Science.gov

Sample records for minas frescal cheese

  1. Manufacture of probiotic Minas Frescal cheese with Lactobacillus casei Zhang.

    PubMed

    Dantas, Aline B; Jesus, Vitor F; Silva, Ramon; Almada, Carine N; Esmerino, E A; Cappato, Leandro P; Silva, Marcia C; Raices, Renata S L; Cavalcanti, Rodrigo N; Carvalho, Celio C; Sant'Ana, Anderson S; Bolini, Helena M A; Freitas, Monica Q; Cruz, Adriano G

    2016-01-01

    In this study, the addition of Lactobacillus casei Zhang in the manufacture of Minas Frescal cheese was investigated. Minas Frescal cheeses supplemented with probiotic bacteria (Lactobacillus casei Zhang) were produced by enzymatic coagulation and direct acidification and were subjected to physicochemical (pH, proteolysis, lactic acid, and acetic acid), microbiological (probiotic and lactic bacteria counts), and rheological analyses (uniaxial compression and creep test), instrumental color determination (luminosity, yellow intensity, and red intensity) and sensory acceptance test. The addition of L. casei Zhang resulted in low pH values and high proteolysis indexes during storage (from 5.38 to 4.94 and 0.470 to 0.702, respectively). Additionally, the cheese protocol was not a hurdle for growth of L. casei Zhang, as the population reached 8.16 and 9.02 log cfu/g by means of the direct acidification and enzymatic coagulation protocol, respectively, after 21 d of refrigerated storage. The rheology data showed that all samples presented a more viscous-like behavior, which rigidity tended to decrease during storage and lower luminosity values were also observed. Increased consumer acceptance was observed for the control sample produced by direct acidification (7.8), whereas the cheeses containing L. casei Zhang presented lower values for all sensory attributes, especially flavor and overall liking (5.37 and 4.61 for enzymatic coagulation and 5.57 and 4.72 for direct acidification, respectively). Overall, the addition of L. casei Zhang led to changes in all parameters and affected negatively the sensory acceptance. The optimization of L. casei Zhang dosage during the manufacturing of probiotic Minas Frescal cheese should be performed.

  2. Manufacture of probiotic Minas Frescal cheese with Lactobacillus casei Zhang.

    PubMed

    Dantas, Aline B; Jesus, Vitor F; Silva, Ramon; Almada, Carine N; Esmerino, E A; Cappato, Leandro P; Silva, Marcia C; Raices, Renata S L; Cavalcanti, Rodrigo N; Carvalho, Celio C; Sant'Ana, Anderson S; Bolini, Helena M A; Freitas, Monica Q; Cruz, Adriano G

    2016-01-01

    In this study, the addition of Lactobacillus casei Zhang in the manufacture of Minas Frescal cheese was investigated. Minas Frescal cheeses supplemented with probiotic bacteria (Lactobacillus casei Zhang) were produced by enzymatic coagulation and direct acidification and were subjected to physicochemical (pH, proteolysis, lactic acid, and acetic acid), microbiological (probiotic and lactic bacteria counts), and rheological analyses (uniaxial compression and creep test), instrumental color determination (luminosity, yellow intensity, and red intensity) and sensory acceptance test. The addition of L. casei Zhang resulted in low pH values and high proteolysis indexes during storage (from 5.38 to 4.94 and 0.470 to 0.702, respectively). Additionally, the cheese protocol was not a hurdle for growth of L. casei Zhang, as the population reached 8.16 and 9.02 log cfu/g by means of the direct acidification and enzymatic coagulation protocol, respectively, after 21 d of refrigerated storage. The rheology data showed that all samples presented a more viscous-like behavior, which rigidity tended to decrease during storage and lower luminosity values were also observed. Increased consumer acceptance was observed for the control sample produced by direct acidification (7.8), whereas the cheeses containing L. casei Zhang presented lower values for all sensory attributes, especially flavor and overall liking (5.37 and 4.61 for enzymatic coagulation and 5.57 and 4.72 for direct acidification, respectively). Overall, the addition of L. casei Zhang led to changes in all parameters and affected negatively the sensory acceptance. The optimization of L. casei Zhang dosage during the manufacturing of probiotic Minas Frescal cheese should be performed. PMID:26519974

  3. A control method to inspect the compositional authenticity of Minas Frescal cheese by gel electrophoresis.

    PubMed

    Magenis, Renata B; Prudêncio, Elane S; Molognoni, Luciano; Daguer, Heitor

    2014-08-20

    This study introduces a qualitative method to inspect the compositional authenticity of white nonripened cheeses like Minas Frescal, a typical Brazilian cheese, especially when irregular replacement of milk by whey is suspected. A sodium dodecyl sulfate gel electrophoresis (SDS-PAGE) method, followed by image densitometry, was validated. Cheeses were freeze-dried to electrophoresis, and β-lactoglobulin (β-LG) was chosen as the adulteration marker. In gel trypsin digestion followed by matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry provided its identification. Cheeses with a minimum of 14 mg·g(-1) of β-LG are considered to be adulterated. The method shows satisfactory precision with a detection limit of 7 mg·g(-1). Forty-two commercial samples from inspected establishments were then assessed and subjected to cluster analysis. Compliant and noncompliant groups were set with 24 (57%) authentic samples and 18 (43%) adulterated samples, respectively, showing that proper analytical monitoring is required to inhibit this practice.

  4. Inhibition of Listeria monocytogenes in minas frescal cheese by free and nanovesicle-encapsulated nisin

    PubMed Central

    Malheiros, Patrícia da Silva; Daroit, Daniel Joner; Brandelli, Adriano

    2012-01-01

    The effectiveness of free and nanovesicle-encapsulated nisin to control Listeria monocytogenes in Minas Frescal cheese was investigated. Commercial nisin was encapsulated into liposomes of partially purified soy lecithin. Free (0.1 mg/mL and 0.25 mg/mL) and nanovesicle-encapsulated nisin (0.25 mg/mL) were applied onto the surface of cheese samples, and L. monocytogenes was inoculated before incubation at 6–8°C for 28 days. A bactericidal effect was observed with 0.25 mg/mL free nisin; a bacteriostatic effect was observed for liposome-encapsulated nisin and 0.1 mg/mL free nisin. Free nisin was more efficient than nisin-loaded liposomes in controlling L. monocytogenes. Possible reasons for this behavior, and also the significance of nisin to soft cheeses are discussed. Nisin acted as a suitable barrier within hurdle technology, potentially extending the shelf-life and safety of fresh cheeses. PMID:24031971

  5. Occurrence of Listeria spp. in critical control points and the environment of Minas Frescal cheese processing.

    PubMed

    Silva, Isabella M M; Almeida, R C C; Alves, M A O; Almeida, P F

    2003-03-25

    Critical control points (CCPs) associated with Minas Frescal cheese (a Brazilian soft white cheese, eaten fresh) processing in two dairy factories were determined using flow diagrams and microbiological tests for detection of Listeria monocytogenes and other species of Listeria. A total of 218 samples were collected along the production line and environment. The CCPs identified were reception of raw milk, pasteurization, coagulation and storage. Thirteen samples were positive for Listeria; 9 samples were Listeria innocua, 2 were Listeria grayi and 2 were L. monocytogenes. In factory A, Listeria was found in 50% of raw milk samples, 33.3% of curd samples, 16.7% of pasteurized milk samples, 16.7% of cheese samples and 25% of rubber pipes used to transport the whey. The microorganism was not obtained from environmental samples in this plant. In factory B, Listeria was found in one sample of raw milk (16.7%) and in three samples of environment (17.6%) and L. monocytogenes was obtained from raw milk (16.7%) and the floor of the cheese refrigeration room (14.3%). Two serotypes, 4b and 1/2a, were observed among the strains of L. monocytogenes isolated, both which are frequently involved in outbreaks of food-borne listeriosis and sporadic cases of the disease all over the world.

  6. Effects of nisin on Staphylococcus aureus count and physicochemical properties of Minas Frescal cheese.

    PubMed

    Felicio, Bruna A; Pinto, Maximiliano S; Oliveira, Francielly S; Lempk, Marcus W; Pires, Ana Clarissa S; Lelis, Carini A

    2015-07-01

    The aim of this work was to evaluate the effects of nisin on in vitro and in situ Staphylococcus aureus counts. For in vitro experiment, milk was inoculated with 5.0 log cfu·mL(-1) of S. aureus and nisin was added at concentrations of 0, 100, 200, 400, and 500 IU mL(-1). The main effect of the bacteriocin was lag phase extension from 0h, for 0 and 100 IU·mL(-1) to 8h, when 200, 400, and 500 IU·mL(-1) of nisin were used; however, log phase was not affected. Microbial growth rate was found to be exponential and around 0.11 log cfu·mL(-1)·h(-1) for all treatments. For in situ experiments, 0, 400, and 500 IU·mL(-1) of nisin were directly added to pasteurized milk previously inoculated with 5.0 log cfu·g(-1) of S. aureus. Milk, curd, and whey were analyzed to S. aureus counts. Nisin at concentration of 500 IU·mL(-1) was able to reduce S. aureus count in curd and whey, demonstrating nisin partition between both phases. Throughout storage at 4°C, S. aureus count increased for all treatments, but the bacterial grew slower when nisin was added in both concentrations, maintaining S. aureus count about 1.5 log cycles lower than the control, despite abusive initial S. aureus count. Therefore, nisin seems to play an important role in reducing S. aureus initial count in cheese made with highly contaminated milk. Nisin showed potential to be used as an additional, important hurdle to improve Minas Frescal cheese safety, without replacing good manufacturing practices. PMID:25981063

  7. Effects of nisin on Staphylococcus aureus count and physicochemical properties of Minas Frescal cheese.

    PubMed

    Felicio, Bruna A; Pinto, Maximiliano S; Oliveira, Francielly S; Lempk, Marcus W; Pires, Ana Clarissa S; Lelis, Carini A

    2015-07-01

    The aim of this work was to evaluate the effects of nisin on in vitro and in situ Staphylococcus aureus counts. For in vitro experiment, milk was inoculated with 5.0 log cfu·mL(-1) of S. aureus and nisin was added at concentrations of 0, 100, 200, 400, and 500 IU mL(-1). The main effect of the bacteriocin was lag phase extension from 0h, for 0 and 100 IU·mL(-1) to 8h, when 200, 400, and 500 IU·mL(-1) of nisin were used; however, log phase was not affected. Microbial growth rate was found to be exponential and around 0.11 log cfu·mL(-1)·h(-1) for all treatments. For in situ experiments, 0, 400, and 500 IU·mL(-1) of nisin were directly added to pasteurized milk previously inoculated with 5.0 log cfu·g(-1) of S. aureus. Milk, curd, and whey were analyzed to S. aureus counts. Nisin at concentration of 500 IU·mL(-1) was able to reduce S. aureus count in curd and whey, demonstrating nisin partition between both phases. Throughout storage at 4°C, S. aureus count increased for all treatments, but the bacterial grew slower when nisin was added in both concentrations, maintaining S. aureus count about 1.5 log cycles lower than the control, despite abusive initial S. aureus count. Therefore, nisin seems to play an important role in reducing S. aureus initial count in cheese made with highly contaminated milk. Nisin showed potential to be used as an additional, important hurdle to improve Minas Frescal cheese safety, without replacing good manufacturing practices.

  8. Microbiological safety of Minas Frescal Cheese (MFC) and tracking the contamination of Escherichia coli and Staphylococcus aureus in MFC processing.

    PubMed

    Freitas, Rosangela; Brito, Maria Aparecida Vasconcelos Paiva; Nero, Luís Augusto; de Carvalho, Antonio Fernandes

    2013-11-01

    Minas Frescal cheese (MFC) is a traditional food produced and consumed in Brazil, characterized by its soft texture, low sodium, and high moisture content. This study characterized the microbiological contamination by coliforms, Escherichia coli and Staphylococcus aureus, in 99 MFC samples obtained in retail sale and produced by three distinct industrial procedures. Dairy processors were selected to investigate the key points of E. coli and S. aureus contamination during cheese processing. MFC samples produced by the addition of lactic culture presented higher counts of coliforms and E. coli, when compared to other samples (p<0.05). MFC samples produced by the addition of rennet alone presented higher counts of S. aureus when compared to other samples (p<0.05). Fourteen of 19 MFC samples produced by the addition of lactic culture presented E. coli counts higher than 5 × 10(2) colon-forming units/g. The processing steps after pasteurization were identified as the main sources of E. coli and S. aureus contamination of MFC. Based on the results, MFC was characterized as a potential hazard for consumers due to the high frequency of samples contaminated with E. coli and S. aureus counts in noncompliance with Brazilian standards for sanitary quality and safety.

  9. Fatty acid profiles of milk and Minas frescal cheese from lactating grazed cows supplemented with peanut cake.

    PubMed

    Cerutti, Weiler Giacomazza; Viegas, Julio; Barbosa, Analívia Martins; Oliveira, Ronaldo Lopes; Dias, Carina Anunciação; Costa, Emellinne Souza; Nornberg, José Laerte; de Carvalho, Gleidson Giordano Pinto; Bezerra, Leilson Rocha; Silveira, Alisson Minozzo

    2016-02-01

    Milk and Minas frescal cheese were evaluated from crossbred Holstein × Gir cows that were fed diets enriched with 0, 33, 66 and 100% inclusion levels of palm kernel cake in a concentrated supplement in replace of soybean meal. Eight crossbred lactating cows were distributed (four animals × four treatments × four periods) in the experimental design of double 4 × 4 Latin squares. The capric (C : 10, P = 0.0270), undecylic (C : 11, P = 0.0134), and lauric (C : 12, P = 0.0342) saturated fatty acid concentrations and CLA (C18 : 2c9t11, P = 0.0164) of the milk fat decreased linearly with an increasing percentage of peanut cake in the diet. The increased peanut cake content (100%) in the diet was associated with a linear decrease in C : 10 (P = 0.0447), C : 12 (P = 0.0002), mirystic (C : 14, P 0.05) ratios were not influenced by the different peanut cake levels. The inclusion of up to 100% peanut cake as a substitution for soybean meal in the concentrate of grazing lactating cows resulted in changes in the nutritional quality of their milk products, as indicated by the increase in polyunsaturated fatty acids and the decrease of saturated fatty acids (lauric, myristic, and palmitic).

  10. Antibiotic resistance versus antimicrobial substances production by gram-negative foodborne pathogens isolated from minas frescal cheese: heads or tails?

    PubMed

    Damaceno, Hugo Figueiredo Botelho; de Freitas J, Claudinei Vieira; Marinho, Iuri Lourenço; Cupertino, Thomaz Rocha; Costa, Leonardo Emanuel de Oliveira; Nascimento, Janaína dos Santos

    2015-04-01

    In this study, 15 Gram-negative isolates from Minas Frescal cheese sold in commercial establishments in Rio de Janeiro, Brazil, were able to produce antimicrobial substances (AMSs). Seven, four, two, one, and one isolates identified as Yersinia, Acinetobacter, Enterobacter, Escherichia, and Hafnia genera, respectively, were considered potentially pathogenic. All 15 AMS(+) isolates were resistant to at least 1 antibiotic; however, 7 strains presented resistance to at least 3 antibiotics from different classes, exhibiting multiresistance profiles. The strains were also subjected to plasmid profile analysis. All isolates presented different plasmid forms with most ranging in size from 1 to 10 kb. Activity against various pathogens associated with food was tested and all 15 AMS(+) showed the same activity spectrum, inhibiting all Escherichia coli and Salmonella strains that were tested. Although restricted, the action spectrum of AMS-producing strains is extremely relevant to the food industry because Gram-negative bacteria such as E. coli and Salmonella spp. are most often associated with foodborne illnesses. The findings of this study reveal that even AMS produced by pathogens can have potential applications against other foodborne pathogens. PMID:25622265

  11. Fatty acid profiles of milk and Minas frescal cheese from lactating grazed cows supplemented with peanut cake.

    PubMed

    Cerutti, Weiler Giacomazza; Viegas, Julio; Barbosa, Analívia Martins; Oliveira, Ronaldo Lopes; Dias, Carina Anunciação; Costa, Emellinne Souza; Nornberg, José Laerte; de Carvalho, Gleidson Giordano Pinto; Bezerra, Leilson Rocha; Silveira, Alisson Minozzo

    2016-02-01

    Milk and Minas frescal cheese were evaluated from crossbred Holstein × Gir cows that were fed diets enriched with 0, 33, 66 and 100% inclusion levels of palm kernel cake in a concentrated supplement in replace of soybean meal. Eight crossbred lactating cows were distributed (four animals × four treatments × four periods) in the experimental design of double 4 × 4 Latin squares. The capric (C : 10, P = 0.0270), undecylic (C : 11, P = 0.0134), and lauric (C : 12, P = 0.0342) saturated fatty acid concentrations and CLA (C18 : 2c9t11, P = 0.0164) of the milk fat decreased linearly with an increasing percentage of peanut cake in the diet. The increased peanut cake content (100%) in the diet was associated with a linear decrease in C : 10 (P = 0.0447), C : 12 (P = 0.0002), mirystic (C : 14, P 0.05) ratios were not influenced by the different peanut cake levels. The inclusion of up to 100% peanut cake as a substitution for soybean meal in the concentrate of grazing lactating cows resulted in changes in the nutritional quality of their milk products, as indicated by the increase in polyunsaturated fatty acids and the decrease of saturated fatty acids (lauric, myristic, and palmitic). PMID:26610695

  12. Identification and molecular phylogeny of coagulase-negative staphylococci isolates from Minas Frescal cheese in southeastern Brazil: Superantigenic toxin production and antibiotic resistance.

    PubMed

    Casaes Nunes, Raquel Soares; Pires de Souza, Camilla; Pereira, Karen Signori; Del Aguila, Eduardo Mere; Flosi Paschoalin, Vânia Margaret

    2016-04-01

    Minas Frescal is a typical Brazilian fresh cheese and one of the most popular dairy products in the country. This white soft, semiskimmed, nonripened cheese with high moisture content is obtained by enzymatic coagulation of cow milk using calf rennet or coagulants, usually in industrial dairy plants, but is also manufactured in small farms. Contamination of Minas Frescal by several staphylococci has been frequently reported. Coagulase-negative staphylococci (CNS) strains are maybe the most harmful, as they are able to produce heat-stable enterotoxins with super antigenic activities in food matrices, especially in dairy products such as soft cheeses. The aim of the present study was to investigate the presence of CNS strains in Minas Frescal marketed in southeastern Brazil concerning the risk of staphylococci food poisoning by the consumption of improperly manufactured cheese and the possibility of these food matrices being a reservoir of staphylococcal resistance to antimicrobials. Ten distinct CNS strains were found in 6 cheeses from distinct brands. The most frequent species were Staphylococcus saprophyticus (40%), Staphylococcus xylosus (30%), Staphylococcus sciuri (20%), and Staphylococcus piscifermentans (10%). Three strains were identified to the Staphylococcus genera. Three major species groups composed of 3 refined clusters were grouped by phylogenetic analyses with similarities over to 90%. All CNS strains carried multiple enterotoxin genes, with high incidence of sea and seb (90 and 70%, respectively), followed by sec/see, seh/sei, and sed with intermediate incidence (60, 50, and 40%, respectively), and, finally, seg/selk/selq/selr and selu with the lowest incidence (20 and 10%, respectively). Real-time reverse transcription PCR and ELISA assays confirmed the enteroxigenic character of the CNS strains, which expressed and produced the enterotoxins in vitro. The CNS strains showed multiresistance to antimicrobial agents such as β-lactams, vancomycin, and

  13. PCR and ELISA (VIDAS ECO O157(®)) Escherichia coli O157:H7 identification in Minas Frescal cheese commercialized in Goiânia, GO.

    PubMed

    Carvalho, Rosangela Nunes; de Oliveira, Antonio Nonato; de Mesquita, Albenones José; Minafra e Rezende, Cíntia Silva; de Mesquita, Adriano Queiroz; Romero, Rolando Alfredo Mazzoni

    2014-01-01

    Escherichia coli O157:H7 has been incriminated in food poisoning outbreaks and sporadic cases of hemorrhagic colitis and hemolytic uremic syndrome in many countries. Considering the high susceptibility of Minas Frescal cheese to contamination by E. coli O157:H7, the aim of this study was to determine the occurrence of this pathogen through PCR (Polymerase Chain Reaction) and ELISA (VIDAS ECO O157(®), bioMérieux, Lyon, France) test. Thirty cheese samples manufactured by artisan farmhouse producers were collected from open-air markets in Goiânia and thirty from industries under Federal Inspection located in Goiás State which trade their products in supermarkets in Goiânia. E. coli O157:H7 was detected in 6.67% samples collected in open air markets using ELISA, and 23,33% with PCR. The pathogen was not detected in samples from industries under Federal Inspection.

  14. PCR and ELISA (VIDAS ECO O157®) Escherichia coli O157:H7 identification in Minas Frescal cheese commercialized in Goiânia, GO

    PubMed Central

    Carvalho, Rosangela Nunes; de Oliveira, Antonio Nonato; de Mesquita, Albenones José; Minafra e Rezende, Cíntia Silva; de Mesquita, Adriano Queiroz; Romero, Rolando Alfredo Mazzoni

    2014-01-01

    Escherichia coli O157:H7 has been incriminated in food poisoning outbreaks and sporadic cases of hemorrhagic colitis and hemolytic uremic syndrome in many countries. Considering the high susceptibility of Minas Frescal cheese to contamination by E. coli O157:H7, the aim of this study was to determine the occurrence of this pathogen through PCR (Polymerase Chain Reaction) and ELISA (VIDAS ECO O157®, bioMérieux, Lyon, France) test. Thirty cheese samples manufactured by artisan farmhouse producers were collected from open-air markets in Goiânia and thirty from industries under Federal Inspection located in Goiás State which trade their products in supermarkets in Goiânia. E. coli O157:H7 was detected in 6.67% samples collected in open air markets using ELISA, and 23,33% with PCR. The pathogen was not detected in samples from industries under Federal Inspection. PMID:24948907

  15. Sensory analysis and species-specific PCR detect bovine milk adulteration of frescal (fresh) goat cheese.

    PubMed

    Golinelli, L P; Carvalho, A C; Casaes, R S; Lopes, C S C; Deliza, R; Paschoalin, V M F; Silva, J T

    2014-11-01

    The Brazilian market for dairy products made from goat milk is increasing despite the seasonality of production and naturally small milk production per animal, factors that result in high-priced products and encourage fraud. In Brazil, no official analytical method exists for detecting adulteration of goat dairy products with cow milk. The aim of this study was to design a strategy to investigate the adulteration of frescal (fresh) goat cheeses available in the Rio de Janeiro retail market, combining analysis of cheese composition and the perception of adulteration by consumers. Commercial goat cheeses were tested by using a duplex PCR assay previously designed to authenticate cheeses, by targeting the mitochondrial 12S ribosomal RNA genes of both species simultaneously. The PCR test was able to detect 0.5% (vol/vol) cow milk added during goat cheese formulation. The analysis of 20 locally produced goat cheeses (20 lots of 4 brands) showed that all were adulterated with cow milk, even though the labels did not indicate the addition of cow milk. To estimate the ability of consumers to perceive the fraudulent addition of cow milk, a triangle test was performed, in which cheeses formulated with several different proportions of goat and cow milk were offered to 102 regular consumers of cheese. Detection threshold analysis indicated that almost half of the consumers were able to perceive adulteration at 10% (vol/vol) cow milk. Effective actions must be implemented to regulate the market for goat dairy products in Brazil, considering the rights and choices of consumers with respect to their particular requirements for diet and health, preference, and cost.

  16. Sensory analysis and species-specific PCR detect bovine milk adulteration of frescal (fresh) goat cheese.

    PubMed

    Golinelli, L P; Carvalho, A C; Casaes, R S; Lopes, C S C; Deliza, R; Paschoalin, V M F; Silva, J T

    2014-11-01

    The Brazilian market for dairy products made from goat milk is increasing despite the seasonality of production and naturally small milk production per animal, factors that result in high-priced products and encourage fraud. In Brazil, no official analytical method exists for detecting adulteration of goat dairy products with cow milk. The aim of this study was to design a strategy to investigate the adulteration of frescal (fresh) goat cheeses available in the Rio de Janeiro retail market, combining analysis of cheese composition and the perception of adulteration by consumers. Commercial goat cheeses were tested by using a duplex PCR assay previously designed to authenticate cheeses, by targeting the mitochondrial 12S ribosomal RNA genes of both species simultaneously. The PCR test was able to detect 0.5% (vol/vol) cow milk added during goat cheese formulation. The analysis of 20 locally produced goat cheeses (20 lots of 4 brands) showed that all were adulterated with cow milk, even though the labels did not indicate the addition of cow milk. To estimate the ability of consumers to perceive the fraudulent addition of cow milk, a triangle test was performed, in which cheeses formulated with several different proportions of goat and cow milk were offered to 102 regular consumers of cheese. Detection threshold analysis indicated that almost half of the consumers were able to perceive adulteration at 10% (vol/vol) cow milk. Effective actions must be implemented to regulate the market for goat dairy products in Brazil, considering the rights and choices of consumers with respect to their particular requirements for diet and health, preference, and cost. PMID:25200782

  17. Isolation of bacteriocin-producing staphylococci from Brazilian cheese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 285 staphylococcus isolates were recovered from Minas Frescal cheese, a traditional Brazilian fresh cheese made with pasteurized milk, and screened for the production of antibacterial substances. The staphylococci were isolated from 50 lots of commercial cheese and cultured on mannitol s...

  18. Survey of aflatoxin M₁ in cheese from the North-east region of São Paulo, Brazil.

    PubMed

    Oliveira, C A F; Franco, R C; Rosim, R E; Fernandes, A M

    2011-01-01

    In the present study, 24 samples of Minas Frescal cheese and 24 samples of Minas Padrão cheese produced in the North-east region of the state of São Paulo, Brazil, were analysed for aflatoxin M₁ (AFM₁) by high-performance liquid chromatography (HPLC) between March and August 2008. AFM₁ was detected in 13 (27.1%) samples at concentrations ranging from 0.037 to 0.313 ng g⁻¹. The mean concentrations of AFM₁ in positive samples of Minas Frescal and Minas Padrão cheese were 0.142 ± 0.118 and 0.118 ± 0.054 ng g⁻¹, respectively. It is concluded that the incidence of AFM₁ in Minas cheese may contribute to an increase in the overall ingestion of aflatoxins in the diet, hence indicating the need for the adoption of a tolerance limit for AFM₁ in cheese in Brazil.

  19. Determining the minimum ripening time of artisanal Minas cheese, a traditional Brazilian cheese.

    PubMed

    Martins, José M; Galinari, Éder; Pimentel-Filho, Natan J; Ribeiro, José I; Furtado, Mauro M; Ferreira, Célia L L F

    2015-03-01

    Physical, physicochemical, and microbiological changes were monitored in 256 samples of artisanal Minas cheese from eight producers from Serro region (Minas Gerais, Brazil) for 64 days of ripening to determine the minimum ripening time for the cheese to reach the safe microbiological limits established by Brazilian legislation. The cheeses were produced between dry season (April-September) and rainy season (October-March); 128 cheeses were ripened at room temperature (25 ± 4 °C), and 128 were ripened under refrigeration (8 ± 1 °C), as a control. No Listeria monocytogenes was found, but one cheese under refrigeration had Salmonella at first 15 days of ripening. However, after 22 days, the pathogen was not detected. Seventeen days was the minimum ripening time at room temperature to reduce at safe limits of total coliforms > 1000 cfu.g (-1) ), Escherichia coli and Staphylococcus aureus (> 100 cfu.g (-1) ) in both periods of manufacture. Otherwise under refrigeration, as expected, the minimum ripening time was longer, 33 days in the dry season and 63 days in the rainy season. To sum up, we suggest that the ripening of artisanal Minas cheese be done at room temperature, since this condition shortens the time needed to reach the microbiological quality that falls within the safety parameters required by Brazilian law, and at the same time maintain the appearance and flavor characteristics of this traditional cheese.

  20. Determining the minimum ripening time of artisanal Minas cheese, a traditional Brazilian cheese

    PubMed Central

    Martins, José M.; Galinari, Éder; Pimentel-Filho, Natan J.; Ribeiro, José I.; Furtado, Mauro M.; Ferreira, Célia L.L.F.

    2015-01-01

    Physical, physicochemical, and microbiological changes were monitored in 256 samples of artisanal Minas cheese from eight producers from Serro region (Minas Gerais, Brazil) for 64 days of ripening to determine the minimum ripening time for the cheese to reach the safe microbiological limits established by Brazilian legislation. The cheeses were produced between dry season (April–September) and rainy season (October–March); 128 cheeses were ripened at room temperature (25 ± 4 °C), and 128 were ripened under refrigeration (8 ± 1 °C), as a control. No Listeria monocytogenes was found, but one cheese under refrigeration had Salmonella at first 15 days of ripening. However, after 22 days, the pathogen was not detected. Seventeen days was the minimum ripening time at room temperature to reduce at safe limits of total coliforms > 1000 cfu.g −1 ), Escherichia coli and Staphylococcus aureus (> 100 cfu.g −1 ) in both periods of manufacture. Otherwise under refrigeration, as expected, the minimum ripening time was longer, 33 days in the dry season and 63 days in the rainy season. To sum up, we suggest that the ripening of artisanal Minas cheese be done at room temperature, since this condition shortens the time needed to reach the microbiological quality that falls within the safety parameters required by Brazilian law, and at the same time maintain the appearance and flavor characteristics of this traditional cheese. PMID:26221111

  1. Determining the minimum ripening time of artisanal Minas cheese, a traditional Brazilian cheese.

    PubMed

    Martins, José M; Galinari, Éder; Pimentel-Filho, Natan J; Ribeiro, José I; Furtado, Mauro M; Ferreira, Célia L L F

    2015-03-01

    Physical, physicochemical, and microbiological changes were monitored in 256 samples of artisanal Minas cheese from eight producers from Serro region (Minas Gerais, Brazil) for 64 days of ripening to determine the minimum ripening time for the cheese to reach the safe microbiological limits established by Brazilian legislation. The cheeses were produced between dry season (April-September) and rainy season (October-March); 128 cheeses were ripened at room temperature (25 ± 4 °C), and 128 were ripened under refrigeration (8 ± 1 °C), as a control. No Listeria monocytogenes was found, but one cheese under refrigeration had Salmonella at first 15 days of ripening. However, after 22 days, the pathogen was not detected. Seventeen days was the minimum ripening time at room temperature to reduce at safe limits of total coliforms > 1000 cfu.g (-1) ), Escherichia coli and Staphylococcus aureus (> 100 cfu.g (-1) ) in both periods of manufacture. Otherwise under refrigeration, as expected, the minimum ripening time was longer, 33 days in the dry season and 63 days in the rainy season. To sum up, we suggest that the ripening of artisanal Minas cheese be done at room temperature, since this condition shortens the time needed to reach the microbiological quality that falls within the safety parameters required by Brazilian law, and at the same time maintain the appearance and flavor characteristics of this traditional cheese. PMID:26221111

  2. Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05.

    PubMed

    Perin, Luana Martins; Dal Bello, Barbara; Belviso, Simona; Zeppa, Giuseppe; de Carvalho, Antônio Fernandes; Cocolin, Luca; Nero, Luís Augusto

    2015-12-01

    Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BAs) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (p<0.05). The interaction of nisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining that their amounts in the cheeses were maintained at acceptable levels for human consumption.

  3. Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05.

    PubMed

    Perin, Luana Martins; Dal Bello, Barbara; Belviso, Simona; Zeppa, Giuseppe; de Carvalho, Antônio Fernandes; Cocolin, Luca; Nero, Luís Augusto

    2015-12-01

    Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BAs) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (p<0.05). The interaction of nisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining that their amounts in the cheeses were maintained at acceptable levels for human consumption. PMID:26310130

  4. Performance of two alternative methods for Listeria detection throughout Serro Minas cheese ripening.

    PubMed

    Mata, Gardênia Márcia Silva Campos; Martins, Evandro; Machado, Solimar Gonçalves; Pinto, Maximiliano Soares; de Carvalho, Antônio Fernandes; Vanetti, Maria Cristina Dantas

    2016-01-01

    The ability of pathogens to survive cheese ripening is a food-security concern. Therefore, this study aimed to evaluate the performance of two alternative methods of analysis of Listeria during the ripening of artisanal Minas cheese. These methods were tested and compared with the conventional method: Lateral Flow System™, in cheeses produced on laboratory scale using raw milk collected from different farms and inoculated with Listeria innocua; and VIDAS(®)-LMO, in cheese samples collected from different manufacturers in Serro, Minas Gerais, Brazil. These samples were also characterized in terms of lactic acid bacteria, coliforms and physical-chemical analysis. In the inoculated samples, L. innocua was detected by Lateral Flow System™ method with 33% false-negative and 68% accuracy results. L. innocua was only detected in the inoculated samples by the conventional method at 60-days of cheese ripening. L. monocytogenes was not detected by the conventional and the VIDAS(®)-LMO methods in cheese samples collected from different manufacturers, which impairs evaluating the performance of this alternative method. We concluded that the conventional method provided a better recovery of L. innocua throughout cheese ripening, being able to detect L. innocua at 60-day, aging period which is required by the current legislation. PMID:27268116

  5. Nutritional and sensory characteristics of Minas fresh cheese made with goat milk, cow milk, or a mixture of both.

    PubMed

    Sant'Ana, A M S; Bezerril, F F; Madruga, M S; Batista, A S M; Magnani, M; Souza, E L; Queiroga, R C R E

    2013-01-01

    This study aimed to assess and compare the nutritional, technological, and sensory characteristics of Minas fresh cheese made with goat milk, cow milk, or a mixture of the two stored in cold conditions for 21d. The yield and centesimal composition of the cheeses were not affected by the type of milk used in their preparation. Reductions were observed in the moisture content, pH, proteolysis index, and instrumental hardness; moreover, increases were observed in the syneresis, acidity index, and depth of proteolysis index in all cheeses. The percentages of caprylic, capric, oleic, and linoleic fatty acids were higher in goat milk cheese and cheese made with a mixture of goat and cow milk compared with cow milk cheese, and a sensory evaluation revealed differences in color, flavor, and aroma between the cheeses. The preparation of Minas fresh cheese with a mixture of goat and cow milk can be a viable alternative for dairy products in the market that can be characterized as high-quality products that meet consumer demands.

  6. Temporal dominance of sensations sensory profile and drivers of liking of artisanal Minas cheese produced in the region of Serra da Canastra, Brazil.

    PubMed

    Bemfeito, Raquel M; Rodrigues, Jéssica F; Silva, Jonas G E; Abreu, Luiz R

    2016-10-01

    The Serra da Canastra region, located in southwestern Minas Gerais, Brazil, is recognized worldwide for its tradition of producing artisanal cheeses. However, as production is done by hand, great variability exists in the characteristics of artisanal Minas cheese. Thus, it is important to characterize the sensory profile of these products and verify the quality attributes that lead to their acceptance. Therefore, this study aimed to characterize the dynamic sensorial profile of artisanal Minas cheese produced in the Serra da Canastra region through temporal dominance of sensations and sensory acceptance tests and verify the attributes that lead to product quality. We observed that the texture and flavor profile varied among the evaluated artisanal Minas cheeses from Serra da Canastra, some cheeses being more characterized by creamy and soft or hard and firm sensations, whereas others had high dominance rates for crumbly texture. In relation to flavor, salty and bitter tastes were dominant in most cheeses, some also being characterized by a sour taste, and others by buttery and rancid attributes, which indicates a lack of product standardization. However, all samples obtained scores between 6 (liked slightly) and 7 (liked moderately), indicating good acceptability in relation to the texture and flavor of the evaluated cheeses. Moreover, it is possible to infer that creamy and soft or hard and firm are positive attributes for cheese texture, and bitter, buttery, salty, and acid taste drive cheese acceptance. This study provides important information for product standardization, quality improvement, and process origin indications, besides providing quality attributes that meet consumer desires.

  7. Temporal dominance of sensations sensory profile and drivers of liking of artisanal Minas cheese produced in the region of Serra da Canastra, Brazil.

    PubMed

    Bemfeito, Raquel M; Rodrigues, Jéssica F; Silva, Jonas G E; Abreu, Luiz R

    2016-10-01

    The Serra da Canastra region, located in southwestern Minas Gerais, Brazil, is recognized worldwide for its tradition of producing artisanal cheeses. However, as production is done by hand, great variability exists in the characteristics of artisanal Minas cheese. Thus, it is important to characterize the sensory profile of these products and verify the quality attributes that lead to their acceptance. Therefore, this study aimed to characterize the dynamic sensorial profile of artisanal Minas cheese produced in the Serra da Canastra region through temporal dominance of sensations and sensory acceptance tests and verify the attributes that lead to product quality. We observed that the texture and flavor profile varied among the evaluated artisanal Minas cheeses from Serra da Canastra, some cheeses being more characterized by creamy and soft or hard and firm sensations, whereas others had high dominance rates for crumbly texture. In relation to flavor, salty and bitter tastes were dominant in most cheeses, some also being characterized by a sour taste, and others by buttery and rancid attributes, which indicates a lack of product standardization. However, all samples obtained scores between 6 (liked slightly) and 7 (liked moderately), indicating good acceptability in relation to the texture and flavor of the evaluated cheeses. Moreover, it is possible to infer that creamy and soft or hard and firm are positive attributes for cheese texture, and bitter, buttery, salty, and acid taste drive cheese acceptance. This study provides important information for product standardization, quality improvement, and process origin indications, besides providing quality attributes that meet consumer desires. PMID:27497904

  8. Physico-chemical changes during storage and sensory acceptance of low sodium probiotic Minas cheese added with arginine.

    PubMed

    Felicio, T L; Esmerino, E A; Vidal, V A S; Cappato, L P; Garcia, R K A; Cavalcanti, R N; Freitas, M Q; Conte Junior, C A; Padilha, M C; Silva, M C; Raices, R S L; Arellano, D B; Bollini, H M A; Pollonio, M A R; Cruz, A G

    2016-04-01

    The partial substitution of sodium chloride by potassium chloride (0%, 25%, and 50%) and addition of arginine (1% w/w) in probiotic Minas cheese was investigated. Microbiological (Lactococcus lactis and Lactobacillus acidophilus counts, and functionality of the prebiotics L. acidophilus), physicochemical (pH, proteolysis, organic acids, fatty acids, and volatile profiles), rheological (uniaxial compression) and sensory (hedonic test with 100 consumers) characterizations were carried out. The sodium reduction and addition of arginine did not constitute a hurdle to lactic and probiotic bacteria survival, with presented values of about 9 log CFU/g, ranging from 7.11 to 9.21 log CFU/g, respectively. In addition, lower pH values, higher proteolysis, and a decrease in toughness, elasticity and firmness were observed, as well as an increase in lactic, citric, and acetic acid contents. In contrast, no change was observed in the fatty acid profile. With respect to the sensory acceptance, the probiotic low-sodium Minas cheese presented scores above 6.00 (liked slightly) for the attributes flavor and overall acceptance. The addition of arginine can be a potential alternative for the development of probiotic dairy products with reduced sodium content.

  9. Application of bacteriocinogenic Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch in the control of Listeria monocytogenes in fresh Minas cheese.

    PubMed

    Vera Pingitore, Esteban; Todorov, Svetoslav Dimitrov; Sesma, Fernando; Franco, Bernadette Dora Gombossy de Melo

    2012-10-01

    Several strains of Enterococcus spp. are capable of producing bacteriocins with antimicrobial activity against important bacterial pathogens in dairy products. In this study, the bacteriocins produced by two Enterococcus strains (Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch), isolated from cheeses, were characterized and tested for their capability to control growth of Listeria monocytogenes 426 in experimentally contaminated fresh Minas cheese during refrigerated storage. Both strains were active against a variety of pathogenic and non-pathogenic microorganisms and bacteriocin absorption to various L. monocytogenes, Enterococcus faecalis ATCC 19443 and Lactobacillus sakei ATCC 15521 varied according to the strain and the testing conditions (pH, temperature, presence of salts and surfactants). Growth of L. monocytogenes 426 was inhibited in cheeses containing E. mundtii CRL35 up to 12 days at 8 °C, evidencing a bacteriostatic effect. E. faecium ST88Ch was less effective, as the bacteriostatic affect occurred only after 6 days at 8 °C. In cheeses containing nisin (12.5 mg/kg), less than one log reduction was observed. This research underlines the potential application of E. mundtii CRL35 in the control of L. monocytogenes in Minas cheese.

  10. Effect of a probiotic mixed culture on texture profile and sensory performance of Minas fresh cheese in comparison with the traditional products.

    PubMed

    Buriti, Flávia C A; Okazaki, Tania Y; Alegro, João H A; Saad, Susana M I

    2007-06-01

    The effect of a mixed probiotic culture on instrumental texture, and on sensorial and related properties of Minas fresh cheese during refrigerated storage was investigated. Three cheese-making trials were prepared: T1, with the traditional type O starter culture (Lactococcus lactis subsp. lactis + L. lactis subsp. cremoris), T2 with only lactic acid and T3, with lactic acid and the probiotic ABT culture (Lactobacillus acidophilus La-5 + Bifidobacterium animalis Bb-12 + Streptococcus thermophilus). Instrumental texture profile analysis and related properties were monitored during storage for up to 21 days. Lb. acidophilus and B. animalis were present in high levels throughout storage of cheeses T3, above 6 log cfu.g(-1), threshold required for probiotic activity, and stimulation of the La-5 growth was observed. Cheeses with added probiotic ABT culture, as well as those made adding lactic acid only, showed to be less brittle and with more favorable sensorial features, due to higher pH values. Results indicated that the use of probiotic ABT culture complementary to lactic acid for the purpose of substituting the type O (Lc. lactis subsp. lactis + Lc. lactis subsp. cremoris) culture, traditionally employed for Minas cheese production, is advantageous. PMID:17992983

  11. Polymerase chain reaction detection of enterotoxins genes in coagulase-negative staphylococci isolated from Brazilian Minas cheese.

    PubMed

    Rall, Vera Lúcia Mores; Sforcin, José Maurício; de Deus, Maria Fernanda Ramos; de Sousa, Daniel Casaes; Camargo, Carlos Henrique; Godinho, Natália Cristina; Galindo, Luciane Almeida; Soares, Taíssa Cook Siqueira; Araújo, João Pessoa

    2010-09-01

    For a long time, Staphylococcus aureus has been always thought to be the only pathogenic species among Staphylococcus, while coagulase-negative staphylococci (CNS) were classified as contaminant agents. However, molecular techniques have shown that these microorganisms also possess enterotoxin-encoding genes. The aim of this study was to analyze the frequency of genes for staphylococcal enterotoxins SEA, SEB, SEC, and SED in CNS strains isolated from Minas soft cheese and to assess the in vitro production of toxins. CNS were found in 65 (72.2%) samples of cheese: 23 were Staphylococcus saprophyticus, 16 Staphylococcus warneri, 10 Staphylococcus epidermidis, 9 Staphylococcus xylosus, 3 Staphylococcus haemolyticus, 2 Staphylococcus schleiferi subsp. schleiferi, and 1 each Staphylococcus capitis subsp. urealyticus and Staphylococcus caprae. Seventeen (26.2%) CNS strains had genes for enterotoxins, and sea was more frequently found (18.5%), followed by sec in three and seb in two strains, whereas the sed gene was not found. S. saprophyticus showed enterotoxin genes in 6 of 23 isolates, but only sea was observed. On the other hand, five strains of S. warneri showed the sea, seb, or sec gene. In spite of the presence of these enterotoxin genes, these strains did not produce enterotoxins in vitro. It is essential to understand the real role of CNS in food, and based on the presence of enterotoxin genes, CNS should not be ignored in epidemiological investigations of foodborne outbreaks.

  12. Influence of lactic acid bacteria on survival of Escherichia coli O157:H7 in inoculated Minas cheese during storage at 8.5 degrees C.

    PubMed

    Saad, S M; Vanzin, C; Oliveira, M N; Franco, B D

    2001-08-01

    Minas cheese is a typical Brazilian fresh cheese, manufactured by addition of rennin and CaCl2 to milk, followed by draining the curd. The intrinsic characteristics of this product make it favorable for growth of pathogens, including Escherichia coli O157:H7. The influence of the addition of a commercial mesophilic type O lactic culture to this product on the growth of this pathogen during storage at 8.5 degrees C was evaluated. Eight different formulations of Minas cheese were manufactured using raw or pasteurized milk and with or without salt and lactic culture. Individual portions of each formulation were transferred to sterile plastic bags and inoculated with E. coli O157:H7 to yield ca. 10(3) or 10(6) CFU/g. After blending by hand massaging the bags, samples were stored at 8.5 degrees C for up to 14 days. E. coli O157:H7 was counted after 1, 2, 7, and 14 days of storage using 3M Petrifilm Test Kit-HEC. Counts in samples without added lactic culture showed a 2-log increase in the first 24 h and remained constant during the following 14 days. Counts in samples with added lactic culture showed a 0.5-log increase in the first 24 h, followed by a decrease. These variations were statistically significant (P < 0.05). No significant variations (P > 0.05) were obtained for cheese samples manufactured with pasteurized or raw milk, with or without salt. Results indicate that the addition of type O lactic culture may be an additional safeguard to well-established good manufacturing practices and hazard analysis and critical control point programs in the control of growth of E. coli O157:H7 in Minas cheese. PMID:11510651

  13. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese

    PubMed Central

    Furtado, Danielle N.; Todorov, Svetoslav D.; Landgraf, Mariza; Destro, Maria T.; Franco, Bernadette D.G.M.

    2015-01-01

    Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB) with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain ( Lc . lactis DF4Mi), isolated from raw goat milk, was tested for control of growth of L. monocytogenes in artificially contaminated fresh Minas type goat cheese during storage under refrigeration. A bacteriostatic effect was achieved, and counts after 10 days were 3 log lower than in control cheeses with no added LAB. However, this effect did not differ significantly from that obtained with a non-bacteriocinogenic Lc. lactis strain. Addition of nisin (12.5 mg/kg) caused a rapid decrease in the number of viable L. monocytogenes in the cheeses, suggesting that further studies with the purified bacteriocin DF4Mi may open new possibilities for this strain as biopreservative in dairy products. PMID:26221109

  14. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese.

    PubMed

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2015-03-01

    Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB) with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain ( Lc . lactis DF4Mi), isolated from raw goat milk, was tested for control of growth of L. monocytogenes in artificially contaminated fresh Minas type goat cheese during storage under refrigeration. A bacteriostatic effect was achieved, and counts after 10 days were 3 log lower than in control cheeses with no added LAB. However, this effect did not differ significantly from that obtained with a non-bacteriocinogenic Lc. lactis strain. Addition of nisin (12.5 mg/kg) caused a rapid decrease in the number of viable L. monocytogenes in the cheeses, suggesting that further studies with the purified bacteriocin DF4Mi may open new possibilities for this strain as biopreservative in dairy products. PMID:26221109

  15. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese.

    PubMed

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2015-03-01

    Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB) with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain ( Lc . lactis DF4Mi), isolated from raw goat milk, was tested for control of growth of L. monocytogenes in artificially contaminated fresh Minas type goat cheese during storage under refrigeration. A bacteriostatic effect was achieved, and counts after 10 days were 3 log lower than in control cheeses with no added LAB. However, this effect did not differ significantly from that obtained with a non-bacteriocinogenic Lc. lactis strain. Addition of nisin (12.5 mg/kg) caused a rapid decrease in the number of viable L. monocytogenes in the cheeses, suggesting that further studies with the purified bacteriocin DF4Mi may open new possibilities for this strain as biopreservative in dairy products.

  16. Lactic acid microbiota identification in water, raw milk, endogenous starter culture, and fresh Minas artisanal cheese from the Campo das Vertentes region of Brazil during the dry and rainy seasons.

    PubMed

    Castro, R D; Oliveira, L G; Sant'Anna, F M; Luiz, L M P; Sandes, S H C; Silva, C I F; Silva, A M; Nunes, A C; Penna, C F A M; Souza, M R

    2016-08-01

    Minas artisanal cheese, produced in the Campo das Vertentes region of Brazil, is made from raw milk and endogenous starter cultures. Although this cheese is of great historical and socioeconomic importance, little information is available about its microbiological and physical-chemical qualities, or about its beneficial microbiota. This work was aimed at evaluating the qualities of the cheese and the components used for its production, comparing samples collected during the dry and rainy seasons. We also conducted molecular identification and isolated 50 samples of lactic acid bacteria from cheese (n=21), water (n=3), raw milk (n=9), and endogenous starter culture (n=17). The microbiological quality of the cheese, water, raw milk, and endogenous starter culture was lower during the rainy period, given the higher counts of coagulase-positive Staphylococcus and total and thermotolerant coliforms. Enterococcus faecalis was the lactic acid bacteria isolated most frequently (42.86%) in cheese samples, followed by Lactococcus lactis (28.57%) and Lactobacillus plantarum (14.29%). Lactobacillus brevis (5.88%), Enterococcus pseudoavium (5.88%), Enterococcus durans (5.88%), and Aerococcus viridans (5.88%) were isolated from endogenous starter cultures and are described for the first time in the literature. The lactic acid bacteria identified in the analyzed cheeses may inhibit undesirable microbiota and contribute to the safety and flavor of the cheese, but this needs to be evaluated in future research.

  17. Lactic acid microbiota identification in water, raw milk, endogenous starter culture, and fresh Minas artisanal cheese from the Campo das Vertentes region of Brazil during the dry and rainy seasons.

    PubMed

    Castro, R D; Oliveira, L G; Sant'Anna, F M; Luiz, L M P; Sandes, S H C; Silva, C I F; Silva, A M; Nunes, A C; Penna, C F A M; Souza, M R

    2016-08-01

    Minas artisanal cheese, produced in the Campo das Vertentes region of Brazil, is made from raw milk and endogenous starter cultures. Although this cheese is of great historical and socioeconomic importance, little information is available about its microbiological and physical-chemical qualities, or about its beneficial microbiota. This work was aimed at evaluating the qualities of the cheese and the components used for its production, comparing samples collected during the dry and rainy seasons. We also conducted molecular identification and isolated 50 samples of lactic acid bacteria from cheese (n=21), water (n=3), raw milk (n=9), and endogenous starter culture (n=17). The microbiological quality of the cheese, water, raw milk, and endogenous starter culture was lower during the rainy period, given the higher counts of coagulase-positive Staphylococcus and total and thermotolerant coliforms. Enterococcus faecalis was the lactic acid bacteria isolated most frequently (42.86%) in cheese samples, followed by Lactococcus lactis (28.57%) and Lactobacillus plantarum (14.29%). Lactobacillus brevis (5.88%), Enterococcus pseudoavium (5.88%), Enterococcus durans (5.88%), and Aerococcus viridans (5.88%) were isolated from endogenous starter cultures and are described for the first time in the literature. The lactic acid bacteria identified in the analyzed cheeses may inhibit undesirable microbiota and contribute to the safety and flavor of the cheese, but this needs to be evaluated in future research. PMID:27289151

  18. Pulsed-Field Gel Electrophoresis characterization of Listeria monocytogenes isolates from cheese manufacturing plants in São Paulo, Brazil.

    PubMed

    Barancelli, Giovana V; Camargo, Tarsila M; Gagliardi, Natália G; Porto, Ernani; Souza, Roberto A; Campioni, Fabio; Falcão, Juliana P; Hofer, Ernesto; Cruz, Adriano G; Oliveira, Carlos A F

    2014-03-01

    This study aimed to evaluate the occurrence of Listeria monocytogenes in cheese and in the environment of three small-scale dairy plants (A, B, C) located in the Northern region state of São Paulo, Brazil, and to characterize the isolates using conventional serotyping and PFGE. A total of 393 samples were collected and analyzed from October 2008 to September 2009. From these, 136 came from dairy plant A, where only L. seeligeri was isolated. In dairy plant B, 136 samples were analyzed, and L. innocua, L. seeligeri and L. welshimeri were isolated together with L. monocytogenes. In dairy plant C, 121 samples were analyzed, and L. monocytogenes and L. innocua were isolated. Cheese from dairy plants B and C were contaminated with Listeria spp, with L. innocua being found in Minas frescal cheese from both dairy plants, and L. innocua and L. monocytogenes in Prato cheese from dairy plant C. A total of 85 L. monocytogenes isolates were classified in 3 serotypes: 1/2b, 1/2c, and 4b, with predominance of serotype 4b in both dairy plants. The 85 isolates found in the dairy plants were characterized by genomic macrorestriction using ApaI and AscI with Pulsed Field Gel Electrophoresis (PFGE). Macrorestriction yielded 30 different pulsotypes. The presence of indistinguishable profiles repeatedly isolated during a 12-month period indicated the persistence of L. monocytogenes in dairy plants B and C, which were more than 100 km away from each other. Brine used in dairy plant C contained more than one L. monocytogenes lineage. The routes of contamination were identified in plants B and C, and highlighted the importance of using molecular techniques and serotyping to track L. monocytogenes sources of contamination, distribution, and routes of contamination in dairy plants, and to develop improved control strategies for L. monocytogenes in dairy plants and dairy products.

  19. Identification of the bacterial community responsible for traditional fermentation during sour cassava starch, cachaça and minas cheese production using culture-independent 16s rRNA gene sequence analysis

    PubMed Central

    Lacerda, Inayara C. A.; Gomes, Fátima C. O.; Borelli, Beatriz M.; Faria Jr., César L. L.; Franco, Gloria R.; Mourão, Marina M.; Morais, Paula B.; Rosa, Carlos A.

    2011-01-01

    We used a cultivation-independent, clone library-based 16S rRNA gene sequence analysis to identify bacterial communities present during traditional fermentation in sour cassava starch, cachaça and cheese production in Brazil. Partial 16S rRNA gene clone sequences from sour cassava starch samples collected on day five of the fermentation process indicated that Leuconostoc citreum was the most prevalent species, representing 47.6% of the clones. After 27 days of fermentation, clones (GenBank accession numbers GQ999786 and GQ999788) related to unculturable bacteria were the most prevalent, representing 43.8% of the clones from the bacterial community analyzed. The clone represented by the sequence GQ999786 was the most prevalent at the end of the fermentation period. The majority of clones obtained from cachaça samples during the fermentation of sugar cane juice were from the genus Lactobacillus. Lactobacillus nagelli was the most prevalent at the beginning of the fermentation process, representing 76.9% of the clones analyzed. After 21 days, Lactobacillus harbinensis was the most prevalent species, representing 75% of the total clones. At the end of the fermentation period, Lactobacillus buchneri was the most prevalent species, representing 57.9% of the total clones. In the Minas cheese samples, Lactococcus lactis was the most prevalent species after seven days of ripening. After 60 days of ripening, Streptococcus salivarius was the most prevalent species. Our data show that these three fermentation processes are conducted by a succession of bacterial species, of which lactic acid bacteria are the most prevalent. PMID:24031676

  20. Artisanal cheese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artisanal cheese, which is handmade in small batches, differs from mass-produced cheese because of the milk and procedures used. Artisanal cheese is made from the milk of pasture-fed cows, sheep, or goats instead of conventionally-fed cows, and is affected by plants eaten, stage of lactation, and s...

  1. 21 CFR 133.162 - Neufchatel cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... optional ingredients. (i) Salt. (ii) Cheese whey, concentrated cheese whey, dried cheese whey, or reconstituted cheese whey prepared by addition of water to concentrated cheese whey or dried cheese whey....

  2. 21 CFR 133.133 - Cream cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (i) Salt. (ii) Cheese whey, concentrated cheese whey, dried cheese whey, or reconstituted cheese whey prepared by addition of water to concentrated cheese whey or dried cheese whey. (iii) Stabilizers, in...

  3. The science of cheese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The book describes the science of cheese in everyday language. The first chapters cover milk, mammals, and principles of cheesemaking and aging, along with lactose intolerance and raw milk cheese. Succeeding chapters deal with a category of cheese along with a class of compounds associated with it...

  4. 7 CFR 58.714 - Cream cheese, Neufchatel cheese.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Cream cheese, Neufchatel cheese. 58.714 Section 58.714 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.714 Cream cheese, Neufchatel cheese. These cheeses when mixed with other foods, or used...

  5. 7 CFR 58.714 - Cream cheese, Neufchatel cheese.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cream cheese, Neufchatel cheese. 58.714 Section 58.714 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.714 Cream cheese, Neufchatel cheese. These cheeses when mixed with other foods, or used...

  6. 7 CFR 58.714 - Cream cheese, Neufchatel cheese.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cream cheese, Neufchatel cheese. 58.714 Section 58.714 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.714 Cream cheese, Neufchatel cheese. These cheeses when mixed with other foods, or used...

  7. 7 CFR 58.714 - Cream cheese, Neufchatel cheese.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cream cheese, Neufchatel cheese. 58.714 Section 58.714 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.714 Cream cheese, Neufchatel cheese. These cheeses when mixed with other foods, or used...

  8. 7 CFR 58.714 - Cream cheese, Neufchatel cheese.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Cream cheese, Neufchatel cheese. 58.714 Section 58.714 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.714 Cream cheese, Neufchatel cheese. These cheeses when mixed with other foods, or used...

  9. Factors regulating cheese shreddability.

    PubMed

    Childs, J L; Daubert, C R; Stefanski, L; Foegeding, E A

    2007-05-01

    Two sets of cheeses were evaluated to determine factors that affect shred quality. The first set of cheeses was made up of 3 commercial cheeses, Monterey Jack, Mozzarella, and process. The second set of cheeses was made up of 3 Mozzarella cheeses with varying levels of protein and fat at a constant moisture content. A shred distribution of long shreds, short shreds, and fines was obtained by shredding blocks of cheese in a food processor. A probe tack test was used to directly measure adhesion of the cheese to a stainless-steel surface. Surface energy was determined based on the contact angles of standard liquids, and rheological characterization was done by a creep and recovery test. Creep and recovery data were used to calculate the maximum and initial compliance and retardation time. Shredding defects of fines and adhesion to the blade were observed in commercial cheeses. Mozzarella did not adhere to the blade but did produce the most fines. Both Monterey Jack and process cheeses adhered to the blade and produced fines. Furthermore, adherence to the blade was correlated positively with tack energy and negatively with retardation time. Mozzarella cheese, with the highest fat and lowest protein contents, produced the most fines but showed little adherence to the blade, even though tack energy increased with fat content. Surface energy was not correlated with shredding defects in either group of cheese. Rheological properties and tack energy appeared to be the key factors involved in shredding defects. PMID:17430914

  10. 21 CFR 133.133 - Cream cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Cream cheese. 133.133 Section 133.133 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.133 Cream cheese. (a) Description. (1) Cream cheese is the soft, uncured cheese prepared...

  11. The influence of ripening period length and season on the microbiological parameters of a traditional Brazilian cheese

    PubMed Central

    Cardoso, Valéria M.; Dias, Ricardo S.; Soares, Barbara M.; Clementino, Letícia A.; Araújo, Cristiano P.; Rosa, Carlos A.

    2013-01-01

    The ripening process of Serro Minas cheese, one of the most popular cheeses produced with raw milk in Brazil, was studied over the course of 60 days of ripening during dry and rainy seasons. Brazilian legislation prohibits the production of cheese from raw milk unless it was submitted to a maturation period greater than 60 days. However Minas Serro cheese is sold within a few days of ripening. A total of 100 samples of Serro cheese were obtained from five farms; 50 samples were collected during the dry season (winter in Brazil) and 50 samples were collected during the rainy season (summer in Brazil). From each farm, ten cheeses were collected during each season after two days of ripening. Our results showed high levels of total and fecal coliforms at the beginning of the ripening period (approximately 4 Log MPN/g with 3 days of ripening) that decreased with 60 days of ripening reaching almost 1.5 Log MPN/g. Contamination by coagulase-positive staphylococci was reduced by the end of the ripening period. Salmonella spp. was not detected. The staphylococcal enterotoxins B and C were detected in 1% and 4% of the cheeses, respectively, after 30 days of ripening. These results suggest that the ripening process was not effective in eliminating staphylococcal enterotoxins from the cheese. However, none of the investigated strains of Staphylococcus spp. isolated from Serro cheese produced enterotoxins A, B, C or D. The high pathogen and coliform levels at the beginning of the ripening process for the cheese produced during both seasons indicate the need for improvement of the sanitation of the manufacturing conditions. PMID:24516419

  12. Microbiological aspects of the biofilm on wooden utensils used to make a Brazilian artisanal cheese.

    PubMed

    Galinari, Éder; da Nóbrega, Juliana Escarião; de Andrade, Nélio José; de Luces Fortes Ferreira, Célia Lúcia

    2014-01-01

    The artisanal Minas cheese is produced from raw cow's milk and wooden utensils were employed in its manufacture, which were replaced by other materials at the request of local laws. This substitution caused changes in the traditional characteristics of cheese. Due to the absence of scientific studies indicating the microbial composition of biofilms formed on wooden forms, tables and shelves used in these cheese production, the present work evaluated the counts of Staphylococcus aureus, Escherichia coli, coliforms at 32 °C, yeasts, presumptive mesophilic Lactobacillus spp. and Lactococcus spp. in these biofilms, milk, whey endogenous culture and ripened cheese in two traditional regions: Serro and Serra da Canastra. Also, we checked for the presence of Salmonella sp. and Listeria monocytogenes in the ripened cheeses. The ultra structure of the biofilms was also assessed. Counts above legislation (> 2 log cfu/mL) for the pathogens evaluated were found in milk samples from both regions. Only one shelf and one form from Serro were above limits proposed (5 cfu/cm(2) for S. aureus and E. coli and 25 cfu/cm(2) for coliforms) in this study for contaminants evaluated. In Canastra, few utensils presented safe counting of pathogens. There was no Salmonella sp. and Listeria monocytogenes in the cheeses after ripening. Thus, the quality of the cheese is related to improving the microbiological quality of milk, implementation and maintenance of good manufacturing practices, correct cleaning of wooden utensils, and not its replacement. PMID:25242963

  13. Microbiological aspects of the biofilm on wooden utensils used to make a Brazilian artisanal cheese

    PubMed Central

    Galinari, Éder; da Nóbrega, Juliana Escarião; de Andrade, Nélio José; de Luces Fortes Ferreira, Célia Lúcia

    2014-01-01

    The artisanal Minas cheese is produced from raw cow’s milk and wooden utensils were employed in its manufacture, which were replaced by other materials at the request of local laws. This substitution caused changes in the traditional characteristics of cheese. Due to the absence of scientific studies indicating the microbial composition of biofilms formed on wooden forms, tables and shelves used in these cheese production, the present work evaluated the counts of Staphylococcus aureus, Escherichia coli, coliforms at 32 °C, yeasts, presumptive mesophilic Lactobacillus spp. and Lactococcus spp. in these biofilms, milk, whey endogenous culture and ripened cheese in two traditional regions: Serro and Serra da Canastra. Also, we checked for the presence of Salmonella sp. and Listeria monocytogenes in the ripened cheeses. The ultra structure of the biofilms was also assessed. Counts above legislation (> 2 log cfu/mL) for the pathogens evaluated were found in milk samples from both regions. Only one shelf and one form from Serro were above limits proposed (5 cfu/cm2 for S. aureus and E. coli and 25 cfu/cm2 for coliforms) in this study for contaminants evaluated. In Canastra, few utensils presented safe counting of pathogens. There was no Salmonella sp. and Listeria monocytogenes in the cheeses after ripening. Thus, the quality of the cheese is related to improving the microbiological quality of milk, implementation and maintenance of good manufacturing practices, correct cleaning of wooden utensils, and not its replacement. PMID:25242963

  14. Microbiological aspects of the biofilm on wooden utensils used to make a Brazilian artisanal cheese.

    PubMed

    Galinari, Éder; da Nóbrega, Juliana Escarião; de Andrade, Nélio José; de Luces Fortes Ferreira, Célia Lúcia

    2014-01-01

    The artisanal Minas cheese is produced from raw cow's milk and wooden utensils were employed in its manufacture, which were replaced by other materials at the request of local laws. This substitution caused changes in the traditional characteristics of cheese. Due to the absence of scientific studies indicating the microbial composition of biofilms formed on wooden forms, tables and shelves used in these cheese production, the present work evaluated the counts of Staphylococcus aureus, Escherichia coli, coliforms at 32 °C, yeasts, presumptive mesophilic Lactobacillus spp. and Lactococcus spp. in these biofilms, milk, whey endogenous culture and ripened cheese in two traditional regions: Serro and Serra da Canastra. Also, we checked for the presence of Salmonella sp. and Listeria monocytogenes in the ripened cheeses. The ultra structure of the biofilms was also assessed. Counts above legislation (> 2 log cfu/mL) for the pathogens evaluated were found in milk samples from both regions. Only one shelf and one form from Serro were above limits proposed (5 cfu/cm(2) for S. aureus and E. coli and 25 cfu/cm(2) for coliforms) in this study for contaminants evaluated. In Canastra, few utensils presented safe counting of pathogens. There was no Salmonella sp. and Listeria monocytogenes in the cheeses after ripening. Thus, the quality of the cheese is related to improving the microbiological quality of milk, implementation and maintenance of good manufacturing practices, correct cleaning of wooden utensils, and not its replacement.

  15. 21 CFR 133.142 - Gouda cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Gouda cheese. 133.142 Section 133.142 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.142 Gouda cheese. Gouda cheese conforms to the definition and standard of identity...

  16. 21 CFR 133.140 - Gammelost cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Gammelost cheese. 133.140 Section 133.140 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.140 Gammelost cheese. (a) Description. (1) Gammelost cheese is the food prepared from...

  17. 21 CFR 133.162 - Neufchatel cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Neufchatel cheese. 133.162 Section 133.162 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.162 Neufchatel cheese. (a) Description. (1) Neufchatel cheese is the soft...

  18. 21 CFR 133.140 - Gammelost cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Gammelost cheese. 133.140 Section 133.140 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.140 Gammelost cheese. (a) Description. (1) Gammelost cheese is the food prepared from...

  19. 21 CFR 133.140 - Gammelost cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Gammelost cheese. 133.140 Section 133.140 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.140 Gammelost cheese. (a) Description. (1) Gammelost cheese is the food prepared from...

  20. 21 CFR 133.142 - Gouda cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Gouda cheese. 133.142 Section 133.142 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.142 Gouda cheese. Gouda cheese conforms to the definition and standard of identity...

  1. 21 CFR 133.142 - Gouda cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Gouda cheese. 133.142 Section 133.142 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.142 Gouda cheese. Gouda cheese conforms to the definition and standard of identity...

  2. 21 CFR 133.146 - Grated cheeses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Grated cheeses. 133.146 Section 133.146 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.146 Grated cheeses. (a) Description. Grated cheeses is the class of foods prepared...

  3. 21 CFR 133.142 - Gouda cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Gouda cheese. 133.142 Section 133.142 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.142 Gouda cheese. Gouda cheese conforms to the definition and standard of identity...

  4. 21 CFR 133.146 - Grated cheeses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Grated cheeses. 133.146 Section 133.146 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.146 Grated cheeses. (a) Description. Grated cheeses is the class of foods prepared...

  5. 21 CFR 133.142 - Gouda cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Gouda cheese. 133.142 Section 133.142 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.142 Gouda cheese. Gouda cheese conforms to the definition and standard of identity...

  6. 21 CFR 133.150 - Hard cheeses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Hard cheeses. 133.150 Section 133.150 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.150 Hard cheeses. (a) The cheeses for which definitions and standards of identity...

  7. Microbial interactions in cheese: implications for cheese quality and safety.

    PubMed

    Irlinger, Françoise; Mounier, Jérôme

    2009-04-01

    The cheese microbiota, whose community structure evolves through a succession of different microbial groups, plays a central role in cheese-making. The subtleties of cheese character, as well as cheese shelf-life and safety, are largely determined by the composition and evolution of this microbiota. Adjunct and surface-ripening cultures marketed today for smear cheeses are inadequate for adequately mimicking the real diversity encountered in cheese microbiota. The interactions between bacteria and fungi within these communities determine their structure and function. Yeasts play a key role in the establishment of ripening bacteria. The understanding of these interactions offers to enhance cheese flavour formation and to control and/or prevent the growth of pathogens and spoilage microorganisms in cheese.

  8. Activation energy measurements of cheese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature sweeps of cheeses using small amplitude oscillatory shear tests produced values for activation energy of flow (Ea) between 30 and 44 deg C. Soft goat cheese and Queso Fresco, which are high-moisture cheeses and do not flow when heated, exhibited Ea values between 30 and 60 kJ/mol. The ...

  9. 40 CFR 405.50 - Applicability; description of the cottage cheese and cultured cream cheese subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cottage cheese and cultured cream cheese subcategory. 405.50 Section 405.50 Protection of Environment... SOURCE CATEGORY Cottage Cheese and Cultured Cream Cheese Subcategory § 405.50 Applicability; description of the cottage cheese and cultured cream cheese subcategory. The provisions of this subpart...

  10. 40 CFR 405.50 - Applicability; description of the cottage cheese and cultured cream cheese subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cottage cheese and cultured cream cheese subcategory. 405.50 Section 405.50 Protection of Environment... SOURCE CATEGORY Cottage Cheese and Cultured Cream Cheese Subcategory § 405.50 Applicability; description of the cottage cheese and cultured cream cheese subcategory. The provisions of this subpart...

  11. 40 CFR 405.50 - Applicability; description of the cottage cheese and cultured cream cheese subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cottage cheese and cultured cream cheese subcategory. 405.50 Section 405.50 Protection of Environment... SOURCE CATEGORY Cottage Cheese and Cultured Cream Cheese Subcategory § 405.50 Applicability; description of the cottage cheese and cultured cream cheese subcategory. The provisions of this subpart...

  12. 40 CFR 405.50 - Applicability; description of the cottage cheese and cultured cream cheese subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cottage cheese and cultured cream cheese subcategory. 405.50 Section 405.50 Protection of Environment... SOURCE CATEGORY Cottage Cheese and Cultured Cream Cheese Subcategory § 405.50 Applicability; description of the cottage cheese and cultured cream cheese subcategory. The provisions of this subpart...

  13. 40 CFR 405.50 - Applicability; description of the cottage cheese and cultured cream cheese subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cottage cheese and cultured cream cheese subcategory. 405.50 Section 405.50 Protection of Environment... SOURCE CATEGORY Cottage Cheese and Cultured Cream Cheese Subcategory § 405.50 Applicability; description of the cottage cheese and cultured cream cheese subcategory. The provisions of this subpart...

  14. Lipids in cheese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipids are present in cheese at levels above 20 percent and are analyzed by several techniques. Scanning electron microscopy and confocal laser scanning microscopy are used to examine the microstructure, gas chromatography is employed to look at fatty acid composition, and differential scanning cal...

  15. 21 CFR 133.10 - Notice to manufacturers, packers, and distributors of pasteurized blended cheese, pasteurized...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of pasteurized blended cheese, pasteurized process cheese, cheese food, cheese spread, and related... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS General Provisions § 133.10 Notice to manufacturers, packers, and distributors of pasteurized blended cheese,...

  16. 21 CFR 133.10 - Notice to manufacturers, packers, and distributors of pasteurized blended cheese, pasteurized...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of pasteurized blended cheese, pasteurized process cheese, cheese food, cheese spread, and related... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS General Provisions § 133.10 Notice to manufacturers, packers, and distributors of pasteurized blended cheese,...

  17. 21 CFR 133.10 - Notice to manufacturers, packers, and distributors of pasteurized blended cheese, pasteurized...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of pasteurized blended cheese, pasteurized process cheese, cheese food, cheese spread, and related... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS General Provisions § 133.10 Notice to manufacturers, packers, and distributors of pasteurized blended cheese,...

  18. 21 CFR 133.10 - Notice to manufacturers, packers, and distributors of pasteurized blended cheese, pasteurized...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of pasteurized blended cheese, pasteurized process cheese, cheese food, cheese spread, and related... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS General Provisions § 133.10 Notice to manufacturers, packers, and distributors of pasteurized blended cheese,...

  19. 21 CFR 133.10 - Notice to manufacturers, packers, and distributors of pasteurized blended cheese, pasteurized...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of pasteurized blended cheese, pasteurized process cheese, cheese food, cheese spread, and related... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS General Provisions § 133.10 Notice to manufacturers, packers, and distributors of pasteurized blended cheese,...

  20. Invited review: Artisanal Mexican cheeses.

    PubMed

    González-Córdova, Aarón F; Yescas, Carlos; Ortiz-Estrada, Ángel Martín; De la Rosa-Alcaraz, María de Los Ángeles; Hernández-Mendoza, Adrián; Vallejo-Cordoba, Belinda

    2016-05-01

    The objective of this review is to present an overview of some of the most commonly consumed artisanal Mexican cheeses, as well as those cheeses that show potential for a protected designation of origin. A description is given for each of these cheeses, including information on their distinguishing characteristics that makes some of them potential candidates for achieving a protected designation of origin status. This distinction could help to expand their frontiers and allow them to become better known and appreciated in other parts of the world. Due to the scarcity of scientific studies concerning artisanal Mexican cheeses, which would ultimately aid in the standardization of manufacturing processes and in the establishment of regulations related to their production, more than 40 varieties of artisanal cheese are in danger of disappearing. To preserve these cheeses, it is necessary to address this challenge by working jointly with government, artisanal cheesemaking organizations, industry, academics, and commercial partners on the implementation of strategies to protect and preserve their artisanal means of production. With sufficient information, official Mexican regulations could be established that would encompass and regulate the manufacture of Mexican artisanal cheeses. Finally, as many Mexican artisanal cheeses are produced from raw milk, more scientific studies are required to show the role of the lactic acid bacteria and their antagonistic effect on pathogenic microorganisms during aging following cheese making. PMID:26830738

  1. Invited review: Artisanal Mexican cheeses.

    PubMed

    González-Córdova, Aarón F; Yescas, Carlos; Ortiz-Estrada, Ángel Martín; De la Rosa-Alcaraz, María de Los Ángeles; Hernández-Mendoza, Adrián; Vallejo-Cordoba, Belinda

    2016-05-01

    The objective of this review is to present an overview of some of the most commonly consumed artisanal Mexican cheeses, as well as those cheeses that show potential for a protected designation of origin. A description is given for each of these cheeses, including information on their distinguishing characteristics that makes some of them potential candidates for achieving a protected designation of origin status. This distinction could help to expand their frontiers and allow them to become better known and appreciated in other parts of the world. Due to the scarcity of scientific studies concerning artisanal Mexican cheeses, which would ultimately aid in the standardization of manufacturing processes and in the establishment of regulations related to their production, more than 40 varieties of artisanal cheese are in danger of disappearing. To preserve these cheeses, it is necessary to address this challenge by working jointly with government, artisanal cheesemaking organizations, industry, academics, and commercial partners on the implementation of strategies to protect and preserve their artisanal means of production. With sufficient information, official Mexican regulations could be established that would encompass and regulate the manufacture of Mexican artisanal cheeses. Finally, as many Mexican artisanal cheeses are produced from raw milk, more scientific studies are required to show the role of the lactic acid bacteria and their antagonistic effect on pathogenic microorganisms during aging following cheese making.

  2. Biodiversity of dairy Propionibacterium isolated from dairy farms in Minas Gerais, Brazil.

    PubMed

    de Freitas, Rosangela; Chuat, Victoria; Madec, Marie-Noelle; Nero, Luis Augusto; Thierry, Anne; Valence, Florence; de Carvalho, Antonio Fernandes

    2015-06-16

    Dairy propionibacteria are used as ripening cultures for the production of Swiss-type cheeses, and some strains have potential for use as probiotics. This study investigated the biodiversity of wild dairy Propionibacteria isolates in dairy farms that produce Swiss-type cheeses in Minas Gerais State, Brazil. RAPD and PFGE were used for molecular typing of strains and MLST was applied for phylogenetic analysis of strains of Propionibacterium freudenreichii. The results showed considerable genetic diversity of the wild dairy propionibacteria, since three of the main species were observed to be randomly distributed among the samples collected from different farms in different biotopes (raw milk, sillage, soil and pasture). Isolates from different farms showed distinct genetic profiles, suggesting that each location represented a specific niche. Furthermore, the STs identified for the strains of P. freudenreichii by MLST were not related to any specific origin. The environment of dairy farms and milk production proved to be a reservoir for Propionibacterium strains, which are important for future use as possible starter cultures or probiotics, as well as in the study of prevention of cheese defects.

  3. Biodiversity of dairy Propionibacterium isolated from dairy farms in Minas Gerais, Brazil.

    PubMed

    de Freitas, Rosangela; Chuat, Victoria; Madec, Marie-Noelle; Nero, Luis Augusto; Thierry, Anne; Valence, Florence; de Carvalho, Antonio Fernandes

    2015-06-16

    Dairy propionibacteria are used as ripening cultures for the production of Swiss-type cheeses, and some strains have potential for use as probiotics. This study investigated the biodiversity of wild dairy Propionibacteria isolates in dairy farms that produce Swiss-type cheeses in Minas Gerais State, Brazil. RAPD and PFGE were used for molecular typing of strains and MLST was applied for phylogenetic analysis of strains of Propionibacterium freudenreichii. The results showed considerable genetic diversity of the wild dairy propionibacteria, since three of the main species were observed to be randomly distributed among the samples collected from different farms in different biotopes (raw milk, sillage, soil and pasture). Isolates from different farms showed distinct genetic profiles, suggesting that each location represented a specific niche. Furthermore, the STs identified for the strains of P. freudenreichii by MLST were not related to any specific origin. The environment of dairy farms and milk production proved to be a reservoir for Propionibacterium strains, which are important for future use as possible starter cultures or probiotics, as well as in the study of prevention of cheese defects. PMID:25791252

  4. Mycotoxins in two Spanish cheese varieties.

    PubMed

    López-Díaz, T M; Román-Blanco, C; García-Arias, M T; García-Fernández, M C; García-López, M L

    1996-07-01

    Samples of cheeses naturally contaminated with moulds (12 samples of mouldy Manchego cheese and 10 of a naturally ripened blue cheese) were analysed for the presence of mycotoxins (aflatoxins BI and MI, sterigmatocystin, patulin, penicillic acid and mycophenolic acid in Manchego cheese, and mycophenolic acid and roquefortine in blue cheese). In addition, 24 Penicillium and Aspergillus strains isolated from the samples were assessed for their mycotoxigenicity. Four of Manchego cheese samples were positive to mycophenolic acid and one sample of blue cheese contained roquefortine. The rest of mycotoxins investigated were not found. One Aspergillus strain isolated from Manchego cheese showed the ability to produce aflatoxin MI. The rest of strains from these samples being no producers. In contrast, 7 out of 9 Penicillium (P. roqueforti) strains isolated from blue cheese were able to produce roquefortine, with one strain also producing mycophenolic acid. PMID:8854191

  5. Biobutanol from cheese whey.

    PubMed

    Becerra, Manuel; Cerdán, María Esperanza; González-Siso, María Isabel

    2015-01-01

    At present, due to environmental and economic concerns, it is urgent to evolve efficient, clean and secure systems for the production of advanced biofuels from sustainable cheap sources. Biobutanol has proved better characteristics than the more widely used bioethanol, however the main disadvantage of biobutanol is that it is produced in low yield and titer by ABE (acetone-butanol-ethanol) fermentation, this process being not competitive from the economic point of view. In this review we summarize the natural metabolic pathways for biobutanol production by Clostridia and yeasts, together with the metabolic engineering efforts performed up to date with the aim of either enhancing the yield of the natural producer Clostridia or transferring the butanol production ability to other hosts with better attributes for industrial use and facilities for genetic manipulation. Molasses and starch-based feedstocks are main sources for biobutanol production at industrial scale hitherto. We also review herewith (and for the first time up to our knowledge) the research performed for the use of whey, the subproduct of cheese making, as another sustainable source for biobutanol production. This represents a promising alternative that still needs further research. The use of an abundant waste material like cheese whey, that would otherwise be considered an environmental pollutant, for biobutanol production, makes economy of the process more profitable. PMID:25889728

  6. Cheese Microbial Risk Assessments — A Review

    PubMed Central

    Choi, Kyoung-Hee; Lee, Heeyoung; Lee, Soomin; Kim, Sejeong; Yoon, Yohan

    2016-01-01

    Cheese is generally considered a safe and nutritious food, but foodborne illnesses linked to cheese consumption have occurred in many countries. Several microbial risk assessments related to Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli infections, causing cheese-related foodborne illnesses, have been conducted. Although the assessments of microbial risk in soft and low moisture cheeses such as semi-hard and hard cheeses have been accomplished, it has been more focused on the correlations between pathogenic bacteria and soft cheese, because cheese-associated foodborne illnesses have been attributed to the consumption of soft cheeses. As a part of this microbial risk assessment, predictive models have been developed to describe the relationship between several factors (pH, Aw, starter culture, and time) and the fates of foodborne pathogens in cheese. Predictions from these studies have been used for microbial risk assessment as a part of exposure assessment. These microbial risk assessments have identified that risk increased in cheese with high moisture content, especially for raw milk cheese, but the risk can be reduced by preharvest and postharvest preventions. For accurate quantitative microbial risk assessment, more data including interventions such as curd cooking conditions (temperature and time) and ripening period should be available for predictive models developed with cheese, cheese consumption amounts and cheese intake frequency data as well as more dose-response models. PMID:26950859

  7. Cheese Microbial Risk Assessments - A Review.

    PubMed

    Choi, Kyoung-Hee; Lee, Heeyoung; Lee, Soomin; Kim, Sejeong; Yoon, Yohan

    2016-03-01

    Cheese is generally considered a safe and nutritious food, but foodborne illnesses linked to cheese consumption have occurred in many countries. Several microbial risk assessments related to Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli infections, causing cheese-related foodborne illnesses, have been conducted. Although the assessments of microbial risk in soft and low moisture cheeses such as semi-hard and hard cheeses have been accomplished, it has been more focused on the correlations between pathogenic bacteria and soft cheese, because cheese-associated foodborne illnesses have been attributed to the consumption of soft cheeses. As a part of this microbial risk assessment, predictive models have been developed to describe the relationship between several factors (pH, Aw, starter culture, and time) and the fates of foodborne pathogens in cheese. Predictions from these studies have been used for microbial risk assessment as a part of exposure assessment. These microbial risk assessments have identified that risk increased in cheese with high moisture content, especially for raw milk cheese, but the risk can be reduced by preharvest and postharvest preventions. For accurate quantitative microbial risk assessment, more data including interventions such as curd cooking conditions (temperature and time) and ripening period should be available for predictive models developed with cheese, cheese consumption amounts and cheese intake frequency data as well as more dose-response models.

  8. 21 CFR 133.104 - Asiago old cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Asiago old cheese. 133.104 Section 133.104 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.104 Asiago old cheese. Asiago old cheese conforms to the definition and standard...

  9. 21 CFR 133.167 - Pasteurized blended cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized blended cheese. 133.167 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms...

  10. 21 CFR 133.175 - Pasteurized cheese spread.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized cheese spread. 133.175 Section 133.175... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.175 Pasteurized cheese spread. Pasteurized cheese spread is the...

  11. 21 CFR 133.175 - Pasteurized cheese spread.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Pasteurized cheese spread. 133.175 Section 133.175... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.175 Pasteurized cheese spread. Pasteurized cheese spread is the...

  12. 21 CFR 133.167 - Pasteurized blended cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Pasteurized blended cheese. 133.167 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms...

  13. 21 CFR 133.175 - Pasteurized cheese spread.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Pasteurized cheese spread. 133.175 Section 133.175... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.175 Pasteurized cheese spread. Pasteurized cheese spread is the...

  14. 21 CFR 133.175 - Pasteurized cheese spread.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized cheese spread. 133.175 Section 133.175... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.175 Pasteurized cheese spread. Pasteurized cheese spread is the...

  15. 21 CFR 133.191 - Part-skim spiced cheeses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Part-skim spiced cheeses. 133.191 Section 133.191... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.191 Part-skim spiced cheeses. Part-skim spiced cheeses conform to...

  16. 21 CFR 133.167 - Pasteurized blended cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Pasteurized blended cheese. 133.167 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms...

  17. 21 CFR 133.167 - Pasteurized blended cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Pasteurized blended cheese. 133.167 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms...

  18. 21 CFR 133.154 - High-moisture jack cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false High-moisture jack cheese. 133.154 Section 133.154... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.154 High-moisture jack cheese. High-moisture jack cheese conforms...

  19. 21 CFR 133.169 - Pasteurized process cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process cheese. 133.169 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.169 Pasteurized process cheese. (a)(1) Pasteurized process cheese...

  20. 21 CFR 133.154 - High-moisture jack cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false High-moisture jack cheese. 133.154 Section 133.154... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.154 High-moisture jack cheese. High-moisture jack cheese conforms...

  1. 21 CFR 133.134 - Cream cheese with other foods.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Cream cheese with other foods. 133.134 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.134 Cream cheese with other foods. (a) Description. Cream cheese...

  2. 21 CFR 133.191 - Part-skim spiced cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Part-skim spiced cheeses. 133.191 Section 133.191... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.191 Part-skim spiced cheeses. Part-skim spiced cheeses conform to...

  3. 21 CFR 133.167 - Pasteurized blended cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized blended cheese. 133.167 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms...

  4. 21 CFR 133.169 - Pasteurized process cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Pasteurized process cheese. 133.169 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.169 Pasteurized process cheese. (a)(1) Pasteurized process cheese...

  5. 21 CFR 133.154 - High-moisture jack cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false High-moisture jack cheese. 133.154 Section 133.154... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.154 High-moisture jack cheese. High-moisture jack cheese conforms...

  6. 21 CFR 133.154 - High-moisture jack cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false High-moisture jack cheese. 133.154 Section 133.154... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.154 High-moisture jack cheese. High-moisture jack cheese conforms...

  7. 21 CFR 133.104 - Asiago old cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Asiago old cheese. 133.104 Section 133.104 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.104 Asiago old cheese. Asiago old cheese conforms to the definition and standard...

  8. 21 CFR 133.175 - Pasteurized cheese spread.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Pasteurized cheese spread. 133.175 Section 133.175... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.175 Pasteurized cheese spread. Pasteurized cheese spread is the...

  9. 21 CFR 133.154 - High-moisture jack cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false High-moisture jack cheese. 133.154 Section 133.154... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.154 High-moisture jack cheese. High-moisture jack cheese conforms...

  10. 21 CFR 133.191 - Part-skim spiced cheeses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Part-skim spiced cheeses. 133.191 Section 133.191... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.191 Part-skim spiced cheeses. Part-skim spiced cheeses conform to...

  11. 21 CFR 133.104 - Asiago old cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Asiago old cheese. 133.104 Section 133.104 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.104 Asiago old cheese. Asiago old cheese conforms to the definition and standard...

  12. 21 CFR 133.169 - Pasteurized process cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Pasteurized process cheese. 133.169 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.169 Pasteurized process cheese. (a)(1) Pasteurized process cheese...

  13. 21 CFR 133.191 - Part-skim spiced cheeses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Part-skim spiced cheeses. 133.191 Section 133.191... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.191 Part-skim spiced cheeses. Part-skim spiced cheeses conform to...

  14. 21 CFR 133.104 - Asiago old cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Asiago old cheese. 133.104 Section 133.104 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.104 Asiago old cheese. Asiago old cheese conforms to the definition and standard...

  15. 21 CFR 133.169 - Pasteurized process cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Pasteurized process cheese. 133.169 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.169 Pasteurized process cheese. (a)(1) Pasteurized process cheese...

  16. 21 CFR 133.191 - Part-skim spiced cheeses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Part-skim spiced cheeses. 133.191 Section 133.191... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.191 Part-skim spiced cheeses. Part-skim spiced cheeses conform to...

  17. 21 CFR 133.104 - Asiago old cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Asiago old cheese. 133.104 Section 133.104 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.104 Asiago old cheese. Asiago old cheese conforms to the definition and standard...

  18. Turning cheese wastes into energy

    SciTech Connect

    Not Available

    1981-09-01

    In a project sponsored by New York State, an anaerobic fluidized bed reactor system - developed by Ecolotrol, Inc. of Bethpage, N.Y. - was used to produce biogas from cheese whey and bottling plant residues.

  19. [Microbiological studies of brynza cheese].

    PubMed

    Khadzhianastasov, D; Georgiev, L

    1979-01-01

    Studies on the changes occurring in the microflora at the time of 45-day ripening and 4-month storage of cheese produced in pitchers (earthen jugs) were performed. It was established that at the beginning of the ripening period the total number of microorganisms as well as the number of lactic acid producing microorganisms increases, but after the 15th day of ripening until the end of storage their number diminishes. At the time of ripening and storage of cheese curdled in pitchers, coliform bacteria diminish progressively. In case cheese curd is used, these bacteria vanish as soon as ripening comes to an end, while in case lactic acid or butter curd is used they vanish during the 1st month of storage. In spontaneously curdled cheese coliform bacteria vanish during the third month of storage. At the time of cheese ripening in a pitcher the yeast quantity increases, while during storage it varies. At the time of ripening fungae get into the cheese produced in pitchers and their number increases along with the ripening process.

  20. Martian 'Swiss Cheese'

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image is illuminated by sunlight from the upper left.

    Looking like pieces of sliced and broken swiss cheese, the upper layer of the martian south polar residual cap has been eroded, leaving flat-topped mesas into which are set circular depressions such as those shown here. The circular features are depressions, not hills. The largest mesas here stand about 4 meters (13 feet) high and may be composed of frozen carbon dioxide and/or water. Nothing like this has ever been seen anywhere on Mars except within the south polar cap, leading to some speculation that these landforms may have something to do with the carbon dioxide thought to be frozen in the south polar region. On Earth, we know frozen carbon dioxide as 'dry ice'. On Mars, as this picture might be suggesting, there may be entire landforms larger than a small town and taller than 2 to 3 men and women that consist, in part, of dry ice.

    No one knows for certain whether frozen carbon dioxide has played a role in the creation of the 'swiss cheese' and other bizarre landforms seen in this picture. The picture covers an area 3 x 9 kilometers (1.9 x 5.6 miles) near 85.6oS, 74.4oW at a resolution of 7.3 meters (24 feet) per pixel. This picture was taken by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) during early southern spring on August 3, 1999.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  1. Quality aspects of raw milk cheeses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cheese has been a part of the human diet for thousands of years and over the centuries cheesemakers have relied on the indigenous microflora and enzymes in raw milk to create the signature quality traits for the many different varieties of cheese found around the world. Although most of the cheese i...

  2. Quality aspects of raw milk cheeses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cheese has been a part of the human diet for thousands of years and up until a little over a century ago, all types of cheese were made from raw milk. Over the centuries, signature quality traits were established for the many different types, styles, and varieties of cheese found around the world. ...

  3. 7 CFR 58.433 - Cheese cultures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Cheese cultures. 58.433 Section 58.433 Agriculture... Material § 58.433 Cheese cultures. Harmless microbial cultures used in the development of acid and flavor components in cheese shall have a pleasing and desirable taste and odor and shall have the ability...

  4. 7 CFR 58.433 - Cheese cultures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cheese cultures. 58.433 Section 58.433 Agriculture... Material § 58.433 Cheese cultures. Harmless microbial cultures used in the development of acid and flavor components in cheese shall have a pleasing and desirable taste and odor and shall have the ability...

  5. 7 CFR 58.433 - Cheese cultures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese cultures. 58.433 Section 58.433 Agriculture... Material § 58.433 Cheese cultures. Harmless microbial cultures used in the development of acid and flavor components in cheese shall have a pleasing and desirable taste and odor and shall have the ability...

  6. 7 CFR 58.433 - Cheese cultures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Cheese cultures. 58.433 Section 58.433 Agriculture... Material § 58.433 Cheese cultures. Harmless microbial cultures used in the development of acid and flavor components in cheese shall have a pleasing and desirable taste and odor and shall have the ability...

  7. 21 CFR 133.118 - Colby cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Colby cheese. 133.118 Section 133.118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Products § 133.118 Colby cheese. (a) Colby cheese is the food prepared from milk and other...

  8. Yeasts and hygienic-sanitary microbial indicators in water buffalo mozzarella produced and commercialized in Minas Gerais, Brazil.

    PubMed

    Facchin, Susanne; Barbosa, Anne C; Carmo, Luiz S; Silva, Maria Crisolita C; Oliveira, Afonso L; Morais, Paula B; Rosa, Carlos A

    2013-01-01

    The aim of this work was to study the yeast populations and the main hygienic-sanitary microbial indicators in water buffalo mozzarella produced and commercialized in Minas Gerais, Brazil. Forty-two water buffalo mozzarella samples were purchased from retail outlets in Belo Horizonte. In addition, five samples of consecutive starter cultures, curd before acidification, acidified curd and mozzarella were collected at an industry in the city of Oliveira. Only three of the five water samples analyzed were suitable for consumption according to Brazilian sanitary standards. Four milk samples were highly contaminated with fecal coliforms, and did not meet the minimal hygienic-sanitary standards according to Brazilian regulations. Only one sample of buffalo muzzarela purchased from retail outlets exceeded the limit for coagulase-positive Staphylococcus. Eleven samples showed counts of thermotolerant coliforms higher than 5 × 10(3) CFU.g(-1), but still lower than the maximum permitted by the Brazilian laws. Salmonella spp. and Listeria monocytogenes were not isolated. Debaryomyces hansenii, Candida lusitaniae and C. parapsilosis were the prevalent yeast species isolated from cheese. Among samples from the production stages, the acidified curd presented the highest numbers of yeasts, with C. catenulata being the most frequent species isolated. Some opportunistic yeast species such as C. guilliermondii, C. tropicalis, C. parapsilosis, C. lusitaniae, C. catenulata, C. rugosa and C. krusei occurred in the mozzarella cheese samples analyzed. The mozzarella cheese presented a low microbial load as compared to other cheese already studied, and the yeast biota included species typical of cheese and also opportunistic pathogens.

  9. Yeasts and hygienic-sanitary microbial indicators in water buffalo mozzarella produced and commercialized in Minas Gerais, Brazil

    PubMed Central

    Facchin, Susanne; Barbosa, Anne C.; Carmo, Luiz S.; Silva, Maria Crisolita C.; Oliveira, Afonso L.; Morais, Paula B.; Rosa, Carlos A.

    2013-01-01

    The aim of this work was to study the yeast populations and the main hygienic-sanitary microbial indicators in water buffalo mozzarella produced and commercialized in Minas Gerais, Brazil. Forty-two water buffalo mozzarella samples were purchased from retail outlets in Belo Horizonte. In addition, five samples of consecutive starter cultures, curd before acidification, acidified curd and mozzarella were collected at an industry in the city of Oliveira. Only three of the five water samples analyzed were suitable for consumption according to Brazilian sanitary standards. Four milk samples were highly contaminated with fecal coliforms, and did not meet the minimal hygienic-sanitary standards according to Brazilian regulations. Only one sample of buffalo muzzarela purchased from retail outlets exceeded the limit for coagulase-positive Staphylococcus. Eleven samples showed counts of thermotolerant coliforms higher than 5 × 103 CFU.g−1, but still lower than the maximum permitted by the Brazilian laws. Salmonella spp. and Listeria monocytogenes were not isolated. Debaryomyces hansenii, Candida lusitaniae and C. parapsilosis were the prevalent yeast species isolated from cheese. Among samples from the production stages, the acidified curd presented the highest numbers of yeasts, with C. catenulata being the most frequent species isolated. Some opportunistic yeast species such as C. guilliermondii, C. tropicalis, C. parapsilosis, C. lusitaniae, C. catenulata, C. rugosa and C. krusei occurred in the mozzarella cheese samples analyzed. The mozzarella cheese presented a low microbial load as compared to other cheese already studied, and the yeast biota included species typical of cheese and also opportunistic pathogens. PMID:24516436

  10. 21 CFR 133.193 - Spiced, flavored standardized cheeses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Spiced, flavored standardized cheeses. 133.193... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.193 Spiced, flavored standardized cheeses. (a) Except...

  11. 21 CFR 133.193 - Spiced, flavored standardized cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Spiced, flavored standardized cheeses. 133.193... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.193 Spiced, flavored standardized cheeses. (a) Except...

  12. 21 CFR 133.171 - Pasteurized process pimento cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Pasteurized process pimento cheese. 133.171... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.171 Pasteurized process pimento cheese. Pasteurized...

  13. 21 CFR 133.171 - Pasteurized process pimento cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Pasteurized process pimento cheese. 133.171... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.171 Pasteurized process pimento cheese. Pasteurized...

  14. 21 CFR 133.171 - Pasteurized process pimento cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process pimento cheese. 133.171... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.171 Pasteurized process pimento cheese. Pasteurized...

  15. 21 CFR 133.193 - Spiced, flavored standardized cheeses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Spiced, flavored standardized cheeses. 133.193... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.193 Spiced, flavored standardized cheeses. (a) Except...

  16. 21 CFR 133.193 - Spiced, flavored standardized cheeses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Spiced, flavored standardized cheeses. 133.193... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.193 Spiced, flavored standardized cheeses. (a) Except...

  17. 21 CFR 133.171 - Pasteurized process pimento cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized process pimento cheese. 133.171... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.171 Pasteurized process pimento cheese. Pasteurized...

  18. 21 CFR 133.171 - Pasteurized process pimento cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Pasteurized process pimento cheese. 133.171... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.171 Pasteurized process pimento cheese. Pasteurized...

  19. 21 CFR 133.109 - Brick cheese for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Brick cheese for manufacturing. 133.109 Section... Standardized Cheese and Related Products § 133.109 Brick cheese for manufacturing. Brick cheese for manufacturing conforms to the definition and standard of identity for brick cheese prescribed by §...

  20. 21 CFR 133.119 - Colby cheese for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Colby cheese for manufacturing. 133.119 Section... Standardized Cheese and Related Products § 133.119 Colby cheese for manufacturing. Colby cheese for manufacturing conforms to the definition and standard of identity prescribed for colby cheese by §...

  1. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  2. 21 CFR 133.114 - Cheddar cheese for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cheddar cheese for manufacturing. 133.114 Section... Standardized Cheese and Related Products § 133.114 Cheddar cheese for manufacturing. Cheddar cheese for manufacturing conforms to the definition and standard of identity prescribed for cheddar cheese by §...

  3. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  4. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  5. 21 CFR 133.119 - Colby cheese for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Colby cheese for manufacturing. 133.119 Section... Standardized Cheese and Related Products § 133.119 Colby cheese for manufacturing. Colby cheese for manufacturing conforms to the definition and standard of identity prescribed for colby cheese by §...

  6. 21 CFR 133.114 - Cheddar cheese for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cheddar cheese for manufacturing. 133.114 Section... Standardized Cheese and Related Products § 133.114 Cheddar cheese for manufacturing. Cheddar cheese for manufacturing conforms to the definition and standard of identity prescribed for cheddar cheese by §...

  7. 21 CFR 133.114 - Cheddar cheese for manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Cheddar cheese for manufacturing. 133.114 Section... Standardized Cheese and Related Products § 133.114 Cheddar cheese for manufacturing. Cheddar cheese for manufacturing conforms to the definition and standard of identity prescribed for cheddar cheese by §...

  8. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  9. 21 CFR 133.196 - Swiss cheese for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Swiss cheese for manufacturing. 133.196 Section... Standardized Cheese and Related Products § 133.196 Swiss cheese for manufacturing. Swiss cheese for manufacturing conforms to the definition and standard of identity prescribed for swiss cheese by §...

  10. 21 CFR 133.196 - Swiss cheese for manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Swiss cheese for manufacturing. 133.196 Section... Standardized Cheese and Related Products § 133.196 Swiss cheese for manufacturing. Swiss cheese for manufacturing conforms to the definition and standard of identity prescribed for swiss cheese by §...

  11. 21 CFR 133.196 - Swiss cheese for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Swiss cheese for manufacturing. 133.196 Section... Standardized Cheese and Related Products § 133.196 Swiss cheese for manufacturing. Swiss cheese for manufacturing conforms to the definition and standard of identity prescribed for swiss cheese by §...

  12. 21 CFR 133.109 - Brick cheese for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Brick cheese for manufacturing. 133.109 Section... Standardized Cheese and Related Products § 133.109 Brick cheese for manufacturing. Brick cheese for manufacturing conforms to the definition and standard of identity for brick cheese prescribed by §...

  13. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  14. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  15. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  16. 21 CFR 133.196 - Swiss cheese for manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Swiss cheese for manufacturing. 133.196 Section... Standardized Cheese and Related Products § 133.196 Swiss cheese for manufacturing. Swiss cheese for manufacturing conforms to the definition and standard of identity prescribed for swiss cheese by §...

  17. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  18. 21 CFR 133.109 - Brick cheese for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Brick cheese for manufacturing. 133.109 Section... Standardized Cheese and Related Products § 133.109 Brick cheese for manufacturing. Brick cheese for manufacturing conforms to the definition and standard of identity for brick cheese prescribed by §...

  19. 21 CFR 133.114 - Cheddar cheese for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Cheddar cheese for manufacturing. 133.114 Section... Standardized Cheese and Related Products § 133.114 Cheddar cheese for manufacturing. Cheddar cheese for manufacturing conforms to the definition and standard of identity prescribed for cheddar cheese by §...

  20. 21 CFR 133.109 - Brick cheese for manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Brick cheese for manufacturing. 133.109 Section... Standardized Cheese and Related Products § 133.109 Brick cheese for manufacturing. Brick cheese for manufacturing conforms to the definition and standard of identity for brick cheese prescribed by §...

  1. 21 CFR 133.109 - Brick cheese for manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Brick cheese for manufacturing. 133.109 Section... Standardized Cheese and Related Products § 133.109 Brick cheese for manufacturing. Brick cheese for manufacturing conforms to the definition and standard of identity for brick cheese prescribed by §...

  2. 21 CFR 133.119 - Colby cheese for manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Colby cheese for manufacturing. 133.119 Section... Standardized Cheese and Related Products § 133.119 Colby cheese for manufacturing. Colby cheese for manufacturing conforms to the definition and standard of identity prescribed for colby cheese by §...

  3. 21 CFR 133.119 - Colby cheese for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Colby cheese for manufacturing. 133.119 Section... Standardized Cheese and Related Products § 133.119 Colby cheese for manufacturing. Colby cheese for manufacturing conforms to the definition and standard of identity prescribed for colby cheese by §...

  4. 21 CFR 133.114 - Cheddar cheese for manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Cheddar cheese for manufacturing. 133.114 Section... Standardized Cheese and Related Products § 133.114 Cheddar cheese for manufacturing. Cheddar cheese for manufacturing conforms to the definition and standard of identity prescribed for cheddar cheese by §...

  5. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  6. 21 CFR 133.119 - Colby cheese for manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Colby cheese for manufacturing. 133.119 Section... Standardized Cheese and Related Products § 133.119 Colby cheese for manufacturing. Colby cheese for manufacturing conforms to the definition and standard of identity prescribed for colby cheese by §...

  7. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  8. 21 CFR 133.196 - Swiss cheese for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Swiss cheese for manufacturing. 133.196 Section... Standardized Cheese and Related Products § 133.196 Swiss cheese for manufacturing. Swiss cheese for manufacturing conforms to the definition and standard of identity prescribed for swiss cheese by §...

  9. Quantification of pizza baking properties of different cheeses, and their correlation with cheese functionality.

    PubMed

    Ma, Xixiu; Balaban, Murat O; Zhang, Lu; Emanuelsson-Patterson, Emma A C; James, Bryony

    2014-08-01

    The aim of this study is to quantify the pizza baking properties and performance of different cheeses, including the browning and blistering, and to investigate the correlation to cheese properties (rheology, free oil, transition temperature, and water activity). The color, and color uniformity, of different cheeses (Mozzarella, Cheddar, Colby, Edam, Emmental, Gruyere, and Provolone) were quantified, using a machine vision system and image analysis techniques. The correlations between cheese appearance and attributes were also evaluated, to find that cheese properties including elasticity, free oil, and transition temperature influence the color uniformity of cheeses. PMID:25048865

  10. Quantification of pizza baking properties of different cheeses, and their correlation with cheese functionality.

    PubMed

    Ma, Xixiu; Balaban, Murat O; Zhang, Lu; Emanuelsson-Patterson, Emma A C; James, Bryony

    2014-08-01

    The aim of this study is to quantify the pizza baking properties and performance of different cheeses, including the browning and blistering, and to investigate the correlation to cheese properties (rheology, free oil, transition temperature, and water activity). The color, and color uniformity, of different cheeses (Mozzarella, Cheddar, Colby, Edam, Emmental, Gruyere, and Provolone) were quantified, using a machine vision system and image analysis techniques. The correlations between cheese appearance and attributes were also evaluated, to find that cheese properties including elasticity, free oil, and transition temperature influence the color uniformity of cheeses.

  11. Microbiota characterization of a Belgian protected designation of origin cheese, Herve cheese, using metagenomic analysis.

    PubMed

    Delcenserie, V; Taminiau, B; Delhalle, L; Nezer, C; Doyen, P; Crevecoeur, S; Roussey, D; Korsak, N; Daube, G

    2014-10-01

    Herve cheese is a Belgian soft cheese with a washed rind, and is made from raw or pasteurized milk. The specific microbiota of this cheese has never previously been fully explored and the use of raw or pasteurized milk in addition to starters is assumed to affect the microbiota of the rind and the heart. The aim of the study was to analyze the bacterial microbiota of Herve cheese using classical microbiology and a metagenomic approach based on 16S ribosomal DNA pyrosequencing. Using classical microbiology, the total counts of bacteria were comparable for the 11 samples of tested raw and pasteurized milk cheeses, reaching almost 8 log cfu/g. Using the metagenomic approach, 207 different phylotypes were identified. The rind of both the raw and pasteurized milk cheeses was found to be highly diversified. However, 96.3 and 97.9% of the total microbiota of the raw milk and pasteurized cheese rind, respectively, were composed of species present in both types of cheese, such as Corynebacterium casei, Psychrobacter spp., Lactococcus lactis ssp. cremoris, Staphylococcus equorum, Vagococcus salmoninarum, and other species present at levels below 5%. Brevibacterium linens were present at low levels (0.5 and 1.6%, respectively) on the rind of both the raw and the pasteurized milk cheeses, even though this bacterium had been inoculated during the manufacturing process. Interestingly, Psychroflexus casei, also described as giving a red smear to Raclette-type cheese, was identified in small proportions in the composition of the rind of both the raw and pasteurized milk cheeses (0.17 and 0.5%, respectively). In the heart of the cheeses, the common species of bacteria reached more than 99%. The main species identified were Lactococcus lactis ssp. cremoris, Psychrobacter spp., and Staphylococcus equorum ssp. equorum. Interestingly, 93 phylotypes were present only in the raw milk cheeses and 29 only in the pasteurized milk cheeses, showing the high diversity of the microbiota

  12. Microbiota characterization of a Belgian protected designation of origin cheese, Herve cheese, using metagenomic analysis.

    PubMed

    Delcenserie, V; Taminiau, B; Delhalle, L; Nezer, C; Doyen, P; Crevecoeur, S; Roussey, D; Korsak, N; Daube, G

    2014-10-01

    Herve cheese is a Belgian soft cheese with a washed rind, and is made from raw or pasteurized milk. The specific microbiota of this cheese has never previously been fully explored and the use of raw or pasteurized milk in addition to starters is assumed to affect the microbiota of the rind and the heart. The aim of the study was to analyze the bacterial microbiota of Herve cheese using classical microbiology and a metagenomic approach based on 16S ribosomal DNA pyrosequencing. Using classical microbiology, the total counts of bacteria were comparable for the 11 samples of tested raw and pasteurized milk cheeses, reaching almost 8 log cfu/g. Using the metagenomic approach, 207 different phylotypes were identified. The rind of both the raw and pasteurized milk cheeses was found to be highly diversified. However, 96.3 and 97.9% of the total microbiota of the raw milk and pasteurized cheese rind, respectively, were composed of species present in both types of cheese, such as Corynebacterium casei, Psychrobacter spp., Lactococcus lactis ssp. cremoris, Staphylococcus equorum, Vagococcus salmoninarum, and other species present at levels below 5%. Brevibacterium linens were present at low levels (0.5 and 1.6%, respectively) on the rind of both the raw and the pasteurized milk cheeses, even though this bacterium had been inoculated during the manufacturing process. Interestingly, Psychroflexus casei, also described as giving a red smear to Raclette-type cheese, was identified in small proportions in the composition of the rind of both the raw and pasteurized milk cheeses (0.17 and 0.5%, respectively). In the heart of the cheeses, the common species of bacteria reached more than 99%. The main species identified were Lactococcus lactis ssp. cremoris, Psychrobacter spp., and Staphylococcus equorum ssp. equorum. Interestingly, 93 phylotypes were present only in the raw milk cheeses and 29 only in the pasteurized milk cheeses, showing the high diversity of the microbiota

  13. Plecoptera from Minas Gerais State, southeastern Brazil.

    PubMed

    Novaes, Marcos Carneiro; Bispo, Pitágoras Da Conceição

    2014-01-01

    Specimens of Plecoptera collected in Minas Gerais State, Brazil were studied. Twelve previously described species were identified, Anacroneuria boraceiensis Froehlich, 2004, A. debilis (Pictet, 1841), A. itatiaiensis Baldin et al., 2013, A. polita (Burmeister, 1839), A. singularis Righi-Cavallaro & Lecci, 2010, A. stanjewetti Froehlich, 2002, A. terere Righi-Cavallaro & Lecci, 2010, A. vanini Froehlich, 2004, Kempnyia neotropica (Jacobson and Bianchi, 1905), K. obtusa Klapálek, 1916, Tupiperla gracilis (Burmeister, 1839) and T. robusta Froehlich, 1998. Additionally, two new species of Anacroneuria are described, A. paprockii n. sp. and A. mineira n. sp., and a list of species from Minas Gerais State is presented. PMID:25284668

  14. An Electronic Nose Based on Coated Piezoelectric Quartz Crystals to Certify Ewes’ Cheese and to Discriminate between Cheese Varieties

    PubMed Central

    Pais, Vânia F.; Oliveira, João A. B. P.; Gomes, Maria Teresa S. R.

    2012-01-01

    An electronic nose based on coated piezoelectric quartz crystals was used to distinguish cheese made from ewes’ milk, and to distinguish cheese varieties. Two sensors coated with Nafion and Carbowax could certify half the ewes’ cheese samples, exclude 32 cheeses made from cow’s milk and to classify half of the ewes’ cheese samples as possibly authentic. Two other sensors, coated with polyvinylpyrrolidone and triethanolamine clearly distinguished between Flamengo, Brie, Gruyère and Mozzarella cheeses. Brie cheeses were further separated according to their origin, and Mozzarella grated cheese also appeared clearly separated from non-grated Mozzarella. PMID:22438717

  15. A high-throughput cheese manufacturing model for effective cheese starter culture screening.

    PubMed

    Bachmann, H; Kruijswijk, Z; Molenaar, D; Kleerebezem, M; van Hylckama Vlieg, J E T

    2009-12-01

    Cheese making is a process in which enzymatic coagulation of milk is followed by protein separation, carbohydrate removal, and an extended bacterial fermentation. The number of variables in this complex process that influence cheese quality is so large that the developments of new manufacturing protocols are cumbersome. To reduce screening costs, several models have been developed to miniaturize the cheese manufacturing process. However, these models are not able to accommodate the throughputs required for systematic screening programs. Here, we describe a protocol that allows the parallel manufacturing of approximately 600 cheeses in individual cheese vats each with individual process specifications. Protocols for the production of miniaturized Gouda- and Cheddar-type cheeses have been developed. Starting with as little as 1.7 mL of milk, miniature cheeses of about 170 mg can be produced and they closely resemble conventionally produced cheese in terms of acidification profiles, moisture and salt contents, proteolysis, flavor profiles, and microstructure. Flavor profiling of miniature cheeses manufactured with and without mixed-strain adjunct starter cultures allowed the distinguishing of the different cheeses. Moreover, single-strain adjunct starter cultures engineered to overexpress important flavor-related enzymes revealed effects similar to those described in industrial cheese. Benchmarking against industrial cheese produced from the same raw materials established a good correlation between their proteolytic degradation products and their flavor profiles. These miniature cheeses, referred to as microcheeses, open new possibilities to study many aspects of cheese production, which will not only accelerate product development but also allow a more systematic approach to investigate the complex biochemistry and microbiology of cheese making.

  16. Mina P. Shaughnessy: Her Life and Work.

    ERIC Educational Resources Information Center

    Maher, Jane

    This book is intended to be both a biography of an extraordinary woman and a historical account of events leading to Open Admissions within the City University of New York (CUNY) in 1970, wherein every graduate of a New York City high school was guaranteed a place within the CUNY system. The book profiles Mina Shaugnessy, who devoted her…

  17. Volatile fraction and sensory characteristics of Manchego cheese. 1. Comparison of raw and pasteurized milk cheese.

    PubMed

    Fernández-García, Estrella; Carbonell, María; Nuñez, Manuel

    2002-11-01

    Manchego cheese can be manufactured from raw or pasteurized ewes' milk. An automatic purge and trap apparatus, coupled to a GC-MS was used to isolate. identify and compare the relative amounts of the volatile components of raw and pasteurized Manchego cheese during ripening. The majority of volatile compounds were more abundant in raw milk (RM) cheeses than in pasteurized milk (PM) cheeses. Alcohols and esters predominated in the profile of RM Manchego cheese, while methyl-ketones and 2,3-butanedione were quantitatively important in PM cheeses. Branched chain alcohols were much more abundant in RM cheeses. The discriminant analysis separated 100% samples into RM or PM cheeses by using only 16 volatile compounds. Aroma intensity was correlated with esters, branched chain aldehydes and branched chain alcohols in RM cheeses, and with esters, branched chain aldehydes, 2-methyl ketones and 2-alkanols in PM cheeses. Diacetyl was positively correlated with the aroma attribute 'toasted' and negatively correlated with aroma quality in PM cheeses. PMID:12463695

  18. ''Swiss cheese'' models with pressure

    SciTech Connect

    Bona, C.; Stela, J.

    1987-11-15

    Local spherically symmetric inhomogeneities are matched to a spatially flat Robertson-Walker background with pressure. In the cases in which the background evolves to an Einstein--de Sitter dust universe, the interior metrics tend with time either to the vacuum Schwarzschild solution or to the spatially flat Tolman dust metrics. The whole construction may be interpreted as the history of the dust-filled ''Swiss cheese'' models.

  19. Pyroglutamic acid in cheese: presence, origin, and correlation with ripening time of Grana Padano cheese.

    PubMed

    Mucchetti, G; Locci, F; Gatti, M; Neviani, E; Addeo, F; Dossena, A; Marchelli, R

    2000-04-01

    Pyroglutamic acid is present in many cheese varieties and particularly in high amounts (0.5 g/100 g of cheese) in extensively ripened Italian cheeses (Grana Padano and Parmigiano Reggiano) that are produced with thermophilic lactic acid bacteria as starters. The mechanism of pyroglutamic acid formation in cheese seems to be mostly enzymatic, as demonstrated by the presence of only L-pyroglutamic acid enantiomer. Thermophilic lactobacilli are involved in pyroglutamic acid production, as suggested by the low pyroglutamic acid content found in Bagos, a ripened Italian mountain cheese produced without addition of starter. Because milk pasteurization did not influence the pyroglutamic acid content in the ripened Grana Padano cheese, the formation of pyroglutamic acid mainly depends on the whey starter microflora rather than that of raw milk. Pyroglutamic acid concentration is linearly correlated (R2 = 0.94) with the age of Grana Padano cheese.

  20. Bioconversion of Cheese Waste (Whey)

    SciTech Connect

    Bohnert, G.W.

    1998-03-11

    The US dairy industry produces 67 billion pounds of cheese whey annually. A waste by-product of cheese production, whey consists of water, milk sugar (lactose), casein (protein), and salts amounting to about 7% total solids. Ultrafiltration is used to concentrate cheese whey into a protein-rich foodstuff; however, it too produces a waste stream, known as ''whey permeate,'' (rejected water, lactose, and salts from the membrane). Whey permeate contains about 4.5% lactose and requires treatment to reduce the high BOD (biological oxygen demand) before disposal. Ab Initio, a small business with strong chemistry and dairy processing background, desired help in developing methods for bioconversion of whey permeate lactose into lactic acid. Lactic acid is an organic acid primarily used as an acidulant in the food industry. More recently it has been used to produce polylactic acid, a biodegradable polymer and as a new method to treat meat carcasses to combat E. coli bacteria. Conversion of whey permeate to lactic acid is environmentally sound because it produces a valued product from an otherwise waste stream. FM&T has expertise in bioconversion processes and analytical techniques necessary to characterize biomass functions. The necessary engineering and analytical services for pilot biomass monitoring, process development, and purification of crude lactic acid were available at this facility.

  1. More South Polar 'Swiss Cheese'

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image is illuminated by sunlight from the upper left.

    Some of the surface of the residual south polar cap has a pattern that resembles that of sliced, swiss cheese. Shown here at the very start of southern spring is a frost-covered surface in which there are two layers evident--a brighter upper layer into which are set swiss cheese-like holes, and a darker, lower layer that lies beneath the 'swiss cheese' pattern. Nothing like this exists anywhere on Mars except within the south polar cap.

    This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image acquired on August 2,1999. It is located near 84.8oS, 71.8oW, and covers an area 3 km across and about 6.1 km long (1.9 by 3.8 miles).

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  2. Cheese whey management: a review.

    PubMed

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier

    2012-11-15

    Cheese whey is simultaneously an effluent with nutritional value and a strong organic and saline content. Cheese whey management has been focused in the development of biological treatments without valorization; biological treatments with valorization; physicochemical treatments and direct land application. In the first case, aerobic digestion is reported. In the second case, six main processes are described in the literature: anaerobic digestion, lactose hydrolysis, fermentation to ethanol, hydrogen or lactic acid and direct production of electricity through microbial fuel cells. Thermal and isoelectric precipitation, thermocalcic precipitation, coagulation/flocculation, acid precipitation, electrochemical and membrane technologies have been considered as possible and attractive physicochemical processes to valorize or treat cheese whey. The direct land application is a common and longstanding practice, although some precautions are required. In this review, these different solutions are analyzed. The paper describes the main reactors used, the influence of the main operating variables, the microorganisms or reagents employed and the characterizations of the final effluent principally in terms of chemical oxygen demand. In addition, the experimental conditions and the main results reported in the literature are compiled. Finally, the comparison between the different treatment alternatives and the presentation of potential treatment lines are postulated.

  3. 7 CFR 58.411 - Rindless cheese wrapping area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Rindless cheese wrapping area. 58.411 Section 58.411....411 Rindless cheese wrapping area. For rindless cheese a suitable space shall be provided for proper wrapping and boxing of the cheese. The area shall be free from dust, condensation, mold or other...

  4. 7 CFR 58.732 - Cooling the packaged cheese.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cooling the packaged cheese. 58.732 Section 58.732... Procedures § 58.732 Cooling the packaged cheese. After the containers are filled they shall be stacked, or... immediate progressive cooling of the individual containers of cheese. As a minimum the cheese should...

  5. 7 CFR 58.411 - Rindless cheese wrapping area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Rindless cheese wrapping area. 58.411 Section 58.411....411 Rindless cheese wrapping area. For rindless cheese a suitable space shall be provided for proper wrapping and boxing of the cheese. The area shall be free from dust, condensation, mold or other...

  6. 7 CFR 58.732 - Cooling the packaged cheese.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Cooling the packaged cheese. 58.732 Section 58.732... Procedures § 58.732 Cooling the packaged cheese. After the containers are filled they shall be stacked, or... immediate progressive cooling of the individual containers of cheese. As a minimum the cheese should...

  7. 7 CFR 58.411 - Rindless cheese wrapping area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rindless cheese wrapping area. 58.411 Section 58.411....411 Rindless cheese wrapping area. For rindless cheese a suitable space shall be provided for proper wrapping and boxing of the cheese. The area shall be free from dust, condensation, mold or other...

  8. 7 CFR 58.732 - Cooling the packaged cheese.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Cooling the packaged cheese. 58.732 Section 58.732... Procedures § 58.732 Cooling the packaged cheese. After the containers are filled they shall be stacked, or... immediate progressive cooling of the individual containers of cheese. As a minimum the cheese should...

  9. 7 CFR 58.411 - Rindless cheese wrapping area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Rindless cheese wrapping area. 58.411 Section 58.411....411 Rindless cheese wrapping area. For rindless cheese a suitable space shall be provided for proper wrapping and boxing of the cheese. The area shall be free from dust, condensation, mold or other...

  10. 7 CFR 58.732 - Cooling the packaged cheese.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cooling the packaged cheese. 58.732 Section 58.732... Procedures § 58.732 Cooling the packaged cheese. After the containers are filled they shall be stacked, or... immediate progressive cooling of the individual containers of cheese. As a minimum the cheese should...

  11. 7 CFR 58.732 - Cooling the packaged cheese.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cooling the packaged cheese. 58.732 Section 58.732... Procedures § 58.732 Cooling the packaged cheese. After the containers are filled they shall be stacked, or... immediate progressive cooling of the individual containers of cheese. As a minimum the cheese should...

  12. 7 CFR 58.411 - Rindless cheese wrapping area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Rindless cheese wrapping area. 58.411 Section 58.411....411 Rindless cheese wrapping area. For rindless cheese a suitable space shall be provided for proper wrapping and boxing of the cheese. The area shall be free from dust, condensation, mold or other...

  13. 21 CFR 133.124 - Cold-pack cheese food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Cold-pack cheese food. 133.124 Section 133.124 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Cheese and Related Products § 133.124 Cold-pack cheese food. (a)(1) Cold-pack cheese food is the...

  14. 21 CFR 133.148 - Hard grating cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hard grating cheeses. 133.148 Section 133.148 Food... Related Products § 133.148 Hard grating cheeses. (a) The cheeses for which definitions and standards of identity are prescribed by this section are hard grating cheeses for which specifically...

  15. 21 CFR 133.189 - Skim milk cheese for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Skim milk cheese for manufacturing. 133.189... Standardized Cheese and Related Products § 133.189 Skim milk cheese for manufacturing. (a) Skim milk cheese for manufacturing is the food prepared from skim milk and other ingredients specified in this section, by...

  16. 21 CFR 133.189 - Skim milk cheese for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Skim milk cheese for manufacturing. 133.189... Standardized Cheese and Related Products § 133.189 Skim milk cheese for manufacturing. (a) Skim milk cheese for manufacturing is the food prepared from skim milk and other ingredients specified in this section, by...

  17. 21 CFR 133.189 - Skim milk cheese for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Skim milk cheese for manufacturing. 133.189... Standardized Cheese and Related Products § 133.189 Skim milk cheese for manufacturing. (a) Skim milk cheese for manufacturing is the food prepared from skim milk and other ingredients specified in this section, by...

  18. 21 CFR 133.189 - Skim milk cheese for manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Skim milk cheese for manufacturing. 133.189... Standardized Cheese and Related Products § 133.189 Skim milk cheese for manufacturing. (a) Skim milk cheese for manufacturing is the food prepared from skim milk and other ingredients specified in this section, by...

  19. 21 CFR 133.189 - Skim milk cheese for manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Skim milk cheese for manufacturing. 133.189... Standardized Cheese and Related Products § 133.189 Skim milk cheese for manufacturing. (a) Skim milk cheese for manufacturing is the food prepared from skim milk and other ingredients specified in this section, by...

  20. 21 CFR 133.124 - Cold-pack cheese food.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cold-pack cheese food. 133.124 Section 133.124 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Cheese and Related Products § 133.124 Cold-pack cheese food. (a)(1) Cold-pack cheese food is the...

  1. 21 CFR 133.124 - Cold-pack cheese food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cold-pack cheese food. 133.124 Section 133.124 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Cheese and Related Products § 133.124 Cold-pack cheese food. (a)(1) Cold-pack cheese food is the...

  2. 7 CFR 58.433 - Cheese cultures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese cultures. 58.433 Section 58.433 Agriculture..., GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General... Material § 58.433 Cheese cultures. Harmless microbial cultures used in the development of acid and...

  3. 21 CFR 133.146 - Grated cheeses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., by the use of the terms “milkfat and nonfat milk” or “nonfat milk and milkfat”, “milkfat from goat's milk and nonfat goat's milk”, “milkfat from sheep's milk and nonfat sheep's milk”, etc., as appropriate. ..., and skim milk cheese for manufacturing may not be used. All cheese ingredients used are either...

  4. 21 CFR 133.146 - Grated cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., by the use of the terms “milkfat and nonfat milk” or “nonfat milk and milkfat”, “milkfat from goat's milk and nonfat goat's milk”, “milkfat from sheep's milk and nonfat sheep's milk”, etc., as appropriate. ..., and skim milk cheese for manufacturing may not be used. All cheese ingredients used are either...

  5. Major technological advances and trends in cheese.

    PubMed

    Johnson, M E; Lucey, J A

    2006-04-01

    Over the last 25 yr, cheese production in the United States has more than doubled with most of the increase due to production in the western states. Processing large volumes of milk into cheese has necessitated changes in vat size and design, reliance on computer software, and milk standardization, including use of membrane concentration of milk either at the cheese plant or on the farm. There has been increased interest in specialty cheeses including cheese made from sheep, goat, and organic milks. In addition, membrane processing of whey into various value-added components has become routine. Changes in cheese manufacturing protocols have resulted in a reduction of the manufacturing time and the necessity for consistent and reliable starter activity. Major advances in the genetics of microorganisms have not only resulted in widespread use of fermentation-produced chymosin but also in starter bacteria with improved resistance to bacteriophage infection. Genomics and proteomics have increased the likelihood of the development of nonstarter adjuncts with specific enzymatic activity. Indeed, the use of adjunct microorganisms to produce cheese with a unique flavor profile or to produce cheese with more consistent or better quality flavor has gained almost universal acceptance.

  6. The Microfloras of Traditional Greek Cheeses.

    PubMed

    Litopoulou-Tzanetaki, Evanthia; Tzanetakis, Nikolaos

    2014-02-01

    Many traditional cheeses are made in Greece. Some of them are, in fact, types of the same cheese variety, whether or not they have different cheesemaking technologies, but are known by different local names. Twenty of them have been granted protected designation of origin status. In the 8th century BCE, Homer described a cheese thought to be the ancestor of feta, the main cheese manufactured in Greece from the ancient times until today. Meanwhile, various cheese types evolved through the centuries, and almost every area in Greece has its own cheesemaking tradition. Some cheese varieties are local, handcrafted products whose production has been handed down from generation to generation, and without interest in their continued production, these varieties will disappear. Other local varieties are made at small factories from pasteurized milk and commercial rennet and starter and are very different from the traditional versions. However, some milk producers still make their cheeses at home or at small dairies from raw milk, without any starter, or sometimes from thermized milk, with traditional yogurt as the starter. Their cheeses are the basis for the information presented in this review.

  7. Occurrence of Streptococcus macedonicus in Italian cheeses.

    PubMed

    Pacini, Federico; Cariolato, Diego; Andrighetto, Christian; Lombardi, Angiolella

    2006-08-01

    A new approach for the detection and enumeration of Streptococcus macedonicus in cheese was developed. The method which is based on a first screening of cheeses by a PCR assay specific for S. macedonicus followed by plating positive samples on a differential medium (SM medium) was applied to 51 samples derived from PDO and traditional Italian cheeses. Streptococcus macedonicus was found in 16 of the 51 samples examined in the present work. With the exclusion of an Asiago cheese sample in which very high numbers of S. macedonicus (7.13 log CFU g(-1)) were found, the counts of S. macedonicus in SM medium ranged from 2.48 to 4.70 log CFU g(-1). In the same cheeses, total streptococci enumerated onto M17 agar were found at higher concentrations with values up to 7.88 log CFU g(-1). The system developed was particularly useful for the differential count of S. macedonicus in cheese and allowed to evaluate the occurrence of this species within the complex microbial lactic acid bacteria (LAB) population, which is typical of traditional cheeses. Results showed that in the examined cheeses S. macedonicus cannot be considered as a dominant LAB species.

  8. Physical properties of pizza Mozzarella cheese manufactured under different cheese-making conditions.

    PubMed

    Banville, V; Morin, P; Pouliot, Y; Britten, M

    2013-08-01

    The effect of manufacturing factors on the shreddability and meltability of pizza Mozzarella cheese was studied. Four experimental cheeses were produced with 2 concentrations of denatured whey protein added to milk (0 or 0.25%) and 2 renneting pH values (6.4 or 6.5). The cheeses were aged 8, 22, or 36d before testing. Shreddability was assessed by the presence of fines, size of the shreds, and adhesion to the blade after shredding at 4, 13, or 22°C. A semi-empirical method was developed to measure the matting behavior of shreds by simulating industrial bulk packaging. Rheological measurements were performed on cheeses with and without a premelting treatment to assess melt and postmelt cheese physical properties. Lowering the pH of milk at renneting and aging the cheeses generally decreased the fines production during shredding. Adding whey protein to the cheeses also altered the fines production, but the effect varied depending on the renneting and aging conditions. The shred size distribution, adhesion to the blade, and matting behavior of the cheeses were adversely affected by increased temperature at shredding. The melting profiles obtained by rheological measurements showed that better meltability can be achieved by lowering the pH of milk at renneting or aging the cheese. The premelted cheeses were found to be softer at low temperatures (<40°C) and harder at high temperatures (>50°C) compared with the cheeses that had not undergone the premelting treatment. Understanding and controlling milk standardization, curd acidification, and cheese aging are essential for the production of Mozzarella cheese with desirable shreddability and meltability.

  9. Evaluation of Natural Food Preservatives in Domestic and Imported Cheese.

    PubMed

    Park, Sun-Young; Han, Noori; Kim, Sun-Young; Yoo, Mi-Young; Paik, Hyun-Dong; Lim, Sang-Dong

    2016-01-01

    In milk and milk products, a number of organic acids naturally occur. We investigated the contents of some naturally occurred food preservatives (sorbic acid, benzoic acid, propionic acid, nitrite, and nitrate) contained in domestic and imported cheeses to establish the standard for the allowable range of food preservatives content in cheese. 8 kinds of domestic precheeses (n=104), 16 kinds of domestic cured cheeses (n=204) and 40 kinds of imported cheeses (n=74) were collected. Each domestic cheese was aged for a suitable number of months and stored for 2 mon at 5℃ and 10℃. No preservatives were detected in domestic soft and fresh cheeses, except cream cheese. In case of semi-hard cheeses, 2-5 mg/kg of benzoic acid was detected after 1-2 mon of aging. In imported cheeses, only benzoic acid and propionic acid were detected. The average benzoic acid and propionic acid contents in semi-hard cheese were 8.73 mg/kg and 18.78 mg/kg, respectively. Specifically, 1.16 mg/kg and 6.80 mg/kg of benzoic acid and propionic acid, respectively, were contained in soft cheese, 3.27 mg/kg and 2.84 mg/kg, respectively, in fresh cheese, 1.87 mg/kg and not detected, respectively, in hard cheese, and 2.07 mg/kg and 182.26 mg/kg, respectively, in blended processed cheese. PMID:27621695

  10. Evaluation of Natural Food Preservatives in Domestic and Imported Cheese

    PubMed Central

    Paik, Hyun-Dong

    2016-01-01

    In milk and milk products, a number of organic acids naturally occur. We investigated the contents of some naturally occurred food preservatives (sorbic acid, benzoic acid, propionic acid, nitrite, and nitrate) contained in domestic and imported cheeses to establish the standard for the allowable range of food preservatives content in cheese. 8 kinds of domestic precheeses (n=104), 16 kinds of domestic cured cheeses (n=204) and 40 kinds of imported cheeses (n=74) were collected. Each domestic cheese was aged for a suitable number of months and stored for 2 mon at 5℃ and 10℃. No preservatives were detected in domestic soft and fresh cheeses, except cream cheese. In case of semi-hard cheeses, 2-5 mg/kg of benzoic acid was detected after 1-2 mon of aging. In imported cheeses, only benzoic acid and propionic acid were detected. The average benzoic acid and propionic acid contents in semi-hard cheese were 8.73 mg/kg and 18.78 mg/kg, respectively. Specifically, 1.16 mg/kg and 6.80 mg/kg of benzoic acid and propionic acid, respectively, were contained in soft cheese, 3.27 mg/kg and 2.84 mg/kg, respectively, in fresh cheese, 1.87 mg/kg and not detected, respectively, in hard cheese, and 2.07 mg/kg and 182.26 mg/kg, respectively, in blended processed cheese.

  11. Evaluation of Natural Food Preservatives in Domestic and Imported Cheese

    PubMed Central

    Paik, Hyun-Dong

    2016-01-01

    In milk and milk products, a number of organic acids naturally occur. We investigated the contents of some naturally occurred food preservatives (sorbic acid, benzoic acid, propionic acid, nitrite, and nitrate) contained in domestic and imported cheeses to establish the standard for the allowable range of food preservatives content in cheese. 8 kinds of domestic precheeses (n=104), 16 kinds of domestic cured cheeses (n=204) and 40 kinds of imported cheeses (n=74) were collected. Each domestic cheese was aged for a suitable number of months and stored for 2 mon at 5℃ and 10℃. No preservatives were detected in domestic soft and fresh cheeses, except cream cheese. In case of semi-hard cheeses, 2-5 mg/kg of benzoic acid was detected after 1-2 mon of aging. In imported cheeses, only benzoic acid and propionic acid were detected. The average benzoic acid and propionic acid contents in semi-hard cheese were 8.73 mg/kg and 18.78 mg/kg, respectively. Specifically, 1.16 mg/kg and 6.80 mg/kg of benzoic acid and propionic acid, respectively, were contained in soft cheese, 3.27 mg/kg and 2.84 mg/kg, respectively, in fresh cheese, 1.87 mg/kg and not detected, respectively, in hard cheese, and 2.07 mg/kg and 182.26 mg/kg, respectively, in blended processed cheese. PMID:27621695

  12. Evaluation of Natural Food Preservatives in Domestic and Imported Cheese.

    PubMed

    Park, Sun-Young; Han, Noori; Kim, Sun-Young; Yoo, Mi-Young; Paik, Hyun-Dong; Lim, Sang-Dong

    2016-01-01

    In milk and milk products, a number of organic acids naturally occur. We investigated the contents of some naturally occurred food preservatives (sorbic acid, benzoic acid, propionic acid, nitrite, and nitrate) contained in domestic and imported cheeses to establish the standard for the allowable range of food preservatives content in cheese. 8 kinds of domestic precheeses (n=104), 16 kinds of domestic cured cheeses (n=204) and 40 kinds of imported cheeses (n=74) were collected. Each domestic cheese was aged for a suitable number of months and stored for 2 mon at 5℃ and 10℃. No preservatives were detected in domestic soft and fresh cheeses, except cream cheese. In case of semi-hard cheeses, 2-5 mg/kg of benzoic acid was detected after 1-2 mon of aging. In imported cheeses, only benzoic acid and propionic acid were detected. The average benzoic acid and propionic acid contents in semi-hard cheese were 8.73 mg/kg and 18.78 mg/kg, respectively. Specifically, 1.16 mg/kg and 6.80 mg/kg of benzoic acid and propionic acid, respectively, were contained in soft cheese, 3.27 mg/kg and 2.84 mg/kg, respectively, in fresh cheese, 1.87 mg/kg and not detected, respectively, in hard cheese, and 2.07 mg/kg and 182.26 mg/kg, respectively, in blended processed cheese.

  13. Bacteriological quality of raw milk used for production of a Brazilian farmstead raw milk cheese.

    PubMed

    Costa Sobrinho, Paulo de Souza; Marçal de Faria, Camila Andreata; Silva Pinheiro, Julia; Gonçalves de Almeida, Héllen; Vieira Pires, Christiano; Silva Santos, Aline

    2012-02-01

    The objective of this study was to evaluate the bacteriological quality of raw cow's milk utilized for the production of Traditional Minas Serro cheese, a Brazilian farmstead raw milk cheese. Raw milk samples were collected from six farmstead cheese operations manufacturing raw milk cheese from cow's milk. Coliform count (CC) and Escherichia coli counts were determined using Petrifilm™ EC plates, and Staphylococcus aureus counts were determined using Petrifilm™ Staph Express count plates. The standard plate count (SPC) was determined using plate count agar. The somatic cell count (SCC) was determined with a DeLaval cell counter. The detection of Listeria monocytogenes was based in the ISO 11290-1 protocol. A total of 165 samples were analyzed, and the SPC was 1.85-7.88 log CFU/mL. Coliform were detected in 140 (84.8%) of the 165 samples, with counts of 1-6.39 log CFU/mL. E. coli was detected in 17 (10.3%) samples, with counts of 1-2.18 log CFU/mL. The SCC in raw milk was 10,000-1,390,000 cells per mL, with mean and geometric mean values of 247,000 and 162,181, respectively. The SCC did not differ significantly between the seasons (p>0.05), but differed between different farms (p<0.05). None of the 155 samples were positive for the presence of Listeria monocytogenes. S. aureus was isolated in 145 (94.1%) of the 154 samples, and the count was 1.47-5.03 log CFU/mL. The median of SPC, CC, and S. aureus counts differed significantly between seasons and between farms (p<0.05). Our results indicate that raw milk for production of farmstead raw milk cheese has a low incidence of L. monocytogenes and a high incidence of S. aureus, and suggest that measurements (such as SCC or SPC) may not serve as a predictor of other bacterial (including pathogenic) presence.

  14. In Search of Mina Shaughnessy: A Comparison of Mina Shaughnessy and K. Patricia Cross.

    ERIC Educational Resources Information Center

    McAlexander, Patricia J.

    One way to identify the essential Mina Shaughnessy would be to look at her views in light of the conflicts of the 1970s. It is particularly revealing to compare Shaughnessy to another great basic writing pioneer of that decade, K. Patricia Cross, whose 1971 book "Beyond the Open Door" Shaughnessy lists as a suggested reading in "Errors and…

  15. 21 CFR 133.146 - Grated cheeses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Anticaking agents. (3) Spices. (4) Flavorings other than those which, singly or in combination with other... the presence of any added spice or flavoring. (2) Any cheese varietal names used in the name of...

  16. Staphylococcal food poisoning from sheep milk cheese.

    PubMed Central

    Bone, F. J.; Bogie, D.; Morgan-Jones, S. C.

    1989-01-01

    Cheese made from sheep milk was implicated in food-poisoning incidents in December 1984 and January 1985. Bacteriological examination of batches of cheese failed to reveal a viable pathogen but enterotoxin A produced by Staphylococcus aureus was present. This was the first time that enterotoxin was detected in a food produced in the UK which was associated with poisoning and from which viable Staph. aureus could not be isolated. Subsequent detailed examination of milk, yoghurt and cheese from the same producer revealed that contamination with Staph. aureus was associated with post-infection carriage as well as clinical illness in ewes on the farm. Strains producing enterotoxon. A were still intermittently present in the bulk milk used for cheese production nearly 2 years afterwards, apparently in the absence of clinical illness in the sheep. The possible effects of heat treatment are discussed. Any changes in legislation should cover all non-human mammalian milk used for human consumption. PMID:2691265

  17. Interests in Geotrichum candidum for cheese technology.

    PubMed

    Boutrou, R; Guéguen, M

    2005-06-25

    The wide genotypic and phenotypic diversity of Geotrichum candidum strains does not facilitate its classification as yeast or a yeast-like fungus that is still a matter of debate. Whatever its classification, G. candidum possesses many different metabolic pathways that are of particular interest to the dairy industry. G. candidum is of importance in the maturation of cheese, and much is known about its direct contribution to cheese ripening and flavour formation. Its diverse metabolic potential means that G. candidum can play an important role in the ripening of many soft and semi-hard cheeses and make a positive contribution to the development of taste and aroma. It may also influence the growth of other microorganisms, both valuable and detrimental. The significance of the presence of G. candidum in cheese depends on the particular type of production and on the presence of biotypes featuring specific types of metabolism. However, in situ metabolic pathways involved in cheese ripening and their regulations are mainly unknown. The information available provides a good understanding of the potential of G. candidum strains that are used in cheese manufacture, and permits a better choice of strain depending on the characteristics required. The biochemical activities of G. candidum and its application in the dairy industry are presented in this review.

  18. Whey cheese: membrane technology to increase yields.

    PubMed

    Riera, Francisco; González, Pablo; Muro, Claudia

    2016-02-01

    Sweet cheese whey has been used to obtain whey cheese without the addition of milk. Pre-treated whey was concentrated by nanofiltration (NF) at different concentration ratios (2, 2.5 and 2.8) or by reverse osmosis (RO) (2-3 times). After the concentration, whey was acidified with lactic acid until a final pH of 4.6-4.8, and heated to temperatures between 85 and 90 °C. The coagulated fraction (supernatant) was collected and freely drained over 4 h. The cheese-whey yield and protein, fat, lactose and ash recoveries in the final product were calculated. The membrane pre-concentration step caused an increase in the whey-cheese yield. The final composition of products was compared with traditional cheese-whey manufacture products (without membrane concentration). Final cheese yields found were to be between 5 and 19.6%, which are higher than those achieved using the traditional 'Requesón' process. PMID:26869115

  19. Cheese Classification, Characterization, and Categorization: A Global Perspective.

    PubMed

    Almena-Aliste, Montserrat; Mietton, Bernard

    2014-02-01

    Cheese is one of the most fascinating, complex, and diverse foods enjoyed today. Three elements constitute the cheese ecosystem: ripening agents, consisting of enzymes and microorganisms; the composition of the fresh cheese; and the environmental conditions during aging. These factors determine and define not only the sensory quality of the final cheese product but also the vast diversity of cheeses produced worldwide. How we define and categorize cheese is a complicated matter. There are various approaches to cheese classification, and a global approach for classification and characterization is needed. We review current cheese classification schemes and the limitations inherent in each of the schemes described. While some classification schemes are based on microbiological criteria, others rely on descriptions of the technologies used for cheese production. The goal of this review is to present an overview of comprehensive and practical integrative classification models in order to better describe cheese diversity and the fundamental differences within cheeses, as well as to connect fundamental technological, microbiological, chemical, and sensory characteristics to contribute to an overall characterization of the main families of cheese, including the expanding world of American artisanal cheeses. PMID:26082106

  20. Cheese Classification, Characterization, and Categorization: A Global Perspective.

    PubMed

    Almena-Aliste, Montserrat; Mietton, Bernard

    2014-02-01

    Cheese is one of the most fascinating, complex, and diverse foods enjoyed today. Three elements constitute the cheese ecosystem: ripening agents, consisting of enzymes and microorganisms; the composition of the fresh cheese; and the environmental conditions during aging. These factors determine and define not only the sensory quality of the final cheese product but also the vast diversity of cheeses produced worldwide. How we define and categorize cheese is a complicated matter. There are various approaches to cheese classification, and a global approach for classification and characterization is needed. We review current cheese classification schemes and the limitations inherent in each of the schemes described. While some classification schemes are based on microbiological criteria, others rely on descriptions of the technologies used for cheese production. The goal of this review is to present an overview of comprehensive and practical integrative classification models in order to better describe cheese diversity and the fundamental differences within cheeses, as well as to connect fundamental technological, microbiological, chemical, and sensory characteristics to contribute to an overall characterization of the main families of cheese, including the expanding world of American artisanal cheeses.

  1. Experimental aflatoxin production in Manchego-type cheese.

    PubMed

    Blanco, J L; Domínguez, L; Gómez-Lucía, E; Garayzabal, J F; Goyache, J; Suárez, G

    1988-01-01

    Manchego-type cheese, a typical Spanish cheese, was inoculated in various ways with an aflatoxigenic organism, Aspergillus parasiticus NRRL 2999, to study the production of aflatoxin. When the original milk was contaminated with a spore suspension, aflatoxin was not detected in paraffin-covered cheeses although it was present in the top layer of non-paraffin-covered cheeses after ripening at 15 degrees C for 60 d. When the cheese surface was inoculated, no aflatoxins were detected in paraffin-covered cheeses after ripening for 60 d although they were found when the cheeses were ripened for 30 d. In non-paraffin-covered cheeses aflatoxins were detected only in the top layer and in the second 10 mm layer when cheeses were incubated after the normal ripening at 28 degrees C for 30 d. When the centre of the cheese was inoculated, no aflatoxins were detected although Aspergillus grew slightly along the inoculation area. When cheese portions were inoculated, fungal growth was evident after incubation at 28 degrees and 15 degrees C for 6 d but there was no growth at 10 degrees C after 50 d. At 28 degrees C aflatoxins were detected at a concentration of 132 micrograms/g after 13 d, the highest level obtained. In cheese paste at 28 degrees and 15 degrees C, growth was intense, but the level of aflatoxins detected was lower than in cheese portions. At 10 degrees C the growth was heavy, but aflatoxins were not detected. PMID:3350782

  2. Isolation of Listeria monocytogenes from milks used for Iranian traditional cheese in Lighvan cheese factories.

    PubMed

    Moosavy, Mir-Hassan; Esmaeili, Saber; Mostafavi, Ehsan; Bagheri Amiri, Fahimeh

    2014-01-01

    Traditional Lighvan cheese is a semi-hard cheese which has a popular market in Iran and neighboring countries. The aim of this study was evaluating the contamination of milks used for Lighvan cheese making with Listeria monocytogenes. Raw milk samples were randomly collected from different cheese producing factories (sampling carried out from large milk tanks used cheese making in factories). Isolation of L. monocytogenes was performed according to ISO 11290 and biochemical tests were done to identify and confirm L. monocytogenes. 9 samples (50%) of the 18 collected samples from milk tanks in Lighvan cheese producing factories were contaminated with L. monocytogenes. The concentration of L. monocytogenes in all 9 positive samples was 40 CFU/ml. This study is the first report of L. monocytogenes contamination in raw milks used for Lighvan cheese production in Iran. Regarding the fact that these cheeses are produced from raw milk and no heating process is performed on them its milk contamination can be a potential risk for consumers. PMID:25528910

  3. Recovery and differentiation of long ripened cheese microflora through a new cheese-based cultural medium.

    PubMed

    Neviani, Erasmo; De Dea Lindner, Juliano; Bernini, Valentina; Gatti, Monica

    2009-05-01

    A partial picture of the typical microflora of PDO Parmigiano Reggiano cheese was achieved by studying the cultivability of lactic acid bacteria associated with its manufacturing and ripening. A comprehensive sampling design allowed for the analysis of the cheese microflora during its production over 20 months of ripening. An innovative cheese agar medium (CAM) was prepared after testing 18 formulations all based on grated Parmigiano Reggiano ripened cheese. During cheese manufacturing and ripening, different samples were sampled and their microflora was recovered using CAM in comparison with other traditional media. Colonies which formed units from the different agar media tested were picked and isolated; the phylogenetic positions of 154 isolated strains were studied at level of species by 16S-rRNA gene sequencing. CAM seems to be able to recover the minority population coming from milk and whey starter, hardly estimable, during the first hours of production, on traditional media.

  4. Biogenic amines in italian pecorino cheese.

    PubMed

    Schirone, Maria; Tofalo, Rosanna; Visciano, Pierina; Corsetti, Aldo; Suzzi, Giovanna

    2012-01-01

    The quality of distinctive artisanal cheeses is closely associated with the territory of production and its traditions. Pedoclimatic characteristics, genetic autochthonous variations, and anthropic components create an environment so specific that it would be extremely difficult to reproduce elsewhere. Pecorino cheese is included in this sector of the market and is widely diffused in Italy (∼62.000t of production in 2010). Pecorino is a common name given to indicate Italian cheeses made exclusively from pure ewes' milk characterized by a high content of fat matter and it is mainly produced in the middle and south of Italy by traditional procedures from raw or pasteurized milk. The microbiota plays a major role in the development of the organoleptic characteristics of the cheese but it can also be responsible for the accumulation of undesirable substances, such as biogenic amines (BA). Bacterial amino acid decarboxylase activity and BA content have to be investigated within the complex microbial community of raw milk cheese for different cheese technologies. The results emphasize the necessity of controlling the indigenous bacterial population responsible for high production of BA and the use of competitive adjunct cultures could be suggested. Several factors can contribute to the qualitative and quantitative profiles of BA's in Pecorino cheese such as environmental hygienic conditions, pH, salt concentration, water activity, fat content, pasteurization of milk, decarboxylase microorganisms, starter cultures, temperature and time of ripening, storage, part of the cheese (core, edge), and the presence of cofactor (pyridoxal phosphate, availability of aminases and deaminases). In fact physico-chemical parameters seem to favor biogenic amine-positive microbiota; both of these environmental factors can easily be modulated, in order to control growth of undesirable microorganisms. Generally, the total content of BA's in Pecorino cheeses can range from about 100-2400

  5. Characteristics of Gouda cheese supplemented with fruit liquors.

    PubMed

    Choi, Hee Young; Yang, Chul Ju; Choi, Kap Seong; Bae, Inhyu

    2015-01-01

    This study was conducted in order to evaluate the quality characteristics of Gouda cheeses supplemented with fruit liquor (Prunusmume or Cornus officinalis). Fruit liquor was supplemented to Gouda cheeses during preparation. Changes in chemical composition, lactic acid bacterial population, pH, water-soluble nitrogen, sensory characteristics, and proteolysis were monitored in the prepared ripened cheese. The electrophoresis patterns of cheese proteins, fruit liquor functional component concentrations, and the flavonoid content of the cheeses were also determined. The addition of fruit liquor did not affect (p> 0.05) the appearance or sensory characteristics of the cheeses. Higher amounts of crude ash, mineral, and flavonoids (p< 0.05) were observed in the liquor supplemented cheese than in the control cheese. Findings from this study suggest that wine supplemented Gouda could provide additional nutrients while maintaining flavor and quality.

  6. 21 CFR 133.186 - Sap sago cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cheese having the same physical and chemical properties. The cheese is pale green in color and has the... for not less than 5 weeks. The ripened curd is dried and ground; salt and dried clover of the...

  7. 21 CFR 133.186 - Sap sago cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cheese having the same physical and chemical properties. The cheese is pale green in color and has the... for not less than 5 weeks. The ripened curd is dried and ground; salt and dried clover of the...

  8. 21 CFR 133.186 - Sap sago cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... cheese having the same physical and chemical properties. The cheese is pale green in color and has the... for not less than 5 weeks. The ripened curd is dried and ground; salt and dried clover of the...

  9. 21 CFR 133.186 - Sap sago cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... cheese having the same physical and chemical properties. The cheese is pale green in color and has the... for not less than 5 weeks. The ripened curd is dried and ground; salt and dried clover of the...

  10. 7 CFR 58.426 - Rindless cheese wrapping equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... seal the wrapper applied to rindless cheese shall have square interior corners, reasonably smooth... the natural intended shape of the cheese in an acceptable manner, reasonably smooth surfaces on...

  11. 7 CFR 58.426 - Rindless cheese wrapping equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... seal the wrapper applied to rindless cheese shall have square interior corners, reasonably smooth... the natural intended shape of the cheese in an acceptable manner, reasonably smooth surfaces on...

  12. 7 CFR 58.426 - Rindless cheese wrapping equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... seal the wrapper applied to rindless cheese shall have square interior corners, reasonably smooth... the natural intended shape of the cheese in an acceptable manner, reasonably smooth surfaces on...

  13. 7 CFR 58.426 - Rindless cheese wrapping equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... seal the wrapper applied to rindless cheese shall have square interior corners, reasonably smooth... the natural intended shape of the cheese in an acceptable manner, reasonably smooth surfaces on...

  14. 21 CFR 133.186 - Sap sago cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Sap sago cheese. 133.186 Section 133.186 Food and... Products § 133.186 Sap sago cheese. (a) Description. (1) Sap sago cheese is the food prepared by the... method described in § 133.5. Sap sago cheese is not less than 5 months old. (2) One or more of the...

  15. Prevalence and risk factors for bovine tuberculosis in Minas Gerais State, Brazil.

    PubMed

    Belchior, Ana Paula Cunha; Lopes, Luciano Bastos; Gonçalves, Vitor Salvador Picão; Leite, Rômulo Cerqueira

    2016-02-01

    The aim of the present study was to estimate the prevalence and regional spread of bovine tuberculosis in the state of Minas Gerais, Brazil, to identify herd-level risk factors, and to provide guidance for disease control and mitigation of its impact in public health. The study comprised a large-scale random sample survey of 22,990 animals and 1586 herds, distributed in seven regions. A questionnaire was applied on each farm to collect epidemiological and herd management data. Overall, 5.04 % of herds and 0.81 % of animals were positive for bovine tuberculosis. The highest herd prevalence was found in Alto Paranaíba, an expanding dairy region. The more technologically advanced dairy herds showed a prevalence ratio of 2.83 compared to others and are obvious candidates for risk-based surveillance and herd accreditation schemes. Small farms cannot be left out of disease control efforts because they are the vast majority of herds, albeit with lower individual risk. With regard to public health, there is widespread practice of producing homemade fresh cheese with raw milk and of slaughtering culled cows in places without sanitary inspection. This poses a risk to consumers and limits the efficacy of surveillance at slaughter. PMID:26584941

  16. Roquefortine C occurrence in blue cheese.

    PubMed

    Finoli, C; Vecchio, A; Galli, A; Dragoni, I

    2001-02-01

    Several strains of Penicillium are used for the production of mold-ripened cheeses, and some of them are able to produce mycotoxins. The aims of the research were the determination of roquefortine C and PR toxin in domestic and imported blue cheeses, the identification of the penicillia used as starter, and the investigation of their capacity for producing toxins in culture media. Roquefortine C was always found in the cheeses at levels ranging from 0.05 to 1.47 mg/kg, whereas the PR toxin was never found. The identification of the fungal strains present in the domestic cheeses included Penicillium glabrum, Penicillium roqueforti, and Penicillium cyclopium in the Gorgonzola "dolce" and Penicillium roqueforti in the Gorgonzola "naturale"; in one case, the presence of Penicillium crustosum was observed. The strains isolated from the foreign cheeses belonged to P. roqueforti. The strains were able to produce between 0.18 and 8.44 mg/liter of roquefortine in yeast extract sucrose medium and between 0.06 and 3.08 mg/liter and less than 0.05 mg/liter when inoculated in milk at 20 degrees C for 14 days and 4 degrees C for 24 days, respectively. Linear relations between production of roquefortine in culture media and cheeses did not emerge. PR toxin ranged from less than 0.05 to 60.30 mg/liter in yeast extract sucrose medium and was produced in milk at 20 degrees C from only one strain. The low levels and the relatively low toxicity of roquefortine make the consumption of blue cheese safe for the consumer.

  17. 21 CFR 133.193 - Spiced, flavored standardized cheeses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Spiced, flavored standardized cheeses. 133.193 Section 133.193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for...

  18. 7 CFR 58.736 - Pasteurized process cheese.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pasteurized process cheese. 58.736 Section 58.736... Finished Products § 58.736 Pasteurized process cheese. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese and Related Products, Food and...

  19. 7 CFR 58.736 - Pasteurized process cheese.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Pasteurized process cheese. 58.736 Section 58.736... Finished Products § 58.736 Pasteurized process cheese. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese and Related Products, Food and...

  20. 7 CFR 58.512 - Cheese vats or tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese vats or tanks. 58.512 Section 58.512 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....512 Cheese vats or tanks. (a) Cheese vats or tanks shall meet the requirements of § 58.416....

  1. 7 CFR 58.512 - Cheese vats or tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cheese vats or tanks. 58.512 Section 58.512 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....512 Cheese vats or tanks. (a) Cheese vats or tanks shall meet the requirements of § 58.416....

  2. 7 CFR 58.736 - Pasteurized process cheese.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Pasteurized process cheese. 58.736 Section 58.736... Finished Products § 58.736 Pasteurized process cheese. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese and Related Products, Food and...

  3. 7 CFR 58.736 - Pasteurized process cheese.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Pasteurized process cheese. 58.736 Section 58.736... Finished Products § 58.736 Pasteurized process cheese. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese and Related Products, Food and...

  4. 7 CFR 58.512 - Cheese vats or tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Cheese vats or tanks. 58.512 Section 58.512 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....512 Cheese vats or tanks. (a) Cheese vats or tanks shall meet the requirements of § 58.416....

  5. 7 CFR 58.426 - Rindless cheese wrapping equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Rindless cheese wrapping equipment. 58.426 Section 58... Service 1 Equipment and Utensils § 58.426 Rindless cheese wrapping equipment. The equipment used to heat seal the wrapper applied to rindless cheese shall have square interior corners, reasonably...

  6. 7 CFR 58.736 - Pasteurized process cheese.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Pasteurized process cheese. 58.736 Section 58.736... Finished Products § 58.736 Pasteurized process cheese. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese and Related Products, Food and...

  7. 7 CFR 58.512 - Cheese vats or tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Cheese vats or tanks. 58.512 Section 58.512 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....512 Cheese vats or tanks. (a) Cheese vats or tanks shall meet the requirements of § 58.416....

  8. 21 CFR 133.103 - Asiago medium cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Asiago medium cheese. 133.103 Section 133.103 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Related Products § 133.103 Asiago medium cheese. Asiago medium cheese conforms to the definition...

  9. 21 CFR 133.103 - Asiago medium cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Asiago medium cheese. 133.103 Section 133.103 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Related Products § 133.103 Asiago medium cheese. Asiago medium cheese conforms to the definition...

  10. 21 CFR 133.103 - Asiago medium cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Asiago medium cheese. 133.103 Section 133.103 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Related Products § 133.103 Asiago medium cheese. Asiago medium cheese conforms to the definition...

  11. 21 CFR 133.103 - Asiago medium cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Asiago medium cheese. 133.103 Section 133.103 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Related Products § 133.103 Asiago medium cheese. Asiago medium cheese conforms to the definition...

  12. 21 CFR 133.103 - Asiago medium cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Asiago medium cheese. 133.103 Section 133.103 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Related Products § 133.103 Asiago medium cheese. Asiago medium cheese conforms to the definition...

  13. 21 CFR 133.134 - Cream cheese with other foods.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Cream cheese with other foods. 133.134 Section 133.134 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...

  14. 7 CFR 58.737 - Pasteurized process cheese food.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Pasteurized process cheese food. 58.737 Section 58.737... Finished Products § 58.737 Pasteurized process cheese food. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese Food and Related Products, Food and...

  15. 7 CFR 58.737 - Pasteurized process cheese food.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Pasteurized process cheese food. 58.737 Section 58.737... Finished Products § 58.737 Pasteurized process cheese food. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese Food and Related Products, Food and...

  16. 7 CFR 58.737 - Pasteurized process cheese food.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Pasteurized process cheese food. 58.737 Section 58.737... Finished Products § 58.737 Pasteurized process cheese food. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese Food and Related Products, Food and...

  17. 21 CFR 133.134 - Cream cheese with other foods.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Cream cheese with other foods. 133.134 Section 133.134 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...

  18. 21 CFR 133.147 - Grated American cheese food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Grated American cheese food. 133.147 Section 133.147 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...

  19. 7 CFR 58.439 - Cheese from unpasteurized milk.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese from unpasteurized milk. 58.439 Section 58.439... Procedures § 58.439 Cheese from unpasteurized milk. If the cheese is labeled as “heat treated”, “unpasteurized,” “raw milk”, or “for manufacturing” the milk may be raw or heated at temperatures...

  20. 7 CFR 58.438 - Cheese from pasteurized milk.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Cheese from pasteurized milk. 58.438 Section 58.438... Procedures § 58.438 Cheese from pasteurized milk. If the cheese is labeled as pasteurized, the milk shall be pasteurized by subjecting every particle of milk to a minimum temperature of 161 °F. for not less than...

  1. 7 CFR 58.439 - Cheese from unpasteurized milk.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cheese from unpasteurized milk. 58.439 Section 58.439... Procedures § 58.439 Cheese from unpasteurized milk. If the cheese is labeled as “heat treated”, “unpasteurized,” “raw milk”, or “for manufacturing” the milk may be raw or heated at temperatures...

  2. 7 CFR 58.438 - Cheese from pasteurized milk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Cheese from pasteurized milk. 58.438 Section 58.438... Procedures § 58.438 Cheese from pasteurized milk. If the cheese is labeled as pasteurized, the milk shall be pasteurized by subjecting every particle of milk to a minimum temperature of 161 °F. for not less than...

  3. 7 CFR 58.438 - Cheese from pasteurized milk.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese from pasteurized milk. 58.438 Section 58.438... Procedures § 58.438 Cheese from pasteurized milk. If the cheese is labeled as pasteurized, the milk shall be pasteurized by subjecting every particle of milk to a minimum temperature of 161 °F. for not less than...

  4. 7 CFR 58.439 - Cheese from unpasteurized milk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese from unpasteurized milk. 58.439 Section 58.439... Procedures § 58.439 Cheese from unpasteurized milk. If the cheese is labeled as “heat treated”, “unpasteurized,” “raw milk”, or “for manufacturing” the milk may be raw or heated at temperatures...

  5. 7 CFR 58.438 - Cheese from pasteurized milk.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cheese from pasteurized milk. 58.438 Section 58.438... Procedures § 58.438 Cheese from pasteurized milk. If the cheese is labeled as pasteurized, the milk shall be pasteurized by subjecting every particle of milk to a minimum temperature of 161 °F. for not less than...

  6. 7 CFR 58.438 - Cheese from pasteurized milk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese from pasteurized milk. 58.438 Section 58.438... Procedures § 58.438 Cheese from pasteurized milk. If the cheese is labeled as pasteurized, the milk shall be pasteurized by subjecting every particle of milk to a minimum temperature of 161 °F. for not less than...

  7. 7 CFR 58.439 - Cheese from unpasteurized milk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Cheese from unpasteurized milk. 58.439 Section 58.439... Procedures § 58.439 Cheese from unpasteurized milk. If the cheese is labeled as “heat treated”, “unpasteurized,” “raw milk”, or “for manufacturing” the milk may be raw or heated at temperatures...

  8. 7 CFR 58.439 - Cheese from unpasteurized milk.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Cheese from unpasteurized milk. 58.439 Section 58.439... Procedures § 58.439 Cheese from unpasteurized milk. If the cheese is labeled as “heat treated”, “unpasteurized,” “raw milk”, or “for manufacturing” the milk may be raw or heated at temperatures...

  9. 21 CFR 133.188 - Semisoft part-skim cheeses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Semisoft part-skim cheeses. 133.188 Section 133.188 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...

  10. 21 CFR 133.188 - Semisoft part-skim cheeses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Semisoft part-skim cheeses. 133.188 Section 133.188 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...

  11. 21 CFR 133.188 - Semisoft part-skim cheeses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Semisoft part-skim cheeses. 133.188 Section 133.188 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...

  12. 21 CFR 133.188 - Semisoft part-skim cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Semisoft part-skim cheeses. 133.188 Section 133.188 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...

  13. 21 CFR 133.147 - Grated American cheese food.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Grated American cheese food. 133.147 Section 133.147 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...

  14. 7 CFR 58.737 - Pasteurized process cheese food.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Pasteurized process cheese food. 58.737 Section 58.737... Finished Products § 58.737 Pasteurized process cheese food. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese Food and Related Products, Food and...

  15. 21 CFR 133.173 - Pasteurized process cheese food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process cheese food. 133.173 Section 133.173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for...

  16. 21 CFR 133.147 - Grated American cheese food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Grated American cheese food. 133.147 Section 133.147 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...

  17. 7 CFR 58.737 - Pasteurized process cheese food.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pasteurized process cheese food. 58.737 Section 58.737... Finished Products § 58.737 Pasteurized process cheese food. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese Food and Related Products, Food and...

  18. 21 CFR 133.134 - Cream cheese with other foods.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cream cheese with other foods. 133.134 Section 133.134 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...

  19. 21 CFR 133.134 - Cream cheese with other foods.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cream cheese with other foods. 133.134 Section 133.134 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...

  20. 21 CFR 133.173 - Pasteurized process cheese food.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized process cheese food. 133.173 Section 133.173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for...

  1. Who Moved My Cheese? Adjusting to Age-Related Changes

    ERIC Educational Resources Information Center

    Langer, Nieli

    2012-01-01

    The popular book, Who Moved My Cheese? (Johnson, 1998) is a metaphor for change. This parable-like story has particular resonance with older adults who face many potential life-altering changes. The four characters in the book are looking for their cheese in a maze. Cheese represents whatever makes people happy. How each character adjusts to the…

  2. Using milk and cheese to demonstrate food chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Students usually do not realize how much chemistry is involved in making a food like cheese, and teachers may use milk and cheese to reveal interesting principles. Cheese is made by lowering the pH of milk, coagulating the protein with enzymes, and removing the whey with heat and pressure. Studies b...

  3. Flavor comparison of natural cheeses manufactured in different countries.

    PubMed

    Koppel, Kadri; Chambers, Delores H

    2012-05-01

    The objective of this study was to determine the main flavor components of different natural aged cheese types from various countries and determine whether a unique sensory characteristic exists within specific countries for European cheeses. The flavor of 152 cheeses from Estonia, France, Italy, Germany, Holland, Austria, England, Greece, Ireland, Spain, Switzerland, Sweden, Belgium, and Denmark were described during 4 independent studies. The sensory data from these studies were combined. The cheeses were sorted according to milk type and texture, and flavor characteristics of these groups were described. The main flavor characteristics of the cheeses tested were salty, sweet, sour, astringent, biting, pungent, sharp, nutty, musty/earthy, dairy fat, buttery, and dairy sweet. The cluster analysis divided the cheeses into 4 clusters: clusters 1 and 2 were sour, dairy sour, salty, astringent, biting, and varied in buttery (cluster 1) and sharp notes (cluster 2). Cluster 1 and 2 were mainly composed of French cheeses, while clusters 3 and 4 represented cheeses from various countries. Cluster 3 and 4 were sweet, with cooked milk and nutty characteristics and varied from buttery (cluster 3) to sharp notes (cluster 4). Cheeses from some countries, for example, France and Estonia, generally exhibited common sensory characteristics within the specific country, but cheeses from some other countries, such as Italy, varied widely, and seemed to have no common sensory theme. Most regional cheese standards are not specific about flavor profiles and these results suggest it may be possible to start a further characterization of cheeses in some countries.

  4. Traditional cheeses: rich and diverse microbiota with associated benefits.

    PubMed

    Montel, Marie-Christine; Buchin, Solange; Mallet, Adrien; Delbes-Paus, Céline; Vuitton, Dominique A; Desmasures, Nathalie; Berthier, Françoise

    2014-05-01

    The risks and benefits of traditional cheeses, mainly raw milk cheeses, are rarely set out objectively, whence the recurrent confused debate over their pros and cons. This review starts by emphasizing the particularities of the microbiota in traditional cheeses. It then describes the sensory, hygiene, and possible health benefits associated with traditional cheeses. The microbial diversity underlying the benefits of raw milk cheese depends on both the milk microbiota and on traditional practices, including inoculation practices. Traditional know-how from farming to cheese processing helps to maintain both the richness of the microbiota in individual cheeses and the diversity between cheeses throughout processing. All in all more than 400 species of lactic acid bacteria, Gram and catalase-positive bacteria, Gram-negative bacteria, yeasts and moulds have been detected in raw milk. This biodiversity decreases in cheese cores, where a small number of lactic acid bacteria species are numerically dominant, but persists on the cheese surfaces, which harbour numerous species of bacteria, yeasts and moulds. Diversity between cheeses is due particularly to wide variations in the dynamics of the same species in different cheeses. Flavour is more intense and rich in raw milk cheeses than in processed ones. This is mainly because an abundant native microbiota can express in raw milk cheeses, which is not the case in cheeses made from pasteurized or microfiltered milk. Compared to commercial strains, indigenous lactic acid bacteria isolated from milk/cheese, and surface bacteria and yeasts isolated from traditional brines, were associated with more complex volatile profiles and higher scores for some sensorial attributes. The ability of traditional cheeses to combat pathogens is related more to native antipathogenic strains or microbial consortia than to natural non-microbial inhibitor(s) from milk. Quite different native microbiota can protect against Listeria monocytogenes in

  5. Exploratory study of acid-forming potential of commercial cheeses: impact of cheese type.

    PubMed

    Gore, Ecaterina; Mardon, Julie; Guerinon, Delphine; Lebecque, Annick

    2016-06-01

    Due to their composition, cheeses are suspected to induce an acid load to the body. To better understand this nutritional feature, the acid-forming potential of five cheeses from different cheese-making technologies and two milk was evaluated on the basis of their potential renal acid load (PRAL) index (considering protein, P, Cl, Na, K, Mg and Ca contents) and organic anions contents. PRAL index ranged from -0.8 mEq/100 g edible portion for fresh cheese to 25.3 mEq/100 g for hard cheese Cantal and 28 mEq/100 g for blue-veined cheese Fourme d'Ambert. PRAL values were greatly subjected to interbatch fluctuations. This work emphasized a great imbalance between acidifying elements of PRAL calculation (Cl, P and proteins elements) and alkalinizing ones (Na and Ca). Particularly, Cl followed by P elements had a strong impact on the PRAL value. Hard cheeses were rich in lactate, thus, might be less acidifying than suspected by their PRAL values only. PMID:27050124

  6. Lactate metabolism by pediococci isolated from cheese.

    PubMed

    Thomas, T D; McKay, L L; Morris, H A

    1985-04-01

    Pediococcus pentosaceus is commonly found among the adventitious microflora of Cheddar cheese. When this organism was incubated with L-(+)-lactate under anaerobic conditions, L-(+)-lactate was rapidly converted to D-(-)-lactate until racemic (DL) lactate was present. Under aerobic conditions this initial reaction was followed by a slower reaction resulting in the use of both lactate isomers and in the production of acetate and CO2. With intact cells the lactate oxidation system had an optimum pH of 5 to 6, depending on the initial lactate concentration. Cells grown anaerobically possessed lactate-oxidizing activity which increased two- to fourfold as sugar was exhausted from the medium. Aerobic growth further increased specific activities. Cheddar cheese was made with the deliberate addition of P. pentosaceus. When the resulting cheese was grated to expose a large surface area to O2, lactate was converted to acetate at a rate which depended on the density of pediococci in the cheese. The lactate oxidation system remained active in cheese which had been ripened for 6 months.

  7. Test for measuring the stretchability of melted cheese.

    PubMed

    Fife, R L; McMahon, D J; Oberg, C J

    2002-12-01

    A test for measuring the stretchability of cheese was developed by adapting a texture-profile analyzer to pull strands of cheese upwards from a reservoir of melted cheese. Seven different cheeses were analyzed using the Utah State University stretch test. The cheeses were also analyzed for apparent viscosity with a helical viscometer, for meltability using a tube melt test, and for stretch using the pizza-fork test. Cheese was placed into a stainless steel cup and tempered in a water bath at 60, 70, 80, or 90 degrees C for 30 min before analysis. The cup was then placed in a water-jacketed holder mounted on the base of the instrument. A three-pronged hook-shaped probe was lowered into the melted cheese and then pulled vertically until all cheese strands broke or 30 cm was reached. This produced a stretch profile as the probe was lifted through the reservoir of melted cheese and then pulled strands of cheese upwards. Three parameters were defined to characterize the stretchability of the cheese. The maximum load, obtained as the probe was lifted through the cheese, was defined as melt strength (F(M)). The distance to which cheese strands were lifted was defined as stretch length (SL). The load exerted on the probe as the strands of cheese were being stretched was defined as stretch quality (SQ). There was a correlation between F(M) and apparent viscosity. There was also some correlation between SL measured by the fork test and SL when the cheese was tested at 90 degrees C, but no correlation occurred at lower temperatures.

  8. Composition and sensory profiling of probiotic Scamorza ewe milk cheese.

    PubMed

    Albenzio, M; Santillo, A; Caroprese, M; Braghieri, A; Sevi, A; Napolitano, F

    2013-05-01

    The present study aimed to assess the effect of the addition of different usually recognized as probiotic bacterial strains on chemical composition and sensory properties of Scamorza cheese manufactured from ewe milk. To define the sensory profile of Scamorza cheese, a qualitative and quantitative reference frame specific for a pasta filata cheese was constructed. According to the presence of probiotic bacteria, cheeses were denoted S-BB for Scamorza cheese made using a mix of Bifidobacterium longum 46 and Bifidobacterium lactis BB-12, and S-LA for Scamorza cheese made using Lactobacillus acidophilus LA-5. The designation for control Scamorza cheese was S-CO. Analyses were performed at 15d of ripening. The moisture content of Scamorza ewe milk cheese ranged between 44.61 and 47.16% (wt/wt), showing higher values in S-CO and S-BB cheeses than in S-LA cheese; the fat percentage ranged between 25.43 and 28.68% (wt/wt), showing higher value in S-LA cheese. The NaCl percentage in Scamorza cheese from ewe milk was 1.75 ± 0.04% (wt/wt). Protein and casein percentages were the highest in Scamorza cheese containing a mix of bifidobacteria; also, the percentage of the proteose-peptone fraction showed the highest value in S-BB, highlighting the major proteolysis carried out by enzymes associated with B. longum and B. lactis strains. Texture and appearance attributes were able to differentiate probiotic bacteria-added cheeses from the untreated control product. In particular, S-BB and S-LA Scamorza cheeses showed higher color uniformity compared with S-CO cheese. Furthermore, the control cheese showed higher yellowness and lower structure uniformity than S-BB. The control product was less creamy and grainy than S-BB; conversely, the inclusion of probiotics into the cheese determined lower adhesivity and friability in S-BB and S-LA than in S-CO. This study allowed the definition of the principal composition and sensory properties of Scamorza ewe milk cheese. The specific

  9. Composition and sensory profiling of probiotic Scamorza ewe milk cheese.

    PubMed

    Albenzio, M; Santillo, A; Caroprese, M; Braghieri, A; Sevi, A; Napolitano, F

    2013-05-01

    The present study aimed to assess the effect of the addition of different usually recognized as probiotic bacterial strains on chemical composition and sensory properties of Scamorza cheese manufactured from ewe milk. To define the sensory profile of Scamorza cheese, a qualitative and quantitative reference frame specific for a pasta filata cheese was constructed. According to the presence of probiotic bacteria, cheeses were denoted S-BB for Scamorza cheese made using a mix of Bifidobacterium longum 46 and Bifidobacterium lactis BB-12, and S-LA for Scamorza cheese made using Lactobacillus acidophilus LA-5. The designation for control Scamorza cheese was S-CO. Analyses were performed at 15d of ripening. The moisture content of Scamorza ewe milk cheese ranged between 44.61 and 47.16% (wt/wt), showing higher values in S-CO and S-BB cheeses than in S-LA cheese; the fat percentage ranged between 25.43 and 28.68% (wt/wt), showing higher value in S-LA cheese. The NaCl percentage in Scamorza cheese from ewe milk was 1.75 ± 0.04% (wt/wt). Protein and casein percentages were the highest in Scamorza cheese containing a mix of bifidobacteria; also, the percentage of the proteose-peptone fraction showed the highest value in S-BB, highlighting the major proteolysis carried out by enzymes associated with B. longum and B. lactis strains. Texture and appearance attributes were able to differentiate probiotic bacteria-added cheeses from the untreated control product. In particular, S-BB and S-LA Scamorza cheeses showed higher color uniformity compared with S-CO cheese. Furthermore, the control cheese showed higher yellowness and lower structure uniformity than S-BB. The control product was less creamy and grainy than S-BB; conversely, the inclusion of probiotics into the cheese determined lower adhesivity and friability in S-BB and S-LA than in S-CO. This study allowed the definition of the principal composition and sensory properties of Scamorza ewe milk cheese. The specific

  10. Fatal Spotted Fever Rickettsiosis, Minas Gerais, Brazil

    PubMed Central

    Dumler, J. Stephen; Mafra, Cláudio Lísias; Calic, Simone Berger; Chamone, Chequer Buffe; Filho, Gracco Cesarino; Olano, Juan Pablo; Walker, David H.

    2003-01-01

    The emergence and reemergence of a serious infectious disease are often associated with a high case-fatality rate because of misdiagnosis and inappropriate or delayed treatment. The current reemergence of spotted fever rickettsiosis caused by Rickettsia rickettsii in Brazil has resulted in a high proportion of fatal cases. We describe two familial clusters of Brazilian spotted fever in the state of Minas Gerais, involving six children 9 months to 15 years of age; five died. Immunohistochemical investigation of tissues obtained at necropsy of a child in each location, Novo Cruzeiro and Coronel Fabriciano municipalities, established the diagnosis by demonstration of disseminated endothelial infection with spotted fever group rickettsiae. The diagnosis in the two fatal cases from Coronel Fabriciano and the surviving patient from Novo Cruzeiro was further supported by immunofluorescence serologic tests. PMID:14718082

  11. Selective enumeration of probiotic microorganisms in cheese.

    PubMed

    Karimi, Reza; Mortazavian, Amir M; Amiri-Rigi, Atefeh

    2012-02-01

    Cheese is a dairy product which has a good potential for delivery of probiotic microorganisms into the human intestine. To be considered to offer probiotic health benefits, probiotics must remain viable in food products above a threshold level (e.g., 10(6) cfu g(-1)) until the time of consumption. In order to ensure that a minimal number of probiotic bacteria is present in the cheese, reliable methods for enumeration are required. The choice of culture medium for selective enumeration of probiotic strains in combination with starters depends on the product matrix, the target group and the taxonomic diversity of the bacterial background flora in the product. Enumeration protocol should be designed as a function of the target microorganism(s) to be quantified in the cheese. An overview of some series of culture media for selective enumeration of commercial probiotic cultures is presented in this review.

  12. Chemometric analysis of Ragusano cheese flavor.

    PubMed

    Carpino, S; Acree, T E; Barbano, D M; Licitra, G; Siebert, K J

    2002-02-27

    Ragusano cheeses were produced in duplicate from milk collected from pasture-fed and total mixed ration (TMR)-fed cattle at four time intervals. The cheeses were subjected to chemical analysis, conventional sensory testing, and gas chromatography-olfactometry (GCO). Data from each type of analysis were examined by principal component and factor analysis and by pattern recognition (SIMCA) to see if sufficient information for classification into pasture-fed and TMR-fed groups was contained therein. The results clearly indicate that there are significant differences in sensory panel and chemical analysis results between the two cheeses. The data were also examined to see if models of sensory responses as a function of analytical or GCO results or both could be constructed with the modeling technique partial least-squares regression (PLS). Strong PLS models of some sensory responses (green and toasted odor; salt, pungent, bitter, and butyric sensations; and smooth consistency) were obtained.

  13. The Vanishing Site of Mina Shaughnessy's "Error and Expectations."

    ERIC Educational Resources Information Center

    Laurence, Patricia

    1993-01-01

    Claims that recent reassessments of Mina Shaughnessy's "Errors and Expectations" and the field of composition in the 1970s overlook the institutional forces that helped shape the rhetoric and methodology of researchers at that time. (HB)

  14. Mina Shaughnessy and Open Admissions at New York's City College.

    ERIC Educational Resources Information Center

    Reeves, LaVona L.

    2002-01-01

    Discusses basic writing pioneer Mina Shaughnessy, who advocated for a humanistic approach to writing instruction for disadvantaged students, within the context of the City University of New York's policy of open admissions. (EV)

  15. 21 CFR 133.157 - Part-skim mozzarella and scamorza cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Part-skim mozzarella and scamorza cheese. 133.157... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.157 Part-skim mozzarella and scamorza cheese....

  16. 21 CFR 133.157 - Part-skim mozzarella and scamorza cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Part-skim mozzarella and scamorza cheese. 133.157... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.157 Part-skim mozzarella and scamorza cheese....

  17. 21 CFR 133.157 - Part-skim mozzarella and scamorza cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Part-skim mozzarella and scamorza cheese. 133.157... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.157 Part-skim mozzarella and scamorza cheese....

  18. 21 CFR 133.157 - Part-skim mozzarella and scamorza cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Part-skim mozzarella and scamorza cheese. 133.157... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.157 Part-skim mozzarella and scamorza cheese....

  19. 21 CFR 133.157 - Part-skim mozzarella and scamorza cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Part-skim mozzarella and scamorza cheese. 133.157... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.157 Part-skim mozzarella and scamorza cheese....

  20. Low-sodium Cheddar cheese: Effect of fortification of cheese milk with ultrafiltration retentate and high-hydrostatic pressure treatment of cheese.

    PubMed

    Ozturk, M; Govindasamy-Lucey, S; Jaeggi, J J; Johnson, M E; Lucey, J A

    2015-10-01

    Low-sodium cheeses often exhibit an acidic flavor due to excessive acid production during the manufacturing and the initial stage of ripening, which is caused by ongoing starter culture activity facilitated by the low salt-in-moisture levels. We proposed that this excessive starter-induced acidity could be prevented by the fortification of cheese milk with ultrafiltration (UF) retentates (to increase curd buffering), and by decreasing microbial activity using the application of high-hydrostatic pressure (HHP) treatment (that is, to reduce residual starter numbers). Camel chymosin was also used as a coagulant to help reduce bitterness development (a common defect in low-sodium cheeses). Three types of low-Na (0.8% NaCl) Cheddar cheeses were manufactured: non-UF fortified, no HHP applied (L-Na); UF-fortified (cheese milk total solids = 17.2 ± 0.6%), no HHP applied (L-Na-UF); and UF-fortified, HHP-treated (L-Na-UF-HHP; 500 MPa for 3 min applied at 1 d post-cheese manufacture). Regular salt (2% NaCl) non-UF fortified, non-HHP treated (R-Na) cheese was also manufactured for comparison purposes. Analysis was performed at 4 d, 2 wk, and 1, 3, and 6 mo after cheese manufacture. Cheese functionality during ripening was assessed using texture profile analysis and dynamic low-amplitude oscillatory rheology. Sensory Spectrum and quantitative descriptive analysis was conducted with 9 trained panelists to evaluate texture and flavor attributes using a 15-point scale. At 4 d and 2 wk of ripening, L-Na-UF-HHP cheese had ~2 and ~4.5 log lower starter culture numbers, respectively, than all other cheeses. Retentate fortification of cheese milk and HHP treatment resulted in low-Na cheeses having similar insoluble calcium concentrations and pH values compared with R-Na cheese during ripening. The L-Na-UF cheese exhibited significantly higher hardness values (measured by texture profile analysis) compared with L-Na cheese until 1 mo of ripening; however, after 1 mo, all low-Na cheeses

  1. Low-sodium Cheddar cheese: Effect of fortification of cheese milk with ultrafiltration retentate and high-hydrostatic pressure treatment of cheese.

    PubMed

    Ozturk, M; Govindasamy-Lucey, S; Jaeggi, J J; Johnson, M E; Lucey, J A

    2015-10-01

    Low-sodium cheeses often exhibit an acidic flavor due to excessive acid production during the manufacturing and the initial stage of ripening, which is caused by ongoing starter culture activity facilitated by the low salt-in-moisture levels. We proposed that this excessive starter-induced acidity could be prevented by the fortification of cheese milk with ultrafiltration (UF) retentates (to increase curd buffering), and by decreasing microbial activity using the application of high-hydrostatic pressure (HHP) treatment (that is, to reduce residual starter numbers). Camel chymosin was also used as a coagulant to help reduce bitterness development (a common defect in low-sodium cheeses). Three types of low-Na (0.8% NaCl) Cheddar cheeses were manufactured: non-UF fortified, no HHP applied (L-Na); UF-fortified (cheese milk total solids = 17.2 ± 0.6%), no HHP applied (L-Na-UF); and UF-fortified, HHP-treated (L-Na-UF-HHP; 500 MPa for 3 min applied at 1 d post-cheese manufacture). Regular salt (2% NaCl) non-UF fortified, non-HHP treated (R-Na) cheese was also manufactured for comparison purposes. Analysis was performed at 4 d, 2 wk, and 1, 3, and 6 mo after cheese manufacture. Cheese functionality during ripening was assessed using texture profile analysis and dynamic low-amplitude oscillatory rheology. Sensory Spectrum and quantitative descriptive analysis was conducted with 9 trained panelists to evaluate texture and flavor attributes using a 15-point scale. At 4 d and 2 wk of ripening, L-Na-UF-HHP cheese had ~2 and ~4.5 log lower starter culture numbers, respectively, than all other cheeses. Retentate fortification of cheese milk and HHP treatment resulted in low-Na cheeses having similar insoluble calcium concentrations and pH values compared with R-Na cheese during ripening. The L-Na-UF cheese exhibited significantly higher hardness values (measured by texture profile analysis) compared with L-Na cheese until 1 mo of ripening; however, after 1 mo, all low-Na cheeses

  2. High-throughput sequencing of microbial communities in Poro cheese, an artisanal Mexican cheese.

    PubMed

    Aldrete-Tapia, Alejandro; Escobar-Ramírez, Meyli C; Tamplin, Mark L; Hernández-Iturriaga, Montserrat

    2014-12-01

    The bacterial diversity and structure of Poro cheese, an artisanal food, was analysed by high-throughput sequencing (454 pyrosequencing) in order to gain insight about changes in bacterial communities associated with the cheese-making process. Dairy samples consisting of milk, fermented whey, curd and ripened cheese (during 7 and 60 d) were collected from three manufacturers located in the state of Tabasco, México during dry (March-June) and rainy (August-November) seasons. Independently of producer and season, raw milk samples displayed the highest diversity in bacterial communities. In raw milk, genera found were Macrococcus, Staphylococcus, Enterococcus, Streptococcus, Lactobacillus and Enhydrobacter. Diversity in whey, curd and cheese was lower, principally containing Streptococcus and Lactobacillus; however, bacteria such as Staphylococcus, Acinetobacter, Chryseobacterium, Bacillus, Sediminibacter, Lactococcus and Enterococcus were occasionally present. After curdling step, the most dominant and abundant species were Streptococcus thermophilus and Lactobacillus delbrueckii.

  3. Cadmium variations in Manchego cheese during traditional cheese-making and ripening processes.

    PubMed

    Zurera-Cosano, G; Sanchez-Segarra, P J; Amaro-Lopez, M A; Moreno-Rojas, R

    1997-07-01

    Variations in cadmium content were determined throughout cheese manufacturing and ripening processes by applying graphite furnace atomic absorption spectrophotometry to samples of natural pasteurized milk, rennet, curd whey, pressed curd, pressing whey and cheese. The total mean cadmium contents were 4.79 +/- 2.4 and 4.67 +/- 2.1 microgram/kg fresh weight for newly-made and mature cheeses respectively. ANOVA revealed statistically significant differences (p < 0.001) in cadmium levels (fresh weight) and these differences were due to the influence of moisture content during cheese manufacture, since no statistically significant differences (p > 0.05) were found for dry weight. Nevertheless, cadmium levels based on dry weight increased during pasteurization and more noticeably on ferment addition. ANOVA performed during the ripening process revealed significant differences between portions and ripening times for both fresh and dry weights. By Tukey's test (p < 0.05) for portions, two homogeneous groups were established, one corresponding to the outer portion with a greater cadmium content and the other comprising the middle and inner portions. The contribution of cadmium to Spanish mean intake is between 0.098 and 0.147 micrograms/week for new cheese and between 0.168 and 0.245 micrograms/week for mature cheese.

  4. Cadmium variations in Manchego cheese during traditional cheese-making and ripening processes.

    PubMed

    Zurera-Cosano, G; Sanchez-Segarra, P J; Amaro-Lopez, M A; Moreno-Rojas, R

    1997-07-01

    Variations in cadmium content were determined throughout cheese manufacturing and ripening processes by applying graphite furnace atomic absorption spectrophotometry to samples of natural pasteurized milk, rennet, curd whey, pressed curd, pressing whey and cheese. The total mean cadmium contents were 4.79 +/- 2.4 and 4.67 +/- 2.1 microgram/kg fresh weight for newly-made and mature cheeses respectively. ANOVA revealed statistically significant differences (p < 0.001) in cadmium levels (fresh weight) and these differences were due to the influence of moisture content during cheese manufacture, since no statistically significant differences (p > 0.05) were found for dry weight. Nevertheless, cadmium levels based on dry weight increased during pasteurization and more noticeably on ferment addition. ANOVA performed during the ripening process revealed significant differences between portions and ripening times for both fresh and dry weights. By Tukey's test (p < 0.05) for portions, two homogeneous groups were established, one corresponding to the outer portion with a greater cadmium content and the other comprising the middle and inner portions. The contribution of cadmium to Spanish mean intake is between 0.098 and 0.147 micrograms/week for new cheese and between 0.168 and 0.245 micrograms/week for mature cheese. PMID:9328532

  5. Effect of high-pressure treatment on hard cheese proteolysis.

    PubMed

    Costabel, Luciana M; Bergamini, Carina; Vaudagna, Sergio R; Cuatrin, Alejandra L; Audero, Gabriela; Hynes, Erica

    2016-06-01

    The application of high hydrostatic pressure (HHP) treatment has been proposed to reduce the ripening time of cheese via modifications in the enzymatic activities or the substrate reactivity. Investigations on the effect of HHP on cheese proteolysis have been undertaken with either encouraging results or little effect according to the treatment conditions and the type of cheese, but information concerning the effect of HHP on the ripening of hard cooked cheese is still lacking. In this report, we describe the effect of HHP treatment on Reggianito cheese proteolysis. For that purpose, 1-d-old miniature cheeses (5.5-cm diameter and 6-cm height) were treated at 100 or 400MPa and 20°C for 5 or 10min, and control cheeses in the trial were not pressurized. All cheeses were ripened at 12°C during 90d. The HHP did not affect gross composition of the cheeses, but microbial load changed, especially because the starter culture count was significantly lower at the beginning of the ripening of the cheeses treated at 400MPa than in controls and cheeses treated at 100MPa. Cheeses treated at 400MPa for 10min had significantly higher plasmin activity than did the others; the residual coagulant activity was not affected by HHP. Proteolysis assessment showed that most severe treatments (400MPa) also resulted in cheeses with increased breakdown of αS1- and β-CN. In addition, nitrogen content in soluble fractions was significantly higher in cheeses treated at 400MPa, as well as soluble peptides and free AA production. Peptide profiles and individual and total content of free AA in 60-d-old treated cheese were as high as in fully ripened control cheeses (90d). Holding time had an effect only on pH-4.6-soluble nitrogen fraction and plasmin activity; cheese treated for 10min showed higher values than those treated for 5min, at both levels of pressure assayed. We concluded that HHP treatments at 400MPa applied 1d after cheesemaking increased the rate of proteolysis, leading to an

  6. Effect of high-pressure treatment on hard cheese proteolysis.

    PubMed

    Costabel, Luciana M; Bergamini, Carina; Vaudagna, Sergio R; Cuatrin, Alejandra L; Audero, Gabriela; Hynes, Erica

    2016-06-01

    The application of high hydrostatic pressure (HHP) treatment has been proposed to reduce the ripening time of cheese via modifications in the enzymatic activities or the substrate reactivity. Investigations on the effect of HHP on cheese proteolysis have been undertaken with either encouraging results or little effect according to the treatment conditions and the type of cheese, but information concerning the effect of HHP on the ripening of hard cooked cheese is still lacking. In this report, we describe the effect of HHP treatment on Reggianito cheese proteolysis. For that purpose, 1-d-old miniature cheeses (5.5-cm diameter and 6-cm height) were treated at 100 or 400MPa and 20°C for 5 or 10min, and control cheeses in the trial were not pressurized. All cheeses were ripened at 12°C during 90d. The HHP did not affect gross composition of the cheeses, but microbial load changed, especially because the starter culture count was significantly lower at the beginning of the ripening of the cheeses treated at 400MPa than in controls and cheeses treated at 100MPa. Cheeses treated at 400MPa for 10min had significantly higher plasmin activity than did the others; the residual coagulant activity was not affected by HHP. Proteolysis assessment showed that most severe treatments (400MPa) also resulted in cheeses with increased breakdown of αS1- and β-CN. In addition, nitrogen content in soluble fractions was significantly higher in cheeses treated at 400MPa, as well as soluble peptides and free AA production. Peptide profiles and individual and total content of free AA in 60-d-old treated cheese were as high as in fully ripened control cheeses (90d). Holding time had an effect only on pH-4.6-soluble nitrogen fraction and plasmin activity; cheese treated for 10min showed higher values than those treated for 5min, at both levels of pressure assayed. We concluded that HHP treatments at 400MPa applied 1d after cheesemaking increased the rate of proteolysis, leading to an

  7. CMB seen through random Swiss Cheese

    NASA Astrophysics Data System (ADS)

    Lavinto, Mikko; Räsänen, Syksy

    2015-10-01

    We consider a Swiss Cheese model with a random arrangement of Lemaȋtre-Tolman-Bondi holes in ΛCDM cheese. We study two kinds of holes with radius rb=50 h-1 Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB . We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude below the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% limit |Δ DA/bar DA|lesssim 10-4. We consider the argument that areas of spherical surfaces are nearly unaffected by perturbations, which is often invoked in light propagation calculations. The closed case is consistent with this at 1σ, whereas in the open case the probability is only 1.4%.

  8. 21 CFR 133.181 - Provolone cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... color of the curd. (ii) Calcium chloride in an amount not more than 0.02 percent (calculated as anhydrous calcium chloride) by weight of the dairy ingredients, used as a coagulation aid. (iii) Enzymes of... the cheese. (v) Benzoyl peroxide or a mixture of benzoyl peroxide with potassium alum, calcium...

  9. 21 CFR 133.190 - Spiced cheeses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... lactic acid-producing bacterial culture. One or more of the clotting enzymes specified in paragraph (b)(2... alone or in combination. (2) Clotting enzymes. Rennet and/or other clotting enzymes of animal, plant, or... ingredients, simulate the flavor of cheese of any age or variety. (v) Enzymes of animal, plant, or...

  10. 21 CFR 133.106 - Blue cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... homogenized, bleached, warmed, and is subjected to the action of a lactic acid-producing bacterial culture... of approximately 50 °F. at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage the surface of the cheese may be scraped to remove surface growth...

  11. 21 CFR 133.141 - Gorgonzola cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... this section may be warmed and is subjected to the action of a lactic acid-producing bacterial culture... °F at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage, the surface of the cheese may be scraped to remove surface growth of undesirable...

  12. 21 CFR 133.164 - Nuworld cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... this section may be warmed and is subjected to the action of a lactic acid-producing bacterial culture... temperature of approximately 50 °F at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage, the surface of the cheese may be scraped to remove surface growth...

  13. 21 CFR 133.106 - Blue cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... homogenized, bleached, warmed, and is subjected to the action of a lactic acid-producing bacterial culture... of approximately 50 °F. at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage the surface of the cheese may be scraped to remove surface growth...

  14. 21 CFR 133.106 - Blue cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... homogenized, bleached, warmed, and is subjected to the action of a lactic acid-producing bacterial culture... of approximately 50 °F. at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage the surface of the cheese may be scraped to remove surface growth...

  15. 21 CFR 133.141 - Gorgonzola cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... this section may be warmed and is subjected to the action of a lactic acid-producing bacterial culture... °F at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage, the surface of the cheese may be scraped to remove surface growth of undesirable...

  16. 21 CFR 133.164 - Nuworld cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... this section may be warmed and is subjected to the action of a lactic acid-producing bacterial culture... temperature of approximately 50 °F at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage, the surface of the cheese may be scraped to remove surface growth...

  17. 21 CFR 133.106 - Blue cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... homogenized, bleached, warmed, and is subjected to the action of a lactic acid-producing bacterial culture... of approximately 50 °F. at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage the surface of the cheese may be scraped to remove surface growth...

  18. 21 CFR 133.164 - Nuworld cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... this section may be warmed and is subjected to the action of a lactic acid-producing bacterial culture... temperature of approximately 50 °F at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage, the surface of the cheese may be scraped to remove surface growth...

  19. 21 CFR 133.141 - Gorgonzola cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... this section may be warmed and is subjected to the action of a lactic acid-producing bacterial culture... °F at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage, the surface of the cheese may be scraped to remove surface growth of undesirable...

  20. 21 CFR 133.106 - Blue cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... homogenized, bleached, warmed, and is subjected to the action of a lactic acid-producing bacterial culture... of approximately 50 °F. at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage the surface of the cheese may be scraped to remove surface growth...

  1. 21 CFR 133.164 - Nuworld cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... this section may be warmed and is subjected to the action of a lactic acid-producing bacterial culture... temperature of approximately 50 °F at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage, the surface of the cheese may be scraped to remove surface growth...

  2. 21 CFR 133.164 - Nuworld cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... this section may be warmed and is subjected to the action of a lactic acid-producing bacterial culture... temperature of approximately 50 °F at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage, the surface of the cheese may be scraped to remove surface growth...

  3. 21 CFR 133.141 - Gorgonzola cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... this section may be warmed and is subjected to the action of a lactic acid-producing bacterial culture... °F at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage, the surface of the cheese may be scraped to remove surface growth of undesirable...

  4. 21 CFR 133.141 - Gorgonzola cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... this section may be warmed and is subjected to the action of a lactic acid-producing bacterial culture... °F at 90 to 95 percent relative humidity, until the characteristic mold growth has developed. During storage, the surface of the cheese may be scraped to remove surface growth of undesirable...

  5. 21 CFR 133.181 - Provolone cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the cheese. (v) Benzoyl peroxide or a mixture of benzoyl peroxide with potassium alum, calcium sulfate, and magnesium carbonate used to bleach the dairy ingredients. The weight of the benzoyl peroxide is... weight of the benzoyl peroxide used. If milk is bleached in this manner, vitamin A is added to the...

  6. 21 CFR 133.181 - Provolone cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the cheese. (v) Benzoyl peroxide or a mixture of benzoyl peroxide with potassium alum, calcium sulfate, and magnesium carbonate used to bleach the dairy ingredients. The weight of the benzoyl peroxide is... weight of the benzoyl peroxide used. If milk is bleached in this manner, vitamin A is added to the...

  7. 21 CFR 133.190 - Spiced cheeses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Spiced cheeses. 133.190 Section 133.190 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... applicable definitions and standards of identity are not prescribed by other sections of this part. The...

  8. 21 CFR 133.187 - Semisoft cheeses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Semisoft cheeses. 133.187 Section 133.187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... of the following: cutting, stirring, heating, dilution with water or brine. The whey, or part of...

  9. 21 CFR 133.190 - Spiced cheeses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Spiced cheeses. 133.190 Section 133.190 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... applicable definitions and standards of identity are not prescribed by other sections of this part. The...

  10. 21 CFR 133.190 - Spiced cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Spiced cheeses. 133.190 Section 133.190 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... applicable definitions and standards of identity are not prescribed by other sections of this part. The...

  11. 21 CFR 133.187 - Semisoft cheeses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Semisoft cheeses. 133.187 Section 133.187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... of the following: cutting, stirring, heating, dilution with water or brine. The whey, or part of...

  12. 21 CFR 133.187 - Semisoft cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Semisoft cheeses. 133.187 Section 133.187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... of the following: cutting, stirring, heating, dilution with water or brine. The whey, or part of...

  13. 21 CFR 133.190 - Spiced cheeses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Spiced cheeses. 133.190 Section 133.190 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... applicable definitions and standards of identity are not prescribed by other sections of this part. The...

  14. 21 CFR 133.187 - Semisoft cheeses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Semisoft cheeses. 133.187 Section 133.187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... of the following: cutting, stirring, heating, dilution with water or brine. The whey, or part of...

  15. Moisture variations in brine-salted pasta filata cheese.

    PubMed

    Kindstedt, P S

    2001-01-01

    A study was made of the moisture distribution in brine-salted pasta filata cheese. Brine-salted cheeses usually develop reasonably smooth and predictable gradients of decreasing moisture from center to surface, resulting from outward diffusion of moisture in response to inward diffusion of salt. However, patterns of moisture variation within brine-salted pasta filata cheeses, notably pizza cheese, are more variable and less predictable because of the peculiar conditions that occur when warm cheese is immersed in cold brine. In this study, cold brining resulted in less moisture loss from the cheese surface to the brine. Also it created substantial temperature gradients within the cheese, which persisted after brining and influenced the movement of moisture within the cheese independently of that caused by the inward diffusion of salt. Depending on brining conditions and age, pizza cheese may contain decreasing, increasing, or irregular gradients of moisture from center to surface, which may vary considerably at different locations within a single block. This complicates efforts to obtain representative samples for moisture and composition testing. Dicing the entire block into small (e.g., 1.5 cm) cubes and collecting a composite sample after thorough mixing may serve as a practical sampling approach for manufacturers and users of pizza cheese that have ready access to dicing equipment.

  16. Shreddability of pizza Mozzarella cheese predicted using physicochemical properties.

    PubMed

    Banville, V; Morin, P; Pouliot, Y; Britten, M

    2014-07-01

    This study used rheological techniques such as uniaxial compression, wire cutting, and dynamic oscillatory shear to probe the physical properties of pizza Mozzarella cheeses. Predictive models were built using compositional and textural descriptors to predict cheese shreddability. Experimental cheeses were made using milk with (0.25% wt/wt) or without denatured whey protein and renneted at pH 6.5 or 6.4. The cheeses were aged for 8, 22, or 36 d and then tested at 4, 13, or 22°C for textural attributes using 11 descriptors. Adding denatured whey protein and reducing the milk renneting pH strongly affected cheese mechanical properties, but these effects were usually dependent on testing temperature. Cheeses were generally weaker as they aged. None of the compositional or rheological descriptors taken alone could predict the shredding behavior of the cheeses. Using the stepwise method, an objective selection of a few (<4) relevant descriptors made it possible to predict the production of fines (R(2)=0.82), the percentage of long shreds (R(2)=0.67), and to a lesser degree, the adhesion of cheese to the shredding blade (R(2)=0.45). The principal component analysis markedly contrasted the adhesion of cheese to the shredding blade with other shredding properties such as the production of fines or long shreds. The predictive models and principal component analysis can help manufacturers select relevant descriptors for the development of cheese with optimal mechanical behavior under shredding conditions.

  17. Coliform detection in cheese is associated with specific cheese characteristics, but no association was found with pathogen detection.

    PubMed

    Trmčić, A; Chauhan, K; Kent, D J; Ralyea, R D; Martin, N H; Boor, K J; Wiedmann, M

    2016-08-01

    Coliform detection in finished products, including cheese, has traditionally been used to indicate whether a given product has been manufactured under unsanitary conditions. As our understanding of the diversity of coliforms has improved, it is necessary to assess whether coliforms are a good indicator organism and whether coliform detection in cheese is associated with the presence of pathogens. The objective of this study was (1) to evaluate cheese available on the market for presence of coliforms and key pathogens, and (2) to characterize the coliforms present to assess their likely sources and public health relevance. A total of 273 cheese samples were tested for presence of coliforms and for Salmonella, Staphylococcus aureus, Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and other Listeria species. Among all tested cheese samples, 27% (75/273) tested positive for coliforms in concentrations >10cfu/g. Pasteurization, pH, water activity, milk type, and rind type were factors significantly associated with detection of coliforms in cheese; for example, a higher coliform prevalence was detected in raw milk cheeses (42% with >10cfu/g) compared with pasteurized milk cheese (21%). For cheese samples contaminated with coliforms, only water activity was significantly associated with coliform concentration. Coliforms isolated from cheese samples were classified into 13 different genera, including the environmental coliform genera Hafnia, Raoultella, and Serratia, which represent the 3 genera most frequently isolated across all cheeses. Escherichia, Hafnia, and Enterobacter were significantly more common among raw milk cheeses. Based on sequencing of the housekeeping gene clpX, most Escherichia isolates were confirmed as members of fecal commensal clades of E. coli. All cheese samples tested negative for Salmonella, Staph. aureus, and Shiga toxin-producing E. coli. Listeria spp. were found in 12 cheese samples, including 5 samples positive for L

  18. Coliform detection in cheese is associated with specific cheese characteristics, but no association was found with pathogen detection.

    PubMed

    Trmčić, A; Chauhan, K; Kent, D J; Ralyea, R D; Martin, N H; Boor, K J; Wiedmann, M

    2016-08-01

    Coliform detection in finished products, including cheese, has traditionally been used to indicate whether a given product has been manufactured under unsanitary conditions. As our understanding of the diversity of coliforms has improved, it is necessary to assess whether coliforms are a good indicator organism and whether coliform detection in cheese is associated with the presence of pathogens. The objective of this study was (1) to evaluate cheese available on the market for presence of coliforms and key pathogens, and (2) to characterize the coliforms present to assess their likely sources and public health relevance. A total of 273 cheese samples were tested for presence of coliforms and for Salmonella, Staphylococcus aureus, Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and other Listeria species. Among all tested cheese samples, 27% (75/273) tested positive for coliforms in concentrations >10cfu/g. Pasteurization, pH, water activity, milk type, and rind type were factors significantly associated with detection of coliforms in cheese; for example, a higher coliform prevalence was detected in raw milk cheeses (42% with >10cfu/g) compared with pasteurized milk cheese (21%). For cheese samples contaminated with coliforms, only water activity was significantly associated with coliform concentration. Coliforms isolated from cheese samples were classified into 13 different genera, including the environmental coliform genera Hafnia, Raoultella, and Serratia, which represent the 3 genera most frequently isolated across all cheeses. Escherichia, Hafnia, and Enterobacter were significantly more common among raw milk cheeses. Based on sequencing of the housekeeping gene clpX, most Escherichia isolates were confirmed as members of fecal commensal clades of E. coli. All cheese samples tested negative for Salmonella, Staph. aureus, and Shiga toxin-producing E. coli. Listeria spp. were found in 12 cheese samples, including 5 samples positive for L

  19. Multistate outbreak of listeriosis caused by imported cheese and evidence of cross-contamination of other cheeses, USA, 2012.

    PubMed

    Heiman, K E; Garalde, V B; Gronostaj, M; Jackson, K A; Beam, S; Joseph, L; Saupe, A; Ricotta, E; Waechter, H; Wellman, A; Adams-Cameron, M; Ray, G; Fields, A; Chen, Y; Datta, A; Burall, L; Sabol, A; Kucerova, Z; Trees, E; Metz, M; Leblanc, P; Lance, S; Griffin, P M; Tauxe, R V; Silk, B J

    2016-10-01

    Listeria monocytogenes is a foodborne pathogen that can cause bacteraemia, meningitis, and complications during pregnancy. In July 2012, molecular subtyping identified indistinguishable L. monocytogenes isolates from six patients and two samples of different cut and repackaged cheeses. A multistate outbreak investigation was initiated. Initial analyses identified an association between eating soft cheese and outbreak-related illness (odds ratio 17·3, 95% confidence interval 2·0-825·7) but no common brand. Cheese inventory data from locations where patients bought cheese and an additional location where repackaged cheese yielded the outbreak strain were compared to identify cheeses for microbiological sampling. Intact packages of imported ricotta salata yielded the outbreak strain. Fourteen jurisdictions reported 22 cases from March-October 2012, including four deaths and a fetal loss. Six patients ultimately reported eating ricotta salata; another reported eating cheese likely cut with equipment also used for contaminated ricotta salata, and nine more reported eating other cheeses that might also have been cross-contaminated. An FDA import alert and US and international recalls followed. Epidemiology-directed microbiological testing of suspect cheeses helped identify the outbreak source. Cross-contamination of cheese highlights the importance of using validated disinfectant protocols and routine cleaning and sanitizing after cutting each block or wheel.

  20. Multistate outbreak of listeriosis caused by imported cheese and evidence of cross-contamination of other cheeses, USA, 2012.

    PubMed

    Heiman, K E; Garalde, V B; Gronostaj, M; Jackson, K A; Beam, S; Joseph, L; Saupe, A; Ricotta, E; Waechter, H; Wellman, A; Adams-Cameron, M; Ray, G; Fields, A; Chen, Y; Datta, A; Burall, L; Sabol, A; Kucerova, Z; Trees, E; Metz, M; Leblanc, P; Lance, S; Griffin, P M; Tauxe, R V; Silk, B J

    2016-10-01

    Listeria monocytogenes is a foodborne pathogen that can cause bacteraemia, meningitis, and complications during pregnancy. In July 2012, molecular subtyping identified indistinguishable L. monocytogenes isolates from six patients and two samples of different cut and repackaged cheeses. A multistate outbreak investigation was initiated. Initial analyses identified an association between eating soft cheese and outbreak-related illness (odds ratio 17·3, 95% confidence interval 2·0-825·7) but no common brand. Cheese inventory data from locations where patients bought cheese and an additional location where repackaged cheese yielded the outbreak strain were compared to identify cheeses for microbiological sampling. Intact packages of imported ricotta salata yielded the outbreak strain. Fourteen jurisdictions reported 22 cases from March-October 2012, including four deaths and a fetal loss. Six patients ultimately reported eating ricotta salata; another reported eating cheese likely cut with equipment also used for contaminated ricotta salata, and nine more reported eating other cheeses that might also have been cross-contaminated. An FDA import alert and US and international recalls followed. Epidemiology-directed microbiological testing of suspect cheeses helped identify the outbreak source. Cross-contamination of cheese highlights the importance of using validated disinfectant protocols and routine cleaning and sanitizing after cutting each block or wheel. PMID:26122394

  1. South-Pole Swiss Cheese

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 9 March 2004

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    This image was collected December 29, 2003 during the southern summer season. This image shows the surface texture that the ice cap develops after long term sun exposure. The central portion of the image has an appearance similar to swiss cheese and represents surface ice loss.

    Image information: VIS instrument. Latitude 86.9, Longitude 356.4 East (3.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  2. Growth and adaptation of microorganisms on the cheese surface.

    PubMed

    Monnet, Christophe; Landaud, Sophie; Bonnarme, Pascal; Swennen, Dominique

    2015-01-01

    Microbial communities living on cheese surfaces are composed of various bacteria, yeasts and molds that interact together, thus generating the typical sensory properties of a cheese. Physiological and genomic investigations have revealed important functions involved in the ability of microorganisms to establish themselves at the cheese surface. These functions include the ability to use the cheese's main energy sources, to acquire iron, to tolerate low pH at the beginning of ripening and to adapt to high salt concentrations and moisture levels. Horizontal gene transfer events involved in the adaptation to the cheese habitat have been described, both for bacteria and fungi. In the future, in situ microbial gene expression profiling and identification of genes that contribute to strain fitness by massive sequencing of transposon libraries will help us to better understand how cheese surface communities function.

  3. When cheese gets the blues: Pseudomonas fluorescens as the causative agent of cheese spoilage.

    PubMed

    Martin, N H; Murphy, S C; Ralyea, R D; Wiedmann, M; Boor, K J

    2011-06-01

    A bacterial contamination of fresh, low-acid cheese that resulted in production of a blue fluorescent pigment on the surface of the cheese was determined to be caused by Pseudomonas fluorescens biovar IV, a gram-negative bacteria that produces a blue, nondiffusible pigment as well as the soluble pigment pyoverdin, which fluoresces under UV light. Ten isolates collected from contaminated cheese and environmental samples were initially identified as P. fluorescens using 16S rDNA sequencing, but only 8 of the isolates produced blue pigment and fluoresced under UV light when re-inoculated onto fresh, low-acid cheese. The Biolog Metabolic Fingerprint system (Biolog Inc., Hayward, CA) and the Analytical Profile Index (BioMerieux Vitek Inc., Hazelwood, MO) for nonenteric gram-negative species as well as EcoRI ribotyping did not differentiate between the isolates that produced blue color and those that did not. Pulsed field gel electrophoresis with the enzyme XbaI was able to distinguish between the isolates that produced pigment and those that did not and allowed for identification of a specific environmental site (i.e., an overhead cheese vat agitator system) as the likely source of product contamination. PMID:21605787

  4. Relationships among rheological and sensorial properties of young cheeses.

    PubMed

    Brown, J A; Foegeding, E A; Daubert, C R; Drake, M A; Gumpertz, M

    2003-10-01

    This study investigated the sensory and rheological properties of young cheeses in order to better understand perceived cheese texture. Mozzarella and Monterey Jacks were tested at 4, 10, 17, and 38 d of age; process cheese was tested at 4 d. Rheological methods were used to determine the linear and nonlinear viscoelastic and fracture properties. A trained sensory panel developed a descriptive language and reference scales to evaluate cheese texture. All methods differentiated the cheeses by variety. Principal component analysis of sensory texture revealed that three principal components explained 96.1% of the total variation in the cheeses. The perception of firmness decreased as the cheeses aged, whereas the perception of springiness increased. Principal component analysis of the rheological parameters (three principal components: 87.9% of the variance) showed that the cheeses' solid-like response (storage modulus and fracture modulus) decreased during aging, while phase angle, maximum compliance, and retardation time increased. Analysis of the instrumental and sensory parameters (three principal components: 82.1% of the variance) revealed groupings of parameters according to cheese rigidity, resiliency, and chewdown texture. Rheological properties were highly associated with rigidity and resiliency, but less so with chewdown texture.

  5. Structural Quality Control of Swiss-Type Cheese with Ultrasound

    NASA Astrophysics Data System (ADS)

    Eskelinen, J.; Alavuotunki, A.; Hæggström, E.; Alatossava, T.

    2007-03-01

    A study on structural quality control of Swiss-type cheese with ultrasound is presented. We used a longitudinal mode pulse-echo setup using 1-2MHz ultrasonic frequencies to detect cheese-eyes and ripening induced cracks. Results show that the ultrasonic method posses good potential to monitor the cheese structure during the ripening process. Preliminary results indicate that maturation stage could be monitored with ultrasonic velocity measurements. Further studies to verify the method's on-line potential to detect low-structural-quality cheeses are planned.

  6. Sensory and protein profiles of Mexican Chihuahua cheese.

    PubMed

    Paul, Moushumi; Nuñez, Alberto; Van Hekken, Diane L; Renye, John A

    2014-11-01

    Native microflora in raw milk cheeses, including the Mexican variety Queso Chihuahua, contribute to flavor development through degradation of milk proteins. The effects of proteolysis were studied in four different brands of Mexican Queso Chihuahua made from raw milk. All of the cheeses were analyzed for chemical and sensory characteristics. Sensory testing revealed that the fresh cheeses elicited flavors of young, basic cheeses, with slight bitter notes. Analysis by gel electrophoresis and reverse phase-high performance liquid chromatography (RP-HPLC) revealed that the Queseria Blumen (X) and Queseria Super Fino (Z) cheeses show little protein degradation over time while the Queseria America (W) and Queseria Lago Grande (Y) samples are degraded extensively when aged at 4 °C for 8 weeks. Analysis of the mixture of water-soluble cheese proteins by mass spectrometry revealed the presence of short, hydrophobic peptides in quantities correlating with bitterness. All cheese samples contained enterococcal strains known to produce enterocins. The W and Y cheese samples had the highest number of bacteria and exhibited greater protein degradation than that observed for the X and Z cheeses. PMID:26396342

  7. Toxic and essential elements in Lebanese cheese.

    PubMed

    Bou Khozam, Rola; Pohl, Pawel; Al Ayoubi, Baydaa; Jaber, Farouk; Lobinski, Ryszard

    2012-01-01

    Concentrations of 20 minor, trace and ultratrace elements relevant to human health (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sb, Se, Si, Sn, V) were determined in four different varieties of the most consumed cheese in Lebanon (Halloumi, Double Crème, Baladi, Labneh) sampled at five different provinces (Grand Beirut, South of Lebanon, North of Lebanon, Mount of Lebanon and Beka'a) during the wet and dry seasons. The analyses were carried out by double focussing sector field inductively coupled plasma-mass spectrometry (ICP-MS) in order to avoid errors due to polyatomic interferences. Levels of toxic elements (As, Cd, Pb) were generally below the WHO permissible levels in dairy products. Concentrations of most elements were considerably affected by the type of cheese, the geographical site and the season of sampling. PMID:24779782

  8. Swiss cheese and a cheesy CMB

    NASA Astrophysics Data System (ADS)

    Valkenburg, Wessel

    2009-06-01

    It has been argued that the Swiss-Cheese cosmology can mimic Dark Energy, when it comes to the observed luminosity distance-redshift relation. Besides the fact that this effect tends to disappear on average over random directions, we show in this work that based on the Rees-Sciama effect on the cosmic microwave background (CMB), the Swiss-Cheese model can be ruled out if all holes have a radius larger than about 35 Mpc. We also show that for smaller holes, the CMB is not observably affected, and that the small holes can still mimic Dark Energy, albeit in special directions, as opposed to previous conclusions in the literature. However, in this limit, the probability of looking in a special direction where the luminosity of supernovae is sufficiently supressed becomes very small, at least in the case of a lattice of spherical holes considered in this paper.

  9. Large volume axionic Swiss cheese inflation

    NASA Astrophysics Data System (ADS)

    Misra, Aalok; Shukla, Pramod

    2008-09-01

    Continuing with the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi Yau's, arXiv: 0707.0105 [hep-th], Nucl. Phys. B, in press], after inclusion of perturbative and non-perturbative α corrections to the Kähler potential and (D1- and D3-) instanton generated superpotential, we show the possibility of slow roll axionic inflation in the large volume limit of Swiss cheese Calabi Yau orientifold compactifications of type IIB string theory. We also include one- and two-loop corrections to the Kähler potential but find the same to be subdominant to the (perturbative and non-perturbative) α corrections. The NS NS axions provide a flat direction for slow roll inflation to proceed from a saddle point to the nearest dS minimum.

  10. Generalized Swiss-cheese cosmologies: Mass scales

    SciTech Connect

    Grenon, Cedric; Lake, Kayll

    2010-01-15

    We generalize the Swiss-cheese cosmologies so as to include nonzero linear momenta of the associated boundary surfaces. The evolution of mass scales in these generalized cosmologies is studied for a variety of models for the background without having to specify any details within the local inhomogeneities. We find that the final effective gravitational mass and size of the evolving inhomogeneities depends on their linear momenta but these properties are essentially unaffected by the details of the background model.

  11. Generalized Swiss-cheese cosmologies: Mass scales

    NASA Astrophysics Data System (ADS)

    Grenon, Cédric; Lake, Kayll

    2010-01-01

    We generalize the Swiss-cheese cosmologies so as to include nonzero linear momenta of the associated boundary surfaces. The evolution of mass scales in these generalized cosmologies is studied for a variety of models for the background without having to specify any details within the local inhomogeneities. We find that the final effective gravitational mass and size of the evolving inhomogeneities depends on their linear momenta but these properties are essentially unaffected by the details of the background model.

  12. Light propagation in Swiss-cheese cosmologies

    NASA Astrophysics Data System (ADS)

    Szybka, Sebastian J.

    2011-08-01

    We study the effect of inhomogeneities on light propagation. The Sachs equations are solved numerically in the Swiss-cheese models with inhomogeneities modeled by the Lemaître-Tolman solutions. Our results imply that, within the models we study, inhomogeneities may partially mimic the accelerated expansion of the Universe provided the light propagates through regions with lower than the average density. The effect of inhomogeneities is small and full randomization of the photons’ trajectories reduces it to an insignificant level.

  13. Shifted excitation Raman difference spectroscopy for authentication of cheese and cheese analogues

    NASA Astrophysics Data System (ADS)

    Sowoidnich, Kay; Kronfeldt, Heinz-Detlef

    2016-04-01

    Food authentication and the detection of adulterated products are recent major issues in the food industry as these topics are of global importance for quality control and food safety. To effectively address this challenge requires fast, reliable and non-destructive analytical techniques. Shifted Excitation Raman Difference Spectroscopy (SERDS) is well suited for identification purposes as it combines the chemically specific information obtained by Raman spectroscopy with the ability for efficient fluorescence rejection. The two slightly shifted excitation wavelengths necessary for SERDS are realized by specially designed microsystem diode lasers. At 671 nm the laser (optical power: 50 mW, spectral shift: 0.7 nm) is based on an external cavity configuration whereas an emission at 783 nm (optical power: 110 mW, spectral shift: 0.5 nm) is achieved by a distributed feedback laser. To investigate the feasibility of SERDS for rapid and nondestructive authentication purposes four types of cheese and three different cheese analogues were selected. Each sample was probed at 8 different positions using integration times of 3-10 seconds and 10 spectra were recorded at each spot. Principal components analysis was applied to the SERDS spectra revealing variations in fat and protein signals as primary distinction criterion between cheese and cheese analogues for both excitation wavelengths. Furthermore, to some extent, minor compositional differences could be identified to discriminate between individual species of cheese and cheese analogues. These findings highlight the potential of SERDS for rapid food authentication potentially paving the way for future applications of portable SERDS systems for non-invasive in situ analysis.

  14. The Microbiology of Traditional Hard and Semihard Cooked Mountain Cheeses.

    PubMed

    Beuvier, Eric; Duboz, Gabriel

    2013-10-01

    Traditional cheeses originate from complex systems that confer on them specific sensory characteristics. These characteristics are linked to various factors of biodiversity such as animal feed, the use of raw milk and its indigenous microflora, the cheese technology, and the ripening conditions, all in conjunction with the knowledge of the cheesemaker and affineur. In Europe, particularly in France, the preservation of traditional cheesemaking processes, some of which have protected designation of origin, is vital for the farming and food industry in certain regions. Among these cheeses, some are made in the Alps or Jura Mountains, including Comté, Beaufort, Abondance, and Emmental, which are made from raw milk. The principle of hard or semihard cooked cheese, produced in the Alps and Jura Mountains, was to make a product during the summer-a period during which the animals feed more and milk production is high-with a shelf life of several months that could be consumed in winter. Today, these traditional cheeses are produced according to a specific approach combining science and tradition in order to better understand and preserve the elements that contribute to the distinctiveness of these cheeses. To address this complex problem, a global approach to the role of the raw milk microflora in the final quality of cheeses was initially chosen. The modifications resulting from the elimination of the raw milk microflora, either by pasteurization or by microfiltration, to the biochemistry of the ripening process and ultimately the sensory quality of the cheeses were evaluated. This approach was achieved mainly with experimental hard cooked cheeses. Other types of traditional cheese made with raw and pasteurized milk are also considered when necessary. Besides the native raw milk microflora, traditional lactic starters (natural or wild starters) also participate in the development of the characteristics of traditional hard and semihard cooked mountain cheeses. After an

  15. 7 CFR 58.711 - Cheddar, colby, washed or soaked curd, granular or stirred curd cheese.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... stirred curd cheese. 58.711 Section 58.711 Agriculture Regulations of the Department of Agriculture... soaked curd, granular or stirred curd cheese. Cheese, used in the manufacture of pasteurized process cheese products should possess a pleasing and desirable taste and odor consistent with the age of...

  16. 21 CFR 133.158 - Low-moisture part-skim mozzarella and scamorza cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... cheese. 133.158 Section 133.158 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.158 Low-moisture part-skim mozzarella...

  17. 21 CFR 133.158 - Low-moisture part-skim mozzarella and scamorza cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cheese. 133.158 Section 133.158 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.158 Low-moisture part-skim mozzarella...

  18. 7 CFR 58.711 - Cheddar, colby, washed or soaked curd, granular or stirred curd cheese.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... stirred curd cheese. 58.711 Section 58.711 Agriculture Regulations of the Department of Agriculture... soaked curd, granular or stirred curd cheese. Cheese, used in the manufacture of pasteurized process cheese products should possess a pleasing and desirable taste and odor consistent with the age of...

  19. 7 CFR 58.711 - Cheddar, colby, washed or soaked curd, granular or stirred curd cheese.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... stirred curd cheese. 58.711 Section 58.711 Agriculture Regulations of the Department of Agriculture... soaked curd, granular or stirred curd cheese. Cheese, used in the manufacture of pasteurized process cheese products should possess a pleasing and desirable taste and odor consistent with the age of...

  20. 21 CFR 133.158 - Low-moisture part-skim mozzarella and scamorza cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cheese. 133.158 Section 133.158 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.158 Low-moisture part-skim mozzarella...

  1. 21 CFR 133.158 - Low-moisture part-skim mozzarella and scamorza cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... cheese. 133.158 Section 133.158 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.158 Low-moisture part-skim mozzarella...

  2. 21 CFR 133.158 - Low-moisture part-skim mozzarella and scamorza cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... cheese. 133.158 Section 133.158 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.158 Low-moisture part-skim mozzarella...

  3. 7 CFR 58.711 - Cheddar, colby, washed or soaked curd, granular or stirred curd cheese.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... stirred curd cheese. 58.711 Section 58.711 Agriculture Regulations of the Department of Agriculture... soaked curd, granular or stirred curd cheese. Cheese, used in the manufacture of pasteurized process cheese products should possess a pleasing and desirable taste and odor consistent with the age of...

  4. 7 CFR 58.711 - Cheddar, colby, washed or soaked curd, granular or stirred curd cheese.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... stirred curd cheese. 58.711 Section 58.711 Agriculture Regulations of the Department of Agriculture... soaked curd, granular or stirred curd cheese. Cheese, used in the manufacture of pasteurized process cheese products should possess a pleasing and desirable taste and odor consistent with the age of...

  5. 21 CFR 133.161 - Muenster and munster cheese for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Muenster and munster cheese for manufacturing. 133... Specific Standardized Cheese and Related Products § 133.161 Muenster and munster cheese for manufacturing. Muenster cheese for manufacturing conforms to the definition and standard of identity for muenster...

  6. 21 CFR 133.161 - Muenster and munster cheese for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Muenster and munster cheese for manufacturing. 133... Specific Standardized Cheese and Related Products § 133.161 Muenster and munster cheese for manufacturing. Muenster cheese for manufacturing conforms to the definition and standard of identity for muenster...

  7. 21 CFR 133.161 - Muenster and munster cheese for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Muenster and munster cheese for manufacturing. 133... Specific Standardized Cheese and Related Products § 133.161 Muenster and munster cheese for manufacturing. Muenster cheese for manufacturing conforms to the definition and standard of identity for muenster...

  8. 21 CFR 133.161 - Muenster and munster cheese for manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Muenster and munster cheese for manufacturing. 133... Specific Standardized Cheese and Related Products § 133.161 Muenster and munster cheese for manufacturing. Muenster cheese for manufacturing conforms to the definition and standard of identity for muenster...

  9. 21 CFR 133.161 - Muenster and munster cheese for manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Muenster and munster cheese for manufacturing. 133... Specific Standardized Cheese and Related Products § 133.161 Muenster and munster cheese for manufacturing. Muenster cheese for manufacturing conforms to the definition and standard of identity for muenster...

  10. 21 CFR 133.125 - Cold-pack cheese food with fruits, vegetables, or meats.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cold-pack cheese food with fruits, vegetables, or... for Specific Standardized Cheese and Related Products § 133.125 Cold-pack cheese food with fruits, vegetables, or meats. (a) Cold-pack cheese food with fruits, vegetables, or meats or mixtures of these is...

  11. 21 CFR 133.125 - Cold-pack cheese food with fruits, vegetables, or meats.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cold-pack cheese food with fruits, vegetables, or... for Specific Standardized Cheese and Related Products § 133.125 Cold-pack cheese food with fruits, vegetables, or meats. (a) Cold-pack cheese food with fruits, vegetables, or meats or mixtures of these is...

  12. 21 CFR 133.125 - Cold-pack cheese food with fruits, vegetables, or meats.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Cold-pack cheese food with fruits, vegetables, or... for Specific Standardized Cheese and Related Products § 133.125 Cold-pack cheese food with fruits, vegetables, or meats. (a) Cold-pack cheese food with fruits, vegetables, or meats or mixtures of these is...

  13. 21 CFR 133.125 - Cold-pack cheese food with fruits, vegetables, or meats.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Cold-pack cheese food with fruits, vegetables, or... for Specific Standardized Cheese and Related Products § 133.125 Cold-pack cheese food with fruits, vegetables, or meats. (a) Cold-pack cheese food with fruits, vegetables, or meats or mixtures of these is...

  14. 21 CFR 133.125 - Cold-pack cheese food with fruits, vegetables, or meats.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Cold-pack cheese food with fruits, vegetables, or... for Specific Standardized Cheese and Related Products § 133.125 Cold-pack cheese food with fruits, vegetables, or meats. (a) Cold-pack cheese food with fruits, vegetables, or meats or mixtures of these is...

  15. Microbial communities involved in Kaşar cheese ripening.

    PubMed

    Aydemir, Oğuz; Harth, Henning; Weckx, Stefan; Dervişoğlu, Muhammet; De Vuyst, Luc

    2015-04-01

    The microbiota of non-starter lactic acid bacteria (NSLAB) and their concomitant community dynamics during cheese ripening were investigated for traditional Turkish Kaşar cheeses made from raw cows' milk. Five batches of 15 Kaşar cheeses produced in different dairy plants located in Kars were analysed during their whole ripening phase up to 180 days. Lactobacilli and lactococci were determined as the prevailing microbial groups. The molecular classification and identification of 594 LAB isolates during Kaşar cheese ripening were performed through (GTG)5-PCR fingerprinting of their genomic DNA followed by verification of the (GTG)5-PCR clusters obtained after numerical analysis through 16S rRNA gene sequencing of representative isolates. Lactobacillus casei (247 isolates, 41.6%), Lactobacillus plantarum (77 isolates, 13.0%), and Pediococcus acidilactici (58 isolates, 9.8%) were the prevailing NSLAB species in all Kaşar cheeses of the different dairy plants investigated throughout cheese ripening. The data of the present study contribute to the inventory of unique cheese varieties to enable the prevention of losses of microbial biodiversity and the selection of starter cultures for controlled cheese manufacturing.

  16. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  17. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  18. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  19. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  20. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and...

  1. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi.

    PubMed

    Ropars, Jeanne; Rodríguez de la Vega, Ricardo C; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana

    2015-10-01

    Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1-5]. Few studies have focused on the domestication of fungi, with notable exceptions [6-11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making-P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13-15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes.

  2. Intra-Annual Variations of the Martian Swiss Cheese Terrain

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Cushing, G.; Pathare, A.; Christensen, P. R.; Byrne, S.; Ivanov, A. B.; Ingersoll, A.; Richardson, M.; Kirk, R. L.; Soderblom, L. A.; Themis Team

    2004-03-01

    Much of the surface of the carbon dioxide South Polar Residual Cap of Mars consists of quasi-circular pits with steep walls that have been dubbed "Swiss Cheese" terrain. Here, we examine the intra-annual variations of the Martian Swiss Cheese terrain using both MOC and THEMIS VIS/IR imaging.

  3. 21 CFR 133.147 - Grated American cheese food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... coloring. (d) The name of the food is “Grated American cheese food”. The full name of the food shall appear... under customary conditions of purchase, the full name of the food shall immediately and conspicuously... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Grated American cheese food. 133.147 Section...

  4. 21 CFR 133.147 - Grated American cheese food.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... coloring. (d) The name of the food is “Grated American cheese food”. The full name of the food shall appear... under customary conditions of purchase, the full name of the food shall immediately and conspicuously... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Grated American cheese food. 133.147 Section...

  5. 21 CFR 133.124 - Cold-pack cheese food.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... is “cold-pack cheese food”. The full name of the food shall appear on the principal display panel of..., the full name of the food shall immediately and conspicuously precede or follow such word or statement... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Cold-pack cheese food. 133.124 Section...

  6. 21 CFR 133.124 - Cold-pack cheese food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... is “cold-pack cheese food”. The full name of the food shall appear on the principal display panel of..., the full name of the food shall immediately and conspicuously precede or follow such word or statement... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Cold-pack cheese food. 133.124 Section...

  7. 21 CFR 133.179 - Pasteurized process cheese spread.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acid, and phosphoric acid, in such quantity that the pH of the pasteurized process cheese spread is not...) Safe and suitable enzyme modified cheese. (11) Nisin preparation in an amount which results in not more... the same size as the type used in such word or statement. (h) The name of the food shall include...

  8. 21 CFR 133.179 - Pasteurized process cheese spread.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... acid, and phosphoric acid, in such quantity that the pH of the pasteurized process cheese spread is not...) Safe and suitable enzyme modified cheese. (11) Nisin preparation in an amount which results in not more... the same size as the type used in such word or statement. (h) The name of the food shall include...

  9. 21 CFR 133.179 - Pasteurized process cheese spread.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... acid, and phosphoric acid, in such quantity that the pH of the pasteurized process cheese spread is not...) Safe and suitable enzyme modified cheese. (11) Nisin preparation in an amount which results in not more... the same size as the type used in such word or statement. (h) The name of the food shall include...

  10. 21 CFR 133.179 - Pasteurized process cheese spread.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... acid, and phosphoric acid, in such quantity that the pH of the pasteurized process cheese spread is not...) Safe and suitable enzyme modified cheese. (11) Nisin preparation in an amount which results in not more... the same size as the type used in such word or statement. (h) The name of the food shall include...

  11. 21 CFR 133.179 - Pasteurized process cheese spread.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... acid, and phosphoric acid, in such quantity that the pH of the pasteurized process cheese spread is not...) Safe and suitable enzyme modified cheese. (11) Nisin preparation in an amount which results in not more... the same size as the type used in such word or statement. (h) The name of the food shall include...

  12. 21 CFR 133.173 - Pasteurized process cheese food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... paragraph (h)(5) of this section. Such mixtures are considered as one variety of cheese for the purposes of... following: A vinegar, lactic acid, citric acid, acetic acid, and phosphoric acid in such quantity that the pH of the pasteurized process cheese food is not below 5.0. (3) Water. (4) Salt. (5)...

  13. 21 CFR 133.173 - Pasteurized process cheese food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... paragraph (h)(5) of this section. Such mixtures are considered as one variety of cheese for the purposes of... following: A vinegar, lactic acid, citric acid, acetic acid, and phosphoric acid in such quantity that the pH of the pasteurized process cheese food is not below 5.0. (3) Water. (4) Salt. (5)...

  14. 21 CFR 133.173 - Pasteurized process cheese food.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... paragraph (h)(5) of this section. Such mixtures are considered as one variety of cheese for the purposes of... following: A vinegar, lactic acid, citric acid, acetic acid, and phosphoric acid in such quantity that the pH of the pasteurized process cheese food is not below 5.0. (3) Water. (4) Salt. (5)...

  15. 7 CFR 58.418 - Automatic cheese making equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Automatic cheese making equipment. 58.418 Section 58... Service 1 Equipment and Utensils § 58.418 Automatic cheese making equipment. (a) Automatic Curd Maker. The automatic curd making system shall be constructed of stainless steel or of material approved in the...

  16. 7 CFR 58.418 - Automatic cheese making equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Automatic cheese making equipment. 58.418 Section 58... Service 1 Equipment and Utensils § 58.418 Automatic cheese making equipment. (a) Automatic Curd Maker. The automatic curd making system shall be constructed of stainless steel or of material approved in the...

  17. 7 CFR 58.418 - Automatic cheese making equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Automatic cheese making equipment. 58.418 Section 58... Service 1 Equipment and Utensils § 58.418 Automatic cheese making equipment. (a) Automatic Curd Maker. The automatic curd making system shall be constructed of stainless steel or of material approved in the...

  18. 7 CFR 58.418 - Automatic cheese making equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Automatic cheese making equipment. 58.418 Section 58... Service 1 Equipment and Utensils § 58.418 Automatic cheese making equipment. (a) Automatic Curd Maker. The automatic curd making system shall be constructed of stainless steel or of material approved in the...

  19. 7 CFR 58.418 - Automatic cheese making equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Automatic cheese making equipment. 58.418 Section 58... Service 1 Equipment and Utensils § 58.418 Automatic cheese making equipment. (a) Automatic Curd Maker. The automatic curd making system shall be constructed of stainless steel or of material approved in the...

  20. 21 CFR 133.129 - Dry curd cottage cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Dry curd cottage cheese. 133.129 Section 133.129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... uncured cheese prepared by the procedure set forth in paragraph (b) of this section. The finished...

  1. 21 CFR 133.129 - Dry curd cottage cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Dry curd cottage cheese. 133.129 Section 133.129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... uncured cheese prepared by the procedure set forth in paragraph (b) of this section. The finished...

  2. 21 CFR 133.129 - Dry curd cottage cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Dry curd cottage cheese. 133.129 Section 133.129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... uncured cheese prepared by the procedure set forth in paragraph (b) of this section. The finished...

  3. 21 CFR 133.129 - Dry curd cottage cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Dry curd cottage cheese. 133.129 Section 133.129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... uncured cheese prepared by the procedure set forth in paragraph (b) of this section. The finished...

  4. PROTEIN & SENSORY ANALYSIS TO CHARACTERIZE MEXICAN CHIHUAHUA CHEESES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been established that native microflora in raw milk cheeses, including Queso Chihuahua, a Mexican cheese variety, contributes to the development of unique flavors through degradation of milk proteins resulting in the release of free amino acids and short peptides that influence the taste and ...

  5. Selected Speeches and Essays of Mina Pendo Shaughnessy.

    ERIC Educational Resources Information Center

    Shaughnessy, Mina

    1980-01-01

    Presents Mina Shaughnessy's thoughts on why English professors dislike the teaching of writing, what is needed in writing research, the disadvantages of being a writing teacher at an open admissions school, what open admissions policies have revealed about education in general and basic writing instruction in particular, and writing evaluation…

  6. Thermal diffusivity study of cheese fats by thermal lens detection

    NASA Astrophysics Data System (ADS)

    Jiménez Pérez, J. L.; Rangel Vargas, E.; Gutiérrez Fuentes, R.; Cruz-Orea, A.; Bautista de León, H.

    2008-01-01

    In this paper we used thermal lens spectrometry to determine the thermal diffusivity of cheese fats. We have used equal concentrations of cheese fats from oaxaca, chihuahua, gouda, manchego and mozzarella cheeses at 42°C temperature. The two lasers mismatched mode experimental configuration was used with a He-Ne laser, as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression to the experimental data in order to obtain the thermal diffusivity of the cheese fat samples. This measured thermal property may contribute to a better understanding of the cheese fats quality, which is very important in food industry.

  7. Detection of regulated disinfection by-products in cheeses.

    PubMed

    Cardador, Maria Jose; Gallego, Mercedes; Cabezas, Lourdes; Fernández-Salguero, Jose

    2016-08-01

    Cheese can contain regulated disinfection by-products (DBPs), mainly through contact with brine solutions prepared in disinfected water or sanitisers used to clean all contact surfaces, such as processing equipment and tanks. This study has focused on the possible presence of up to 10 trihalomethanes (THMs) and 13 haloacetic acids (HAAs) in a wide range of European cheeses. The study shows that 2 THMs, (in particular trichloromethane) and 3 HAAs (in particular dichloroacetic acid) can be found at μg/kg levels in the 56 cheeses analysed. Of the two types of DBPs, HAAs were generally present at higher concentrations, due to their hydrophilic and non-volatile nature. Despite their different nature (THMs are lipophilic), both of them have an affinity for fatty cheeses, increasing their concentrations as the percentage of water decreased because the DBPs were concentrated in the aqueous phase of the cheeses.

  8. Composition of the water-soluble fraction of different cheeses.

    PubMed

    Taborda, Gonzalo; Molina, Elena; Martínez-Castro, Isabel; Ramos, Mercedes; Amigo, Lourdes

    2003-01-01

    Volatile and nonvolatile compounds present in the water-soluble fraction (WSF) and water-soluble fraction with molecular weight lower than 1000 Da (WSF < 1000 Da) of six Spanish cheeses, Cabrales, Idiazábal, Mahón, Manchego, Roncal, and a goat's milk cheese, were analyzed. Different nitrogen fractions (determined by Kjeldahl method), caseins (by capillary electrophoresis), peptides and amino acids (by HPLC), and volatile components (by dynamic headspace coupled to GC-MS) as well as mineral content in the cheese fractions were analyzed and compared. The different nitrogen and volatile compounds identified in the WSF were characteristic of each cheese variety. Cabrales cheese displayed the highest content of free amino acids and the highest quantity and variety of volatile compounds. The WSF < 1000 Da fraction was less representative, especially for volatile compounds, as some of the components were lost in the ultrafiltration. Alcohols were better recovered than ketones and esters. PMID:12502420

  9. An empirical method for prediction of cheese yield.

    PubMed

    Melilli, C; Lynch, J M; Carpino, S; Barbano, D M; Licitra, G; Cappa, A

    2002-10-01

    Theoretical cheese yield can be estimated from the milk fat and casein or protein content of milk using classical formulae, such as the VanSlyke formula. These equations are reliable predictors of theoretical or actual yield based on accurately measured milk fat and casein content. Many cheese makers desire to base payment for milk to dairy farmers on the yield of cheese. In small factories, however, accurate measurement of fat and casein content of milk by either chemical methods or infrared milk analysis is too time consuming and expensive. Therefore, an empirical test to predict cheese yield was developed which uses simple equipment (i.e., clinical centrifuge, analytical balance, and forced air oven) to carry out a miniature cheese making, followed by a gravimetric measurement of dry weight yield. A linear regression of calculated theoretical versus dry weight yields for milks of known fat and casein content was calculated. A regression equation of y = 1.275x + 1.528, where y is theoretical yield and x is measured dry solids yield (r2 = 0.981), for Cheddar cheese was developed using milks with a range of theoretical yield from 7 to 11.8%. The standard deviation of the difference (SDD) between theoretical cheese yield and dry solids yield was 0.194 and the coefficient of variation (SDD/mean x 100) was 1.95% upon cross validation. For cheeses without a well-established theoretical cheese yield equation, the measured dry weight yields could be directly correlated to the observed yields in the factory; this would more accurately reflect the expected yield performance. Payments for milk based on these measurements would more accurately reflect quality and composition of the milk and the actual average recovery of fat and casein achieved under practical cheese making conditions. PMID:12416825

  10. Detection and viability of Lactococcus lactis throughout cheese ripening.

    PubMed

    Ruggirello, Marianna; Dolci, Paola; Cocolin, Luca

    2014-01-01

    Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese.

  11. Detection and Viability of Lactococcus lactis throughout Cheese Ripening

    PubMed Central

    Cocolin, Luca

    2014-01-01

    Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese. PMID:25503474

  12. Microbial biodiversity in cheese consortia and comparative Listeria growth on surfaces of uncooked pressed cheeses.

    PubMed

    Callon, Cécile; Retureau, Emilie; Didienne, Robert; Montel, Marie-Christine

    2014-03-17

    The study set out to determine how changes in the microbial diversity of a complex antilisterial consortium from the surface of St-Nectaire cheese modify its antilisterial activities. On the basis of the microbial composition of a natural complex consortium named TR15 (Truefood consortium 15), three new consortia of different species and strain compositions were defined: TR15-SC (58 isolates from TR15 collection), TR15-M (pools of isolates from selective counting media) and TR15-BHI (pools of isolates from BHI medium). Their antilisterial activities on the surfaces of uncooked pressed cheese made with pasteurised milk were compared with the activity of complex consortium TR15 and a control cheese inoculated only with starter culture (Streptococcus thermophilus, Lactobacillus delbrueckii). The natural consortium TR15 was the most inhibitory, followed by reconstituted consortium TR15-BHI. The dynamics of the cheese rind microbial flora were monitored by counting on media and by isolate identification using 16S rDNA sequencing and direct 16S rDNA Single Strand Conformation Polymorphism analysis. The combination of these methods showed that rind with natural consortium TR15 had greater microbial diversity and different microbial dynamics than cheese rinds with reconstituted consortia. Cheese rind with the natural consortium showed higher citrate consumption and the highest concentrations of lactic and acetic acids, connected with high levels of lactic acid bacteria such as Carnobacterium maltaromaticum, Vagococcus fluvialis, Enterococcus gilvus, Leuconostoc mesenteroides, Brochothrix thermosphacta and Lactococcus lactis, ripening bacteria such as Arthrobacter nicotianae/arilaitensis, and Gram negative bacteria (Pseudomonas psychrophila and Enterobacter spp.). The highest L. monocytogenes count was on rind with TR15-M and was positively associated with the highest pH value, high succinic and citric acid contents, and the highest levels of Marinilactibacillus

  13. Effect of fat reduction on chemical composition, proteolysis, functionality, and yield of Mozzarella cheese.

    PubMed

    Rudan, M A; Barbano, D M; Yun, J J; Kindstedt, P S

    1999-04-01

    Mozzarella cheese was made from skim milk standardized with cream (unhomogenized, 40% milk fat) to achieve four different target fat percentages in the cheese (ca. 5, 10, 15, and 25%). No statistically significant differences were detected for cheese manufacturing time, stretching time, concentration of salt in the moisture phase, pH, or calcium as a percentage of the protein in the cheese between treatments. As the fat percentage was reduced, there was an increase in the moisture and protein content of the cheese. However, because the moisture did not replace the fat on an equal basis, there was a significant decrease in the moisture in the nonfat substance in the cheese as the fat percentage was reduced. This decrease in total filler volume (fat plus moisture) was associated with an increase in the hardness of the unmelted cheese. Whiteness and opacity of the unmelted cheese decreased as the fat content decreased. Pizza baking performance, meltability, and free oil release significantly decreased as the fat percentage decreased. The minimum amount of free oil release necessary to obtain proper functionality during pizza baking was between 0.22 and 2.52 g of fat/100 g of cheese. Actual cheese yield was about 30% lower for cheese containing 5% fat than for cheese with 25% fat. Maximizing fat recovery in the cheese becomes less important to maintain high cheese yield, and moisture control and the retention of solids in the water phase become more important as the fat content of the cheese is reduced.

  14. Factors affecting consumers' preferences for and purchasing decisions regarding pasteurized and raw milk specialty cheeses.

    PubMed

    Colonna, A; Durham, C; Meunier-Goddik, L

    2011-10-01

    Eight hundred ninety consumers at a local food festival were surveyed about their specialty cheese purchasing behavior and asked to taste and rate, through nonforced choice preference, 1 of 4 cheese pairs (Cheddar and Gouda) made from pasteurized and raw milks. The purpose of the survey was to examine consumers' responses to information on the safety of raw milk cheeses. The associated consumer test provided information about specialty cheese consumers' preferences and purchasing behavior. Half of the consumers tested were provided with cheese pairs that were identified as being made from unpasteurized and pasteurized milk. The other half evaluated samples that were identified only with random 3-digit codes. Overall, more consumers preferred the raw milk cheeses than the pasteurized milk cheeses. A larger portion of consumers indicated preferences for the raw milk cheese when the cheeses were labeled and thus they knew which samples were made from raw milk. Most of the consumers tested considered the raw milk cheeses to be less safe or did not know if raw milk cheeses were less safe. After being informed that the raw milk cheeses were produced by a process approved by the FDA (i.e., 60-d ripening), most consumers with concerns stated that they believed raw milk cheeses to be safe. When marketing cheese made from raw milk, producers should inform consumers that raw milk cheese is produced by an FDA-approved process.

  15. Mexican Queso Chihuahua: functional properties of aging cheese.

    PubMed

    Olson, D W; Van Hekken, D L; Tunick, M H; Tomasula, P M; Molina-Corral, F J; Gardea, A A

    2011-09-01

    Queso Chihuahua, a semi-hard cheese manufactured from raw milk (RM) in northern Mexico, is being replaced by pasteurized milk (PM) versions because of food safety concerns and the desire for longer shelf life. In this study, the functional traits of authentic Mexican Queso Chihuahua made from RM or PM were characterized to identify sources of variation and to determine if pasteurization of the cheese milk resulted in changes to the functional properties. Two brands of RM cheese and 2 brands of PM cheese obtained in 3 seasons of the year from 4 manufacturers in Chihuahua, Mexico, were analyzed after 0, 4, 8, 12, and 16 wk of storage at 4°C. A color measurement spectrophotometer was used to collect color data before and after heating at 232°C for 5 min or 130°C for 75 min. Meltability was measured using the Schreiber Melt Test on samples heated to 232°C for 5 min. Sliceability (the force required to cut through a sample) was measured using a texture analyzer fitted with a wire cutter attachment. Proteolysis was tracked using sodium dodecyl sulfate-PAGE. Compared with PM cheeses, RM cheeses showed less browning upon heating, melted more at 232°C, and initially required a greater cutting force. With aging, cheeses increased in meltability, decreased in whiteness when measured before heating, and required less cutting force to slice. Seasonal variations in the cheesemilk had minimal or no effect on the functional properties. The differences in the functional properties can be attributed, in part, to the mixed microflora present in the RM cheeses compared with the more homogeneous microflora added during the manufacture of PM cheeses. The degree of proteolysis and subsequent integrity of the cheese matrix contribute to melt, slice, and color properties of the RM and PM cheeses. Understanding the functional properties of the authentic RM cheeses will help researchers and cheesemakers develop pasteurized versions that maintain the traditional traits desired in the

  16. Listeria fleischmannii sp. nov., isolated from cheese.

    PubMed

    Bertsch, David; Rau, Jörg; Eugster, Marcel R; Haug, Martina C; Lawson, Paul A; Lacroix, Christophe; Meile, Leo

    2013-02-01

    A study was performed on three isolates (LU2006-1(T), LU2006-2 and LU2006-3), which were sampled independently from cheese in western Switzerland in 2006, as well as a fourth isolate (A11-3426), which was detected in 2011, using a polyphasic approach. The isolates could all be assigned to the genus Listeria but not to any known species. Phenotypic and chemotaxonomic data were compatible with the genus Listeria and phylogenetic analysis based on 16S rRNA gene sequences confirmed that the closest relationships were with members of this genus. However, DNA-DNA hybridization demonstrated that the isolates did not belong to any currently described species. Cell-wall-binding domains of Listeria monocytogenes bacteriophage endolysins were able to attach to the isolates, confirming their tight relatedness to the genus Listeria. Although PCR targeting the central portion of the flagellin gene flaA was positive, motility was not observed. The four isolates could not be discriminated by Fourier transform infrared spectroscopy or pulsed-field gel electrophoresis. This suggests that they represent a single species, which seems to be adapted to the environment in a cheese-ripening cellar as it was re-isolated from the same type of Swiss cheese after more than 5 years. Conjugation experiments demonstrated that the isolates harbour a transferable resistance to clindamycin. The isolates did not exhibit haemolysis or show any indication of human pathogenicity or virulence. The four isolates are affiliated with the genus Listeria but can be differentiated from all described members of the genus Listeria and therefore they merit being classified as representatives of a novel species, for which we propose the name Listeria fleischmannii sp. nov.; the type strain is LU2006-1(T) ( = DSM 24998(T)  = LMG 26584(T)).

  17. Cheddar cheese ripening and flavor characterization: a review.

    PubMed

    Murtaza, Mian Anjum; Ur-Rehman, Salim; Anjum, Faqir Muhammad; Huma, Nuzhat; Hafiz, Iram

    2014-01-01

    Cheddar cheese is a biochemically dynamic product that undergoes significant changes during ripening. Freshly made curds of various cheese varieties have bland and largely similar flavors and aroma and, during ripening, flavoring compounds are produced that are characteristic of each variety. The biochemical changes occurring during ripening are grouped into primary events including glycolysis, lipolysis, and proteolysis followed by secondary biochemical changes such as metabolism of fatty acids and amino acids which are important for the production of secondary metabolites, including a number of compounds necessary for flavor development. A key feature of cheese manufacture is the metabolism of lactose to lactate by selected cultures of lactic acid bacteria. The rate and extent of acidification influence the initial texture of the curd by controlling the rate of demineralization. The degree of lipolysis in cheese depends on the variety of cheese and may vary from slight to extensive; however, proteolysis is the most complex of the primary events during cheese ripening, especially in Cheddar-type cheese. PMID:24564588

  18. Tool for quantification of staphylococcal enterotoxin gene expression in cheese.

    PubMed

    Duquenne, Manon; Fleurot, Isabelle; Aigle, Marina; Darrigo, Claire; Borezée-Durant, Elise; Derzelle, Sylviane; Bouix, Marielle; Deperrois-Lafarge, Véronique; Delacroix-Buchet, Agnès

    2010-03-01

    Cheese is a complex and dynamic microbial ecosystem characterized by the presence of a large variety of bacteria, yeasts, and molds. Some microorganisms, including species of lactobacilli or lactococci, are known to contribute to the organoleptic quality of cheeses, whereas the presence of other microorganisms may lead to spoilage or constitute a health risk. Staphylococcus aureus is recognized worldwide as an important food-borne pathogen, owing to the production of enterotoxins in food matrices. In order to study enterotoxin gene expression during cheese manufacture, we developed an efficient procedure to recover total RNA from cheese and applied a robust strategy to study gene expression by reverse transcription-quantitative PCR (RT-qPCR). This method yielded pure preparations of undegraded RNA suitable for RT-qPCR. To normalize RT-qPCR data, expression of 10 potential reference genes was investigated during S. aureus growth in milk and in cheese. The three most stably expressed reference genes during cheese manufacture were ftsZ, pta, and gyrB, and these were used as internal controls for RT-qPCR of the genes sea and sed, encoding staphylococcal enterotoxins A and D, respectively. Expression of these staphylococcal enterotoxin genes was monitored during the first 72 h of the cheese-making process, and mRNA data were correlated with enterotoxin production.

  19. Physicochemical, textural, volatile, and sensory profiles of traditional Sepet cheese.

    PubMed

    Ercan, D; Korel, F; Yüceer, Y Karagül; Kınık, O

    2011-09-01

    Characterization of traditional cheeses is important for the protection of diversity of tradition and contributing baseline data for further research and quality control. Sepet cheese is a traditional cheese and specific to the Aegean region of Turkey. In this study, 52 Sepet cheese samples were analyzed to characterize the physicochemical, textural, volatile compounds, and sensory profiles. The changes in the physicochemical and volatile compositions were investigated during production and ripening periods. The average dry matter (DM; 55.16%), fat-in-DM (45.80%), protein (29.18%), salt-in-DM (12.88%), water activity (0.83), pH (5.50), titratable acidity (1.69%), ripening and lipolysis indices (11.06 and 6.36), firmness (212.20N), springiness (0.62), cohesiveness (0.57), adhesiveness (0.48 Nmm), and chewiness (66.87N) values of Sepet cheese samples were determined. Hexanoic, octanoic, decanoic, and butyric acids, which were responsible for the cheesy, waxy, goaty odors, were the most abundant volatile compounds in these cheeses. Most of the volatile compounds increased significantly during production and ripening. Significant changes in most of the physicochemical characteristics were observed up to the third month of ripening. As a result of the descriptive sensory analysis, Sepet cheeses were described with descriptors such as free fatty acid, animal like, sulfurous, creamy, cooked, and whey, and aromatics with high salty basic taste. PMID:21854903

  20. Volatile fraction and sensory characteristics of Manchego cheese. 2. Seasonal variation.

    PubMed

    Fernández-García, Estrella; Serrano, Carmen; Nuñez, Manuel

    2002-11-01

    An automatic purge and trap apparatus, coupled to a GC-MS was used to study the seasonal variability of the volatile fraction of raw milk Manchego cheese. Both season and dairy significantly affected abundance of most volatile compounds. Most aldehydes, methyl ketones, n-alcohols, and secondary alcohols reached significantly higher concentrations in spring cheeses. Branched chain alcohols showed significantly higher concentrations in autumn and winter cheeses, while significantly higher amounts of diketones were found in summer cheeses. Most ethyl esters reached higher concentrations in spring and winter cheeses and lower in autumn cheeses. Lower concentrations of alpha-pinene were found in spring cheeses, and higher amounts of limonene were observed in winter cheeses. Heptane and octane were significantly more abundant in summer cheeses. No significant seasonal differences were found either for quality or intensity scores. PMID:12463696

  1. The influence of the wooden equipment employed for cheese manufacture on the characteristics of a traditional stretched cheese during ripening.

    PubMed

    Di Grigoli, Antonino; Francesca, Nicola; Gaglio, Raimondo; Guarrasi, Valeria; Moschetti, Marta; Scatassa, Maria Luisa; Settanni, Luca; Bonanno, Adriana

    2015-04-01

    The influence of the wooden equipment used for the traditional cheese manufacturing from raw milk was evaluated on the variations of chemico-physical characteristics and microbial populations during the ripening of Caciocavallo Palermitano cheese. Milk from two farms (A, extensive; B, intensive) was processed in traditional and standard conditions. Chemical and physical traits of cheeses were affected by the farming system and the cheese making technology, and changed during ripening. Content in NaCl and N soluble was lower, and paste consistency higher in cheese from the extensive farm and traditional technology, whereas ripening increased the N soluble and the paste yellow and consistency. The ripening time decreased the number of all lactic acid bacteria (LAB) groups, except enterococci detected at approximately constant levels (10(4) and 10(5) cfu g(-1) for standard and traditional cheeses, respectively), till 120 d of ripening. In all productions, at each ripening time, the levels detected for enterococci were lower than those for the other LAB groups. The canonical discriminant analysis of chemical, physical and microbiological data was able to separate cheeses from different productions and ripening time. The dominant LAB were isolated, phenotypically characterised and grouped, genetically differentiated at strain level and identified. Ten species of LAB were found and the strains detected at the highest levels were Pediococcus acidilactici and Lactobacillus casei. Ten strains, mainly belonging to Lactobacillus rhamnosus and Lactobacillus fermentum showed an antibacterial activity. The comparison of the polymorphic profiles of the LAB strains isolated from the wooden vat with those of the strains collected during maturation, showed the persistence of three enterococci in traditional cheeses, with Enterococcus faecalis found at dominant levels over the Enterococcus population till 120 d; the absence of these strains in the standard productions evidenced the

  2. Consumer acceptance and sensory evaluation of Monti Dauni Meridionali Caciocavallo cheese.

    PubMed

    Santillo, A; Caroprese, M; Ruggieri, D; Marino, R; Sevi, A; Albenzio, M

    2012-08-01

    Twelve Caciocavallo cheeses were collected from 6 factories (A, B, C, D, E, F) located in the Monti Dauni Meridionali area (Southern Italy) that adopted different protocols for cheese production. A total of 160 consumers were involved in the sensory evaluation of Caciocavallo cheese after 180 d of ripening. Cheese attributes were used to describe the flavor, texture, and appearance of cheeses. The highest scores for the shiny attribute were assigned to cheeses B, C, and E, whereas color intensity was the highest in cheeses B, D, and F. Strength, salty, and piquant attributes were higher in cheeses F and A because of the use of raw milk (F), rennet paste (A), and percentage of salt in the brine (A, F). Consumers perceived a more granular structure during the second half of chewing of Caciocavallo cheese F, as evidenced by the highest value for the grainy attribute. A positive correlation was found between overall flavor and odor intensity and water-soluble nitrogen, low molecular weight peptides, and free fatty acids and between piquant and butyric and caproic acids. A principal components analysis applied to the sensory attributes accounted for 65% of the total variance. The score plot showed that cheeses F and A were located in a well-defined zone of the plot, with cheeses in this zone displaying higher levels of strength, piquant, and salty attributes. The preference test assigned 40% of the preference to Caciocavallo cheese A, 38% to cheese F, 9% to cheese E, 8% to cheese D, and 7% to cheeses B and C. Sensory evaluation of Monti Dauni Meridionali Caciocavallo cheeses is a useful analysis to highlight the principal attributes able to influence consumers' liking that are related to biochemical features of the cheese.

  3. Consumer acceptance and sensory evaluation of Monti Dauni Meridionali Caciocavallo cheese.

    PubMed

    Santillo, A; Caroprese, M; Ruggieri, D; Marino, R; Sevi, A; Albenzio, M

    2012-08-01

    Twelve Caciocavallo cheeses were collected from 6 factories (A, B, C, D, E, F) located in the Monti Dauni Meridionali area (Southern Italy) that adopted different protocols for cheese production. A total of 160 consumers were involved in the sensory evaluation of Caciocavallo cheese after 180 d of ripening. Cheese attributes were used to describe the flavor, texture, and appearance of cheeses. The highest scores for the shiny attribute were assigned to cheeses B, C, and E, whereas color intensity was the highest in cheeses B, D, and F. Strength, salty, and piquant attributes were higher in cheeses F and A because of the use of raw milk (F), rennet paste (A), and percentage of salt in the brine (A, F). Consumers perceived a more granular structure during the second half of chewing of Caciocavallo cheese F, as evidenced by the highest value for the grainy attribute. A positive correlation was found between overall flavor and odor intensity and water-soluble nitrogen, low molecular weight peptides, and free fatty acids and between piquant and butyric and caproic acids. A principal components analysis applied to the sensory attributes accounted for 65% of the total variance. The score plot showed that cheeses F and A were located in a well-defined zone of the plot, with cheeses in this zone displaying higher levels of strength, piquant, and salty attributes. The preference test assigned 40% of the preference to Caciocavallo cheese A, 38% to cheese F, 9% to cheese E, 8% to cheese D, and 7% to cheeses B and C. Sensory evaluation of Monti Dauni Meridionali Caciocavallo cheeses is a useful analysis to highlight the principal attributes able to influence consumers' liking that are related to biochemical features of the cheese. PMID:22818433

  4. Application of LANDSAT images in the Minas Gerais tectonic division

    NASA Technical Reports Server (NTRS)

    Dacunha, R. P.; Demattos, J. T.

    1978-01-01

    The interpretation of LANDSAT data for a regional geological investigation of Brazil is provided. Radar imagery, aerial photographs and aeromagnetic maps were also used. Automatic interpretation, using LANDSAT OCT's was carried out by the 1-100 equipment. As a primary result a tectonic map was obtained, at 1:1,000,000 scale, of an area of about 143,000 square kilometers, in the central portion of Minas Gerais and Eastern Goias States, known as regions potentially rich in mineral resources.

  5. Agriculture near Uberlandia, State of Minas Gerais, Brazil, South America

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Very large fields, typical of commercial and irrigated farmland, contrast with patchy upland agriculture in this view of southeastern Brazil (18.5S, 47.5W). A reservoir, just to the northeast of the city of Uberlandia, State of Minas Gerais, serves as the water source and is fed by the Rios Sao Marcos and the Rio Paranaiba. Near the bottom of the photo is circular feature with a plume of smoke thought to be a mining operation and smelter.

  6. Nonstarter Lactobacillus strains as adjunct cultures for cheese making: in vitro characterization and performance in two model cheeses.

    PubMed

    Briggiler-Marcó, M; Capra, M L; Quiberoni, A; Vinderola, G; Reinheimer, J A; Hynes, E

    2007-10-01

    Nonstarter lactic acid bacteria are the main uncontrolled factor in today's industrial cheese making and may be the cause of quality inconsistencies and defects in cheeses. In this context, adjunct cultures of selected lactobacilli from nonstarter lactic acid bacteria origin appear as the best alternative to indirectly control cheese biota. The objective of the present work was to study the technological properties of Lactobacillus strains isolated from cheese by in vitro and in situ assays. Milk acidification kinetics and proteolytic and acidifying activities were assessed, and peptide mapping of trichloroacetic acid 8% soluble fraction of milk cultures was performed by liquid chromatography. In addition, the tolerance to salts (NaCl and KCl) and the phage-resistance were investigated. Four strains were selected for testing as adjunct cultures in cheese making experiments at pilot plant scale. In in vitro assays, most strains acidified milk slowly and showed weak to moderate proteolytic activity. Fast strains decreased milk pH to 4.5 in 8 h, and continued acidification to 3.5 in 12 h or more. This group consisted mostly of Lactobacillus plantarum and Lactobacillus rhamnosus strains. Approximately one-third of the slow strains, which comprised mainly Lactobacillus casei, Lactobacillus fermentum, and Lactobacillus curvatus, were capable to grow when milk was supplemented with glucose and casein hydrolysate. Peptide maps were similar to those of lactic acid bacteria considered to have a moderate proteolytic activity. Most strains showed salt tolerance and resistance to specific phages. The Lactobacillus strains selected as adjunct cultures for cheese making experiments reached 10(8) cfu/g in soft cheeses at 7 d of ripening, whereas they reached 10(9) cfu/g in semihard cheeses after 15 d of ripening. In both cheese varieties, the adjunct culture population remained at high counts during all ripening, in some cases overcoming or equaling primary starter. Overall

  7. Cytotoxicity of Cheese and Cheddar Cheese food flavorings on Allim cepa L root meristems.

    PubMed

    Moura, A G; Santana, G M; Ferreira, P M P; Sousa, J M C; Peron, A P

    2016-06-01

    Despite their great importance for the food industry, flavorings, in general, raise a number of questions regarding their cytotoxicity, mutagenicity and carcinogenicity, since, in the literature, there are few studies found evaluating the toxicity on the systemic and cellular level, of these chemical compounds. The root meristems of Allium cepa (onion) are widely used for the assessment of toxicity of chemical compounds of interest. Thus, this study aimed to evaluate, in A. cepa meristematic cells, individually and in combination at the cellular level, the toxicity of synthetic Cheese and Cheddar Cheese food flavorings, identical to the natural, at doses of 1.0 and 2.0 mL, at exposure times of 24 and 48 hours. In combination we used 0.5 mL of Cheese flavor associated with 0.5 mL of Cheddar flavor; and 1.0 mL of Cheese flavor associated with 1.0 mL of Cheddar flavor, at exposure times of 24 and 48 hours. For these evaluations, we used groups of five onion bulbs, which were first embedded in distilled water and then transferred to their respective doses. The root tips were collected and fixed in acetic acid (3:1) for 24 hours. The slides were prepared by crushing and were stained with 2% acetic orcein. Cells were analyzed throughout the cell cycle, totaling 5,000 for each control and exposure time. The mitotic indices calculated and cellular aberrations observed were subjected to statistical analysis using the chi-square test (p <0.05). No chromosomal abnormalities nor those of mitotic spindle were observed for the treatments performed. The results, both individually and in combination, showed that the flavorings under study significantly reduced the cell division rate of the test system cells used. Therefore, under the conditions studied, the two flavorings were cytotoxic. PMID:26959949

  8. Cytotoxicity of Cheese and Cheddar Cheese food flavorings on Allim cepa L root meristems.

    PubMed

    Moura, A G; Santana, G M; Ferreira, P M P; Sousa, J M C; Peron, A P

    2016-06-01

    Despite their great importance for the food industry, flavorings, in general, raise a number of questions regarding their cytotoxicity, mutagenicity and carcinogenicity, since, in the literature, there are few studies found evaluating the toxicity on the systemic and cellular level, of these chemical compounds. The root meristems of Allium cepa (onion) are widely used for the assessment of toxicity of chemical compounds of interest. Thus, this study aimed to evaluate, in A. cepa meristematic cells, individually and in combination at the cellular level, the toxicity of synthetic Cheese and Cheddar Cheese food flavorings, identical to the natural, at doses of 1.0 and 2.0 mL, at exposure times of 24 and 48 hours. In combination we used 0.5 mL of Cheese flavor associated with 0.5 mL of Cheddar flavor; and 1.0 mL of Cheese flavor associated with 1.0 mL of Cheddar flavor, at exposure times of 24 and 48 hours. For these evaluations, we used groups of five onion bulbs, which were first embedded in distilled water and then transferred to their respective doses. The root tips were collected and fixed in acetic acid (3:1) for 24 hours. The slides were prepared by crushing and were stained with 2% acetic orcein. Cells were analyzed throughout the cell cycle, totaling 5,000 for each control and exposure time. The mitotic indices calculated and cellular aberrations observed were subjected to statistical analysis using the chi-square test (p <0.05). No chromosomal abnormalities nor those of mitotic spindle were observed for the treatments performed. The results, both individually and in combination, showed that the flavorings under study significantly reduced the cell division rate of the test system cells used. Therefore, under the conditions studied, the two flavorings were cytotoxic.

  9. "Cheese" room in halfcellar showing stone trough, later fireplace supports, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Cheese" room in half-cellar showing stone trough, later fireplace supports, stairs inserted in original relieving arch. - Scheetz Farm, House, 7161 Camp Hill Road, Fort Washington, Montgomery County, PA

  10. Process energy efficiency improvement in Wisconsin cheese plants

    SciTech Connect

    Zehr, S.; Mitchell, J.; Reinemann, D.; Klein, S.; Reindl, D.

    1997-07-01

    Costs for the energy involved in cheese making has a major impact on profit. Although industrial cheese plants differ in size, production equipment, and the manner in which whey is processed, there are common elements in most plants. This paper evaluates several process integration opportunities at two representative cheese plants in Wisconsin. Pinch analysis is used to help assess the heat recovery potential for the major thermal processes in the plants. The potential of using packaged cheese as a thermal storage medium to allow electrical demand shifting in the cold storage warehouse is evaluated and shown to be feasible. Three major conservation measures are identified with a total cost savings of $130,000 to $160,000 annually.

  11. Characteristics of food using Queso Fresco cheese as an example

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Processing and aging affect food characteristics, such as rheology, functional properties, microstructure, and sensory traits. These effects are discussed using Queso Fresco, a popular Hispanic cheese variety, as an example. Gas chromatography-mass spectrometry data indicated that lipolysis occurr...

  12. Diversity and enterotoxigenicity of Staphylococcus spp. associated with domiati cheese.

    PubMed

    El-Sharoud, Walid M; Spano, Giuseppe

    2008-12-01

    A total of 87 samples of fresh and stored Domiati cheese (an Egyptian soft cheese) were examined for the presence of Staphylococcus spp. Fifteen Staphylococcus isolates identified as S. aureus (2 isolates), S. xylosus (4), S. caprae (4), and S. chromogenes (5) were recovered from 15 cheese samples. The S. aureus isolates were resistant to penicillin G and ampicillin, and one isolate was also resistant to tetracycline. S. aureus isolates harbored classical staphylococcal enterotoxin (SE) genes (sea and seb) and recently characterized SE-like genes (selg, seli, selm, and selo). One S. aureus isolate contained a single SE gene (sea), whereas another isolate contained five SE genes (seb, selg, seli, selm, and selo). These results suggest that Domiati cheese is a source for various Staphylococcus species, including S. aureus strains that could be enterotoxigenic.

  13. Cheese rind microbial communities: diversity, composition and origin.

    PubMed

    Irlinger, Françoise; Layec, Séverine; Hélinck, Sandra; Dugat-Bony, Eric

    2015-01-01

    Cheese rinds host a specific microbiota composed of both prokaryotes (such as Actinobacteria, Firmicutes and Proteobacteria) and eukaryotes (primarily yeasts and moulds). By combining modern molecular biology tools with conventional, culture-based techniques, it has now become possible to create a catalogue of the biodiversity that inhabits this special environment. Here, we review the microbial genera detected on the cheese surface and highlight the previously unsuspected importance of non-inoculated microflora--raising the question of the latter's environmental sources and their role in shaping microbial communities. There is now a clear need to revise the current view of the cheese rind ecosystem (i.e. that of a well-defined, perfectly controlled ecosystem). Inclusion of these new findings should enable us to better understand the cheese-making process.

  14. Use of chitosan to prolong mozzarella cheese shelf life.

    PubMed

    Altieri, C; Scrocco, C; Sinigaglia, M; Del Nobile, M A

    2005-08-01

    This study was undertaken to evaluate the feasibility of using chitosan, a natural antimicrobial substance, to improve the preservation of a very perishable cheese. The effectiveness of chitosan to inhibit the growth of spoilage microorganisms in Mozzarella cheese was studied during refrigerated storage. A lactic acid/chitosan solution was added directly to the starter used for Mozzarella cheese manufacturing. Mozzarella cheese samples were stored at 4 degrees C for about 10 d and microbial populations as well as the pH were monitored. Results demonstrated that chitosan inhibited the growth of some spoilage microorganisms such as coliforms, whereas it did not influence the growth of other microorganisms, such as Micrococcaceae, and lightly stimulated lactic acid bacteria.

  15. Alternative to decrease cholesterol in sheep milk cheeses.

    PubMed

    Gómez-Cortés, P; Viturro, E; Juárez, M; de la Fuente, M A

    2015-12-01

    The presence of cholesterol in foods is of nutritional interest because high levels of this molecule in human plasma are associated with an increasing risk of cardiovascular disease and nowadays consumers are demanding healthier products. The goal of this experiment was to diminish the cholesterol content of Manchego, the most popular Spanish cheese manufactured from ewes milk. For this purpose three bulk milks coming from dairy ewe fed with 0 (Control), 3 and 6% of linseed supplement on their diet were used. Nine cheeses (3 per bulk milk) were manufactured and ripened for 3 months. Cholesterol of ewes milk cheese from 6% to 12% linseed supplemented diets decreased by 9.6% and 16.1% respectively, therefore supplying a healthier profile. In a second experiment, different sources of unsaturated fatty acids (rich in oleic, linoleic and α-linolenic acids) were supplemented to dairy ewes and no significant differences were found on cheese cholesterol levels. PMID:26041199

  16. Epidemic salmonellosis from cheddar cheese: surveillance and prevention.

    PubMed

    Fontaine, R E; Cohen, M L; Martin, W T; Vernon, T M

    1980-02-01

    On August 3, 1976, ongoing Salmonella surveillance in Colorado first detected an epidemic of Salmonella heidelberg infections that eventually totaled 339 isolates. The majority of the cases occurred between July 23 and August 12 in two widely separated cities: Denver and Pueblo. Epidemiologic investigation successively incriminated 1) recent dining at Mexican-style restaurants (p less than 0.001), 2) eating foods containing cheese in these restaurants (p = 0.029), and 3) consumption of cheddar cheese from a single shipment of a single manufacturer (p less than 0.01). The prompt investigation enabled an embargo of 2087 kg (41%) of the contaminated cheese. S. heidelberg was isolated from seven production lots of the incriminated cheese. Surveillance and the epidemiologic investigation may have resulted in prevention of 25,000 diarrheal illnesses.

  17. Diversity and enterotoxigenicity of Staphylococcus spp. associated with domiati cheese.

    PubMed

    El-Sharoud, Walid M; Spano, Giuseppe

    2008-12-01

    A total of 87 samples of fresh and stored Domiati cheese (an Egyptian soft cheese) were examined for the presence of Staphylococcus spp. Fifteen Staphylococcus isolates identified as S. aureus (2 isolates), S. xylosus (4), S. caprae (4), and S. chromogenes (5) were recovered from 15 cheese samples. The S. aureus isolates were resistant to penicillin G and ampicillin, and one isolate was also resistant to tetracycline. S. aureus isolates harbored classical staphylococcal enterotoxin (SE) genes (sea and seb) and recently characterized SE-like genes (selg, seli, selm, and selo). One S. aureus isolate contained a single SE gene (sea), whereas another isolate contained five SE genes (seb, selg, seli, selm, and selo). These results suggest that Domiati cheese is a source for various Staphylococcus species, including S. aureus strains that could be enterotoxigenic. PMID:19244916

  18. Light refraction in the Swiss-cheese model

    NASA Astrophysics Data System (ADS)

    Csapó, Adelinda; Bene, Gyula

    2012-08-01

    We investigate light propagation in the Swiss-cheese model. On both sides of Swiss-cheese sphere surfaces, observers resting in the flat Friedmann-Robertson-Walker (FRW) space and the Schwarzschild space respectively, see the same light ray enclosing different angles with the normal. We examine light refraction at each crossing of the boundary surfaces, showing that the angle of refraction is larger than the angle of incidence for both directions of the light.

  19. Source of enterococci in a farmhouse raw-milk cheese.

    PubMed

    Gelsomino, Robert; Vancanneyt, M; Cogan, T M; Condon, S; Swings, J

    2002-07-01

    Enterococci are widely distributed in raw-milk cheeses and are generally thought to positively affect flavor development. Their natural habitats are the human and animal intestinal tracts, but they are also found in soil, on plants, and in the intestines of insects and birds. The source of enterococci in raw-milk cheese is unknown. In the present study, an epidemiological approach with pulsed-field gel electrophoresis (PFGE) was used to type 646 Enterococcus strains which were isolated from a Cheddar-type cheese, the milk it was made from, the feces of cows and humans associated with the cheese-making unit, and the environment, including the milking equipment, the water used on the farm, and the cows' teats. Nine different PFGE patterns, three of Enterococcus casseliflavus, five of Enterococcus faecalis, and one of Enterococcus durans, were found. The same three clones, one of E. faecalis and two of E. casseliflavus, dominated almost all of the milk, cheese, and human fecal samples. The two E. casseliflavus clones were also found in the bulk tank and the milking machine even after chlorination, suggesting that a niche where enterococci could grow was present and that contamination with enterococci begins with the milking equipment. It is likely but unproven that the enterococci present in the human feces are due to consumption of the cheese. Cow feces were not considered the source of enterococci in the cheese, as Enterococcus faecium and Streptococcus bovis, which largely dominated the cows' intestinal tracts, were not found in either the milk or the cheese.

  20. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi

    PubMed Central

    Ropars, Jeanne; Rodríguez de la Vega, Ricardo C.; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana

    2015-01-01

    Summary Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1–5]. Few studies have focused on the domestication of fungi, with notable exceptions [6–11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making—P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13–15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes. PMID:26412136

  1. Microbial quality and presence of moulds in Kuflu cheese.

    PubMed

    Hayaloglu, A A; Kirbag, S

    2007-04-20

    The chemical and microbial qualities, including fungal flora, of 30 samples of Kuflu cheese randomly purchased from different markets in Turkey were investigated. The gross composition of the cheese samples ranged between 37.65-53.65% moisture, 6.21-40.09% fat-in-dry matter, 4.70-10.07% salt-in-moisture and 26.18-44.85% protein. The mean pH value of the cheeses was 6.29+/-0.28 and pH values ranged from 5.52 to 7.22. Variations between the samples in terms of their gross composition suggested a lack of quality standards in cheesemilk, cheesemaking procedure and ripening conditions. The levels of main microbial groups including total mesophilic and coliform bacteria, yeasts and moulds and the presence of some potentially pathogenic microorganisms (E. coli, Salmonella spp. and Staphylococcus aureus) were determined. The high numbers of all microbial groups and presence of potentially pathogenic organisms in the cheese samples suggested that the production and maturation of Kuflu cheese should be improved by better hygiene. Moulds at the cheese surface were isolated and identified. A total of 24 different mould species were detected and the genus most frequently isolated was Penicillium spp. which represented 70.25% of total isolates. Penicillium commune, P. roqueforti and P. verrucosum were the most abundant species in the cheeses sampled. The other dominant fungal groups were Geotrichum candidum, Penicillium expansum and P. chrysogenum. Other genera isolated from the cheese were Acremonium, Alternaria, Aspergillus, Cladosporium, Geotrichum, Mucor, Rhizopus and Trichoderma. The potentially toxigenic species, including some Penicillum spp. and Aspergillus flavus, were also detected.

  2. Fate of aflatoxin M1 in Iranian white cheese processing.

    PubMed

    Kamkar, A; Karim, G; Aliabadi, F Shojaee; Khaksar, R

    2008-06-01

    Aflatoxin M1 (AFM1) is an important mycotoxin frequently found in milk and dairy products. AFM1 is a major metabolic product of Aflatoxin B1 and is usually excreted in the milk and urine of dairy cattle that have consumed aflatoxin-contaminated feed. The aim of this study was to determine the AFM1 concentration in curd and whey of Iranian white cheese. The cheese milk samples were artificially contaminated with AFM1 in six levels (0.25, 0.5, 0.75, 1, 1.25, and 1.75microgL(-1)). Cheese was produced according to Iranian traditional recipe. AFM1 distribution between curd, whey and cheese was determined by high performance liquid chromatography (HPLC) using immunoaffinity column clean up and florescence detection. AFM1 was recovered in whey, curd and cheese in the concentrations of 0.43, 1.47 and 1.57microgL(-1),respectively. The level of Aflatoxin M1 in curd and cheese obtained 3.12- and 3.65-fold more than that in whey that shows the affinity of Aflatoxin M1 to the protein fraction of milk.

  3. The effect of extrinsic attributes on liking of cottage cheese.

    PubMed

    Hubbard, E M; Jervis, S M; Drake, M A

    2016-01-01

    Preference mapping studies with cottage cheese have demonstrated that cottage cheese liking is influenced by flavor, texture, curd size, and dressing content. However, extrinsic factors such as package, label claims, and brand name may also influence liking and have not been studied. The objective of this study was to evaluate the role of package attributes and brand on the liking of cottage cheese. A conjoint survey with Kano analysis (n=460) was conducted to explore the effect of extrinsic attributes (brand, label claim, milkfat content, and price) on liking. Following the survey, 150 consumers evaluated intrinsic attributes of 7 cottage cheeses with and without brand information in a 2-d crossover design. Results were evaluated by 2-way ANOVA and multivariate analyses. Milkfat content and price had the highest influence on liking by conjoint analysis. Cottage cheese with 2% milkfat and a low price was preferred. Specific label claims such as "excellent source of calcium (>10%)" were more attractive to consumers than "low sodium" or "extra creamy." Branding influenced overall liking and purchase intent for cottage cheeses to differing degrees. For national brands, acceptance scores were enhanced in the presence of the brand. An all-natural claim was more appealing than organic by conjoint analysis and this result was also confirmed with consumer acceptance testing. Findings from this study can help manufacturers, as well as food marketers, better target their products and brands with attributes that drive consumer choice.

  4. Biodiversity of bacterial ecosystems in traditional Egyptian Domiati cheese.

    PubMed

    El-Baradei, Gaber; Delacroix-Buchet, Agnès; Ogier, Jean-Claude

    2007-02-01

    Bacterial biodiversity occurring in traditional Egyptian soft Domiati cheese was studied by PCR-temporal temperature gel electrophoresis (TTGE) and PCR-denaturing gradient gel electrophoresis (DGGE). Bands were identified using a reference species database (J.-C. Ogier et al., Appl. Environ. Microbiol. 70:5628-5643, 2004); de novo bands having nonidentified migration patterns were identified by DNA sequencing. Results reveal a novel bacterial profile and extensive bacterial biodiversity in Domiati cheeses, as reflected by the numerous bands present in TTGE and DGGE patterns. The dominant lactic acid bacteria (LAB) identified were as follows: Leuconostoc mesenteroides, Lactococcus garvieae, Aerococcus viridans, Lactobacillus versmoldensis, Pediococcus inopinatus, and Lactococcus lactis. Frequent non-LAB species included numerous coagulase-negative staphylococci, Vibrio spp., Kocuria rhizophila, Kocuria kristinae, Kocuria halotolerans, Arthrobacter spp./Brachybacterium tyrofermentans. This is the first time that the majority of these species has been identified in Domiati cheese. Nearly all the dominant and frequent bacterial species are salt tolerant, and several correspond to known marine bacteria. As Domiati cheese contains 5.4 to 9.5% NaCl, we suggest that these bacteria are likely to have an important role in the ripening process. This first systematic study of the microbial composition of Domiati cheeses reveals great biodiversity and evokes a role for marine bacteria in determining cheese type.

  5. The effect of extrinsic attributes on liking of cottage cheese.

    PubMed

    Hubbard, E M; Jervis, S M; Drake, M A

    2016-01-01

    Preference mapping studies with cottage cheese have demonstrated that cottage cheese liking is influenced by flavor, texture, curd size, and dressing content. However, extrinsic factors such as package, label claims, and brand name may also influence liking and have not been studied. The objective of this study was to evaluate the role of package attributes and brand on the liking of cottage cheese. A conjoint survey with Kano analysis (n=460) was conducted to explore the effect of extrinsic attributes (brand, label claim, milkfat content, and price) on liking. Following the survey, 150 consumers evaluated intrinsic attributes of 7 cottage cheeses with and without brand information in a 2-d crossover design. Results were evaluated by 2-way ANOVA and multivariate analyses. Milkfat content and price had the highest influence on liking by conjoint analysis. Cottage cheese with 2% milkfat and a low price was preferred. Specific label claims such as "excellent source of calcium (>10%)" were more attractive to consumers than "low sodium" or "extra creamy." Branding influenced overall liking and purchase intent for cottage cheeses to differing degrees. For national brands, acceptance scores were enhanced in the presence of the brand. An all-natural claim was more appealing than organic by conjoint analysis and this result was also confirmed with consumer acceptance testing. Findings from this study can help manufacturers, as well as food marketers, better target their products and brands with attributes that drive consumer choice. PMID:26519972

  6. High content of biogenic amines in Pecorino cheeses.

    PubMed

    Schirone, Maria; Tofalo, Rosanna; Fasoli, Giuseppe; Perpetuini, Giorgia; Corsetti, Aldo; Manetta, Anna Chiara; Ciarrocchi, Aurora; Suzzi, Giovanna

    2013-05-01

    Pecorino refers to Italian cheeses made exclusively from raw or pasteurized ewes' milk, characterized by a high content of fat matter and it is mainly produced in the Middle and South of Italy by traditional procedures. The autochthonous microbiota plays an important role in the organoleptic traits of Pecorino cheese and it can influence biogenic amines (BA) content. The aim of this study was to characterize from microbiological and chemical point of view 12 randomly purchased commercial cheeses produced in Abruzzo region. Moreover, the BA content and the bacteria showing a decarboxylating activity were detected. For this purpose, a real-time quantitative PCR (qPCR) was applied to evaluate histamine and tyramine-producers. The samples were well differentiated for microbial groups composition, such as aerobic mesophilic bacteria, Enterobacteriaceae, coagulase-negative staphylococci, yeasts, enterococci, mesophilic and thermophilic lactobacilli. Pathogens such as Salmonella spp., Listeria monocytogenes and Escherichia coli O157:H7 were absent in all samples. In most samples the content of BA resulted to be high, with prevalence of histamine and tyramine. In particular, total BA content reached 5861 mg/kg in Pecorino di Fossa cheese. The qPCR method resulted to be very useful to understand the role of autochthonous Pecorino cheese microbiota on BA accumulation in many different products. In fact, since the ability of microorganisms to decarboxylate aminoacids is highly variable being in most cases strain-specific, the detection of bacteria possessing this activity is important to estimate the risk of BA cheese content.

  7. Microbiology, biochemistry, and volatile composition of Tulum cheese ripened in goat's skin or plastic bags.

    PubMed

    Hayaloglu, A A; Cakmakci, S; Brechany, E Y; Deegan, K C; McSweeney, P L H

    2007-03-01

    Tulum cheeses were manufactured from raw ewe's milk and ripened in goat's skin bags (tulums) or plastic containers to understand the effect of ripening container on the chemical composition, biochemistry, microbiology, and volatile composition of Tulum cheeses during 150 d of ripening. Chemical compositions of the cheeses ripened in tulums were significantly different and the moisture contents decreased rapidly in those cheeses because of the porous structure of the tulum. Higher microbial counts were detected in the cheeses ripened in plastic than in cheeses ripened in tulums. Differences in nitrogenous compounds and total free AA of the cheeses were not significant. Total concentrations of free AA in cheeses increased with age and Glu, Ala, Val, Leu, and Phe were the most abundant AA in the cheeses. Urea-PAGE of pH 4.6-insoluble fractions of the cheeses during ripening showed similar degradation patterns in all cheeses. Peptide profiles by reversed-phase HPLC of pH 4.6- and ethanol-soluble or ethanol-insoluble fractions of the cheeses revealed only minor differences in the concentrations of some peptides among the cheeses; however, age-related changes in peptide concentrations were significantly different among the cheeses. Cheeses were analyzed at 90 d of ripening for volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. One hundred volatile components were identified, including 11 acids, 16 esters, 12 methyl ketones, 7 aldehydes, 22 alcohols, 7 sulfur compounds, 6 terpenes, and 19 miscellaneous compounds. The main components were short-chain fatty acids, 2-butanone, diacetyl, and primary alcohols. Quantitative differences in several volatile compounds were evident among the cheeses. Cheeses ripened in tulums or plastic had similar aroma patterns, but the concentrations of some components were different.

  8. Influence of microfiltration and adjunct culture on quality of Domiati cheese.

    PubMed

    Awad, S; Ahmed, N; El Soda, M

    2010-05-01

    The effects of microfiltration and pasteurization processes on proteolysis, lipolysis, and flavor development in Domiati cheese during 2 mo of pickling were studied. Cultures of starter lactic acid bacteria isolated from Egyptian dairy products were evaluated in experimental Domiati cheese for flavor development capabilities. In the first trial, raw skim milk was microfiltered and then the protein:fat ratio was standardized using pasteurized cream. Pasteurized milk with same protein:fat ratio was also used in the second trial. The chemical composition of cheeses seemed to be affected by milk treatment-microfiltration or pasteurization-rather than by the culture types. The moisture content was higher and the pH was lower in pasteurized milk cheeses than in microfiltered milk cheeses at d 1 of manufacture. Chemical composition of experimental cheeses was within the legal limits for Domiati cheese in Egypt. Proteolysis and lipolysis during cheese pickling were lower in microfiltered milk cheeses compared with pasteurized milk cheeses. Highly significant variations in free amino acids, free fatty acids, and sensory evaluation were found among the cultures used in Domiati cheesemaking. The cheese made using adjunct culture containing Lactobacillus delbrueckii ssp. lactis, Lactobacillus paracasei ssp. paracasei, Lactobacillus casei, Lactobacillus plantarum, and Enterococcus faecium received high scores in flavor acceptability. Cheeses made from microfiltered milk received a higher score in body and texture compared with cheeses made from pasteurized milk.

  9. Influence of microfiltration and adjunct culture on quality of Domiati cheese.

    PubMed

    Awad, S; Ahmed, N; El Soda, M

    2010-05-01

    The effects of microfiltration and pasteurization processes on proteolysis, lipolysis, and flavor development in Domiati cheese during 2 mo of pickling were studied. Cultures of starter lactic acid bacteria isolated from Egyptian dairy products were evaluated in experimental Domiati cheese for flavor development capabilities. In the first trial, raw skim milk was microfiltered and then the protein:fat ratio was standardized using pasteurized cream. Pasteurized milk with same protein:fat ratio was also used in the second trial. The chemical composition of cheeses seemed to be affected by milk treatment-microfiltration or pasteurization-rather than by the culture types. The moisture content was higher and the pH was lower in pasteurized milk cheeses than in microfiltered milk cheeses at d 1 of manufacture. Chemical composition of experimental cheeses was within the legal limits for Domiati cheese in Egypt. Proteolysis and lipolysis during cheese pickling were lower in microfiltered milk cheeses compared with pasteurized milk cheeses. Highly significant variations in free amino acids, free fatty acids, and sensory evaluation were found among the cultures used in Domiati cheesemaking. The cheese made using adjunct culture containing Lactobacillus delbrueckii ssp. lactis, Lactobacillus paracasei ssp. paracasei, Lactobacillus casei, Lactobacillus plantarum, and Enterococcus faecium received high scores in flavor acceptability. Cheeses made from microfiltered milk received a higher score in body and texture compared with cheeses made from pasteurized milk. PMID:20412894

  10. Dynamics of bacterial communities during the ripening process of different Croatian cheese types derived from raw ewe's milk cheeses.

    PubMed

    Fuka, Mirna Mrkonjić; Wallisch, Stefanie; Engel, Marion; Welzl, Gerhard; Havranek, Jasmina; Schloter, Michael

    2013-01-01

    Microbial communities play an important role in cheese ripening and determine the flavor and taste of different cheese types to a large extent. However, under adverse conditions human pathogens may colonize cheese samples during ripening and may thus cause severe outbreaks of diarrhoea and other diseases. Therefore in the present study we investigated the bacterial community structure of three raw ewe's milk cheese types, which are produced without the application of starter cultures during ripening from two production sites based on fingerprinting in combination with next generation sequencing of 16S rRNA gene amplicons. Overall a surprisingly high diversity was found in the analyzed samples and overall up to 213 OTU97 could be assigned. 20 of the major OTUs were present in all samples and include mostly lactic acid bacteria (LAB), mainly Lactococcus, and Enterococcus species. Abundance and diversity of these genera differed to a large extent between the 3 investigated cheese types and in response to the ripening process. Also a large number of non LAB genera could be identified based on phylogenetic alignments including mainly Enterobacteriaceae and Staphylococcacae. Some species belonging to these two families could be clearly assigned to species which are known as potential human pathogens like Staphylococcus saprophyticus or Salmonella spp. However, during cheese ripening their abundance was reduced. The bacterial genera, namely Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Brevibacterium, Corynebacterium, Clostridium, Staphylococcus, Thermoanerobacterium, E. coli, Hafnia, Pseudomonas, Janthinobacterium, Petrotoga, Kosmotoga, Megasphaera, Macrococcus, Mannheimia, Aerococcus, Vagococcus, Weissella and Pediococcus were identified at a relative low level and only in selected samples. Overall the microbial composition of the used milk and the management of the production units determined the bacterial community composition for all cheese types to a

  11. Dynamics of Bacterial Communities during the Ripening Process of Different Croatian Cheese Types Derived from Raw Ewe's Milk Cheeses

    PubMed Central

    Fuka, Mirna Mrkonjić; Wallisch, Stefanie; Engel, Marion; Welzl, Gerhard; Havranek, Jasmina; Schloter, Michael

    2013-01-01

    Microbial communities play an important role in cheese ripening and determine the flavor and taste of different cheese types to a large extent. However, under adverse conditions human pathogens may colonize cheese samples during ripening and may thus cause severe outbreaks of diarrhoea and other diseases. Therefore in the present study we investigated the bacterial community structure of three raw ewe's milk cheese types, which are produced without the application of starter cultures during ripening from two production sites based on fingerprinting in combination with next generation sequencing of 16S rRNA gene amplicons. Overall a surprisingly high diversity was found in the analyzed samples and overall up to 213 OTU97 could be assigned. 20 of the major OTUs were present in all samples and include mostly lactic acid bacteria (LAB), mainly Lactococcus, and Enterococcus species. Abundance and diversity of these genera differed to a large extent between the 3 investigated cheese types and in response to the ripening process. Also a large number of non LAB genera could be identified based on phylogenetic alignments including mainly Enterobacteriaceae and Staphylococcacae. Some species belonging to these two families could be clearly assigned to species which are known as potential human pathogens like Staphylococcus saprophyticus or Salmonella spp. However, during cheese ripening their abundance was reduced. The bacterial genera, namely Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Brevibacterium, Corynebacterium, Clostridium, Staphylococcus, Thermoanerobacterium, E. coli, Hafnia, Pseudomonas, Janthinobacterium, Petrotoga, Kosmotoga, Megasphaera, Macrococcus, Mannheimia, Aerococcus, Vagococcus, Weissella and Pediococcus were identified at a relative low level and only in selected samples. Overall the microbial composition of the used milk and the management of the production units determined the bacterial community composition for all cheese types to a

  12. Antibacterial activity of Enterococcus faecium derived from Koopeh cheese against Listeria monocytogenes in probiotic ultra-filtrated cheese

    PubMed Central

    Hassanzadazar, Hassan; Ehsani, Ali; Mardani, Karim

    2014-01-01

    Viability of probiotic bacteria in food during maintenance and time of consuming in food has become a challenge in food hygiene and technology and is important for representing their beneficial health effects. The aim of this study was to determine the survival of probiotic Enterococcus faecium derived from Koopeh cheese added to industrial Iranian ultra-filtrated (UF) cheese and screening for antimicrobial activity of Enterococcus faecium against Listeria monocytogenes during two months of cheese ripening. Physiochemical and standard microbial methods were used for isolation of Enterococcus strains in cheese samples. The initial number of lactic acid bacteria (LAB) as starter culture was 6 Log g-1 in control samples. The counts started to decrease slightly after day seven (p < 0.05) and dropped to 5 Log g-1 at the end of 60 days. The count of LAB in the test groups decreased to 11 Log g-1 on the day 60 of ripening. The number of Enterococcus faecium was 6 Log g-1 on the day 60. The count of Listeria monocytogenes after 60 days of ripening in blank sample decreased 1 Log but in test samples with protective strain decreased 3 Log in 30 days and reached to zero at 45 days. There were not significant (p < 0.05) changes in chemical parameters such as fat, protein and total solid of UF cheese treatment groups. The results showed that Enterococcus faecium of Koopeh cheese was suitable for development of an acceptable probiotic UF cheese and could be adapted to industrial production of UF cheese. PMID:25568714

  13. Time delay in Swiss cheese gravitational lensing

    SciTech Connect

    Chen, B.; Kantowski, R.; Dai, X.

    2010-08-15

    We compute time delays for gravitational lensing in a flat {Lambda} dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with {Lambda}) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant's effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach {approx}4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.

  14. On Issues in Swiss Cheese Compactifications

    NASA Astrophysics Data System (ADS)

    Misra, Aalok

    We give a brief review of our previous works.1,2 We discuss two sets of issues. The first has to do with the possibility of getting a non-supersymmetric dS minimum without the addition of /line{D3}-branes as in KKLT, and axionic slow-roll inflation, in type II flux compactifications. The second has to do with the "Inverse Problem"3 and "Fake Superpotentials"4 for extremal (non)supersymmetric black holes in type II compactifications. We use (orientifold of) a "Swiss Cheese" Calabi-Yau5 expressed as a degree-18 hypersurface in WCP4[1, 1, 1, 6, 9] in the "large-volume-scenario" limit6 for the former.

  15. Time delay in Swiss cheese gravitational lensing

    NASA Astrophysics Data System (ADS)

    Chen, B.; Kantowski, R.; Dai, X.

    2010-08-01

    We compute time delays for gravitational lensing in a flat Λ dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with Λ) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant’s effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach ˜4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.

  16. Swiss-Cheese Gravitino Dark Matter

    NASA Astrophysics Data System (ADS)

    Misra, Aalok

    2014-06-01

    We present a phenomenological model which we show can be obtained as a local realization of large volume D 3 / D 7 μ-Split SUSY on a nearly special Lagrangian three-cycle embedded in the big divisor of a Swiss-Cheese Calabi-Yau [Mansi Dhuria, Aalok Misra, arxiv:arXiv:1207.2774 [hep-ph], Nucl. Phys. B867 (2013) 636-748]. After identification of the first generation of SM leptons and quarks with fermionic super-partners of four Wilson line moduli, we discuss the identification of gravitino as a potential dark matter candidate. We also show that it is possible to obtain a 125 GeV light Higgs in our setup.

  17. The ``Swiss cheese'' instability of bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Jang, Hongchul; Rusconi, Roberto; Stocker, Roman

    2012-11-01

    Bacteria often adhere to surfaces, where they develop polymer-encased communities (biofilms) that display dramatic resistance to antibiotic treatment. A better understanding of cell detachment from biofilms may lead to novel strategies for biofilm disruption. Here we describe a new detachment mode, whereby a biofilm develops a nearly regular array of ~50-100 μm holes. Using surface-treated microfluidic devices, we create biofilms of controlled shape and size. After the passage of an air plug, the break-up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a ``Swiss cheese'' pattern is left in the residual biofilm. Fluorescent staining of the polymeric matrix (EPS) reveals that resistance to cell dislodgement correlates with local biofilm age, early settlers having had more time to hunker down. Because few survivors suffice to regrow a biofilm, these results point at the importance of considering microscale heterogeneity in assessing the effectiveness of biofilm removal strategies.

  18. [Enterococci and coliforms in yellow sheep cheese].

    PubMed

    Aleksieva, V

    1983-01-01

    The developmental dynamic of enterococci and coliforms was followed up in the entire technologic process and the storage of kashkaval (yellow cheese of ewe milk) under the conditions of modern industrial production. It was found that during the whole industrial cycle up to the steam cooking of curd the amount of enterococci grew and reached its peak value in the cheddarized cheese curd (2.4--30 million per gram), increasing from 10 to 34 times as against its level in the initial milk used. The coliform bacteria also rose in number, and their amount reached maximum values of 10 to 120 mill/g in the processed and dipped curd, after which a slowly advancing reduction set in. Species of the Enterobacter (55.1%), Escherichia (14.1%), Citrobacter (19.2%), and Klebsiella (11.5%) genera were isolated. The steam cooking of cheddarized curd produced an unfavourable effect on enterococci (pasteurization effect of up to 98.3 to 99.9%) and a lethal effect on the coliforms. Enterococci that resisted steaming multiplied in kashkaval and reached their highest level--960 000 up to 39 mill/g--between the 30th and the 60th day of production after which their numbers dropped. Their amount in the ripened product varied from 95000 to 17.8 mill/g, and on the 240th following production--from below 100 to 1.6 mill/g. Coliform bacteria were not found in 0.1 g of the product mass during ripening and storage of kashkaval. Out of the 196 strains that were differentiated as enterococci 30.7 per cent of the fecalis subgroup, and 69.3 per cent--of the Sp. faecium-durans subgroup. After steaming 92.3 per cent of the strains were of the Str. faecium and Str. durans species.

  19. High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses.

    PubMed

    Quigley, Lisa; O'Sullivan, Orla; Beresford, Tom P; Ross, R Paul; Fitzgerald, Gerald F; Cotter, Paul D

    2012-08-01

    Here, high-throughput sequencing was employed to reveal the highly diverse bacterial populations present in 62 Irish artisanal cheeses and, in some cases, associated cheese rinds. Using this approach, we revealed the presence of several genera not previously associated with cheese, including Faecalibacterium, Prevotella, and Helcococcus and, for the first time, detected the presence of Arthrobacter and Brachybacterium in goats' milk cheese. Our analysis confirmed many previously observed patterns, such as the dominance of typical cheese bacteria, the fact that the microbiota of raw and pasteurized milk cheeses differ, and that the level of cheese maturation has a significant influence on Lactobacillus populations. It was also noted that cheeses containing adjunct ingredients had lower proportions of Lactococcus species. It is thus apparent that high-throughput sequencing-based investigations can provide valuable insights into the microbial populations of artisanal foods.

  20. Automatic milking systems in the Protected Designation of Origin Montasio cheese production chain: effects on milk and cheese quality.

    PubMed

    Innocente, N; Biasutti, M

    2013-02-01

    Montasio cheese is a typical Italian semi-hard, semi-cooked cheese produced in northeastern Italy from unpasteurized (raw or thermised) cow milk. The Protected Designation of Origin label regulations for Montasio cheese require that local milk be used from twice-daily milking. The number of farms milking with automatic milking systems (AMS) has increased rapidly in the last few years in the Montasio production area. The objective of this study was to evaluate the effects of a variation in milking frequency, associated with the adoption of an automatic milking system, on milk quality and on the specific characteristics of Montasio cheese. Fourteen farms were chosen, all located in the Montasio production area, with an average herd size of 60 (Simmental, Holstein-Friesian, and Brown Swiss breeds). In 7 experimental farms, the cows were milked 3 times per day with an AMS, whereas in the other 7 control farms, cows were milked twice daily in conventional milking parlors (CMP). The study showed that the main components, the hygienic quality, and the cheese-making features of milk were not affected by the milking system adopted. In fact, the control and experimental milks did not reveal a statistically significant difference in fat, protein, and lactose contents; in the casein index; or in the HPLC profiles of casein and whey protein fractions. Milk from farms that used an AMS always showed somatic cell counts and total bacterial counts below the legal limits imposed by European Union regulations for raw milk. Finally, bulk milk clotting characteristics (clotting time, curd firmness, and time to curd firmness of 20mm) did not differ between milk from AMS and milk from CMP. Montasio cheese was made from milk collected from the 2 groups of farms milking either with AMS or with CMP. Three different cheese-making trials were performed during the year at different times. As expected, considering the results of the milk analysis, the moisture, fat, and protein contents of the

  1. Automatic milking systems in the Protected Designation of Origin Montasio cheese production chain: effects on milk and cheese quality.

    PubMed

    Innocente, N; Biasutti, M

    2013-02-01

    Montasio cheese is a typical Italian semi-hard, semi-cooked cheese produced in northeastern Italy from unpasteurized (raw or thermised) cow milk. The Protected Designation of Origin label regulations for Montasio cheese require that local milk be used from twice-daily milking. The number of farms milking with automatic milking systems (AMS) has increased rapidly in the last few years in the Montasio production area. The objective of this study was to evaluate the effects of a variation in milking frequency, associated with the adoption of an automatic milking system, on milk quality and on the specific characteristics of Montasio cheese. Fourteen farms were chosen, all located in the Montasio production area, with an average herd size of 60 (Simmental, Holstein-Friesian, and Brown Swiss breeds). In 7 experimental farms, the cows were milked 3 times per day with an AMS, whereas in the other 7 control farms, cows were milked twice daily in conventional milking parlors (CMP). The study showed that the main components, the hygienic quality, and the cheese-making features of milk were not affected by the milking system adopted. In fact, the control and experimental milks did not reveal a statistically significant difference in fat, protein, and lactose contents; in the casein index; or in the HPLC profiles of casein and whey protein fractions. Milk from farms that used an AMS always showed somatic cell counts and total bacterial counts below the legal limits imposed by European Union regulations for raw milk. Finally, bulk milk clotting characteristics (clotting time, curd firmness, and time to curd firmness of 20mm) did not differ between milk from AMS and milk from CMP. Montasio cheese was made from milk collected from the 2 groups of farms milking either with AMS or with CMP. Three different cheese-making trials were performed during the year at different times. As expected, considering the results of the milk analysis, the moisture, fat, and protein contents of the

  2. Valuation of milk composition and genotype in cheddar cheese production using an optimization model of cheese and whey production.

    PubMed

    Johnson, H A; Parvin, L; Garnett, I; DePeters, E J; Medrano, J F; Fadel, J G

    2007-02-01

    A mass balance optimization model was developed to determine the value of the kappa-casein genotype and milk composition in Cheddar cheese and whey production. Inputs were milk, nonfat dry milk, cream, condensed skim milk, and starter and salt. The products produced were Cheddar cheese, fat-reduced whey, cream, whey cream, casein fines, demineralized whey, 34% dried whey protein, 80% dried whey protein, lactose powder, and cow feed. The costs and prices used were based on market data from March 2004 and affected the results. Inputs were separated into components consisting of whey protein, ash, casein, fat, water, and lactose and were then distributed to products through specific constraints and retention equations. A unique 2-step optimization procedure was developed to ensure that the final composition of fat-reduced whey was correct. The model was evaluated for milk compositions ranging from 1.62 to 3.59% casein, 0.41 to 1.14% whey protein, 1.89 to 5.97% fat, and 4.06 to 5.64% lactose. The kappa casein genotype was represented by different retentions of milk components in Cheddar cheese and ranged from 0.715 to 0.7411 kg of casein in cheese/kg of casein in milk and from 0.7795 to 0.9210 kg of fat in cheese/kg of fat in milk. Milk composition had a greater effect on Cheddar cheese production and profit than did genotype. Cheese production was significantly different and ranged from 9,846 kg with a high-casein milk composition to 6,834 kg with a high-fat milk composition per 100,000 kg of milk. Profit (per 100,000 kg of milk) was significantly different, ranging from $70,586 for a high-fat milk composition to $16,490 for a low-fat milk composition. However, cheese production was not significantly different, and profit was significant only for the lowest profit ($40,602) with the kappa-casein genotype. Results from this model analysis showed that the optimization model is useful for determining costs and prices for cheese plant inputs and products, and that it can

  3. 7 CFR 58.425 - Conveyor for moving and draining block or barrel cheese.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Conveyor for moving and draining block or barrel cheese. 58.425 Section 58.425 Agriculture Regulations of the Department of Agriculture (Continued... cheese. The conveyor shall be constructed so that it will not contaminate the cheese and be...

  4. 7 CFR 58.416 - Cheese vats, tanks and drain tables.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Cheese vats, tanks and drain tables. 58.416 Section 58... Service 1 Equipment and Utensils § 58.416 Cheese vats, tanks and drain tables. (a) The vats, tanks and drain tables used for making cheese should be of metal construction with adequate jacket capacity...

  5. 7 CFR 58.425 - Conveyor for moving and draining block or barrel cheese.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Conveyor for moving and draining block or barrel cheese. 58.425 Section 58.425 Agriculture Regulations of the Department of Agriculture (Continued... cheese. The conveyor shall be constructed so that it will not contaminate the cheese and be...

  6. 40 CFR 405.60 - Applicability; description of the natural and processed cheese subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... natural and processed cheese subcategory. 405.60 Section 405.60 Protection of Environment ENVIRONMENTAL... CATEGORY Natural and Processed Cheese Subcategory § 405.60 Applicability; description of the natural and processed cheese subcategory. The provisions of this subpart are applicable to discharges resulting from...

  7. 7 CFR 58.738 - Pasteurized process cheese spread and related products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Pasteurized process cheese spread and related products... and Grading Service 1 Quality Specifications for Finished Products § 58.738 Pasteurized process cheese... of Identity for Pasteurized Process Cheese Spreads, Food and Drug Administration. The pH...

  8. 7 CFR 58.738 - Pasteurized process cheese spread and related products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pasteurized process cheese spread and related products... and Grading Service 1 Quality Specifications for Finished Products § 58.738 Pasteurized process cheese... of Identity for Pasteurized Process Cheese Spreads, Food and Drug Administration. The pH...

  9. 7 CFR 58.723 - Basis for selecting cheese for processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Basis for selecting cheese for processing. 58.723... Service 1 Operations and Operating Procedures § 58.723 Basis for selecting cheese for processing. A... vat of cheese shall have been examined to determine the suitability of the vat for use in...

  10. 7 CFR 58.723 - Basis for selecting cheese for processing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Basis for selecting cheese for processing. 58.723... Service 1 Operations and Operating Procedures § 58.723 Basis for selecting cheese for processing. A... vat of cheese shall have been examined to determine the suitability of the vat for use in...

  11. 7 CFR 58.723 - Basis for selecting cheese for processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Basis for selecting cheese for processing. 58.723... Service 1 Operations and Operating Procedures § 58.723 Basis for selecting cheese for processing. A... vat of cheese shall have been examined to determine the suitability of the vat for use in...

  12. 7 CFR 58.738 - Pasteurized process cheese spread and related products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Pasteurized process cheese spread and related products... and Grading Service 1 Quality Specifications for Finished Products § 58.738 Pasteurized process cheese... of Identity for Pasteurized Process Cheese Spreads, Food and Drug Administration. The pH...

  13. 7 CFR 58.425 - Conveyor for moving and draining block or barrel cheese.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Conveyor for moving and draining block or barrel cheese. 58.425 Section 58.425 Agriculture Regulations of the Department of Agriculture (Continued... cheese. The conveyor shall be constructed so that it will not contaminate the cheese and be...

  14. 7 CFR 58.723 - Basis for selecting cheese for processing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Basis for selecting cheese for processing. 58.723... Service 1 Operations and Operating Procedures § 58.723 Basis for selecting cheese for processing. A... vat of cheese shall have been examined to determine the suitability of the vat for use in...

  15. 7 CFR 58.738 - Pasteurized process cheese spread and related products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Pasteurized process cheese spread and related products... and Grading Service 1 Quality Specifications for Finished Products § 58.738 Pasteurized process cheese... of Identity for Pasteurized Process Cheese Spreads, Food and Drug Administration. The pH...

  16. 40 CFR 405.60 - Applicability; description of the natural and processed cheese subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... natural and processed cheese subcategory. 405.60 Section 405.60 Protection of Environment ENVIRONMENTAL... CATEGORY Natural and Processed Cheese Subcategory § 405.60 Applicability; description of the natural and processed cheese subcategory. The provisions of this subpart are applicable to discharges resulting from...

  17. 7 CFR 58.425 - Conveyor for moving and draining block or barrel cheese.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Conveyor for moving and draining block or barrel cheese. 58.425 Section 58.425 Agriculture Regulations of the Department of Agriculture (Continued... cheese. The conveyor shall be constructed so that it will not contaminate the cheese and be...

  18. 7 CFR 58.416 - Cheese vats, tanks and drain tables.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cheese vats, tanks and drain tables. 58.416 Section 58... Service 1 Equipment and Utensils § 58.416 Cheese vats, tanks and drain tables. (a) The vats, tanks and drain tables used for making cheese should be of metal construction with adequate jacket capacity...

  19. 40 CFR 405.60 - Applicability; description of the natural and processed cheese subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... natural and processed cheese subcategory. 405.60 Section 405.60 Protection of Environment ENVIRONMENTAL... CATEGORY Natural and Processed Cheese Subcategory § 405.60 Applicability; description of the natural and processed cheese subcategory. The provisions of this subpart are applicable to discharges resulting from...

  20. 7 CFR 58.738 - Pasteurized process cheese spread and related products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Pasteurized process cheese spread and related products... and Grading Service 1 Quality Specifications for Finished Products § 58.738 Pasteurized process cheese... of Identity for Pasteurized Process Cheese Spreads, Food and Drug Administration. The pH...

  1. 7 CFR 58.416 - Cheese vats, tanks and drain tables.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese vats, tanks and drain tables. 58.416 Section 58... Service 1 Equipment and Utensils § 58.416 Cheese vats, tanks and drain tables. (a) The vats, tanks and drain tables used for making cheese should be of metal construction with adequate jacket capacity...

  2. 7 CFR 58.416 - Cheese vats, tanks and drain tables.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese vats, tanks and drain tables. 58.416 Section 58... Service 1 Equipment and Utensils § 58.416 Cheese vats, tanks and drain tables. (a) The vats, tanks and drain tables used for making cheese should be of metal construction with adequate jacket capacity...

  3. 40 CFR 405.60 - Applicability; description of the natural and processed cheese subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... natural and processed cheese subcategory. 405.60 Section 405.60 Protection of Environment ENVIRONMENTAL... CATEGORY Natural and Processed Cheese Subcategory § 405.60 Applicability; description of the natural and processed cheese subcategory. The provisions of this subpart are applicable to discharges resulting from...

  4. 7 CFR 58.416 - Cheese vats, tanks and drain tables.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Cheese vats, tanks and drain tables. 58.416 Section 58... Service 1 Equipment and Utensils § 58.416 Cheese vats, tanks and drain tables. (a) The vats, tanks and drain tables used for making cheese should be of metal construction with adequate jacket capacity...

  5. 40 CFR 405.60 - Applicability; description of the natural and processed cheese subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... natural and processed cheese subcategory. 405.60 Section 405.60 Protection of Environment ENVIRONMENTAL... CATEGORY Natural and Processed Cheese Subcategory § 405.60 Applicability; description of the natural and processed cheese subcategory. The provisions of this subpart are applicable to discharges resulting from...

  6. 7 CFR 58.425 - Conveyor for moving and draining block or barrel cheese.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Conveyor for moving and draining block or barrel cheese. 58.425 Section 58.425 Agriculture Regulations of the Department of Agriculture (Continued... cheese. The conveyor shall be constructed so that it will not contaminate the cheese and be...

  7. 7 CFR 58.723 - Basis for selecting cheese for processing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Basis for selecting cheese for processing. 58.723... Service 1 Operations and Operating Procedures § 58.723 Basis for selecting cheese for processing. A... vat of cheese shall have been examined to determine the suitability of the vat for use in...

  8. Growth of Lactobacillus paracasei ATCC334 in a cheese model system: A biochemical approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densit...

  9. Improvement in melting and baking properties of low-fat Mozzarella cheese.

    PubMed

    Wadhwani, R; McManus, W R; McMahon, D J

    2011-04-01

    Low-fat cheeses dehydrate too quickly when baked in a forced air convection oven, preventing proper melting on a pizza. To overcome this problem, low-fat Mozzarella cheese was developed in which fat is released onto the cheese surface during baking to prevent excessive dehydration. Low-fat Mozzarella cheese curd was made with target fat contents of 15, 30, 45, and 60 g/kg using direct acidification of the milk to pH 5.9 before renneting. The 4 portions of cheese curd were comminuted and then mixed with sufficient glucono-δ-lactone and melted butter (45, 30, 15, or 0 g/kg, respectively), then pressed into blocks to produce low-fat Mozzarella cheese with about 6% fat and pH 5.2. The cheeses were analyzed after 15, 30, 60, and 120 d of storage at 5°C for melting characteristics, texture, free oil content, dehydration performance, and stretch when baked on a pizza at 250°C for 6 min in a convection oven. Cheeses made with added butter had higher stretchability compared with the control cheese. Melting characteristics also improved in contrast to the control cheese, which remained in the form of shreds during baking and lacked proper melting. The cheeses made with added butter had higher free oil content, which correlated (R2≥0.92) to the amount of butterfat added, and less hardness and gumminess compared with the control low fat cheese.

  10. Increasing stringiness of low-fat mozzarella string cheese using polysaccharides.

    PubMed

    Oberg, E N; Oberg, C J; Motawee, M M; Martini, S; McMahon, D J

    2015-07-01

    When fat content of pasta filata cheese is lowered, a loss of fibrous texture occurs and low-fat (LF) mozzarella cheese loses stringiness, making it unsuitable for the manufacture of string cheese. We investigated the use of various polysaccharides that could act as fat mimetics during the stretching and extruding process to aid in protein strand formation and increase stringiness. Low-fat mozzarella cheese curd was made, salted, and then 3.6-kg batches were heated in hot (80°) 5% brine, stretched, and formed into a homogeneous mass. Hot (80°C) slurries of various polysaccharides were then mixed with the hot cheese and formed into LF string cheese using a small piston-driven extruder. Polysaccharides used included waxy corn starch, waxy rice starch, instant tapioca starch, polydextrose, xanthan gum, and guar gum. Adding starch slurries increased cheese moisture content by up to 1.6% but was not effective at increasing stringiness. Xanthan gum functioned best as a fat mimetic and produced LF string cheese that most closely visually resembled commercial string cheese made using low-moisture part skim (LMPS) mozzarella cheese without any increase in moisture content. Extent of stringiness was determined by pulling apart the cheese longitudinally and observing size, length, and appearance of individual cheese strings. Hardness was determined using a modified Warner-Bratzler shear test. When LF string cheese was made using a 10% xanthan gum slurry added at ~1%, increased consumer flavor liking was observed, with scores after 2wk of storage of 6.44 and 6.24 compared with 5.89 for the LF control cheese; although this was lower than an LMPS string cheese that scored 7.27. The 2-wk-old LF string cheeses containing xanthan gum were considered still slightly too firm using a just-about-right (JAR) test, whereas the LMPS string cheese was considered as JAR for texture. With further storage up to 8wk, all of the LF string cheeses softened (JAR score was closer to 3

  11. Increasing stringiness of low-fat mozzarella string cheese using polysaccharides.

    PubMed

    Oberg, E N; Oberg, C J; Motawee, M M; Martini, S; McMahon, D J

    2015-07-01

    When fat content of pasta filata cheese is lowered, a loss of fibrous texture occurs and low-fat (LF) mozzarella cheese loses stringiness, making it unsuitable for the manufacture of string cheese. We investigated the use of various polysaccharides that could act as fat mimetics during the stretching and extruding process to aid in protein strand formation and increase stringiness. Low-fat mozzarella cheese curd was made, salted, and then 3.6-kg batches were heated in hot (80°) 5% brine, stretched, and formed into a homogeneous mass. Hot (80°C) slurries of various polysaccharides were then mixed with the hot cheese and formed into LF string cheese using a small piston-driven extruder. Polysaccharides used included waxy corn starch, waxy rice starch, instant tapioca starch, polydextrose, xanthan gum, and guar gum. Adding starch slurries increased cheese moisture content by up to 1.6% but was not effective at increasing stringiness. Xanthan gum functioned best as a fat mimetic and produced LF string cheese that most closely visually resembled commercial string cheese made using low-moisture part skim (LMPS) mozzarella cheese without any increase in moisture content. Extent of stringiness was determined by pulling apart the cheese longitudinally and observing size, length, and appearance of individual cheese strings. Hardness was determined using a modified Warner-Bratzler shear test. When LF string cheese was made using a 10% xanthan gum slurry added at ~1%, increased consumer flavor liking was observed, with scores after 2wk of storage of 6.44 and 6.24 compared with 5.89 for the LF control cheese; although this was lower than an LMPS string cheese that scored 7.27. The 2-wk-old LF string cheeses containing xanthan gum were considered still slightly too firm using a just-about-right (JAR) test, whereas the LMPS string cheese was considered as JAR for texture. With further storage up to 8wk, all of the LF string cheeses softened (JAR score was closer to 3

  12. Widespread listeriosis outbreak attributable to pasteurized cheese, which led to extensive cross-contamination affecting cheese retailers, Quebec, Canada, 2008.

    PubMed

    Gaulin, Colette; Ramsay, Danielle; Bekal, Sadjia

    2012-01-01

    A major Listeria monocytogenes outbreak occurred in the province of Quebec, Canada, in 2008, involving a strain of L. monocytogenes (LM P93) characterized by pulsed-field gel electrophoresis (PFGE) and associated with the consumption of pasteurized milk cheese. This report describes the results of the ensuing investigation. All individuals affected with LM P93 across the province were interviewed with a standardized questionnaire. Microbiological and environmental investigations were conducted by the Quebec's Food Inspection Branch of Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec among retailers and cheese plants involved in the outbreak. Between 8 June and 31 December 2008, 38 confirmed cases of LM P93 were reported to public health authorities, including 16 maternal-neonatal cases (14 pregnant women, and two babies born to asymptomatic mothers). The traceback of many brands of cheese that tested positive for LM P93 collected from retailers identified two cheese plants contaminated by L. monocytogenes strains on 3 and 4 September. PFGE profiles became available for both plants on 8 September, and confirmed that a single plant was associated with the outbreak. Products from these two plants were distributed to more than 300 retailers in the province, leading to extensive cross-contamination of retail stock. L. monocytogenes is ubiquitous, and contamination can occur subsequent to heat treatment, which usually precedes cheese production. Contaminated soft-textured cheese is particularly prone to bacterial growth. Ongoing regulatory and industry efforts are needed to decrease the presence of Listeria in foods, including pasteurized products. Retailers should be instructed about the risk of cross-contamination, even with soft pasteurized cheese and apply methods to avoid it.

  13. Epidemiological Profile and Quality Indicators in Patients with Acute Coronary Syndrome in Northern Minas Gerais - Minas Telecardio 2 Project

    PubMed Central

    Marino, Bárbara Campos Abreu; Marcolino, Milena Soriano; Reis Júnior, Rasível dos Santos; França, Ana Luiza Nunes; Passos, Priscilla Fortes de Oliveira; Lemos, Thais Ribeiro; Antunes, Izabella de Oliveira; Ferreira, Camila Gonçalves; Antunes, André Pires; Ribeiro, Antonio Luiz Pinho

    2016-01-01

    Background: Coronary artery disease is the main cause of death in Brazil. In the Brazilian public health system, the in-hospital mortality associated with acute myocardial infarction is high. The Minas Telecardio 2 Project (Projeto Minas Telecardio 2) aims at implementing a myocardial infarction system of care in the Northern Region of Minas Gerais (MG) to decrease hospital morbidity and mortality. The aim of this study was to describe the profile of the patients with acute coronary syndrome (ACS) cared for in the period that preceded the implementation of the system of care. Methods: Observational, prospective study of patients with ACS admitted between June 2013 and March 2014 to six emergency departments in Montes Claros, MG, and followed up until hospital discharge. Results: During the study period, 593 patients were admitted with a diagnosis of ACS (mean age 63 ± 12 years, 67.6% men), including 306 (51.6%) cases of unstable angina, 214 (36.0%) of ST-elevation myocardial infarction (STEMI), and 73 (12.3%) of non-ST-elevation myocardial infarction (NSTEMI). The total STEMI mortality was 21%, and the in-hospital mortality was 17.2%. In the STEMI patients, 46,0% underwent reperfusion therapy, including primary angioplasty in 88 and thrombolysis in six. Overall, aspirin was administered to 95.1% of the patients within 24 hours and to 93.5% at discharge, a P2Y12 inhibitor was administered to 88.7% participants within 24 hours and to 75.1% at discharge. A total of 73.1% patients received heparin within 24 hours. Conclusion: We observed a low reperfusion rate in patients with STEMI and limited adherence to the recommended ACS treatment in the Northern Region of MG. These observations enable opportunities to improve health care. PMID:27355471

  14. Start-up and operating costs for artisan cheese companies.

    PubMed

    Bouma, Andrea; Durham, Catherine A; Meunier-Goddik, Lisbeth

    2014-01-01

    Lack of valid economic data for artisan cheese making is a serious impediment to developing a realistic business plan and obtaining financing. The objective of this study was to determine approximate start-up and operating costs for an artisan cheese company. In addition, values are provided for the required size of processing and aging facilities associated with specific production volumes. Following in-depth interviews with existing artisan cheese makers, an economic model was developed to predict costs based on input variables such as production volume, production frequency, cheese types, milk types and cost, labor expenses, and financing. Estimated values for start-up cost for processing and aging facility ranged from $267,248 to $623,874 for annual production volumes of 3,402 kg (7,500 lb) and 27,216 kg (60,000 lb), respectively. First-year production costs ranged from $65,245 to $620,094 for the above-mentioned production volumes. It is likely that high start-up and operating costs remain a significant entry barrier for artisan cheese entrepreneurs.

  15. Process standardization for rennet casein based Mozzarella cheese analogue.

    PubMed

    Shah, Rahul; Jana, Atanu H; Aparnathi, K D; Prajapati, P S

    2010-10-01

    A process for manufacture of Mozzarella cheese analogue (MCA) using rennet casein and plastic cream as protein and fat sources respectively was standardized. The formulation comprised of 25% plastic cream (72% fat), 27% rennet casein along with 3% tri-sodium citrate as emulsifying salt, 2% maltodextrin as binder, 0.55% lactic acid as pH regulator, 1% common salt for seasoning, 1% Mozzarella cheese bud as flavouring and 40.4% water. The process involved (a) dissolving the dry mixture of casein, maltodextrin, flavouring and common salt in hot emulsifying salt solution, (b) incorporation of half the quantity of acid solution in casein-maltodextrin dough, followed by addition and emulsification of plastic cream, and (c) addition of remaining half of the acid solution and heating the mass to 80 °C until a plastic cheese mass was obtained. The analogue was shaped in ball form, cooled and packaged in polyethylene bag. The MCA conformed to the PFA requirements for pizza cheese and had all the requisite baking characteristics expected of pizza cheese topping.

  16. Start-up and operating costs for artisan cheese companies.

    PubMed

    Bouma, Andrea; Durham, Catherine A; Meunier-Goddik, Lisbeth

    2014-01-01

    Lack of valid economic data for artisan cheese making is a serious impediment to developing a realistic business plan and obtaining financing. The objective of this study was to determine approximate start-up and operating costs for an artisan cheese company. In addition, values are provided for the required size of processing and aging facilities associated with specific production volumes. Following in-depth interviews with existing artisan cheese makers, an economic model was developed to predict costs based on input variables such as production volume, production frequency, cheese types, milk types and cost, labor expenses, and financing. Estimated values for start-up cost for processing and aging facility ranged from $267,248 to $623,874 for annual production volumes of 3,402 kg (7,500 lb) and 27,216 kg (60,000 lb), respectively. First-year production costs ranged from $65,245 to $620,094 for the above-mentioned production volumes. It is likely that high start-up and operating costs remain a significant entry barrier for artisan cheese entrepreneurs. PMID:24746129

  17. Short communication: norbixin and bixin partitioning in Cheddar cheese and whey.

    PubMed

    Smith, T J; Li, X E; Drake, M A

    2014-01-01

    The Cheddar cheese colorant annatto is present in whey and must be removed by bleaching. Chemical bleaching negatively affects the flavor of dried whey ingredients, which has established a need for a better understanding of the primary colorant in annatto, norbixin, along with cheese color alternatives. The objective of this study was to determine norbixin partitioning in cheese and whey from full-fat and fat-free Cheddar cheese and to determine the viability of bixin, the nonpolar form of norbixin, as an alternative Cheddar cheese colorant. Full-fat and fat-free Cheddar cheeses and wheys were manufactured from colored pasteurized milk. Three norbixin (4% wt/vol) levels (7.5, 15, and 30 mL of annatto/454 kg of milk) were used for full-fat Cheddar cheese manufacture, and 1 norbixin level was evaluated in fat-free Cheddar cheese (15 mL of annatto/454 kg of milk). For bixin incorporation, pasteurized whole milk was cooled to 55 °C, and then 60 mL of bixin/454 kg of milk (3.8% wt/vol bixin) was added and the milk homogenized (single stage, 8 MPa). Milk with no colorant and milk with norbixin at 15 mL/454 kg of milk were processed analogously as controls. No difference was found between the norbixin partition levels of full-fat and fat-free cheese and whey (cheese mean: 79%, whey: 11.2%). In contrast to norbixin recovery (9.3% in whey, 80% in cheese), 1.3% of added bixin to cheese milk was recovered in the homogenized, unseparated cheese whey, concurrent with higher recoveries of bixin in cheese (94.5%). These results indicate that fat content has no effect on norbixin binding or entrapment in Cheddar cheese and that bixin may be a viable alternative colorant to norbixin in the dairy industry. PMID:24704237

  18. Proteolysis during ripening of Manchego cheese made from raw or pasteurized ewes' milk. Seasonal variation.

    PubMed

    Gaya, Pilar; Sánchez, Carmen; Nuñez, Manuel; Fernández-García, Estrella

    2005-08-01

    Changes in nitrogen compounds during ripening of 40 batches of Manchego cheese made from raw milk (24 batches) or pasteurized milk (16 batches) at five different dairies throughout the year were investigated. After ripening for six months, degradation of p-kappa- and beta-caseins was more intense in raw milk cheese and degradation of alpha(s2)-casein in pasteurized milk cheese. Milk pasteurization had no significant effect on breakdown of alpha(s1)-casein. Hydrophobic peptide content did not differ between raw and pasteurized milk cheese, whereas hydrophilic peptide content was higher in raw milk cheese. There were no significant differences between seasons for residual caseins, but hydrophobic peptides were at a higher level in cheese made in autumn and winter and hydrophilic peptides in cheese made in winter and spring. Raw milk cheese had a higher content of total free amino acids and of most individual free amino acids than pasteurized milk cheese. The relative percentages of the individual free amino acids were significantly different for raw milk and pasteurized milk cheeses. The relative percentages of Lys and lie increased, while those of Val, Leu and Phe decreased during ripening. There were also seasonal variations within the relative percentages of free amino acids. In raw milk cheeses, Asp and Cys were relatively more abundant in those made in autumn, Glu and Arg in cheeses made in winter, and Lys and Ile in cheeses made in spring and summer. Biogenic amines were detected only in raw milk cheese, with the highest levels of histamine, tryptamine and tyramine in cheeses made in spring, winter and spring, respectively.

  19. Behaviour of Listeria monocytogenes during the manufacture and ripening of Manchego and Chihuahua Mexican cheeses.

    PubMed

    Solano-López, C; Hernández-Sánchez, H

    2000-12-01

    The ability of Listeria monocytogenes to survive the Mexican Manchego and Chihuahua cheese-making processes and its persistence during the ripening stages of both cheeses was examined. Commercial pasteurized and homogenized whole milk was inoculated with Listeria monocytogenes (strain ATCC 19114) to a level between 2 x 10(6) and 9 x 10(6) CFU/ml. The milk was used to make Mexican Manchego and Chihuahua cheeses in a 25-l vat. Mexican Manchego cheese was ripened for 5 days and Chihuahua cheese for 6 weeks at 12 degrees C and 85% RH. Listeria present in the cheese was enumerated by diluting samples in sterile 0.1% peptone water and plating on Oxford agar. Duplicate samples were taken at each step of the manufacturing process. During the first week of ripening samples were taken daily from both cheeses. For Chihuahua cheese, samples were taken weekly after the first week of the ripening stage. During the manufacture of Mexican Manchego cheese, Listeria counts remained relatively constant at 10(6) CFU/ml, while with Chihuahua cheese there was a one log decrease in numbers (10(6) to 10(5) CFU/ml). After pressing both curds overnight, numbers of bacteria decreased in Mexican Manchego cheese to 8.2 x 10(5) but increased in Chihuahua cheese from 1.7 x 10(5) to 1.2 x 10(6) CFU/ml. During the ripening stage, counts of Listeria remained constant in both cheeses. However, since the Chihuahua cheese ripening stage is about 6 weeks, the number of bacteria decreased from 2 x 10(6) to 4 x 10(4) CFU/g. The results show that Listeria monocytogenes is able to survive the manufacture and ripening processes of both Mexican cheeses. PMID:11139015

  20. Proteolysis during ripening of Manchego cheese made from raw or pasteurized ewes' milk. Seasonal variation.

    PubMed

    Gaya, Pilar; Sánchez, Carmen; Nuñez, Manuel; Fernández-García, Estrella

    2005-08-01

    Changes in nitrogen compounds during ripening of 40 batches of Manchego cheese made from raw milk (24 batches) or pasteurized milk (16 batches) at five different dairies throughout the year were investigated. After ripening for six months, degradation of p-kappa- and beta-caseins was more intense in raw milk cheese and degradation of alpha(s2)-casein in pasteurized milk cheese. Milk pasteurization had no significant effect on breakdown of alpha(s1)-casein. Hydrophobic peptide content did not differ between raw and pasteurized milk cheese, whereas hydrophilic peptide content was higher in raw milk cheese. There were no significant differences between seasons for residual caseins, but hydrophobic peptides were at a higher level in cheese made in autumn and winter and hydrophilic peptides in cheese made in winter and spring. Raw milk cheese had a higher content of total free amino acids and of most individual free amino acids than pasteurized milk cheese. The relative percentages of the individual free amino acids were significantly different for raw milk and pasteurized milk cheeses. The relative percentages of Lys and lie increased, while those of Val, Leu and Phe decreased during ripening. There were also seasonal variations within the relative percentages of free amino acids. In raw milk cheeses, Asp and Cys were relatively more abundant in those made in autumn, Glu and Arg in cheeses made in winter, and Lys and Ile in cheeses made in spring and summer. Biogenic amines were detected only in raw milk cheese, with the highest levels of histamine, tryptamine and tyramine in cheeses made in spring, winter and spring, respectively. PMID:16174359