregg, D.W.
1980-08-29
A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face is given. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.
Method for gasification of deep, thin coal seams
Gregg, David W.
1982-01-01
A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.
Drug injection into fat tissue with a laser based microjet injector
NASA Astrophysics Data System (ADS)
Han, Tae-hee; Hah, Jung-moo; Yoh, Jack J.
2011-05-01
We have investigated a new micro drug jet injector using laser pulse energy. An infrared laser beam of high energy (˜3 J/pulse) is focused inside a driving fluid in a small chamber. The pulse then induces various energy releasing processes, and generates fast microjets through a micronozzle. The elastic membrane of this system plays an important role in transferring mechanical pressure and protecting drug from heat release. In this paper, we offer the sequential images of microjet generation taken by a high speed camera as an evidence of the multiple injections via single pulse. Furthermore, we test the proposed system to penetrate soft animal tissues in order to evaluate its feasibility as an advanced transdermal drug delivery method.
A role for glucocorticoids in the long-term establishment of a social hierarchy.
Timmer, Marjan; Sandi, Carmen
2010-11-01
Stress can affect the establishment and maintenance of social hierarchies. In the present study, we investigated the role of increasing corticosterone levels before or just after a first social encounter between two rats of a dyad in the establishment and the long-term maintenance of a social hierarchy. We show that pre-social encounter corticosterone treatment does not affect the outcome of the hierarchy during a first encounter, but induces a long-term memory for the hierarchy when the corticosterone-injected rat becomes dominant during the encounter, but not when it becomes subordinate. Post-social encounter corticosterone leads to a long-term maintenance of the hierarchy only when the subordinate rat of the dyad is injected with corticosterone. This corticosterone effect mimics previously reported actions of stress on the same model and, hence, implicates glucocorticoids in the consolidation of the memory for a recently established hierarchy. Copyright © 2010 Elsevier Ltd. All rights reserved.
Biomaterial-based delivery for skeletal muscle repair
Cezar, Christine A.; Mooney, David J.
2015-01-01
Skeletal muscle possesses a remarkable capacity for regeneration in response to minor damage, but severe injury resulting in a volumetric muscle loss can lead to extensive and irreversible fibrosis, scarring, and loss of muscle function. In early clinical trials, the intramuscular injection of cultured myoblasts was proven to be a safe but ineffective cell therapy, likely due to rapid death, poor migration, and immune rejection of the injected cells. In recent years, appropriate therapeutic cell types and culturing techniques have improved progenitor cell engraftment upon transplantation. Importantly, the identification of several key biophysical and biochemical cues that synergistically regulate satellite cell fate has paved the way for the development of cell-instructive biomaterials that serve as delivery vehicles for cells to promote in vivo regeneration. Material carriers designed to spatially and temporally mimic the satellite cell niche may be of particular importance for the complete regeneration of severely damaged skeletal muscle. PMID:25271446
NASA Astrophysics Data System (ADS)
Ryder, O. S.; Campbell, N.; Schill, S.; Pöhlker, C.; Andreae, M. O.; Bertram, T. H.
2013-12-01
The heterogeneous reaction of N2O5 on aerosol particles impacts both the lifetime of nitrogen oxides, and the production rate of chlorine radicals following the activation of particulate chloride to nitryl chloride in both coastal and continental regions. The extent to which N2O5 reactivity impacts oxidant loadings depends on the heterogeneous reaction rate, which is directly influenced by aerosol chemical composition, morphology, and physical phase state. In the marine environment, the chemical composition of aerosol particles produced via wave induced bubble bursting mechanisms varies greatly and is influenced by the composition of the sea surface microlayer . Here, we present direct measurements of N2O5 reaction kinetics determined using model sea-spray particles generated in a novel Marine Aerosol Reference Tank (MART), capable of generating accurate mimics of ambient sea spray particles, in a lab environment. Here, a synthetic sea salt ocean was sequentially doped with organic molecules chosen to mimic organic species present in natural sea water over the course of a phytoplankton bloom in the open ocean. These included sterol, galactose, lippolysaccharide, BSA protein, and 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA). These observations permit discussion of the role of marine organics in regulating heterogeneous reaction kinetics, as well a re-evaluation of potential organic lab proxies for marine organics.
Peiman, Kathryn S; Birnie-Gauvin, Kim; Midwood, Jonathan D; Larsen, Martin H; Wilson, Alexander D M; Aarestrup, Kim; Cooke, Steven J
2017-06-01
Partial migration is a common phenomenon, yet the causes of individual differences in migratory propensity are not well understood. We examined factors that potentially influence timing of migration and migratory propensity in a wild population of juvenile brown trout (Salmo trutta) by combining experimental manipulations with passive integrated transponder telemetry. Individuals were subjected to one of six manipulations: three designed to mimic natural stressors (temperature increase, food deprivation, and chase by a simulated predator), an injection of exogenous cortisol designed to mimic an extreme physiological challenge, a sham injection, and a control group. By measuring length and mass of 923 individuals prior to manipulation and by monitoring tagged individuals as they left the stream months later, we assessed whether pre-existing differences influenced migratory tendency and timing of migration, and whether our manipulations affected growth, condition, and timing of migration. We found that pre-existing differences predicted migration, with smaller individuals and individuals in poor condition having a higher propensity to migrate. Exogenous cortisol manipulation had the largest negative effect on growth and condition, and resulted in an earlier migration date. Additionally, low-growth individuals within the temperature and food deprivation treatments migrated earlier. By demonstrating that both pre-existing differences in organism state and additional stressors can affect whether and when individuals migrate, we highlight the importance of understanding individual differences in partial migration. These effects may carry over to influence migration success and affect the evolutionary dynamics of sub-populations experiencing different levels of stress, which is particularly relevant in a changing world.
Wang, Jian-ya; Fang, Zhao-lun
2002-02-01
A microchip flow cell was developed for flow injection renewable surface assay by reflectance spectrophotometry. The flow cell was coupled to a sequential injection system and optical fiber photometric detection system. The flow cell featured a three-layer structure. The flow channel was cut into a silicone rubber membrance which formed the middle layer, and a porous filter was inlayed across a widened section of the channel to trap microbeads introduced into the flow cell. The area of the detection window of the flow cell was approximately 3.6 mm2, the volume of the bead trapped in the flow cell was 2.2 microL, the depth of the bead layer was 600 microns. A multistrand bifurcated optical fiber was coupled with incident light, detector and flow cell. The chromogenic reaction of Cr(VI) with 1,5-diphenylcarbohydrazide (DPC) which was adsorbed on trapped Polysorb C-18 beads was used as a model reaction to optimize the flow cell design and the experimental system. The reflectance of the renewable reaction surface was monitored at 540 nm. With 100 microL sample loaded and 1.0 mL.min-1 carrier flow rate, the linear response range was 0-0.6 microgram.mL-1 Cr(VI). A detection limit (3 sigma) of 6 ng.mL-1, precision of 1.5% RSD(n = 11), and a throughput of 64 samples per hour were achieved. Considerations in system and flow cell design, the influence of depth of the bead layer, weight of beads used, and the flow rates of carrier stream on the performance were discussed.
Mesquita, Raquel B R; Fernandes, Sílvia M V; Rangel, António O S S
2004-02-06
A flow system for the spectrophotometric determination of lead in natural and waste waters is proposed. The determination is based on the colorimetric reaction between malachite green and iodide, followed by the formation of a ternary complex between those reagents and lead cations. The developed flow system includes a lead pre-concentration step in a column packed with a cationic resin (Chelex 100) operating in a sequential injection mode. To improve the mixture of sample and reagents, a flow injection approach was adopted for the colorimetric determination. This way a hybrid flow system, involving both sequential and flow injection concepts was designed. Another feature of the proposed system is the efficient elimination of major interferent species, such as cadmium and copper. The elimination of cadmium interference is obtained by complexing Cd(2+) with chloride and retaining the formed negatively charged complexes in an anionic resin, AG1 X-8. As for copper, with the presence of both ionic resins as well as the conditions for cadmium elimination, it no longer acts as an interferent. Different ranges of lead concentration (50-300 and 300-1000mugl(-1)) can be determined with minor changes in the controlling software, useful for application to both natural and waste waters. Therefore, a detection limit of 25mugl(-1) was achieved. Repeatability was evaluated from 10 consecutive determinations being the results better than 4%. The recoveries of lead spikes added to the samples ranged from 93 to 102%. The sampling frequency was 17 and 24 determinations per hour, for 50-300 and 300-1000mugl(-1) ranges, respectively.
Su, Song; Luo, De; Liu, Xiangdong; Liu, Jiang; Peng, Fangyi; Fang, Cheng; Li, Bo
2017-10-31
A rat HIRI model was constructed and treated with an intraperitoneal injection of agomir- miR-494 or agomir-NC (negative control) for 7 days after the surgery. The pathophysiological changes in sham-operated rats, HIRI, HIRI + agomir- miR-494 , and HIRI + agomir-NC were compared. The effect of miR-494 was also assessed in an H 2 O 2 -induced apoptosis model. Hepatic AML12 cells were transfected with mimics NC or miR-494 mimics, followed by 6-h H 2 O 2 treatment. Cell proliferation and apoptosis were detected by CCK8 assay and flow cytometry, respectively. Further, the miR-494 target gene was identified by luciferase reporter assay, and verified both in vitro and in vivo experiments. The activity of AKT pathway was further analyzed in vivo by Western blot. HIRI + agomir- miR-494 rats exhibited significantly higher miR-494 expression, lower serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and glutamate dehydrogenase (GLDH) level, lower hepatic MDA, TOA, and OSI, alleviated hepatic necrosis, reduced hepatocyte apoptosis, and decreased expression of apoptosis-related proteins, when compared with HIRI + agomir-NC rats ( P <0.05 or 0.01). After H 2 O 2 treatment, AML-12 cells transfected with miR-494 mimics had significantly higher proliferation and lower apoptosis rate compared with mimics NC group ( P <0.01). PTEN was identified as an miR-494 target gene. PTEN expression was significantly down-regulated in AML12 cells transfected with miR-494 mimics, and was up-regulated by treatment of miR-494 inhibitor ( P <0.01). Moreover, HIRI + agomir- miR-494 rats exhibited significantly lower PTEN expression, and higher p-AKT, p-mTOR, and p-p70S6K levels compared with HIRI + agomir-NC rats. Therefore, miR-494 protected rats against hepatic ischemia/reperfusion (I/R) injury through down-regulating its downstream target gene PTEN , leading to the activation of PI3K/AKT signaling pathway. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Liang, Chunshuang; Jiang, Shimei
2017-08-01
A Schiff-base, (2,4-di-tert-butyl-6-((2-hydroxyphenyl-imino)-methyl)phenol) (L), has been improved to function as a simultaneous multi-ion probe in different optical channel. The probe changes from colorless to orangish upon being deprotonated by F-, while the presence of Al3+ significantly enhances the fluorescence of the probe due to the inhibition of Cdbnd N isomerization, cation-induced inhibition of excited-state intramolecular proton transfer (ESIPT), and chelation enhanced fluorescence (CHEF). Dual-channel "off-on" switching behavior resulted from the sequential input of F- and Al3+, reflecting the balance of independent reactions of Al3+ and F- with L and with one another. This sensing phenomenon realizes transformation between multiple states and beautifully mimics a "Write-Read-Erase-Read" logic circuit with two feedback loops.
Wang, Chenyu; Liu, Wenwen; Tan, Manqing; Sun, Hongbo; Yu, Yude
2017-07-01
Cellular heterogeneity represents a fundamental principle of cell biology for which a readily available single-cell research tool is urgently required. Here, we present a novel method combining cell-sized well arrays with sequential inkjet printing. Briefly, K562 cells with phosphate buffer saline buffer were captured at high efficiency (74.5%) in a cell-sized well as a "primary droplet" and sealed using fluorinated oil. Then, piezoelectric inkjet printing technology was adapted to precisely inject the cell lysis buffer and the fluorogenic substrate, fluorescein-di-β-D-galactopyranoside, as a "secondary droplet" to penetrate the sealing oil and fuse with the "primary droplet." We thereby successfully measured the intracellular β-galactosidase activity of K562 cells at the single-cell level. Our method allows, for the first time, the ability to simultaneously accommodate the high occupancy rate of single cells and sequential addition of reagents while retaining an open structure. We believe that the feasibility and flexibility of our method will enhance its use as a universal single-cell research tool as well as accelerate the adoption of inkjet printing in the study of cellular heterogeneity.
Inhibition of Poly(A)-binding protein with a synthetic RNA mimic reduces pain sensitization in mice.
Barragán-Iglesias, Paulino; Lou, Tzu-Fang; Bhat, Vandita D; Megat, Salim; Burton, Michael D; Price, Theodore J; Campbell, Zachary T
2018-01-02
Nociceptors rely on cap-dependent translation to rapidly induce protein synthesis in response to pro-inflammatory signals. Comparatively little is known regarding the role of the regulatory factors bound to the 3' end of mRNA in nociceptor sensitization. Poly(A)-binding protein (PABP) stimulates translation initiation by bridging the Poly(A) tail to the eukaryotic initiation factor 4F complex associated with the mRNA cap. Here, we use unbiased assessment of PABP binding specificity to generate a chemically modified RNA-based competitive inhibitor of PABP. The resulting RNA mimic, which we designated as the Poly(A) SPOT-ON, is more stable than unmodified RNA and binds PABP with high affinity and selectivity in vitro. We show that injection of the Poly(A) SPOT-ON at the site of an injury can attenuate behavioral response to pain. Collectively, these results suggest that PABP is integral for nociceptive plasticity. The general strategy described here provides a broad new source of mechanism-based inhibitors for RNA-binding proteins and is applicable for in vivo studies.
Haghgoo, Roza; Taleghani, Ferial
2015-05-01
Inferior alveolar nerve block is a common technique for anesthesia of the primary mandibular molars. A number of disadvantages have been shown to be associated with this technique. Periodontal ligament (PDL) injection could be considered as an alternative to inferior alveolar nerve block. The aim of this study was to evaluate the effectiveness of PDL injection in the anesthesia of primary molar pulpotomy with mandibular block. This study was performed using a sequential double-blind randomized trial design. 80 children aged 3-7 years old who required pulpotomy in symmetrical mandibular primary molars were selected. The teeth of these children were anesthetized with periodontal injection on one side of the mandible and block on the other. Pulpotomy was performed on each patient during the same appointment. Signs of discomfort, including hand and body tension and eye movement, the verbal complaint and crying (SEM scale), were evaluated by a dental assistant who was blinded to the treatment allocation of the patients. Finally, the data were analyzed using the exact Fisher test and Pearson Chi-squared exact test. Success rate was 88/75 and 91/25 in the PDL injection and nerve block groups, respectively. There was no statistically significant difference between the two techniques (P = 0.250). Results showed that PDL injection can be used as an alternative to nerve block in pulpotomy of the mandibular primary molars.
Tien, Yu En; Huang, Wen-Chuan; Kuo, Hui-Yuan; Tai, Lily; Uang, Yow-Shieng; Chern, Wendy H; Huang, Jin-Ding
2017-11-01
Nalbuphine is a semi-synthetic opioid indicated for the relief of moderate to severe pain. Its short half-life requires frequent injections in clinical practice, resulting in a greater incidence of adverse events. A prodrug of nalbuphine has been developed, dinalbuphine sebacate (DNS), dissolved in a simple oil-based injectable formulation, which could deliver and maintain an effective blood level of nalbuphine. An open-label, prospective, two-period study was performed in healthy volunteers to verify the extended blood concentration profile of nalbuphine. Twelve healthy Taiwanese were randomized to receive an intramuscular injection of 20 mg nalbuphine HCl and 150 mg DNS sequentially with a washout period of 5 days. To prevent DNS hydrolysis during sample analysis, the effect of four esterase inhibitors was evaluated in the quantitation of DNS in human whole blood and thenoyltrifluoroacetone was chosen. The bioavailability of nalbuphine from intramuscularly injected DNS relative to that from nalbuphine HCl was 85.4%. The mean absorption time of nalbuphine from DNS was 145.2 h. It took approximately 6 days for the complete release of DNS into the blood stream where DNS was rapidly hydrolysed to nalbuphine; suggesting a single injection of 150 mg DNS in our extended-release formulation could provide long-lasting pain relief. Copyright © 2017 John Wiley & Sons, Ltd.
Sachan, Prachee; Kumar, Nidhi; Sharma, Jagdish Prasad
2014-01-01
Background: Density of the drugs injected intrathecally is an important factor that influences spread in the cerebrospinal fluid. Mixing adjuvants with local anesthetics (LA) alters their density and hence their spread compared to when given sequentially in seperate syringes. Aims: To evaluate the efficacy of intrathecal administration of hyperbaric bupivacaine (HB) and clonidine as a mixture and sequentially in terms of block characteristics, hemodynamics, neonatal outcome, and postoperative pain. Setting and Design: Prospective randomized single blind study at a tertiary center from 2010 to 2012. Materials and Methods: Ninety full-term parturient scheduled for elective cesarean sections were divided into three groups on the basis of technique of intrathecal drug administration. Group M received mixture of 75 μg clonidine and 10 mg HB 0.5%. Group A received 75 μg clonidine after administration of 10 mg HB 0.5% through separate syringe. Group B received 75 μg clonidine before HB 0.5% (10 mg) through separate syringe. Statistical analysis used: Observational descriptive statistics, analysis of variance with Bonferroni multiple comparison post hoc test, and Chi-square test. Results: Time to achieve complete sensory and motor block was less in group A and B in which drugs were given sequentially. Duration of analgesia lasted longer in group B (474.3 ± 20.79 min) and group A (472.50 ± 22.11 min) than in group M (337 ± 18.22 min) with clinically insignificant influence on hemodynamic parameters and sedation. Conclusion: Sequential technique reduces time to achieve complete sensory and motor block, delays block regression, and significantly prolongs the duration of analgesia. However, it did not matter much whether clonidine was administered before or after HB. PMID:25886098
Dual nozzle single pump fuel injection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, C.
1992-02-25
This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is suppliedmore » by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.« less
NASA Technical Reports Server (NTRS)
Baker, D. N.; Jaynes, A. N.; Turner, D. L.; Nakamura, R.; Schmid, D.; Mauk, B. H.; Cohen, I. J.; Fennell, J. F.; Blake, J. B.; Strangeway, R. J.;
2016-01-01
An active storm period in June 2015 showed that particle injection events seen sequentially by the four (MagnetosphericMultiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw 500kms) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnetosphere progressed through a sequence of energy-loading and stress-developing states until the entire system suddenly reconfigured at 19:32 UT. Energetic electrons, plasma, and magnetic fields measured by the four MMS spacecraft revealed clear dipolarization front characteristics. It was seen that magnetospheric substorm activity provided a seed electron population as observed by MMS particle sensors as multiple injections and related enhancements in electron flux.
Successful outcome after intravenous gasoline injection.
Domej, Wolfgang; Mitterhammer, Heike; Stauber, Rudolf; Kaufmann, Peter; Smolle, Karl Heinz
2007-12-01
Gasoline, ingested intentionally or accidentally, is toxic. The majority of reported cases of gasoline intoxication involve oral ingestion or inhalation. Data are scarce on complications and outcomes following hydrocarbon poisoning by intravenous injection. Following a suicide attempt by intravenous self-injection of 10 ml of gasoline, a 26-year-old medical student was admitted to the intensive care unit (ICU) with hemoptysis, symptoms of acute respiratory failure, chest pain, and severe abdominal cramps. Gas exchange was severely impaired and a chest x-ray indicated chemical pneumonitis. Initial treatment consisted of mechanical ventilation, supportive hyperventilation, administration of nitrogen oxide (NO), and prednisone. Unfortunately, the patient developed multi-organ dysfunction syndrome (MODS) complicated by life-threatening severe vasoplegia within 24 hours after gasoline injection. High doses of vasopressors along with massive amounts of parenteral fluids were necessary. Despite fluid replacement, renal function worsened and required hemofiltration on 5 sequential days. After 12 days of intensive care management, the patient recovered completely and was discharged to a psychiatric care facility. Intravenous gasoline injection causes major injury to the lungs, the organ bearing the first capillary bed encountered. Treatment of gasoline poisoning is symptomatic because no specific antidote is available. Early and aggressive supportive care may be conducive to a favorable outcome with minimal residual pulmonary sequelae.
Iltis, Isabelle; Koski, Dee M; Eberly, Lynn E; Nelson, Christopher D; Deelchand, Dinesh K; Valette, Julien; Ugurbil, Kamil; Lim, Kelvin O; Henry, Pierre-Gilles
2009-08-01
Acute phencyclidine (PCP) administration mimics some aspects of schizophrenia in rats, such as behavioral alterations, increased dopaminergic activity and prefrontal cortex dysfunction. In this study, we used single-voxel (1)H-MRS to investigate neurochemical changes in rat prefrontal cortex in vivo before and after an acute injection of PCP. A short-echo time sequence (STEAM) was used to acquire spectra in a 32-microL voxel positioned in the prefrontal cortex area of 12 rats anesthetized with isoflurane. Data were acquired for 30 min before and for 140 min after a bolus of PCP (10 mg/kg, n = 6) or saline (n = 6). Metabolites were quantified with the LCModel. Time courses for 14 metabolites were obtained with a temporal resolution of 10 min. The glutamine/glutamate ratio was significantly increased after PCP injection (p < 0.0001, pre- vs. post-injection), while the total concentration of these two metabolites remained constant. Glucose was transiently increased (+70%) while lactate decreased after the injection (both p < 0.0001). Lactate, but not glucose and glutamine, returned to baseline levels after 140 min. These results show that an acute injection of PCP leads to changes in glutamate and glutamine concentrations, similar to what has been observed in schizophrenic patients, and after ketamine administration in humans. MRS studies of this pharmacological rat model may be useful for assessing the effects of potential anti-psychotic drugs in vivo. 2009 John Wiley & Sons, Ltd.
Gatherwright, James R; Brown, Matthew S; Katira, Kristopher M; Rowe, David J
2015-08-01
Three-dimensional (3D) changes in the midface following malar calcium hydroxyapatite (CaHa) injection have not been systematically analyzed. The authors analyzed 3D volume changes in midface and naso-labial fold (NLF) volume, as well as lateral movement in the NLF/naso-labial crease (NLC) junction following malar injection of CaHa in a cadaver model. A single surgeon injected CaHa in the supraperiosteal plane. Sequential images were obtained with the VECTRA 3D system pre- and post-1.5- and 3-cc CaHa injections. All measurements were performed by a single examiner. Injection location was verified anatomically. Injections were performed in 16 fresh cadaver hemi-faces. Maximal increases in projection were centered on the malar injection site, with associated decreases in projection and volume in the infero-medial locations. Relative mean increases in volume of 3.16 cc and 4.94 cc were observed following the 1.5-cc and 3-cc injections, respectively. There was a relative decrease in the volume of the NLF of -0.3 cc and -0.4 cc following the 1.5- and 3-cc injections, respectively. Injection of CaHa was associated with lateral movements of the NLF-NLC junction at the level of the nasal sill, philtral columns, and oral commissure, measuring 2.7, 2.5, and 1.9 mm and 2.8, 2.9, and 2.4 mm following the 1.5- and 3-cc injections, respectively. Anatomical dissection verified the location in the supraperiosteal space and within the middle malar fat pad. Following malar CaHa injection, 3D photographic analysis showed a measureable lifting effect with recruitment of ptotic tissue and lateral movement of the NLF-NLC junction in a cadaver model. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.
Comparison of first pass bolus AIFs extracted from sequential 18F-FDG PET and DSC-MRI of mice
NASA Astrophysics Data System (ADS)
Evans, Eleanor; Sawiak, Stephen J.; Ward, Alexander O.; Buonincontri, Guido; Hawkes, Robert C.; Adrian Carpenter, T.
2014-01-01
Accurate kinetic modelling of in vivo physiological function using positron emission tomography (PET) requires determination of the tracer time-activity curve in plasma, known as the arterial input function (AIF). The AIF is usually determined by invasive blood sampling methods, which are prohibitive in murine studies due to low total blood volumes. Extracting AIFs from PET images is also challenging due to large partial volume effects (PVE). We hypothesise that in combined PET with magnetic resonance imaging (PET/MR), a co-injected bolus of MR contrast agent and PET ligand can be tracked using fast MR acquisitions. This protocol would allow extraction of a MR AIF from MR contrast agent concentration-time curves, at higher spatial and temporal resolution than an image-derived PET AIF. A conversion factor could then be applied to the MR AIF for use in PET kinetic analysis. This work has compared AIFs obtained from sequential DSC-MRI and PET with separate injections of gadolinium contrast agent and 18F-FDG respectively to ascertain the technique‧s validity. An automated voxel selection algorithm was employed to improve MR AIF reproducibility. We found that MR and PET AIFs displayed similar character in the first pass, confirmed by gamma variate fits (p<0.02). MR AIFs displayed reduced PVE compared to PET AIFs, indicating their potential use in PET/MR studies.
Comparison of first pass bolus AIFs extracted from sequential 18F-FDG PET and DSC-MRI of mice.
Evans, Eleanor; Sawiak, Stephen J; Ward, Alexander O; Buonincontri, Guido; Hawkes, Robert C; Carpenter, T Adrian
2014-01-11
Accurate kinetic modelling of in vivo physiological function using positron emission tomography (PET) requires determination of the tracer time-activity curve in plasma, known as the arterial input function (AIF). The AIF is usually determined by invasive blood sampling methods, which are prohibitive in murine studies due to low total blood volumes. Extracting AIFs from PET images is also challenging due to large partial volume effects (PVE). We hypothesise that in combined PET with magnetic resonance imaging (PET/MR), a co-injected bolus of MR contrast agent and PET ligand can be tracked using fast MR acquisitions. This protocol would allow extraction of a MR AIF from MR contrast agent concentration-time curves, at higher spatial and temporal resolution than an image-derived PET AIF. A conversion factor could then be applied to the MR AIF for use in PET kinetic analysis. This work has compared AIFs obtained from sequential DSC-MRI and PET with separate injections of gadolinium contrast agent and 18 F-FDG respectively to ascertain the technique's validity. An automated voxel selection algorithm was employed to improve MR AIF reproducibility. We found that MR and PET AIFs displayed similar character in the first pass, confirmed by gamma variate fits (p<0.02). MR AIFs displayed reduced PVE compared to PET AIFs, indicating their potential use in PET/MR studies.
Alarfaj, Nawal A; Aly, Fatma A; El-Tohamy, Maha F
2015-02-01
A new simple, accurate and sensitive sequential injection analysis chemiluminescence (CL) detection method for the determination of cefditoren pivoxil (CTP) has been developed. The developed method was based on the enhancement effect of silver nanoparticles on the CL signal arising from a luminol-potassium ferricyanide reaction in the presence of CTP. The optimum conditions relevant to the effect of luminol, potassium ferricyanide and silver nanoparticle concentrations were investigated. The proposed method showed linear relationships between relative CL intensity and the investigated drug concentration at the range 0.001-5000 ng/mL, (r = 0.9998, n = 12) with a detection limit of 0.5 pg/mL and quantification limit of 0.001 ng/mL. The relative standard deviation was 1.6%. The proposed method was employed for the determination of CTP in bulk drug, in its pharmaceutical dosage forms and biological fluids such as human serum and urine. The interference of some common additive compounds such as glucose, lactose, starch, talc and magnesium stearate was investigated. In addition, the interference of some related cephalosporins was tested. No interference was recorded. The obtained sequential injection analysis-CL results were statistically compared with those from a reported method and did not show any significant differences. Copyright © 2014 John Wiley & Sons, Ltd.
Lin, Kunning; Ma, Jian; Yuan, Dongxing; Feng, Sichao; Su, Haitao; Huang, Yongming; Shangguan, Qipei
2017-05-15
An integrated system was developed for automatic and sequential determination of NO 2 - , NO 3 - , PO 4 3- , Fe 2+ , Fe 3+ and Mn 2+ in natural waters based on reverse flow injection analysis combined with spectrophotometric detection. The system operation was controlled by a single chip microcomputer and laboratory-programmed software written in LabVIEW. The experimental parameters for each nutrient element analysis were optimized based on a univariate experimental design, and interferences from common ions were evaluated. The upper limits of the linear range (along with detection limit, µmolL -1 ) of the proposed method was 20 (0.03), 200 (0.7), 12 (0.3), 5 (0.03), 5 (0.03), 9 (0.2) µmolL -1 , for NO 2 - , NO 3 - , PO 4 3- , Fe 2+ , Fe 3+ and Mn 2+ , respectively. The relative standard deviations were below 5% (n=9-13) and the recoveries varied from 88.0±1.0% to 104.5±1.0% for spiked water samples. The sample throughput was about 20h -1 . This system has been successfully applied for the determination of multi-nutrient elements in different kinds of water samples and showed good agreement with reference methods (slope 1.0260±0.0043, R 2 =0.9991, n=50). Copyright © 2017 Elsevier B.V. All rights reserved.
Paluch, Justyna; Mesquita, Raquel B R; Cerdà, Víctor; Kozak, Joanna; Wieczorek, Marcin; Rangel, António O S S
2018-08-01
A sequential injection (SI) system equipped with in-line solid phase extraction column and in-line soil mini-column is proposed for determination of zinc and copper in soil leachates. The spectrophotometric determination (560 nm) is based on the reaction of both analytes with 1-(2-Pyridylazo)-2-naphthol (PAN). Zinc is determined after retaining copper on a cationic resin (Chelex100) whereas copper is determined from the difference of the absorbance measured for both analytes, introduced into the system with the use of a different channel, and zinc absorbance. The influence of several potential interferences was studied. Using the developed method, zinc and copper were determined within the concentration ranges of 0.005-0.300 and 0.011-0.200 mg L -1 , and with a relative standard deviation lower than 6.0% and 5.1%, respectively. The detection limits are 1.4 and 3.0 µg/L for determination of zinc and copper, respectively. The developed SI method was verified by the determination of both analytes in synthetic and certified reference materials of water samples, and applied to the determination of the analytes in rain water and soil leachates from laboratory scale soil core column and in-line soil mini-column. Copyright © 2018 Elsevier B.V. All rights reserved.
Barbesi, Donato; Vicente Vilas, Víctor; Millet, Sylvain; Sandow, Miguel; Colle, Jean-Yves; Aldave de Las Heras, Laura
2017-01-01
A LabVIEW ® -based software for the control of the fully automated multi-sequential flow injection analysis Lab-on-Valve (MSFIA-LOV) platform AutoRAD performing radiochemical analysis is described. The analytical platform interfaces an Arduino ® -based device triggering multiple detectors providing a flexible and fit for purpose choice of detection systems. The different analytical devices are interfaced to the PC running LabVIEW ® VI software using USB and RS232 interfaces, both for sending commands and receiving confirmation or error responses. The AUTORAD platform has been successfully applied for the chemical separation and determination of Sr, an important fission product pertinent to nuclear waste.
Metabolic Biofouling of Glucose Sensors in Vivo: Role of Tissue Microhemorrhages
Klueh, Ulrike; Liu, Zenghe; Feldman, Ben; Henning, Timothy P; Cho, Brian; Ouyang, Tianmei; Kreutzer, Don
2011-01-01
Objective: Based on our in vitro study that demonstrated the adverse effects of blood clots on glucose sensor function, we hypothesized that in vivo local tissue hemorrhages, induced as a consequence of sensor implantation or sensor movement post-implantation, are responsible for unreliable readings or an unexplained loss of functionality shortly after implantation. Research Design and Methods: To investigate this issue, we utilized real-time continuous monitoring of blood glucose levels in a mouse model. Direct injection of blood at the tissue site of sensor implantation was utilized to mimic sensor-induced local tissue hemorrhages. Results: It was found that blood injections, proximal to the sensor, consistently caused lowered sensor glucose readings, designated temporary signal reduction, in vivo in our mouse model, while injections of plasma or saline did not have this effect. Conclusion: These results support our hypothesis that tissue hemorrhage and resulting blood clots near the sensor can result in lowered local blood glucose concentrations due to metabolism of glucose by the clot. The lowered local blood glucose concentration led to low glucose readings from the still functioning sensor that did not reflect the systemic glucose level. PMID:21722574
NASA Astrophysics Data System (ADS)
To, A.; Hoex, B.
2017-11-01
A novel method for the extraction of fixed interface charge, Qf, and the surface recombination parameters, Sn0 and Sp0, from the injection-level dependent effective minority carrier lifetime measurements is presented. Unlike conventional capacitance-voltage measurements, this technique can be applied to highly doped surfaces provided the surface carrier concentration transitions into strong depletion or inversion with increased carrier injection. By simulating the injection level dependent Auger-corrected inverse lifetime curve of symmetrically passivated and diffused samples after sequential annealing and corona charging, it was revealed that Qf, Sn0, and Sp0 have unique signatures. Therefore, these important electronic parameters, in some instances, can independently be resolved. Furthermore, it was shown that this non-linear lifetime behaviour is exhibited on both p-type and n-type diffused inverted surfaces, by demonstrating the approach with phosphorous diffused n+pn+ structures and boron diffused p+np+ structures passivated with aluminium oxide (AlOx) and silicon nitride, respectively (SiNx). The results show that the approximation of a mid-gap Shockley-Read-Hall defect level with equal capture cross sections is able to, in the samples studied in this work, reproduce the observed injection level dependent lifetime behaviour.
Flow analysis techniques for phosphorus: an overview.
Estela, José Manuel; Cerdà, Víctor
2005-04-15
A bibliographical review on the implementation and the results obtained in the use of different flow analytical techniques for the determination of phosphorus is carried out. The sources, occurrence and importance of phosphorus together with several aspects regarding the analysis and terminology used in the determination of this element are briefly described. A classification as well as a brief description of the basis, advantages and disadvantages of the different existing flow techniques, namely; segmented flow analysis (SFA), flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA) and multipumped FIA (MPFIA) is also carried out. The most relevant manuscripts regarding the analysis of phosphorus by means of flow techniques are herein classified according to the detection instrumental technique used with the aim to facilitate their study and obtain an overall scope. Finally, the analytical characteristics of numerous flow-methods reported in the literature are provided in the form of a table and their applicability to samples with different matrixes, namely water samples (marine, river, estuarine, waste, industrial, drinking, etc.), soils leachates, plant leaves, toothpaste, detergents, foodstuffs (wine, orange juice, milk), biological samples, sugars, fertilizer, hydroponic solutions, soils extracts and cyanobacterial biofilms are tabulated.
Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture.
Li, Yongsan; Zhang, Yaling; Wei, Yen; Tao, Lei
2017-09-29
The protocol presents a facile, efficient, and versatile method to prepare chitosan-based hydrogels using dynamic imine chemistry. The hydrogel is prepared by mixing solutions of glycol chitosan with a synthesized benzaldehyde terminated polymer gelator, and hydrogels are efficiently obtained in several minutes at room temperature. By varying ratios between glycol chitosan, polymer gelator, and water contents, versatile hydrogels with different gelation times and stiffness are obtained. When damaged, the hydrogel can recover its appearances and modulus, due to the reversibility of the dynamic imine bonds as crosslinkages. This self-healable property enables the hydrogel to be injectable since it can be self-healed from squeezed pieces to an integral bulk hydrogel after the injection process. The hydrogel is also multi-responsive to many bio-active stimuli due to different equilibration statuses of the dynamic imine bonds. This hydrogel was confirmed as bio-compatible, and L929 mouse fibroblast cells were embedded following standard procedures and the cell proliferation was easily assessed by a 3D cell cultivation process. The hydrogel can offer an adjustable platform for different research where a physiological mimic of a 3D environment for cells is profited. Along with its multi-responsive, self-healable, and injectable properties, the hydrogels can potentially be applied as multiple carriers for drugs and cells in future bio-medical applications.
MiR-145 mediates zebrafish hepatic outgrowth through progranulin A signaling
Li, Ya-Wen; Chiang, Keng-Yu; Li, Yen-Hsing; Wu, Sung-Yu; Liu, Wangta; Lin, Chia-Ray
2017-01-01
MicroRNAs (miRs) are mRNA-regulatory molecules that fine-tune gene expression and modulate both processes of development and tumorigenesis. Our previous studies identified progranulin A (GrnA) as a growth factor which induces zebrafish hepatic outgrowth through MET signaling. We also found that miR-145 is one of potential fine-tuning regulators of GrnA involved in embryonic hepatic outgrowth. The low level of miR-145 seen in hepatocarinogenesis has been shown to promote pathological liver growth. However, little is known about the regulatory mechanism of miR-145 in embryonic liver development. In this study, we demonstrate a significant decrease in miR-145 expression during hepatogenesis. We modulate miR-145 expression in zebrafish embryos by injection with a miR-145 mimic or a miR-145 hairpin inhibitor. Altered embryonic liver outgrowth is observed in response to miR-145 expression modulation. We also confirm a critical role of miR-145 in hepatic outgrowth by using whole-mount in situ hybridization. Loss of miR-145 expression in embryos results in hepatic cell proliferation, and vice versa. Furthermore, we demonstrate that GrnA is a target of miR-145 and GrnA-induced MET signaling is also regulated by miR-145 as determined by luciferase reporter assay and gene expression analysis, respectively. In addition, co-injection of GrnA mRNA with miR-145 mimic or MO-GrnA with miR-145 inhibitor restores the liver defects caused by dysregulation of miR-145 expression. In conclusion, our findings suggest an important role of miR-145 in regulating GrnA-dependent hepatic outgrowth in zebrafish embryonic development. PMID:28531199
Neuropeptide-Y both Improves and Impairs Delayed Matching-to-Sample Performance in Rats
1991-01-01
Neuropeptide Y distribution in the 422 THOMAS AND AHLERS rat brain. Science 221:877-879; 1983. of animal learning. In: Roitblat , H. L.; Bever, T. G.; Terrace, H...Sources of proactive interference in memory. Hillsdale, NJ: Erlbaum; 1976. animal memory. J. Exp. Psychol. (Anim. Behav.) 1456-70; 1988. 32. Roitblat , H...memory processing by neuropeptide Y varies with brain 33. Roitblat , H. L., Scopatz, R. A. Sequential effects in pigeons de- injection site. Brain Res
Early detection of osteoarthritis in rabbits using MRI with a double-contrast agent.
Onishi, Okihiro; Ikoma, Kazuya; Kido, Masamitsu; Kabuto, Yukichi; Ueshima, Keiichiro; Matsuda, Ken-Ichi; Tanaka, Masaki; Kubo, Toshikazu
2018-03-13
Articular cartilage degeneration has been evaluated by magnetic resonance imaging (MRI). However, this method has several problems, including its time-consuming nature and the requirement of a high magnetic field or specialized hardware. The purpose of this study was to sequentially assess early degenerative changes in rabbit knee articular cartilage using MRI with a new double-contrast agent. We induced osteoarthritis (OA) in the right knee of rabbits by anterior cruciate ligament transection and partial medial meniscectomy. Proton density-weighted images and T 2 -calculated images were obtained before and after contrast agent injection into the knee. The signal intensity ratio (SIR) values on the proton density-weighted images were calculated by dividing the signal intensity of the articular cartilage by that of joint fluid. Six rabbits were examined using MRI at 2 (designated 2-w OA) and 4 weeks (4-w OA) after the operation. Histological examination was performed 4 weeks after the operation. One rabbit was histologically examined 2 weeks after the operation. The control consisted of six rabbits that were not subjected to the operation. The SIR values, T 2 values and the thicknesses of the cartilage of the 2-w OA, 4-w OA and the control before and after contrast agent injection were analyzed. The Mankin score and OARSI (Osteoarthritis Research Society International) score were used for the histological evaluation. Significant differences in the SIR and T 2 values of the medial and lateral condyles of the femur were found between the control and the 4-w OA only after contrast agent injection. No significant differences were found in the SIR and T 2 values before contrast agent injection between the control, the 2-w OA and 4-w OA. The thickness of the articular cartilage revealed no significant differences. In the histological assessment, the Mankin score and OARSI score sequentially increased from the control to the 4-w OA. We evaluated the SIR and T 2 values of the knees in a rabbit OA model and a control model using a new double-contrast agent. MRI with this agent enabled OA detection earlier than using conventional MRI.
Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui
2017-11-15
The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.
Stucchi, Mattia; Cairati, Silvia; Cetin-Atalay, Rengul; Christodoulou, Michael S; Grazioso, Giovanni; Pescitelli, Gennaro; Silvani, Alessandra; Yildirim, Deniz Cansen; Lesma, Giordano
2015-05-07
The concurrent employment of α-amino acid-derived chiral components such as aldehydes and α-isocyanoacetates, in a sequential Ugi reaction/cyclization two-step strategy, opens the door to the synthesis of three structurally distinct piperazine-based scaffolds, characterized by the presence of L-Ala and/or L-Phe-derived side chains and bearing appropriate functionalities to be easily applied in peptide chemistry. By means of computational studies, these scaffolds have been demonstrated to act as minimalist peptidomimetics, able to mimic a well defined range of peptide secondary structures and therefore potentially useful for the synthesis of small-molecule PPI modulators. Preliminary biological evaluation of two different resistant hepatocellular carcinoma cellular lines, for which differentiation versus resistance ability seem to be strongly correlated with well defined types of PPIs, has revealed a promising antiproliferative activity for selected compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Guoqi; Chen Ying; Huang Yuying
2011-08-01
Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only atmore » the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: > I.p. MPTP-injection mediates death of dopaminergic neurons. > I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. > I.p. MPTP-injection does not alter basal synaptic transmission. > Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. > Attenuation of NMDA-receptors mediated fEPSPs after i.p. MPTP-injection.« less
Hua, Susan; Cabot, Peter J
2013-01-01
The peripheral immune-derived opioid analgesic pathway has been well established as a novel target in the clinical pain management of a number of painful pathologies, including acute inflammatory pain, neuropathic pain, and rheumatoid arthritis. Our objective was to engineer targeted nanoparticles that mimic immune cells in peripheral pain control to deliver opioids, in particular loperamide HCl, specifically to peripheral opioid receptors to induce analgesic and anti-inflammatory actions for use in painful inflammatory conditions. This peripheral analgesic system is devoid of central opioid mediated side effects (e.g., respiratory depression, sedation, dependence, tolerance). A randomized, double blind, controlled animal trial. Thirty-six adult male Wistar rats (200 - 250 g) were randomly divided into 6 groups: loperamide HCl-encapsulated anti-ICAM-1 immunoliposomes, naloxone methiodide + loperamide HCl-encapsulated anti-ICAM-1 immunoliposomes, loperamide HCl-encapsulated liposomes, empty anti-ICAM-1 immunoliposomes, empty liposomes, and loperamide solution. Animals received an intraplantar injection of 150 μL Complete Freund's Adjuvant (CFA) into the right hindpaw and experiments were performed 5 days post-CFA injection, which corresponded to the peak inflammatory response. All formulations were administered intravenously via tail vein injection. The dose administered was 200 μL, which equated to 0.8 mg of loperamide HCl for the loperamide HCl treatment groups (sub-therapeutic dose). Naloxone methiodide (1 mg/kg) was administered via intraplantar injection, 15 minutes prior to loperamide-encapsulated anti-ICAM-1 immunoliposomes. An investigator blinded to the treatment administered assessed the time course of the antinociceptive and anti-inflammatory effects using a paw pressure analgesiometer and plethysmometer, respectively. Biodistribution studies were performed 5 days post-CFA injection with anti-ICAM-1 immunoliposomes and control liposomes via tail vein injection using liquid scintillation counting (LSC). Administration of liposomes loaded with loperamide HCl, and conjugated with antibody to intercellular adhesion molecule-1 (anti-ICAM-1), exerted analgesic and anti-inflammatory effects exclusively in peripheral painful inflamed tissue. These targeted nanoparticles produced highly significant analgesic and anti-inflammatory effects over the 48 hour time course studied following intravenous administration in rats with Complete Freund's Adjuvant-induced inflammation of the paw. All control groups showed no significant antinociceptive or anti-inflammatory effects. Our biodistribution study demonstrated specific localization of the targeted nanoparticles to peripheral inflammatory tissue and no significant uptake into the brain. In vivo studies were performed in the well-established rodent model of acute inflammatory pain. We are currently studying this approach in chronic pain models known to have clinical activation of the peripheral immune-derived opioid response. The study presents a novel approach of opioid delivery specifically to injured tissues for pain control. The study also highlights a novel anti-inflammatory role for peripheral opioid targeting, which is of clinical relevance. The potential also exists for the modification of these targeted nanoparticles with other therapeutic compounds for use in other painful conditions.
NASA Astrophysics Data System (ADS)
Li, Bing; Li, Long-Biao; Huang, Yong-Feng; Geng, Jin-Jun; Yu, Yong-Bo; Song, Li-Ming
2018-05-01
The brightness of the multi-wavelength afterglow of GRB 170817A is increasing unexpectedly even ∼160 days after the associated gravitational burst. Here we suggest that the brightening can be caused by a late-time energy injection process. We use an empirical expression to mimic the evolution of the injection luminosity, which consists of a power-law rising phase and a power-law decreasing phase. It is found that the power-law indices of the two phases are 0.92 and ‑2.8, respectively, with the peak time of the injection being ∼110 days. The energy injection could be due to some kind of accretion, with the total accreted mass being ∼0.006 M ⊙. However, normal fall-back accretion, which usually lasts for a much shorter period, cannot provide a natural explanation. Our best-fit decay index of ‑2.8 is also at odds with the expected value of ‑5/3 for normal fall-back accretion. Noting that the expansion velocities of the kilonova components associated with GW170817 are 0.1–0.3 c, we argue that there should also be some ejecta with correspondingly lower velocities during the coalescence of the double neutron star (NS) system. They are bound by the gravitational well of the remnant central compact object and might be accreted at a timescale of about 100 days, providing a reasonable explanation for the energy injection. Detailed studies on the long-lasting brightening of GRB 170817A thus may provide useful information on matter ejection during the merger process of binary neutron stars.
Haghgoo, Roza; Taleghani, Ferial
2015-01-01
Background: Inferior alveolar nerve block is a common technique for anesthesia of the primary mandibular molars. A number of disadvantages have been shown to be associated with this technique. Periodontal ligament (PDL) injection could be considered as an alternative to inferior alveolar nerve block. The aim of this study was to evaluate the effectiveness of PDL injection in the anesthesia of primary molar pulpotomy with mandibular block. Methods: This study was performed using a sequential double-blind randomized trial design. 80 children aged 3-7 years old who required pulpotomy in symmetrical mandibular primary molars were selected. The teeth of these children were anesthetized with periodontal injection on one side of the mandible and block on the other. Pulpotomy was performed on each patient during the same appointment. Signs of discomfort, including hand and body tension and eye movement, the verbal complaint and crying (SEM scale), were evaluated by a dental assistant who was blinded to the treatment allocation of the patients. Finally, the data were analyzed using the exact Fisher test and Pearson Chi-squared exact test. Results: Success rate was 88/75 and 91/25 in the PDL injection and nerve block groups, respectively. There was no statistically significant difference between the two techniques (P = 0.250). Conclusion: Results showed that PDL injection can be used as an alternative to nerve block in pulpotomy of the mandibular primary molars. PMID:26028895
Sequential Actions of Rab5 and Rab7 Regulate Endocytosis in the Xenopus Oocyte
Mukhopadhyay, Amitabha; Barbieri, Alejandro M.; Funato, Kouichi; Roberts, Richard; Stahl, Philip D.
1997-01-01
To explore the role of GTPases in endocytosis, we developed an assay using Xenopus oocytes injected with recombinant proteins to follow the uptake of the fluid phase marker HRP. HRP uptake was inhibited in cells injected with GTPγS or incubated with aluminum fluoride, suggesting a general role for GTPases in endocytosis. Injection of Rab5 into oocytes, as well as Rab5:Q79L, a mutant with decreased GTPase activity, increased HRP uptake. Injection of Rab5:S34N, the dominant-negative mutant, inhibited HRP uptake. Injection of N-ethylmaleimide–sensitive factor (NSF) stimulated HRP uptake, and ATPase-defective NSF mutants inhibited HRP uptake when coinjected with Rab5:Q79L, confirming a requirement for NSF in endocytosis. Surprisingly, injection of Rab7:WT stimulated both uptake and degradation/activation of HRP. The latter appears to be due to enhanced transport to a late endosomal/prelysosomal degradative compartment that is monensin sensitive. Enhancement of uptake by Rab7 appears to function via an Rab5-sensitive pathway in oocytes since the stimulatory effect of Rab7 was blocked by coinjection of Rab5:S34N. Stimulation of uptake by Rab5 was blocked by Rab5:S34N but not by Rab7:T22N. Our results suggest that Rab7, while functioning downstream of Rab5, may be rate limiting for endocytosis in oocytes. PMID:9087439
Testing a fall risk model for injection drug users.
Pieper, Barbara; Templin, Thomas N; Goldberg, Allon
2012-01-01
Fall risk is a critical component of clinical assessment and has not been examined for persons who have injected illicit drugs and are aging. The aim of this study was to test and develop the Fall Risk Model for Injection Drug Users by examining the relationships among injection drug use, chronic venous insufficiency, lower extremity impairments (i.e., decreased ankle range of motion, reduced calf muscle endurance, and leg pain), age and other covariates, and the Tinetti balance and gait total score as a measure of fall risk. A cross-sectional comparative design was used with four crossed factors. Standardized instruments were used to assess the variables. Moderated multiple regression with linear and quadratic trends in age was used to examine the nature of the relationship between the Tinetti balance and gait total and age and the potential moderating role of injection drug use. A prespecified series of models was tested. Participants (n = 713) were men (46.9%) and women with a mean age of 46.26 years and primarily African American (61.7%) in methadone treatment centers. The fall risk of a 48-year-old leg injector was comparable with the fall risk of a 69-year-old who had not injected drugs. Variables were added to the model sequentially, resulting in some lost significance of some when they were explained by subsequent variables. Final significant variables in the model were employment status, number of comorbidities, ankle range of motion, leg pain, and calf muscle endurance. Fall risk was associated with route of drug use. Lower extremity impairments accounted for the effects of injection drug use and chronic venous insufficiency on risk for falls. Further understanding of fall risk in injection users is necessary as they age, attempt to work, and participate in activities.
MicroRNA-155 attenuates late sepsis-induced cardiac dysfunction through JNK and β-arrestin 2.
Zhou, Yu; Song, Yan; Shaikh, Zahir; Li, Hui; Zhang, Haiju; Caudle, Yi; Zheng, Shouhua; Yan, Hui; Hu, Dan; Stuart, Charles; Yin, Deling
2017-07-18
Cardiac dysfunction is correlated with detrimental prognosis of sepsis and contributes to a high risk of mortality. After an initial hyperinflammatory reaction, most patients enter a protracted state of immunosuppression (late sepsis) that alters both innate and adaptive immunity. The changes of cardiac function in late sepsis are not yet known. MicroRNA-155 (miR-155) is previously found to play important roles in both regulations of immune activation and cardiac function. In this study, C57BL/6 mice were operated to develop into early and late sepsis phases, and miR-155 mimic was injected through the tail vein 48 h after cecal ligation and puncture (CLP). The effect of miR-155 on CLP-induced cardiac dysfunction was explored in late sepsis. We found that increased expression of miR-155 in the myocardium protected against cardiac dysfunction in late sepsis evidenced by attenuating sepsis-reduced cardiac output and enhancing left ventricular systolic function. We also observed that miR-155 markedly reduced the infiltration of macrophages and neutrophils into the myocardium and attenuated the inflammatory response via suppression of JNK signaling pathway. Moreover, overexpression of β-arrestin 2 (Arrb2) exacerbated the mice mortality and immunosuppression in late sepsis. Furthermore, transfection of miR-155 mimic reduced Arrb2 expression, and then restored immunocompetence and improved survival in late septic mice. We conclude that increased miR-155 expression through systemic administration of miR-155 mimic attenuates cardiac dysfunction and improves late sepsis survival by targeting JNK associated inflammatory signaling and Arrb2 mediated immunosuppression.
Antiviral Defense and Innate Immune Memory in the Oyster.
Green, Timothy J; Speck, Peter
2018-03-16
The Pacific oyster, Crassostrea gigas , is becoming a valuable model for investigating antiviral defense in the Lophotrochozoa superphylum. In the past five years, improvements to laboratory-based experimental infection protocols using Ostreid herpesvirus I (OsHV-1) from naturally infected C. gigas combined with next-generation sequencing techniques has revealed that oysters have a complex antiviral response involving the activation of all major innate immune pathways. Experimental evidence indicates C. gigas utilizes an interferon-like response to limit OsHV-1 replication and spread. Oysters injected with a viral mimic (polyI:C) develop resistance to OsHV-1. Improved survival following polyI:C injection was found later in life (within-generational immune priming) and in the next generation (multi-generational immune priming). These studies indicate that the oyster's antiviral defense system exhibits a form of innate immune-memory. An important priority is to identify the molecular mechanisms responsible for this phenomenon. This knowledge will motivate the development of practical and cost-effective treatments for improving oyster health in aquaculture.
2015-01-01
A synthetic mimic of mussel adhesive protein, dopamine-modified four-armed poly(ethylene glycol) (PEG-D4), was combined with a synthetic nanosilicate, Laponite (Na0.7+(Mg5.5Li0.3Si8)O20(OH)4)0.7–), to form an injectable naoncomposite tissue adhesive hydrogel. Incorporation of up to 2 wt % Laponite significantly reduced the cure time while enhancing the bulk mechanical and adhesive properties of the adhesive due to strong interfacial binding between dopamine and Laponite. The addition of Laponite did not alter the degradation rate and cytocompatibility of PEG-D4 adhesive. On the basis of subcutaneous implantation in rat, PEG-D4 nanocomposite hydrogels elicited minimal inflammatory response and exhibited an enhanced level of cellular infiltration as compared to Laponite-free samples. The addition of Laponite is potentially a simple and effective method for promoting bioactivity in a bioinert, synthetic PEG-based adhesive while simultaneously enhancing its mechanical and adhesive properties. PMID:25222290
Sebbane, Florent; Jarrett, Clayton O; Gardner, Donald; Long, Daniel; Hinnebusch, B Joseph
2006-04-04
Yersinia pestis is transmitted by fleas and causes bubonic plague, characterized by severe local lymphadenitis that progresses rapidly to systemic infection and life-threatening septicemia. Here, we show that although flea-borne transmission usually leads to bubonic plague in mice, it can also lead to primary septicemic plague. However, intradermal injection of Y. pestis, commonly used to mimic transmission by fleabite, leads only to bubonic plague. A Y. pestis strain lacking the plasmid-encoded cell-surface plasminogen activator, which is avirulent by intradermal or s.c. injection, was able to cause fatal primary septicemic plague at low incidence, but not bubonic plague, when transmitted by fleas. The results clarify a long-standing uncertainty about the etiology of primary septicemic plague and support an evolutionary scenario in which plague first emerged as a flea-borne septicemic disease of limited transmissibility. Subsequent acquisition of the plasminogen activator gene by horizontal transfer enabled the bubonic form of disease and increased the potential for epidemic spread.
Herman, Krisztian; Szabó, László; Leopold, Loredana F; Chiş, Vasile; Leopold, Nicolae
2011-05-01
A new, simple, and effective approach for multianalyte sequential surface-enhanced Raman scattering (SERS) detection in a flow cell is reported. The silver substrate was prepared in situ by laser-induced photochemical synthesis. By focusing the laser on the 320 μm inner diameter glass capillary at 0.5 ml/min continuous flow of 1 mM silver nitrate and 10 mM sodium citrate mixture, a SERS active silver spot on the inner wall of the glass capillary was prepared in a few seconds. The test analytes, dacarbazine, 4-(2-pyridylazo)resorcinol (PAR) complex with Cu(II), and amoxicillin, were sequentially injected into the flow cell. Each analyte was adsorbed to the silver surface, enabling the recording of high intensity SERS spectra even at 2 s integration times, followed by desorption from the silver surface and being washed away from the capillary. Before and after each analyte passed the detection window, citrate background spectra were recorded, and thus, no "memory effects" perturbed the SERS detection. A good reproducibility of the SERS spectra obtained under flow conditions was observed. The laser-induced photochemically synthesized silver substrate enables high Raman enhancement, is characterized by fast preparation with a high success rate, and represents a valuable alternative for silver colloids as SERS substrate in flow approaches.
Kinetic Titration Series with Biolayer Interferometry
Frenzel, Daniel; Willbold, Dieter
2014-01-01
Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1–42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations. PMID:25229647
Kinetic titration series with biolayer interferometry.
Frenzel, Daniel; Willbold, Dieter
2014-01-01
Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1-42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations.
Li, Jing-Yi; Xie, Wenrui; Strong, Judith A; Guo, Qu-Lian; Zhang, Jun-Ming
2011-01-01
Inflammatory responses in the lumbar dorsal root ganglion (DRG) play a key role in pathologic pain states. Systemic administration of a common anti-inflammatory corticosteroid, triamcinolone acetonide (TA), reduces sympathetic sprouting, mechanical pain behavior, spontaneous bursting activity, and cytokine and nerve growth factor production in the DRG. We hypothesized that systemic TA effects are primarily due to local effects on the DRG. Male Sprague-Dawley rats were divided into 4 groups: SNL (tight ligation and transection of spinal nerves) and normal with and without a single dose of TA injectable suspension slowly injected onto the surface of DRG and surrounding region at the time of SNL or sham surgery. Mechanical threshold was tested on postoperative days 1, 3, 5, and 7. Immunohistochemical staining examined tyrosine hydroxylase and glial fibrillary acidic protein in DRG and CD11B antibody (OX-42) in spinal cord. Local TA treatment attenuated mechanical sensitivity, reduced sympathetic sprouting in the DRG, and decreased satellite glia activation in the DRG and microglia activation in the spinal cord after SNL. A single injection of corticosteroid in the vicinity of the axotomized DRG can mimic many effects of systemic TA, mitigating behavioral and cellular abnormalities induced by spinal nerve ligation. This provides a further rationale for the use of localized steroid injections clinically and provides further support for the idea that localized inflammation at the level of the DRG is an important component of the spinal nerve ligation model, commonly classified as neuropathic pain model.
Near infrared imaging to identify sentinel lymph nodes in invasive urinary bladder cancer
NASA Astrophysics Data System (ADS)
Knapp, Deborah W.; Adams, Larry G.; Niles, Jacqueline D.; Lucroy, Michael D.; Ramos-Vara, Jose; Bonney, Patty L.; deGortari, Amalia E.; Frangioni, John V.
2006-02-01
Approximately 12,000 people are diagnosed with invasive transitional cell carcinoma of the urinary bladder (InvTCC) each year in the United States. Surgical removal of the bladder (cystectomy) and regional lymph node dissection are considered frontline therapy. Cystectomy causes extensive acute morbidity, and 50% of patients with InvTCC have occult metastases at the time of diagnosis. Better staging procedures for InvTCC are greatly needed. This study was performed to evaluate an intra-operative near infrared fluorescence imaging (NIRF) system (Frangioni laboratory) for identifying sentinel lymph nodes draining InvTCC. NIRF imaging was used to map lymph node drainage from specific quadrants of the urinary bladder in normal dogs and pigs, and to map lymph node drainage from naturally-occurring InvTCC in pet dogs where the disease closely mimics the human condition. Briefly, during surgery NIR fluorophores (human serum albumen-fluorophore complex, or quantum dots) were injected directly into the bladder wall, and fluorescence observed in lymphatics and regional nodes. Conditions studied to optimize the procedure including: type of fluorophore, depth of injection, volume of fluorophore injected, and degree of bladder distention at the time of injection. Optimal imaging occurred with very superficial injection of the fluorophore in the serosal surface of the moderately distended bladder. Considerable variability was noted from dog to dog in the pattern of lymph node drainage. NIR fluorescence was noted in lymph nodes with metastases in dogs with InvTCC. In conclusion, intra-operative NIRF imaging is a promising approach to improve sentinel lymph node mapping in invasive urinary bladder cancer.
Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing.
Jung, Jae Hwan; Desit, Patcharin; Prausnitz, Mark R
2018-04-01
The purpose is to target model drug particles to the posterior region of the suprachoroidal space (SCS) of the eye controlled via pushing by hydrogel swelling. A particle formulation containing 1% hyaluronic acid (HA) with fluorescent polymer particles and a hydrogel formulation containing 4% HA were introduced in a single syringe as two layers without mixing, and injected sequentially into the SCS of the rabbit eye ex vivo and in vivo using a microneedle. Distribution of particles in the eye was determined by microscopy. During injection, the particle formulation was pushed toward the middle of the SCS by the viscous hydrogel formulation, but less than 12% of particles reached the posterior SCS. After injection, the particle formulation was pushed further toward the macula and optic nerve in the posterior SCS by hydrogel swelling and spreading. Heating the eye to 37°C, or injecting in vivo decreased viscosity and mechanical strength of the hydrogel, thereby allowing it to swell and flow further in the SCS. A high salt concentration (9% NaCl) in the hydrogel formulation further increased hydrogel swelling due to osmotic flow into the hydrogel. In this way, up to 76% of particles were delivered to the posterior SCS from an injection made near the limbus. This study shows that model drug particles can be targeted to the posterior SCS by HA hydrogel swelling and pushing without particle functionalization or administering external driving forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitsou, Maria-Chrysanthi; Kostopanagiotou, Georgia; Kalimeris, Konstantinos
Purpose: The consequences from the injection of different types of drugs in the epidural space remains unknown. Increasing evidence suggests that localized inflammation, fibrosis, and arachnoiditis can complicate sequential epidural blockades, or even epidural contrast injection. We investigate the in vivo effect of epidural injections in the epidural space in an animal model. Materials and Methods: A group of ten male adult pigs, five punctures to each at distinct vertebral interspaces under general anesthesia, were examined, testing different drugs, used regularly in the epidural space (iopamidol, methylprednisolone acetate, ropivacaine). Each site was marked with a percutaneous hook wire marker. Histologicalmore » analysis of the epidural space, the meninges, and the underlying spinal cord of the punctured sites along with staining for caspase-3 followed 20 days later. Results: The epidural space did not manifest adhesions or any other pathology, and the outer surface of the dura was not impaired in any specimen. The group that had the contrast media injection showed a higher inflammation response compared to the other groups (P = 0.001). Positive staining for caspase-3 was limited to <5% of neurons with all substances used. Conclusion: No proof of arachnoiditis and/or fibrosis was noted in the epidural space with the use of the above-described drugs. A higher inflammation rate was noted with the use of contrast media.« less
Ikoma, Yoko; Watabe, Hiroshi; Hayashi, Takuya; Miyake, Yoshinori; Teramoto, Noboru; Minato, Kotaro; Iida, Hidehiro
2010-01-01
Positron emission tomography (PET) with [11C]raclopride has been used to investigate the density (Bmax) and affinity (Kd) of dopamine D2 receptors related to several neurological and psychiatric disorders. However, in assessing the Bmax and Kd, multiple PET scans are necessary under variable specific activities of administered [11C]raclopride, resulting in a long study period and unexpected physiological variations. In this paper, we have developed a method of multiple-injection graphical analysis (MI-GA) that provides the Bmax and Kd values from a single PET scan with three sequential injections of [11C]raclopride, and we validated the proposed method by performing numerous simulations and PET studies on monkeys. In the simulations, the three-injection protocol was designed according to prior knowledge of the receptor kinetics, and the errors of Bmax and Kd estimated by MI-GA were analyzed. Simulations showed that our method could support the calculation of Bmax and Kd, despite a slight overestimation compared with the true magnitudes. In monkey studies, we could calculate the Bmax and Kd of diseased or normal striatum in a 150 mins scan with the three-injection protocol of [11C]raclopride. Estimated Bmax and Kd values of D2 receptors in normal or partially dopamine-depleted striatum were comparable to the previously reported values. PMID:19904285
Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit
2015-10-20
Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.
Induction of Listeria monocytogenes infection by the consumption of ponderosa pine needles.
Adams, C J; Neff, T E; Jackson, L L
1979-01-01
An infectious microorganism, identified as Listeria monocytogenes, has been isolated from the bloodstream of pregnant mice fed a diet containing Pinus ponderosa needles. When the isolate was injected into pregnant mice, reproductive dysfunction and other changes, including speckled livers, spleen atrophy, and hemorrhagic intestines, appeared to mimic the signs of the disease in pregnant mice fed pine needles. Moreover, these pathological changes are similar to those observed in cattle and other mammals experiencing abortions or toxemia, or both, attributed to the ingestion of P. ponderosa needles, suggesting that L. monocytogenes may be a part of the etiology of "pine needle abortion." PMID:113341
NASA Astrophysics Data System (ADS)
Bazel, Yaroslav; Lešková, Martina; Rečlo, Michal; Šandrejová, Jana; Simon, András; Fizer, Maksym; Sidey, Vasyl
2018-05-01
Structure, spectrophotometric and protolytic properties of the styryl dye 2-[4-(dimethylamino)styryl]-1-ethylquinolinium iodide (R) as well as its complex with tungsten were studied. The selective protonation of dimethylamino group was confirmed by density functional theory investigation through the computation of Fukui function, NPA partial atomic charges, and NICS(0) aromaticity indexes. The TD-DFT study explains the experimental change of color by excluding the dimethylamino group from HOMO orbital upon protonation. The acid dissociation constant, the optimum wavelength and the molar absorptivity of R were found to be: 3.02, 501 nm and 4.0 × 104 L mol-1 cm-1, respectively. The protolytic properties of the reagent were found to change significantly in the presence of tungsten(VI). Analysis of bond critical points between the anions and Quinaldine Red cation gives the selectivity raw HWO4- > MoO4-> H2VO4- > ReO4- > ClO4-, that perfectly match with the experimental data. Based on this observation, a non-extractive sequential-injection spectrophotometric method for the determination of tungsten was developed. The absorbance of the colored extracts obeys Beer's law up to 55.2 mg L-1 of W at 520 nm wavelength. The limit of detection calculated from a blank test (n = 10) based on 3 s was 0.96 mg L-1. The developed method was applied for the determination of tungsten in model samples.
Nakamura, Takeshi; Miyagawa, Shinichi; Katsu, Yoshinao; Sato, Tomomi; Iguchi, Taisen; Ohta, Yasuhiko
2012-01-01
Estrogen regulates morphological changes in reproductive organs, such as the vagina and uterus, during the estrous cycles in mice. Estrogen depletion by ovariectomy in adults results in atrophy accompanied by apoptosis in vaginal and uterine cells, while estrogen treatment following ovariectomy elicits cell proliferation in both organs. Sequential changes in mRNA expression of wingless-related MMTV integration site (Wnt) and Notch signaling genes were analyzed in the vagina and uterus of ovariectomized adult mice after a single injection of 17β-estradiol to provide understanding over the molecular basis of differences in response to estrogen in these organs. We found estrogen-dependent up-regulation of Wnt4, Wnt5a and p21 and down-regulation of Wnt11, hairy/enhancer-of-split related with YRPW motif-1 (Hey1) and delta-like 4 (Dll4) in the vagina, and up-regulation of Wnt4, Wnt5a, Hey1, Heyl, Dll1, p21 and p53 and down-regulation of Wnt11, Hey2 and Dll4 in the uterus. The expression of Wnt4, Hey1, Hey2, Heyl, Dll1 and p53 showed different patterns after the estrogen injection. Expression patterns for Wnt5a, Wnt11, Dll4 and p21 in the vagina and uterus were similar, suggesting that these genes are involved in the proliferation of cells in both those organs in mice.
Wang, Yang; Wang, Lu; Tian, Tian; Hu, Xiaoya; Yang, Chun; Xu, Qin
2012-05-21
In this study, an automated sequential injection lab-on-valve (SI-LOV) system was designed for the on-line matrix removal and preconcentration of quercetin. Octadecyl functionalized magnetic silica nanoparticles were prepared and packed into the microcolumn of the LOV as adsorbents. After being adsorbed through hydrophobic interaction, the analyte was eluted and subsequently introduced into the electrochemical flow cell by voltammetric quantification. The main parameters affecting the performance of solid-phase extraction, such as sample pH and flow rate, eluent solution and volume, accumulation potential and accumulation time were investigated in detail. Under the optimum experimental conditions, a linear calibration curve was obtained in the range of 1.0 × 10(-8) to 1 × 10(-5) mol L(-1) with R(2) = 0.9979. The limit of detection (LOD) and limit of quantitation (LOQ) were 1.3 × 10(-9) and 4.3 × 10(-9) mol L(-1), respectively. The relative standard deviation (RSD) for the determination of 1.0 × 10(-6) mol L(-1) quercetin was found to be 2.9% (n = 11) along with a sampling frequency of 40 h(-1). The applicability and reliability of the automated method described here had been applied to the determination of quercetin in human urine and red wine samples through recovery experiments, and the obtained results were in good agreement with those obtained by the HPLC method.
Sibilano, Riccardo; Gri, Giorgia; Frossi, Barbara; Tripodo, Claudio; Suzuki, Ryo; Rivera, Juan; MacDonald, Andrew S; Pucillo, Carlo E
2011-10-01
Tregs play a central role in modulating FcεRI-dependent MC effector functions in the course of the allergic response. Cellular interaction depends on the constitutive expression of OX40 on Tregs and the OX40L counterpart on MCs. Study of OX40L signaling on MCs is hampered by the need of a highly purified molecule, which triggers OX40L specifically. We now report that sOX40 mimics the physiological activity of Treg interaction by binding to activated MCs. When treated with sOX40, activated MCs showed decreased degranulation and Ca(++) influx, whereas PLC-γ2 phosphorylation remained unaffected. Once injected into experimental animals, sOX40 not only located within the endothelium but also in parenchyma, where it could be found in close proximity and apparently bound to MCs. This soluble molecule triggers MC-OX40L without the requirement of Tregs, thus allowing study of OX40L signaling pathways in MCs and in other OX40L-expressing cell populations. Importantly, as sOX40 inhibits MC degranulation, it may provide an in vivo therapeutic tool in allergic disease.
Sibilano, Riccardo; Gri, Giorgia; Frossi, Barbara; Tripodo, Claudio; Suzuki, Ryo; Rivera, Juan; MacDonald, Andrew S.; Pucillo, Carlo E.
2011-01-01
Tregs play a central role in modulating FcεRI-dependent MC effector functions in the course of the allergic response. Cellular interaction depends on the constitutive expression of OX40 on Tregs and the OX40L counterpart on MCs. Study of OX40L signaling on MCs is hampered by the need of a highly purified molecule, which triggers OX40L specifically. We now report that sOX40 mimics the physiological activity of Treg interaction by binding to activated MCs. When treated with sOX40, activated MCs showed decreased degranulation and Ca++ influx, whereas PLC-γ2 phosphorylation remained unaffected. Once injected into experimental animals, sOX40 not only located within the endothelium but also in parenchyma, where it could be found in close proximity and apparently bound to MCs. This soluble molecule triggers MC-OX40L without the requirement of Tregs, thus allowing study of OX40L signaling pathways in MCs and in other OX40L-expressing cell populations. Importantly, as sOX40 inhibits MC degranulation, it may provide an in vivo therapeutic tool in allergic disease. PMID:21653238
NASA Astrophysics Data System (ADS)
Bhatnagar, Divya; Conkling, Nicole; Rafailovich, Miriam; Dagum, Alexander
2012-02-01
The skin on the face is directly attached to the underlying muscles. Here, we successfully introduce a non-invasive, non-contact technique, Digital Image Speckle Correlation (DISC), to measure the precise magnitude and duration of facial muscle paralysis inflicted by BTX-A. Subjective evaluation by clinicians and patients fail to objectively quantify the direct effect and duration of BTX-A on the facial musculature. By using DISC, we can (a) Directly measure deformation field of the facial skin and determine the locus of facial muscular tension(b)Quantify and monitor muscular paralysis and subsequent re-innervation following injection; (c) Continuously correlate the appearance of wrinkles and muscular tension. Two sequential photographs of slight facial motion (frowning, raising eyebrows) are taken. DISC processes the images to produce a vector map of muscular displacement from which spatially resolved information is obtained regarding facial tension. DISC can track the ability of different muscle groups to contract and can be used to predict the site of injection, quantify muscle paralysis and the rate of recovery following BOTOX injection.
Redesigning flow injection after 40 years of development: Flow programming.
Ruzicka, Jaromir Jarda
2018-01-01
Automation of reagent based assays, by means of Flow Injection (FI), is based on sample processing, in which a sample flows continuously towards and through a detector for quantification of the target analyte. The Achilles heel of this methodology, the legacy of Auto Analyzer®, is continuous reagent consumption, and continuous generation of chemical waste. However, flow programming, assisted by recent advances in precise pumping, combined with the lab-on-valve technique, allows the FI manifold to be designed around a single confluence point through which sample and reagents are sequentially directed by means of a series of flow reversals. This approach results in sample/reagent mixing analogous to the traditional FI, reduces sample and reagent consumption, and uses the stop flow technique for enhancement of the yield of chemical reactions. The feasibility of programmable Flow Injection (pFI) is documented by example of commonly used spectrophotometric assays of, phosphate, nitrate, nitrite and glucose. Experimental details and additional information are available in online tutorial http://www.flowinjectiontutorial.com/. Copyright © 2017 Elsevier B.V. All rights reserved.
Long, Xiangbao; Miró, Manuel; Jensen, Rikard; Hansen, Elo Harald
2006-10-01
A highly selective procedure is proposed for the determination of ultra-trace level concentrations of nickel in saline aqueous matrices exploiting a micro-sequential injection Lab-On-Valve (muSI-LOV) sample pretreatment protocol comprising bead injection separation/pre-concentration and detection by electrothermal atomic absorption spectrometry (ETAAS). Based on the dimethylglyoxime (DMG) reaction used for nickel analysis, the sample, as contained in a pH 9.0 buffer, is, after on-line merging with the chelating reagent, transported to a reaction coil attached to one of the external ports of the LOV to assure sufficient reaction time for the formation of Ni(DMG)(2) chelate. The non-ionic coordination compound is then collected in a renewable micro-column packed with a reversed-phase copolymeric sorbent [namely, poly(divinylbenzene-co-N-vinylpyrrolidone)] containing a balanced ratio of hydrophilic and lipophilic monomers. Following elution by a 50-muL methanol plug in an air-segmented modality, the nickel is finally quantified by ETAAS. Under the optimized conditions and for a sample volume of 1.8 mL, a retention efficiency of 70 % and an enrichment factor of 25 were obtained. The proposed methodology showed a high tolerance to the commonly encountered alkaline earth matrix elements in environmental waters, that is, calcium and magnesium, and was successfully applied for the determination of nickel in an NIST standard reference material (NIST 1640-Trace elements in natural water), household tap water of high hardness and local seawater. Satisfying recoveries were achieved for all spiked environmental water samples with maximum deviations of 6 %. The experimental results for the standard reference material were not statistically different to the certified value at a significance level of 0.05.
Development of a dynamic coupled hydro-geomechanical code and its application to induced seismicity
NASA Astrophysics Data System (ADS)
Miah, Md Mamun
This research describes the importance of a hydro-geomechanical coupling in the geologic sub-surface environment from fluid injection at geothermal plants, large-scale geological CO2 sequestration for climate mitigation, enhanced oil recovery, and hydraulic fracturing during wells construction in the oil and gas industries. A sequential computational code is developed to capture the multiphysics interaction behavior by linking a flow simulation code TOUGH2 and a geomechanics modeling code PyLith. Numerical formulation of each code is discussed to demonstrate their modeling capabilities. The computational framework involves sequential coupling, and solution of two sub-problems- fluid flow through fractured and porous media and reservoir geomechanics. For each time step of flow calculation, pressure field is passed to the geomechanics code to compute effective stress field and fault slips. A simplified permeability model is implemented in the code that accounts for the permeability of porous and saturated rocks subject to confining stresses. The accuracy of the TOUGH-PyLith coupled simulator is tested by simulating Terzaghi's 1D consolidation problem. The modeling capability of coupled poroelasticity is validated by benchmarking it against Mandel's problem. The code is used to simulate both quasi-static and dynamic earthquake nucleation and slip distribution on a fault from the combined effect of far field tectonic loading and fluid injection by using an appropriate fault constitutive friction model. Results from the quasi-static induced earthquake simulations show a delayed response in earthquake nucleation. This is attributed to the increased total stress in the domain and not accounting for pressure on the fault. However, this issue is resolved in the final chapter in simulating a single event earthquake dynamic rupture. Simulation results show that fluid pressure has a positive effect on slip nucleation and subsequent crack propagation. This is confirmed by running a sensitivity analysis that shows an increase in injection well distance results in delayed slip nucleation and rupture propagation on the fault.
Dos Santos, Luciana B O; Masini, Jorge C
2007-05-15
This paper describes the development of a sequential injection analysis method to automate the determination of picloram by square wave voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. To perform these tasks, an 800muL monosegment is formed, composed by 400muL of sample and 400muL of conditioning/standard solution, in medium of 0.10molL(-1) H(2)SO(4). Homogenization of the monosegment is achieved by three flow reversals. After homogenization the mixture zone is injected toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode, at a flow rate of 50muLs(-1). After a suitable delay time, the potential is scanned from -0.5 to -1.0V versus Ag/AgCl at frequency of 300Hz and pulse height of 25mV. The linear dynamic range is observed for picloram concentrations between 0.10 and 2.50mgL(-1) fitting to the linear equation I(p)=(-2.19+/-0.03)C(picloram)+(0.096+/-0.039), with R(2)=0.9996, for which the slope is given in muALmg(-1). The detection and quantification limits are 0.036 and 0.12mgL(-1), respectively. The sampling frequency is 37h(-1) when the standard addition protocol is followed, but can be increased to 41h(-1) if the protocol to obtain in-line external calibration curve is used for quantification. The method was applied for determination of picloram in spiked water samples and the accuracy was evaluated by comparison with high performance liquid chromatography using molecular absorption at 220nm for detection. No evidences of statistically significant differences between the two methods were observed.
[Response of Calliphora vicina larval hemocytes to abiotic and biotic foreign particles injection].
Kind, T V
2012-01-01
Human erythrocytes injection into the body cavity of Calliphora vicina postfeeding larvae results to their fast binding by thrombocytoidal fragments with agglutinates formation. There were almost none sites of lysis and degradation of erythrocytes in agglutinates even after shape modification and strands generation. Exceptions are zones of agglutinates with juvenile hemocytes, where destruction of erythrocytes is seen. The sequential injection of erythrocytes and charcoal particles leads to charcoal adhesion at first to agglutinates periphery and later to more deep stratum of cytoplasm between the erythrocytes. Under such conditions agglutinate formation period is accompanied with morphology variations which do not influence the intensity of agglutinating reaction. Juvenile plasmatocytes phagocytized the charcoal particles regardless of their concentration and duration of previous contact with erythrocytes. When mixture of abiotic and biotic particles was injected into post feeding larvae, crythrocytes and charcoal generate independent aggregations in the range of separate agglutinates. At the same time plasmatocytes form nodules consisting of temporary cell aggregations covered with cores of non phagocytized charcoal particles. These data testified that presumably lectin receptors responsible for foreign biotic and abiotic particles recognition are very near but not identical for different types of hemocytes. They may be specifical (for plasmatocytes) or integrated to different parts of cellular membrane (in thrombocytoids).
Maximizing the value of pressure data in saline aquifer characterization
NASA Astrophysics Data System (ADS)
Yoon, Seonkyoo; Williams, John R.; Juanes, Ruben; Kang, Peter K.
2017-11-01
The injection and storage of freshwater in saline aquifers for the purpose of managed aquifer recharge is an important technology that can help ensure sustainable water resources. As a result of the density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial salinity distribution, and therefore experiences transient changes. The effect of variable density can be quantified by the mixed convection ratio, which is a ratio between the strength of two convection processes: free convection due to the density differences and forced convection due to hydraulic gradients. We combine a density-dependent flow and transport simulator with an ensemble Kalman filter (EnKF) to analyze the effects of freshwater injection rates on the value-of-information of transient pressure data for saline aquifer characterization. The EnKF is applied to sequentially estimate heterogeneous aquifer permeability fields using real-time pressure data. The performance of the permeability estimation is analyzed in terms of the accuracy and the uncertainty of the estimated permeability fields as well as the predictability of breakthrough curve arrival times in a realistic push-pull setting. This study demonstrates that injecting fluids at a rate that balances the two characteristic convections can maximize the value of pressure data for saline aquifer characterization.
Four-channel surface coil array for sequential CW-EPR image acquisition
NASA Astrophysics Data System (ADS)
Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi
2013-09-01
This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.
Hülper, Petra; Dullin, Christian; Kugler, Wilfried; Lakomek, Max; Erdlenbruch, Bernhard
2011-04-01
The aim of the present study was to gain insight into the penetration, biodistribution, and fate of globulins in the brain after 2-O-hexyldiglycerol-induced blood-brain barrier opening. The spatial distribution of fluorescence probes was investigated after blood-brain barrier opening with intracarotid 2-O-hexyldiglycerol injection. Fluorescence intensity was visualized by microscopy (mice and rats) and by in vivo time-domain optical imaging. There was an increased 2-O-hexyldiglycerol-mediated transfer of fluorescence-labeled globulins into the ipsilateral hemisphere. Sequential in vivo measurements revealed that the increase in protein concentration lasted at least 96 h after administration. Ex vivo detection of tissue fluorescence confirmed the results obtained in vivo. Globulins enter the healthy brain in conjunction with 2-O-hexyldiglycerol. Sequential in vivo near-infrared fluorescence measurements enable the visualization of the spatial distribution of antibodies in the brain of living small animals.
NASA Astrophysics Data System (ADS)
Peña-Vázquez, E.; Barciela-Alonso, M. C.; Pita-Calvo, C.; Domínguez-González, R.; Bermejo-Barrera, P.
2015-09-01
The objective of this work is to develop a method for the determination of metals in saline matrices using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Module SFS 6 for sample injection was used in the manual mode, and flame operating conditions were selected. The main absorption lines were used for all the elements, and the number of selected analytical pixels were 5 (CP±2) for Cd, Cu, Fe, Ni, Pb and Zn, and 3 pixels for Mn (CP±1). Samples were acidified (0.5% (v/v) nitric acid), and the standard addition method was used for the sequential determination of the analytes in diluted samples (1:2). The method showed good precision (RSD(%) < 4%, except for Pb (6.5%)) and good recoveries. Accuracy was checked after the analysis of an SPS-WW2 wastewater reference material diluted with synthetic seawater (dilution 1:2), showing a good agreement between certified and experimental results.
Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham
2017-10-17
Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.
de Oliveira, Fabio Santos; Korn, Mauro
2006-01-15
A sensitive SIA method was developed for sulphate determination in automotive fuel ethanol. This method was based on the reaction of sulphate with barium-dimethylsulphonazo(III) leading to a decrease on the magnitude of analytical signal monitored at 665 nm. Alcohol fuel samples were previously burned up to avoid matrix effects for sulphate determinations. Binary sampling and stop-flow strategies were used to increase the sensitivity of the method. The optimization of analytical parameter was performed by response surface method using Box-Behnker and central composite designs. The proposed sequential flow procedure permits to determine up to 10.0mg SO(4)(2-)l(-1) with R.S.D. <2.5% and limit of detection of 0.27 mg l(-1). The method has been successfully applied for sulphate determination in automotive fuel alcohol and the results agreed with the reference volumetric method. In the optimized condition the SIA system carried out 27 samples per hour.
A Predictive Model for Medical Events Based on Contextual Embedding of Temporal Sequences
Wang, Zhimu; Huang, Yingxiang; Wang, Shuang; Wang, Fei; Jiang, Xiaoqian
2016-01-01
Background Medical concepts are inherently ambiguous and error-prone due to human fallibility, which makes it hard for them to be fully used by classical machine learning methods (eg, for tasks like early stage disease prediction). Objective Our work was to create a new machine-friendly representation that resembles the semantics of medical concepts. We then developed a sequential predictive model for medical events based on this new representation. Methods We developed novel contextual embedding techniques to combine different medical events (eg, diagnoses, prescriptions, and labs tests). Each medical event is converted into a numerical vector that resembles its “semantics,” via which the similarity between medical events can be easily measured. We developed simple and effective predictive models based on these vectors to predict novel diagnoses. Results We evaluated our sequential prediction model (and standard learning methods) in estimating the risk of potential diseases based on our contextual embedding representation. Our model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.79 on chronic systolic heart failure and an average AUC of 0.67 (over the 80 most common diagnoses) using the Medical Information Mart for Intensive Care III (MIMIC-III) dataset. Conclusions We propose a general early prognosis predictor for 80 different diagnoses. Our method computes numeric representation for each medical event to uncover the potential meaning of those events. Our results demonstrate the efficiency of the proposed method, which will benefit patients and physicians by offering more accurate diagnosis. PMID:27888170
Current trend in drug delivery considerations for subcutaneous insulin depots to treat diabetes.
P V, Jayakrishnapillai; Nair, Shantikumar V; Kamalasanan, Kaladhar
2017-05-01
Diabetes mellitus (DM) is a metabolic disorder due to irregularities in glucose metabolism, as a result of insulin disregulation. Chronic DM (Type 1) is treated by daily insulin injections by subcutaneous route. Daily injections cause serious patient non-compliance and medication non-adherence. Insulin Depots (ID) are parenteral formulations designed to release the insulin over a specified period of time, to control the plasma blood glucose level for intended duration. Physiologically, pancreas produces and secretes insulin in basal and pulsatile mode into the blood. Delivery systems mimicking basal release profiles are known as open-loop systems and current marketed products are open-loop systems. Future trend in open-loop systems is to reduce the number of injections per week by enhancing duration of action, by modifying the depot properties. The next generation technologies are closed-loop systems that mimic the pulsatile mode of delivery by pancreas. In closed-loop systems insulin will be released in response to plasma glucose. This review focuses on future trend in open-loop systems; by understanding (a) the secretion of insulin from pancreas, (b) the insulin regulation normal and in DM, (c) insulin depots and (d) the recent progress in open-loop depot technology particularly with respect to nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Panlilio, Leigh V; Thorndike, Eric B; Schindler, Charles W
2007-04-01
According to a recent account of addiction, dopaminergic effects of drugs like cocaine mimic the neuronal signal that occurs when a natural reward has a larger value than expected. Consequently, the drug's expected reward value increases with each administration, leading to an over-selection of drug-seeking behavior. One prediction of this hypothesis is that the blocking effect, a cornerstone of contemporary learning theory, should not occur with drug reinforcers. To test this prediction, two groups of rats were trained to self-administer cocaine with a nose-poking response. For 5 sessions, a tone was paired with each self-administered injection (blocking group), or no stimulus was paired with injection (non-blocking group). Then, in both groups, the tone and a light were both paired with each injection for 5 sessions. In subsequent testing, the light functioned as a conditioned reinforcer for a new response (lever-pressing) in the non-blocking group, but not the blocking group. Thus, contrary to prediction, pre-training with the tone blocked conditioning to the light. Although these results fail to support a potentially powerful explanation of addiction, they are consistent with the fact that most conditioning and learning phenomena that occur with non-drug reinforcers can also be demonstrated with drug reinforcers.
Investigation of Combustion Control in a Dump Combustor Using the Feedback Free Fluidic Oscillator
NASA Technical Reports Server (NTRS)
Meier, Eric J.; Casiano, Matthew J.; Anderson, William E.; Heister, Stephen D.
2015-01-01
A feedback free fluidic oscillator was designed and integrated into a single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. The fluidic oscillator uses internal fluid dynamics to create an unsteady outlet jet at a specific frequency. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the combustor dump plane. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide with an overall O/F ratio of 11.7. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics enabling the study of a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared against equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 67% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. Additionally, computational fluid dynamics analysis of the combustor gives insight into the flow field interaction of the fluidic oscillators. The results indicate that open loop high frequency propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate.
El Bakkouri, Karim; Servais, Charlotte; Clément, Nathalie; Cheong, Siew Chiat; Franssen, Jean-Denis; Velu, Thierry; Brandenburger, Annick
2005-02-01
The natural oncotropism and oncotoxicity of vectors derived from the autonomous parvovirus, minute virus of mice (prototype strain) [MVM(p)], combined with the immunotherapeutic properties of cytokine transgenes, make them interesting candidates for cancer gene therapy. The in vivo anti-tumour activity of a recombinant parvoviral vector, MVM-IL2, was evaluated in a syngeneic mouse melanoma model that is relatively resistant in vitro to the intrinsic cytotoxicity of wild-type MVM(p). In vitro infection of the K1735 melanoma cells prior to their injection resulted in loss of tumorigenicity in 70% of mice (7/10). Tumour-free mice were protected against a challenge with non-infected parental cells. In addition, MVM-IL2-infected tumour cells induced an anti-tumour activity on parental cells injected at a distant location. These non-infected tumour cells were injected either at the same time or 7 days before the injection of MVM-IL2-infected cells. In the latter setting, which mimics a therapeutic model for small tumours, 4/10 mice were still tumour-free after 4 months. Our results show that (i) the MVM-IL2 parvoviral vector efficiently transduces tumour cells; and (ii) the low multiplicity of infection (MOI = 1) used in our experiments was sufficient to elicit an anti-tumour effect on distant cells, which supports further studies on this vector as a new tool for cancer gene therapy. Copyright (c) 2004 John Wiley & Sons, Ltd.
Ali, Syed Hamid; Madhana, Rajaram Mohanrao; K V, Athira; Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Pitta, Sathish; Mahareddy, Jalandhar Reddy; Lahkar, Mangala
2015-09-01
A mouse model of depression has been recently developed by exogenous corticosterone (CORT) administration, which has shown to mimic HPA-axis induced depression-like state in animals. The present study aimed to examine the antidepressant-like effect and the possible mechanisms of resveratrol, a naturally occurring polyphenol of phytoalexin family, on depressive-like behavior induced by repeated corticosterone injections in mice. Mice were injected subcutaneously (s.c.) with 40mg/kg corticosterone (CORT) chronically for 21days. Resveratrol and fluoxetine were administered 30min prior to the CORT injection. After 21-days treatment with respective drugs, behavioral and biochemical parameters were estimated. Since brain derived neurotrophic factor (BDNF) has been implicated in antidepressant activity of many drugs, we also evaluated the effect of resveratrol on BDNF in the hippocampus. Three weeks of CORT injections in mice resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test and tail suspension test. Further, there was a significant increase in serum corticosterone level and a significant decrease in hippocampus BDNF level in CORT-treated mice. Treatment of mice with resveratrol significantly ameliorated all the behavioral and biochemical changes induced by corticosterone. These results suggest that resveratrol produces an antidepressant-like effect in CORT-induced depression in mice, which is possibly mediated by rectifying the stress-based hypothalamic-pituitary-adrenal (HPA) axis dysfunction paradigm and upregulation of hippocampal BDNF levels. Copyright © 2015 Elsevier Inc. All rights reserved.
Calf restoration with asymmetric fat injection in polio sequelae.
Yazar, Memet; Kurt Yazar, Sevgi; Kozanoğlu, Erol
2016-09-01
Many things cause leg asymmetry and sequelae seen after poliomyelitis infections are still a cause of leg deformities. In this study, lipofilling and liposuction combinations are performed on patients with poliomyelitis sequelae. Volume deficiency is not the only leg problem with polio sequelae, leg length is also a problem. For this reason, the length deficiency must be addressed in order to achieve the desired symmetry. The aim of this study is correcting limb asymmetry by a method addressing both limb length deficiency by heel raise and volume deficiency by injection of fat based on corrected limb length. From 2011 through 2013, 10 female patients who had unilateral leg atrophy as a result of paediatric polio infections were included in our study. All of the patients were treated with liposuction and lipofilling combinations. During planning, a ridge was placed under the affected leg in order to equalize the lengths of both legs. The fat injection sites on the affected leg were marked to mimic the unaffected leg. All the patients stated that they were satisfied with the results. Transient hypoesthesia was seen in only one patient, but this was spontaneously resolved six months later. The study results indicate that the asymmetric fat injection procedure can be a good technique to use with patients who have polio sequelae, both with short legs and volume deformities. 4. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Abt, Nicholas B.; Lehar, Mohamed; Guajardo, Carolina Trevino; Penninger, Richard T.; Ward, Bryan K.; Pearl, Monica S.; Carey, John P.
2016-01-01
Hypothesis Whether the RWM is permeable to iodine-based contrast agents (IBCA) is unknown; therefore, our goal was to determine if IBCAs could diffuse through the RWM using CT volume acquisition imaging. Introduction Imaging of hydrops in the living human ear has attracted recent interest. Intratympanic (IT) injection has shown gadolinium's ability to diffuse through the round window membrane (RWM), enhancing the perilymphatic space. Methods Four unfixed human cadaver temporal bones underwent intratympanic IBCA injection using three sequentially studied methods. The first method was direct IT injection. The second method used direct RWM visualization via tympanomeatal flap for IBCA-soaked absorbable gelatin pledget placement. In the third method, the middle ear was filled with contrast after flap elevation. Volume acquisition CT images were obtained immediately post-exposure, and at 1, 6, and 24 hour intervals. Post-processing was accomplished using color ramping and subtraction imaging. Results Following the third method, positive RWM and perilymphatic enhancement were seen with endolymph sparing. Gray scale and color ramp multiplanar reconstructions displayed increased signal within the cochlea compared to pre-contrast imaging. The cochlea was measured for attenuation differences compared to pure water, revealing a pre-injection average of −1,103 HU and a post-injection average of 338 HU. Subtraction imaging shows enhancement remaining within the cochlear space, Eustachian tube, middle ear epithelial lining, and mastoid. Conclusions Iohexol iodine contrast is able to diffuse across the RWM. Volume acquisition CT imaging was able to detect perilymphatic enhancement at 0.5mm slice thickness. The clinical application of IBCA IT injection appears promising but requires further safety studies. PMID:26859543
Saito, K; Katsuragi, H; Mikami, M; Kato, C; Miyamaru, M; Nagaso, K
1997-01-01
Fusobacterium nucleatum and Actinobacillus actinomycetemcomitans are Gram-negative rod periodontal pathogens. The peritoneal cavity of Institute of Cancer Research (ICR) mice was used as the local infection model. In vivo production of heat-shock proteins (hsp) was studied by injection of 1/10 minimum lethal dose (MLD) of each live bacteria into mice. Heat-shock proteins 70 and 60 were examined in the extract of peritoneal exudate cells (PEC) from mice injected intraperitoneally with either F. nucleatum or A. actinomycetemcomitans by using sodium dodecylsulphate-polyacrylamide gel electrophoresis and immunoblotting analysis. Although hsp are present in PEC without injection of the bacteria, both hsp increased and reached a peak on day 3 after F. nucleatum injection but not after A. actinomycetemcomitans. Kinetic study of gamma/delta cells in PEC after injection of bacteria showed that the increase of gamma/delta T cells was observed only in the PEC from mice injected with F. nucleatum but not A. actinomycetemcomitans. The gamma/delta T cells in PEC were either CD3+ and CD4+ or CD3+ and CD8+. The differential cell count of PEC suggested that gamma/delta T-cell induction is related to the expansion of the macrophage population. The phagocytic and chemiluminescence responses of macrophages against the same bacteria were compared after intensive immunization with live F. nucleatum and A. actinomycetemcomitans. Elevations of chemiluminescence response and phagocytic function by immunization were observed in the macrophages of mice immunized with F. nucleatum. These results suggest the sequential appearance of hsp, gamma/delta T cells and macrophage activation after fusobacterial infection. Images Figure 2 PMID:9135551
Altman, J; Bayer, S A
1987-03-22
Sequential thymidine radiograms from rats injected on days E16, E17, E18, and E19 and killed 2 hours after injection and at daily intervals up to day E22 were used to establish the site of origin, migratory route, and settling patterns of neurons of the nucleus reticularis tegmenti pontis and basal pontine gray. The nucleus reticularis tegmenti pontis neurons, which are produced predominantly on days E15 and E16, derive from the primary precerebellar neuroepithelium. These cells, unlike those of the lateral reticular and external cuneate nuclei, take an anteroventral subpial route, forming the anterior precerebellar extramural migratory stream. This migratory stream reaches the anterior pole of the pons by day E18. In rats injected on day E16 and killed on day E18 some of the cells that reach the pons are unlabeled, indicating that they represent the early component of neurons generated on day E15. The cells labeled on day E16 begin to settle in the pons on day E19, 3 days after their production. These cells, migrating in an orderly temporal sequence, form a posterodorsal-to-anteroventral gradient in the nucleus reticularis tegmenti pontis. Unlike the neurons of all the other precerebellar nuclei, the basal pontine gray neurons derive from the secondary precerebellar neuroepithelium. The secondary precerebellar neuroepithelium forms on day E16 as an outgrowth of the primary precerebellar neuroepithelium, and it remains mitotically active through day E19, spanning the entire period of basal pontine gray neurogenesis. The secondary precerebellar neuroepithelium is surrounded by a horizontal layer of postmitotic cells, representing the head-waters of the anterior precerebellar extramural migratory stream. In rats injected on day E18 and killed on day E19 the cells are labeled in the proximal half of the stream around the medulla but those closer to the pons are unlabeled, indicating an orderly sequence of migration. In rats injected on day E18 and killed on day E20 the labeled cells reach the pole of the pons. In the basal pontine gray the sequentially generated neurons settle in a precise order. The neurons generated on day E16 form a small core posteriorly and the neurons generated on days E17, E18, and E19 form regular concentric rings around the core in an inside-out sequence.
Emergence of methadone as a street drug in St. Petersburg, Russia.
Heimer, Robert; Lyubimova, Aleksandra; Barbour, Russell; Levina, Olga S
2016-01-01
The syndemic of opioid addiction, HIV, hepatitis, tuberculosis, imprisonment, and overdose in Russia has been worsened by the illegality of opioid substitution therapy. As part of on-going serial studies, we sought to explore the influence of opioid availability on aspects of the syndemic as it has affected the city of St. Petersburg. We employed a sequential approach in which quantitative data collection and statistical analysis were followed by a qualitative phase. Quantitative data were obtained in 2013-2014 from a respondent-driven sample (RDS) of people who inject drugs (PWID). Individuals recruited by RDS were tested for antibodies to HIV and interviewed about drug use and injection practices, sociodemographics, health status, and access to medical care. Subsequently, we collected in-depth qualitative data on methadone use, knowledge, and market availability from PWID recruited at nine different locations within St. Petersburg. Analysis of interview data from the sample revealed the percentage of PWID injecting methadone in the 30 days prior to interview increased from 3.6% in 2010 to 53.3% in 2012-2013. Injection of only methadone, as compared to injecting only heroin or both drugs, was associated with less frequent injection and reduced HIV-related injected risk, especially a lower rate of injecting with a previously used syringe. In-depth questioning of methadone injectors corroborated the finding from serial quantitative surveys of PWID that methadone's black market availability is a recent phenomenon. Spatial analysis revealed widespread methadone availability but no concentration in any specific districts of the city. Despite the prohibition of substitution therapy and demonization of methadone, the drug has emerged to rival heroin as the most commonly available opioid in St. Petersburg. Ironically, its use is associated with reduced injection-related HIV risk even when its use is illegal. Copyright © 2015 Elsevier B.V. All rights reserved.
Emergence of Methadone as a Street Drug in St. Petersburg, Russia
Heimer, Robert; Lyubimova, Aleksandra; Barbour, Russell; Levina, Olga S.
2015-01-01
Background The syndemic of opioid addiction, HIV, hepatitis, tuberculosis, imprisonment, and overdose in Russia has been worsened by the illegality of opioid substitution therapy. As part of on-going serial studies, we sought to explore the influence of opioid availability on aspects of the syndemic as it has affected the city of St. Petersburg. Methods We employed a sequential approach in which quantitative data collection and statistical analysis were followed by a qualitative phase. Quantitative data were obtained from a respondent-driven sample (RDS) of people who inject drugs (PWID) obtained in 2012–13. Individuals recruited by RDS were tested for antibodies to HIV and interviewed about drug use and injection practices, sociodemographics, health status, and access to medical care. Subsequently, we collected in-depth qualitative data on methadone use, knowledge, and market availability from PWID recruited at nine different locations within St. Petersburg. Results Analysis of interview data from the sample revealed he percentage of PWID injecting methadone in the 30 days prior to interview increased from 3.6% in 2010 to 53.3% in 2012–13. Injection of only methadone, as compared to injecting only heroin or both drugs, was associated with less frequent injection and reduced HIV-related injected risk, especially a lower rate of injecting with a previously used syringe. In-depth questioning of methadone injectors corroborated the finding from serial quantitative surveys of PWID that methadone’s black market availability is a recent phenomenon. Spatial analysis revealed widespread methadone availability but no concentration in any specific districts of the city. Conclusion Despite the prohibition of substitution therapy and demonization of methadone, the drug has emerged to rival heroin as the most commonly available opioid in St. Petersburg. Ironically, its use is associated with reduced injection-related HIV risk even when its use is illegal. PMID:26573380
Factors influencing discomfort during anterior ultrasound-guided injection for hip arthrography.
Hsu, Yi-Chih; Wu, Yu-Cheng; Kao, Hao-Lun; Pan, Ru-Yu; Lee, Meei-Shyuan; Huang, Guo-Shu
2013-09-01
Although ultrasound (US)-guided injection techniques for magnetic resonance arthrography of the hip have been used with increasing frequency to diagnose internal joint derangements, little is known about patient tolerance, which is relevant information for patients. The objective of this study was to evaluate prospectively the association between possible influencing factors and discomfort felt during the performance of anterior US-guided injection techniques targeting the femoral head-neck junction during hip arthrography. Forty-four consecutive patients (21 women and 23 men; mean age, 41 years) undergoing magnetic resonance hip arthrography were sequentially assigned to receive injection alternating between fixed and freehand US-guided injection. Discomfort was assessed using a visual analog scale and relative ratings. Patient body mass index, extra-articular contrast leakage, the duration of the procedure, the needle advancement distance, and the fixed trajectory of the needle were assessed. Pearson's correlation coefficients and multiple logistic regression analysis were used to determine the association. Puncture was successfully accomplished in all cases, and no relevant complications were reported. The only significant relationships were between discomfort and the time required for needle manipulation (r = 0.8) and fixed US-guided injection (r = 0.6; p < 0.001). Compared with the freehand technique, the fixed technique resulted in significantly less pain and took significantly less time to perform (p < 0.001). The procedure time during needle manipulation in the fixed US-guided injections (4.0 ± 0.9 seconds) was significantly less than that in the freehand US-guided injections (19.4 ± 17.6 seconds; p < 0.001). No significant relationships were found between discomfort and other parameters (r < 0.3, p > 0.05). The procedure time appears to be the most important factor influencing patient discomfort. Fixed US-guided injection is a time-saving technique that alleviates procedure-related discomfort. Copyright © 2013. Published by Elsevier B.V.
Evaluation of Silicone as an Artificial Lubricant in Osteoarthrotic Joints
Wright, V.; Haslock, D. I.; Dowson, D.; Seller, P. C.; Reeves, B.
1971-01-01
Silicone 300 has been evaluated as an artificial lubricant in osteoarthrotic joints by means of a pilot study in five inpatients and a control trial of 25 outpatients with 40 osteoarthrotic knees. Sequential analysis showed a significant benefit from saline compared with silicone at one week follow-up and no significant difference at one month. Measurement of stiffness with a knee arthrograph showed no difference in reduction of stiffness between the two substances. In a study of 18 rabbits there was no evidence that silicone was retained in the joint cavity for longer than 48 hours. There was a failure of clearance of iodinated serum albumin for as long as three to four days after the injection of silicone, suggesting some obstruction to lymphatic outflow. Experimentally produced cartilaginous defects did not heal quicker with the injection of silicone into the joint. PMID:5575973
Girard, L; Hubert, J
1996-11-01
We have studied the speciation of chromium (VI) in stainless-steel welding dusts. The approach used for the analysis of Cr(VI) and total Cr relies on a flow-injection analyzer (FIA) equipped with two different sequential detectors. The system measures Cr(VI). by colorimetry (with 1,5-diphenyl carbohydrazide) and total chromium content by flame atomic absorption spectroscopy (AAS). The extraction of the samples of welding-fume dusts is achieved in a buffer solution (acetic acid and sodium acetate at pH 4). This extraction procedure gives a 96% recovery of chromium (VI). The FIA-AAS system that has been described is also more sensitive, has a lower detection limit (0.005 mug ml(-1)) and gives a better precision (< 1%) than other equivalent systems that have been previously described.
Opiates Modulate Noxious Chemical Nociception through a Complex Monoaminergic/Peptidergic Cascade
Mills, Holly; Ortega, Amanda; Law, Wenjing; Hapiak, Vera; Summers, Philip; Clark, Tobias
2016-01-01
The ability to detect noxious stimuli, process the nociceptive signal, and elicit an appropriate behavioral response is essential for survival. In Caenorhabditis elegans, opioid receptor agonists, such as morphine, mimic serotonin, and suppress the overall withdrawal from noxious stimuli through a pathway requiring the opioid-like receptor, NPR-17. This serotonin- or morphine-dependent modulation can be rescued in npr-17-null animals by the expression of npr-17 or a human κ opioid receptor in the two ASI sensory neurons, with ASI opioid signaling selectively inhibiting ASI neuropeptide release. Serotonergic modulation requires peptides encoded by both nlp-3 and nlp-24, and either nlp-3 or nlp-24 overexpression mimics morphine and suppresses withdrawal. Peptides encoded by nlp-3 act differentially, with only NLP-3.3 mimicking morphine, whereas other nlp-3 peptides antagonize NLP-3.3 modulation. Together, these results demonstrate that opiates modulate nociception in Caenorhabditis elegans through a complex monoaminergic/peptidergic cascade, and suggest that this model may be useful for dissecting opiate signaling in mammals. SIGNIFICANCE STATEMENT Opiates are used extensively to treat chronic pain. In Caenorhabditis elegans, opioid receptor agonists suppress the overall withdrawal from noxious chemical stimuli through a pathway requiring an opioid-like receptor and two distinct neuropeptide-encoding genes, with individual peptides from the same gene functioning antagonistically to modulate nociception. Endogenous opioid signaling functions as part of a complex, monoaminergic/peptidergic signaling cascade and appears to selectively inhibit neuropeptide release, mediated by a α-adrenergic-like receptor, from two sensory neurons. Importantly, receptor null animals can be rescued by the expression of the human κ opioid receptor, and injection of human opioid receptor ligands mimics exogenous opiates, highlighting the utility of this model for dissecting opiate signaling in mammals. PMID:27194330
Choi, Bo Young; Kim, Jin Hee; Kim, Hyun Jung; Yoo, Jin Hyuk; Song, Hong Ki; Sohn, Min; Won, Seok Joon; Suh, Sang Won
2013-01-01
Recurrent/moderate (R/M) hypoglycemia is common in type 1 diabetes patients. Moderate hypoglycemia is not life-threatening, but if experienced recurrently it may present several clinical complications. Activated PARP-1 consumes cytosolic NAD, and because NAD is required for glycolysis, hypoglycemia-induced PARP-1 activation may render cells unable to use glucose even when glucose availability is restored. Pyruvate, however, can be metabolized in the absence of cytosolic NAD. We therefore hypothesized that pyruvate may be able to improve the outcome in diabetic rats subjected to insulin-induced R/M hypoglycemia by terminating hypoglycemia with glucose plus pyruvate, as compared with delivering just glucose alone. In an effort to mimic juvenile type 1 diabetes the experiments were conducted in one-month-old young rats that were rendered diabetic by streptozotocin (STZ, 50mg/kg, i.p.) injection. One week after STZ injection, rats were subjected to moderate hypoglycemia by insulin injection (10U/kg, i.p.) without anesthesia for five consecutive days. Pyruvate (500mg/kg) was given by intraperitoneal injection after each R/M hypoglycemia. Three hours after last R/M hypoglycemia, zinc accumulation was evaluated. Three days after R/M hypoglycemia, neuronal death, oxidative stress, microglial activation and GSH concentrations in the cerebral cortex were analyzed. Sparse neuronal death was observed in the cortex. Zinc accumulation, oxidative injury, microglial activation and GSH loss in the cortex after R/M hypoglycemia were all reduced by pyruvate injection. These findings suggest that when delivered alongside glucose, pyruvate may significantly improve the outcome after R/M hypoglycemia by circumventing a sustained impairment in neuronal glucose utilization resulting from PARP-1 activation. PMID:24278448
Khaliulin, Igor; Parker, Joanna E.; Halestrap, Andrew P.
2010-01-01
Aims Temperature preconditioning (TP) provides very powerful protection against ischaemia/reperfusion. Understanding the signalling pathways involved may enable the development of effective pharmacological cardioprotection. We investigated the interrelationship between activation of protein kinase A (PKA) and protein kinase C (PKC) in the signalling mechanisms of TP and developed a potent pharmacological intervention based on this mechanism. Methods and results Isolated rat hearts were subjected to TP, 30 min global ischaemia, and 60 min reperfusion. Other control and TP hearts were perfused with either sotalol (β-adrenergic blocker) or H-89 (PKA inhibitor). Some hearts were pre-treated with either isoproterenol (β-adrenergic agonist) or adenosine (PKC activator) that were given alone, simultaneously, or sequentially. Pre-treatment with isoproterenol, adenosine, and the consecutive isoproterenol/adenosine treatment was also combined with the PKC inhibitor chelerythrine. Cardioprotection was evaluated by haemodynamic function recovery, lactate dehydrogenase release, measurement of mitochondrial permeability transition pore opening, and protein carbonylation during reperfusion. Cyclic AMP and PKA activity were increased in TP hearts. H-89 and sotalol blocked the cardioprotective effect of TP and TP-induced PKC activation. Isoproterenol, adenosine, and the consecutive treatment increased PKC activity during pre-ischaemia. Isoproterenol significantly reduced myocardial glycogen content. Isoproterenol and adenosine, alone or simultaneously, protected hearts but the consecutive treatment gave the highest protection. Cardioprotective effects of adenosine were completely blocked by chelerythrine but those of the consecutive treatment only attenuated. Conclusion The signal transduction pathway of TP involves PKA activation that precedes PKC activation. Pharmacologically induced consecutive PKA/PKC activation mimics TP and induces extremely potent cardioprotection. PMID:20558443
Biomimetic transport and rational drug delivery.
Ranney, D F
2000-01-15
Medicine and pharmaceutics are encountering critical needs and opportunities for transvascular drug delivery that improves site targeting and tissue permeation by mimicking natural tissue addressing and transport mechanisms. This is driven by the accelerated development of genomic agents requiring targeted controlled release. Although rationally designed for in vitro activity, such agents are not highly effective in vivo, due to opsonization and degradation by plasma constituents, and failure to transport across the local vascular endothelium and tissue matrix. A growing knowledge of the addresses of the body can be applied to engineer "Bio-Logically" staged delivery systems with sequential bioaddressins complementary to the discontinuous compartments encountered--termed discontinuum pharmaceutics. Effective tissue targeting is accomplished by leukocytes, bacteria, and viruses. We are increasingly able to mimic their bioaddressins by genomic means. Approaches described in this commentary include: (a) endothelial-directed adhesion mediated by oligosaccharides and carbohydrates (e.g. dermatan sulfate as a mimic of sulfated CD44) and peptidomimetics interacting with adhesins, selectins, integrins, hyaluronans, and locally induced growth factors (e.g. vascular endothelial growth factor, VEGF) and coagulation factors (e.g. factor VIII antigen); (b) improved tissue permeation conferred by hydrophilically "cloaked" carrier systems; (c) "uncloaking" by matrix dilution or selective triggering near the target cells; and (d) target binding-internalization by terminally exposed hydrophobic moieties, cationic polymers, and receptor-binding lectins, peptides, or carbohydrates. This commentary also describes intermediate technology solutions (e.g. "hybrid drugs"), and highlights the high-resolution, dynamic magnetic resonance imaging and radiopharmaceutical imaging technologies plus the groups and organizations capable of accelerating these important initiatives.
Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing
Jung, Jae Hwan; Desit, Patcharin; Prausnitz, Mark R.
2018-01-01
Purpose The purpose is to target model drug particles to the posterior region of the suprachoroidal space (SCS) of the eye controlled via pushing by hydrogel swelling. Methods A particle formulation containing 1% hyaluronic acid (HA) with fluorescent polymer particles and a hydrogel formulation containing 4% HA were introduced in a single syringe as two layers without mixing, and injected sequentially into the SCS of the rabbit eye ex vivo and in vivo using a microneedle. Distribution of particles in the eye was determined by microscopy. Results During injection, the particle formulation was pushed toward the middle of the SCS by the viscous hydrogel formulation, but less than 12% of particles reached the posterior SCS. After injection, the particle formulation was pushed further toward the macula and optic nerve in the posterior SCS by hydrogel swelling and spreading. Heating the eye to 37°C, or injecting in vivo decreased viscosity and mechanical strength of the hydrogel, thereby allowing it to swell and flow further in the SCS. A high salt concentration (9% NaCl) in the hydrogel formulation further increased hydrogel swelling due to osmotic flow into the hydrogel. In this way, up to 76% of particles were delivered to the posterior SCS from an injection made near the limbus. Conclusions This study shows that model drug particles can be targeted to the posterior SCS by HA hydrogel swelling and pushing without particle functionalization or administering external driving forces. PMID:29677369
In situ bioremediation of uranium with emulsified vegetable oil as the electron donor.
Watson, David B; Wu, Wei-Min; Mehlhorn, Tonia; Tang, Guoping; Earles, Jennifer; Lowe, Kenneth; Gihring, Thomas M; Zhang, Gengxin; Phillips, Jana; Boyanov, Maxim I; Spalding, Brian P; Schadt, Christopher; Kemner, Kenneth M; Criddle, Craig S; Jardine, Philip M; Brooks, Scott C
2013-06-18
A field test with a one-time emulsified vegetable oil (EVO) injection was conducted to assess the capacity of EVO to sustain uranium bioreduction in a high-permeability gravel layer with groundwater concentrations of (mM) U, 0.0055; Ca, 2.98; NO3(-), 0.11; HCO3(-), 5.07; and SO4(2-), 1.23. Comparison of bromide and EVO migration and distribution indicated that a majority of the injected EVO was retained in the subsurface from the injection wells to 50 m downgradient. Nitrate, uranium, and sulfate were sequentially removed from the groundwater within 1-2 weeks, accompanied by an increase in acetate, Mn, Fe, and methane concentrations. Due to the slow release and degradation of EVO with time, reducing conditions were sustained for approximately one year, and daily U discharge to a creek, located approximately 50 m from the injection wells, decreased by 80% within 100 days. Total U discharge was reduced by 50% over the one-year period. Reduction of U(VI) to U(IV) was confirmed by synchrotron analysis of recovered aquifer solids. Oxidants (e.g., dissolved oxygen, nitrate) flowing in from upgradient appeared to reoxidize and remobilize uranium after the EVO was exhausted as evidenced by a transient increase of U concentration above ambient values. Occasional (e.g., annual) EVO injection into a permeable Ca and bicarbonate-containing aquifer can sustain uranium bioreduction/immobilization and decrease U migration/discharge.
Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai
2017-01-01
Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and recorded, and at the end of experiments, tumor xenografts were removed for Western blot and immunohistochemical analyses. Compared to control groups (negative control, regular-dose icotinib [IcoR], high-dose icotinib [IcoH], and docetaxel [DTX]) and regular icotinib dose (60 mg/kg) with docetaxel, treatment of mice with a high-dose (1200 mg/kg) of icotinib plus sequential docetaxel for 3 weeks (IcoH-DTX) had an additive effect on suppression of tumor xenograft size and volume (P < 0.05). Icotinib-containing treatments markedly reduced phosphorylation of EGFR, mitogen activated protein kinase (MAPK), and protein kinase B (Akt), but only the high-dose icotinib-containing treatments showed an additive effect on CD34 inhibition (P < 0.05), an indication of reduced microvessel density in tumor xenografts. Moreover, high-dose icotinib plus docetaxel had a similar effect on mouse weight loss (a common way to measure adverse reactions in mice), compared to the other treatment combinations. The study indicate that the high dose of icotinib plus sequential docetaxel (IcoH-DTX) have an additive effect on suppressing the growth of wild-type EGFR NSCLC cell nude mouse xenografts, possibly through microvessel density reduction. Future clinical trials are needed to confirm the findings of this study. PMID:27852073
DOE Office of Scientific and Technical Information (OSTI.GOV)
Synovec, R.E.; Johnson, E.L.; Bahowick, T.J.
1990-08-01
This paper describes a new technique for data analysis in chromatography, based on taking the point-by-point ratio of sequential chromatograms that have been base line corrected. This ratio chromatogram provides a robust means for the identification and the quantitation of analytes. In addition, the appearance of an interferent is made highly visible, even when it coelutes with desired analytes. For quantitative analysis, the region of the ratio chromatogram corresponding to the pure elution of an analyte is identified and is used to calculate a ratio value equal to the ratio of concentrations of the analyte in sequential injections. For themore » ratio value calculation, a variance-weighted average is used, which compensates for the varying signal-to-noise ratio. This ratio value, or equivalently the percent change in concentration, is the basis of a chromatographic standard addition method and an algorithm to monitor analyte concentration in a process stream. In the case of overlapped peaks, a spiking procedure is used to calculate both the original concentration of an analyte and its signal contribution to the original chromatogram. Thus, quantitation and curve resolution may be performed simultaneously, without peak modeling or curve fitting. These concepts are demonstrated by using data from ion chromatography, but the technique should be applicable to all chromatographic techniques.« less
Cortés-Bonilla, Manuel; Bernardo-Escudero, Roberto; Alonso-Campero, Rosalba; Francisco-Doce, María T.; Hernández-Valencia, Marcelino; Celis-González, Cuauhtémoc; Márquez-Oñate, Ricardo; Chedraui, Peter; Uribe, Juan A.
2015-01-01
Abstract Objective: To analyze the short-term efficacy and safety over menopausal symptoms of three low-dose continuous sequential 17β-estradiol (E)/progesterone (P) parental monthly formulations using novel non-polymeric microspheres. Methods: This was a multicenter, randomized, single blinded study in which peri- and postmenopausal women were assigned to receive a monthly intramuscular injection of 0.5 mg E + 15 mg P (Group A, n = 34), 1 mg E + 20 mg P (Group B, n = 24) or 1 mg E + 30 mg P (Group C, n = 26) for 6 months. Primary efficacy endpoints included mean change in the frequency and severity of hot flushes and the effect over urogenital atrophy symptoms at 3 and 6 months. Safety variables included changes in the rate of amenorrhea, endometrial thickness and histopathology, and local and systemic adverse events. Results: Compared to baseline at month 6, the three treatment schemes significantly decreased the rate of urogenital atrophy symptoms and the frequency (mean number per day) and severity (mean number graded as moderate and severe per month) of hot flushes. No differences in studied efficacy parameters were observed between studied groups at baseline or at the end of the study. For all groups the most frequent adverse event was pain at the injection site; however they were all rated as mild. At the end of the study peri- and postmenopausal women displayed no significant changes in endometrial thickness or histopathology in all treated groups. The rate of amenorrhea at the end of the study decreased for all studied groups yet was less evident among postmenopausal women as compared to perimenopausal ones. Conclusions: The three low-dose continuous sequential intramuscular monthly treatments of E/P using novel microsphere technology were effective at reducing menopausal symptoms at short-term with a low rate of adverse events. More long-term and comparative research is warranted to support our positive findings. PMID:26062108
Yagi, Akiho; Uchida, Ryuji; Hamamoto, Hiroshi; Sekimizu, Kazuhisa; Kimura, Ken-Ichi; Tomoda, Hiroshi
2017-05-01
An in vivo-mimic silkworm infection model with Mycobacterium smegmatis was established. When silkworms were raised at 37 °C following an injection of M. smegmatis cells (1.25 × 10 7 CFU larva -1 g -1 ) into the silkworm hemolymph, they died within 48 h. Under these conditions, four microbial peptides with anti-M. smegmatis activity, lariatin A, calpinactam, lysocin E and propeptin, exerted therapeutic effects in a dose-dependent manner, and these are also clinically used agents that are active against Mycobacterium tuberculosis. These results indicate that the silkworm infection model with M. smegmatis is practically useful for the screening of therapeutically effective anti-M. tuberculosis antibiotics.
Effects of Injected CO2 on Geomechanical Properties Due to Mineralogical Changes
NASA Astrophysics Data System (ADS)
Nguyen, B. N.; Hou, Z.; Bacon, D. H.; Murray, C. J.; White, J. A.
2013-12-01
Long-term injection and storage of CO2 in deep underground reservoirs may significantly modify the geomechanical behavior of rocks since CO2 can react with the constituent phases of reservoir rocks and modify their composition. This can lead to modifications of their geomechanical properties (i.e., elastic moduli, Biot's coefficients, and permeability). Modifications of rock geomechanical properties have important consequences as these directly control stress and strain distributions, affect conditions for fracture initiation and development and/or fault healing. This paper attempts to elucidate the geochemical effects of CO2 on geomechanical properties of typical reservoir rocks by means of numerical analyses using the STOMP-ABAQUS sequentially coupled simulator that includes the capability to handle geomechanics and the reactive transport of CO2 together with a module (EMTA) to compute the homogenized rock poroelastic properties as a function of composition changes. EMTA, a software module developed at PNNL, implements the standard and advanced Eshelby-Mori-Tanaka approaches to compute the thermoelastic properties of composite materials. In this work, EMTA will be implemented in the coupled STOMP-ABAQUS simulator as a user subroutine of ABAQUS and used to compute local elastic stiffness based on rock composition. Under the STOMP-ABAQUS approach, STOMP models are built to simulate aqueous and CO2 multiphase fluid flows, and relevant chemical reactions of pore fluids with minerals in the reservoirs. The ABAQUS models then read STOMP output data for cell center coordinates, gas pressures, aqueous pressures, temperatures, saturations, constituent volume fractions, as well as permeability and porosity that are affected by chemical reactions. These data are imported into ABAQUS meshes using a mapping procedure developed for the exchange of data between STOMP and ABAQUS. Constitutive models implemented in ABAQUS via user subroutines then compute stiffness, stresses, strains, pore pressure, permeability, porosity, and capillary pressure, and return updated permeability, porosity, and capillary pressure to STOMP at selected times. In preliminary work, the enhanced STOMP-ABAQUS sequentially coupled approach is validated and illustrated in an example analysis of a cylindrical rock specimen subjected to axial loading, confining pressure, and CO2 fluid injection. The geomechanical analysis accounting for CO2 reactions with rock constituents is compared to that without chemical reactions to elucidate the geochemical effects of injected CO2 on the response of the reservoir rock to stress.
Hughes, Rachel R; Scown, David; Lenehan, Claire E
2015-01-01
Plant extracts containing high levels of antioxidants are desirable due to their reported health benefits. Most techniques capable of determining the antioxidant activity of plant extracts are unsuitable for rapid at-line analysis as they require extensive sample preparation and/or long analysis times. Therefore, analytical techniques capable of real-time or pseudo real-time at-line monitoring of plant extractions, and determination of extraction endpoints, would be useful to manufacturers of antioxidant-rich plant extracts. To develop a reliable method for the rapid at-line extraction monitoring of antioxidants in plant extracts. Calendula officinalis extracts were prepared from dried flowers and analysed for antioxidant activity using sequential injection analysis (SIA) with chemiluminescence (CL) detection. The intensity of CL emission from the reaction of acidic potassium permanganate with antioxidants within the extract was used as the analytical signal. The SIA-CL method was applied to monitor the extraction of C. officinalis over the course of a batch extraction to determine the extraction endpoint. Results were compared with those from ultra high performance liquid chromatography (UHPLC). Pseudo real-time, at-line monitoring showed the level of antioxidants in a batch extract of Calendula officinalis plateaued after 100 min of extraction. These results correlated well with those of an offline UHPLC study. SIA-CL was found to be a suitable method for pseudo real-time monitoring of plant extractions and determination of extraction endpoints with respect to antioxidant concentrations. The method was applied at-line in the manufacturing industry. Copyright © 2015 John Wiley & Sons, Ltd.
Liang, Yayun; Benakanakere, Indira; Besch-Williford, Cynthia; Hyder, Ryyan S; Ellersieck, Mark R; Hyder, Salman M
2010-01-01
Previous studies have shown that sequential exposure to estrogen and progesterone or medroxyprogesterone acetate (MPA) stimulates vascularization and promotes the progression of BT-474 and T47-D human breast cancer cell xenografts in nude mice (Liang et al, Cancer Res 2007, 67:9929). In this follow-up study, the effects of progesterone, MPA, norgestrel (N-EL), and norethindrone (N-ONE) on BT-474 xenograft tumors were compared in the context of several different hormonal environments. N-EL and N-ONE were included in the study because synthetic progestins vary considerably in their biological effects and the effects of these two progestins on the growth of human tumor xenografts are not known. Estradiol-supplemented intact and ovariectomized immunodeficient mice were implanted with BT-474 cells. Progestin pellets were implanted simultaneously with estradiol pellets either 2 days before tumor cell injection (ie, combined) or 5 days after tumor cell injections (ie, sequentially). Progestins stimulated the growth of BT-474 xenograft tumors independent of exposure timing and protocol, MPA stimulated the growth of BT-474 xenograft tumors in ovariectomized mice, and progestins stimulated vascular endothelial growth factor elaboration and increased tumor vascularity. Progestins also increased lymph node metastasis of BT-474 cells. Therefore, progestins, including N-EL and N-ONE, induce the progression of breast cancer xenografts in nude mice and promote tumor metastasis. These observations suggest that women who ingest progestins for hormone therapy or oral contraception could be more at risk for developing breast cancer because of proliferation of existing latent tumor cells. Such risks should be considered in the clinical setting.
Punrat, Eakkasit; Chuanuwatanakul, Suchada; Kaneta, Takashi; Motomizu, Shoji; Chailapakul, Orawon
2013-11-15
An automated method has been developed for determining the concentration of inorganic arsenic. The technique uses sequential injection/anodic stripping voltammetry with a long-lasting gold-modified screen-printed carbon electrode. The long-lasting gold electrode was electrochemically deposited onto a screen-printed carbon electrode at a potential of -0.5 V vs. Ag/AgCl in a supporting electrolyte solution of 1M hydrochloric acid. Under optimal conditions and the applied potentials, the electrode demonstrated that it can be used for a long time without a renewal process. The linear range for the determination of arsenic(III) was 1-100 μg L(-1), and the limit of detection (LOD) in standard solutions was as low as 0.03 μg L(-1) for a deposition time of 120 s and sample volume of 1 mL. This method was used to determine the concentration of arsenic(III) in water samples with satisfactory results. The LOD in real samples was found to be 0.5 μg L(-1). In addition, speciation between arsenic(III) and arsenic(V) has been achieved with the proposed method using deposition potentials of -0.5 V and -1.5 V for the determination of the arsenic(III) concentration and the total arsenic concentration, respectively; the results were acceptable. The proposed method is an automated system that offers a less expensive alternative for determining trace amounts of inorganic arsenic. © 2013 Elsevier B.V. All rights reserved.
Herbst, Daniel P
2014-09-01
Micropore filters are used during extracorporeal circulation to prevent gaseous and solid particles from entering the patient's systemic circulation. Although these devices improve patient safety, limitations in current designs have prompted the development of a new concept in micropore filtration. A prototype of the new design was made using 40-μm filter screens and compared against four commercially available filters for performance in pressure loss and gross air handling. Pre- and postfilter bubble counts for 5- and 10-mL bolus injections in an ex vivo test circuit were recorded using a Doppler ultrasound bubble counter. Statistical analysis of results for bubble volume reduction between test filters was performed with one-way repeated-measures analysis of variance using Bonferroni post hoc tests. Changes in filter performance with changes in microbubble load were also assessed with dependent t tests using the 5- and 10-mL bolus injections as the paired sample for each filter. Significance was set at p < .05. All filters in the test group were comparable in pressure loss performance, showing a range of 26-33 mmHg at a flow rate of 6 L/min. In gross air-handling studies, the prototype showed improved bubble volume reduction, reaching statistical significance with three of the four commercial filters. All test filters showed decreased performance in bubble volume reduction when the microbubble load was increased. Findings from this research support the underpinning theories of a sequential arterial-line filter design and suggest that improvements in microbubble filtration may be possible using this technique.
Herbst, Daniel P.
2014-01-01
Abstract: Micropore filters are used during extracorporeal circulation to prevent gaseous and solid particles from entering the patient’s systemic circulation. Although these devices improve patient safety, limitations in current designs have prompted the development of a new concept in micropore filtration. A prototype of the new design was made using 40-μm filter screens and compared against four commercially available filters for performance in pressure loss and gross air handling. Pre- and postfilter bubble counts for 5- and 10-mL bolus injections in an ex vivo test circuit were recorded using a Doppler ultrasound bubble counter. Statistical analysis of results for bubble volume reduction between test filters was performed with one-way repeated-measures analysis of variance using Bonferroni post hoc tests. Changes in filter performance with changes in microbubble load were also assessed with dependent t tests using the 5- and 10-mL bolus injections as the paired sample for each filter. Significance was set at p < .05. All filters in the test group were comparable in pressure loss performance, showing a range of 26–33 mmHg at a flow rate of 6 L/min. In gross air-handling studies, the prototype showed improved bubble volume reduction, reaching statistical significance with three of the four commercial filters. All test filters showed decreased performance in bubble volume reduction when the microbubble load was increased. Findings from this research support the underpinning theories of a sequential arterial-line filter design and suggest that improvements in microbubble filtration may be possible using this technique. PMID:26357790
NASA Astrophysics Data System (ADS)
Koelmel, Jeremy P.; Kroeger, Nicholas M.; Gill, Emily L.; Ulmer, Candice Z.; Bowden, John A.; Patterson, Rainey E.; Yost, Richard A.; Garrett, Timothy J.
2017-05-01
Untargeted omics analyses aim to comprehensively characterize biomolecules within a biological system. Changes in the presence or quantity of these biomolecules can indicate important biological perturbations, such as those caused by disease. With current technological advancements, the entire genome can now be sequenced; however, in the burgeoning fields of lipidomics, only a subset of lipids can be identified. The recent emergence of high resolution tandem mass spectrometry (HR-MS/MS), in combination with ultra-high performance liquid chromatography, has resulted in an increased coverage of the lipidome. Nevertheless, identifications from MS/MS are generally limited by the number of precursors that can be selected for fragmentation during chromatographic elution. Therefore, we developed the software IE-Omics to automate iterative exclusion (IE), where selected precursors using data-dependent topN analyses are excluded in sequential injections. In each sequential injection, unique precursors are fragmented until HR-MS/MS spectra of all ions above a user-defined intensity threshold are acquired. IE-Omics was applied to lipidomic analyses in Red Cross plasma and substantia nigra tissue. Coverage of the lipidome was drastically improved using IE. When applying IE-Omics to Red Cross plasma and substantia nigra lipid extracts in positive ion mode, 69% and 40% more molecular identifications were obtained, respectively. In addition, applying IE-Omics to a lipidomics workflow increased the coverage of trace species, including odd-chained and short-chained diacylglycerides and oxidized lipid species. By increasing the coverage of the lipidome, applying IE to a lipidomics workflow increases the probability of finding biomarkers and provides additional information for determining etiology of disease.
/sup 99m/Tc-fibrinogen scanning in adult respiratory distress syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, D.A.; Carvalho, A.C.; Geller, E.
1987-01-01
Fibrin is often seen occluding the lung vessels of patients dying from ARDS and is surrounded by regions of lung necrosis. To learn if we could observe increased or focal fibrin deposition and assess the kinetics of plasma fibrinogen turnover during severe acute respiratory failure, we injected technetium 99m-labeled human purified fibrinogen (Tc-HF) and used gamma camera scanning for as long as 12 h in 13 sequential patients as soon as possible after ICU admission. The fibrinogen uptake rates were determined by calculating the lung:heart radioactivity ratios at each time point. Slopes of the lung:heart ratio versus time were comparedmore » between ARDS and mild acute respiratory failure (ARF). The slope of the lung:heart Tc-HF ratio of the 9 patients with ARDS (2.9 +/- 0.4 units) was markedly higher (p less than 0.02) than the slope of the 4 patients with mild ARF (1.1 +/- 0.4) and the 3 patients studied 5 to 9 months after recovery from respiratory failure (0.7 +/- 0.07). In the 1 patient with ARDS and the 2 patients with mild ARF studied both during acute lung injury and after recovery, the lung:heart Tc-HF ratio had decreased at recovery. To compare the pulmonary uptake of Tc-HF to /sup 99m/Tc-labeled human serum albumin (Tc-HSA), 5 patients were injected with 10 mCi of Tc-HSA, and scanning of the thorax was performed with a similar sequential imaging protocol 24 h after conclusion of the Tc-HF study.« less
Khan, Mohammad R; Dudhia, Jayesh; David, Frederic H; De Godoy, Roberta; Mehra, Vedika; Hughes, Gillian; Dakin, Stephanie G; Carr, Andrew J; Goodship, Allen E; Smith, Roger K W
2018-06-19
Intra-synovial tendon injuries display poor healing, which often results in reduced functionality and pain. A lack of effective therapeutic options has led to experimental approaches to augment natural tendon repair with autologous mesenchymal stem cells (MSCs) although the effects of the intra-synovial environment on the distribution, engraftment and functionality of implanted MSCs is not known. This study utilised a novel sheep model which, although in an anatomically different location, more accurately mimics the mechanical and synovial environment of the human rotator cuff, to determine the effects of intra-synovial implantation of MSCs. A lesion was made in the lateral border of the lateral branch of the ovine deep digital flexor tendon within the digital sheath and 2 weeks later 5 million autologous bone marrow MSCs were injected under ultrasound guidance into the digital sheath. Tendons were recovered post mortem at 1 day, and 1-2, 4, 12 and 24 weeks after MSC injection. For the 1-day and 1-2-week groups, MSCs labelled with fluorescent-conjugated magnetic iron-oxide nanoparticles (MIONs) were tracked with MRI, histology and flow cytometry. The 4, 12 and 24-week groups were implanted with non-labelled cells and compared with saline-injected controls for healing. The MSCs displayed no reduced viability in vitro to an uptake of 20.0 ± 4.6 pg MIONs per cell, which was detectable by MRI at minimal density of ~ 3 × 10 4 cells. Treated limbs indicated cellular distribution throughout the tendon synovial sheath but restricted to the synovial tissues, with no MSCs detected in the tendon or surgical lesion. The lesion was associated with negligible morbidity with minimal inflammation post surgery. Evaluation of both treated and control lesions showed no evidence of healing of the lesion at 4, 12 and 24 weeks on gross and histological examination. Unlike other laboratory animal models of tendon injury, this novel model mimics the failed tendon healing seen clinically intra-synovially. Importantly, however, implanted stem cells exhibited homing to synovium niches where they survived for at least 14 days. This phenomenon could be utilised in the development of novel physical or biological approaches to enhance localisation of cells in augmenting intra-synovial tendon repair.
Song, Sijie; Hu, Ying; Gu, Xianfang; Si, Feifei; Hua, Ziyu
2014-01-01
Background Kernicterus still occurs around the world; however, the mechanism of bilirubin neurotoxicity remains unclear, and effective treatment strategies are lacking. To solve these problems, several kernicterus (or acute bilirubin encephalopathy) animal models have been established, but these models are difficult and expensive. Therefore, the present study was performed to establish a novel kernicterus model that is simple and affordable by injecting unconjugated bilirubin solution into the cisterna magna (CM) of ordinary newborn Sprague-Dawley (SD) rats. Methods On postnatal day 5, SD rat pups were randomly divided into bilirubin and control groups. Then, either bilirubin solution or ddH2O (pH = 8.5) was injected into the CM at 10 µg/g (bodyweight). For model characterization, neurobehavioral outcomes were observed, mortality was calculated, and bodyweight was recorded after bilirubin injection and weaning. Apoptosis in the hippocampus was detected by H&E staining, TUNEL, flow cytometry and Western blotting. When the rats were 28 days old, learning and memory ability were evaluated using the Morris water maze test. Results The bilirubin-treated rats showed apparently abnormal neurological manifestations, such as clenched fists, opisthotonos and torsion spasms. Bodyweight gain in the bilirubin-treated rats was significantly lower than that in the controls (P<0.001). The early and late mortality of the bilirubin-treated rats were both dramatically higher than those of the controls (P = 0.004 and 0.017, respectively). Apoptosis and necrosis in the hippocampal nerve cells in the bilirubin-treated rats were observed. The bilirubin-treated rats performed worse than the controls on the Morris water maze test. Conclusion By injecting bilirubin into the CM, we successfully created a new kernicterus model using ordinary SD rats; the model mimics both the acute clinical manifestations and the chronic sequelae. In particular, CM injection is easy to perform; thus, more stable models for follow-up study are available. PMID:24796550
Shu, Guangwen; Yue, Ling; Zhao, Wenhao; Xu, Chan; Yang, Jing; Wang, Shaobing; Yang, Xinzhou
2015-10-14
Isoliensinine (isolie) is an alkaloid produced by the edible plant Nelumbo nucifera. Here, we unveiled that isolie was able to provoke HepG2, Huh-7, and H22 hepatocellular carcinoma (HCC) cell apoptosis. Isolie decreased NF-κB activity and constitutive phosphorylation of NF-κB p65 subunit at Ser536 in HCC cells. Overexpression of p65 Ser536 phosphorylation mimics abrogated isolie-mediated HCC cell apoptosis. Furthermore, intraperitoneal injection of isolie inhibited the growth of Huh-7 xenografts in nude mice. Additionally, isolie given by both intraperitoneal injection and gavage diminished the proliferation of transplanted H22 cells in Kunming mice. Reduced tumor growth in vivo was associated with inhibited p65 phosphorylation at Ser536 and declined NF-κB activity in tumor tissues. Finally, we revealed that isolie was bioavailable in the blood of mice and exhibited no detectable toxic effects on tumor-bearing mice. Our data provided strong evidence for the anti-HCC effect of isolie.
Sebbane, Florent; Jarrett, Clayton O.; Gardner, Donald; Long, Daniel; Hinnebusch, B. Joseph
2006-01-01
Yersinia pestis is transmitted by fleas and causes bubonic plague, characterized by severe local lymphadenitis that progresses rapidly to systemic infection and life-threatening septicemia. Here, we show that although flea-borne transmission usually leads to bubonic plague in mice, it can also lead to primary septicemic plague. However, intradermal injection of Y. pestis, commonly used to mimic transmission by fleabite, leads only to bubonic plague. A Y. pestis strain lacking the plasmid-encoded cell-surface plasminogen activator, which is avirulent by intradermal or s.c. injection, was able to cause fatal primary septicemic plague at low incidence, but not bubonic plague, when transmitted by fleas. The results clarify a long-standing uncertainty about the etiology of primary septicemic plague and support an evolutionary scenario in which plague first emerged as a flea-borne septicemic disease of limited transmissibility. Subsequent acquisition of the plasminogen activator gene by horizontal transfer enabled the bubonic form of disease and increased the potential for epidemic spread. PMID:16567636
Antibiotic effects against periodontal bacteria in organ cultured tissue.
Takeshita, Masaaki; Haraguchi, Akira; Miura, Mayumi; Hamachi, Takafumi; Fukuda, Takao; Sanui, Terukazu; Takano, Aiko; Nishimura, Fusanori
2017-02-01
Mechanical reduction of infectious bacteria by using physical instruments is considered the principal therapeutic strategy for periodontal disease; addition of antibiotics is adjunctive. However, local antibiotic treatment, combined with conventional mechanical debridement, has recently been shown to be more effective in periodontitis subjects with type 2 diabetes. This suggests that some bacteria may invade the inflamed inner gingival epithelium, and mechanical debridement alone will be unable to reduce these bacteria completely. Therefore, we tried to establish infected organ culture models that mimic the inner gingival epithelium and aimed to see the effects of antibiotics in these established models. Mouse dorsal skin epithelia were isolated, and periodontal bacteria were injected into the epithelia. Infected epithelia were incubated with test antibiotics, and colony-forming ability was evaluated. Results indicated that effective antibiotics differed according to injected bacteria and the bacterial combinations tested. Overall, in organ culture model, the combination of amoxicillin or cefdinir and metronidazole compensate for the effects of less effective bacterial combinations on each other. This in vitro study would suggest effective periodontal treatment regimens, especially for severe periodontitis.
Web-based unfolding cases: a strategy to enhance and evaluate clinical reasoning skills.
Johnson, Gail; Flagler, Susan
2013-10-01
Clinical reasoning involves the use of both analytical and nonanalytical intuitive cognitive processes. Fostering student development of clinical reasoning skills and evaluating student performance in this cognitive arena can challenge educators. The use of Web-based unfolding cases is proposed as a strategy to address these challenges. Unfolding cases mimic real-life clinical situations by presenting only partial clinical information in sequential segments. Students receive immediate feedback after submitting a response to a given segment. The student's comparison of the desired and submitted responses provides information to enhance the development of clinical reasoning skills. Each student's set of case responses are saved for the instructor in an individual-student electronic file, providing a record of the student's knowledge and thinking processes for faculty evaluation. For the example case given, the approaches used to evaluate individual components of clinical reasoning are provided. Possible future uses of Web-based unfolding cases are described. Copyright 2013, SLACK Incorporated.
Phase transition in a spatial Lotka-Volterra model
NASA Astrophysics Data System (ADS)
Szabó, György; Czárán, Tamás
2001-06-01
Spatial evolution is investigated in a simulated system of nine competing and mutating bacterium strains, which mimics the biochemical war among bacteria capable of producing two different bacteriocins (toxins) at most. Random sequential dynamics on a square lattice is governed by very symmetrical transition rules for neighborhood invasions of sensitive strains by killers, killers by resistants, and resistants by sensitives. The community of the nine possible toxicity/resistance types undergoes a critical phase transition as the uniform transmutation rates between the types decreases below a critical value Pc above that all the nine types of strains coexist with equal frequencies. Passing the critical mutation rate from above, the system collapses into one of three topologically identical (degenerated) states, each consisting of three strain types. Of the three possible final states each accrues with equal probability and all three maintain themselves in a self-organizing polydomain structure via cyclic invasions. Our Monte Carlo simulations support that this symmetry-breaking transition belongs to the universality class of the three-state Potts model.
Grosser, Oliver S; Ruf, Juri; Kupitz, Dennis; Pethe, Annette; Ulrich, Gerhard; Genseke, Philipp; Mohnike, Konrad; Pech, Maciej; Richter, Wolf S; Ricke, Jens; Amthauer, Holger
2016-06-01
Perfusion scintigraphy using (99m)Tc-labeled albumin aggregates is mandatory before hepatic radioembolization with (90)Y-microspheres. As part of a prospective trial, the intrahepatic and intrapulmonary stability of 2 albumin compounds, (99m)Tc-MAA (macroaggregated serum albumin [MAA]) and (99m)Tc-HSA (human serum albumin [HSA]), was assessed. In 24 patients with metastatic colorectal cancer, biodistribution (liver, lung) and liver-lung shunt (LLS) of both tracers (12 patients each) were assessed by sequential planar scintigraphy (1, 5, and 24 h after injection). Liver uptake of both albumin compounds decreased differently. Although initial LLSs at 1 h after injection were similar in both groups, MAA-LLS increased significantly from 1 (3.9%) to 5 h (7.7%) and 24 h (9.9%) after injection, respectively. HSA-LLS did not change significantly (1 to 5 h), indicating a steady state of pulmonary and intrahepatic degradation. Compared with (99m)Tc-MAA-microspheres, (99m)Tc-HSA-microspheres are likely more resistant to degradation over time, allowing a reliable LLS determination even at later time points. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Holtyn, August F; Koffarnus, Mikhail N; DeFulio, Anthony; Sigurdsson, Sigurdur O; Strain, Eric C; Schwartz, Robert P; Silverman, Kenneth
2014-01-01
We examined the use of employment-based abstinence reinforcement in out-of-treatment injection drug users, in this secondary analysis of a previously reported trial. Participants (N = 33) could work in the therapeutic workplace, a model employment-based program for drug addiction, for 30 weeks and could earn approximately $10 per hr. During a 4-week induction, participants only had to work to earn pay. After induction, access to the workplace was contingent on enrollment in methadone treatment. After participants met the methadone contingency for 3 weeks, they had to provide opiate-negative urine samples to maintain maximum pay. After participants met those contingencies for 3 weeks, they had to provide opiate- and cocaine-negative urine samples to maintain maximum pay. The percentage of drug-negative urine samples remained stable until the abstinence reinforcement contingency for each drug was applied. The percentage of opiate- and cocaine-negative urine samples increased abruptly and significantly after the opiate- and cocaine-abstinence contingencies, respectively, were applied. These results demonstrate that the sequential administration of employment-based abstinence reinforcement can increase opiate and cocaine abstinence among out-of-treatment injection drug users. © Society for the Experimental Analysis of Behavior.
Holtyn, August F.; Koffarnus, Mikhail N.; DeFulio, Anthony; Sigurdsson, Sigurdur O.; Strain, Eric C.; Schwartz, Robert P.; Silverman, Kenneth
2016-01-01
We examined the use of employment-based abstinence reinforcement in out-of-treatment injection drug users, in this secondary analysis of a previously reported trial. Participants (N = 33) could work in the therapeutic workplace, a model employment-based program for drug addiction, for 30 weeks and could earn approximately $10 per hr. During a 4-week induction, participants only had to work to earn pay. After induction, access to the workplace was contingent on enrollment in methadone treatment. After participants met the methadone contingency for 3 weeks, they had to provide opiate-negative urine samples to maintain maximum pay. After participants met those contingencies for 3 weeks, they had to provide opiate- and cocaine-negative urine samples to maintain maximum pay. The percentage of drug-negative urine samples remained stable until the abstinence reinforcement contingency for each drug was applied. The percentage of opiate- and cocaine-negative urine samples increased abruptly and significantly after the opiate- and cocaine-abstinence contingencies, respectively, were applied. These results demonstrate that the sequential administration of employment-based abstinence reinforcement can increase opiate and cocaine abstinence among out-of-treatment injection drug users. PMID:25292399
Vaccine allergy and pseudo-allergy.
Ponvert, Claude; Scheinmann, Pierre
2003-01-01
Allergic and pseudo-allergic reactions to vaccines frequently involve the skin, and can be generalized systemic symptoms (urticaria/angioedema, serum sickness, flares of eczema) or localized at the sites of vaccination (persistent nodules, abcesses, granulomas). Diagnosis of Arthus-type reactions is based on clinical history and specific IgM/IgG anti-toxoid determination. For other local reactions, diagnostic value of non-immediate responses in skin tests varies with clinical symptoms and substances involved. Immediate responses in skin tests and specific IgE determination have good diagnostic and/or predictive value in anaphylaxis and immediate/accelerated urticaria/angioedema to toxoid-, pneumococcus-, and egg- and gelatin-containing vaccines. Diagnosis of reactions to dextran in BCG is based on specific IgM/IgG determination. Most non-immediate generalized reactions result from non-specific inflammation, except for gelatin-containing vaccines, but the diagnostic value of immuno-allergological tests with the vaccines and gelatin are controversial. Withholding booster injections is advised if specific IgM/IgG levels are high. If the levels are low, sequential injections of vaccines containing a single vaccinating agent are usually tolerated. However, injections of the vaccine should be performed using a " desensitization " procedure in patients reporting anaphylaxis and immediate/accelerated urticaria/angioedema.
Mohamed, Ryian; Gadhvi, Kunal; Mensah, Evelyn
2018-05-30
To compare, in a single urban population, the visual outcomes of ranibizumab monotherapy in "White" (W) and "Non-White" (NW) patients with wet age-related macular degeneration (AMD). Prospective data was collected from 434 eyes of 217 patients with wet AMD patients receiving intravitreal ranibizumab. Baseline and monthly LogMAR visual acuities were obtained. All patients received treatment under a "treat and extend policy" consisting of three monthly injections of ranibizumab, followed by individualised sequentially lengthening follow-up intervals when stable. At 24 months, the percentage of eyes that maintained or improved vision was 91% in W patients and 83% in NW patients. Correspondingly, at 24 months, the percentage of visual loss was 9% for W patients and 17% of NW patients. We found that whilst W patients required fewer overall injections (14.1) they gained an average 4 LogMAR letters of visual acuity. However, NW patients required more injections (14.6) to gain 0.5 LogMAR letters of visual acuity over the same 24 months of treatment. Individualised ranibizumab monotherapy is more effective in preserving vision for W compared to NW patients with wet AMD. © 2018 S. Karger AG, Basel.
Injecting 1000 centistoke liquid silicone with ease and precision.
Benedetto, Anthony V; Lewis, Alan T
2003-03-01
Since the Food and Drug Administration approved the use of the 1000 centistoke liquid silicone, Silikon 1000, for intraocular injection, the off-label use of this injectable silicone oil as a permanent soft-tissue filler for facial rejuvenation has increased in the United States. Injecting liquid silicone by the microdroplet technique is the most important preventive measure that one can use to avoid the adverse sequelae of silicone migration and granuloma formation, especially when injecting silicone to improve small facial defects resulting from acne scars, surgical procedures, or photoaging. To introduce an easy method for injecting a viscous silicone oil by the microdroplet technique, using an inexpensive syringe and needle that currently is available from distributors of medical supplies in the United States. We suggest the use of a Becton Dickinson 3/10 cc insulin U-100 syringe to inject Silikon 1000. This syringe contains up to 0.3 mL of fluid, and its barrel is clearly marked with an easy-to-read scale of large cross-hatches. Each cross-hatch marking represents either a unit value of 0.01 mL or a half-unit value of 0.005 mL of fluid, which is the approximate volume preferred when injecting liquid silicone into facial defects. Because not enough negative pressure can be generated in this needle and syringe to draw up the viscous silicone oil, we describe a convenient and easy method for filling this 3/10 cc diabetic syringe with Silikon 1000. We have found that by using the Becton Dickinson 3/10 cc insulin U-100 syringe, our technique of injecting minute amounts of Silikon 1000 is facilitated because each widely spaced cross-hatch on the side of the syringe barrel is easy to read and measures exact amounts of the silicone oil. These lines of the scale on the syringe barrel are so large and clearly marked that it is virtually impossible to overinject the most minute amount of silicone. Sequential microdroplets of 0.01 cc or less of Silikon 1000 can be measured and injected with the greatest ease and precision so that inadvertent overdosing and complications can be avoided.
IncobotulinumtoxinA treatment of facial nerve palsy after neurosurgery.
Akulov, Mihail A; Orlova, Ol'ga R; Orlova, Aleksandra S; Usachev, Dmitrij J; Shimansky, Vadim N; Tanjashin, Sergey V; Khatkova, Svetlana E; Yunosha-Shanyavskaya, Anna V
2017-10-15
This study evaluates the effect of incobotulinumtoxinA in the acute and chronic phases of facial nerve palsy after neurosurgical interventions. Patients received incobotulinumtoxinA injections (active treatment group) or standard rehabilitation treatment (control group). Functional efficacy was assessed using House-Brackmann, Yanagihara System and Sunnybrook Facial Grading scales, and Facial Disability Index self-assessment. Significant improvements on all scales were seen after 1month of incobotulinumtoxinA treatment (active treatment group, р<0.05), but only after 3months of rehabilitation treatment (control group, р<0.05). At 1 and 2years post-surgery, the prevalence of synkinesis was significantly higher in patients in the control group compared with those receiving incobotulinumtoxinA treatment (р<0.05 and р<0.001, respectively). IncobotulinumtoxinA treatment resulted in significant improvements in facial symmetry in patients with facial nerve injury following neurosurgical interventions. Treatment was effective for the correction of the compensatory hyperactivity of mimic muscles on the unaffected side that develops in the acute period of facial nerve palsy, and for the correction of synkinesis in the affected side that develops in the long-term period. Appropriate dosing and patient education to perform exercises to restore mimic muscle function should be considered in multimodal treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Hahn, Hartmut; Salt, Alec N.; Biegner, Thorsten; Kammerer, Bernd; Delabar, Ursular; Hartsock, Jared; Plontke, Stefan K.
2012-01-01
Hypothesis To determine whether intracochlearly applied dexamethasone will lead to better control of drug levels, higher peak concentrations and lower base-to apex concentration gradients in scala tympani (ST) of the guinea pig than after intratympanic (round window, RW) application. Background Local application of drugs to the RW results in substantial variation of intracochlear drug levels and significant base-to apex concentration gradients in ST. Methods Two μL of dexamethasone-phosphate (10 mg/mL) were injected into ST either through the RW membrane which was covered with 1% sodium hyaluronate gel or through a cochleostomy with a fluid tight seal of the micropipette. Perilymph was sequentially sampled from the apex at a single time point for each animal, at 20, 80, or 200 min after the injection ended. Results were mathematically interpreted by the means of an established computer model and compared with prior experiments performed by our group with the same experimental techniques but using intratympanic applications. Results Single intracochlear injections over 20 min resulted in approximately ten times higher peak concentrations (on average) than 2-3 hours of intratympanic application to the round window niche. Intracochlear drug levels were less variable and could be measured for at least up to 220 min. Concentration gradients along scala tympani were less pronounced. The remaining variability in intracochlear drug levels was attributable to perilymph and drug leak from the injection site. Conclusion With significantly higher, less variable drug levels and smaller base-to apex concentration gradients, intracochlear applications have advantages to intratympanic injections. For further development of this technique, it is of importance to control leaks of perilymph and drug from the injection site and to evaluate its clinical feasibility and associated risks. PMID:22588238
Hahn, Hartmut; Salt, Alec N; Biegner, Thorsten; Kammerer, Bernd; Delabar, Ursular; Hartsock, Jared J; Plontke, Stefan K
2012-06-01
To determine whether intracochlearly applied dexamethasone will lead to better control of drug levels, higher peak concentrations, and lower base-to-apex concentration gradients in the scala tympani (ST) of the guinea pig than after intratympanic (round window [RW]) application. Local application of drugs to the RW results in substantial variation of intracochlear drug levels and significant base-to-apex concentration gradients in ST. Two microliters of dexamethasone-phosphate (10 mg/ml) were injected into ST either through the RW membrane, which was covered with 1% sodium hyaluronate gel or through a cochleostomy with a fluid tight seal of the micropipette. Perilymph was sequentially sampled from the apex at a single time point for each animal, at 20, 80, or 200 min after the injection ended. Results were mathematically interpreted by means of an established computer model and compared with previous experiments performed by our group with the same experimental techniques but using intratympanic applications. Single intracochlear injections of 20 minutes resulted in approximately 10 times higher peak concentrations (on average) than 2 to 3 hours of intratympanic application to the RW niche. Intracochlear drug levels were less variable and could be measured for over 220 minutes. Concentration gradients along the scala tympani were less pronounced. The remaining variability in intracochlear drug levels was attributable to perilymph and drug leak from the injection site. With significantly higher, less variable drug levels and smaller base-to-apex concentration gradients, intracochlear applications have advantages to intratympanic injections. For further development of this technique, it is of importance to control leaks of perilymph and drug from the injection site and to evaluate its clinical feasibility and associated risks.
Roth, Alexis M.; Armenta, Richard A.; Wagner, Karla D.; Roesch, Scott C.; Bluthenthal, Ricky N.; Cuevas-Mota, Jazmine; Garfein, Richard S.
2015-01-01
Background Among persons who inject drugs (PWID), polydrug use (the practice of mixing multiple drugs/alcohol sequentially or simultaneously) increases risk for HIV transmission and unintentional overdose deaths. Research has shown local drug markets influence drug use practices. However, little is known about the impact of drug mixing in markets dominated by black tar heroin and methamphetamine, such as the western United States. Methods Data were collected through an ongoing longitudinal study examining drug use, risk behavior, and health status among PWID. Latent class analysis (LCA) was used to identify patterns of substance use (heroin, methamphetamine, prescription drugs, alcohol, and marijuana) via multiple administration routes (injecting, smoking, and swallowing). Logistic regression was used to identify behaviors and health indicators associated with drug use class. Results The sample included 511 mostly white (51.5%) males (73.8%), with mean age of 43.5 years. Two distinct classes of drug users predominated: methamphetamine by multiple routes (51%) and heroin by injection (49%). In multivariable logistic regression, class membership was associated with age, race, and housing status. PWID who were HIV-seropositive and reported prior sexually transmitted infections had increased odds of belonging to the methamphetamine class. Those who were HCV positive and reported previous opioid overdose had an increased odds of being in the primarily heroin injection class (all P-values < .05). Conclusion Risk behaviors and health outcomes differed between PWID who primarily inject heroin vs. those who use methamphetamine. The findings suggest that in a region where PWID mainly use black tar heroin or methamphetamine, interventions tailored to sub-populations of PWID could improve effectiveness. PMID:25313832
Fluorescence tracers as a reference for pesticide transport in wetland systems
NASA Astrophysics Data System (ADS)
Lange, Jens; Passeport, Elodie; Tournebize, Julien
2010-05-01
Two different fluorescent tracers, Uranine (UR) and Sulforhodamine (SRB), were injected as a pulse into surface flow wetlands. Tracer breakthrough curves were used to document hydraulic efficiencies, peak attenuation and retention capacities of completely different wetland systems. The tracers were used as a reference to mimic photolytic decay (UR) and sorption (SRB) of contaminants, since a real herbicide (Isoproturon, IPU) was injected in parallel to UR and SRB. Analysis costs limited IPU sampling frequency and single samples deviated from the tracer breakthrough curves. Still, a parallel behavior of IPU and SRB could be observed in totally different wetland systems, including underground passage through drainage lines. Similar recovery rates for IPU and SRB confirmed this observation. Hence, SRB was found to be an appropriate reference tracer to mimic the behavior of mobile pesticides (low KOC, without degradation) in wetland systems and the obtained wetland characteristics for SRB may serve as an indication for contaminant retention. Owing to the properties of IPU, the obtained results should be treated as worst case scenarios for highly mobile pesticides. A comparison of six different wetland types suggested that non-steady wetland systems with large variation in water level may temporally store relatively large amounts of tracers (contaminants), partly in areas that are not continuously saturated. This may lead to an efficient attenuation of peak concentrations. However, when large parts of these systems are flushed by natural storm events, tracers (contaminants) may be re-mobilized. In steady systems vegetation density and water depth were found to be the most important factors for tracer/contaminant retention. Illustrated by SRB, sorption on sediments and vegetation was a quick, almost instantaneous process which lead to considerable tracer losses even at high flow velocities and short contact times. Shallow systems with dense vegetation appeared to be the most efficient SRB/contaminant traps. For photolytic decay no reference contaminant was studied, but the results found for UR may serve as a valuable proxy for this process.
Fenpropathrin, a Widely Used Pesticide, Causes Dopaminergic Degeneration
Xiong, Jing; Zhang, Xiaowei; Huang, Jinsha; Chen, Chunnuan; Chen, Zhenzhen; Liu, Ling; Zhang, Guoxin; Yang, Jiaolong; Zhang, Zhentao; Zhang, Zhaohui; Lin, Zhicheng
2017-01-01
Fenpropathrin is one of the widely used pyrethroids in agriculture and household and also reported to have neurotoxic effects in rodent models. In our Parkinson’s disease (PD) clinic, there was a unique patient with a history of daily exposure to fenpropathrin for 6 months prior to developing Parkinsonian symptoms progressively. Since whether fenpropathrin is related to any dopaminergic degeneration was unknown, we aimed in this study to evaluate the neurotoxic effects of fenpropathrin on the dopaminergic system and associated mechanisms in vitro and in vivo. In cultured SH-SY5Y cells, fenpropathrin caused cell death, reactive oxygen species generation, Lewy body-associated proteins aggregation, and Lewy body-like intracytoplasmic inclusions formation. In rodent animals, two different injections of fenpropathrin were used for administrations, intraperitoneal (i.p), or stereotaxical (ST). The rats exhibited lower number of pokes 60 days after first i.p injection, while the rats in ST group showed a significant upregulation of apomorphine-evoked rotations 60 days after first injection. Dcreased tyrosine hydroxylase (TH) and vesicular monoamine transporter 2 (VMAT2) immunoreactivity, while increased dopamine transporter (DAT) immunoreactivity were observed in rats of either i.p or ST group 60 days after the last exposure to fenpropathrin. However, the number of TH-positive cells in the substantia nigra was more reduced 120 days after the first i.p injection than those of 60 days. Our data demonstrated that exposure to fenpropathrin could mimic the pathologic and pathogenetic features of PD especially in late onset cases. These results imply fenpropathrin as a DA neurotoxin and a possible environmental risk factor for PD. PMID:25575680
NASA Astrophysics Data System (ADS)
Kim, Minji; Quan, Yuhua; Han, Kook Nam; Choi, Byeong Hyun; Choi, Yeonho; Kim, Hyun Koo; Kim, Beop-Min
2016-03-01
This study was to evaluate the feasibility of near infrared (NIR) fluorescent images as a tool for evaluating the perfusion of the gastric tube after esophagectomy. In addition, we investigated the time required to acquire enough signal to confirm the presence of ischemia in gastric tube after injection of indocyanine green (ICG) through peripheral versus and central venous route. 4 porcine underwent esophagogastrostomy and their right gastric arteries were ligated to mimic ischemic condition of gastric tube. ICG (0.6mg/kg) was intravenously injected and the fluorescence signal-to-background ratios (SBR) were measured by using the custom-built intraoperative color and fluorescence imaging system (ICFIS). We evaluated perfusion of gastric tubes by comparing their SBR with esophageal SBR. In ischemic models, SBR of esophagus was higher than that of gastric tube (2.8+/-0.54 vs. 1.7+/-0.37, p<0.05). It showed high esophagus-stomach signal to signal ratio. (SSR, 1.8+/-0.76). We also could observe recovery of blood perfusion in few minutes after releasing the ligation of right gastric artery. In addition, in comparison study according to the injection route of ICG, The time to acquire signal stabilization was faster in central than in peripheral route (119 +/- 65.1 seconds in central route vs. 295+/-130.4 in peripheral route, p<0.05). NIR fluorescent images could provide the real-time information if there was ischemia or not in gastric tube during operation. And, central injection of ICG might give that information faster than peripheral route.
Dec, John E [Livermore, CA; Sjoberg, Carl-Magnus G [Livermore, CA
2006-10-31
A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.
Programmable colloidal molecules from sequential capillarity-assisted particle assembly
Ni, Songbo; Leemann, Jessica; Buttinoni, Ivo; Isa, Lucio; Wolf, Heiko
2016-01-01
The assembly of artificial nanostructured and microstructured materials which display structures and functionalities that mimic nature’s complexity requires building blocks with specific and directional interactions, analogous to those displayed at the molecular level. Despite remarkable progress in synthesizing “patchy” particles encoding anisotropic interactions, most current methods are restricted to integrating up to two compositional patches on a single “molecule” and to objects with simple shapes. Currently, decoupling functionality and shape to achieve full compositional and geometrical programmability remains an elusive task. We use sequential capillarity-assisted particle assembly which uniquely fulfills the demands described above. This is a new method based on simple, yet essential, adaptations to the well-known capillary assembly of particles over topographical templates. Tuning the depth of the assembly sites (traps) and the surface tension of moving droplets of colloidal suspensions enables controlled stepwise filling of traps to “synthesize” colloidal molecules. After deposition and mechanical linkage, the colloidal molecules can be dispersed in a solvent. The template’s shape solely controls the molecule’s geometry, whereas the filling sequence independently determines its composition. No specific surface chemistry is required, and multifunctional molecules with organic and inorganic moieties can be fabricated. We demonstrate the “synthesis” of a library of structures, ranging from dumbbells and triangles to units resembling bar codes, block copolymers, surfactants, and three-dimensional chiral objects. The full programmability of our approach opens up new directions not only for assembling and studying complex materials with single-particle-level control but also for fabricating new microscale devices for sensing, patterning, and delivery applications. PMID:27051882
Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid
Chen, Ruoyan; Ning, Gang; Zhao, Ming-Lang; Fleming, Matthew G.; Diaz, Luis A.; Werb, Zena; Liu, Zhi
2001-01-01
Bullous pemphigoid (BP) is an inflammatory subepidermal blistering disease associated with an IgG autoimmune response to the hemidesmosomal protein BP180. Passive transfer of antibodies to the murine BP180 (mBP180) ectodomain triggers a blistering skin disease in mice that depends on complement activation and neutrophil infiltration and closely mimics human BP. In the present study, we show that mast cells (MCs) play a crucial role in experimental BP. Wild-type mice injected intradermally with pathogenic anti-mBP180 IgG exhibited extensive MC degranulation in skin, which preceded neutrophil infiltration and subsequent subepidermal blistering. In contrast, mice genetically deficient in MCs or MC-sufficient mice pretreated with an inhibitor of MC degranulation failed to develop BP. Further, MC-deficient mice reconstituted in skin with MCs became susceptible to experimental BP. Despite the activation of complement to yield C3a and C5a, in the absence of MCs, accumulation of neutrophils at the injection site was blunted. The lack of response due to MC deficiency was overcome by intradermal administration of a neutrophil chemoattractant, IL-8, or by reconstitution of the injection sites with neutrophils. These findings provide the first direct evidence to our knowledge that MCs play an essential role in neutrophil recruitment during subepidermal blister formation in experimental BP. PMID:11602622
A Unitary Anesthetic Binding Site at High Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedula, L. Sangeetha; Brannigan, Grace; Economou, Nicoleta J.
2009-10-21
Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show thatmore » apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less
A Unitary Anesthetic Binding Site at High Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
L Vedula; G Brannigan; N Economou
2011-12-31
Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show thatmore » apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less
A Unitary Anesthetic-Binding Site at High Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedula, L.; Brannigan, G; Economou, N
2009-01-01
Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABAA receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritinmore » also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less
Do Quiescence and Wasp Venom-Induced Lethargy Share Common Neuronal Mechanisms in Cockroaches?
2017-01-01
The escape behavior of a cockroach may not occur when it is either in a quiescent state or after being stung by the jewel wasp (Ampulex compressa). In the present paper, we show that quiescence is an innate lethargic state during which the cockroach is less responsive to external stimuli. The neuronal mechanism of such a state is poorly understood. In contrast to quiescence, the venom-induced lethargic state is not an innate state in cockroaches. The Jewel Wasp disables the escape behavior of cockroaches by injecting its venom directly in the head ganglia, inside a neuropile called the central complex a ‘higher center’ known to regulate motor behaviors. In this paper we show that the coxal slow motoneuron ongoing activity, known to be involved in posture, is reduced in quiescent animals, as compared to awake animals, and it is further reduced in stung animals. Moreover, the regular tonic firing of the slow motoneuron present in both awake and quiescent cockroaches is lost in stung cockroaches. Injection of procaine to prevent neuronal activity into the central complex to mimic the wasp venom injection produces a similar effect on the activity of the slow motoneuron. In conclusion, we speculate that the neuronal modulation during the quiescence and venom-induced lethargic states may occur in the central complex and that both states could share a common neuronal mechanism. PMID:28045911
Do Quiescence and Wasp Venom-Induced Lethargy Share Common Neuronal Mechanisms in Cockroaches?
Emanuel, Stav; Libersat, Frederic
2017-01-01
The escape behavior of a cockroach may not occur when it is either in a quiescent state or after being stung by the jewel wasp (Ampulex compressa). In the present paper, we show that quiescence is an innate lethargic state during which the cockroach is less responsive to external stimuli. The neuronal mechanism of such a state is poorly understood. In contrast to quiescence, the venom-induced lethargic state is not an innate state in cockroaches. The Jewel Wasp disables the escape behavior of cockroaches by injecting its venom directly in the head ganglia, inside a neuropile called the central complex a 'higher center' known to regulate motor behaviors. In this paper we show that the coxal slow motoneuron ongoing activity, known to be involved in posture, is reduced in quiescent animals, as compared to awake animals, and it is further reduced in stung animals. Moreover, the regular tonic firing of the slow motoneuron present in both awake and quiescent cockroaches is lost in stung cockroaches. Injection of procaine to prevent neuronal activity into the central complex to mimic the wasp venom injection produces a similar effect on the activity of the slow motoneuron. In conclusion, we speculate that the neuronal modulation during the quiescence and venom-induced lethargic states may occur in the central complex and that both states could share a common neuronal mechanism.
Effect of serotonin on platelet function in cocaine exposed blood
Ziu, Endrit; Hadden, Coedy; Li, Yicong; Lowery, Curtis Lee; Singh, Preeti; Ucer, Serra S.; Mercado, Charles P.; Gu, Howard H.; Kilic, Fusun
2014-01-01
5-hydroxytryptamine (5-HT) reuptake inhibitors counteract the pro-thrombotic effect of elevated plasma 5-HT by down-regulating the 5-HT uptake rates of platelets. Cocaine also down-regulates the platelet 5-HT uptake rates but in contrast, the platelets of cocaine-injected mice show a much higher aggregation rate than the platelets of control mice. To examine the involvement of plasma 5-HT in cocaine-mediated platelet aggregation, we studied the function of platelets isolated from wild-type and transgenic, peripheral 5-HT knock-out (TPH1-KO) mice, and cocaine-insensitive dopamine transporter knock in (DAT-KI) mice. In cocaine-injected mice compared to the control mice, the plasma 5-HT level as well as the surface level of P-selectin was elevated; in vitro platelet aggregation in the presence of type I fibrillar collagen was enhanced. However, cocaine injection lowered the 5-HT uptake rates of platelets and increased the plasma 5-HT levels of the DAT-KI mice but did not change their platelets aggregation rates further which are already hyper-reactive. Furthermore, the in vitro studies supporting these in vivo findings suggest that cocaine mimics the effect of elevated plasma 5-HT level on platelets and in 5-HT receptor- and transporter-dependent pathways in a two-step process propagates platelet aggregation by an additive effect of 5-HT and nonserotonergic catecholamine. PMID:25091505
Furukawa, Makoto; Takagai, Yoshitaka
2016-10-04
Online solid-phase extraction (SPE) coupled with inductively coupled plasma mass spectrometry (ICPMS) is a useful tool in automatic sequential analysis. However, it cannot simultaneously quantify the analytical targets and their recovery percentages (R%) in one-shot samples. We propose a system that simultaneously acquires both data in a single sample injection. The main flowline of the online solid-phase extraction is divided into main and split flows. The split flow line (i.e., bypass line), which circumvents the SPE column, was placed on the main flow line. Under program-controlled switching of the automatic valve, the ICPMS sequentially measures the targets in a sample before and after column preconcentration and determines the target concentrations and the R% on the SPE column. This paper describes the system development and two demonstrations to exhibit the analytical significance, i.e., the ultratrace amounts of radioactive strontium ( 90 Sr) using commercial Sr-trap resin and multielement adsorbability on the SPE column. This system is applicable to other flow analyses and detectors in online solid phase extraction.
Toda, Kei; Takaki, Mari; Hashem, Md Abul
2008-08-01
Arsenic water pollution is a big issue worldwide. Determination of inorganic arsenic in each oxidation state is important because As(III) is much more toxic than As(V). An automated arsenic measurement system was developed based on complete vaporization of As by a sequential procedure and collection/preconcentration of the vaporized AsH(3), which was subsequently measured by a flow analysis. The automated sensitive method was applied to monitoring As(III) and As(V) concentrations in contaminated water standing overnight. Behaviors of arsenics were investigated in different conditions, and unique time dependence profiles were obtained. For example, in the standing of anaerobic water samples, the As(III) concentration immediately began decreasing whereas dead time was observed in the removal of As(V). In normal groundwater conditions, most arsenic was removed from the water simply by standing overnight. To obtain more effective removal, the addition of oxidants and use of steel wools were investigated. Simple batch wise treatments of arsenic contaminated water were demonstrated, and detail of the transitional changes in As(III) and As(V) were investigated.
Nashida, Norihiro; Satoh, Wataru; Fukuda, Junji; Suzuki, Hiroaki
2007-06-15
An integrated microfluidic device with injecting, flushing, and sensing functions was realized using valves that operate based on direct electrowetting. The device consisted of two substrates: a glass substrate with driving and sensing electrodes and a poly(dimethylsiloxane) (PDMS) substrate. Microfluidic transport was achieved using the spontaneous movement of solutions in hydrophilic flow channels formed with a dry-film photoresist layer. The injection and flushing of solutions were controlled by gold working electrodes, which functioned as valves. The valves were formed either in the channels or in a through-hole in the glass substrate. To demonstrate the system's applicability to an immunoassay, the detection of immobilized antigens was performed as a partial simulation of a sandwich immunoassay. Human alpha-fetoprotein (AFP) or an anti-human AFP antibody was immobilized on a platinum working electrode in the chamber using a plasma-polymerized film (PPF). By applying a potential to the injection valves, necessary solutions were injected one by one through the channels into a reaction chamber at the center of the chip and incubated for reasonable periods of time. The solutions were then flushed through the flushing valve and absorbed in a filter paper placed under the device. After incubation with the corresponding antibodies labeled with glucose oxidase (GOD), electrochemical detection was conducted. In both cases, the obtained current depended on the amount of immobilized antigen. The calibration curves were sigmoidal, and the detection limit was 0.1 ng. The developed microfluidic system could potentially be a fundamental component for a micro immunoassay of the next generation.
Abt, Nicholas B; Lehar, Mohamed; Guajardo, Carolina Trevino; Penninger, Richard T; Ward, Bryan K; Pearl, Monica S; Carey, John P
2016-04-01
Whether the round window membrane (RWM) is permeable to iodine-based contrast agents (IBCA) is unknown; therefore, our goal was to determine if IBCAs could diffuse through the RWM using CT volume acquisition imaging. Imaging of hydrops in the living human ear has attracted recent interest. Intratympanic (IT) injection has shown gadolinium's ability to diffuse through the RWM, enhancing the perilymphatic space. Four unfixed human cadaver temporal bones underwent intratympanic IBCA injection using three sequentially studied methods. The first method was direct IT injection. The second method used direct RWM visualization via tympanomeatal flap for IBCA-soaked absorbable gelatin pledget placement. In the third method, the middle ear was filled with contrast after flap elevation. Volume acquisition CT images were obtained immediately postexposure, and at 1-, 6-, and 24-hour intervals. Postprocessing was accomplished using color ramping and subtraction imaging. After the third method, positive RWM and perilymphatic enhancement were observed with endolymph sparing. Gray scale and color ramp multiplanar reconstructions displayed increased signal within the cochlea compared with precontrast imaging. The cochlea was measured for attenuation differences compared with pure water, revealing a preinjection average of -1,103 HU and a postinjection average of 338 HU. Subtraction imaging shows enhancement remaining within the cochlear space, Eustachian tube, middle ear epithelial lining, and mastoid. Iohexol iodine contrast is able to diffuse across the RWM. Volume acquisition CT imaging was able to detect perilymphatic enhancement at 0.5-mm slice thickness. The clinical application of IBCA IT injection seems promising but requires further safety studies.
Microwave/millimeter wave technology
NASA Astrophysics Data System (ADS)
Abita, Joseph L.
1988-09-01
The microwave/millimeter-wave monolithic integrated-circuit (MIMIC) technology and systems are discussed along with the application of MIMICs in electronic warfare. The components of a MIMIC are described, with particular attention given to the active-array antenna transmit/receive module, which is at the focus of the MIMIC, and to the features of a typical MIMIC chip. The typical performance characteristics of MIMIC components are presented in tabular form.
Chocholous, Petr; Satínský, Dalibor; Sklenárová, Hana; Solich, Petr
2010-05-23
This work presents novel approach in low-pressure chromatography flow systems--two-column Sequential Injection Chromatography (2-C SIC) and its comparison with gradient elution chromatography on the same instrument. The system was equipped with two different chromatographic columns (connected to selection valve in parallel design) for isocratic separation and determination of all components in composed anti-inflammatory pharmaceutical preparation (tablets). The sample was first injected on the first column of length 30 mm where less retained analytes were separated and then the sample was injected on the second column of length 10 mm where more retained analytes were separated. The SIC system was based on a commercial SIChrom manifold (8-port high-pressure selection valve and medium-pressure syringe pump with 4 mL reservoir) (FIAlab, USA) with two commercially available monolithic columns the "first column" Chromolith Flash RP-18e (25 mm x 4.6 mm i.d. with guard column 5 mm x 4.6 mm i.d.) and the "second column" Chromolith RP-18e (10 mm x 4.6 mm i.d.) and CCD UV-vis detector USB 4000 with micro-volume 1.0 cm Z flow cell. Two mobile phases were used for analysis (one for each column). The mobile phase 1 used for elution of paracetamol, caffeine and salicylic acid (internal standard) was acetonitrile/water (10:90, v/v, the water part of pH 3.5 adjusted with acetic acid), flow rate was 0.9 mL min(-1) (volume 3.0 mL of mobile phase per analysis). The mobile phase 2 used for elution of propyphenazone was acetonitrile/water (30:70, v/v); flow rate was 1.2 mL min(-1) (volume 1.5 mL of mobile phase per analysis). Absorbance was monitored at 210 nm. Samples were prepared by dissolving of one tablet in 30% acetonitrile and 10 microL of filtered supernatant was injected on each column (2 x 10 microL). The chromatographic resolution between all compounds was >1.45 and analysis time was 5.5 min under the optimal conditions. Limits of detection were determined at 0.4 microg mL(-1) for paracetamol, at 0.5 microg mL(-1) for caffeine and at 0.7 microg mL(-1) for propyphenazone. The new two-column chromatographic set-up developed as an alternative approach to gradient elution chromatography shows evident advantages (time and solvent reduction more than one-third) as compared with single-column gradient SIC method with Chromolith Flash RP-18 (25 mm x 4.6 mm i.d. with guard column 5 mm x 4.6 mm i.d.). Copyright 2010 Elsevier B.V. All rights reserved.
Juvenile Hormone Induction of Esterases: A Mechanism for the Regulation of Juvenile Hormone Titer
Whitmore, Donald; Whitmore, Elaine; Gilbert, Lawrence I.
1972-01-01
Within a few hours after injection of juvenile hormone into Hyalophora gloveri pupae, several fast-migrating carboxylesterases (EC 3.1.1.1) that are sensitive to diisopropylfluorophosphate appear in the hemolymph. Treatment of the pupae with puromycin or actinomycin D prevents the appearance of these hemolymph enzymes, suggesting de novo synthesis of the carboxylesterases. Of the several other compounds investigated, only a potent mimic of the juvenile hormone is able to induce these enzymes. When the induced enzymes are incubated in vitro with 14C-labeled juvenile hormone, the hormone is rapidly and efficiently degraded. It is suggested that these induced carboxylesterases play an important role in the regulation of juvenile hormone titer. Images PMID:4504374
Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine
NASA Technical Reports Server (NTRS)
Rudas, L.; Crossman, A. A.; Morillo, C. A.; Halliwill, J. R.; Tahvanainen, K. U.; Kuusela, T. A.; Eckberg, D. L.
1999-01-01
We evaluated a method of baroreflex testing involving sequential intravenous bolus injections of nitroprusside followed by phenylephrine and phenylephrine followed by nitroprusside in 18 healthy men and women, and we drew inferences regarding human sympathetic and vagal baroreflex mechanisms. We recorded the electrocardiogram, photoplethysmographic finger arterial pressure, and peroneal nerve muscle sympathetic activity. We then contrasted least squares linear regression slopes derived from the depressor (nitroprusside) and pressor (phenylephrine) phases with 1) slopes derived from spontaneous fluctuations of systolic arterial pressures and R-R intervals, and 2) baroreflex gain derived from cross-spectral analyses of systolic pressures and R-R intervals. We calculated sympathetic baroreflex gain from integrated muscle sympathetic nerve activity and diastolic pressures. We found that vagal baroreflex slopes are less when arterial pressures are falling than when they are rising and that this hysteresis exists over pressure ranges both below and above baseline levels. Although pharmacological and spontaneous vagal baroreflex responses correlate closely, pharmacological baroreflex slopes tend to be lower than those derived from spontaneous fluctuations. Sympathetic baroreflex slopes are similar when arterial pressure is falling and rising; however, small pressure elevations above baseline silence sympathetic motoneurons. Vagal, but not sympathetic baroreflex gains vary inversely with subjects' ages and their baseline arterial pressures. There is no correlation between sympathetic and vagal baroreflex gains. We recommend repeated sequential nitroprusside followed by phenylephrine doses as a simple, efficientmeans to provoke and characterize human vagal and sympathetic baroreflex responses.
Intra-tumor distribution of PEGylated liposome upon repeated injection: No possession by prior dose.
Nakamura, Hiroyuki; Abu Lila, Amr S; Nishio, Miho; Tanaka, Masao; Ando, Hidenori; Kiwada, Hiroshi; Ishida, Tatsuhiro
2015-12-28
Liposomes have proven to be a viable means for the delivery of chemotherapeutic agents to solid tumors. However, significant variability has been detected in their intra-tumor accumulation and distribution, resulting in compromised therapeutic outcomes. We recently examined the intra-tumor accumulation and distribution of weekly sequentially administered oxaliplatin (l-OHP)-containing PEGylated liposomes. In that study, the first and second doses of l-OHP-containing PEGylated liposomes were distributed diversely and broadly within tumor tissues, resulting in a potent anti-tumor efficacy. However, little is known about the mechanism underlying such a diverse and broad liposome distribution. Therefore, in the present study, we investigated the influence of dosage interval on the intra-tumor accumulation and distribution of "empty" PEGylated liposomes. Intra-tumor distribution of sequentially administered "empty" PEGylated liposomes was altered in a dosing interval-dependent manner. In addition, the intra-tumor distribution pattern was closely related to the chronological alteration of tumor blood flow as well as vascular permeability in the growing tumor tissue. These results suggest that the sequential administrations of PEGylated liposomes in well-spaced intervals might allow the distribution to different areas and enhance the total bulk accumulation within tumor tissue, resulting in better therapeutic efficacy of the encapsulated payload. This study may provide useful information for a better design of therapeutic regimens involving multiple administrations of nanocarrier drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maxwell, S.; Garrett, D.; Huang, J.; Usher, P.; Mamer, P.
2017-12-01
Following reports of injection induced seismicity in the Western Canadian Sedimentary Basin, regulators have imposed seismic monitoring and traffic light protocols for fracturing operations in specific areas. Here we describe a case study in one of these reservoirs, the Montney Shale in NE British Columbia, where induced seismicity was monitored with a local array during multi-stage hydraulic fracture stimulations on several wells from a single drilling pad. Seismicity primarily occurred during the injection time periods, and correlated with periods of high injection rates and wellhead pressures above fracturing pressures. Sequential hydraulic fracture stages were found to progressively activate several parallel, critically-stressed faults, as illuminated by multiple linear hypocenter patterns in the range between Mw 1 and 3. Moment tensor inversion of larger events indicated a double-couple mechanism consistent with the regional strike-slip stress state and the hypocenter lineations. The critically-stressed faults obliquely cross the well paths which were purposely drilled parallel to the minimum principal stress direction. Seismicity on specific faults started and stopped when fracture initiation points of individual injection stages were proximal to the intersection of the fault and well. The distance ranges when the seismicity occurs is consistent with expected hydraulic fracture dimensions, suggesting that the induced fault slip only occurs when a hydraulic fracture grows directly into the fault and the faults are temporarily exposed to significantly elevated fracture pressures during the injection. Some faults crossed multiple wells and the seismicity was found to restart during injection of proximal stages on adjacent wells, progressively expanding the seismogenic zone of the fault. Progressive fault slip is therefore inferred from the seismicity migrating further along the faults during successive injection stages. An accelerometer was also deployed close to the pad operations providing information about the local ground motion at near offsets, although no ground motion was recorded that exceeds the minimum levels requiring mandatory reporting to the regulator.
Liang, Yayun; Benakanakere, Indira; Besch-Williford, Cynthia; Hyder, Ryyan S; Ellersieck, Mark R.; Hyder, Salman M
2010-01-01
Objective Previous studies showed that sequential exposure to estrogen and progesterone or medroxyprogesterone acetate (MPA) stimulates vascularization and promotes the progression of BT-474 and T47-D human breast cancer cell xenografts in nude mice (Liang et al, Cancer Res 2007, 67:9929). In this follow-up study, the effects of progesterone, MPA, norgestrel (N-EL) and norethindrone (N-ONE) on BT-474 xenograft tumors were compared in the context of several different hormonal environments. N-EL and N-ONE were included in the study since synthetic progestins vary considerably in their biological effects and the effects of these two progestins on the growth of human tumor xenografts are not known. Methods Estradiol-supplemented intact and ovariectomized Immunodeficient mice were implanted with BT-474 cells. Progestin pellets were implanted either simultaneously with estradiol pellets 2-days prior to tumor cell injection (i.e. combined), or 5-days following tumor cell injections (i.e. sequentially). Results Progestins stimulated the growth of BT-474 xenograft tumors independent of exposure timing and protocol, MPA stimulated the growth of BT-474 xenograft tumors in ovariectomized mice and progestins stimulated VEGF elaboration and increased tumor vascularity. Progestins also increased lymph node metastasis of BT-474 cells. Therefore, progestins, including N-EL and N-ONE, induce the progression of breast cancer xenografts in nude mice and promote tumor metastasis. Conclusions These observations suggests that women who ingest progestins for HT or oral contraception could be more at risk for developing breast cancer as a result of proliferation of existing latent tumor cells. Such risks should be considered in the clinical setting. PMID:20461021
Batista, Alex D; Chocholouš, Petr; Satínský, Dalibor; Solich, Petr; Rocha, Fábio R P
2015-02-01
On-line sample pretreatment (clean-up and analyte preconcentration) is for the first time coupled to sequential injection chromatography. The approach combines anion-exchange solid-phase extraction and the highly effective pentafluorophenylpropyl (F5) fused-core particle column for separation of eight sulfonamide antibiotics with similar structures (sulfathiazole, sulfanilamide, sulfacetamide, sulfadiazine, sulfamerazine, sulfadimidine, sulfamethoxazole and sulfadimethoxine). The stationary phase was selected after a critical comparison of the performance achieved by three fused-core reversed phase columns (Ascentis(®) Express RP-Amide, Phenyl-Hexyl, and F5) and two monolithic columns (Chromolith(®) High Resolution RP-18 and CN). Acetonitrile and acetate buffer pH 5.0 at 0.60 mL min(-1) were used as mobile phase to perform the separations before spectrophotometric detection. The first mobile phase was successfully used as eluent from SPE column ensuring transfer of a narrow zone to the chromatographic column. Enrichment factors up to 39.2 were achieved with a 500 µL sample volume. The developed procedure showed analysis time <10.5 min, resolutions >1.83 with peak symmetry ≤1.52, LODs between 4.9 and 27 µg L(-1), linear response ranges from 30.0 to 1000.0 µg L(-1) (r(2)>0.996) and RSDs of peak heights <2.9% (n=6) at a 100 µg L(-1) level and enabled the screening control of freshwater samples contaminated at the 100 µg L(-1) level. The proposed approach expanded the analytical potentiality of SIC and avoided the time-consuming batch sample pretreatment step, thus minimizing risks of sample contamination and analyte losses. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Guocheng; Lu, Donglai; Fu, Zhifeng
This paper describes the design, fabrication, and testing of a pneumatically controlled,renewable, microfluidic device for conducting bead-based assays in an automated sequential injection analysis system. The device used a “brick wall”-like pillar array (pillar size: 20 μm length X 50 μm width X 45 μm height) with 5 μm gaps between the pillars serving as the micro filter. The flow channel where bead trapping occurred is 500 μm wide X 75 μm deep. An elastomeric membrane and an air chamber were located underneath the flow channel. By applying pressure to the air chamber, the membrane is deformed and pushed upwardmore » against the filter structure. This effectively traps beads larger than 5 μm and creates a “bed” or micro column of beads that can be perfused and washed with liquid samples and reagents. Upon completion of the assay process, the pressure is released and the beads are flushed out from underneath the filter structure to renew the device. Mouse IgG was used as a model analyte to test the feasibility of using the proposed device for immunoassay applications. Resulting microbeads from an on-chip fluorescent immunoassay were individually examined using flow cytometry. The results show that the fluorescence signal intensity distribution is fairly narrow indicating high chemical reaction uniformity among the beads population. Electrochemical onchip assay was also conducted. A detection limit of 0.1 ng/mL1 ppb was achieved and good device reliability and repeatability were demonstrated. The novel microfluidic-based beadstrapping device thus opens up a new pathway to design micro-bead based biosensor immunoassays for clinical and othervarious applications.« less
Machado, Ana; Maneiras, Rui; Bordalo, Adriano A; Mesquita, Raquel B R
2018-08-15
The use of saliva for diagnose and surveillance of systemic illnesses, and general health has been arousing great interest worldwide, emerging as a highly desirable goal in healthcare. The collection is non-invasive, stress-free, inexpensive, and simple representing a major asset. Glucose, calcium, and magnesium concentration are three major parameters evaluated in clinical context due to their essential role in a wide range of biochemical reactions, and consequently many health disorders. In this work, a spectrophotometric sequential injection method is described for the fast screening of glucose, calcium, and magnesium in saliva samples. The glucose determination reaction involves the oxidation of the aldehyde functional group present in glucose with simultaneous reduction of 3,5-dinitrosalicylic acid (DNS) to 3-amino, 5-nitrosalicylic acid under alkaline conditions, followed by the development of colour. The determination of both metals is based on their reaction with cresolphtalein complexone (CPC), and the interference of calcium in the magnesium determination minimized by ethylene glycol-bis[β-aminoethyl ether]-N,N,N',N'-tetraacetic acid (EGTA). The developed multi-parametric method enabled dynamic ranges of 50 - 300 mg/dL for glucose, 0.1 - 2 mg/dL for calcium, and 0.1 - 0.5 mg/dL for magnesium. Determination rates of 28, 60, 52 h -1 were achieved for glucose, calcium, and magnesium, respectively. Less than 300 µL of saliva is required for the multi-parametric determination due to saliva viscosity and inherent necessity of dilution prior to analysis. RSDs lower than 5% were obtained, and the results agreed with those obtained by reference methods, while recovery tests confirmed its accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Hainan; Tran, Hong Hanh; Chung, Bong Hyun; Lee, Nae Yoon
2013-03-21
In this paper, we demonstrate a simple technique for sequentially introducing multiple sample liquids into microchannels driven by centrifugal force combined with a hydrophobic barrier pressure and apply the technique for performing solid-phase based on-chip DNA purification. Three microchannels with varying widths, all equipped with independent sample reservoirs at the inlets, were fabricated on a hydrophobic elastomer, poly(dimethylsiloxane) (PDMS). First, glass beads were packed inside the reaction chamber, and a whole cell containing the DNA extract was introduced into the widest channel by applying centrifugal force for physical adsorption of the DNA onto the glass beads. Next, washing and elution solutions were sequentially introduced into the intermediate and narrowest microchannels, respectively, by gradually increasing the amount of centrifugal force. Through a precise manipulation of the centrifugal force, the DNA adsorbed onto the glass beads was successfully washed and eluted in a continuous manner without the need to introduce each solution manually. A stepwise injection of liquids was successfully demonstrated using multiple ink solutions, the results of which corresponded well with the theoretical analyses. As a practical application, the D1S80 locus of human genomic DNA, which is widely used for forensic purposes, was successfully purified using the microdevice introduced in this study, as demonstrated through successful target amplification. This will pave the way for the construction of a control-free valve system for realizing on-chip DNA purification, which is one of the most labor-intensive and hard-to-miniaturize components, on a greatly simplified and miniaturized platform employing hydrophobic PDMS.
Nasveld, Peter E; Marjason, Joanne; Bennett, Sonya; Aaskov, John; Elliott, Suzanne; McCarthy, Karen; Kanesa-Thasan, Niranjan; Feroldi, Emmanuel; Reid, Mark
2010-11-01
A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever vaccine (YF-17D strain; Stamaril®, Sanofi Pasteur) or administered successively. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE strains was determined using a 50% serum-dilution plaque reduction neutralization test. Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82-100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart.
Šrámková, Ivana; Amorim, Célia G; Sklenářová, Hana; Montenegro, Maria C B M; Horstkotte, Burkhard; Araújo, Alberto N; Solich, Petr
2014-01-01
In this work, an application of an enzymatic reaction for the determination of the highly hydrophobic drug propofol in emulsion dosage form is presented. Emulsions represent a complex and therefore challenging matrix for analysis. Ethanol was used for breakage of a lipid emulsion, which enabled optical detection. A fully automated method based on Sequential Injection Analysis was developed, allowing propofol determination without the requirement of tedious sample pre-treatment. The method was based on spectrophotometric detection after the enzymatic oxidation catalysed by horseradish peroxidase and subsequent coupling with 4-aminoantipyrine leading to a coloured product with an absorbance maximum at 485 nm. This procedure was compared with a simple fluorimetric method, which was based on the direct selective fluorescence emission of propofol in ethanol at 347 nm. Both methods provide comparable validation parameters with linear working ranges of 0.005-0.100 mg mL(-1) and 0.004-0.243 mg mL(-1) for the spectrophotometric and fluorimetric methods, respectively. The detection and quantitation limits achieved with the spectrophotometric method were 0.0016 and 0.0053 mg mL(-1), respectively. The fluorimetric method provided the detection limit of 0.0013 mg mL(-1) and limit of quantitation of 0.0043 mg mL(-1). The RSD did not exceed 5% and 2% (n=10), correspondingly. A sample throughput of approx. 14 h(-1) for the spectrophotometric and 68 h(-1) for the fluorimetric detection was achieved. Both methods proved to be suitable for the determination of propofol in pharmaceutical formulation with average recovery values of 98.1 and 98.5%. © 2013 Elsevier B.V. All rights reserved.
Kozak, J; Paluch, J; Węgrzecka, A; Kozak, M; Wieczorek, M; Kochana, J; Kościelniak, P
2016-02-01
Spectrophotometric sequential injection system (SI) is proposed to automate the method of simultaneous determination of Fe(II) and Fe(III) on the basis of parameters of a single peak. In the developed SI system, sample and mixture of reagents (1,10-phenanthroline and sulfosalicylic acid) are introduced into a vessel, where in an acid environment (pH≅3) appropriate compounds of Fe(II) and Fe(III) with 1,10-phenanthroline and sulfosalicylic acid are formed, respectively. Then, in turn, air, sample, EDTA and sample again, are introduced into a holding coil. After the flow reversal, a segment of air is removed from the system by an additional valve and as EDTA replaces sulfosalicylic acid forming a more stable colorless compound with Fe(III), a complex signal is registered. Measurements are performed at wavelength 530 nm. The absorbance measured at minimum of the negative peak and the area or the absorbance measured at maximum of the signal can be used as measures corresponding to Fe(II) and Fe(III) concentrations, respectively. The time of the peak registration is about 2 min. Two-component calibration has been applied to analysis. Fe(II) and Fe(III) can be determined within the concentration ranges of 0.04-4.00 and 0.1-5.00 mg L(-1), with precision less than 2.8% and 1.7% (RSD), respectively and accuracy better than 7% (RE). The detection limit is 0.04 and 0.09 mg L(-1) for Fe(II) and Fe(III), respectively. The method was applied to analysis of artesian water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Jia, Lin; Ren, Shuguang; Li, Tao; Wu, Jianing; Zhou, Xinliang; Zhang, Yan; Wu, Jianhua; Liu, Wei
2017-01-01
Objective . Aimed to study the effects of endostar and cisplatin using an in vivo imaging system (IVIS) in a model of peritoneal metastasis of gastric cancer. Methods . NUGC-4 gastric cancer cells transfected with luciferase gene (NUGC-4-Luc) were injected i.p. into nude mice. One week later, mice were randomly injected i.p.: group 1, cisplatin (d1-3) + endostar (d4-7); group 2, endostar (d1-4) + cisplatin (d5-7); group 3, endostar + cisplatin d1, 4, and 7; group 4, saline for two weeks. One week after the final administration, mice were sacrificed. Bioluminescent data, microvessel density (MVD), and lymphatic vessel density (LVD) were analyzed. Results . Among the four groups, there were no significant differences in the weights and in the number of cancer cell photons on days 1 and 8 ( P > 0.05). On day 15, the numbers in groups 3 and 1 were less than that in group 2 ( P < 0.05). On day 21, group 3 was significantly less than group 2 ( P < 0.05). MVD of group 4 was less than that of groups 1 and 2 ( P < 0.01). There was no significant difference between groups 2 and 3 ( P > 0.05) or in LVD number among the four groups ( P > 0.05). Conclusions . IVIS® was more useful than weight, volume of ascites, and number of peritoneal nodules. The simultaneous group was superior to sequential groups in killing cancer cells and inhibiting vascular endothelium. Cisplatin-endostar was superior to endostar-cisplatin in killing cancer cells, while the latter in inhibiting peritoneal vascular endothelium.
Skrlíková, Jana; Andruch, Vasil; Sklenárová, Hana; Chocholous, Petr; Solich, Petr; Balogh, Ioseph S
2010-05-07
A novel dual-valve sequential injection system (DV-SIA) for online liquid-liquid extraction which resolves the main problems of LLE utilization in SIA has been designed. The main idea behind this new design was to construct an SIA system by connecting two independent units, one for aqueous-organic mixture flow and the second specifically for organic phase flow. As a result, the DV-SIA manifold consists of an Extraction unit and a Detection unit. Processing a mixture of aqueous-organic phase in the Extraction unit and a separated organic phase in the Detection unit solves the problems associated with the change of phases having different affinities to the walls of the Teflon tubing used in the SI-system. The developed manifold is a simple, user-friendly and universal system built entirely from commercially available components. The system can be used for a variety of samples and organic solvents and is simple enough to be easily handled by operators less familiar with flow systems. The efficiency of the DV-SIA system is demonstrated by the extraction of picric acid in the form of an ion associate with 2-[2-(4-methoxy-phenylamino)-vinyl]-1,3,3-trimethyl-3H-indolium reagent, with subsequent spectrophotometric detection. The suggested DV-SIA concept can be expected to stimulate new experiments in analytical laboratories and can be applied to the elaboration of procedures for the determination of other compounds extractable by organic solvents. It could thus form a basis for the design of simple, single-purpose commercial instruments used in LLE procedures. 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McPherson, Dacia; Zhu, Chenhui; Yi, Youngwoo; Clark, Noel
2007-03-01
In this study the elastic spring constant of the yeast cell wall is probed with the atomic force microscope (AFM) under variable conditions. Cells were sequentially analyzed in rich growth medium (YPD), a 0.8 M NaCl rich growth medium solution and an injection of 0.01% sodium azide solution. Cells in late log phase, which have variable diameters within three to five microns, were immobilized on a patterned silicon substrate with holes approximately 3.8um in diameter and 1.5um deep that was functionalized with polyethylenimine prior to cell application. Force curves were taken moving laterally across the cell in one dimension after exposure to each medium. Spring constants of the cells, calculated from force curves, displayed a positional dependency and marked differences in high osmolarity medium and after the injection of sodium azide. This study demonstrates the ability of the AFM to investigate changes in cell morphology and correlate those findings to underlying physiological processes.
EMC3-EIRENE modelling of toroidally-localized divertor gas injection experiments on Alcator C-Mod
Lore, Jeremy D.; Reinke, M. L.; LaBombard, Brian; ...
2014-09-30
Experiments on Alcator C-Mod with toroidally and poloidally localized divertor nitrogen injection have been modeled using the three-dimensional edge transport code EMC3-EIRENE to elucidate the mechanisms driving measured toroidal asymmetries. In these experiments five toroidally distributed gas injectors in the private flux region were sequentially activated in separate discharges resulting in clear evidence of toroidal asymmetries in radiated power and nitrogen line emission as well as a ~50% toroidal modulation in electron pressure at the divertor target. The pressure modulation is qualitatively reproduced by the modelling, with the simulation yielding a toroidal asymmetry in the heat flow to the outermore » strike point. Finally, toroidal variation in impurity line emission is qualitatively matched in the scrape-off layer above the strike point, however kinetic corrections and cross-field drifts are likely required to quantitatively reproduce impurity behavior in the private flux region and electron temperatures and densities directly in front of the target.« less
Goal-Directed Decision Making with Spiking Neurons.
Friedrich, Johannes; Lengyel, Máté
2016-02-03
Behavioral and neuroscientific data on reward-based decision making point to a fundamental distinction between habitual and goal-directed action selection. The formation of habits, which requires simple updating of cached values, has been studied in great detail, and the reward prediction error theory of dopamine function has enjoyed prominent success in accounting for its neural bases. In contrast, the neural circuit mechanisms of goal-directed decision making, requiring extended iterative computations to estimate values online, are still unknown. Here we present a spiking neural network that provably solves the difficult online value estimation problem underlying goal-directed decision making in a near-optimal way and reproduces behavioral as well as neurophysiological experimental data on tasks ranging from simple binary choice to sequential decision making. Our model uses local plasticity rules to learn the synaptic weights of a simple neural network to achieve optimal performance and solves one-step decision-making tasks, commonly considered in neuroeconomics, as well as more challenging sequential decision-making tasks within 1 s. These decision times, and their parametric dependence on task parameters, as well as the final choice probabilities match behavioral data, whereas the evolution of neural activities in the network closely mimics neural responses recorded in frontal cortices during the execution of such tasks. Our theory provides a principled framework to understand the neural underpinning of goal-directed decision making and makes novel predictions for sequential decision-making tasks with multiple rewards. Goal-directed actions requiring prospective planning pervade decision making, but their circuit-level mechanisms remain elusive. We show how a model circuit of biologically realistic spiking neurons can solve this computationally challenging problem in a novel way. The synaptic weights of our network can be learned using local plasticity rules such that its dynamics devise a near-optimal plan of action. By systematically comparing our model results to experimental data, we show that it reproduces behavioral decision times and choice probabilities as well as neural responses in a rich set of tasks. Our results thus offer the first biologically realistic account for complex goal-directed decision making at a computational, algorithmic, and implementational level. Copyright © 2016 the authors 0270-6474/16/361529-18$15.00/0.
Goal-Directed Decision Making with Spiking Neurons
Lengyel, Máté
2016-01-01
Behavioral and neuroscientific data on reward-based decision making point to a fundamental distinction between habitual and goal-directed action selection. The formation of habits, which requires simple updating of cached values, has been studied in great detail, and the reward prediction error theory of dopamine function has enjoyed prominent success in accounting for its neural bases. In contrast, the neural circuit mechanisms of goal-directed decision making, requiring extended iterative computations to estimate values online, are still unknown. Here we present a spiking neural network that provably solves the difficult online value estimation problem underlying goal-directed decision making in a near-optimal way and reproduces behavioral as well as neurophysiological experimental data on tasks ranging from simple binary choice to sequential decision making. Our model uses local plasticity rules to learn the synaptic weights of a simple neural network to achieve optimal performance and solves one-step decision-making tasks, commonly considered in neuroeconomics, as well as more challenging sequential decision-making tasks within 1 s. These decision times, and their parametric dependence on task parameters, as well as the final choice probabilities match behavioral data, whereas the evolution of neural activities in the network closely mimics neural responses recorded in frontal cortices during the execution of such tasks. Our theory provides a principled framework to understand the neural underpinning of goal-directed decision making and makes novel predictions for sequential decision-making tasks with multiple rewards. SIGNIFICANCE STATEMENT Goal-directed actions requiring prospective planning pervade decision making, but their circuit-level mechanisms remain elusive. We show how a model circuit of biologically realistic spiking neurons can solve this computationally challenging problem in a novel way. The synaptic weights of our network can be learned using local plasticity rules such that its dynamics devise a near-optimal plan of action. By systematically comparing our model results to experimental data, we show that it reproduces behavioral decision times and choice probabilities as well as neural responses in a rich set of tasks. Our results thus offer the first biologically realistic account for complex goal-directed decision making at a computational, algorithmic, and implementational level. PMID:26843636
Bonham, A C; Coles, S K; McCrimmon, D R
1993-05-01
1. The goal of the present study was to identify potential neurotransmitter candidates in the Breuer-Hering (BH) reflex pathway, specifically at synapses between the primary afferents and probable second-order neurones (pump cells) within the nucleus tractus solitarii (NTS). We hypothesized that if activation of specific receptors in the NTS is required for production of the BH reflex, then (1) injection of the receptor agonist(s) would mimic the reflex response (apnoea), (2) injection of appropriate antagonists would impair the apnoea produced by either lung inflation or agonist injection, and (3) second-order neurones in the pathway would be excited by either lung inflation or agonists while antagonists would prevent the response to either. 2. Studies were carried out either in spontaneously breathing or in paralysed, thoracotomized and ventilated rats in which either diaphragm EMG or phrenic nerve activity, expired CO2 concentration and arterial pressure were continuously monitored. The BH reflex was physiologically activated by inflating the lungs. 3. Pressure injections (0.03-15 pmol) of selective excitatory amino acid (EAA) receptor agonists, quisqualic acid (Quis) and N-methyl-D-aspartic acid (NMDA) into an area of the NTS shown previously to contain neurones required for production of the BH reflex produced dose-dependent apnoeas that mimicked the response to lung inflation. Injection of substance P (0.03-4 pmol) did not alter baseline respiratory pattern. 4. Injections of the EAA antagonists, kynurenic acid (Kyn; 0.6-240 pmol), 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX) or 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the BH region of the NTS reversibly impaired the apnoea produced by lung inflation. All three antagonists reduced or abolished the apnoeas resulting from injection of Quis or NMDA, and slowed baseline respiratory frequency. In contrast, injections of the highly selective NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acids (AP5), in doses sufficient to block the apnoeic response to NMDA, neither altered the reflex apnoea evoked by lung inflation nor the baseline respiratory pattern. 5. Pump cells located within the BH region were excited by pressure injections of the broad spectrum EAA agonist, DL-homocysteic acid (DLH). Kyn reversibly blocked the excitation of pump cells in response to either lung inflation or DLH injection. 6. These findings suggest that EAAs mediate primary afferent excitation of second-order neurones in the Breuer-Hering reflex pathway, primarily through the activation of non-NMDA EAA receptor subtypes.
Rummel, Christoph; Hübschle, Thomas; Gerstberger, Rüdiger; Roth, Joachim
2004-01-01
The purpose of the present study was to investigate a possible lipopolysaccharide (LPS)-induced activation of brain cells that is mediated by the pleiotropic cytokine interleukin-6 (IL-6) and its transcription factor STAT3 during systemic or localized inflammation. In guinea pigs, intra-arterial (i.a., 10 μg kg−1) or intraperitoneal (i.p., 30 μg kg−1) injections of bacterial LPS cause a systemic inflammatory response which is accompanied by a robust fever. A febrile response can also be induced by administration of LPS into artificial subcutaneously implanted Teflon chambers (s.c. 100 or 10 μg kg−1), which reflects an experimental model that mimics local tissue inflammation. Baseline plasma levels of bioactive IL-6 determined 60 min prior to injections of LPS or vehicle amounted to 35–80 international units (i.u.) ml−1. Within 90 min of LPS injection, plasma IL-6 rose about 1000-fold in the groups injected i.a. or i.p., about 50-fold in the group injected s.c. with 100 μg kg−1 LPS, and only 5-fold in guinea pigs injected with the lower dose of LPS (10 μg kg−1). At this time point, a distinct nuclear translocation pattern of the transcription factor STAT3 became evident in several brain structures. Amongst those, the sensory circumventricular organs known to lack a tight blood—brain barrier such as the area postrema, the vascular organ of the lamina terminalis and the subfornical organ, as well as the hypothalamic supraoptic nucleus showed intense nuclear STAT3 signals in the i.a. or i.p. injected groups. In contrast a moderate (s.c. group, 100 μg kg−1), or even no (s.c. group, 10 μg kg−1), nuclear STAT3 translocation occurred in response to s.c. injections of LPS. These results suggest that STAT3-mediated genomic activation of target gene transcription in brain cells occurred only in those cases in which sufficiently high concentrations of circulating IL-6 were formed during systemic (i.a.. and i.p. groups) or localized (s.c. group, 100 μg kg−1) inflammation. PMID:14966301
NASA Astrophysics Data System (ADS)
Kubo-Irie, Miyoko; Uchida, Hiroki; Mastuzawa, Shotaro; Yoshida, Yasuko; Shinkai, Yusuke; Suzuki, Kenichiro; Yokota, Satoshi; Oshio, Shigeru; Takeda, Ken
2014-02-01
Titanium dioxide nanoparticles (nano-TiO2), believed to be inert and safe, are used in many products especially rutile-type in cosmetics. Detection, localization, and count of nanoparticles in tissue sections are of considerable current interest. Here, we evaluate the dose-dependent biodistribution of rutile-type nano-TiO2 exposure during pregnancy on offspring testes. Pregnant mice were subcutaneously injected five times with 0.1 ml of sequentially diluted of nano-TiO2 powder, 35 nm with primary diameter, suspensions (1, 10, 100, or 1,000 μg/ml), and received total doses of 0.5, 5, 50, and 500 μg, respectively. Prior to injection, the size distribution of nano-TiO2 was analyzed by dynamic light scattering measurement. The average diameter was increased in a dose-dependent manner. The most diluted concentration, 1 μg/ml suspension, contained small agglomerates averaging 193.3 ± 5.4 nm in diameter. The offspring testes were examined at 12 weeks postpartum. Individual particle analysis in testicular sections under scanning and transmission electron microscopy enabled us to understand the biodistribution. The correlation between nano-TiO2 doses injected to pregnant mice, and the number of agglomerates in the offspring testes was demonstrated to be dose-dependent by semiquantitative evaluation. However, the agglomerate size was below 200 nm in the testicular sections of all recipient groups, independent from the injected dose during pregnancy.
Mathematical modeling heat and mass transfer processes in porous media
NASA Astrophysics Data System (ADS)
Akhmed-Zaki, Darkhan
2013-11-01
On late development stages of oil-fields appears a complex problem of oil-recovery reduction. One of solution approaches is injecting of surfactant together with water in the form of active impurities into the productive layer - for decreasing oil viscosity and capillary forces between ``oil-water'' phases system. In fluids flow the surfactant can be in three states: dissolved in water, dissolved in oil and adsorbed on pore channels' walls. The surfactant's invasion into the reservoir is tracked by its diffusion with reservoir liquid and mass-exchange with two phase (liquid and solid) components of porous structure. Additionally, in this case heat exchange between fluids (injected, residual) and framework of porous medium has practical importance for evaluating of temperature influences on enhancing oil recovery. Now, the problem of designing an adequate mathematical model for describing a simultaneous flowing heat and mass transfer processes in anisotropic heterogeneous porous medium -surfactant injection during at various temperature regimes has not been fully researched. In this work is presents a 2D mathematical model of surfactant injections into the oil reservoir. Description of heat- and mass transfer processes in a porous media is done through differential and kinetic equations. For designing a computational algorithm is used modify version of IMPES method. The sequential and parallel computational algorithms are developed using an adaptive curvilinear meshes which into account heterogeneous porous structures. In this case we can evaluate the boundaries of our process flows - fronts (``invasion'', ``heat'' and ``mass'' transfers), according to the pressure, temperature, and concentration gradient changes.
NASA Astrophysics Data System (ADS)
Carvlin, Mark J.; Renshaw, Perry F.; Arger, Peter; Kundel, Harold L.; Dougherty, Larry; Axel, Leon; Kassab, Eleanor; Moore, Bethanne
1988-06-01
The paramagnetic chelate complex, gadolinium-diethylene-triamine-pentaacetic acid, Gd-DTPA, and superparamagnetic particles, such as those composed of dextran coated magnetite, function as magnetic resonance contrast agents by changing the relaxation rates, 1/T1 and 1/T2. The effects that these agents have upon MR signal intensity are determined by: the inherent biophysical properties of the tissue being imaged, the concentration of the contrast agent and the data acquisition scheme (pulse sequence parameters) employed. Following the time course of MR signal change in the first minutes after the injection of contrast agent(s) allows a dynamic assessment of organ functions in a manner analogous to certain nuclear medicine studies. In order to study renal function, sequential MR fast scan images, gradient echo (TR=35/TE=7 msec, flip angle=25 degrees), were acquired, one every 12 seconds, after intravenous injection of Gd-DTPA and/or dextran-magnetite. Gd-DTPA, which is freely filtered at the glomerulus and is neither secreted nor reabsorbed, provides information concerning renal perfusion, glomerular filtration and tubular concentrating ability. Dextran-magnetite (200 A diameter), which is primarily contained within the intravascular space shortly after injection, provides information on blood flow to and distribution within the kidney. The MR signal change observed after administration of contrast agents varied dramatically depending upon the agents injected and the imaging parameters used. Hence a broad range of physiolgic processes may be described using these techniques, i.e. contrast agent enhanced functional MR examinations.
Rahimi, Masoud; Shahhosseini, Shahrokh; Movahedirad, Salman
2017-11-01
A new continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process was developed in order to decrease energy and aqueous phase consumption. In this process the aqueous phase is injected below the horn tip leading to enhanced mixing of the phases. Diesel fuel as the oil phase with sulfur content of 1550ppmw and an appropriate mixture of hydrogen peroxide and formic acid as the aqueous phase were used. At the first step, the optimized condition for the sulfur removal has been obtained in the batch mode operation. Hence, the effect of more important oxidation parameters; oxidant-to-sulfur molar ratio, acid-to-sulfur molar ratio and sonication time were investigated. Then the optimized conditions were obtained using Response Surface Methodology (RSM) technique. Afterwards, some experiments corresponding to the best batch condition and also with objective of minimizing the residence time and aqueous phase to fuel volume ratio have been conducted in a newly designed double-compartment reactor with injection of the aqueous phase to evaluate the process in a continuous flow operation. In addition, the effect of nozzle diameter has been examined. Significant improvement on the sulfur removal was observed specially in lower sonication time in the case of dispersion method in comparison with the conventional contact between two phases. Ultimately, the flow pattern induced by ultrasonic device, and also injection of the aqueous phase were analyzed quantitatively and qualitatively by capturing the sequential images. Copyright © 2017 Elsevier B.V. All rights reserved.
Elatrous, Souheil; Ouanes-Besbes, Lamia; Ben Sik-Ali, Habiba; Hamouda, Zineb; BenAbdallah, Saoussen; Tilouche, Nejla; Jalloul, Faten; Fkih-Hassen, Mohamed; Dachraoui, Fahmi; Ouanes, Islem; Abroug, Fekri
2015-09-15
To evaluate the dose-effects of Androctonus australis hector (Aah) venom injected subcutaneously on hemodynamics and neurohormonal secretions, 10 anesthetized and ventilated mongrel dogs, were split in two groups (n = 5/group). Subcutaneous injection was done with either 0.2 mg/kg or 0.125 mg/kg of the purified G50 scorpion toxic fraction. Hemodynamic parameters using right heart catheter were recorded and plasma concentrations of catecholamine, troponin, and serum toxic fraction were measured sequentially from baseline to 120 min. We identified the dose of toxic fraction evoking characteristic hemodynamic perturbation of severe envenomation, the time-lapse to envenomation, and the associated plasma level. The injection of 0.125 mg/kg toxic fraction was not associated with significant variations in hemodynamic parameters, whereas the 0.2 mg/kg dose caused envenomation characterized by significant increase in plasma catecholamines, increased pulmonary artery occluded pressure, mean arterial pressure, and systemic vascular resistance (p < 0.05), in association with sustained decline in cardiac output (p < 0.001). Envenomation occurred by the 30th minute, and the corresponding concentration of toxic fraction was 1.14 ng/ml. The current experiment allowed the identification of the sub-lethal dose (0.2 mg/kg) of the toxic fraction of Aah administered by the subcutaneous route. Two parameters with potential clinical relevance were also uncovered: the time-lapse to envenomation and the corresponding concentration of toxic fraction. Copyright © 2015 Elsevier Ltd. All rights reserved.
MIMIC Methods for Assessing Differential Item Functioning in Polytomous Items
ERIC Educational Resources Information Center
Wang, Wen-Chung; Shih, Ching-Lin
2010-01-01
Three multiple indicators-multiple causes (MIMIC) methods, namely, the standard MIMIC method (M-ST), the MIMIC method with scale purification (M-SP), and the MIMIC method with a pure anchor (M-PA), were developed to assess differential item functioning (DIF) in polytomous items. In a series of simulations, it appeared that all three methods…
Lee, Kiera-Nicole; Pellom, Samuel T.; Oliver, Ericka; Chirwa, Sanika
2014-01-01
Though not commonly used in behavior tests guinea pigs may offer subtle behavior repertoires that better mimic human activity and warrant study. To test this, 31 Hartley guinea pigs (male, 200–250 g) were evaluated in PhenoTyper cages using the video-tracking EthoVision XT 7.0 software. Results showed that guinea pigs spent more time in the hidden zone (small box in corner of cage) than the food/water zone, or arena zone. Guinea pigs exhibited thigmotaxis (a wall following strategy) and were active throughout the light and dark phases. Eating and drinking occurred throughout the light and dark phases. An injection of 0.25 mg/kg SCH23390, the dopamine D1 receptors (D1R) antagonist, produced significant decreases in time spent in the hidden zone. There were insignificant changes in time spent in the hidden zone for guinea pigs treated with 7.5 mg SKF38393 (D1R agonist), 1.0 mg/kg sulpiride (D2R antagonist), and 1.0 or 10.0 mg/kg methamphetamine. Locomotor activity profiles were unchanged after injections of saline, SKF38393, SCH23390 and sulpiride. By contrast, a single injection or repeated administration for 7 days of low-dose methamphetamine induced transient hyperactivity but this declined to baseline levels over the 22-hour observation period. Guinea pigs treated with high-dose methamphetamine displayed sustained hyperactivity and travelled significantly greater distances over the circadian cycle. Subsequent 7-day treatment with high-dose methamphetamine induced motor sensitization and significant increases in total distances moved relative to single drug injections or saline controls. These results highlight the versatility and unique features of the guinea pig for studying brain-behavior interactions. PMID:24436154
Absence of systemic toxicity in mouse model towards BaTiO3 nanoparticulate based eluate treatment.
Dubey, Ashutosh Kumar; Thrivikraman, Greeshma; Basu, Bikramjit
2015-02-01
One of the existing issues in implant failure of orthopedic biomaterials is the toxicity induced by the fine particles released during long term use in vivo, leading to acute inflammatory response. In developing a new class of piezobiocomposite to mimic the integrated electrical and mechanical properties of bone, bone-mimicking physical properties as well as in vitro cytocompatibility properties have been achieved with spark plasma sintered hydroxyapatite (HA)-barium titanate (BaTiO3) composites. However, the presence of BaTiO3 remains a concern towards the potential toxicity effect. To address this issue, present work reports the first result to conclusively confirm the non-toxic effect of HA-BaTiO3 piezobiocomposite nanoparticulates, in vivo. Twenty BALB/c mice were intra-articularly injected at their right knee joints with different concentrations of HA-BaTiO3 composite of up to 25 mg/ml. The histopathological examination confirmed the absence of any trace of injected particles or any sign of inflammatory reaction in the vital organs, such as heart, spleen, kidney and liver at 7 days post-exposure period. Rather, the injected nanoparticulates were found to be agglomerated in the vicinity of the knee joint, surrounded by macrophages. Importantly, the absence of any systemic toxicity response in any of the vital organs in the treated mouse model, other than a mild local response at the site of delivery, was recorded. The serum biochemical analyses using proinflammatory cytokines (TNF-α and IL-1β) also complimented to the non-immunogenic response to injected particulates. Altogether, the absence of any inflammatory/adverse reaction will open up myriad of opportunities for BaTiO3 based piezoelectric implantable devices in biomedical applications.
The frequency, characteristics and aetiology of stroke mimic presentations: a narrative review.
McClelland, Graham; Rodgers, Helen; Flynn, Darren; Price, Christopher I
2018-05-01
A significant proportion of patients with acute stroke symptoms have an alternative 'mimic' diagnosis. A narrative review was carried out to explore the frequency, characteristics and aetiology of stroke mimics. Prehospital and thrombolysis-treated patients were described separately. Overall, 9972 studies were identified from the initial search and 79 studies were included with a median stroke mimic rate of 19% (range: 1-64%). The prehospital median was 27% (range: 4-43%) and the thrombolysis median 10% (range: 1-25%). Seizures, migraines and psychiatric disorders are the most frequently reported causes of stroke mimics. Several characteristics are consistently associated with stroke mimics; however, they do not fully exclude the possibility of stroke. Nineteen per cent of suspected stroke patients had a mimic condition. Stroke mimics were more common with younger age and female sex. The range of mimic diagnoses, a lack of clear differentiating characteristics and the short treatment window for ischaemic stroke create challenges for early identification.
An Interactive Excel Program for Tracking a Single Droplet in Crossflow Computation
NASA Technical Reports Server (NTRS)
Urip, E.; Yang, S. L.; Marek, C. J.
2002-01-01
Spray jet in crossflow has been a subject of research because of its wide application in systems involving pollutant dispersion, jet mixing in the dilution zone of combustors, and fuel injection strategies. The focus of this work is to investigate dispersion of a 2-dimensional atomized spray jet into a 2-dimensional crossflow. A quick computational method is developed using available software. The spreadsheet can be used for any 2D droplet trajectory problem where the drop is injected into the free stream eventually coming to the free stream conditions. During the transverse injection of a spray into high velocity airflow, the droplets (carried along and deflected by a gaseous stream of co-flowing air) are subjected to forces that affect their motion in the flow field. Based on the Newton's Second Law of motion, four ordinary differential equations were used. These equations were then solved by a fourth-order Runge-Kutta method using Excel software. Visual basic programming and Excel macrocode to produce the data facilitate Excel software to plot graphs describing the droplet's motion in the flow field. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user's manual on how to use the program is also included in this report.
LAL (Lysosomal Acid Lipase) Promotes Reverse Cholesterol Transport In Vitro and In Vivo.
Bowden, Kristin L; Dubland, Joshua A; Chan, Teddy; Xu, You-Hai; Grabowski, Gregory A; Du, Hong; Francis, Gordon A
2018-05-01
To explore the role of LAL (lysosomal acid lipase) in macrophage cholesterol efflux and whole-body reverse cholesterol transport. Immortalized peritoneal macrophages from lal -/- mice showed reduced expression of ABCA1 (ATP-binding cassette transporter A1) and ABCG1 (ATP-binding cassette transporter G1), reduced production of the regulatory oxysterol 27-hydroxycholesterol, and impaired suppression of cholesterol synthesis on exposure to acetylated low-density lipoprotein when compared with lal +/+ macrophages. LAL-deficient mice also showed reduced hepatic ABCG5 (ATP-binding cassette transporter G5) and ABCG8 (ATP-binding cassette transporter G8) expression compared with lal +/+ mice. LAL-deficient macrophages loaded with [ 3 H]-cholesteryl oleate-labeled acetylated low-density lipoprotein showed impaired efflux of released [ 3 H]-cholesterol to apoA-I (apolipoprotein A-I), with normalization of [ 3 H]-cholesteryl ester levels and partial correction of ABCA1 expression and cholesterol efflux to apoA-I when treated with exogenous rhLAL (recombinant human LAL protein). LAL-deficient mice injected intraperitoneally with lal -/- macrophages cholesterol loaded and labeled in the same way exhibited only 1.55±0.35% total injected [ 3 H]-cholesterol counts appearing in the feces for 48 h (n=30), compared with 5.38±0.92% in lal +/+ mice injected with labeled lal +/+ macrophages (n=27), P <0.001. To mimic the therapeutic condition of delivery of supplemental LAL in vivo, injection of labeled lal -/- macrophages into lal +/+ mice resulted in a significant increase in reverse cholesterol transport (2.60±0.46% of 3 H-cholesterol counts in feces at 48 hours [n=19]; P <0.001 when compared with injection into lal -/- mice). These results indicate a critical role for LAL in promoting both macrophage and whole-body reverse cholesterol transport and the ability of supplemental LAL to be taken up and correct reverse cholesterol transport in vivo. © 2018 American Heart Association, Inc.
Automated tagging of pharmaceutically active thiols under flow conditions using monobromobimane.
Tzanavaras, Paraskevas D; Karakosta, Theano D
2011-03-25
The thiol-specific derivatization reagent monobromobimane (MBB) is applied--for the first time--under flow conditions. Sequential injection analysis allows the handling of precise volumes of the reagent in the micro-liter range. The effect of the main chemical and instrumental variables was investigated using captopril (CAP), N-acetylcysteine (NAC) and penicillamine (PEN) as representative pharmaceutically active thiols. Previously reported hydrolysis of MBB due to interaction with nucleophilic components of the buffers was avoided kinetically under flow conditions. The proposed analytical scheme is suitable for the fluorimetric determination of thiols at a sampling rate of 36 h(-1). Copyright © 2010 Elsevier B.V. All rights reserved.
Taddio, Anna; Shah, Vibhuti; McMurtry, C Meghan; MacDonald, Noni E; Ipp, Moshe; Riddell, Rebecca Pillai; Noel, Melanie; Chambers, Christine T
2015-10-01
This systematic review evaluated the effectiveness of physical and procedural interventions for reducing pain and related outcomes during vaccination. Databases were searched using a broad search strategy to identify relevant randomized and quasi-randomized controlled trials. Data were extracted according to procedure phase (preprocedure, acute, recovery, and combinations of these) and pooled using established methods. A total of 31 studies were included. Acute infant distress was diminished during intramuscular injection without aspiration (n=313): standardized mean difference (SMD) -0.82 (95% confidence interval [CI]: -1.18, -0.46). Injecting the most painful vaccine last during vaccinations reduced acute infant distress (n=196): SMD -0.69 (95% CI: -0.98, -0.4). Simultaneous injections reduced acute infant distress compared with sequential injections (n=172): SMD -0.56 (95% CI: -0.87, -0.25). There was no benefit of simultaneous injections in children. Less infant distress during the acute and recovery phases combined occurred with vastus lateralis (vs. deltoid) injections (n=185): SMD -0.70 (95% CI: -1.00, -0.41). Skin-to-skin contact in neonates (n=736) reduced acute distress: SMD -0.65 (95% CI: -1.05, -0.25). Holding infants reduced acute distress after removal of the data from 1 methodologically diverse study (n=107): SMD -1.25 (95% CI: -2.05, -0.46). Holding after vaccination (n=417) reduced infant distress during the acute and recovery phases combined: SMD -0.65 (95% CI: -1.08, -0.22). Self-reported fear was reduced for children positioned upright (n=107): SMD -0.39 (95% CI: -0.77, -0.01). Non-nutritive sucking (n=186) reduced acute distress in infants: SMD -1.88 (95% CI: -2.57, -1.18). Manual tactile stimulation did not reduce pain across the lifespan. An external vibrating device and cold reduced pain in children (n=145): SMD -1.23 (95% CI: -1.58, -0.87). There was no benefit of warming the vaccine in adults. Muscle tension was beneficial in selected indices of fainting in adolescents and adults. Interventions with evidence of benefit in select populations include: no aspiration, injecting most painful vaccine last, simultaneous injections, vastus lateralis injection, positioning interventions, non-nutritive sucking, external vibrating device with cold, and muscle tension.
Artificial Enzymes with Thiazolium and Imidazolium Coenzyme Mimics
Zhao, Huanyu; Foss, Frank W.; Breslow, Ronald
2009-01-01
Hydrophobic thiazolium and imidazolium coenzyme mimics in the presence of modified-polyethylenimine enzyme mimics catalyze the benzoin condensation 2300–3300 times faster than the coenzyme mimics alone. Polycationic enzyme mimics provide not only a hydrophobic binding domain for coenzyme and substrate, but also electrostatic stabilization of anionic species that arise along the reaction pathway of the benzoin condensation. PMID:18763766
Ju, Jingfang
2018-01-01
Background Resistance to 5-Fluorouracil (5-FU) based chemotherapy is the major reason for failure of treating patients with advanced colorectal cancer. Materials and methods In this study, we developed a novel miR-129 mimic with potent efficacy in eliminating resistant colon cancer stem cells both in vitro and in vivo. We integrated 5-FU into miR-129 by replacing Uracil (U) to generate 5-FU-miR-129 mimics (Mimic-1). Results Mimic-1 is a strong therapeutic candidate with a number of unique features. Mimic-1 can be delivered to cancer cells without any transfection reagents (e.g. lipids, viral vector, nanoparticles). Mimic-1 is more potent at inhibiting cell proliferation and inducing cell cycle arrest at G1 phase than native miR-129 and the other mimics tested, while retaining target specificity. Mimic-1 prevents colon cancer metastasis in vivo without toxicity. Conclusion This represents a significant advancement in the development of a nontoxic and highly potent miRNA based cancer therapeutics and establishes a foundation for further developing Mimic-1 as a novel anti-cancer therapeutic for treating colorectal cancer. PMID:29507661
Accessing the public MIMIC-II intensive care relational database for clinical research.
Scott, Daniel J; Lee, Joon; Silva, Ikaro; Park, Shinhyuk; Moody, George B; Celi, Leo A; Mark, Roger G
2013-01-10
The Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database is a free, public resource for intensive care research. The database was officially released in 2006, and has attracted a growing number of researchers in academia and industry. We present the two major software tools that facilitate accessing the relational database: the web-based QueryBuilder and a downloadable virtual machine (VM) image. QueryBuilder and the MIMIC-II VM have been developed successfully and are freely available to MIMIC-II users. Simple example SQL queries and the resulting data are presented. Clinical studies pertaining to acute kidney injury and prediction of fluid requirements in the intensive care unit are shown as typical examples of research performed with MIMIC-II. In addition, MIMIC-II has also provided data for annual PhysioNet/Computing in Cardiology Challenges, including the 2012 Challenge "Predicting mortality of ICU Patients". QueryBuilder is a web-based tool that provides easy access to MIMIC-II. For more computationally intensive queries, one can locally install a complete copy of MIMIC-II in a VM. Both publicly available tools provide the MIMIC-II research community with convenient querying interfaces and complement the value of the MIMIC-II relational database.
Stability of tacrolimus solutions in polyolefin containers.
Lee, Jun H; Goldspiel, Barry R; Ryu, Sujung; Potti, Gopal K
2016-02-01
Results of a study to determine the stability of tacrolimus solutions stored in polyolefin containers under various temperature conditions are reported. Triplicate solutions of tacrolimus (0.001, 0.01, and 0.1 mg/mL) in 0.9% sodium chloride injection or 5% dextrose injection were prepared in polyolefin containers. Some samples were stored at room temperature (20-25 °C); others were refrigerated (2-8 °C) for 20 hours and then stored at room temperature for up to 28 hours. The solutions were analyzed by stability-indicating high-performance liquid chromatography (HPLC) assay at specified time points over 48 hours. Solution pH was measured and containers were visually inspected at each time point. Stability was defined as retention of at least 90% of the initial tacrolimus concentration. All tested solutions retained over 90% of the initial tacrolimus concentration at all time points, with the exception of the 0.001-mg/mL solution prepared in 0.9% sodium chloride injection, which was deemed unstable beyond 24 hours. At all evaluated concentrations, mean solution pH values did not change significantly over 48 hours; no particle formation was detected. During storage in polyolefin bags at room temperature, a 0.001-mg/mL solution of tacrolimus was stable for 24 hours when prepared in 0.9% sodium chloride injection and for at least 48 hours when prepared in 5% dextrose injection. Solutions of 0.01 and 0.1 mg/mL prepared in either diluent were stable for at least 48 hours, and the 0.01-mg/mL tacrolimus solution was also found to be stable throughout a sequential temperature protocol. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Translation by anisotropic peeling or fracturing in elastic media
NASA Astrophysics Data System (ADS)
Zheng, Zhong; Lister, John; Neufeld, Jerome
2017-11-01
The influence of rock anisotropy on the direction of hydraulic fracturing is an important open question. Two canonical systems have been proposed to investigate the fundamental aspects of such fluid-structure interaction problems: (i) Fluid injection and fracturing into an infinite elastic matrix (e.g., solid gelatin) and (ii) Fluid invasion and peeling beneath a deforming elastic sheet (e.g., bending plate). We investigate the second system and impose a non-uniform prewetting film thickness beneath the elastic sheet. We notice that while the bulk of the elastic sheet retains the static blister shape, a non-uniform prewetting film thickness can cause a horizontal translation of the blister. In particular, for a step jump in prewetting film thickness, asymptotic analysis indicates that, under constant fluid injection, the horizontal translation follows a t 7 / 17 time dependence in cartesian coordinates, and the prefactor of power-law translation depends on the ratio of the distinct prewetting film thicknesses on either side. We also provide numerical and experimental evidence demonstrating anisotropic blister evolution. This can be thought of as a model system for fluid-driven fracturing where the non-uniform prewetting film thickness mimics heterogeneity in material toughness.
Moore, Eugene L; Haspel, Gal; Libersat, Frederic; Adams, Michael E
2006-07-01
The wasp Ampulex compressa injects venom directly into the prothoracic ganglion of its cockroach host to induce a transient paralysis of the front legs. To identify the biochemical basis for this paralysis, we separated venom components according to molecular size and tested fractions for inhibition of synaptic transmission at the cockroach cercal-giant synapse. Only fractions in the low molecular weight range (<2 kDa) caused synaptic block. Dabsylation of venom components and analysis by HPLC and MALDI-TOF-MS revealed high levels of GABA (25 mM), and its receptor agonists beta-alanine (18 mM), and taurine (9 mM) in the active fractions. Each component produces transient block of synaptic transmission at the cercal-giant synapse and block of efferent motor output from the prothoracic ganglion, which mimics effects produced by injection of whole venom. Whole venom evokes picrotoxin-sensitive chloride currents in cockroach central neurons, consistent with a GABAergic action. Together these data demonstrate that Ampulex utilizes GABAergic chloride channel activation as a strategy for central synaptic block to induce transient and focal leg paralysis in its host. Copyright 2006 Wiley Periodicals, Inc.
DNA mimic proteins: functions, structures, and bioinformatic analysis.
Wang, Hao-Ching; Ho, Chun-Han; Hsu, Kai-Cheng; Yang, Jinn-Moon; Wang, Andrew H-J
2014-05-13
DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.
Sherwood, Mark Brian
2006-01-01
Purpose The purpose of this study was to evaluate the concept of targeting mediators of the scarring process at multiple points across the course of bleb failure, in order to prolong bleb survival. Methods There were three linked parts to the experiment. In the first part, a cannula glaucoma filtration surgery (GFS) was performed on 32 New Zealand White (NZW) rabbits, and bleb survival was assessed for six different regimens plus controls by grading bleb height and width. For the second part of the study, the same GFS surgery was performed on an additional 10 NZW rabbits. Two additional filtering blebs were treated with balanced saline solution (BSS), two received mitomycin-C (MMC) (0.4 mg/mL), and for the remaining six, a sequential regimen was given consisting of 200 mmol/L mannose-6-phosphate (M-6-P) solution at the time of surgery, followed by subconjunctival injections of antibody to connective tissue growth factor at days 2 and 4, and Ilomastat, a broad-spectrum matrix metalloproteinase inhibitor, at days 7, 12, and 20 postoperatively. Bleb survival was again assessed. In the final part of the experiment, blebs treated with either BSS, MMC, or the above sequential multitreatment regimen were examined histologically at 14 days postoperatively in three additional NZW rabbits. Results All six individual therapies selected resulted in some improvement of bleb survival compared to BSS control. Blebs treated with the new sequential, multitreatment protocol survived an average of 29 days (regression slope, P < .0001 compared to control), those receiving BSS an average of 17 days, and those treated with MMC (0.4 mg/mL) an average of 36 days. The sequential, multitreatment regimen was significantly superior to any of the six monotherapies for time to zero analysis (flattening) of the bleb (P < .002). Histologic examination of the bleb tissues showed a markedly less epithelial thinning, subepithelial collagen thinning, and goblet cell loss in the multitreatment group, when compared with the MMC blebs. Conclusions In a rabbit model of GFS, a sequential, targeted, multitreatment approach prolonged bleb survival compared to BSS controls and decreased bleb tissue morphological changes when compared to those treated with MMC. It is not known whether these findings can be reproduced in humans, and further work is needed to determine an optimum regimen and timing of therapeutic delivery. PMID:17471357
Injectable hydrogels for treatment of osteoarthritis - A rheological study.
von Lospichl, Benjamin; Hemmati-Sadeghi, Shabnam; Dey, Pradip; Dehne, Tilo; Haag, Rainer; Sittinger, Michael; Ringe, Jochen; Gradzielski, Michael
2017-11-01
Osteoarthritis (OA) is a disabling condition especially in the elderly population. The current therapeutic approaches do not halt the OA progression or reverse joint damage. In order to overcome the problem of rapid clearance of hyaluronic acid (HA), a standard viscosupplement for OA, we investigated the rheological properties of a relatively non-degradable dendritic polyglycerol sulfate (dPGS) hydrogel to determine a suitable concentration for intra articular injections that mimics HA in terms of its viscoelastic and mechanical properties. To do so, the concentration range from 3.6 to 4.8wt% of dPGS and, as a reference, blends of commercially available HAs (Ostenil ® , GO-ON ® , Synocrom ® Forte and Synvisc ® ), were investigated by means of oscillating and flow rheology, thereby yielding storage (G') and loss modulus (G"), as well as yield stress and shear viscosity. In our rheological experiments we observe a pronounced coupling of the molecular weight and the rheological properties for the HAs. Furthermore, we find the dPGS hydrogel to form more compact networks with increasing concentration. From a broader comparison the current findings suggest that an overall polymer concentration of 4.0wt% dPGS has viscoelastic properties that are comparable to hyaluronic acid in the medically relevant frequency range, where for medical application the dPGS hydrogel has the advantage of being much less easily displaced from its injection place than HA. Copyright © 2017 Elsevier B.V. All rights reserved.
Multiphoton imaging for assessing renal disposition in acute kidney injury
NASA Astrophysics Data System (ADS)
Liu, Xin; Liang, Xiaowen; Wang, Haolu; Roberts, Darren M.; Roberts, Michael S.
2016-11-01
Estimation of renal function and drug renal disposition in acute kidney injury (AKI), is important for appropriate dosing of drugs and adjustment of therapeutic strategies, but is challenging due to fluctuations in kidney function. Multiphoton microscopy has been shown to be a useful tool in studying drug disposition in liver and can reflect dynamic changes of liver function. We extend this imaging technique to investigate glomerular filtration rate (GFR) and tubular transporter functional change in various animal models of AKI, which mimic a broad range of causes of AKI such as hypoxia (renal ischemia- reperfusion), therapeutic drugs (e.g. cisplatin), rhabdomyolysis (e.g. glycerol-induced) and sepsis (e.g. LPSinduced). The MPM images revealed acute injury of tubular cells as indicated by reduced autofluorescence and cellular vacuolation in AKI groups compared to control group. In control animal, systemically injected FITC-labelled inulin was rapidly cleared from glomerulus, while the clearance of FITC-inulin was significantly delayed in most of animals in AKI group, which may reflect the reduced GFR in AKI. Following intravenous injection, rhodamine 123, a fluorescent substrate of p-glycoprotein (one of tubular transporter), was excreted into urine in proximal tubule via p-glycoprotein; in response to AKI, rhodamine 123 was retained in tubular cells as revealed by slower decay of fluorescence intensity, indicating P-gp transporter dysfunction in AKI. Thus, real-time changes in GFR and transporter function can be imaged in rodent kidney with AKI using multiphoton excitation of exogenously injected fluorescent markers.
NASA Astrophysics Data System (ADS)
Li, Qiang; Wang, Zhi; Le, Yansi; Sun, Chonghui; Song, Xiaojia; Wu, Chongqing
2016-10-01
Neuromorphic engineering has a wide range of applications in the fields of machine learning, pattern recognition, adaptive control, etc. Photonics, characterized by its high speed, wide bandwidth, low power consumption and massive parallelism, is an ideal way to realize ultrafast spiking neural networks (SNNs). Synaptic plasticity is believed to be critical for learning, memory and development in neural circuits. Experimental results have shown that changes of synapse are highly dependent on the relative timing of pre- and postsynaptic spikes. Synaptic plasticity in which presynaptic spikes preceding postsynaptic spikes results in strengthening, while the opposite timing results in weakening is called antisymmetric spike-timing-dependent plasticity (STDP) learning rule. And synaptic plasticity has the opposite effect under the same conditions is called antisymmetric anti-STDP learning rule. We proposed and experimentally demonstrated an optical implementation of neural learning algorithms, which can achieve both of antisymmetric STDP and anti-STDP learning rule, based on the cross-gain modulation (XGM) within a single semiconductor optical amplifier (SOA). The weight and height of the potentitation and depression window can be controlled by adjusting the injection current of the SOA, to mimic the biological antisymmetric STDP and anti-STDP learning rule more realistically. As the injection current increases, the width of depression and potentitation window decreases and height increases, due to the decreasing of recovery time and increasing of gain under a stronger injection current. Based on the demonstrated optical STDP circuit, ultrafast learning in optical SNNs can be realized.
Numerical Simulations of Helicity Condensation in the Solar Corona
NASA Technical Reports Server (NTRS)
Zhao, L.; DeVore, C. R.; Antiochos, S. K.; Zurbuchen, T. H.
2015-01-01
The helicity condensation model has been proposed by Antiochos (2013) to explain the observed smoothness of coronal loops and the observed buildup of magnetic shear at filament channels. The basic hypothesis of the model is that magnetic reconnection in the corona causes the magnetic stress injected by photospheric motions to collect only at those special locations where prominences form. In this work we present the first detailed quantitative MHD simulations of the reconnection evolution proposed by the helicity condensation model. We use the well-known ansatz of modeling the closed corona as an initially uniform field between two horizontal photospheric plates. The system is driven by applying photospheric rotational flows that inject magnetic helicity into the system. The flows are confined to a finite region on the photosphere so as to mimic the finite flux system of, for example, a bipolar active region. The calculations demonstrate that, contrary to common belief, coronal loops having opposite helicity do not reconnect, whereas loops having the same sense of helicity do reconnect. Furthermore, we find that for a given amount of helicity injected into the corona, the evolution of the magnetic shear is insensitive to whether the pattern of driving photospheric motions is fixed or quasi-random. In all cases, the shear propagates via reconnection to the boundary of the flow region while the total magnetic helicity is conserved, as predicted by the model. We discuss the implications of our results for solar observations and for future, more realistic simulations of the helicity condensation process.
Vasconcelos, Barbara Cristina Baldez; Vieira, Juliana Almeida; Silva, Geane Oliveira; Fernandes, Taiany Nogueira; Rocha, Luciano Chaves; Viana, André Pereira; Serique, Cássio Diego Sá; Filho, Carlos Santos; Bringel, Raissa Aires Ribeiro; Teixeira, Francisco Fernando Dacier Lobato; Ferreira, Milene Silveira; Casseb, Samir Mansour Moraes; Carvalho, Valéria Lima; de Melo, Karla Fabiane Lopes; de Castro, Paulo Henrique Gomes; Araújo, Sanderson Corrêa; Diniz, José Antonio Picanço; Demachki, Samia; Anaissi, Ana Karyssa Mendes; Sosthenes, Marcia Consentino Kronka; Vasconcelos, Pedro Fernando da Costa; Anthony, Daniel Clive; Diniz, Cristovam Wanderley Picanço; Diniz, Daniel Guerreiro
2016-02-01
Severe dengue disease is often associated with long-term neurological impairments, but it is unclear what mechanisms are associated with neurological sequelae. Previously, we demonstrated antibody-enhanced dengue disease (ADE) dengue in an immunocompetent mouse model with a dengue virus 2 (DENV2) antibody injection followed by DENV3 virus infection. Here we migrated this ADE model to Callithrix penicillata. To mimic human multiple infections of endemic zones where abundant vectors and multiple serotypes co-exist, three animals received weekly subcutaneous injections of DENV3 (genotype III)-infected supernatant of C6/36 cell cultures, followed 24 h later by anti-DENV2 antibody for 12 weeks. There were six control animals, two of which received weekly anti-DENV2 antibodies, and four further animals received no injections. After multiple infections, brain, liver, and spleen samples were collected and tissue was immunolabeled for DENV3 antigens, ionized calcium binding adapter molecule 1, Ki-67, TNFα. There were marked morphological changes in the microglial population of ADE monkeys characterized by more highly ramified microglial processes, higher numbers of trees and larger surface areas. These changes were associated with intense TNFα-positive immunolabeling. It is unclear why ADE should generate such microglial activation given that IgG does not cross the blood-brain barrier, but this study reveals that in ADE dengue therapy targeting the CNS host response is likely to be important. © 2015 Japanese Society of Neuropathology.
A web-based data visualization tool for the MIMIC-II database.
Lee, Joon; Ribey, Evan; Wallace, James R
2016-02-04
Although MIMIC-II, a public intensive care database, has been recognized as an invaluable resource for many medical researchers worldwide, becoming a proficient MIMIC-II researcher requires knowledge of SQL programming and an understanding of the MIMIC-II database schema. These are challenging requirements especially for health researchers and clinicians who may have limited computer proficiency. In order to overcome this challenge, our objective was to create an interactive, web-based MIMIC-II data visualization tool that first-time MIMIC-II users can easily use to explore the database. The tool offers two main features: Explore and Compare. The Explore feature enables the user to select a patient cohort within MIMIC-II and visualize the distributions of various administrative, demographic, and clinical variables within the selected cohort. The Compare feature enables the user to select two patient cohorts and visually compare them with respect to a variety of variables. The tool is also helpful to experienced MIMIC-II researchers who can use it to substantially accelerate the cumbersome and time-consuming steps of writing SQL queries and manually visualizing extracted data. Any interested researcher can use the MIMIC-II data visualization tool for free to quickly and conveniently conduct a preliminary investigation on MIMIC-II with a few mouse clicks. Researchers can also use the tool to learn the characteristics of the MIMIC-II patients. Since it is still impossible to conduct multivariable regression inside the tool, future work includes adding analytics capabilities. Also, the next version of the tool will aim to utilize MIMIC-III which contains more data.
Aldi, Silvia; Takano, Ken-ichi; Tomita, Kengo; Koda, Kenichiro; Chan, Noel Y.-K.; Marino, Alice; Salazar-Rodriguez, Mariselis; Thurmond, Robin L.
2014-01-01
Renin released by ischemia/reperfusion (I/R) from cardiac mast cells (MCs) activates a local renin-angiotensin system (RAS) causing arrhythmic dysfunction. Ischemic preconditioning (IPC) inhibits MC renin release and consequent activation of this local RAS. We postulated that MC histamine H4-receptors (H4Rs), being Gαi/o-coupled, might activate a protein kinase C isotype–ε (PKCε)–aldehyde dehydrogenase type-2 (ALDH2) cascade, ultimately eliminating MC-degranulating and renin-releasing effects of aldehydes formed in I/R and associated arrhythmias. We tested this hypothesis in ex vivo hearts, human mastocytoma cells, and bone marrow–derived MCs from wild-type and H4R knockout mice. We found that activation of MC H4Rs mimics the cardioprotective anti-RAS effects of IPC and that protection depends on the sequential activation of PKCε and ALDH2 in MCs, reducing aldehyde-induced MC degranulation and renin release and alleviating reperfusion arrhythmias. These cardioprotective effects are mimicked by selective H4R agonists and disappear when H4Rs are pharmacologically blocked or genetically deleted. Our results uncover a novel cardioprotective pathway in I/R, whereby activation of H4Rs on the MC membrane, possibly by MC-derived histamine, leads sequentially to PKCε and ALDH2 activation, reduction of toxic aldehyde-induced MC renin release, prevention of RAS activation, reduction of norepinephrine release, and ultimately to alleviation of reperfusion arrhythmias. This newly discovered protective pathway suggests that MC H4Rs may represent a new pharmacologic and therapeutic target for the direct alleviation of RAS-induced cardiac dysfunctions, including ischemic heart disease and congestive heart failure. PMID:24696042
Li, Peng; Tang, Youchao; Li, Jia; Shen, Longduo; Tian, Weidong; Tang, Wei
2013-09-01
The aim of this study is to describe the sequential software processing of computed tomography (CT) dataset for reconstructing the finite element analysis (FEA) mandibular model with custom-made plate, and to provide a theoretical basis for clinical usage of this reconstruction method. A CT scan was done on one patient who had mandibular continuity defects. This CT dataset in DICOM format was imported into Mimics 10.0 software in which a three-dimensional (3-D) model of the facial skeleton was reconstructed and the mandible was segmented out. With Geomagic Studio 11.0, one custom-made plate and nine virtual screws were designed. All parts of the reconstructed mandible were converted into NURBS and saved as IGES format for importing into pro/E 4.0. After Boolean operation and assembly, the model was switched to ANSYS Workbench 12.0. Finally, after applying the boundary conditions and material properties, an analysis was performed. As results, a 3-D FEA model was successfully developed using the softwares above. The stress-strain distribution precisely indicated biomechanical performance of the reconstructed mandible on the normal occlusion load, without stress concentrated areas. The Von-Mises stress in all parts of the model, from the maximum value of 50.9MPa to the minimum value of 0.1MPa, was lower than the ultimate tensile strength. In conclusion, the described strategy could speedily and successfully produce a biomechanical model of a reconstructed mandible with custom-made plate. Using this FEA foundation, the custom-made plate may be improved for an optimal clinical outcome. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Geographic variation in mimetic precision among different species of coral snake mimics.
Akcali, C K; Pfennig, D W
2017-07-01
Batesian mimicry is widespread, but whether and why different species of mimics vary geographically in resemblance to their model is unclear. We characterized geographic variation in mimetic precision among four Batesian mimics of coral snakes. Each mimic occurs where its model is abundant (i.e. in 'deep sympatry'), rare (i.e. at the sympatry/allopatry boundary or 'edge sympatry') and absent (i.e. in allopatry). Geographic variation in mimetic precision was qualitatively different among these mimics. In one mimic, the most precise individuals occurred in edge sympatry; in another, they occurred in deep sympatry; in the third, they occurred in allopatry; and in the fourth, precise mimics were not concentrated anywhere throughout their range. Mimicry was less precise in allopatry than in sympatry in only two mimics. We present several nonmutually exclusive hypotheses for these patterns. Generally, examining geographic variation in mimetic precision - within and among different mimics - offers novel insights into the causes and consequences of mimicry. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Shirbaghaee, Zeinab; Bolhassani, Azam
2016-03-01
Virus-like particles (VLPs) mimic the whole construct of virus particles devoid of viral genome as used in subunit vaccine design. VLPs can elicit efficient protective immunity as direct immunogens compared to soluble antigens co-administered with adjuvants in several booster injections. Up to now, several prokaryotic and eukaryotic systems such as insect, yeast, plant, and E. coli were used to express recombinant proteins, especially for VLP production. Recent studies are also generating VLPs in plants using different transient expression vectors for edible vaccines. VLPs and viral particles have been applied for different functions such as gene therapy, vaccination, nanotechnology, and diagnostics. Herein, we describe VLP production in different systems as well as its applications in biology and medicine. © 2015 Wiley Periodicals, Inc.
Accessing the public MIMIC-II intensive care relational database for clinical research
2013-01-01
Background The Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database is a free, public resource for intensive care research. The database was officially released in 2006, and has attracted a growing number of researchers in academia and industry. We present the two major software tools that facilitate accessing the relational database: the web-based QueryBuilder and a downloadable virtual machine (VM) image. Results QueryBuilder and the MIMIC-II VM have been developed successfully and are freely available to MIMIC-II users. Simple example SQL queries and the resulting data are presented. Clinical studies pertaining to acute kidney injury and prediction of fluid requirements in the intensive care unit are shown as typical examples of research performed with MIMIC-II. In addition, MIMIC-II has also provided data for annual PhysioNet/Computing in Cardiology Challenges, including the 2012 Challenge “Predicting mortality of ICU Patients”. Conclusions QueryBuilder is a web-based tool that provides easy access to MIMIC-II. For more computationally intensive queries, one can locally install a complete copy of MIMIC-II in a VM. Both publicly available tools provide the MIMIC-II research community with convenient querying interfaces and complement the value of the MIMIC-II relational database. PMID:23302652
Iyadomi, Satoshi; Ezoe, Kentaro; Ohira, Shin-Ichi; Toda, Kei
2016-04-01
To monitor the fluctuations of dimethyl sulfur compounds at the seawater/atmosphere interface, an automated system was developed based on sequential injection analysis coupled with vapor generation-ion molecule reaction mass spectrometry (SIA-VG-IMRMS). Using this analytical system, dissolved dimethyl sulfide (DMS(aq)) and dimethylsulfoniopropionate (DMSP), a precursor to DMS in seawater, were monitored together sequentially with atmospheric dimethyl sulfide (DMS(g)). A shift from the equilibrium point between DMS(aq) and DMS(g) results in the emission of DMS to the atmosphere. Atmospheric DMS emitted from seawater plays an important role as a source of cloud condensation nuclei, which influences the oceanic climate. Water samples were taken periodically and dissolved DMS(aq) was vaporized for analysis by IMRMS. After that, DMSP was hydrolyzed to DMS and acrylic acid, and analyzed in the same manner as DMS(aq). The vaporization behavior and hydrolysis of DMSP to DMS were investigated to optimize these conditions. Frequent (every 30 min) determination of the three components, DMS(aq)/DMSP (nanomolar) and DMS(g) (ppbv), was carried out by SIA-VG-IMRMS. Field analysis of the dimethyl sulfur compounds was undertaken at a coastal station, which succeeded in showing detailed variations of the compounds in a natural setting. Observed concentrations of the dimethyl sulfur compounds both in the atmosphere and seawater largely changed with time and similar variations were repeatedly observed over several days, suggesting diurnal variations in the DMS flux at the seawater/atmosphere interface.
NASA Astrophysics Data System (ADS)
Zarrabi, Nawid; Clausen, Caterina; Düser, Monika G.; Börsch, Michael
2013-02-01
Conformational changes of individual fluorescently labeled proteins can be followed in solution using a confocal microscope. Two fluorophores attached to selected domains of the protein report fluctuating conformations. Based on Förster resonance energy transfer (FRET) between these fluorophores on a single protein, sequential distance changes between the dyes provide the real time trajectories of protein conformations. However, observation times are limited for freely diffusing biomolecules by Brownian motion through the confocal detection volume. A. E. Cohen and W. E. Moerner have invented and built microfluidic devices with 4 electrodes for an Anti-Brownian Electrokinetic Trap (ABELtrap). Here we present an ABELtrap based on a laser focus pattern generated by a pair of acousto-optical beam deflectors and controlled by a programmable FPGA chip. Fluorescent 20-nm beads in solution were used to mimic freely diffusing large proteins like solubilized FoF1-ATP synthase. The ABELtrap could hold these nanobeads for about 10 seconds at the given position. Thereby, observation times of a single particle were increased by a factor of 1000.
NASA Astrophysics Data System (ADS)
Schill, S.; Zimmermann, K.; Ryder, O. S.; Campbell, N.; Collins, D. B.; Gianneschi, N.; Bertram, T. H.
2013-12-01
Spontaneous self-assembly of marine exudate particles has previously been observed in filtered seawater samples. The chemicophysical properties of these particles may alter the chemical composition and CCN properties of nascent marine aerosol, yet to date simultaneous measurement of seawater exudate particle formation rates and number distributions, with aerosol particle formation rates and CCN activity are lacking. Here, we use a novel Marine Aerosol Reference Tank (MART) system to experimentally mimic a phytoplankton bloom via sequential addition of biological surrogates, including sterol, galactose, lipopolysaccharide, BSA protein, and dipalmitoylphosphatidylcholine. Nascent sea-spray aerosol are generated in the MART system via a continuous plunging waterfall. Exudate particle assembly in the water is monitored via dynamic light scattering (DLS) and transmission electron microscopy (TEM) to obtain both the assembly kinetics of the particles as well as particle number distributions Simultaneous characterization of both particle production rates and super-saturated particle hygroscopicity are also discussed. This study permits analysis of the controlling role of the molecular composition of dissolved organic carbon in setting the production rates of colloidal material in the surface oceans.
Walther, Andreas; Bjurhager, Ingela; Malho, Jani-Markus; Pere, Jaakko; Ruokolainen, Janne; Berglund, Lars A; Ikkala, Olli
2010-08-11
Although remarkable success has been achieved to mimic the mechanically excellent structure of nacre in laboratory-scale models, it remains difficult to foresee mainstream applications due to time-consuming sequential depositions or energy-intensive processes. Here, we introduce a surprisingly simple and rapid methodology for large-area, lightweight, and thick nacre-mimetic films and laminates with superior material properties. Nanoclay sheets with soft polymer coatings are used as ideal building blocks with intrinsic hard/soft character. They are forced to rapidly self-assemble into aligned nacre-mimetic films via paper-making, doctor-blading or simple painting, giving rise to strong and thick films with tensile modulus of 45 GPa and strength of 250 MPa, that is, partly exceeding nacre. The concepts are environmentally friendly, energy-efficient, and economic and are ready for scale-up via continuous roll-to-roll processes. Excellent gas barrier properties, optical translucency, and extraordinary shape-persistent fire-resistance are demonstrated. We foresee advanced large-scale biomimetic materials, relevant for lightweight sustainable construction and energy-efficient transportation.
Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites
NASA Technical Reports Server (NTRS)
Lu, Y.; Yang, Y.; Sellinger, A.; Lu, M.; Huang, J.; Fan, H.; Haddad, R.; Lopez, G.; Burns, A. R.; Sasaki, D. Y.;
2001-01-01
Nature abounds with intricate composite architectures composed of hard and soft materials synergistically intertwined to provide both useful functionality and mechanical integrity. Recent synthetic efforts to mimic such natural designs have focused on nanocomposites, prepared mainly by slow procedures like monomer or polymer infiltration of inorganic nanostructures or sequential deposition. Here we report the self-assembly of conjugated polymer/silica nanocomposite films with hexagonal, cubic or lamellar mesoscopic order using polymerizable amphiphilic diacetylene molecules as both structure-directing agents and monomers. The self-assembly procedure is rapid and incorporates the organic monomers uniformly within a highly ordered, inorganic environment. Polymerization results in polydiacetylene/silica nanocomposites that are optically transparent and mechanically robust. Compared to ordered diacetylene-containing films prepared as Langmuir monolayers or by Langmuir-Blodgett deposition, the nanostructured inorganic host alters the diacetylene polymerization behaviour, and the resulting nanocomposite exhibits unusual chromatic changes in response to thermal, mechanical and chemical stimuli. The inorganic framework serves to protect, stabilize, and orient the polymer, and to mediate its function. The nanocomposite architecture also provides sufficient mechanical integrity to enable integration into devices and microsystems.
Zhou, Kejin; Nguyen, Liem H.; Miller, Jason B.; Yan, Yunfeng; Kos, Petra; Xiong, Hu; Li, Lin; Hao, Jing; Minnig, Jonathan T.; Siegwart, Daniel J.
2016-01-01
RNA-based cancer therapies are hindered by the lack of delivery vehicles that avoid cancer-induced organ dysfunction, which exacerbates carrier toxicity. We address this issue by reporting modular degradable dendrimers that achieve the required combination of high potency to tumors and low hepatotoxicity to provide a pronounced survival benefit in an aggressive genetic cancer model. More than 1,500 dendrimers were synthesized using sequential, orthogonal reactions where ester degradability was systematically integrated with chemically diversified cores, peripheries, and generations. A lead dendrimer, 5A2-SC8, provided a broad therapeutic window: identified as potent [EC50 < 0.02 mg/kg siRNA against FVII (siFVII)] in dose–response experiments, and well tolerated in separate toxicity studies in chronically ill mice bearing MYC-driven tumors (>75 mg/kg dendrimer repeated dosing). Delivery of let-7g microRNA (miRNA) mimic inhibited tumor growth and dramatically extended survival. Efficacy stemmed from a combination of a small RNA with the dendrimer’s own negligible toxicity, therefore illuminating an underappreciated complication in treating cancer with RNA-based drugs. PMID:26729861
Guilmette, Raymond A; Cheng, Yung Sung
2009-03-01
As part of the Capstone Depleted Uranium (DU) Aerosol Study, the solubility of selected aerosol samples was measured using an accepted in vitro dissolution test system. This static system was employed along with a SUF (synthetic ultrafiltrate) solvent, which is designed to mimic the physiological chemistry of extracellular fluid. Using sequentially obtained solvent samples, the dissolution behavior over a 46-d test period was evaluated by fitting the measurement data to two- or three-component negative exponential functions. These functions were then compared with Type M and S absorption taken from the International Commission on Radiological Protection Publication 66 Human Respiratory Tract Model. The results indicated that there was a substantial variability in solubility of the aerosols, which in part depended on the type of armor being impacted by the DU penetrator and the particle size fraction being tested. Although some trends were suggested, the variability noted leads to uncertainties in predicting the solubility of other DU-based aerosols. Nevertheless, these data provide a useful experimental basis for modeling the intake-dose relationships for inhaled DU aerosols arising from penetrator impact on armored vehicles.
Matsubara, Takashi; Torikai, Hiroyuki
2016-04-01
Modeling and implementation approaches for the reproduction of input-output relationships in biological nervous tissues contribute to the development of engineering and clinical applications. However, because of high nonlinearity, the traditional modeling and implementation approaches encounter difficulties in terms of generalization ability (i.e., performance when reproducing an unknown data set) and computational resources (i.e., computation time and circuit elements). To overcome these difficulties, asynchronous cellular automaton-based neuron (ACAN) models, which are described as special kinds of cellular automata that can be implemented as small asynchronous sequential logic circuits have been proposed. This paper presents a novel type of such ACAN and a theoretical analysis of its excitability. This paper also presents a novel network of such neurons, which can mimic input-output relationships of biological and nonlinear ordinary differential equation model neural networks. Numerical analyses confirm that the presented network has a higher generalization ability than other major modeling and implementation approaches. In addition, Field-Programmable Gate Array-implementations confirm that the presented network requires lower computational resources.
Qiu, Xudong; Johnson, James R.; Wilson, Bradley S.; Gammon, Seth T.; Piwnica-Worms, David; Barnett, Edward M.
2014-01-01
Peptide probes for imaging retinal ganglion cell (RGC) apoptosis consist of a cell-penetrating peptide targeting moiety and a fluorophore-quencher pair flanking an effector caspase consensus sequence. Using ex vivo fluorescence imaging, we previously validated the capacity of these probes to identify apoptotic RGCs in cell culture and in an in vivo rat model of N-methyl- D-aspartate (NMDA)-induced neurotoxicity. Herein, using TcapQ488, a new probe designed and synthesized for compatibility with clinically-relevant imaging instruments, and real time imaging of a live rat RGC degeneration model, we fully characterized time- and dose-dependent probe activation, signal-to-noise ratios, and probe safety profiles in vivo. Adult rats received intravitreal injections of four NMDA concentrations followed by varying TcapQ488 doses. Fluorescence fundus imaging was performed sequentially in vivo using a confocal scanning laser ophthalmoscope and individual RGCs displaying activated probe were counted and analyzed. Rats also underwent electroretinography following intravitreal injection of probe. In vivo fluorescence fundus imaging revealed distinct single-cell probe activation as an indicator of RGC apoptosis induced by intravitreal NMDA injection that corresponded to the identical cells observed in retinal flat mounts of the same eye. Peak activation of probe in vivo was detected 12 hours post probe injection. Detectable fluorescent RGCs increased with increasing NMDA concentration; sensitivity of detection generally increased with increasing TcapQ488 dose until saturating at 0.387 nmol. Electroretinography following intravitreal injections of TcapQ488 showed no significant difference compared with control injections. We optimized the signal-to-noise ratio of a caspase-activatable cell penetrating peptide probe for quantitative non-invasive detection of RGC apoptosis in vivo. Full characterization of probe performance in this setting creates an important in vivo imaging standard for functional evaluation of future probe analogues and provides a basis for extending this strategy into glaucoma-specific animal models. PMID:24586415
Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Procopio, Jesús R
2017-03-15
A simple method based on FAAS was developed for the sequential multi-element determination of Cu, Zn, Mn, Mg and Si in beverages and food supplements with successful results. The main absorption lines for Cu, Zn and Si and secondary lines for Mn and Mg were selected to carry out the measurements. The sample introduction was performed using a flow injection system. Using the choice of the absorption line wings, the upper limit of the linear range increased up to 110mgL -1 for Mg, 200mgL -1 for Si and 13mgL -1 for Zn. The determination of the five elements was carried out, in triplicate, without the need of additional sample dilutions and/or re-measurements, using less than 3.5mL of sample to perform the complete analysis. The LODs were 0.008mgL -1 for Cu, 0.017mgL -1 for Zn, 0.011mgL -1 for Mn, 0.16mgL -1 for Si and 0.11mgL -1 for Mg. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrologic and geochemical data assimilation at the Hanford 300 Area
NASA Astrophysics Data System (ADS)
Chen, X.; Hammond, G. E.; Murray, C. J.; Zachara, J. M.
2012-12-01
In modeling the uranium migration within the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area, uncertainties arise from both hydrologic and geochemical sources. The hydrologic uncertainty includes the transient flow boundary conditions induced by dynamic variations in Columbia River stage and the underlying heterogeneous hydraulic conductivity field, while the geochemical uncertainty is a result of limited knowledge of the geochemical reaction processes and parameters, as well as heterogeneity in uranium source terms. In this work, multiple types of data, including the results from constant-injection tests, borehole flowmeter profiling, and conservative tracer tests, are sequentially assimilated across scales within a Bayesian framework to reduce the hydrologic uncertainty. The hydrologic data assimilation is then followed by geochemical data assimilation, where the goal is to infer the heterogeneous distribution of uranium sources using uranium breakthrough curves from a desorption test that took place at high spring water table. We demonstrate in our study that Ensemble-based data assimilation techniques (Ensemble Kalman filter and smoother) are efficient in integrating multiple types of data sequentially for uncertainty reduction. The computational demand is managed by using the multi-realization capability within the parallel PFLOTRAN simulator.
Inhibition of duck hepatitis B virus replication by mimic peptides in vitro
JIA, HONGYU; LIU, CHANGHONG; YANG, YING; ZHU, HAIHONG; CHEN, FENG; LIU, JIHONG; ZHOU, LINFU
2015-01-01
The aim of the present study was to investigate the inhibitory effect of specific mimic peptides targeting duck hepatitis B virus polymerase (DHBVP) on duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Phage display technology (PDT) was used to screen for mimic peptides specifically targeting DHBVP and the associated coding sequences were determined using DNA sequencing. The selected mimic peptides were then used to treat primary duck hepatocytes infected with DHBV in vitro. Infected hepatocytes expressing the mimic peptides intracellularly were also prepared. The cells were divided into mimic peptide groups (EXP groups), an entecavir-treated group (positive control) and a negative control group. The medium was changed every 48 h. Following a 10-day incubation, the cell supernatants were collected. DHBV-DNA in the cellular nucleus, cytoplasm and culture supernatant was analyzed by quantitative polymerase chain reaction (qPCR). Eight mimic peptides were selected following three PDT screening rounds for investigation in the DHBV-infected primary duck hepatocytes. The qPCR results showed that following direct treatment with mimic peptide 2 or 7, intracellular expression of mimic peptide 2 or 7, or treatment with entecavir, the DHBV-DNA levels in the culture supernatant and cytoplasm of duck hepatocytes were significantly lower than those in the negative control (P<0.05). The cytoplasmic DHBV-DNA content of the cells treated with mimic peptide 7 was lower than that in the other groups (P<0.05). In addition, the DHBV-DNA content of the nuclear fractions following the intracellular expression of mimic peptide 7 was significantly lower than that in the other groups (P<0.05). Mimic peptides specifically targeting DHBVP, administered directly or expressed intracellularly, can significantly inhibit DHBV replication in vitro. PMID:26640539
Inhibition of duck hepatitis B virus replication by mimic peptides in vitro.
Jia, Hongyu; Liu, Changhong; Yang, Ying; Zhu, Haihong; Chen, Feng; Liu, Jihong; Zhou, Linfu
2015-11-01
The aim of the present study was to investigate the inhibitory effect of specific mimic peptides targeting duck hepatitis B virus polymerase (DHBVP) on duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Phage display technology (PDT) was used to screen for mimic peptides specifically targeting DHBVP and the associated coding sequences were determined using DNA sequencing. The selected mimic peptides were then used to treat primary duck hepatocytes infected with DHBV in vitro. Infected hepatocytes expressing the mimic peptides intracellularly were also prepared. The cells were divided into mimic peptide groups (EXP groups), an entecavir-treated group (positive control) and a negative control group. The medium was changed every 48 h. Following a 10-day incubation, the cell supernatants were collected. DHBV-DNA in the cellular nucleus, cytoplasm and culture supernatant was analyzed by quantitative polymerase chain reaction (qPCR). Eight mimic peptides were selected following three PDT screening rounds for investigation in the DHBV-infected primary duck hepatocytes. The qPCR results showed that following direct treatment with mimic peptide 2 or 7, intracellular expression of mimic peptide 2 or 7, or treatment with entecavir, the DHBV-DNA levels in the culture supernatant and cytoplasm of duck hepatocytes were significantly lower than those in the negative control (P<0.05). The cytoplasmic DHBV-DNA content of the cells treated with mimic peptide 7 was lower than that in the other groups (P<0.05). In addition, the DHBV-DNA content of the nuclear fractions following the intracellular expression of mimic peptide 7 was significantly lower than that in the other groups (P<0.05). Mimic peptides specifically targeting DHBVP, administered directly or expressed intracellularly, can significantly inhibit DHBV replication in vitro .
Hirayama, Chikara; Konno, Kotaro; Wasano, Naoya; Nakamura, Masatoshi
2007-12-01
Mulberry leaves (Morus spp.) exude latex rich in sugar-mimic alkaloids, 1,4-dideoxy-1,4-imino-d-arabinitol (d-AB1) and 1-deoxynojirimycin (DNJ), as a defense against herbivorous insects. Sugar-mimic alkaloids are inhibitors of sugar-metabolizing enzymes, and are toxic to the Eri silkworm, Samia ricini, a generalist herbivore, but not at all to the domesticated silkworm, Bombyx mori, a mulberry specialist. To address the phenomena, we fed both larvae diets containing different sugar sources (sucrose, glucose or none) with or without sugar-mimic alkaloids from mulberry latex. In S. ricini, addition of sugar-mimic alkaloids to the sucrose (the major sugar in mulberry leaves) diet reduced both growth and the absorption ratio of sugar, but it reduced neither in B. mori. The midgut soluble sucrase activity of S. ricini was low and inhibited by very low concentrations of sugar-mimic alkaloids (IC(50)=0.9-8.2microM), but that of B. mori was high and not inhibited even by very high concentrations (IC(50)>1000microM) of sugar-mimic alkaloids. In S. ricini, the addition of sugar-mimic alkaloids to the glucose diet still had considerable negative effects on growth, although it did not reduce the absorption ratio of glucose. The hemolymph of S. ricini fed sugar-mimic alkaloids contained sugar-mimic alkaloids. The trehalose concentration in the hemolymph increased significantly in S. ricini fed sugar-mimic alkaloids, but not in B. mori. The trehalase activities of S. ricini were lower and inhibited by lower concentrations of sugar-mimic alkaloids than those of B. mori. These results suggest that sugar-mimic alkaloids in mulberry latex exert toxicity to S. ricini larvae first by inhibiting midgut sucrase and digestion of sucrose, and secondly, after being absorbed into hemolymph, by inhibiting trehalase and utilization of trehalose, the major blood sugar. Further, our results reveal that B. mori larvae evolved enzymatic adaptation to mulberry defense by developing sucrase and trehalase that are insensitive to sugar-mimic alkaloids.
NASA Astrophysics Data System (ADS)
Cihan, A.; Illangasekare, T. H.; Zhou, Q.; Birkholzer, J. T.; Rodriguez, D.
2010-12-01
The capillary and dissolution trapping processes are believed to be major trapping mechanisms during CO2 injection and post-injection in heterogeneous subsurface environments. These processes are important at relatively shorter time periods compared to mineralization and have a strong impact on storage capacity and leakage risks, and they are suitable to investigate at reasonable times in the laboratory. The objectives of the research presented is to investigate the effect of the texture transitions and variability in heterogeneous field formations on the effective capillary and dissolution trapping at the field scale through multistage analysis comprising of experimental and modeling studies. A series of controlled experiments in intermediate-scale test tanks are proposed to investigate the key processes involving (1) viscous fingering of free-phase CO2 along high-permeability (or high-K) fast flow pathways, (2) dynamic intrusion of CO2 from high-K zones into low-K zones by capillarity (as well as buoyancy), (3) diffusive transport of dissolved CO2 into low-K zones across large interface areas, and (4) density-driven convective mass transfer into CO2-free regions. The test tanks contain liquid sampling ports to measure spatial and temporal changes in concentration of dissolved fluid as the injected fluid migrates. In addition to visualization and capturing images through digital photography, X-ray and gamma attenuation methods are used to measure phase saturations. Heterogeneous packing configurations are created with tightly packed sands ranging from very fine to medium fine to mimic sedimentary rocks at potential storage formations. Effect of formation type, injection pressure and injection rate on trapped fluid fraction are quantified. Macroscopic variables such as saturation, pressure and concentration that are measured will be used for testing the existing macroscopic models. The applicability of multiphase flow theories will be evaluated by comparing with the experimental data. Existing upscaling methodologies will be tested using experimental data for accurately estimating parameters of the large-scale heterogeneous porous media. This paper presents preliminary results from the initial-stage experiments and the modeling analysis. In the future, we will design and conduct a comprehensive set of experiments for improving the fundamental understanding of the processes, and refine and calibrate the models simulating the effective capillary and dissolution trapping with an ultimate goal to design efficient and safe storage schemes.
Nasirinezhad, Farinaz; Gajavelli, Shyam; Priddy, Blake; Jergova, Stanislava; Zadina, James; Sagen, Jacqueline
2015-01-07
The treatment of spinal cord injury (SCI)-induced neuropathic pain presents a challenging healthcare problem. The lack of available robust pharmacological treatments underscores the need for novel therapeutic methods and approaches. Due to the complex character of neuropathic pain following SCI, therapies targeting multiple mechanisms may be a better choice for obtaining sufficient long-term pain relief. Previous studies in our lab showed analgesic effects using combinations of an NMDA antagonist peptide [Ser1]histogranin (SHG), and the mu-opioid peptides endomorphins (EMs), in several pain models. As an alternative to drug therapy, this study evaluated the analgesic potential of these peptides when delivered via gene therapy. Lentiviruses encoding SHG and EM-1 and EM-2 were intraspinally injected, either singly or in combination, into rats with clip compression SCI 2 weeks following injury. Treated animals showed significant reduction in mechanical and thermal hypersensitivity, compared to control groups injected with GFP vector only. The antinociceptive effects of individually injected components were modest, but the combination of EMs and SHG produced robust and sustained antinociception. The onset of the analgesic effects was observed between 1-5 weeks post-injection and sustained without decrement for at least 7 weeks. No adverse effects on locomotor function were observed. The involvement of SHG and EMs in the observed antinociception was confirmed by pharmacologic inhibition using intrathecal injection of either the opioid antagonist naloxone or an anti-SHG antibody. Immunohistochemical analysis showed the presence of SHG and EMs in the spinal cord of treated animals, and immunodot-blot analysis of CSF confirmed the presence of these peptides in injected animals. In a separate group of rats, delayed injection of viral vectors was performed in order to mimic a more likely clinical scenario. Comparable and sustained antinociceptive effects were observed in these animals using the SHG-EMs combination vectors compared to the group with early intervention. Findings from this study support the potential for direct gene therapy to provide a robust and sustained alleviation of chronic neuropathic pain following SCI. The combination strategy utilizing potent mu-opioid peptides with a naturally-derived NMDA antagonist may produce additive or synergistic analgesic effects without the tolerance development for long-term management of persistent pain.
Coupled Reactive Transport Modeling of CO2 Injection in Mt. Simon Sandstone Formation, Midwest USA
NASA Astrophysics Data System (ADS)
Liu, F.; Lu, P.; Zhu, C.; Xiao, Y.
2009-12-01
CO2 sequestration in deep geological formations is one of the promising options for CO2 emission reduction. While several large scale CO2 injections in saline aquifers have shown to be successful for the short-term, there is still a lack of fundamental understanding on key issues such as CO2 storage capacity, injectivity, and security over multiple spatial and temporal scales that need to be addressed. To advance these understandings, we applied multi-phase coupled reactive mass transport modeling to investigate the fate of injected CO2 and reservoir responses to the injection into Mt. Simon Formation. We developed both 1-D and 2-D reactive transport models in a radial region of 10,000 m surrounding a CO2 injection well to represent the Mt. Simon sandstone formation, which is a major regional deep saline reservoir in the Midwest, USA. Supercritical CO2 is injected into the formation for 100 years, and the modeling continues till 10,000 years to monitor both short-term and long-term behavior of injected CO2 and the associated rock-fluid interactions. CO2 co-injection with H2S and SO2 is also simulated to represent the flue gases from coal gasification and combustion in the Illinois Basin. The injection of CO2 results in acidified zones (pH ~3 and 5) adjacent to the wellbore, causing progressive water-rock interactions in the surrounding region. In accordance with the extensive dissolution of authigenic K-feldspar, sequential precipitations of secondary carbonates and clay minerals are predicted in this zone. The vertical profiles of CO2 show fingering pattern from the top of the reservoir to the bottom due to the density variation of CO2-impregnated brine, which facilitate convection induced mixing and solubility trapping. Most of the injected CO2 remains within a radial distance of 2500 m at the end of 10,000 years and is sequestered and immobilized by solubility and residual trapping. Mineral trapping via secondary carbonates, including calcite, magnesite, ankerite and dawsonite, is predicted, but only constituting a minor component as compared to other trapping mechanisms. The mineral alteration induced by CO2 injection results in changes in porosity/permeability due to these complex mineral dissolution and precipitation reactions. Increases in porosity (from 15% to 16.2%) occur in the low-pH zones due to the acidic dissolution of minerals. However, within the carbonate mineral trapping zone, porosity reduction occurs. Co-injection of H2S causes relatively limited modification from the CO2 alone case while significantly higher water-rock reactivity is associated with the SO2 co-injection. Although co-injection of CO2 with H2S and SO2 could potentially reduce separation and injection cost, it may lead to some uncertainty and risks and therefore require further investigation.
NASA Astrophysics Data System (ADS)
Kim, Dae-Kyu; Choi, Jong-Ho
2018-02-01
Herein is presented a comparative performance analysis of heterojunction organic-based light-emitting field-effect transistors (OLEFETs) with symmetric (Au only) and asymmetric (Au and LiF/Al) electrode contacts. The devices had a top source-drain contact with long-channel geometry and were produced by sequentially depositing p-type pentacene and n-type N,N‧-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) using a neutral cluster beam deposition apparatus. The spectroscopic, structural and morphological properties of the organic thin films were examined using photoluminescence (PL) spectroscopy, X-ray diffraction (XRD) method, laser scanning confocal and atomic force microscopy (LSCM, AFM). Based upon the growth of high-quality, well-packed crystalline thin films, the devices demonstrated ambipolar field-effect characteristics, stress-free operational stability, and light emission under ambient conditions. Various device parameters were derived from the fits of the observed characteristics. The hole mobilities were nearly equal irrespective of the electrode contacts, whereas the electron mobilities of the transistors with LiF/Al drain electrodes were higher due to the low injection barrier. For the OLEFETs with symmetric electrodes, electroluminescence (EL) occurred only in the vicinity of the hole-injecting electrode, whereas for the OLEFETs with asymmetric electrodes, the emission occurred in the vicinity of both hole- and electron-injecting electrodes. By tuning the carrier injection and transport through high- and low-work function metals, the hole-electron recombination sites could be controlled. The operating conduction and light emission mechanism are discussed with the aid of EL images obtained using a charge-coupled device (CCD) camera.
The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).
Penney, Heather D; Hassall, Christopher; Skevington, Jeffrey H; Lamborn, Brent; Sherratt, Thomas N
2014-02-01
Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated or to augment an already close morphological resemblance. We evaluated these contrasting predictions by assaying the behavior of 57 field-caught species of mimetic hover flies (Diptera: Syrphidae) and quantifying their morphological similarity to a range of potential hymenopteran models. A purpose-built phylogeny for the hover flies was used to control for potential lack of independence due to shared evolutionary history. Those hover fly species that engage in behavioral mimicry (mock stinging, leg waving, wing wagging) were all large wasp mimics within the genera Spilomyia and Temnostoma. While the behavioral mimics assayed were good morphological mimics, not all good mimics were behavioral mimics. Therefore, while the behaviors may have evolved to augment good morphological mimicry, they do not advantage all good mimics.
A Critical Review of the Impacts of Leaking CO 2 Gas and Brine on Groundwater Quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Nikolla; Zheng, Liange; Bacon, Diana H.
2015-09-30
Geological carbon sequestration (GCS) is a global carbon emission reduction strategy involving the capture of CO 2 emitted from fossil fuel burning power plants, as well as the subsequent injection of the captured CO 2 gas into deep saline aquifers or depleted oil and gas reservoirs. A critical question that arises from the proposed GCS is the potential impacts of CO 2 injection on the quality of drinking-water systems overlying CO 2 sequestration storage sites. Although storage reservoirs are evaluated and selected based on their ability to safely and securely store emplaced fluids, leakage of CO 2 from storage reservoirsmore » is a primary risk factor and potential barrier to the widespread acceptance of geologic CO 2 sequestration (OR Harvey et al. 2013; Y-S Jun et al. 2013; DOE 2007). Therefore, a systematic understanding of how CO 2 leakage would affect the geochemistry of potable aquifers, and subsequently control or affect elemental and contaminant release via sequential and/or simultaneous abiotic and biotic processes and reactions is vital.« less
Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Lian, Yongsheng; Motil, Brian; Rame, Enrique
2016-01-01
In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.
NASA Astrophysics Data System (ADS)
Moody, A.; Fairley, J. P., Jr.
2014-12-01
In light of recent advancements in reservoir enhancement and injection tests at active geothermal fields, there is interest in investigating the geothermal potential of widespread subsurface welded tuffs related to caldera collapse on the Snake River Plain (SRP). Before considering stimulation strategies, simulating heat extraction from the reservoir under in-situ fracture geometries will give a first-order estimation of extractable heat. With only limited deep boreholes drilled on the SRP, few analyses of the bulk hydrologic properties of the tuffs exist. Acknowledging the importance of the spatial heterogeneity of fractures to the permeability and injectivity of reservoirs hosted in impermeable volcanic units, we present fracture distributions from ICDP hole 5036-2A drilled as a part of Project HOTSPOT. The core documents more than 1200 m of largely homogeneous densely welded tuff hosting an isothermal warm-water reservoir at ~60˚ C. Multiple realizations of a hypothetical reservoir are created using sequential indicator algorithms that honor the observed vertical fracture frequency statistics. Results help form criteria for producing geothermal energy from the SRP.
Mori, Masanobu; Nakano, Koji; Sasaki, Masaya; Shinozaki, Haruka; Suzuki, Shiho; Okawara, Chitose; Miró, Manuel; Itabashi, Hideyuki
2016-02-01
A dynamic flow-through microcolumn extraction system based on extractant re-circulation is herein proposed as a novel analytical approach for simplification of bioaccessibility tests of trace elements in sediments. On-line metal leaching is undertaken in the format of all injection (AI) analysis, which is a sequel of flow injection analysis, but involving extraction under steady-state conditions. The minimum circulation times and flow rates required to determine the maximum bioaccessible pools of target metals (viz., Cu, Zn, Cd, and Pb) from lake and river sediment samples were estimated using Tessier's sequential extraction scheme and an acid single extraction test. The on-line AIA method was successfully validated by mass balance studies of CRM and real sediment samples. Tessier's test in on-line AI format demonstrated to be carried out by one third of extraction time (6h against more than 17 h by the conventional method), with better analytical precision (<9.2% against >15% by the conventional method) and significant decrease in blank readouts as compared with the manual batch counterpart. Copyright © 2015 Elsevier B.V. All rights reserved.
The MIMIC Method with Scale Purification for Detecting Differential Item Functioning
ERIC Educational Resources Information Center
Wang, Wen-Chung; Shih, Ching-Lin; Yang, Chih-Chien
2009-01-01
This study implements a scale purification procedure onto the standard MIMIC method for differential item functioning (DIF) detection and assesses its performance through a series of simulations. It is found that the MIMIC method with scale purification (denoted as M-SP) outperforms the standard MIMIC method (denoted as M-ST) in controlling…
NASA Technical Reports Server (NTRS)
Kelbaugh, B. N.; Picciolo, G. L.; Chappelle, E. W.; Colburn, M. E. (Inventor)
1973-01-01
An automated apparatus is reported for sequentially assaying urine samples for the presence of bacterial adenosine triphosphate (ATP) that comprises a rotary table which carries a plurality of sample containing vials and automatically dispenses fluid reagents into the vials preparatory to injecting a light producing luciferase-luciferin mixture into the samples. The device automatically measures the light produced in each urine sample by a bioluminescence reaction of the free bacterial adenosine triphosphate with the luciferase-luciferin mixture. The light measured is proportional to the concentration of bacterial adenosine triphosphate which, in turn, is proportional to the number of bacteria present in the respective urine sample.
Zhang, Wenjie; Xu, Dongsheng; Cui, Jingjing; Jing, Xianghong; Xu, Nenggui; Liu, Jianhua; Bai, Wanzhu
2017-02-01
Biotinylated dextran amine (BDA) has been used for neural pathway tracing in the central nervous system for many decades, in which high molecular weight BDA appeared to be transported predominantly in the anterograde direction and less in the retrograde direction. In the current study, we reexamined the properties of neural labeling with high molecular weight BDA through a reciprocal neural pathway between thalamus and somatosensory cortex. After injection of BDA into the ventral posteromedial nucleus of thalamus (VPM) in the rat, the BDA labeling was sequentially examined on somatosensory cortex at 3, 5, 7, 10, and 14 survival days. Both of anterogradely labeled axonal terminals and retrogradely labeled neuronal cell bodies were observed simultaneously on the somatosensory cortex. With the increasing of survival times after injection, morphological changes occurred on the labeled axonal arbors and neuronal dendrites, in which the high quality of BDA labeling appeared on the tenth survival day. These results indicate that high molecular weight BDA is not only a sensitive anterograde tracer but also an excellent retrograde marker to be used for tracing through thalamocortical and corticothalamic pathways. And the detailed structure of neural labeling with BDA similar to Golgi-like resolution can be obtained at optimal survival times of animals after the injection of high molecular weight BDA. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Manoli, Gabriele; Chambon, Julie C.; Bjerg, Poul L.; Scheutz, Charlotte; Binning, Philip J.; Broholm, Mette M.
2012-04-01
A numerical model of metabolic reductive dechlorination is used to describe the performance of enhanced bioremediation in fractured clay till. The model is developed to simulate field observations of a full scale bioremediation scheme in a fractured clay till and thereby to assess remediation efficiency and timeframe. A relatively simple approach is used to link the fermentation of the electron donor soybean oil to the sequential dechlorination of trichloroethene (TCE) while considering redox conditions and the heterogeneous clay till system (clay till matrix, fractures and sand stringers). The model is tested on lab batch experiments and applied to describe sediment core samples from a TCE-contaminated site. Model simulations compare favorably to field observations and demonstrate that dechlorination may be limited to narrow bioactive zones in the clay matrix around fractures and sand stringers. Field scale simulations show that the injected donor is expected to be depleted after 5 years, and that without donor re-injection contaminant rebound will occur in the high permeability zones and the mass removal will stall at 18%. Long remediation timeframes, if dechlorination is limited to narrow bioactive zones, and the need for additional donor injections to maintain dechlorination activity may limit the efficiency of ERD in low-permeability media. Future work should address the dynamics of the bioactive zones, which is essential to understand for predictions of long term mass removal.
The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF
ERIC Educational Resources Information Center
Cheng, Ying; Shao, Can; Lathrop, Quinn N.
2016-01-01
Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…
Urlacher, Elodie; Devaud, Jean-Marc; Mercer, Alison R
2017-01-01
As honey bee populations worldwide are declining there is an urgent need for a deeper understanding of stress reactivity in these important insects. Our data indicate that stress responses in bees (Apis mellifera L.) may be mediated by neuropeptides identified, on the basis of sequence similarities, as allatostatins (ASTA, ASTC and ASTCC). Effects of allatostatin injection are compared with stress-related changes in learning performance induced by the honeybee alarm pheromone, isopentylacetate (IPA). We find that bees can exhibit two markedly different responses to IPA, with opposing effects on learning behaviour and memory generalisation, and that strikingly similar responses can be elicited by allatostatins, in particular ASTCC. These findings lend support to the hypothesis that allatostatins mediate stress reactivity in honey bees and suggest responses to stress in these insects are state dependent.
Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities
NASA Technical Reports Server (NTRS)
Emrich, William
2013-01-01
A key technology element in Nuclear Thermal Propulsion is the development of fuel materials and components which can withstand extremely high temperatures while being exposed to flowing hydrogen. NTREES provides a cost effective method for rapidly screening of candidate fuel components with regard to their viability for use in NTR systems. The NTREES is designed to mimic the conditions (minus the radiation) to which nuclear rocket fuel elements and other components would be subjected to during reactor operation. The NTREES consists of a water cooled ASME code stamped pressure vessel and its associated control hardware and instrumentation coupled with inductive heaters to simulate the heat provided by the fission process. The NTREES has been designed to safely allow hydrogen gas to be injected into internal flow passages of an inductively heated test article mounted in the chamber.
Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.
Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok
2014-10-01
To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.
Advanced technology component derating
NASA Astrophysics Data System (ADS)
Jennings, Timothy A.
1992-02-01
A technical study performed to determine the derating criteria of advanced technology components is summarized. The study covered existing criteria from AFSC Pamphlet 800-27 and the development of new criteria based on data, literature searches, and the use of advanced technology prediction methods developed in RADC-TR-90-72. The devices that were investigated were as follows: VHSIC, ASIC, MIMIC, Microprocessor, PROM, Power Transistors, RF Pulse Transistors, RF Multi-Transistor Packages, Photo Diodes, Photo Transistors, Opto-Electronic Couplers, Injection Laser Diodes, LED, Hybrid Deposited Film Resistors, Chip Resistors, and Capacitors and SAW devices. The results of the study are additional derating criteria that extend the range of AFSC Pamphlet 800-27. These data will be transitioned from the report to AFSC Pamphlet 800-27 for use by government and contractor personnel in derating electronics systems yielding increased safety margins and improved system reliability.
Garavan, H; Morgan, R E; Mactutus, C F; Levitsky, D A; Booze, R M; Strupp, B J
2000-08-01
This study assessed the effects of prenatal cocaine exposure on cognitive functioning, using an intravenous (IV) rodent model that closely mimics the pharmacokinetics seen in humans after smoking or IV injection and that avoids maternal stress and undernutrition. Cocaine-exposed males were significantly impaired on a 3-choice, but not 2-choice, olfactory serial reversal learning task. Both male and female cocaine-exposed rats were significantly impaired on extradimensional shift tasks that required shifting from olfactory to spatial cues; however, they showed no impairment when required to shift from spatial to olfactory cues. In-depth analyses of discrete learning phases implicated deficient selective attention as the basis of impairment in both tasks. These data provide clear evidence that prenatal cocaine exposure produces long-lasting cognitive dysfunction, but they also underscore the specificity of the impairment.
The domestic pig as a potential model for Borrelia skin infection.
Reiter, Michael; Knecht, Christian; Müller, Andreas; Schötta, Anna-Margarita; Leschnik, Michael; Wijnveld, Michiel; Weissenböck, Herbert; Stockinger, Hannes; Stanek, Gerold; Sipos, Wolfgang
2017-02-01
The skin lesion erythema migrans is a characteristic early manifestation of Lyme borreliosis in humans. However, the pathomechanisms leading to development of this erythema are not fully understood. Models that mimic human skin would enhance research in this field. Human and porcine skin structures strongly resemble each other. Therefore, we attempted to induce erythema migrans lesions in experimental Borrelia burgdorferi sensu lato infection in the skin of domestic pigs. The formation of erythema migrans-like lesions was observed after intradermal injection of these spirochetes, with the lesions forming very clearly in 2/6 animals when a strain of B. garinii was used. However, no molecular or clinical proof of systemic infection of the pigs with B. afzelii, B. burgdorferi sensu stricto, or B. garinii could be achieved. Copyright © 2016 Elsevier GmbH. All rights reserved.
Hirt, Christian; Papadimitropoulos, Adam; Muraro, Manuele G; Mele, Valentina; Panopoulos, Evangelos; Cremonesi, Eleonora; Ivanek, Robert; Schultz-Thater, Elke; Droeser, Raoul A; Mengus, Chantal; Heberer, Michael; Oertli, Daniel; Iezzi, Giandomenica; Zajac, Paul; Eppenberger-Castori, Serenella; Tornillo, Luigi; Terracciano, Luigi; Martin, Ivan; Spagnoli, Giulio C
2015-09-01
Anticancer compound screening on 2D cell cultures poorly predicts "in vivo" performance, while conventional 3D culture systems are usually characterized by limited cell proliferation, failing to produce tissue-like-structures (TLS) suitable for drug testing. We addressed engineering of TLS by culturing cancer cells in porous scaffolds under perfusion flow. Colorectal cancer (CRC) HT-29 cells were cultured in 2D, on collagen sponges in static conditions or in perfused bioreactors, or injected subcutaneously in immunodeficient mice. Perfused 3D (p3D) cultures resulted in significantly higher (p < 0.0001) cell proliferation than static 3D (s3D) cultures and yielded more homogeneous TLS, with morphology and phenotypes similar to xenografts. Transcriptome analysis revealed a high correlation between xenografts and p3D cultures, particularly for gene clusters regulating apoptotic processes and response to hypoxia. Treatment with 5-Fluorouracil (5-FU), a frequently used but often clinically ineffective chemotherapy drug, induced apoptosis, down-regulation of anti-apoptotic genes (BCL-2, TRAF1, and c-FLIP) and decreased cell numbers in 2D, but only "nucleolar stress" in p3D and xenografts. Conversely, BCL-2 inhibitor ABT-199 induced cytotoxic effects in p3D but not in 2D cultures. Our findings advocate the importance of perfusion flow in 3D cultures of tumor cells to efficiently mimic functional features observed "in vivo" and to test anticancer compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of CO2 injection and Kerogen Maturation on Low-Field Nuclear Magnetic Resonance Response
NASA Astrophysics Data System (ADS)
Prasad, M.; Livo, K.
2017-12-01
Low-field Nuclear Magnetic Resonance (NMR) is commonly used in petrophysical analysis of petroleum reservoir rocks. NMR experiments record the relaxation and polarization of in-situ hydrogen protons present in gaseous phases such as free-gas intervals and solution gas fluids, bulk fluid phases such as oil and aquifer intervals, and immovable fractions of kerogen and bitumen. Analysis of NMR relaxation spectra is performed to record how fluid composition, maturity, and viscosity change NMR experimental results. We present T1-T2 maps as thermal maturity of a water-saturated, sub-mature Woodford shale is increased at temperatures from 125 to 400 degrees Celsius. Experiments with applied fluid pressure in paraffinic mineral oil and DI water with varying fluid pH have been performed to mimic reservoir conditions in analysis of the relaxation of bulk fluid phases. We have recorded NMR spectra, T1-T2 maps, and fluid diffusion coefficients using a low-field (2 MHz) MagritekTM NMR. CO2 was injected at a pressure of 900 psi in an in house developed NMR pressure vessel made of torlon plastic. Observable 2D NMR shifts in immature kerogen formations as thermal maturity is increased show generation of lighter oils with increased maturity. CO2 injection leads to a decrease in bulk fluid relaxation time that is attributed to viscosity modification with gas presence. pH variation with increased CO2 presence were shown to not effect NMR spectra. From this, fluid properties have been shown to greatly affect NMR readings and must be taken into account for more accurate NMR reservoir characterization.
Evidence for a carotid body homolog in the lizard Tupinambis merianae.
Reichert, Michelle N; Brink, Deidre L; Milsom, William K
2015-01-15
The homolog to the mammalian carotid body has not yet been identified in lizards. Observational studies and evolutionary history provide indirect evidence for the existence of a chemoreceptor population at the first major bifurcation of the common carotid artery in lizards, but a chemoreceptive role for this area has not yet been definitively demonstrated. We explored this possibility by measuring changes in cardiorespiratory variables in response to focal arterial injections of the hypoxia mimic sodium cyanide (NaCN) into the carotid artery of 12 unanesthetized specimens of Tupinambis merianae. These injections elicited increases in heart rate (f(H); 101±35% increase) and respiratory rate (f(R); 620±119% increase), but not mean arterial blood pressure (MAP). These responses were eliminated by vagal denervation. Similar responses were elicited by injections of the neurotransmitters acetylcholine (ACh) and serotonin (5-HT) but not norepinephrine. Heart rate and respiratory rate increases in response to NaCN could be blocked or reduced by antagonists to ACh (atropine) and/or 5-HT (methysergide). Finally, using immunohistochemistry, we demonstrate the presence of putative chemoreceptive cells immunopositive for the cholinergic cell marker vesicular ACh transporter (VAChT) and 5-HT on internal lattice-like structures at the carotid bifurcation. These results provide evidence in lizards for the existence of dispersed chemoreceptor cells at the first carotid bifurcation in the central cardiovascular area that have similar properties to known carotid body homologs, adding to the picture of chemoreceptor evolution in vertebrates. © 2015. Published by The Company of Biologists Ltd.
Transient receptor potential ankyrin 1 mediates chronic pancreatitis pain in mice.
Cattaruzza, Fiore; Johnson, Cali; Leggit, Alan; Grady, Eileen; Schenk, A Katrin; Cevikbas, Ferda; Cedron, Wendy; Bondada, Sandhya; Kirkwood, Rebekah; Malone, Brian; Steinhoff, Martin; Bunnett, Nigel; Kirkwood, Kimberly S
2013-06-01
Chronic pancreatitis (CP) is a devastating disease characterized by persistent and uncontrolled abdominal pain. Our lack of understanding is partially due to the lack of experimental models that mimic the human disease and also to the lack of validated behavioral measures of visceral pain. The ligand-gated cation channel transient receptor potential ankyrin 1 (TRPA1) mediates inflammation and pain in early experimental pancreatitis. It is unknown if TRPA1 causes fibrosis and sustained pancreatic pain. We induced CP by injecting the chemical agent trinitrobenzene sulfonic acid (TNBS), which causes severe acute pancreatitis, into the pancreatic duct of C57BL/6 trpa1(+/+) and trpa1(-/-) mice. Chronic inflammatory changes and pain behaviors were assessed after 2-3 wk. TNBS injection caused marked pancreatic fibrosis with increased collagen-staining intensity, atrophy, fatty replacement, monocyte infiltration, and pancreatic stellate cell activation, and these changes were reflected by increased histological damage scores. TNBS-injected animals showed mechanical hypersensitivity during von Frey filament probing of the abdomen, decreased daily voluntary wheel-running activity, and increased immobility scores during open-field testing. Pancreatic TNBS also reduced the threshold to hindpaw withdrawal to von Frey filament probing, suggesting central sensitization. Inflammatory changes and pain indexes were significantly reduced in trpa1(-/-) mice. In conclusion, we have characterized in mice a model of CP that resembles the human condition, with marked histological changes and behavioral measures of pain. We have demonstrated, using novel and objective pain measurements, that TRPA1 mediates inflammation and visceral hypersensitivity in CP and could be a therapeutic target for the treatment of sustained inflammatory abdominal pain.
NUMERICAL SIMULATIONS OF HELICITY CONDENSATION IN THE SOLAR CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L.; Zurbuchen, T. H.; DeVore, C. R.
The helicity condensation model has been proposed by Antiochos to explain the observed smoothness of coronal loops and the observed buildup of magnetic shear at filament channels. The basic hypothesis of the model is that magnetic reconnection in the corona causes the magnetic stress injected by photospheric motions to collect only at those special locations where prominences are observed to form. In this work we present the first detailed quantitative MHD simulations of the reconnection evolution proposed by the helicity condensation model. We use the well-known ansatz of modeling the closed corona as an initially uniform field between two horizontalmore » photospheric plates. The system is driven by applying photospheric rotational flows that inject magnetic helicity into the corona. The flows are confined to a finite region on the photosphere so as to mimic the finite flux system of a bipolar active region, for example. The calculations demonstrate that, contrary to common belief, opposite helicity twists do not lead to significant reconnection in such a coronal system, whereas twists with the same sense of helicity do produce substantial reconnection. Furthermore, we find that for a given amount of helicity injected into the corona, the evolution of the magnetic shear is insensitive to whether the pattern of driving photospheric motions is fixed or quasi-random. In all cases, the shear propagates via reconnection to the boundary of the flow region while the total magnetic helicity is conserved, as predicted by the model. We discuss the implications of our results for solar observations and for future, more realistic simulations of the helicity condensation process.« less
Otani, Satoshi; Iwai, Toshiharu; Nakahata, Shingo; Sakai, Chiharu; Yamashita, Masakane
2009-01-01
Intracytoplasmic sperm injection (ICSI) is a technique that has been successfully used for assisting reproduction in mammals. However, this method is still not reliable in nonmammalian species, including teleosts. We succeeded in producing medaka individuals by ICSI with a rate of 13.4% (28 hatched embryos out of 209 eggs fertilized by ICSI), the best value reported so far in teleosts, including zebrafish and Nile tilapia. Although the technique was based on that developed for mammalian eggs, some critical modifications were made to adjust it to the medaka egg, which has a thick and hard envelope (the chorion) and a single sperm entry site (the micropyle). Medaka ICSI was performed by injecting a demembranated spermatozoon into an egg cytoplasm through the micropyle 10-15 sec after egg activation induced by a piezo-actuated vibration, the site and timing of sperm penetration being consistent with those in normal fertilization in medaka. To increase the efficiency of ICSI in medaka, we found that the fertilization by ICSI should precisely mimic the fertilization by insemination with intact sperm, both spatially and temporally. The success rate of ICSI was highly variable in batches of eggs (ranging from 0% to 56%), suggesting that the conditions of eggs are important factors in stabilizing the production of individuals by ICSI. The success in medaka ICSI provides a basis for future research to understand the basic mechanisms in gamete biology of teleosts as well as for development of new technology that can yield valuable applications in fisheries science.
Enzyme Mimics: Advances and Applications.
Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang
2016-06-13
Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mejia, Maria C.; Nseyo, Unyime O.
2009-02-01
INTRODUCTION: WBPDT has been used to treat resistant superficial bladder cancer, with clinical benefits and associated dose-dependent side effects. OBJECTIVE: The objective of this study was to assess the safety of three sequential WBPDT treatments in patients with resistant non-muscle invasive (NMI) bladder cancer. MATERIALS AND METHODS: 12 males and one female provided written informed consent in this Phase II study. Each patient received intravenous injection of Photofrin® (AXCAN Parma Inc, Canada) at 1.5 mg/kg two days prior to whole bladder laser (630nm) treatment. Assessment of safety and efficacy included weekly urinary symptoms; cystoscopy, biopsy and cytology; and measurement of bladder volume quarterly after each treatment at baseline, six and 12 months. Treatment #2 and/or #3 occurred only in the absence of bladder contracture, and/or disease progression. RESULTS: 13 patients: 12 males and one female have been enrolled and average age of enrollees is 67.1(52 - 87) years. Four patients had Ta-T1/Grade I-III tumors; two patients had CIS associated with T1/GI-III; and seven patients had carcinoma in situ (CIS) only. Three patients received 3/3 treatments, and are evaluable for toxicity; three patients received two treatments only; and seven patients received one treatment only. There was no bladder contracture; transient mild to moderate bladder irritative voiding symptoms of dysuria, urinary frequency, nocturia and urgency occurred in all patients. The three evaluable patients were without evidence of disease at average of 13.1 (7-20) months. CONCLUSION: Three sequential WBPDT treatments might have a favorable toxicity profile in the management of recurrent/ refractory non-muscle invasive bladder cancer.
Functional Cellular Mimics for the Spatiotemporal Control of Multiple Enzymatic Cascade Reactions.
Liu, Xiaoling; Formanek, Petr; Voit, Brigitte; Appelhans, Dietmar
2017-12-18
Next-generation therapeutic approaches are expected to rely on the engineering of biomimetic cellular systems that can mimic specific cellular functions. Herein, we demonstrate a highly effective route for constructing structural and functional eukaryotic cell mimics by loading pH-sensitive polymersomes as membrane-associated and free-floating organelle mimics inside the multifunctional cell membrane. Metabolism mimicry has been validated by performing successive enzymatic cascade reactions spatially separated at specific sites of cell mimics in the presence and absence of extracellular organelle mimics. These enzymatic reactions take place in a highly controllable, reproducible, efficient, and successive manner. Our biomimetic approach to material design for establishing functional principles brings considerable enrichment to the fields of biomedicine, biocatalysis, biotechnology, and systems biology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Twiss, Sean D.; Hazon, Neil; Moss, Simon; Pomeroy, Patrick P.
2017-01-01
The neuropeptide hormone oxytocin modulates numerous social and parental behaviours across a wide range of species, including humans. We conducted manipulation experiments on wild grey seals (Halichoerus grypus) to determine whether oxytocin increases proximity-seeking behaviour, which has previously been correlated with endogenous oxytocin concentrations in wild seal populations. Pairs of seals that had never met previously were given intravenous injections of 0.41 µg kg−1 oxytocin or saline and were observed for 1 h post-manipulation. The dose was designed to mimic endogenous oxytocin concentrations during the observation period, and is one of the lowest doses used to manipulate behaviour to date. Seals given oxytocin spent significantly more time in close proximity to each other, confirming that oxytocin causes conspecifics to seek others out and remain close to one another. Aggressive and investigative behaviours also significantly fell after oxytocin manipulations. Despite using a minimal oxytocin dose, pro-social behavioural changes unexpectedly persisted for 2 days despite rapid dose clearance from circulation post-injection. This study verifies that oxytocin promotes individuals staying together, demonstrating how the hormone can form positive feedback loops of oxytocin release following conspecific stimuli, increased motivation to remain in close proximity and additional oxytocin release from stimuli received while in close proximity. PMID:28539519
Xu, Xiaoyu; Yang, Guanghui; Zhang, Honglu; Prestwich, Glenn D.
2009-01-01
Using an in situ crosslinkable hydrogel that mimics the extracellular matrix (ECM), cancer cells were encapsulated and injected in vivo following a “tumor engineering” strategy for orthotopic xenografts. Specifically, we created several three-dimensional (3-D) human tumor xenografts and evaluated the tumor response to BrP-LPA, a novel dual function LPA antagonist/ATX inhibitor (LPAa/ATXi). First, we describe the model system and the optimization of semi-synthetic ECM (sECM) compositions and injection parameters for engineered xenografts. Second, we summarize a study to compare angiogenesis inhibition in vivo, comparing BrP-LPA to the kinase inhibitor sunitinib maleate (Sutent). Third, we compare treatment of engineered breast tumors with LPAa/ATXi alone with treatment with Taxol. Fourth, using a re-optimized sECM for non-small cell lung cancer cells, we created reproducibly sized subcutaneous lung tumors and evaluated their response to treatment with LPAa/ATXi. Fifth, we summarize the data on the use of LPAa/ATXi to treat a model for colon cancer metastasis to the liver. Taken together, these improved, more realistic xenografts show considerable utility for evaluating the potential of novel anti-metastatic, anti-proliferative, and anti-angiogenic compounds that modify signal transduction through the LPA signaling pathway. PMID:19682598
Hybrid Protein–Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation
2017-01-01
Gelatin–hyaluronic acid (Gel–HA) hybrid hydrogels have been proposed as matrices for tissue engineering because of their ability to mimic the architecture of the extracellular matrix. Our aim was to explore whether tyramine conjugates of Gel and HA, producing injectable hydrogels, are able to induce a particular phenotype of encapsulated human mesenchymal stem cells without the need for growth factors. While pure Gel allowed good cell adhesion without remarkable differentiation and pure HA triggered chondrogenic differentiation without cell spreading, the hybrids, especially those rich in HA, promoted chondrogenic differentiation as well as cell proliferation and adhesion. Secretion of chondrogenic markers such as aggrecan, SOX-9, collagen type II, and glycosaminoglycans was observed, whereas osteogenic, myogenic, and adipogenic markers (RUNX2, sarcomeric myosin, and lipoproteinlipase, respectively) were not present after 2 weeks in the growth medium. The most promising matrix for chondrogenesis seems to be a mixture containing 70% HA and 30% Gel as it is the material with the best mechanical properties from all compositions tested here, and at the same time, it provides an environment suitable for balanced cell adhesion and chondrogenic differentiation. Thus, it represents a system that has a high potential to be used as the injectable material for cartilage regeneration therapies. PMID:29214232
Robinson, Kelly J; Twiss, Sean D; Hazon, Neil; Moss, Simon; Pomeroy, Patrick P
2017-05-31
The neuropeptide hormone oxytocin modulates numerous social and parental behaviours across a wide range of species, including humans. We conducted manipulation experiments on wild grey seals ( Halichoerus grypus ) to determine whether oxytocin increases proximity-seeking behaviour, which has previously been correlated with endogenous oxytocin concentrations in wild seal populations. Pairs of seals that had never met previously were given intravenous injections of 0.41 µg kg -1 oxytocin or saline and were observed for 1 h post-manipulation. The dose was designed to mimic endogenous oxytocin concentrations during the observation period, and is one of the lowest doses used to manipulate behaviour to date. Seals given oxytocin spent significantly more time in close proximity to each other, confirming that oxytocin causes conspecifics to seek others out and remain close to one another. Aggressive and investigative behaviours also significantly fell after oxytocin manipulations. Despite using a minimal oxytocin dose, pro-social behavioural changes unexpectedly persisted for 2 days despite rapid dose clearance from circulation post-injection. This study verifies that oxytocin promotes individuals staying together, demonstrating how the hormone can form positive feedback loops of oxytocin release following conspecific stimuli, increased motivation to remain in close proximity and additional oxytocin release from stimuli received while in close proximity. © 2017 The Authors.
Skvorak, Kristen J; Paul, Harbhajan S; Dorko, Kenneth; Marongiu, Fabio; Ellis, Ewa; Chace, Donald; Ferguson, Carolyn; Gibson, K Michael; Homanics, Gregg E; Strom, Stephen C
2009-01-01
Maple syrup urine disease (MSUD; OMIM 248600) is an inborn error of metabolism of the branched chain α-ketoacid dehydrogenase (BCKDH) complex that is treated primarily by dietary manipulation of branched-chain amino acids (BCAA). Dietary restriction is lifelong and compliance is difficult. Liver transplantation significantly improves outcomes; however, alternative therapies are needed. To test novel therapies such as hepatocyte transplantation (HTx), we previously created a murine model of intermediate MSUD (iMSUD), which closely mimics human iMSUD. LacZ-positive murine donor hepatocytes were harvested and directly injected (105 cells/50 µl) into liver of iMSUD mice (two injections at 1–10 days of age). Donor hepatocytes engrafted into iMSUD recipient liver, increased liver BCKDH activity, improved blood total BCAA/alanine ratio, increased body weight at weaning, and extended the lifespan of HTx-treated iMSUD mice compared to phosphate-buffered saline (PBS)–treated and untreated iMSUD mice. Based on these data demonstrating partial metabolic correction of iMSUD in a murine model, coupled to the fact that multiple transplants are possible to enhance these results, we suggest that HTx represents a promising therapeutic intervention for MSUD that warrants further investigation. PMID:19436271
As a Matter of Force—Systematic Biases in Idealized Turbulence Simulations
NASA Astrophysics Data System (ADS)
Grete, Philipp; O’Shea, Brian W.; Beckwith, Kris
2018-05-01
Many astrophysical systems encompass very large dynamical ranges in space and time, which are not accessible by direct numerical simulations. Thus, idealized subvolumes are often used to study small-scale effects including the dynamics of turbulence. These turbulent boxes require an artificial driving in order to mimic energy injection from large-scale processes. In this Letter, we show and quantify how the autocorrelation time of the driving and its normalization systematically change the properties of an isothermal compressible magnetohydrodynamic flow in the sub- and supersonic regime and affect astrophysical observations such as Faraday rotation. For example, we find that δ-in-time forcing with a constant energy injection leads to a steeper slope in kinetic energy spectrum and less-efficient small-scale dynamo action. In general, we show that shorter autocorrelation times require more power in the acceleration field, which results in more power in compressive modes that weaken the anticorrelation between density and magnetic field strength. Thus, derived observables, such as the line-of-sight (LOS) magnetic field from rotation measures, are systematically biased by the driving mechanism. We argue that δ-in-time forcing is unrealistic and numerically unresolved, and conclude that special care needs to be taken in interpreting observational results based on the use of idealized simulations.
Legionnaire's Disease and its Mimics: A Clinical Perspective.
Cunha, Burke A; Cunha, Cheston B
2017-03-01
Whenever the cardinal manifestations of a disorder occur in similar disorders, there is potential for a disease mimic. Legionnaire's disease has protean manifestations and has the potential to mimic or be mimicked by other community acquired pneumonias (CAPs). In CAPs caused by other than Legionella species, the more characteristic features in common with legionnaire's disease the more difficult the diagnostic conundrum. In hospitalized adults with CAP, legionnaire's disease may mimic influenza or other viral pneumonias. Of the bacterial causes of CAP, psittacosis and Q fever, but not tularemia, are frequent mimics of legionnaire's disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Daily subcutaneous parecoxib injection for cancer pain: an open label pilot study.
Kenner, David J; Bhagat, Sandeep; Fullerton, Sonia L
2015-04-01
Nonsteroidal anti-inflammatory analgesics (NSAIDs) are useful in cancer pain but the specific use of subcutaneous parecoxib has not been previously reported. This pilot study aimed to establish the efficacy and side effect profile of short-term sequential single daily dose subcutaneous parecoxib sodium in patients with severe cancer bone pain. Nineteen hospitalized patients with advanced cancer and uncontrolled malignant bone pain (9 males, 10 females) received 24 courses of one, two, or three days sequential therapy with 'off-label' daily subcutaneous parecoxib. All patients were receiving opioid therapy; the median baseline daily oral equivalent dose (OED) of morphine was 180 mg. Pain was assessed at baseline, 24 hours, 48 hours, and 72 hours. Pain scores as assessed on an 11-point numeric pain rating scale (NPRS), any side effects including subcutaneous site reactions, as well as patient satisfaction rating with analgesia were recorded. A clinically significant decrease in pain scores was defined as a reduction of two or more points on the NPRS. Median pain score of all patient treatments decreased from 7 to 4.5 at 24 hours (p<0.001) and 4.0 at 48 hours. A response was seen in 17 (71%) of the 24 treatments at 24 hours. There was no difference between median negative change in pain scores in 19 (79%) treatments where pain was either strongly movement related, or in 22 (94%) treatments where local bone tenderness was more pronounced. No major side effects were observed during treatment. One patient died from pulmonary embolism after cessation of concurrent prophylactic low molecular weight heparin prior to staging liver biopsy. Subcutaneous site reactions occurred in 2 (8%) treatments and were mild and self limiting. Short-term daily subcutaneous parecoxib injection was effective for malignant bone pain when added to existing analgesic therapy and was well tolerated. Further research is warranted into the short-term use of parecoxib in hospitalized patients with intractable malignant bone pain.
NASA Astrophysics Data System (ADS)
Hespenheide, M. A.
2002-12-01
The Big Hole Canyon pluton (BHCp) is a Late Cretaceous pluton emplaced within the Sevier fold-and-thrust belt of the western North American Cordillera. The pluton is exposed over 60km2 and a thickness of ~1400m. Combined anisotropy of magnetic susceptibility (AMS), structural, and field studies document a clear pattern of magmatic flow radiating from at least three subvertical conduits <100m wide and ~300 to ~800m long. Interpreted flow plunges change rapidly to subhorizontal fabrics across the rest of the pluton, matching the expected pattern for laccolithic emplacement. Ascent conduits within the Big Hole Canyon pluton are coincident with the fold axis of an anticline above a thrust ramp, suggesting that the magma ascended up the fault of the fault-bend-fold. Geobarometry and stratigraphic reconstructions indicate an emplacement depth of approximately ~3km. Preliminary thermal modeling indicates that the BHCp was emplaced in 250,000 years, likely between periods of regional shortening deformation. Rapid magma ascent rates calculated by dike flow modeling and implied by entrained wall-rock xenoliths may indicate sequential magma injection into the pluton; an absence of chill margins between phases within the pluton indicates that sequential injections must have taken place quickly enough that the magmas did not have time to cool below the solidus temperature. The geometry and location of the BHCp suggest that magma used a pre-existing fault as a mechanical discontinuity for both ascent and emplacement. Continued intrusion of magma had a sufficient amount of driving pressure to stretch, shear, and lift the roof of the pluton. Detailed field mapping, structural studies, AMS, and thermobarometry indicate that the Late Cretaceous Big Hole Canyon pluton was emplaced as a laccolith at the top of a pre-existing fault-bend-fold in the frontal portion of the Sevier fold-thrust belt.
Ali, Syed F; Hubert, Gordian J; Switzer, Jeffrey A; Majersik, Jennifer J; Backhaus, Roland; Shepard, L Wylie; Vedala, Kishore; Schwamm, Lee H
2018-03-01
Up to 30% of acute stroke evaluations are deemed stroke mimics, and these are common in telestroke as well. We recently published a risk prediction score for use during telestroke encounters to differentiate stroke mimics from ischemic cerebrovascular disease derived and validated in the Partners TeleStroke Network. Using data from 3 distinct US and European telestroke networks, we sought to externally validate the TeleStroke Mimic (TM) score in a broader population. We evaluated the TM score in 1930 telestroke consults from the University of Utah, Georgia Regents University, and the German TeleMedical Project for Integrative Stroke Care Network. We report the area under the curve in receiver-operating characteristic curve analysis with 95% confidence interval for our previously derived TM score in which lower TM scores correspond with a higher likelihood of being a stroke mimic. Based on final diagnosis at the end of the telestroke consultation, there were 630 of 1930 (32.6%) stroke mimics in the external validation cohort. All 6 variables included in the score were significantly different between patients with ischemic cerebrovascular disease versus stroke mimics. The TM score performed well (area under curve, 0.72; 95% confidence interval, 0.70-0.73; P <0.001), similar to our prior external validation in the Partners National Telestroke Network. The TM score's ability to predict the presence of a stroke mimic during telestroke consultation in these diverse cohorts was similar to its performance in our original cohort. Predictive decision-support tools like the TM score may help highlight key clinical differences between mimics and patients with stroke during complex, time-critical telestroke evaluations. © 2018 American Heart Association, Inc.
2013-01-01
Background Parkinson’s disease (PD) is an age-related progressive neurodegenerative disorder caused by selective loss of dopaminergic neurons from the substantia nigra (SN) to the striatum. The initial factor that triggers neurodegeneration is unknown; however, inflammation has been demonstrated to be significantly involved in the progression of PD. The present study was designed to investigate the role of the pro-inflammatory cytokine interleukin-1 (IL-1) in the activation of microglia and the decline of motor function using IL-1 knockout (KO) mice. Methods Lipopolysaccharide (LPS) was stereotaxically injected into the SN of mice brains as a single dose or a daily dose for 5 days (5 mg/2 ml/injection, bilaterally). Animal behavior was assessed with the rotarod test at 2 hr and 8, 15 and 22 days after the final LPS injection. Results LPS treatment induced the activation of microglia, as demonstrated by production of IL-1β and tumor necrosis factor (TNF) α as well as a change in microglial morphology. The number of cells immunoreactive for 4-hydroxynonenal (4HNE) and nitrotyrosine (NT), which are markers for oxidative insults, increased in the SN, and impairment of motor function was observed after the subacute LPS treatment. Cell death and aggregation of α-synuclein were observed 21 and 30 days after the final LPS injection, respectively. Behavioral deficits were observed in wild-type and TNFα KO mice, but IL-1 KO mice behaved normally. Tyrosine hydroxylase (TH) gene expression was attenuated by LPS treatment in wild-type and TNFα KO mice but not in IL-1 KO mice. Conclusions The subacute injection of LPS into the SN induces PD-like pathogenesis and symptoms in mice that mimic the progressive changes of PD including the aggregation of α-synuclein. LPS-induced dysfunction of motor performance was accompanied by the reduced gene expression of TH. These findings suggest that activation of microglia by LPS causes functional changes such as dopaminergic neuron attenuation in an IL-1-dependent manner, resulting in PD-like behavioral impairment. PMID:24289537
Frequency-dependent variation in mimetic fidelity in an intraspecific mimicry system
Iserbyt, Arne; Bots, Jessica; Van Dongen, Stefan; Ting, Janice J.; Van Gossum, Hans; Sherratt, Thomas N.
2011-01-01
Contemporary theory predicts that the degree of mimetic similarity of mimics towards their model should increase as the mimic/model ratio increases. Thus, when the mimic/model ratio is high, then the mimic has to resemble the model very closely to still gain protection from the signal receiver. To date, empirical evidence of this effect is limited to a single example where mimicry occurs between species. Here, for the first time, we test whether mimetic fidelity varies with mimic/model ratios in an intraspecific mimicry system, in which signal receivers are the same species as the mimics and models. To this end, we studied a polymorphic damselfly with a single male phenotype and two female morphs, in which one morph resembles the male phenotype while the other does not. Phenotypic similarity of males to both female morphs was quantified using morphometric data for multiple populations with varying mimic/model ratios repeated over a 3 year period. Our results demonstrate that male-like females were overall closer in size to males than the other female morph. Furthermore, the extent of morphological similarity between male-like females and males, measured as Mahalanobis distances, was frequency-dependent in the direction predicted. Hence, this study provides direct quantitative support for the prediction that the mimetic similarity of mimics to their models increases as the mimic/model ratio increases. We suggest that the phenomenon may be widespread in a range of mimicry systems. PMID:21367784
Stroke mimic diagnoses presenting to a hyperacute stroke unit.
Dawson, Ang; Cloud, Geoffrey C; Pereira, Anthony C; Moynihan, Barry J
2016-10-01
Stroke services have been centralised in several countries in recent years. Diagnosing acute stroke is challenging and a high proportion of patients admitted to stroke units are diagnosed as a non-stroke condition (stroke mimics). This study aims to describe the stroke mimic patient group, including their impact on stroke services. We analysed routine clinical data from 2,305 consecutive admissions to a stroke unit at St George's Hospital, London. Mimic groupings were derived from 335 individual codes into 17 groupings. From 2,305 admissions, 555 stroke mimic diagnoses were identified (24.2%) and 72% of stroke mimics had at least one stroke risk factor. Common mimic diagnoses were headache, seizure and syncope. Medically unexplained symptoms and decompensation of underlying conditions were also common. Median length of stay was 1 day; a diagnosis of dementia (p=0.028) or needing MRI (p=0.006) was associated with a longer stay. Despite emergency department assessment by specialist clinicians and computed tomography brain, one in four suspected stroke patients admitted to hospital had a non-stroke diagnosis. Stroke mimics represent a heterogeneous patient group with significant impacts on stroke services. Co-location of stroke and acute neurology services may offer advantages where service reorganisation is being considered. © Royal College of Physicians 2016. All rights reserved.
2011-01-01
Introduction Osteoarthritis (OA) is a complex, multifactorial joint disease affecting both the cartilage and the subchondral bone. Animal models of OA aid in the understanding of the pathogenesis of OA and testing suitable drugs for OA treatment. In this study we characterized the temporal changes in the tibial subchondral bone architecture in a rat model of low-dose monosodium iodoacetate (MIA)-induced OA using in vivo micro-computed tomography (CT). Methods Male Wistar rats received a single intra-articular injection of low-dose MIA (0.2 mg) in the right knee joint and sterile saline in the left knee joint. The animals were scanned in vivo by micro-CT at two, six, and ten weeks post-injection, analogous to early, intermediate, and advanced stages of OA, to assess architectural changes in the tibial subchondral bone. The articular cartilage changes in the tibiae were assessed macroscopically and histologically at ten weeks post-injection. Results Interestingly, tibiae of the MIA-injected knees showed significant bone loss at two weeks, followed by increased trabecular thickness and separation at six and ten weeks. The trabecular number was decreased at all time points compared to control tibiae. The tibial subchondral plate thickness of the MIA-injected knee was increased at two and six weeks and the plate porosity was increased at all time points compared to control. At ten weeks, histology revealed loss of proteoglycans, chondrocyte necrosis, chondrocyte clusters, cartilage fibrillation, and delamination in the MIA-injected tibiae, whereas the control tibiae showed no changes. Micro-CT images and histology showed the presence of subchondral bone sclerosis, cysts, and osteophytes. Conclusions These findings demonstrate that the low-dose MIA rat model closely mimics the pathological features of progressive human OA. The low-dose MIA rat model is therefore suitable to study the effect of therapeutic drugs on cartilage and bone in a non-trauma model of OA. In vivo micro-CT is a non-destructive imaging technique that can track structural changes in the tibial subchondral bone in this animal model, and could also be used to track changes in bone in preclinical drug intervention studies for OA treatments. PMID:22185204
Hypertension study in anaesthetized rabbits: protocol proposal for AT1 antagonists screening.
Politi, Aggeliki P; Zervou, Maria V; Triantafyllidi, Helen; Zoumpoulakis, Panagiotis G; Mavromoustakos, Thomas M; Zoga, Anastasia A; Moutevelis-Minakakis, Panagiota; Kokotos, George; Iliodromitis, Efstathios K; Kremastinos, Dimitris Th
2010-06-01
The aim of this study was to establish an optimized fast and safe protocol for the pharmacological screening of AT(1) antagonists. The pharmaceutical prototype AT(1) antagonist losartan, its active metabolite EXP3174 and the synthetic compound MMK1 were analysed in order to validate the protocol. Ang II was continuously infused while the animals received the drugs in two procedures. In the post-treatment procedure drugs were administered either in a single bolus dose or in a sequential manner. When losartan was administered in a single bolus dose, efficacy was evident until the 7th min (p=0.012) whilst EXP3174 infusion extended the efficiency up to the end of the study (p=0.006). In addition, the sequential injections of losartan prolonged the inhibitory time interval until the end of the study (p=0.045). In the pre-treatment procedure, results suggested a dose-dependent inhibitory effect for both antagonists. The pressor response to Ang II was unchanged after MMK1 administration either in the post- or in the pre-treatment mode. The proposed protocol appears to be safe, simple and fast for the pharmacological screening of AT(1) antagonists and enables the evaluation of new antagonists using lower doses than any other reported in the literature.
Zhou, HaoWei; Hou, ShuXun; Shang, WeiLin; Wu, WenWen; Cheng, Yao; Mei, Fang; Peng, BaoGan
2007-04-15
A new in vivo sheep model was developed that produced disc degeneration through the injection of 5-bromodeoxyuridine (BrdU) into the intervertebral disc. This process was studied using magnetic resonance imaging (MRI), radiography, CT/discogram, histology, and biochemistry. To develop a sheep model of intervertebral disc degeneration that more faithfully mimics the pathologic hallmarks of human intervertebral disc degeneration. Recent studies have shown age-related alterations in proteoglycan structure and organization in human intervertebral discs. An animal model that involves the use of age-related changes in disc cells can be beneficial over other more invasive degenerative models that involves directly damaging the matrix of disc tissue. Twelve sheep were injected with BrdU or vehicle (phosphate-buffered saline) into the central region of separate lumbar discs. Intact discs were used as controls. At the 2-, 6-, 10-, and 14-week time points, discs underwent MRI, radiography, histology, and biochemical analyses. A CT/discogram study was performed at the 14-week time point. MRI demonstrated a progressive loss of T2-weighted signal intensity at BrdU-injected discs over the 14-week study period. Radiograph findings included osteophyte and disc space narrowing formed by 10 weeks post-BrdU treatment. CT discography demonstrated internal disc disruption in several BrdU-treated discs at the 14-week time point. Histology showed a progressive loss of the normal architecture and cell density of discs from the 2-week time point to the 14-week time point. A progressive loss of cell proliferation capacity, water content, and proteoglycans was also documented. BrdU injection into the central region of sheep discs resulted in degeneration of intervertebral discs. This progressive, degenerative process was confirmed using MRI, histology, and by observing changes in biochemistry. Degeneration occurred in a manner that was similar to that observed in human disc degeneration.
NASA Astrophysics Data System (ADS)
Hopp, C. J.; Savage, M. K.; Townend, J.; Sherburn, S.
2016-12-01
Monitoring patterns in local microseismicity gives clues to the existence and location of subsurface structures. In the context of a geothermal reservoir, subsurface structures often indicate areas of high permeability and are vitally important in understanding fluid flow within the geothermal resource. Detecting and locating microseismic events within an area of power generation, however, is often challenging due to high levels of noise associated with nearby power plant infrastructure. In this situation, matched filter detection improves drastically upon standard earthquake detection techniques, specifically when events are likely induced by fluid injection and are therefore near-repeating. Using an earthquake catalog of 637 events which occurred between 1 January and 18 November 2015 as our initial dataset, we implemented a matched filtering routine for the Mighty River Power (MRP) geothermal fields at Rotokawa and Ngatamariki, central North Island, New Zealand. We detected nearly 21,000 additional events across both geothermal fields, a roughly 30-fold increase from the original catalog. On average, each of the 637 template events detected 45 additional events throughout the study period, with a maximum number of additional detections for a single template of 359. Cumulative detection rates for all template events, in general, do not mimic large scale changes in injection rates within the fields, however we do see indications of an increase in detection rate associated with power plant shutdown at Ngatamariki. Locations of detected events follow established patterns of historic seismicity at both Ngatamariki and Rotokawa. One large cluster of events persists in the southeastern portion of Rotokawa and is likely bounded to the northwest by a known fault dividing the injection and production sections of the field. Two distinct clusters of microseismicity occur in the North and South of Ngatamariki, the latter appearing to coincide with a structure dividing the production zone and the southern injection zone.
Hori, Tiago S; Gamperl, A Kurt; Nash, Gord; Booman, Marije; Barat, Ashoktaru; Rise, Matthew L
2013-10-01
Exposure to elevated temperature is an inherent feature of Atlantic cod (Gadus morhua) sea-cage culture in some regions (e.g., Newfoundland) and may also become an increasingly prevalent challenge for wild fish populations because of accelerated climate change. Therefore, understanding how elevated temperatures impacts the immune response of this commercially important species may help to reduce the potential negative impacts of such challenges. Previously, we investigated the impacts of moderately elevated temperature on the antiviral responses of Atlantic cod (Hori et al. 2012) and reported that elevated temperature modulated the spleen transcriptome response to polyriboinosinic polyribocytidylic acid (pIC, a viral mimic). Herein, we report a complementary microarray study that investigated the impact of the same elevated temperature regime on the Atlantic cod spleen transcriptome response to intraperitoneal (IP) injection of formalin-killed Aeromonas salmonicida (ASAL). Fish were held at two different temperatures (10 °C and 16 °C) prior to immune stimulation and sampled 6 and 24 h post-injection (HPI). In this experiment, we identified 711 and 666 nonredundant ASAL-responsive genes at 6HPI and 24HPI, respectively. These included several known antibacterial genes, including hepcidin, cathelicidin, ferritin heavy subunit, and interleukin 8. However, we only identified 15 differentially expressed genes at 6HPI and 2 at 24HPI (FDR 1%) when comparing ASAL-injected fish held at 10 °C versus 16 °C. In contrast, the same comparisons with pIC-injected fish yielded 290 and 339 differentially expressed genes (FDR 1%) at 6HPI and 24HPI, respectively. These results suggest that moderately elevated temperature has a lesser effect on the Atlantic cod spleen transcriptome response to ASAL (i.e., the antibacterial response) than to pIC (i.e., antiviral response). Thus, the impacts of high temperatures on the cod's immune response may be pathogen dependent.
Perilymph pharmacokinetics of marker applied through a cochlear implant in guinea pigs
Hartsock, Jared; Gill, Ruth; Smyth, Daniel; Kirk, Jonathon; Verhoeven, Kristien
2017-01-01
Patients undergoing cochlear implantation could benefit from a simultaneous application of drugs into the ear, helping preserve residual low-frequency hearing and afferent nerve fiber populations. One way to apply drugs is to incorporate a cannula into the implant, through which drug solution is driven. For such an approach, perilymph concentrations achieved and the distribution in the ear over time have not previously been documented. We used FITC-labeled dextran as a marker, delivering it into perilymph of guinea pigs at 10 or 100 nL/min though a cannula incorporated into a cochlear implant with the outlet in the mid basal turn. After injections of varying duration (2 hours, 1 day or 7 days) perilymph was collected from the cochlear apex using a sequential sampling technique, allowing dextran levels and gradients along scala tympani to be quantified. Data were interpreted quantitatively using computer simulations of the experiments. For injections of 2 hours duration, dextran levels were critically influenced by the presence or absence of fluid leakage at the cochleostomy site. When the cochleostomy was fluid-tight, substantially higher perilymph levels were achieved at the injection site, with concentration declining along scala tympani towards the apex. Contrary to expectations, large dextran gradients along scala tympani persisted after 24 hours of sustained injection and were still present in some animals after 7 days injection. Functional changes associated with implantation and dextran delivery, and the histological state of the implant and cannula were also documented. The persistent longitudinal gradients of dextan along the ear were not readily explained by computer simulations of the experiments based on prior pharmacokinetic data. One explanation is that inner ear pharmacokinetics are altered in the period after cochlear implantation, possibly by a permeabilization of the blood-labyrinth barrier as part of the immune response to the implant. PMID:28817653
Simulating Bioremediation of Chloroethenes in a Fractured Rock Aquifer.
NASA Astrophysics Data System (ADS)
Curtis, G. P.
2016-12-01
Reactive transport simulations are being conducted to synthesize the results of a field experiment on the enhanced bioremediation of chloroethenes in a heterogeneous fractured-rock aquifer near West Trenton, NJ. The aquifer consists of a sequence of dipping mudstone beds, with water-conducting bedding-plane fractures separated by low-permeability rock where transport is diffusion-limited. The enhanced bioremediation experiment was conducted by injecting emulsified vegetable oil as an electron donor (EOS™) and a microbial consortium (KB1™) that contained dehalococcoides ethenogenes into a fracture zone that had maximum trichloroethene (TCE) concentrations of 84µM. TCE was significantly biodegraded to dichloroethene, chloroethene and ethene or CO2 at the injection well and at a downgradient well. The results also show the concomitant reduction of Fe(III) and S(6) and the production of methane . The results were used to calibrate transport models for quantifying the dominant mass-removal mechanisms. A nonreactive transport model was developed to simulate advection, dispersion and matrix diffusion of bromide and deuterium tracers present in the injection solution. This calibrated model matched tracer concentrations at the injection well and a downgradient observation well and demonstrated that matrix diffusion was a dominant control on tracer transport. A reactive transport model was developed to extend the nonreactive transport model to simulate the microbially mediated sequential dechlorination reactions, reduction of Fe(III) and S(6), and methanogenesis. The reactive transport model was calibrated to concentrations of chloride, chloroethenes, pH, alkalinity, redox-sensitive species and major ions, to estimate key biogeochemical kinetic parameters. The simulation results generally match the diverse set of observations at the injection and observation wells throughout the three year experiment. In addition, the observations and model simulations indicate that a significant pool of TCE that was initially sorbed to either the fracture surfaces or in the matrix was degraded during the field experiment. The calibrated reactive transport model will be used to quantify the extent of chloroethene mass removal from a range of hypothetical aquifers.
Derby, Richard; Lee, Sang Hoon; Lee, Jeong-Eun; Lee, Sang-Heon
2011-01-01
The study compares the rate of positive discograms using an automated versus a manual pressure-controlled injection devise and compares the pressure and volume values at various pressures and initial evoked pain and 6/10 or greater evoked pain. A retrospective study prospectively collected patient study data used in a prior prospective study and with prospectively collected data which is routinely collected per our institutional standardized audit protocol. Two custom-built disc manometers (automated injection speed control; manual injection speed control) were sequentially employed during provocation discography in 510 discs of 151 consecutive patients. Two hundred thirty-seven discs of 67 patients with chronic low back pain were evaluated using the automated manometer (automated group) and 273 discs of 84 patients were evaluated with a manual manometer (manual group). No significant differences in positive discogram rates were found between the automated and manual groups (32.1% vs 32.6% per disc, respectively, P>0.05). No significant differences in low-pressure positive discogram rates were found (16.0% vs 15.0% per disc, automated group versus manual group, respectively, P>0.05). However, there were significantly increased volumes and lower pressures at initial and "bad" pain provocation. The study results found equivalent positive discogram rates following a series of pressure-controlled discography using either an automated or manual pressure devise. There were, however significant increases in volume at both initial onset of evoked pain and at 6/10 pain when using the automated injection devise that may have caused the observed lower opening pressure and lower pressure values at initial evoked pain. Assuming increased volumes are innocuous, automated injection is inherently more controlled and may better reduce unintended and often unrecorded spurious high dynamic pressure peaks thereby reducing conscious and unconscious operator bias. Wiley Periodicals, Inc.
Harbert, Simeon D; Jaiswal, Tushar; Harley, Linda R; Vaughn, Tyler W; Baranak, Andrew S
2013-01-01
The low cost, simple, robust, mobile, and easy to use Mobile Motion Capture (MiMiC) system is presented and the constraints which guided the design of MiMiC are discussed. The MiMiC Android application allows motion data to be captured from kinematic modules such as Shimmer 2r sensors over Bluetooth. MiMiC is cost effective and can be used for an entire day in a person's daily routine without being intrusive. MiMiC is a flexible motion capture system which can be used for many applications including fall detection, detection of fatigue in industry workers, and analysis of individuals' work patterns in various environments.
Fibrous membranes in diabetic retinopathy and bevacizumab.
Pattwell, David M; Stappler, Theodor; Sheridan, Carl; Heimann, Heinrich; Gibran, Syed K; Wong, David; Hiscott, Paul
2010-01-01
The purpose of this study was to determine the histopathologic characteristics of bevacizumab-treated human proliferative diabetic retinopathy (PDR) membranes with particular regard to membrane vasculature as a step toward addressing the effects of the drug on PDR membranes. Intravitreous injection of bevacizumab, an antivascular endothelial growth factor monoclonal antibody, has recently been advocated as an adjunct in surgery for PDR. In this context, a clinically observed decrease in PDR epiretinal membrane vascularity (vascular regression) occurs from 24 hours to 48 hours after injection, but the exact mechanisms of drug action are unknown. A consecutive series of seven PDR membrane specimens that had been removed sequentially from seven bevacizumab-treated patients were studied retrospectively. The membrane specimens were examined using light microscopic methods, including immunohistochemistry. Five of the seven membranes were clinically avascular (one contained "ghost" vessels) and did not hemorrhage during excision. Of these 5 specimens, which included 1 removed 7 days after a total of 6 intravitreous injections of 1.25 mg bevacizumab, 4 contained histologically detectable capillaries (1 did not). These blood vessels were lined by endothelial cells as determined by immunohistochemistry for the endothelial markers CD31 and CD34. The two remaining membranes were clinically and histologically still vascularized despite bevacizumab treatment. All the specimens also contained smooth muscle actin-containing fibroblastic cells within the collagenous stroma. The findings do not support the concept that the clinical phenomenon of vascular regression in PDR membranes after bevacizumab injection in the vitreous is resulting from obliteration of the membrane blood vessels. Another mechanism appears to be involved in at least some patients, possibly a vasoconstrictive response. Such a mechanism might explain reversal of the effects of bevacizumab that has been reported after this treatment.
Maza, Sofiane; Taupitz, Mathias; Taymoorian, Kasra; Winzer, Klaus Jürgen; Rückert, Jens; Paschen, Christian; Räber, Gert; Schneider, Sylke; Trefzer, Uwe; Munz, Dieter L
2007-03-01
There are situations where exact identification and localisation of sentinel lymph nodes (SLNs) are very difficult using lymphoscintigraphy, a hand-held gamma probe and vital dye, either a priori or a posteriori. We developed a new method using a simultaneous injection of two lymphotropic agents for exact topographical tomographic localisation and biopsy of draining SLNs. The purpose of this prospective pilot study was to investigate the feasibility and efficacy of this method ensemble. Fourteen patients with different tumour entities were enrolled. A mixture of (99m)Tc-nanocolloid and a dissolved superparamagnetic iron oxide was injected interstitially. Dynamic, sequential static lymphoscintigraphy and SPECT served as pathfinders. MR imaging was performed 2 h after injection. SPECT, contrast MRI and, if necessary, CT scan data sets were fused and evaluated with special regard to the topographical location of SLNs. The day after injection, nine patients underwent SLN biopsy and, in the presence of SLN metastasis, an elective lymph node dissection. Twenty-five SLNs were localised in the 14 patients examined. A 100% fusion correlation was achieved in all patients. The anatomical sites of SLNs detected during surgery showed 100% agreement with those localised on the multimodal fusion images. SLNs could be excised in 11/14 patients, six of whom had nodal metastasis. Our novel approach of multimodal fusion imaging for targeted SLN management in primary tumours with lymphatic drainage to anatomically difficult regions enables SLN biopsy even in patients with lymphatic drainage to obscure regions. Currently, we are testing its validity in larger patient groups and other tumour entities.
The stability of chalk during flooding of carbonated sea water at reservoir in-situ conditions
NASA Astrophysics Data System (ADS)
Nermoen, Anders; Korsnes, Reidar I.; Madland, Merete V.
2014-05-01
Injection of CO2 into carbonate oil reservoirs has been proposed as a possible utilization of the captured CO2 due to its capability to enhance the oil recovery. For offshore reservoirs such as Ekofisk and Valhall it has been discussed to alternate the CO2 and sea water injection (WAG) to reduce costs and keep the beneficial effects of both sea water (SSW) and gas injection. Water and CO2 mix to form carbonic acids that enhance the solubility of carbonates, thus a serious concern has been raised upon the potential de-stabilization of the reservoirs during CO2 injection. In this study we focus on how carbonated sea water alters the mechanical integrity of carbonate rocks both to evaluate safety of carbon storage sites and in the planning of production strategies in producing oil fields since enhanced compaction may have both detrimental and beneficial effects. Here we will present results from long term experiments (approx. half year each) performed on Kansas outcrop chalk (38-41% porosity), which serves as model material to understand the physical and chemical interplaying processes taking place in chalk reservoirs. All tests are performed at uni-axial strain conditions, meaning that the confining radial stresses are automatically adjusted to ensure zero radial strain. The tests are performed at in-situ conditions and run through a series of stages that mimic the reservoir history at both Ekofisk and Valhall fields. We observe the strain response caused by the injected brine. The experimental stages are: (a) axial stress build-up by pore pressure depletion to stresses above yield with NaCl-brine which is inert to the chalk; (b) uni-axial creep at constant axial stresses with NaCl-brine; (c) sea water injection; and (d) injection of carbonated water (SSW+CO2) at various mixture concentrations. Two test series were performed in which the pore pressure was increased (re-pressurized) before stage (c) to explore the stress dependency of the fluid induced strain triggering. The main findings of our investigations are: 1. The creep rate in the plastic phase is pore fluid dependent. The injection of sea water induces a period of accelerating creep. 2. The injection of CO2 and sea water reduces the deformation rate, a result which is in contrast to what has previously been shown. 3. The solid weight of the plugs is maintained during flooding which indicates that the observed carbonate dissolution at the inlet side is counteracted with secondary precipitation, possibly calcium sulphate, within the plug. These recent obtained results show that chalk cores maintain their mechanical integrity during flooding of carbonated water. This experimental study, however, separates from earlier studies by the low injection rate which allows secondary precipitation processes to equilibrate within the plugs, chalk type, test temperature, and stress conditions, which all are factors that will affect the reported dynamics.
Semple, Fiona; MacPherson, Heather; Webb, Sheila; Kilanowski, Fiona; Lettice, Laura; McGlasson, Sarah L; Wheeler, Ann P; Chen, Valerie; Millhauser, Glenn L; Melrose, Lauren; Davidson, Donald J; Dorin, Julia R
2015-12-01
Human β-defensin 3 (hBD3) is a cationic host defence peptide and is part of the innate immune response. HBD3 is present on a highly copy number variable block of six β-defensin genes, and increased copy number is associated with the autoimmune disease psoriasis. It is not known how this increase influences disease development, but psoriasis is a T cell-mediated disease and activation of the innate immune system is required for the initial trigger that leads to the amplification stage. We investigated the effect of hBD3 on the response of primary macrophages to various TLR agonists. HBD3 exacerbated the production of type I Interferon-β in response to the viral ligand mimic polyinosinic:polycytidylic acid (polyI:C) in both human and mouse primary cells, although production of the chemokine CXCL10 was suppressed. Compared to polyI:C alone, mice injected with both hBD3 peptide and polyI:C also showed an enhanced increase in Interferon-β. Mice expressing a transgene encoding hBD3 had elevated basal levels of Interferon-β, and challenge with polyI:C further increased this response. HBD3 peptide increased uptake of polyI:C by macrophages, however the cellular response and localisation of polyI:C in cells treated contemporaneously with hBD3 or cationic liposome differed. Immunohistochemistry showed that hBD3 and polyI:C do not co-localise, but in the presence of hBD3 less polyI:C localises to the early endosome. Using bone marrow derived macrophages from knockout mice we demonstrate that hBD3 suppresses the polyI:C-induced TLR3 response mediated by TICAM1 (TRIF), while exacerbating the cytoplasmic response through MDA5 (IFIH1) and MAVS (IPS1/CARDIF). Thus, hBD3, a highly copy number variable gene in human, influences cellular responses to the viral mimic polyI:C implying that copy number may have a significant phenotypic effect on the response to viral infection and development of autoimmunity in humans.
Semple, Fiona; MacPherson, Heather; Webb, Sheila; Kilanowski, Fiona; Lettice, Laura; McGlasson, Sarah L.; Wheeler, Ann P.; Chen, Valerie; Millhauser, Glenn L.; Melrose, Lauren; Davidson, Donald J.; Dorin, Julia R.
2015-01-01
Human β-defensin 3 (hBD3) is a cationic host defence peptide and is part of the innate immune response. HBD3 is present on a highly copy number variable block of six β-defensin genes, and increased copy number is associated with the autoimmune disease psoriasis. It is not known how this increase influences disease development, but psoriasis is a T cell-mediated disease and activation of the innate immune system is required for the initial trigger that leads to the amplification stage. We investigated the effect of hBD3 on the response of primary macrophages to various TLR agonists. HBD3 exacerbated the production of type I Interferon-β in response to the viral ligand mimic polyinosinic:polycytidylic acid (polyI:C) in both human and mouse primary cells, although production of the chemokine CXCL10 was suppressed. Compared to polyI:C alone, mice injected with both hBD3 peptide and polyI:C also showed an enhanced increase in Interferon-β. Mice expressing a transgene encoding hBD3 had elevated basal levels of Interferon-β, and challenge with polyI:C further increased this response. HBD3 peptide increased uptake of polyI:C by macrophages, however the cellular response and localisation of polyI:C in cells treated contemporaneously with hBD3 or cationic liposome differed. Immunohistochemistry showed that hBD3 and polyI:C do not co-localise, but in the presence of hBD3 less polyI:C localises to the early endosome. Using bone marrow derived macrophages from knockout mice we demonstrate that hBD3 suppresses the polyI:C-induced TLR3 response mediated by TICAM1 (TRIF), while exacerbating the cytoplasmic response through MDA5 (IFIH1) and MAVS (IPS1/CARDIF). Thus, hBD3, a highly copy number variable gene in human, influences cellular responses to the viral mimic polyI:C implying that copy number may have a significant phenotypic effect on the response to viral infection and development of autoimmunity in humans. PMID:26646717
The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF.
Cheng, Ying; Shao, Can; Lathrop, Quinn N
2016-02-01
Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable or multiple variables that may completely or partially mediate the DIF effect. If complete mediation effect is found, the DIF effect is fully accounted for. Through our simulation study, we find that the mediated MIMIC model is very successful in detecting the mediation effect that completely or partially accounts for DIF, while keeping the Type I error rate well controlled for both balanced and unbalanced sample sizes between focal and reference groups. Because it is successful in detecting such mediation effects, the mediated MIMIC model may help explain DIF and give guidance in the revision of a DIF item.
The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF
Cheng, Ying; Shao, Can; Lathrop, Quinn N.
2015-01-01
Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable or multiple variables that may completely or partially mediate the DIF effect. If complete mediation effect is found, the DIF effect is fully accounted for. Through our simulation study, we find that the mediated MIMIC model is very successful in detecting the mediation effect that completely or partially accounts for DIF, while keeping the Type I error rate well controlled for both balanced and unbalanced sample sizes between focal and reference groups. Because it is successful in detecting such mediation effects, the mediated MIMIC model may help explain DIF and give guidance in the revision of a DIF item.
Evaluating minimalist mimics by exploring key orientations on secondary structures (EKOS).
Xin, Dongyue; Ko, Eunhwa; Perez, Lisa M; Ioerger, Thomas R; Burgess, Kevin
2013-11-28
Peptide mimics that display amino acid side-chains on semi-rigid scaffolds (not peptide polyamides) can be referred to as minimalist mimics. Accessible conformations of these scaffolds may overlay with secondary structures giving, for example, "minimalist helical mimics". It is difficult for researchers who want to apply minimalist mimics to decide which one to use because there is no widely accepted protocol for calibrating how closely these compounds mimic secondary structures. Moreover, it is also difficult for potential practitioners to evaluate which ideal minimalist helical mimics are preferred for a particular set of side-chains. For instance, what mimic presents i, i + 4, i + 7 side-chains in orientations that best resemble an ideal α-helix, and is a different mimic required for a i, i + 3, i + 7 helical combination? This article describes a protocol for fitting each member of an array of accessible scaffold conformations on secondary structures. The protocol involves: (i) use quenched molecular dynamics (QMD) to generate an ensemble consisting of hundreds of accessible, low energy conformers of the mimics; (ii) representation of each of these as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; (iii) similar representation of each combination of three side-chains in each ideal secondary structure as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; and, (iv) overlay Cα and Cβ coordinates of all the conformers on all the sets of side-chain "triads" in the ideal secondary structures and express the goodness of fit in terms of root mean squared deviation (RMSD, Å) for each overlay. We refer to this process as Exploring Key Orientations on Secondary structures (EKOS). Application of this procedure reveals the relative bias of a scaffold to overlay on different secondary structures, the "side-chain correspondences" (e.g. i, i + 4, i + 7 or i, i + 3, i + 4) of those overlays, and the energy of this state relative to the minimum located. This protocol was tested on some of the most widely cited minimalist α-helical mimics (1-8 in the text). The data obtained indicates several of these compounds preferentially exist in conformations that resemble other secondary structures as well as α-helices, and many of the α-helical conformations have unexpected side-chain correspondences. These observations imply the featured minimalist mimics have more scope for disrupting PPI interfaces than previously anticipated. Finally, the same simulation method was used to match preferred conformations of minimalist mimics with actual protein/peptide structures at interfaces providing quantitative comparisons of predicted fits of the test mimics at protein-protein interaction sites.
Quantum cascade light emitting diodes based on type-2 quantum wells
NASA Technical Reports Server (NTRS)
Lin, C. H.; Yang, R. Q.; Zhang, D.; Murry, S. J.; Pei, S. S.; Allerman, A. A.; Kurtz, S. R.
1997-01-01
The authors have demonstrated room-temperature CW operation of type-2 quantum cascade (QC) light emitting diodes at 4.2 (micro)m using InAs/InGaSb/InAlSb type-2 quantum wells. The type-2 QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-2 quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 (micro)W at 80 K, and 140 (micro)W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.
Automated thermometric enzyme immunoassay of human proinsulin produced by Escherichia coli.
Birnbaum, S; Bülow, L; Hardy, K; Danielsson, B; Mosbach, K
1986-10-01
We have determined and monitored the production and release of human proinsulin by genetically engineered Escherichia coli cells. Several M9 media samples were analyzed sequentially after centrifugation with the aid of a rapid automated flow-through thermometric enzyme-linked immunosorbent assay (TELISA) system. The response time was 7 min after sample injection and a single assay was complete after 13 min. Insulin concentrations in the range of 0.1-50 micrograms/ml could be determined. The TELISA method correlated well with conventional radioimmunoassay determinations. Standard curves were reproducible over a period of several days even when the immobilized antibody column was stored at 25 degrees C in the enzyme thermistor unit. Thus, immediate assay start up was possible.
Assessment of glomerular filtration rate and effective renal plasma flow in cystic fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spino, M.; Chai, R.P.; Isles, A.F.
1985-07-01
A study was conducted to examine renal function in 10 healthy control subjects and eight patients with cystic fibrosis in stable condition. Sequential bolus injections of /sup 99m/Tc-DTPA and /sup 125/I-OIH were administered to assess glomerular filtration rate and effective renal plasma flow, respectively. Blood was subsequently collected for 3 hours, and urine for 24 hours. Renal clearances of both radioisotope markers were virtually identical in patients and controls. Inasmuch as neither glomerular filtration rate nor effective renal plasma flow was enhanced in patients with cystic fibrosis, increased clearance of drugs in these patients is unlikely to be the resultmore » of enhanced glomerular filtration or tubular secretion.« less
Colgate, Stirling A.
1984-01-01
Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.
New insights on SOI Tunnel FETs with low-temperature process flow for CoolCube™ integration
NASA Astrophysics Data System (ADS)
Diaz Llorente, C.; Le Royer, C.; Batude, P.; Fenouillet-Beranger, C.; Martinie, S.; Lu, C.-M. V.; Allain, F.; Colinge, J.-P.; Cristoloveanu, S.; Ghibaudo, G.; Vinet, M.
2018-06-01
This paper reports the fabrication and electrical characterization of planar SOI Tunnel FETs (TFETs) made using a Low-Temperature (LT) process designed for 3D sequential integration. These proof-of-concept TFETs feature junctions obtained by Solid Phase Epitaxy Regrowth (SPER). Their electrical behavior is analyzed and compared to reference samples (regular process using High-Temperature junction formation, HT). Dual ID-VDS measurements verify that the TFET structures present Band-to-Band tunnelling (BTBT) carrier injection and not Schottky Barrier tunnelling. P-mode operating LT TFETs deliver an ON state current similar to that of the HT reference, opening the door towards optimized devices operating with very low threshold voltage VTH and low supply voltage VDD.
Fast BIA-amperometric determination of isoniazid in tablets.
Quintino, Maria S M; Angnes, Lúcio
2006-09-26
This paper proposes a new, fast and precise method to analyze isoniazid based on the electrochemical oxidation of the analyte at a glassy carbon electrode in 0.1M NaOH. The quantification was performed utilizing amperometry associated with batch injection analysis (BIA) technique. Fast sequential analysis (60 determinations h(-1)) in an unusually wide linear dynamic range (from 2.5 x 10(-8) to 1.0 x 10(-3)M), with high sensitivity and low limits of detection (4.1 x 10(-9)M) and quantification (1.4 x 10(-8)M), was achieved. Such characteristics allied to a good repeatability of the current responses (relative standard deviation of 0.79% for 30 measurements), were explored for the specific determination of isoniazid in isoniazid-rifampin tablet.
Nanotune: A Novel Approach to Control the Deposition and Fate of Particles in Porous Media
NASA Astrophysics Data System (ADS)
Sethi, R.; Bianco, C.; Tosco, T.; Tiraferri, A.; Patiño Higuita, J. E.
2017-12-01
Nanoremediation is an innovative environmental nanotechnology aimed at reclaiming contaminated aquifers. It consists in the subsurface injection of a reactive colloidal suspension for the in-situ treatment of pollutants. The greatest challenges faced by engineers to advance nanoremediation are the effective delivery and the appropriate dosing of the nanoparticles into the subsoil. These are necessary for the correct emplacement of the in situ reactive zone and to minimize the overall cost of the reclamation and the potential secondary risks associated to the uncontrolled migration of the injected particles. In this study, a model assisted strategy, NanoTune, is developed to control the distribution of colloids in porous media. The proposed approach consists in the sequential injection of a stable suspension of reactive nanoparticles and of a destabilizing agent with the aim of creating a reactive zone within a targeted portion of the contaminated aquifer. The controlled and irreversible deposition of the particles is achieved by inducing the mixing of the two fluids in the desired portion of the aquifer. This approach is here exemplified by the delivery of humic acid-stabilized iron oxide nanoparticles (FeOx), a typical reagent for in situ immobilization of heavy metals. Divalent cations, which are known to cause rapid aggregation of the suspension because of their strong interaction with the humic acid coating, are used as destabilizing agents. The injection strategy is here applied in 1D columns to create a reactive zone for heavy metal removal in the central region of the sandy bed. The software MNMs was used to assess the correct sequence and duration of the injection of the different solutions in the 1D medium. Moreover, the numerical code MNM3D (MNM3D - Micro and Nanoparticle transport Model in 3D geometries) was developed by the authors of this work to support the case-specific design of the injection strategy during field scale applications. The NanoTune approach represents an advancement in the control of the fate of nanomaterials in the environment, and could enhance nanoremediation making it an effective alternative to more conventional techniques.
Determination of head conductivity frequency response in vivo with optimized EIT-EEG.
Dabek, Juhani; Kalogianni, Konstantina; Rotgans, Edwin; van der Helm, Frans C T; Kwakkel, Gert; van Wegen, Erwin E H; Daffertshofer, Andreas; de Munck, Jan C
2016-02-15
Electroencephalography (EEG) benefits from accurate head models. Dipole source modelling errors can be reduced from over 1cm to a few millimetres by replacing generic head geometry and conductivity with tailored ones. When adequate head geometry is available, electrical impedance tomography (EIT) can be used to infer the conductivities of head tissues. In this study, the boundary element method (BEM) is applied with three-compartment (scalp, skull and brain) subject-specific head models. The optimal injection of small currents to the head with a modular EIT current injector, and voltage measurement by an EEG amplifier is first sought by simulations. The measurement with a 64-electrode EEG layout is studied with respect to three noise sources affecting EIT: background EEG, deviations from the fitting assumption of equal scalp and brain conductivities, and smooth model geometry deviations from the true head geometry. The noise source effects were investigated depending on the positioning of the injection and extraction electrode and the number of their combinations used sequentially. The deviation from equal scalp and brain conductivities produces rather deterministic errors in the three conductivities irrespective of the current injection locations. With a realistic measurement of around 2 min and around 8 distant distinct current injection pairs, the error from the other noise sources is reduced to around 10% or less in the skull conductivity. The analysis of subsequent real measurements, however, suggests that there could be subject-specific local thinnings in the skull, which could amplify the conductivity fitting errors. With proper analysis of multiplexed sinusoidal EIT current injections, the measurements on average yielded conductivities of 340 mS/m (scalp and brain) and 6.6 mS/m (skull) at 2 Hz. From 11 to 127 Hz, the conductivities increased by 1.6% (scalp and brain) and 6.7% (skull) on the average. The proper analysis was ensured by using recombination of the current injections into virtual ones, avoiding problems in location-specific skull morphology variations. The observed large intersubject variations support the need for in vivo measurement of skull conductivity, resulting in calibrated subject-specific head models. Copyright © 2015 Elsevier Inc. All rights reserved.
Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, Jeff
2012-11-30
Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have beenmore » the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data collection, and seismic interpretation. The data was input into GphyzCO2 to demonstrate a full implementation of the software capabilities. Part of the implementation investigated the limits of using geophysical methods to monitor CO{sub 2} injection sites. The results show that cross-hole EM numerical surveys are limited to under 100 meter borehole separation. Those results were utilized in executing numerical EM surveys that contain hypothetical CO{sub 2} injections. The outcome of the forward modeling shows that EM methods can detect the presence of CO{sub 2}.« less
Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiation
NASA Astrophysics Data System (ADS)
Degueldre, Claude; Fahy, James; Kolosov, Oleg; Wilbraham, Richard J.; Döbeli, Max; Renevier, Nathalie; Ball, Jonathan; Ritter, Stefan
2018-05-01
The production of helium bubbles in advanced gas-cooled reactor (AGR) cladding could represent a significant hazard for both the mechanical stability and long-term storage of such materials. However, the high radioactivity of AGR cladding after operation presents a significant barrier to the scientific study of the mechanical properties of helium incorporation, said cladding typically being analyzed in industrial hot cells. An alternative non-active approach is to implant He2+ into unused AGR cladding material via an accelerator. Here, a feasibility study of such a process, using sequential implantations of helium in AGR cladding steel with decreasing energy is carried out to mimic the buildup of He (e.g., 50 appm) that would occur for in-reactor AGR clad in layers of the order of 10 µm in depth, is described. The implanted sample is subsequently analyzed by scanning electron microscopy, nanoindentation, atomic force and ultrasonic force microscopies. As expected, the irradiated zones were affected by implantation damage (< 1 dpa). Nonetheless, such zones undergo only nanoscopic swelling and a small hardness increase ( 10%), with no appreciable decrease in fracture strength. Thus, for this fluence and applied conditions, the integrity of the steel cladding is retained despite He2+ implantation.
Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiation
NASA Astrophysics Data System (ADS)
Degueldre, Claude; Fahy, James; Kolosov, Oleg; Wilbraham, Richard J.; Döbeli, Max; Renevier, Nathalie; Ball, Jonathan; Ritter, Stefan
2018-04-01
The production of helium bubbles in advanced gas-cooled reactor (AGR) cladding could represent a significant hazard for both the mechanical stability and long-term storage of such materials. However, the high radioactivity of AGR cladding after operation presents a significant barrier to the scientific study of the mechanical properties of helium incorporation, said cladding typically being analyzed in industrial hot cells. An alternative non-active approach is to implant He2+ into unused AGR cladding material via an accelerator. Here, a feasibility study of such a process, using sequential implantations of helium in AGR cladding steel with decreasing energy is carried out to mimic the buildup of He (e.g., 50 appm) that would occur for in-reactor AGR clad in layers of the order of 10 µm in depth, is described. The implanted sample is subsequently analyzed by scanning electron microscopy, nanoindentation, atomic force and ultrasonic force microscopies. As expected, the irradiated zones were affected by implantation damage (< 1 dpa). Nonetheless, such zones undergo only nanoscopic swelling and a small hardness increase ( 10%), with no appreciable decrease in fracture strength. Thus, for this fluence and applied conditions, the integrity of the steel cladding is retained despite He2+ implantation.
Weaver, Daniel M.; Coghlan, Stephen M.; Zydlewski, Joseph D.
2018-01-01
Aquatic macroinvertebrates respond to patch dynamics arising from interactions of physical and chemical disturbances across space and time. Anadromous fish, such as sea lamprey, Petromyzon marinus, migrate from the ocean and alter physical and chemical properties of recipient spawning streams. Sea lamprey disturb stream benthos physically through nest construction and spawning, and enrich food webs through nutrient deposition from decomposing carcasses. Sea lamprey spawning nests support greater macroinvertebrate abundance than adjacent reference areas, but concurrent effects of stream bed modification and nutrient supplementation have not been examined sequentially. We added carcasses and cleared substrate experimentally to mimic the physical disturbance and nutrient enrichment associated with lamprey spawning, and characterized effects on macroinvertebrate assemblage structure. We found that areas receiving cleared substrate and carcass nutrients were colonized largely by Simuliidae compared to upstream and downstream control areas that were colonized largely by Hydropsychidae, Philopotamidae, and Chironomidae. Environmental factors such as stream flow likely shape assemblages by physically constraining macroinvertebrate establishment and feeding. Our results indicate potential changes in macroinvertebrate assemblages from the physical and chemical changes to streams brought by spawning populations of sea lamprey.
A Drosera-bioinspired hydrogel for catching and killing cancer cells
Li, Shihui; Chen, Niancao; Gaddes, Erin R.; Zhang, Xiaolong; Dong, Cheng; Wang, Yong
2015-01-01
A variety of bioinspired materials have been successfully synthesized to mimic the sophisticated structures or functions of biological systems. However, it is still challenging to develop materials with multiple functions that can be performed synergistically or sequentially. The purpose of this work was to demonstrate a novel bioinspired hydrogel that can interact with cancer cells, functionally similar to Drosera in catching and killing prey. This hydrogel had two layers with the top one functionalized with oligonucleotide aptamers and the bottom one functionalized with double-stranded DNA. The results show that the top hydrogel layer was able to catch target cells with high efficiency and specificity, and that the bottom hydrogel layer could sequester doxorubicin (Dox) for sustained drug release. Importantly, the released Dox could kill 90% of the cells after 1-h residence of the cells on the hydrogel. After the cell release, this bifunctional hydrogel could be regenerated for continuous cell catching and killing. Therefore, the data presented in this study has successfully demonstrated the potential of developing a material system with the functions of attracting, catching and killing diseased cells (e.g., circulating tumor cells) or even invading microorganisms (e.g., bacteria). PMID:26396063
Stephen, Michael J; Poindexter, Brian J; Moolman, Johan A; Sheikh-Hamad, David; Bick, Roger J
2009-01-01
Neonatal and adult cardiomyocytes were isolated from rat hearts. Some of the adult myocytes were cultured to allow for cell dedifferentiation, a phenomenon thought to mimic cell changes that occur in stressed myocardium, with myocytes regressing to a fetal pattern of metabolism and stellate neonatal shape. Using fluorescence deconvolution microscopy, cells were probed with fluorescent markers and scanned for a number of proteins associated with ion control, calcium movements and cardiac function. Image analysis of deconvoluted image stacks and sequential real-time image recordings of calcium transients of cells were made. All three myocyte groups were predominantly comprised of binucleate cells. Clustering of proteins to a single nucleus was a common observation, suggesting that one nucleus is active in protein synthesis pathways, while the other nucleus assumes a ‘dormant’ or different role and that cardiomyocytes might be mitotically active even in late development, or specific protein syntheses could be targeted and regulated for reintroduction into the cell cycle. Such possibilities would extend cardiac disease associated stem cell research and therapy options, while producing valuable insights into developmental and death pathways of binucleate cardiomyocytes (word count 183). PMID:19430572
Update on treatment of light chain amyloidosis
Mahmood, Shameem; Palladini, Giovanni; Sanchorawala, Vaishali; Wechalekar, Ashutosh
2014-01-01
Light chain amyloidosis is the most common type of amyloidosis as a consequence of protein misfolding of aggregates composed of amyloid fibrils. The clinical features are dependent on the organs involved, typically cardiac, renal, hepatic, peripheral and autonomic neuropathy and soft tissue. A tissue biopsy or fat aspirate is needed to confirm the presence/type of amyloid and prognostic tools are important in a risk stratified approach to treatment. Autologous stem cell transplant eligibility should be assessed at baseline, weighing the reversible or non-reversible contraindications, toxicity of treatment and chemotherapy alternatives available. Chemotherapy options include melphalan, thalidomide, bortezomib, lenalidomide, bendamustine in combination with dexamethasone. Many studies have explored these treatment modalities, with ongoing debate about the optimal first line and sequential treatment thereafter. Attaining a very good partial response or better is the treatment goal coupled with early assessment central to optimizing treatment. One major challenge remains increasing the awareness of this disease, frequently diagnosed late as the presenting symptoms mimic many other medical conditions. This review focuses on the treatments for light chain amyloidosis, how these treatments have evolved over the years, improved patient risk stratification, toxicities encountered and future directions. PMID:24497558
Dissolution of three insensitive munitions formulations.
Taylor, Susan; Park, Eileen; Bullion, Katherine; Dontsova, Katerina
2015-01-01
The US military fires live munitions during training. To save soldiers lives both during training and war, the military is developing insensitive munitions (IM) that minimize unintentional detonations. Some of the compounds in the IM formulation are, however, very soluble in water, raising environmental concerns about their fate and transport. We measured the dissolution of three of these IM formulations, IMX101, IMX104 and PAX21 using laboratory drip tests and studied the accompanying changes in particle structure using micro computed tomography. Our laboratory drip tests mimic conditions on training ranges, where spatially isolated particles of explosives scattered by partial detonations are dissolved by rainfall. We found that the constituents of these IM formulations dissolve sequentially and in the order predicted by their aqueous solubility. The order of magnitude differences in solubility among their constituents produce water solutions whose compositions and concentrations vary with time. For IMX101 and IMX104, that contain 3-nitro-1,2,4-triazol-5-one (NTO), the solutions also vary in pH. The good mass balances measured for the drip tests indicate that the formulations are not being photo-or bio-transformed under laboratory conditions. Published by Elsevier Ltd.
Meister, M; Bänfer, S; Gärtner, U; Koskimies, J; Amaddii, M; Jacob, R; Tikkanen, R
2017-01-01
Ubiquitin-dependent sorting of membrane proteins in endosomes directs them to lysosomal degradation. In the case of receptors such as the epidermal growth factor receptor (EGFR), lysosomal degradation is important for the regulation of downstream signalling. Ubiquitinated proteins are recognised in endosomes by the endosomal sorting complexes required for transport (ESCRT) complexes, which sequentially interact with the ubiquitinated cargo. Although the role of each ESCRT complex in sorting is well established, it is not clear how the cargo is passed on from one ESCRT to the next. We here show that flotillin-1 is required for EGFR degradation, and that it interacts with the subunits of ESCRT-0 and -I complexes (hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) and Tsg101). Flotillin-1 is required for cargo recognition and sorting by ESCRT-0/Hrs and for its interaction with Tsg101. In addition, flotillin-1 is also required for the sorting of human immunodeficiency virus 1 Gag polyprotein, which mimics ESCRT-0 complex during viral assembly. We propose that flotillin-1 functions in cargo transfer between ESCRT-0 and -I complexes. PMID:28581508
Tong, Ying; Jiao, Xiangyu; Yang, Hankun; Wen, Yongqiang; Su, Lei; Zhang, Xueji
2016-04-01
Herein we report for the first time fabrication of reverse bumpy ball (RBB)-type-nanoreactor-based flexible peroxidase-mimic membrane reactors (MRs). The RBB-type nanoreactors with gold nanoparticles embedded in the inner walls of carbon shells were loaded on nylon membranes through a facile filtration approach. The as-prepared flexible catalytic membrane was studied as a peroxidase-mimic MR. It was found that the obtained peroxidase-mimic MR could exhibit several advantages over natural enzymes, such as facile and good recyclability, long-term stability and easy storage. Moreover, the RBB NS-modified nylon MRs as a peroxidase mimic provide a useful colorimetric assay for H₂O₂.
Piper Ornatum and Piper Betle as Organic Dyes for TiO2 and SnO2 Dye Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Hayat, Azwar; Putra, A. Erwin E.; Amaliyah, Novriany; Hayase, Shuzi; Pandey, Shyam. S.
2018-03-01
Dye sensitized solar cell (DSSC) mimics the principle of natural photosynthesis are now currently investigated due to low manufacturing cost as compared to silicon based solar cells. In this report, we utilized Piper ornatum (PO) and Piper betle (PB) as sensitizer to fabricate low cost DSSCs. We compared the photovoltaic performance of both sensitizers with Titanium dioxide (TiO2) and Tin dioxide (SnO2) semiconductors. The results show that PO and PB dyes have higher Short circuit current (Jsc) when applied in SnO2 compared to standard TiO2 photo-anode film even though the Open circuit voltage (Voc) was hampered on SnO2 device. In conclusion, from the result, higher electron injections can be achieved by choosing appropriate semiconductors with band gap that match with dyes energy level as one of strategy for further low cost solar cell.
Samardzic, Dejan; Thamburaj, Krishnamoorthy
2015-01-01
To report the brain imaging features on magnetic resonance imaging (MRI) in inadvertent intrathecal gadolinium administration. A 67-year-old female with gadolinium encephalopathy from inadvertent high dose intrathecal gadolinium administration during an epidural steroid injection was studied with multisequence 3T MRI. T1-weighted imaging shows pseudo-T2 appearance with diffusion of gadolinium into the brain parenchyma, olivary bodies, and membranous labyrinth. Nulling of cerebrospinal fluid (CSF) signal is absent on fluid attenuation recovery (FLAIR). Susceptibility-weighted imaging (SWI) demonstrates features similar to subarachnoid hemorrhage. CT may demonstrate a pseudo-cerebral edema pattern given the high attenuation characteristics of gadolinium. Intrathecal gadolinium demonstrates characteristic imaging features on MRI of the brain and may mimic subarachnoid hemorrhage on susceptibility-weighted imaging. Identifying high dose gadolinium within the CSF spaces on MRI is essential to avoid diagnostic and therapeutic errors. Copyright © 2013 by the American Society of Neuroimaging.
Vitreous Substitutes: The Present and the Future
Caprani, Simona Maria; Airaghi, Giulia; Bartalena, Luigi; Testa, Francesco; Mariotti, Cesare; Porta, Giovanni; Simonelli, Francesca
2014-01-01
Vitreoretinal surgery has advanced in numerous directions during recent years. The removal of the vitreous body is one of the main characteristics of this surgical procedure. Several molecules have been tested in the past to fill the vitreous cavity and to mimic its functions. We here review the currently available vitreous substitutes, focusing on their molecular properties and functions, together with their adverse effects. Afterwards we describe the characteristics of the ideal vitreous substitute. The challenges facing every ophthalmology researcher are to reach a long-term intraocular permanence of vitreous substitute with total inertness of the molecule injected and the control of inflammatory reactions. We report new polymers with gelification characteristics and smart hydrogels representing the future of vitreoretinal surgery. Finally, we describe the current studies on vitreous regeneration and cell cultures to create new intraocular gels with optimal biocompatibility and rheological properties. PMID:24877085
The role of insulin pump therapy for type 2 diabetes mellitus.
Landau, Zohar; Raz, Itamar; Wainstein, Julio; Bar-Dayan, Yosefa; Cahn, Avivit
2017-01-01
Many patients with type 2 diabetes fail to achieve adequate glucose control despite escalation of treatment and combinations of multiple therapies including insulin. Patients with long-standing type 2 diabetes often suffer from the combination of severe insulin deficiency in addition to insulin resistance, thereby requiring high doses of insulin delivered in multiple injections to attain adequate glycemic control. Insulin-pump therapy was first introduced in the 1970s as an approach to mimic physiological insulin delivery and attain normal glucose in patients with type 1 diabetes. The recent years have seen an increase in the use of this technology for patients with type 2 diabetes. This article summarizes the clinical studies evaluating insulin pump use in patients with type 2 diabetes and discusses the benefits and shortcomings of pump therapy in this population. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Management of Gastroesophageal Reflux Disease.
Gyawali, C Prakash; Fass, Ronnie
2018-01-01
Management of gastroesophageal reflux disease (GERD) commonly starts with an empiric trial of proton pump inhibitor (PPI) therapy and complementary lifestyle measures, for patients without alarm symptoms. Optimization of therapy (improving compliance and timing of PPI doses), or increasing PPI dosage to twice daily in select circumstances, can reduce persistent symptoms. Patients with continued symptoms can be evaluated with endoscopy and tests of esophageal physiology, to better determine their disease phenotype and optimize treatment. Laparoscopic fundoplication, magnetic sphincter augmentation, and endoscopic therapies can benefit patients with well-characterized GERD. Patients with functional diseases that overlap with or mimic GERD can also be treated with neuromodulators (primarily antidepressants), or psychological interventions (psychotherapy, hypnotherapy, cognitive and behavioral therapy). Future approaches to treatment of GERD include potassium-competitive acid blockers, reflux-reducing agents, bile acid binders, injection of inert substances into the esophagogastric junction, and electrical stimulation of the lower esophageal sphincter. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-02-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, P.O.; Bender, H.; Biersack, H.J.
1995-07-01
The purpose of this study was to evaluate the therapeutic efficacy of Re-188-RC-160 in experimental models of human small cell lung carcinomas which mimic the clinical presentation. In the experimental model, cells from the human small cell lung carcinoma cell line NCI-H69 cells were inoculated into the thoracic cavity of athymic mice and rats. Subsequently, the biodistribution of Re-188-RC-160 after injection into the pleural cavity, a radiolabeled somatostatin analogue, was monitored as was the effect on the subsequent growth of tumors. The results presented here, and which are a part of a larger series of studies, suggest that Re-188-RC-160 canmore » be effectively used in this animal model to restrict the growth of small cell lung carcinoma in the thoracic cavity.« less
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-02-11
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-01-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system. PMID:26864099
In vivo SELEX for Identification of Brain-penetrating Aptamers
Cheng, Congsheng; Chen, Yong Hong; Lennox, Kim A; Behlke, Mark A; Davidson, Beverly L
2013-01-01
The physiological barriers of the brain impair drug delivery for treatment of many neurological disorders. One delivery approach that has not been investigated for their ability to penetrate the brain is RNA-based aptamers. These molecules can impart delivery to peripheral tissues and circulating immune cells, where they act as ligand mimics or can be modified to carry payloads. We developed a library of aptamers and an in vivo evolution protocol to determine whether specific aptamers could be identified that would home to the brain after injection into the peripheral vasculature. Unlike biopanning with recombinant bacteriophage libraries, we found that the aptamer library employed here required more than 15 rounds of in vivo selection for convergence to specific sequences. The aptamer species identified through this approach bound to brain capillary endothelia and penetrated into the parenchyma. The methods described may find general utility for targeting various payloads to the brain. PMID:23299833
Su, Shiyu; Lim, Matthew; Kunte, Krushnamegh
2015-11-01
Predation exerts strong selection on mimetic butterfly wing color patterns, which also serve other functions such as sexual selection. Therefore, specific selection pressures may affect the sexes and signal components differentially. We tested three predictions about the evolution of mimetic resemblance by comparing wing coloration of aposematic butterflies and their Batesian mimics: (a) females gain greater mimetic advantage than males and therefore are better mimics, (b) due to intersexual genetic correlations, sexually monomorphic mimics are better mimics than female-limited mimics, and (c) mimetic resemblance is better on the dorsal wing surface that is visible to predators in flight. Using a physiological model of avian color vision, we quantified mimetic resemblance from predators' perspective, which showed that female butterflies were better mimics than males. Mimetic resemblance in female-limited mimics was comparable to that in sexually monomorphic mimics, suggesting that intersexual genetic correlations did not constrain adaptive response to selection for female-limited mimicry. Mimetic resemblance on the ventral wing surface was better than that on the dorsal wing surface, implying stronger natural and sexual selection on ventral and dorsal surfaces, respectively. These results suggest that mimetic resemblance in butterfly mimicry rings has evolved under various selective pressures acting in a sex- and wing surface-specific manner. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Characterization and mapping of complementary lesion-mimic genes lm1 and lm2 in common wheat.
Yao, Qin; Zhou, Ronghua; Fu, Tihua; Wu, Weiren; Zhu, Zhendong; Li, Aili; Jia, Jizeng
2009-10-01
A lesion-mimic phenotype appeared in a segregating population of common wheat cross Yanzhan 1/Zaosui 30. The parents had non-lesion normal phenotypes. Shading treatment and histochemical analyses showed that the lesions were caused by light-dependent cell death and were not associated with pathogens. Studies over two cropping seasons showed that some lines with more highly expressed lesion-mimic phenotypes exhibited significantly lower grain yields than those with the normal phenotype, but there were no significant effects in the lines with weakly expressed lesion-mimic phenotypes. Among yield traits, one-thousand grain weight was the most affected by lesion-mimic phenotypes. Genetic analysis indicated that this was a novel type of lesion mimic, which was caused by interaction of recessive genes derived from each parent. The lm1 (lesion mimic 1) locus from Zaosui 30 was flanked by microsatellite markers Xwmc674 and Xbarc133/Xbarc147 on chromosome 3BS, at genetic distances of 1.2 and 3.8 cM, respectively, whereas lm2 from Yanzhan 1 was mapped between microsatellite markers Xgwm513 and Xksum154 on chromosome 4BL, at genetic distances of 1.5 and 3 cM, respectively. The linked microsatellite makers identified in this study might be useful for evaluating whether potential parents with normal phenotype are carriers of lesion-mimic alleles.
Open-access MIMIC-II database for intensive care research.
Lee, Joon; Scott, Daniel J; Villarroel, Mauricio; Clifford, Gari D; Saeed, Mohammed; Mark, Roger G
2011-01-01
The critical state of intensive care unit (ICU) patients demands close monitoring, and as a result a large volume of multi-parameter data is collected continuously. This represents a unique opportunity for researchers interested in clinical data mining. We sought to foster a more transparent and efficient intensive care research community by building a publicly available ICU database, namely Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II). The data harnessed in MIMIC-II were collected from the ICUs of Beth Israel Deaconess Medical Center from 2001 to 2008 and represent 26,870 adult hospital admissions (version 2.6). MIMIC-II consists of two major components: clinical data and physiological waveforms. The clinical data, which include patient demographics, intravenous medication drip rates, and laboratory test results, were organized into a relational database. The physiological waveforms, including 125 Hz signals recorded at bedside and corresponding vital signs, were stored in an open-source format. MIMIC-II data were also deidentified in order to remove protected health information. Any interested researcher can gain access to MIMIC-II free of charge after signing a data use agreement and completing human subjects training. MIMIC-II can support a wide variety of research studies, ranging from the development of clinical decision support algorithms to retrospective clinical studies. We anticipate that MIMIC-II will be an invaluable resource for intensive care research by stimulating fair comparisons among different studies.
Takahashi, Yuki; Nishikawa, Makiya; Shinotsuka, Haruka; Matsui, Yuriko; Ohara, Saori; Imai, Takafumi; Takakura, Yoshinobu
2013-05-20
The development of exosomes as delivery vehicles requires understanding how and where exogenously administered exosomes are distributed in vivo. In the present study, we designed a fusion protein consisting of Gaussia luciferase and a truncated lactadherin, gLuc-lactadherin, and constructed a plasmid expressing the fusion protein. B16-BL6 murine melanoma cells were transfected with the plasmid, and exosomes released from the cells were collected by ultracentrifugation. Strong luciferase activity was detected in the fraction containing exosomes, indicating their efficient labeling with gLuc-lactadherin. Then, the labeled B16-BL6 exosomes were intravenously injected into mice, and their tissue distribution was evaluated. Pharmacokinetic analysis of the exosome blood concentration-time profile revealed that B16-BL6 exosomes disappeared very quickly from the blood circulation with a half-life of approximately 2min. Little luciferase activity was detected in the serum at 4h after exosome injection, suggesting rapid clearance of B16-BL6 exosomes in vivo. Moreover, sequential in vivo imaging revealed that the B16-BL6 exosome-derived signals distributed first to the liver and then to the lungs. These results indicate that gLuc-lactadherin labeling is useful for tracing exosomes in vivo and that B16-BL6 exosomes are rapidly cleared from the blood circulation after systemic administration. Copyright © 2013 Elsevier B.V. All rights reserved.
An Immunoglobulin G1 Monoclonal Antibody Highly Specific to the Wall of Cryptosporidium Oocysts
Weir, C.; Vesey, G.; Slade, M.; Ferrari, B.; Veal, D. A.; Williams, K.
2000-01-01
The detection of Cryptosporidium oocysts in drinking water is critically dependent on the quality of immunofluorescent reagents. Experiments were performed to develop a method for producing highly specific antibodies to Cryptosporidium oocysts that can be used for water testing. BALB/c mice were immunized with six different antigen preparations and monitored for immunoglobulin G (IgG) and IgM responses to the surface of Cryptosporidium oocysts. One group of mice received purified oocyst walls, a second group received a soluble protein preparation extracted from the outside of the oocyst wall, and the third group received whole inactivated oocysts. Three additional groups were immunized with sequentially prepared oocyst extracts to provide for a comparison of the immune response. Mice injected with the soluble protein extract demonstrated an IgG response to oocysts surface that was not seen in the whole-oocyst group. Mice injected with whole oocysts showed an IgM response only, while mice injected with purified oocyst walls showed little increase in IgM or IgG levels. Of the additional reported preparations only one, BME (2-mercaptoethanol treated), produced a weak IgM response to the oocyst wall. A mouse from the soluble oocyst extract group yielding a high IgG response was utilized to produce a highly specific IgG1 monoclonal antibody (Cry104) specific to the oocyst surface. Comparative flow cytometric analysis indicated that Cry104 has a higher avidity and specificity to oocysts in water concentrates than other commercially available antibodies. PMID:10973448
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xingcai; Ji, Libin; Ma, Junjun
2011-02-15
This paper presents an experimental study on the isooctane active-thermal atmosphere combustion (ATAC) which is assisted by two-stage reaction of n-heptane. The active-thermal atmosphere is created by low- and high-temperature reactions of n-heptane which is injected at intake port, and isooctane is directly injected into combustion chamber near the top dead center. The effects of isooctane injection timing, active-thermal atmosphere intensity, overall equivalence ratio, and premixed ratio on combustion characteristics and emissions are investigated. The experimental results reveal that, the isooctane ignition and combustion can be classified to thermal atmosphere combustion, active atmosphere combustion, and active-thermal atmosphere combustion respectively accordingmore » to the extent of n-heptane oxidation as well as effects of isooctane quenching and charge cooling. n-Heptane equivalence ratio, isooctane equivalence ratio and isooctane delivery advance angle are major control parameters. In one combustion cycle, the isooctane ignited and burned after those of n-heptane, and then this combustion phenomenon can also be named as dual-fuel sequential combustion (DFSC). The ignition timing of the overall combustion event is mainly determined by n-heptane equivalence ratio and can be controlled in flexibility by simultaneously adjusting isooctane equivalence ratio. The isooctane ignition regime, overall thermal efficiency, and NO{sub x} emissions show strong sensitivity to the fuel delivery advance angle between 20 CA BTDC and 25 CA BTDC. (author)« less
Egi, H; Hattori, M; Tokunaga, M; Suzuki, T; Kawaguchi, K; Sawada, H; Ohdan, H
2013-01-01
The aim of this study was to determine whether any correlation exists between the performance of the Mimic® dV-Trainer (Mimic Technologies, Seattle, Wash., USA) and the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, Calif., USA). Twelve participants were recruited, ranging from residents to consultants. We used four training tasks, consisting of 'Pick and Place', 'Peg Board', 'Thread the Rings' and 'Suture Sponge', from the software program of the Mimic dV-Trainer. The performance of the participants was recorded and measured. Additionally, we prepared the same tasks for the da Vinci Surgical System. All participants completed the tasks using the da Vinci Surgical System and were assessed according to time, the Objective Structured Assessment of Technical Skill checklist and the global rating score for endoscopic suturing assessed by two independent blinded observers. After performing these tasks, the participants completed a questionnaire that evaluated the Mimic dV-Trainer's face and content validity. The final results for each participant for the Mimic dV-Trainer and the da Vinci Surgical System were compared. All participants ranked the Mimic dV-Trainer as a realistic training platform that is useful for residency training. There was a significant relationship between the Mimic dV-Trainer and the da Vinci Surgical System in all four tasks. We verified the reliability of the assessment of the checklist and the global rating scores for endoscopic suturing assessed by the two blinded observers using Cronbach's alpha test (r = 0.803, 0.891). We evaluated the concurrent validity of the Mimic dV-Trainer and the da Vinci Surgical System. Our results suggest the possibility that training using the Mimic dV-Trainer may therefore be able to improve the operator's performance during live robot-assisted surgery. © 2013 S. Karger AG, Basel.
Process mining in oncology using the MIMIC-III dataset
NASA Astrophysics Data System (ADS)
Prima Kurniati, Angelina; Hall, Geoff; Hogg, David; Johnson, Owen
2018-03-01
Process mining is a data analytics approach to discover and analyse process models based on the real activities captured in information systems. There is a growing body of literature on process mining in healthcare, including oncology, the study of cancer. In earlier work we found 37 peer-reviewed papers describing process mining research in oncology with a regular complaint being the limited availability and accessibility of datasets with suitable information for process mining. Publicly available datasets are one option and this paper describes the potential to use MIMIC-III, for process mining in oncology. MIMIC-III is a large open access dataset of de-identified patient records. There are 134 publications listed as using the MIMIC dataset, but none of them have used process mining. The MIMIC-III dataset has 16 event tables which are potentially useful for process mining and this paper demonstrates the opportunities to use MIMIC-III for process mining in oncology. Our research applied the L* lifecycle method to provide a worked example showing how process mining can be used to analyse cancer pathways. The results and data quality limitations are discussed along with opportunities for further work and reflection on the value of MIMIC-III for reproducible process mining research.
Studies of Altered Response to Infection Induced by Severe Injury.
1994-11-15
quantitation of original specific RNA was determined by comparison of target and MIMIC band intensities and were standardized by G3PDH quantities. 4 RESULTS... housekeeping gene G 3PDH (Fig. 1). We compared the amount of mRNA present after 3 hours of stimulation to the amount of bioactivity present after 16 hours...Is$ mimic concelntration l PCR with G3PDH Primers ( G3PDH ) PCR Products Gel MIMIC -~ Attomoie MIMIC 100 10 1 0.1 SDensitometry Reading I Graphing and
Sutton, Nora B; Kalisz, Mariusz; Krupanek, Janusz; Marek, Jan; Grotenhuis, Tim; Smidt, Hauke; de Weert, Jasperien; Rijnaarts, Huub H M; van Gaans, Pauline; Keijzer, Thomas
2014-02-18
While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the compatibility with further bioremediation, a pilot scale treatment at a diesel-contaminated location was performed consisting of two persulfate injection events followed by a single nutrient amendment. Groundwater parameters measured throughout the 225 day experiment showed a significant decrease in pH and an increase in dissolved diesel and organic carbon within the treatment area. Molecular analysis of the microbial community size (16S rRNA gene) and alkane degradation capacity (alkB gene) by qPCR indicated a significant, yet temporary impact; while gene copy numbers initially decreased 1-2 orders of magnitude, they returned to baseline levels within 3 months of the first injection for both targets. Analysis of soil samples with sequential extraction showed irreversible oxidation of metal sulfides, thereby changing subsurface mineralogy and potentially mobilizing Fe, Cu, Pb, and Zn. Together, these results give insight into persulfate application in terms of risks and effective coupling with bioremediation.
Blasier, Kiev R.; Humsi, Michael K.; Ha, Junghoon; Ross, Mitchell W.; Smiley, W. Russell; Inamdar, Nirja A.; Mitchell, David J.; Lo, Kevin W.-H.; Pfister, K. Kevin
2014-01-01
Cytoplasmic dynein is a multi-subunit motor protein responsible for intracellular cargo transport toward microtubule minus ends. There are multiple isoforms of the dynein intermediate chain (DYNC1I, IC) which is encoded by two genes. One way to regulate cytoplasmic dynein is by IC phosphorylation. The IC-2C isoform is expressed in all cells and the functional significance of phosphorylation on IC-2C serine 84 was investigated using live cell imaging of fluorescent protein-tagged wild type IC-2C (WT) and phospho- and dephospho-mimic mutant isoforms in axonal transport model systems. Both mutations modulated dynein functional properties. The dephospho-mimic mutant IC-2C S84A had greater co-localization with mitochondria than IC-2C wild-type (WT) or the phospho-mimic mutant IC-2C S84D. The dephospho-mimic mutant IC-2C S84A was also more likely to be motile than the phospho-mimic mutant IC-2C S84D or IC-2C WT. In contrast, the phospho-mimic mutant IC-2C S84D mutant was more likely to move in the retrograde direction than was the IC-2C S84A mutant. The phospho-mimic IC-2C S84D was also as likely as IC-2C WT to co-localize with mitochondria. Both the S84D phospho- and S84A, dephospho-mimic mutants were found to be capable of microtubule minus end directed (retrograde) movement in axons. They were also observed to be passively transported in the anterograde direction. These data suggest that the IC-2C S84 has a role in modulating dynein properties. PMID:24798412
Target mimics: an embedded layer of microRNA-involved gene regulatory networks in plants.
Meng, Yijun; Shao, Chaogang; Wang, Huizhong; Jin, Yongfeng
2012-05-21
MicroRNAs (miRNAs) play an essential role in gene regulation in plants. At the same time, the expression of miRNA genes is also tightly controlled. Recently, a novel mechanism called "target mimicry" was discovered, providing another layer for modulating miRNA activities. However, except for the artificial target mimics manipulated for functional studies on certain miRNA genes, only one example, IPS1 (Induced by Phosphate Starvation 1)-miR399 was experimentally confirmed in planta. To date, few analyses for comprehensive identification of natural target mimics have been performed in plants. Thus, limited evidences are available to provide detailed information for interrogating the questionable issue whether target mimicry was widespread in planta, and implicated in certain biological processes. In this study, genome-wide computational prediction of endogenous miRNA mimics was performed in Arabidopsis and rice, and dozens of target mimics were identified. In contrast to a recent report, the densities of target mimic sites were found to be much higher within the untranslated regions (UTRs) when compared to those within the coding sequences (CDSs) in both plants. Some novel sequence characteristics were observed for the miRNAs that were potentially regulated by the target mimics. GO (Gene Ontology) term enrichment analysis revealed some functional insights into the predicted mimics. After degradome sequencing data-based identification of miRNA targets, the regulatory networks constituted by target mimics, miRNAs and their downstream targets were constructed, and some intriguing subnetworks were further exploited. These results together suggest that target mimicry may be widely implicated in regulating miRNA activities in planta, and we hope this study could expand the current understanding of miRNA-involved regulatory networks.
Sivan, S S; Roberts, S; Urban, J P G; Menage, J; Bramhill, J; Campbell, D; Franklin, V J; Lydon, F; Merkher, Y; Maroudas, A; Tighe, B J
2014-03-01
The load-bearing biomechanical role of the intervertebral disc is governed by the composition and organization of its major macromolecular components, collagen and aggrecan. The major function of aggrecan is to maintain tissue hydration, and hence disc height, under the high loads imposed by muscle activity and body weight. Key to this role is the high negative fixed charge of its glycosaminoglycan side chains, which impart a high osmotic pressure to the tissue, thus regulating and maintaining tissue hydration and hence disc height under load. In degenerate discs, aggrecan degrades and is lost from the disc, particularly centrally from the nucleus pulposus. This loss of fixed charge results in reduced hydration and loss of disc height; such changes are closely associated with low back pain. The present authors developed biomimetic glycosaminoglycan analogues based on sulphonate-containing polymers. These biomimetics are deliverable via injection into the disc where they polymerize in situ, forming a non-degradable, nuclear "implant" aimed at restoring disc height to degenerate discs, thereby relieving back pain. In vitro, these glycosaminoglycan analogues possess appropriate fixed charge density, hydration and osmotic responsiveness, thereby displaying the capacity to restore disc height and function. Preliminary biomechanical tests using a degenerate explant model showed that the implant adapts to the space into which it is injected and restores stiffness. These hydrogels mimic the role taken by glycosaminoglycans in vivo and, unlike other hydrogels, provide an intrinsic swelling pressure, which can maintain disc hydration and height under the high and variable compressive loads encountered in vivo. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Faber, K A; Hughes, C L
1993-01-01
Estrogen exposure during critical periods of development promotes androgenization of the brain, which is reflected in altered morphology, behavior, and cyclic hormone secretion in females. Previous work in our laboratory demonstrated that neonatal female rats injected with pharmaceutical or naturally occurring estrogens had decreased GnRH-induced LH secretion and increased volume of the SDN-POA as 42 day castrates. The current experiment defines the dose-response characteristics of neonatal exposure to the isoflavonoid phytoestrogen genistein (G) on pituitary sensitivity to GnRH and SDN-POA volume. Litters of rat pups received subcutaneous injections of either corn oil, 1, 10, 100, 200, 400, 500, or 1000 micrograms of G on days 1 to 10 of life. The litters were ovariectomized and weaned on day 21. On day 42 blood was drawn from right atrial catheters immediately prior to, 5, 10, 15, and 30 min following a single injection of 50 ng/kg of GnRH. Only the 10 micrograms dose of G was associated with increased pituitary response to GnRH, while progressive increases in exposure levels of G were associated with decreasing LH secretion. The SDN-POA volume was increased in only the 500 micrograms and 1000 micrograms exposure groups compared to controls. The results confirm that low doses of G have nonandrogenizing, pituitary-sensitizing effects, while higher doses of G mimic the more typical effects of estrogens. The use of both morphologic and physiologic end points more completely defines the reproductive consequences of environmental estrogen exposure during critical periods of CNS development.
A Flow Perfusion Bioreactor System for Vocal Fold Tissue Engineering Applications
Heris, Hossein K.; Thomson, Scott L.; Taher, Rani; Kazemirad, Siavash; Sheibani, Sara; Li-Jessen, Nicole Y.K.; Vali, Hojatollah; Mongeau, Luc
2016-01-01
The human vocal folds (VFs) undergo complex biomechanical stimulation during phonation. The aim of the present study was to develop and validate a phono-mimetic VF flow perfusion bioreactor, which mimics the mechanical microenvironment of the human VFs in vitro. The bioreactor uses airflow-induced self-oscillations, which have been shown to produce mechanical loading and contact forces that are representative of human phonation. The bioreactor consisted of two synthetic VF replicas within a silicone body. A cell-scaffold mixture (CSM) consisting of human VF fibroblasts, hyaluronic acid, gelatin, and a polyethylene glycol cross-linker was injected into cavities within the replicas. Cell culture medium (CCM) was perfused through the scaffold by using a customized secondary flow loop. After the injection, the bioreactor was operated with no stimulation over a 3-day period to allow for cell adaptation. Phonation was subsequently induced by using a variable speed centrifugal blower for 2 h each day over a period of 4 days. A similar bioreactor without biomechanical stimulation was used as the nonphonatory control. The CSM was harvested from both VF replicas 7 days after the injection. The results confirmed that the phono-mimetic bioreactor supports cell viability and extracellular matrix proteins synthesis, as expected. Many scaffold materials were found to degrade because of challenges from phonation-induced biomechanical stimulation as well as due to biochemical reactions with the CCM. The bioreactor concept enables future investigations of the effects of different phonatory characteristics, that is, voice regimes, on the behavior of the human VF cells. It will also help study the long-term functional outcomes of the VF-specific biomaterials before animal and clinical studies. PMID:27537192
Kneeshaw, T.A.; McGuire, J.T.; Smith, E.W.; Cozzarelli, I.M.
2007-01-01
This paper presents small-scale push-pull tests designed to evaluate the kinetic controls on SO42 - reduction in situ at mixing interfaces between a wetland and aquifer impacted by landfill leachate at the Norman Landfill research site, Norman, OK. Quantifying the rates of redox reactions initiated at interfaces is of great interest because interfaces have been shown to be zones of increased biogeochemical transformations and thus may play an important role in natural attenuation. To mimic the aquifer-wetland interface and evaluate reaction rates, SO42 --rich anaerobic aquifer water (??? 100 mg / L SO42 -) was introduced into SO42 --depleted wetland porewater via push-pull tests. Results showed SO42 - reduction was stimulated by the mixing of these waters and first-order rate coefficients were comparable to those measured in other push-pull studies. However, rate data were complex involving either multiple first-order rate coefficients or a more complex rate order. In addition, a lag phase was observed prior to SO42 - reduction that persisted until the mixing interface between test solution and native water was recovered, irrespective of temporal and spatial constraints. The lag phase was not eliminated by the addition of electron donor (acetate) to the injected test solution. Subsequent push-pull tests designed to elucidate the nature of the lag phase support the importance of the mixing interface in controlling terminal electron accepting processes. These data suggest redox reactions may occur rapidly at the mixing interface between injected and native waters but not in the injected bulk water mass. Under these circumstances, push-pull test data should be evaluated to ensure the apparent rate is actually a function of time and that complexities in rate data be considered. ?? 2007 Elsevier Ltd. All rights reserved.
Bibi, Siham; Zhang, Yanyan; Hugonin, Caroline; Mangean, Mallorie Depond; He, Liang; Wedeh, Ghaith; Launay, Jean-Marie; Van Rijn, Sjoerd; Würdinger, Thomas; Louache, Fawzia; Arock, Michel
2016-01-01
Systemic mastocytosis are rare neoplasms characterized by accumulation of mast cells in at least one internal organ. The majority of systemic mastocytosis patients carry KIT D816V mutation, which activates constitutively the KIT receptor. Patient with advanced forms of systemic mastocytosis, such as aggressive systemic mastocytosis or mast cell leukemia, are poorly treated to date. Unfortunately, the lack of in vivo models reflecting KIT D816V+ advanced disease hampers pathophysiological studies and preclinical development of new therapies for such patients. Here, we describe a new in vivo model of KIT D816V+ advanced systemic mastocytosis developed by transplantation of the human ROSAKIT D816V-Gluc mast cell line in NOD-SCID IL-2R g−/− mice, using Gaussia princeps luciferase as a reporter. Intravenous injection of ROSAKIT D816V-Gluc cells led, in 4 weeks, to engraftment in all injected primary recipient mice. Engrafted cells were found at high levels in bone marrow, and at lower levels in spleen, liver and peripheral blood. Disease progression was easily monitored by repeated quantification of Gaussia princeps luciferase activity in peripheral blood. This quantification evidenced a linear relationship between the number of cells injected and the neoplastic mast cell burden in mice. Interestingly, the secondary transplantation of ROSAKIT D816V-Gluc cells increased their engraftment capability. To conclude, this new in vivo model mimics at the best the features of human KIT D816V+ advanced systemic mastocytosis. In addition, it is a unique and convenient tool to study the kinetics of the disease and the potential in vivo activity of new drugs targeting neoplastic mast cells. PMID:27783996
Bose, Bipasha; Katikireddy, Kishore Reddy; Shenoy, P Sudheer
2014-01-01
Diabetes is a group of metabolic diseases, rising globally at an alarming rate. Type 1 (juvenile diabetes) is the autoimmune version of diabetes where the pancreas is unable to produce insulin, whereas type 2 (adult onset diabetes) is caused due to insulin resistance of the cells. In either of the cases, elevated blood glucose levels are observed which leads to progressive comorbidity like renal failure, cardiovascular disease, retinopathy, etc. Metformin, sulphonyl urea group of drugs, as well as insulin injections are the available therapies. In advanced cases of diabetes, the drug alone or drug in combination with insulin injections are not able to maintain a steady level of blood glucose. Moreover, frequent insulin injections are rather cumbersome for the patient. So, regenerative medicine could be a permanent solution for fighting diabetes. Islet transplantation has been tried with a limited amount of success on a large population of diabetics because of the shortage of cadaveric pancreas. Therefore, the best proposed alternative is regenerative medicine involving human pluripotent stem cell (hPSC)-derived beta islet transplantation which can be obtained in large quantities. Efficient protocols for in vitro differentiation of hPSC into a large number of sustained insulin-producing beta cells for transplantation will be considered to be a giant leap to address global rise in diabetic cases. Although most of the protocols mimic in vivo pancreatic development in humans, considerable amount of lacuna persists for near-perfect differentiation strategies. Moreover, beta islets differentiated from hPSC have not yet been successfully translated under clinical scenario. © 2014 Elsevier Inc. All rights reserved.
Real-time monitoring of moisture levels in wound dressings in vitro: an experimental study.
McColl, David; Cartlidge, Brian; Connolly, Patricia
2007-10-01
Retaining an appropriate level of moisture at the interface between a healing wound and an applied dressing is considered to be critical for effective wound healing. Failure to control exudate at this interface can result in maceration or drying out of the wound surface. The ability to control moisture balance at the wound interface is therefore a key aspect of wound dressing performance. To date it has not been possible to monitor in any effective manner the distribution of moisture within dressings or how this varies with time. A new measurement system is presented based on sensors placed at the wound/dressing interface which are capable of monitoring moisture levels in real time. The system comprises a model wound bed and sensor array complete with fluid injection path to mimic exudate flow. Eight monitoring points, situated beneath the test dressing, allow the moisture profile across the complete dressing to be measured both during and after fluid injection. The system has been used to evaluate the performance of four foam dressings, a composite hydrofibre dressing and a film dressing. Stark contrasts in the performance of the wound contact layer were found between the different wound dressing types. The composite hydrofibre dressing retained moisture at the wound interface throughout the experiments while areas of the foam dressing quickly became dry, even during constant injection of fluid. The abundance of sensors allowed a moisture map of the surface of the wound dressing to be constructed, illustrating that the moisture profile was not uniform across several of the dressings tested during absorption and evaporation of liquid. These results raise questions as to how the dressings behave on a wound in vivo and indicate the need for a similar clinical monitoring system for tracking wound moisture levels.
Novel design for transparent high-pressure fuel injector nozzles.
Falgout, Z; Linne, M
2016-08-01
The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.
Insulin Pen—The “iPod” for Insulin Delivery (Why Pen Wins over Syringe)
Asamoah, Ernest
2008-01-01
Diabetes affects most aspects of everyday life and places considerable responsibility on the patient; therefore, without patient acceptance of what we offer, the therapy is unlikely to be adhered to especially when that therapy happens to be insulin injection. In 2008, almost every physician/health care provider carries new and sleek cell phones (because the newer ones are well designed and function better). Why these same providers continue to prescribe insulin via syringes in 2008 is something that I cannot fathom. Previously, some insurance companies only paid for vials and there was no other choice, but today almost all insurance pay for pens and so the “insurance reason” is no longer tenable. Since Banting and Best discovered insulin in 1921, scientists have continued to improve the types of insulin (making them mimic physiology more closely in order to minimize hypoglycemia and improve glycemic control as seen with the latest analog insulins). In the same manner, the delivery process of insulin has also continued to evolve to make it easier and more acceptable to patients. Studies have shown that patients prefer device use over traditional vials/syringes. Pen devices used to inject insulin lead to better compliance, are quicker to inject, dosing is much more accurate, and, surprisingly, are more cost effective. I challenge my colleagues to take full responsibility for what their patients use. If a provider believes in pen devices, most of his/her patients will use them. The products your patients use is a direct reflection of what you practice. Educating providers to change their beliefs and practices is key to moving American diabetic patients from syringes to pen devices. PMID:19885358
Insulin pen-the "iPod" for insulin delivery (why pen wins over syringe).
Asamoah, Ernest
2008-03-01
Diabetes affects most aspects of everyday life and places considerable responsibility on the patient; therefore, without patient acceptance of what we offer, the therapy is unlikely to be adhered to especially when that therapy happens to be insulin injection. In 2008, almost every physician/health care provider carries new and sleek cell phones (because the newer ones are well designed and function better). Why these same providers continue to prescribe insulin via syringes in 2008 is something that I cannot fathom. Previously, some insurance companies only paid for vials and there was no other choice, but today almost all insurance pay for pens and so the "insurance reason" is no longer tenable. Since Banting and Best discovered insulin in 1921, scientists have continued to improve the types of insulin (making them mimic physiology more closely in order to minimize hypoglycemia and improve glycemic control as seen with the latest analog insulins). In the same manner, the delivery process of insulin has also continued to evolve to make it easier and more acceptable to patients. Studies have shown that patients prefer device use over traditional vials/syringes. Pen devices used to inject insulin lead to better compliance, are quicker to inject, dosing is much more accurate, and, surprisingly, are more cost effective. I challenge my colleagues to take full responsibility for what their patients use. If a provider believes in pen devices, most of his/her patients will use them. The products your patients use is a direct reflection of what you practice. Educating providers to change their beliefs and practices is key to moving American diabetic patients from syringes to pen devices.
Bibi, Siham; Zhang, Yanyan; Hugonin, Caroline; Mangean, Mallorie Depond; He, Liang; Wedeh, Ghaith; Launay, Jean-Marie; Van Rijn, Sjoerd; Würdinger, Thomas; Louache, Fawzia; Arock, Michel
2016-12-13
Systemic mastocytosis are rare neoplasms characterized by accumulation of mast cells in at least one internal organ. The majority of systemic mastocytosis patients carry KIT D816V mutation, which activates constitutively the KIT receptor. Patient with advanced forms of systemic mastocytosis, such as aggressive systemic mastocytosis or mast cell leukemia, are poorly treated to date. Unfortunately, the lack of in vivo models reflecting KIT D816V+ advanced disease hampers pathophysiological studies and preclinical development of new therapies for such patients. Here, we describe a new in vivo model of KIT D816V+ advanced systemic mastocytosis developed by transplantation of the human ROSAKIT D816V-Gluc mast cell line in NOD-SCID IL-2R γ-/- mice, using Gaussia princeps luciferase as a reporter. Intravenous injection of ROSAKIT D816V-Gluc cells led, in 4 weeks, to engraftment in all injected primary recipient mice. Engrafted cells were found at high levels in bone marrow, and at lower levels in spleen, liver and peripheral blood. Disease progression was easily monitored by repeated quantification of Gaussia princeps luciferase activity in peripheral blood. This quantification evidenced a linear relationship between the number of cells injected and the neoplastic mast cell burden in mice. Interestingly, the secondary transplantation of ROSAKIT D816V-Gluc cells increased their engraftment capability. To conclude, this new in vivo model mimics at the best the features of human KIT D816V+ advanced systemic mastocytosis. In addition, it is a unique and convenient tool to study the kinetics of the disease and the potential in vivo activity of new drugs targeting neoplastic mast cells.
Gestational exposure to perfluorooctanoic acid (PFOA): alterations in motor related behaviors
Goulding, David R.; White, Sally S.; McBride, Sandra J.; Fenton, Suzanne E.; Harry, G. Jean
2016-01-01
Perfluoroalkyl and polyfluoroalkyl substances are used in commercial applications and developmental exposure has been implicated in alterations in neurobehavioral functioning. While associations between developmental perfluorooctanoic acid (PFOA) exposure and human outcomes have been inconsistent, studies in experimental animals suggest alterations in motor related behaviors. To examine a dose-response pattern of neurobehavioral effects following gestational exposure to PFOA, pregnant CD-1 mice received PFOA (0, 0.1, 0.3, 1.0 mg/kg/day) via oral gavage from gestational day 1–17 and the male offspring examined. Motor activity assessments on postnatal day (PND)18, 19, and 20 indicated a shift in the developmental pattern with an elevated activity level observed in the 1.0 mg/kg/day dose group on PND18. In the adult, no alterations were observed in body weights, activity levels, diurnal pattern of running wheel activity, startle response, or pre-pulse startle inhibition. In response to a subcutaneous injection of saline or nicotine (80 µg/kg), all animals displayed a transient increase in activity likely associated with handling with no differences observed across dose groups. Inhibition of motor activity over 18 days of 400µg/kg nicotine injection was not significantly different across dose groups. Hyperactivity induced by 2mg/kg (+)-methamphetamine hydrochloride intraperitoneal injection was significantly lower in the 1.0 mg/kg/day PFOA dose group as compared to controls. Taken together, these data suggest that the effects on motor-related behaviors with gestational PFOA exposure do not mimic those reported for acute postnatal exposure. Changes were not observed at dose level under 1.0 mg/kg/day PFOA. Further examination of pathways associated with methamphetamine-induced activity is warranted. PMID:27888120
Diniz, Daniel G.; Silva, Geane O.; Naves, Thaís B.; Fernandes, Taiany N.; Araújo, Sanderson C.; Diniz, José A. P.; de Farias, Luis H. S.; Sosthenes, Marcia C. K.; Diniz, Cristovam G.; Anthony, Daniel C.; da Costa Vasconcelos, Pedro F.; Picanço Diniz, Cristovam W.
2016-01-01
It is known that microglial morphology and function are related, but few studies have explored the subtleties of microglial morphological changes in response to specific pathogens. In the present report we quantitated microglia morphological changes in a monkey model of dengue disease with virus CNS invasion. To mimic multiple infections that usually occur in endemic areas, where higher dengue infection incidence and abundant mosquito vectors carrying different serotypes coexist, subjects received once a week subcutaneous injections of DENV3 (genotype III)-infected culture supernatant followed 24 h later by an injection of anti-DENV2 antibody. Control animals received either weekly anti-DENV2 antibodies, or no injections. Brain sections were immunolabeled for DENV3 antigens and IBA-1. Random and systematic microglial samples were taken from the polymorphic layer of dentate gyrus for 3-D reconstructions, where we found intense immunostaining for TNFα and DENV3 virus antigens. We submitted all bi- or multimodal morphological parameters of microglia to hierarchical cluster analysis and found two major morphological phenotypes designated types I and II. Compared to type I (stage 1), type II microglia were more complex; displaying higher number of nodes, processes and trees and larger surface area and volumes (stage 2). Type II microglia were found only in infected monkeys, whereas type I microglia was found in both control and infected subjects. Hierarchical cluster analysis of morphological parameters of 3-D reconstructions of random and systematic selected samples in control and ADE dengue infected monkeys suggests that microglia morphological changes from stage 1 to stage 2 may not be continuous. PMID:27047345
A Flow Perfusion Bioreactor System for Vocal Fold Tissue Engineering Applications.
Latifi, Neda; Heris, Hossein K; Thomson, Scott L; Taher, Rani; Kazemirad, Siavash; Sheibani, Sara; Li-Jessen, Nicole Y K; Vali, Hojatollah; Mongeau, Luc
2016-09-01
The human vocal folds (VFs) undergo complex biomechanical stimulation during phonation. The aim of the present study was to develop and validate a phono-mimetic VF flow perfusion bioreactor, which mimics the mechanical microenvironment of the human VFs in vitro. The bioreactor uses airflow-induced self-oscillations, which have been shown to produce mechanical loading and contact forces that are representative of human phonation. The bioreactor consisted of two synthetic VF replicas within a silicone body. A cell-scaffold mixture (CSM) consisting of human VF fibroblasts, hyaluronic acid, gelatin, and a polyethylene glycol cross-linker was injected into cavities within the replicas. Cell culture medium (CCM) was perfused through the scaffold by using a customized secondary flow loop. After the injection, the bioreactor was operated with no stimulation over a 3-day period to allow for cell adaptation. Phonation was subsequently induced by using a variable speed centrifugal blower for 2 h each day over a period of 4 days. A similar bioreactor without biomechanical stimulation was used as the nonphonatory control. The CSM was harvested from both VF replicas 7 days after the injection. The results confirmed that the phono-mimetic bioreactor supports cell viability and extracellular matrix proteins synthesis, as expected. Many scaffold materials were found to degrade because of challenges from phonation-induced biomechanical stimulation as well as due to biochemical reactions with the CCM. The bioreactor concept enables future investigations of the effects of different phonatory characteristics, that is, voice regimes, on the behavior of the human VF cells. It will also help study the long-term functional outcomes of the VF-specific biomaterials before animal and clinical studies.
Nichols, Nicole L; Craig, Taylor A; Tanner, Miles A
2017-08-16
Amyotrophic lateral sclerosis (ALS) is a devastating disease leading to progressive motor neuron degeneration and death by ventilatory failure. In a rat model of ALS (SOD1 G93A ), phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) is enhanced greater than expected at disease end-stage but the mechanism is unknown. We suggest that one trigger for this enhancement is motor neuron death itself. Intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB-SAP) selectively kill respiratory motor neurons and mimic motor neuron death observed in SOD1 G93A rats. This CTB-SAP model allows us to study the impact of respiratory motor neuron death on breathing without many complications attendant to ALS. Here, we tested the hypothesis that phrenic motor neuron death is sufficient to enhance pLTF. pLTF was assessed in anesthetized, paralyzed and ventilated Sprague Dawley rats 7 and 28days following bilateral intrapleural injections of: 1) CTB-SAP (25μg), or 2) un-conjugated CTB and SAP (control). CTB-SAP enhanced pLTF at 7 (CTB-SAP: 162±18%, n=8 vs. 63±3%; n=8; p<0.05), but not 28days post-injection (CTB-SAP: 64±10%, n=10 vs. 60±13; n=8; p>0.05). Thus, pLTF at 7 (not 28) days post-CTB-SAP closely resembles pLTF in end-stage ALS rats, suggesting that processes unique to the early period of motor neuron death enhance pLTF. This project increases our understanding of respiratory plasticity and its implications for breathing in motor neuron disease. Copyright © 2017 Elsevier B.V. All rights reserved.