Sample records for mineral complex solution

  1. Garnet: featured mineral group at the 1993 Tucson Show

    USGS Publications Warehouse

    Modreski, P.J.

    1993-01-01

    The garnets are a common but complex group of minerals. They are perhaps the mineral kingdom's best example of solid solution: a relationship in which minerals have chemical compositions that are intermediate between two or more ideal end-member species. In garnet, we deal with a complex group of solid-solution series between as many as 14 end-member minerals. The varying intergradations of solid solution between these different end-members help to explain the garnet group's variety of color, environment of occurrence, gem use, and variation in such physical properties as specific gravity, refractive index, and hardness. -from Author

  2. In situ investigation of complex BaSO4 fiber generation in the presence of sodium polyacrylate. 1. Kinetics and solution analysis.

    PubMed

    Wang, Tongxin; Cölfen, Helmut

    2006-10-10

    Simple solution analysis of the formation mechanism of complex BaSO(4) fiber bundles in the presence of polyacrylate sodium salt, via a bioinspired approach, is reported. Titration of the polyacrylate solution with Ba(2+) revealed complex formation and the optimum ratio of Ba(2+) to polyacrylate for a slow polymer-controlled mineralization process. This is a much simpler and faster method to determine the appropriate additive/mineral concentration pairs as opposed to more common crystallization experiments in which the additive/mineral concentration is varied. Time-dependent pH measurements were carried out to determine the concentration of solution species from which BaSO(4) supersaturation throughout the fiber formation process can be calculated and the second-order kinetics of the Ba(2+) concentration in solution can be identified. Conductivity measurements, pH measurements, and analytical ultracentrifugation revealed the first formed species to be Ba-polyacrylate complexes. A combination of the solution analysis results and optical microscopic images allows a detailed picture of the complex precipitation and self-organization process, a particle-mediated process involving mesoscopic transformations, to be revealed.

  3. GEOCHEMICAL AND BIOLOGICAL ASPECTS OF SULFIDE MINERAL DISSOLUTION: LESSONS FROM IRON MOUNTAIN, CALIFORNIA. (R826189)

    EPA Science Inventory

    Abstract

    The oxidative dissolution of sulfide minerals leading to acid mine drainage (AMD) involves a complex interplay between microorganisms, solutions, and mineral surfaces. Consequently, models that link molecular level reactions and the microbial communities that ...

  4. Genesis of kasolite associated with aplite-pegmatite at Jabal Sayid, Hijaz region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Dawood, Yehia H.; Harbi, Hesham M.; Abd El-Naby, Hamdy H.

    2010-01-01

    In this study, we report kasolite Pb(UO 2)SiO 4·(H 2O) for the first time as a main uranyl mineral in the mineralized aplite-pegmatite of Jabal Sayid, Hijaz region. It commonly forms clusters of yellow acicular crystals in the voids and fractures. The mineral chemistry and mineralogical characteristics of kasolite were investigated using different techniques. Calcium, iron and phosphorus are detected in kasolite in addition to its major constituents; uranium, lead and silicon. Lead does not exist as a radiogenic product and not even as a substitute for uranium in the mineral structure. Alternatively, galena mineralization could be considered as a source for lead. The fluoride and carbonate complexes played a significant role in the formation of kasolite. High temperature hydrothermal solutions reacted with pre-existing uranium-bearing metamictized accessory minerals such as pyrochlore, U-rich thorite and zircon to form uranous fluoride complexes. These complexes are predominant in reducing environment and at pH 4. When the fluids approached the surface passing through fracture system, the oxygen fugacity ( fO 2) and the pH increased because of the loss of volatile components. At these conditions, uranous fluorides would convert to uranyl fluoride complexes UO 2F 3-. Further decrease in temperature was associated with the decay of the activity of fluorine ion by the dilution of hydrothermal solutions and precipitation of fluorite. At this condition, uranyl-carbonate complexes are favoured. These complexes were combined later with silica and lead to form kasolite.

  5. DYNAMICS OF MINERAL STRUCTURES AND THE FATE OF METALS IN SOILS AND SEDIMENTS

    EPA Science Inventory

    Significant progress has been made in elucidating sorption reactions that control the partitioning of metals from solution to mineral surfaces in contaminated soil/sediment systems. Surface complexation models have been developed to quantify the forward reaction with reasonable ...

  6. THE INFLUENCE OF MINERAL REACTIONS ON THE ENVIRONMENTAL FATE OF METALS IN SOILS AND SEDIMENTS

    EPA Science Inventory

    Significant progress has been made in elucidating sorption reactions that control the partitioning of metals from solution to mineral surfaces in contaminated soil/sediment systems. Surface complexation models have been developed to quantify the forward reaction, however, these ...

  7. Adsorption of Nucleic Acid/Protein Supramolecular Complexes on Goethite: The Influence of Solution Interactions on Behavior at the Solution-Mineral Interface

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Martinez, C. E.

    2017-12-01

    Adsorption of biomolecule rich supramolecular complexes onto mineral surfaces plays an important role in the development of organo-mineral associations in soils. In this study, a series of supramolecular complexes of a model nucleic acid (deoxyribonucleic acid (DNA)) and protein (bovine serum albumin (BSA)) are synthesized, characterized and exposed to goethite to probe their adsorption behavior. To synthesize DNA/BSA complexes, a fixed DNA concentration (0.1 mg/mL) was mixed with a range of BSA concentrations (0.025-0.5 mg/mL) in 5 mM KCl at pH=5.0. Circular dichroism spectroscopy demonstrates strong, cooperative, Hill-type binding between DNA and BSA (Ka= 4.74 x 105 M-1) with DNA saturation achieved when BSA concentration reaches 0.4 mg/mL. Dynamic light scattering measurements of DNA/BSA complexes suggest binding accompanies disruption of DNA-DNA intermolecular electrostatic repulsion, resulting in a decrease of the DNA slow relaxation mode with increasing amount of BSA. Zeta potential measurements show increasing amounts of BSA lead to a reduction of negative charge on DNA/BSA complexes, in line with light scattering results. In situ attenuated total reflectance Fourier transform infrared spectroscopic studies of adsorption of DNA/BSA complexes onto goethite show that complexation of BSA with DNA appears to hinder direct coordination of DNA backbone phosphodiester groups with goethite, relative to DNA by itself. Furthermore, increasing amount of BSA (up to 0.4 mg/mL) in DNA/BSA complexes enhances DNA adsorption, possibly as a result of reduced repulsion between adsorbed DNA helices. When BSA concentration exceeds 0.4 mg/mL, a decrease in adsorbed DNA is observed. We hypothesize that this discrepancy in behavior between systems with BSA concentrations below and above saturation of DNA is caused by initial fast adsorption of loosely associated BSA on goethite, restricting access to goethite surface sites. Overall, these results highlight the impact of solution interaction between biomolecules on subsequent behavior at mineral surfaces. This work represents a bridge between model experiments with individual biomolecules and more complex natural systems, yielding a fundamental viewpoint of the formation of organo-mineral associations in soils.

  8. A nacre protein forms mesoscale hydrogels that “hijack” the biomineralization process within a seawater environment

    DOE PAGES

    Pendola, Martin; Jain, Gaurav; Davidyants, Anastasia; ...

    2016-09-26

    We examined the mineralization performance of a nacre protein, AP7, within seawater mineralization assays that form aragonite and magnesium calcite. Under these conditions AP7 forms hydrogel particles that vary in size and complexity depending upon ionic conditions. These hydrogels “hijack” the mineralization process by limiting nucleation in bulk solution and promoting nucleation within the hydrogels.

  9. From Carbonatite to Ikaite: How high-T carbonates are transformed into low-T carbonate minerals in SW Greenland

    NASA Astrophysics Data System (ADS)

    Stockmann, G. J.; Tollefsen, E.; Ranta, E.; Skelton, A.; Sturkell, E.; Lundqvist, L.

    2015-12-01

    The 1300 Ma Grønnedal-Íka igneous complex in southwest Greenland comprises nepheline syenites and carbonatites. It belongs to a suite of intrusions formed 1300-1100 Ma ago referred to as the Gardar period. In modern time (the last ca. 8000 years), fluid-rock interactions involving the nepheline syenites and carbonatites gives rise to about one thousand submarine columns made of the rare low-T mineral ikaite (CaCO3x6H2O). The columns are found in a shallow, narrow fjord named Ikka Fjord and their distribution clearly follows the outcrop of the Grønnedal-Íka complex. When meteoric water percolates through the highly fractured complex, a sodium carbonate solution of pH 10 is formed through hitherto unknown fluid-rock reactions. This basic solution seeps up through fractures at the bottom of Ikka Fjord and when mixed with seawater, the mineral ikaite is formed. As the seepage water has a lower density than seawater, there is an upwards flow that creates columns. What is peculiar about ikaite is its limited stability making it unstable above +6 °C. Isotopic studies of ikaite reveal a seawater origin for the Ca2+ ions, and the carbonatite being the most likely source for the CO32- ions. The carbonatite is mainly of søvite composition (CaCO3) with high contents of siderite and ankerite in certain areas. The nepheline syenites contain Na,K-rich minerals like nepheline, alkali-feldspar, aegirine-augite, katophorite and biotite. Nepheline is mainly replaced by muscovite, and aegirine-augite partly by chlorite, which could release sodium into solution. A dolerite dyke of unknown age prompted extensive mineralization of magnetite by activating hydrothermal fluid convection. The fluid interacted with the carbonatite, replacing siderite and ankerite by magnetite and later hematite. In a newly launched project at Stockholm University, we are trying to unravel the chemical reactions taking place inside the Grønnedal-Íka igneous complex leading to the formation of the sodium carbonate solution issuing in Ikka Fjord.

  10. Spatially and temporally controlled biomineralization is facilitated by interaction between self-assembled dentin matrix protein 1 and calcium phosphate nuclei in solution.

    PubMed

    He, Gen; Gajjeraman, Sivakumar; Schultz, David; Cookson, David; Qin, Chunlin; Butler, William T; Hao, Jianjun; George, Anne

    2005-12-13

    Bone and dentin biomineralization are well-regulated processes mediated by extracellular matrix proteins. It is widely believed that specific matrix proteins in these tissues modulate nucleation of apatite nanoparticles and their growth into micrometer-sized crystals via molecular recognition at the protein-mineral interface. However, this assumption has been supported only circumstantially, and the exact mechanism remains unknown. Dentin matrix protein 1 (DMP1) is an acidic matrix protein, present in the mineralized matrix of bone and dentin. In this study, we have demonstrated using synchrotron small-angle X-ray scattering that DMP1 in solution can undergo oligomerization and temporarily stabilize the newly formed calcium phosphate nanoparticle precursors by sequestering them and preventing their further aggregation and precipitation. The solution structure represents the first low-resolution structural information for DMP1. Atomic force microscopy and transmission electron microscopy studies further confirmed that the nascent calcium phosphate nuclei formed in solution were assembled into ordered protein-mineral complexes with the aid of oligomerized DMP1, recombinant and native. This study reveals a novel mechanism by which DMP1 might facilitate initiation of mineral nucleation at specific sites during bone and dentin mineralization and prevent spontaneous calcium phosphate precipitation in areas in which mineralization is not desirable.

  11. Competitive and Cooperative Effects during Nickel Adsorption to Iron Oxides in the Presence of Oxalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Elaine D.; Catalano, Jeffrey G.

    Iron oxides are ubiquitous in soils and sediments and play a critical role in the geochemical distribution of trace elements and heavy metals via adsorption and coprecipitation. The presence of organic acids may potentially alter how metals associate with iron oxide minerals through a series of cooperative or competitive processes: solution complexation, ternary surface complexation, and surface site competition. The macroscopic and molecular-scale effects of these processes were investigated for Ni adsorption to hematite and goethite at pH 7 in the presence of oxalate. The addition of this organic acid suppresses Ni uptake on both minerals. Aqueous speciation suggests thatmore » this is dominantly the result of oxalate complexing and solubilizing Ni. Comparison of the Ni surface coverage to the concentration of free (uncomplexed) Ni 2+ in solution suggests that the oxalate also alters Ni adsorption affinity. EXAFS and ATR-FTIR spectroscopies indicate that these changes in binding affinity are due to the formation of Ni–oxalate ternary surface complexes. These observations demonstrate that competition between dissolved oxalate and the mineral surface for Ni overwhelms the enhancement in adsorption associated with ternary complexation. Oxalate thus largely enhances Ni mobility, thereby increasing micronutrient bioavailability and inhibiting contaminant sequestration.« less

  12. Role of root exudates in dissolution of Cd containing iron oxides

    NASA Astrophysics Data System (ADS)

    Rosenfeld, C.; Martinez, C. E.

    2011-12-01

    Dissolved organic matter (DOM) in the rhizosphere contains organic acids, amino acids and more complex organic molecules that can substantially impact the solubility of soil solid phases. Plant roots and soil microorganisms contribute a large fraction of these organic compounds to DOM, potentially accelerating the transfer of solid phase elements into solution. In highly contaminated soils, heavy metals such as Cd are commonly found coprecipitated with common minerals (e.g. iron oxides). Introducing or changing vegetation on these contaminated soils may increase DOM levels in the soil pore fluids and thus enhance the biological and chemical weathering of soil minerals. Here, we investigate the role of root exudates on mineral dissolution and Cd mobility in contaminated soils. We hypothesize that plant exudates containing nitrogen and sulfur functional groups will dissolve Cd-containing mineral phases to a greater extent than exudates containing only oxygen functional groups, resulting in higher Cd concentrations in solution. Two different iron oxide mineral phases were utilized in a laboratory-scale model study system investigating the effects of low molecular weight, oxygen-, nitrogen-, and sulfur-containing organic compounds on mineral dissolution. Goethite (α-FeOOH) was synthesized in the laboratory with 0, 2.4, 5, and 100 theoretical mol% Cd, and franklinite (ZnFe2O4) was prepared with 0, 10, and 25 theoretical mol% Cd. Phase identity of all minerals was verified with X-ray diffraction (XRD). All minerals were reacted with 0.01 mM solutions containing one of four different organic ligands (oxalic acid, citric acid, histidine or cysteine) and aliquots of these solutions were sampled periodically over 40 days. Results from solution samples suggest that oxalic acid, citric acid, and histidine consistently increase mineral dissolution relative to the control (no organic compound present) while cysteine consistently inhibits dissolution relative to the control in all minerals. Increasing Cd substitution in the franklinite resulted in increased release of Fe and Zn to solution in the presence of these organic compounds, while increasing Cd substitution in the goethite generally limited Fe release to solution. In the case of cysteine, sulfur concentrations in solution decrease over time in the presence of Cd-containing minerals, indicating strong binding of the cysteine compound to the mineral surface, inhibiting Cd dissolution from the minerals. Our work indicates that amino acids present in biological soil exudates, in addition to organic acids, may have substantial impacts on iron oxide dissolution in soils, altering the availability of both bioessential (e.g., Fe and Zn) and non-essential, or potentially toxic, (e.g., Cd) elements.

  13. Biomimetic mineral self-organization from silica-rich spring waters.

    PubMed

    García-Ruiz, Juan Manuel; Nakouzi, Elias; Kotopoulou, Electra; Tamborrino, Leonardo; Steinbock, Oliver

    2017-03-01

    Purely inorganic reactions of silica, metal carbonates, and metal hydroxides can produce self-organized complex structures that mimic the texture of biominerals, the morphology of primitive organisms, and that catalyze prebiotic reactions. To date, these fascinating structures have only been synthesized using model solutions. We report that mineral self-assembly can be also obtained from natural alkaline silica-rich water deriving from serpentinization. Specifically, we demonstrate three main types of mineral self-assembly: (i) nanocrystalline biomorphs of barium carbonate and silica, (ii) mesocrystals and crystal aggregates of calcium carbonate with complex biomimetic textures, and (iii) osmosis-driven metal silicate hydrate membranes that form compartmentalized, hollow structures. Our results suggest that silica-induced mineral self-assembly could have been a common phenomenon in alkaline environments of early Earth and Earth-like planets.

  14. Effects of ionised or chelated water-soluble mineral mixture supplementation on growth performance, nutrient digestibility, blood characteristics, meat quality and intestinal microbiota in broilers.

    PubMed

    Upadhaya, S D; Lee, B R; Kim, I H

    2016-04-01

    An experiment was conducted to study the effects of dietary supplementation of water-soluble ionised or chelated mineral mixture on growth performance, nutrient digestibility, blood characteristics, relative organ weight, meat quality and excreta microflora in broilers. A total of 408 Arbor Acres broilers (17 birds in 8 replicate pens) were randomly allocated into one of the following three treatments: (1) Control/basal diet (CON), (2) T1 (basal diet + 0.5% ionised mineral mixture solution, pH 3.0) and (3) T2 (basal diet + 0.5% chelated mineral mixture solution, pH 3.0). The body weight gain was greater and feed conversion ratio was lower in broilers supplemented with ionised or chelated mineral liquid complex compared to CON during the grower and overall phase of the experiment. No significant effect in the concentration of Ca and P in the blood was observed in birds supplemented with ionised or chelated mineral mixture solution. No adverse effects were observed in organ weight and meat quality with ionised or chelated mineral mixture supplementation. Regarding intestinal microbiota counts there was a reduction of Escherichia coli counts in the small intestine in ionised mineral supplemented birds. In the large intestine, E. coli as well as Salmonella populations were reduced in ionised mineral supplemented birds. In conclusion, ionised or chelated minerals have partial positive effects in improving growth performance and reducing pathogenic bacteria load in the gastro-intestinal tract.

  15. Iron Determination in Meat Using Ferrozine Assay

    NASA Astrophysics Data System (ADS)

    Carpenter, Charles; Ward, Robert

    Chromogens are chemicals that react with compounds of interest and form colored products that can be quantified using spectroscopy. Several chromogens that selectively react with minerals are available. In this lab, ferrozine is used to measure ferrous iron in an ashed food sample. The relationship between the absorbance of the chromogen-mineral complex is described by Beer's Law; in this procedure, a standard curve is generated with a stock iron solution to quantify the mineral in beef samples.

  16. Morphological Dependence of Element Stoichiometry in the H. americanus Exoskeleton

    NASA Astrophysics Data System (ADS)

    Mergelsberg, S. T.; Ulrich, R. N.; Dove, P. M.

    2016-02-01

    The crustacean exoskeleton is a complex biocomposite of inorganic mineral and organic macromolecules that expresses highly divergent morphologies across different taxa. While the structures and compositions of the organic framework show complex links to environmental and developmental pressures, little is known about the mineral chemistry. Previous studies of the cuticle have assumed that magnesium, phosphorous, and other trace metals are largely contained in the inorganic mineral fraction. Due to analytical limitations of structural analyses and in situ spectroscopic methods, the stoichiometry of the organic and inorganic portions could not be resolved. For example, previous Raman and XRD studies conclude the higher concentrations of trace elements, such as P and Mg measured in reinforced structures, e.g. the claw and abdomen, are primarily determined by the mineral fraction. Using the American Lobster (Homarus americanus) as a model organism to establish relationships between body part function and cuticle composition, this study quantified the distributions of Mg and P in the mineral and organic fractions. The experiments were designed to dissolve the exoskeleton of 10 body parts using three types of solutions that were specific to extracting 1) the mineral phase, 2) protein, and 3) polysaccharide. Analysis of the solutions by ICP-OES shows the mineral phase contains magnesium and phosphorous at concentrations sufficient to support the formation of calcium-magnesium and phosphate minerals. The protein fraction of the body parts contains significantly more Mg and P than previously hypothesized, while the levels of P contained in the organic portion are fairly constant. The findings demonstrate the lobster cuticle contains a significant amount of non-mineralized P and Mg that is readily water-soluble in the protein component. However, for those body parts used for defense and food acquisition, such as the claw, the mineral component determines the overall composition of the exoskeleton.

  17. Bioactive and Porous Metal Coatings for Improved Tissue Regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, A. A.

    Our first objective was to develop the SIM process for the deposition of calcium phosphate films. This process is based on the observation that, in nature, living organisms use macromolecules to control the nucleation and growth of mineral phases. These macromolecules act as templates where various charged functional groups, contained within the molecule, can interact with the ions in the surrounding media, thus stimulating crystal nucleation and growth. Rather than using complex proteins or biopolymers, surface modification schemes were developed to place simple functional groups on the underlying substrate using self-assembling monolayers. Once the substrate was chemically modified, it wasmore » then placed into an aqueous solution containing soluble precursors of the desired mineral coating. Solution pH, ionic concentration and temperature is maintained in a regime where the solution is supersaturated with respect to the desired mineral phase, thereby creating the driving force for nucleation and growth.« less

  18. Numerical modeling of mineral dissolution - precipitation kinetics integrating interfacial processes

    NASA Astrophysics Data System (ADS)

    Azaroual, M. M.

    2016-12-01

    The mechanisms of mineral dissolution/precipitation are complex and interdependent. Within a same rock, the geochemical modelling may have to manage kinetic reactions with high ratios between the most reactive minerals (i.e., carbonates, sulfate salts, etc.) and less reactive minerals (i.e., silica, alumino-silicates, etc.). These ratios (higher than 10+6) induce numerical instabilities for calculating mass and energy transfers between minerals and aqueous phases at the appropriate scales of time and space. The current scientific debate includes: i) changes (or not) of the mineral reactive surface with the progress of the dissolution/precipitation reactions; ii) energy jumps (discontinuity) in the thermodynamic affinity function of some dissolution/precipitation reactions and iii) integration of processes at the "mineral - aqueous solution" interfaces for alumino-silicates, silica and carbonates. In recent works dealing with the specific case of amorphous silica, measurements were performed on nano-metric cross-sections indicating the presence of surface layer between the bulk solution and the mineral. This thin layer is composed by amorphous silica and hydrated silica "permeable" to the transfer of water and ionic chemical constituents. The boundary/interface between the initial mineral and the silica layer is characterized by a high concentration jump of chemical products at the nanoscale and some specific interfacial dissolution/precipitation processes.In this study, the results of numerical simulations dealing with different mechanisms of silicate and carbonate dissolution/precipitation reactions and integrating interfacial processes will be discussed. The application of this approach to silica precipitation is based on laboratory experiments and it highlights the significant role of the "titration" surface induced by surface complexation reactions in the determination of the kinetics of precipitation.

  19. Iron and silicon isotope behaviour accompanying weathering in Icelandic soils, and the implications for iron export from peatlands

    NASA Astrophysics Data System (ADS)

    Opfergelt, S.; Williams, H. M.; Cornelis, J. T.; Guicharnaud, R. A.; Georg, R. B.; Siebert, C.; Gislason, S. R.; Halliday, A. N.; Burton, K. W.

    2017-11-01

    Incipient warming of peatlands at high latitudes is expected to modify soil drainage and hence the redox conditions, which has implications for Fe export from soils. This study uses Fe isotopes to assess the processes controlling Fe export in a range of Icelandic soils including peat soils derived from the same parent basalt, where Fe isotope variations principally reflect differences in weathering and drainage. In poorly weathered, well-drained soils (non-peat soils), the limited Fe isotope fractionation in soil solutions relative to the bulk soil (Δ57Fesolution-soil = -0.11 ± 0.12‰) is attributed to proton-promoted mineral dissolution. In the more weathered poorly drained soils (peat soils), the soil solutions are usually lighter than the bulk soil (Δ57Fesolution-soil = -0.41 ± 0.32‰), which indicates that Fe has been mobilised by reductive mineral dissolution and/or ligand-controlled dissolution. The results highlight the presence of Fe-organic complexes in solution in anoxic conditions. An additional constraint on soil weathering is provided by Si isotopes. The Si isotope composition of the soil solutions relative to the soil (Δ30Sisolution-soil = 0.92 ± 0.26‰) generally reflects the incorporation of light Si isotopes in secondary aluminosilicates. Under anoxic conditions in peat soils, the largest Si isotope fractionation in soil solutions relative to the bulk soil is observed (Δ30Sisolution-soil = 1.63 ± 0.40‰) and attributed to the cumulative contribution of secondary clay minerals and amorphous silica precipitation. Si supersaturation in solution with respect to amorphous silica is reached upon freezing when Al availability to form aluminosilicates is limited by the affinity of Al for metal-organic complexes. Therefore, the precipitation of amorphous silica in peat soils indirectly supports the formation of metal-organic complexes in poorly drained soils. These observations highlight that in a scenario of decreasing soil drainage with warming high latitude peatlands, Fe export from soils as Fe-organic complexes will increase, which in turn has implications for Fe transport in rivers, and ultimately the delivery of Fe to the oceans.

  20. Surface complexation of carboxylate adheres Cryptosporidium parvum öocysts to the hematite-water interface

    USGS Publications Warehouse

    Gao, X.; Metge, D.W.; Ray, C.; Harvey, R.W.; Chorover, J.

    2009-01-01

    The interaction of viable Cryptosporidium parvum öocysts at the hematite (α-Fe2O3)−water interface was examined over a wide range in solution chemistry using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Spectra for hematite-sorbed öocysts showed distinct changes in carboxylate group vibrations relative to spectra obtained in the absence of hematite, indicative of direct chemical bonding between carboxylate groups and Fe metal centers of the hematite surface. The data also indicate that complexation modes vary with solution chemistry. In NaCl solution, öocysts are bound to hematite via monodentate and binuclear bidentate complexes. The former predominates at low pH, whereas the latter becomes increasingly prevalent with increasing pH. In a CaCl2 solution, only binuclear bidentate complexes are observed. When solution pH is above the point of zero net proton charge (PZNPC) of hematite, öocyst surface carboxylate groups are bound to the mineral surface via outer-sphere complexes in both electrolyte solutions.

  1. The role of multivalent metal cations and organic complexing agents in bitumen-mineral interactions in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Gan, Weibing

    A systematic investigation was carried out to study the interactions between bitumen (or hexadecane) and minerals (quartz, kaolinite and illite) in aqueous solutions containing multivalent metal cations Ca2+, Mg2+ and Fe2+/Fe3+, in the absence and presence of organic complexing agents (oxalic acid, EDTA and citric acid). A range of experimental techniques, including coagulation measurement, visualization of bitumen-mineral attachment, metal ion adsorption measurement, zeta potential measurement, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopic analyses, were employed in the investigation. Free energy changes of adsorption of metal cations on the minerals and bitumen were evaluated using the James & Healy thermodynamic model. Total interaction energies between the minerals and bitumen were calculated using classical DLVO theory. It was observed that while the tested minerals showed varying degrees of mutual-coagulation with bitumen (or hexadecane), the presence of the multivalent metal cations could prominently increase the mutual coagulation. It was also found that such enhancement of the mutual coagulation was only significant when the metal cations formed first-order hydroxyl complexes (such as CaOH +, MgOH+, etc.) or metal hydroxides (such as Fe(OH) 3, Mg(OH)2, etc.). Therefore, the increase of the bitumen-mineral mutual coagulation by the metal cations was strongly pH dependent. Organic complexing agents (oxalic acid, citric acid and EDTA) used in this study, citric acid in particular, significantly reduced or virtually eliminated the mutual coagulation between bitumen (or hexadecane) and minerals caused by metal cations Ca2+, Mg2+, Fe 2+ and Fe3+. Due to its ability to substantially lower the mutual coagulation between bitumen and mineral particles, citric acid was found the most effective in improving bitumen-mineral liberation in solutions containing the multivalent metal cations at pH 8--10. In small scale flotation experiments to recover the residual bitumen from Syncrude Froth Treatment Tailings, the addition of up to 2x10-3 mol/L citric acid improved the separation efficiency by 24 percentage points. The sequential additions of 1.5x10-3 mol/L citric acid and 30 mg/L polyacrylamide further increased the flotation separation efficiency, which was attributed to the improved liberation of bitumen from the minerals by the citric acid, and the flocculation of the liberated minerals fines by the polyacrylamide. The latter was expected to reduce the mechanical entrainment of the liberated mineral fines. Pretreatment of the Froth Treatment Tailings in an ultrasonic bath was also effective for bitumen liberation and recovery from the Froth Treatment Tailings. Through measurements of zeta potentials of the minerals and adsorption densities of the metal cations on mineral surfaces, coupled with speciation diagrams, it was shown that the multivalent metal cations functioned in the studied systems through three distinctly different mechanisms. These included electrical double layer compression by the metal cations; adsorption of the first-order metal hydroxyl species; and adsorption of the metal hydroxides on the mineral particles. Reversibility of adsorption and analyses by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) indicated that the adsorption of the first-order metal hydroxyl species on quartz and kaolinite was through electrostatic attraction, while that of metal hydroxides was possibly through chemisorption. It was also shown that classical DLVO theory could be used to describe and predict bitumen-mineral interactions with and without the presence of citric acid. The energy barriers for the interaction between bitumen and the minerals were greatly raised in the presence of citric acid, as a contribution to the repulsive electrical double layers interaction between bitumen droplets and mineral particles.

  2. The origin of the Avram Iancu U-Ni-Co-Bi-As mineralization, Băiţa (Bihor) metallogenic district, Bihor Mts., Romania

    NASA Astrophysics Data System (ADS)

    Zajzon, Norbert; Szentpéteri, Krisztián; Szakáll, Sándor; Kristály, Ferenc

    2015-10-01

    The Băiţa metallogenic district in the Bihor Mountains is a historically important mining area in Romania. Uranium mining took place between 1952 and 1998 from various deposits, but very little is known about the geology and mineralogy of these deposits. In this paper, we describe geology and mineralogy of uranium mineralization of the Avram Iancu uranium mine from waste dump samples collected before complete remediation of the site. Texturally and mineralogically complex assemblages of nickeline, cobaltite-gersdorffite solid solution, native Bi, Bi-sulfosalts, molybdenite, and pyrite-chalcopyrite-sphalerite occur with uraninite, "pitchblende," and brannerite in most of the ore samples. The association of nickel, cobalt, and arsenic with uranium is reminiscent of five-element association of vein type U-Ni-Co-Bi-As deposits; however, the Avram Iancu ores appear to be more replacement-type stratiform/stratabound. Avram Iancu ore samples contain multistage complex, skarn, uranium sulfide, arsenide assemblages that can be interpreted to have been formed in the retrograde cooling stages of the skarn hydrothermal system. This mineralizing system may have built-up along Upper Cretaceous-Paleogene "Banatite" intrusions of diorite-to-granite composition. The intrusions crosscut the underlying uraniferous Permian formations in the stacked NW-verging Biharia Nappe System. The mineralization forms stacked, multilayer replacement horizons, along carbonate-rich lithologies within the metavolcanic (tuffaceous) Muncel Series. Mineral paragenesis and some mineral chemistry suggest moderate-to-high <450, i.e., 350-310 °C, formation temperatures for the uranium sulfide stage along stratigraphically controlled replacement zones and minor veins. Uranium minerals formed abundantly in this early stage and include botryoidal, sooty and euhedral uraninite, brannerite, and coffinite. Later and/or lower-temperature mineral assemblages include heterogeneous, complexly zoned arsenide-sulfarsenide solid solutions associated with minute but abundant uranium minerals. Within the later arsenide-sulfarsenide mineral assemblage, there is great variation in Ni, Co, and S content with generally increasing arsenic content. Uranium minerals in this late-stage assemblage include very fine euhedral uraninite and brannerite inclusions in arsenide-sulfarsenide minerals. Native bismuth and Bi-sulfosalt krupkaite are observed in this As-S-rich assemblage strongly associated with cobaltite.

  3. Rationally designed mineralization for selective recovery of the rare earth elements

    NASA Astrophysics Data System (ADS)

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-05-01

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ~6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.

  4. Rationally designed mineralization for selective recovery of the rare earth elements

    PubMed Central

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-01-01

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ∼6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input. PMID:28548098

  5. Rationally designed mineralization for selective recovery of the rare earth elements.

    PubMed

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-05-26

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ∼6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.

  6. Contaminant Organic Complexes: Their Structure and Energetics in Surface Decontamination Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satish C. B. Myneni

    2005-12-13

    Siderophores are biological macromolecules (400-2000 Da) released by bacteria in iron limiting situations to sequester Fe from iron oxyhydroxides and silicates in the natural environment. These molecules contain hydroxamate and phenolate functional groups, and exhibit very high affinity for Fe{sup 3+}. While several studies were conducted to understand the behavior of siderophores and their application to the metal sequestration and mineral dissolution, only a few of them have examined the molecular structure of siderophores and their interactions with metals and mineral surfaces in aqueous solutions. Improved understanding of the chemical state of different functional moieties in siderophores can assist inmore » the application of these biological molecules in actinide separation, sequestration and decontamination processes. The focus of our research group is to evaluate the (a) functional group chemistry of selected siderophores and their metal complexes in aqueous solutions, and (b) the nature of siderophore interactions at the mineral-water interfaces. We selected desferrioxamine B (desB), a hydroxamate siderophore, and its small structural analogue, acetohydroxamic acid (aHa), for this investigation. We examined the functional group chemistry of these molecules as a function of pH, and their complexation with aqueous and solid phase Fe(III). For solid phase Fe, we synthesized all naturally occurring Fe(III)-oxyhydroxides (goethite, lepidocrocite, akaganeite, feroxyhite) and hematite. We also synthesized Fe-oxides (goethite and hematite) of different sizes to evaluate the influence of particle size on mineral dissolution kinetics. We used a series of molecular techniques to explore the functional group chemistry of these molecules and their complexes. Infrared spectroscopy is used to specifically identify the variations in oxime group as a function of pH and Fe(III) complexation. Resonance Raman spectroscopy was used to evaluate the nature of hydroxamate binding in the case of Fe(III)-siderophore complexes and model ligands. Soft and hard X-ray spectroscopy techniques were used to examine the electronic structure of binding groups, and their local structural environment. The synchrotron X-ray studies were conducted at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (Lawrence Berkeley National Laboratory). These experimental vibrational and X-ray spectroscopy studies were complemented with density functional theory calculations. The highlight of this study is the evaluation of the fundamental electronic state information of the hydroxamate moiety in siderophores during deprotonation and Fe(III) complexation. The applications of soft X-ray studies are also new, and were applied, for the first time, to examine the chemistry of organic macromolecules in aqueous solutions.« less

  7. Electromembrane recycling of highly mineralized alkaline blowdown water from evaporative water treatment plants at thermal power stations

    NASA Astrophysics Data System (ADS)

    Chichirova, N. D.; Chichirov, A. A.; Lyapin, A. I.; Minibaev, A. I.; Silov, I. Yu.; Tolmachev, L. I.

    2016-12-01

    Thermal power stations (TPS) are the main source of highly mineralized effluents affecting the environment. An analysis of their water systems demonstrates that alkaline effluents prevail at TPSs. Extraction of an alkali from highly mineralized effluents can make the recycling of effluents economically feasible. A method is proposed of electromembrane recycling of liquid alkaline highly mineralized wastes from TPSs. The process includes electromembrane apparatuses of two types, namely, a diffusion dialysis extractor (DDE) intended for extraction of the alkali from a highly mineralized solution having a complex composition and an electrodialysis concentrator for increasing the concentration of the extracted solution to a value suitable for use in water treatment plants at TPSs. For implementation of the first process (i.e. the extraction of alkali from alkaline-salt solution) various membranes from various manufacturers were studied: CM-PAD and AM-PAD (Ralex, Czechia), MK-40, MA-40, MA-41, MA-414, and MB-2 (OOO OKhK "Shchekinoazot", Russia), AR103-QDF and CR61-CMP (Ionies Inc., USA). The experiments demonstrate that the acceptable degree of separation of the alkali and the salt is achieved in a pair of cation-exchange membranes with the efficiency of separation being higher without an electric field. The highest efficiency was attained with Russian-made membranes (MK-40, OOO OKhK "Shchekinoazot"). A full scale experiment on recycling of highly-mineralized blowdown water from the evaporating water treatment system at the Kazan cogeneration power station No. 3 (TETs-3) was performed in a pilot unit consisting of two electromembrane apparatuses made by UAB "Membraninės Technologijos LT". In the experiments every ton of blowdown water yielded 0.1 t of concentrated alkaline solution with an alkali content of up to 4 wt % and 0.9 t of the softened salt solution suitable for the reuse in the TPS cycle. The power rate is 6 kWh / ton of blowdown water.

  8. Acid-base behavior of the gaspeite (NiCO3(s)) surface in NaCl solutions.

    PubMed

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Pokrovsky, Oleg S; Schott, Jacques

    2010-08-03

    Gaspeite is a low reactivity, rhombohedral carbonate mineral and a suitable surrogate to investigate the surface properties of other more ubiquitous carbonate minerals, such as calcite, in aqueous solutions. In this study, the acid-base properties of the gaspeite surface were investigated over a pH range of 5 to 10 in NaCl solutions (0.001, 0.01, and 0.1 M) at near ambient conditions (25 +/- 3 degrees C and 1 atm) by means of conventional acidimetric and alkalimetric titration techniques and microelectrophoresis. Over the entire experimental pH range, surface protonation and electrokinetic mobility are strongly affected by the background electrolyte, leading to a significant decrease of the pH of zero net proton charge (PZNPC) and the pH of isoelectric point (pH(iep)) at increasing NaCl concentrations. This challenges the conventional idea that carbonate mineral surfaces are chemically inert to background electrolyte ions. Multiple sets of surface complexation reactions (i.e., ionization and ion adsorption) were formulated within the framework of three electrostatic models (CCM, BSM, and TLM) and their ability to simulate proton adsorption and electrokinetic data was evaluated. A one-site, 3-pK, constant capacitance surface complexation model (SCM) reproduces the proton adsorption data at all ionic strengths and qualitatively predicts the electrokinetic behavior of gaspeite suspensions. Nevertheless, the strong ionic strength dependence exhibited by the optimized SCM parameters reveals that the influence of the background electrolyte on the surface reactivity of gaspeite is not fully accounted for by conventional electrostatic and surface complexation models and suggests that future refinements to the underlying theories are warranted.

  9. Metal cation exchange reactions of ore minerals in Fe-Mn crusts of the Marcus Wake Rise (Pacific Ocean) in aqueous-salt solutions

    NASA Astrophysics Data System (ADS)

    Novikov, G. V.; Bogdanova, O. Yu.; Melnikov, M. E.; Drozdova, A. N.; Lobus, N. V.; Shulga, N. A.

    2017-12-01

    It is shown that the reaction ability of metal cations of ore minerals in Fe-Mn crusts of the Marcus Wake Rise increases in the following manner: (Co2+ < Cu2+ < Ni2+) < (Mg2+ < Mn2+ < K+ ≈ Ca2+ ≈ Na+). The composition of the exchange complex of the ore minerals is constant and includes these metal cations. Ca2+ and Na+ are major contributors to the exchange capacity of the ore minerals. The capacity of the ore minerals by cations of alkali and base metals is 0.43-0.60 and 2.08-2.70 mg-equiv/g, respectively. The exchange capacity of the ore minerals by cations of base metals increases linearly with the increase in the MnO2 content of the crust and does not depend on the geographical locations of the Marcus Wake guyots.

  10. Potential Aquifer Vulnerability in Regions Down-Gradient from Uranium In Situ Recovery (ISR) Sites

    EPA Science Inventory

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rock...

  11. A literature review of interaction of oxidized uranium species and uranium complexes with soluble organic matter

    USGS Publications Warehouse

    Jennings, Joan K.; Leventhal, J.S.

    1978-01-01

    Organic material is commonly found associated with uranium ores in sandstone-type deposits. This review of the literature summarizes the classes and separations of naturally occurring organic material but the emphasis is on soluble organic species. The main class of materials of interest is humic substances which are high-molecular-weight complex molecules that are soluble in alkaline solution. These humic substances are able to solubilize (make soluble) minerals and also to complex [by ion exchange and (or) chelation] many cations. The natural process of soil formation results in both mineral decomposition and element complexing by organic species. Uranium in solution, such as ground water, can form many species with other elements or complexes present depending on Eh and pH. In natural systems (oxidizing Eh, pH 5-9) the uranium is usually present as a complex with hydroxide or carbonate. Thermodynamic data for these species are presented. Interacting metals and organic materials have been observed in nature and studied in the laboratory by many workers in diverse scientific disciplines. The results are not easily compared. Measurements of the degree of complexation are reported as equilibrium stability constant determinations. This type of research has been done for Mn, Fe, Cu, Zn, Pb, Ni, Co, Mg, Ca, Al, and to a limited degree for U. The use of Conditional Stability Constants has given quantitative results in some cases. The methods utilized in experiments and calculations are reviewed.

  12. The speciation and transport of palladium in hydrothermal fluids: Experimental modeling and thermodynamic constraints

    NASA Astrophysics Data System (ADS)

    Tagirov, Boris R.; Baranova, Nina N.; Zotov, Alexandr V.; Akinfiev, Nikolay N.; Polotnyanko, Natalya A.; Shikina, Nadezhda D.; Koroleva, Lyudmila A.; Shvarov, Yuri V.; Bastrakov, Evgeniy N.

    2013-09-01

    The solubility of PdO(cr) was measured in NaOH (to 0.1m, mol/kg H2O) solutions at 400 °C, 1 kbar, and the solubility of Pd(cr) was determined at 400-500 °C, 1 kbar in acidic chloride solutions (to 1.5m NaCl) buffered with respect to hydrogen. The Pd electrode potential Eo(PdCl42-)/Pd for the reaction PdCl42- + 2e- = Pd(cr) + 4 Cl- was determined at 50 and 70 °C in 1m chloride solutions. These data, together with reliable literature values, were used for calculation of the standard thermodynamic properties and the formation constants for Pd-OH, Pd-Cl, and Pd-S-HS complexes within the framework of the revised Helgeson-Kirkham-Flowers model. It was found that PdCl3- and PdCl42- become the most important Pd complexes in high temperature (t > 300 °C), chloride-rich fluids, and PdCl42- predominates at m(Cl) > 0.1. The stability of Pd-Cl complexes increases sharply with increase in temperature. The near-neutral chloride-sulfide solutions (1m NaCl, <0.1m Stot) can transport Pd at ppm concentration levels at t ⩾ 600 °C, whereas decrease in temperature and increase in pH can lead to effective deposition of Pd minerals. The stability of Pd-S-HS complexes (Pd(°, Pd(HS)3- and PdS(HS)2-) decreases with increase in temperature. Therefore, the role of these complexes in hydrothermal transport of palladium is restricted to the low temperature solutions (t < 100 °C) and sulfur can be considered an efficient depositing agent for Pd. The calculated HKF Equation of State parameters were used to predict thermodynamic properties of Pd2+, Pd-OH, Pd-Cl, and Pd-S-HS complexes to 700 °C, 2 kbar. These parameters are incorporated into the FreeGs web-enabled database (http://www-b.ga.gov.au/minerals/research/methodology/geofluids/thermo/calculator/search.jsp) that can be used for geochemical application of thermodynamic data obtained in the present study.

  13. Interaction between Al3+ and acrylic acid and polyacrylic acid in acidic aqueous solution: a model experiment for the behavior of Al3+ in acidified soil solution.

    PubMed

    Etou, Mayumi; Masaki, Yuka; Tsuji, Yutaka; Saito, Tomoyuki; Bai, Shuqin; Nishida, Ikuko; Okaue, Yoshihiro; Yokoyama, Takushi

    2011-01-01

    From the viewpoint of the phytotoxicity and mobility of Al(3+) released from soil minerals due to soil acidification, the interaction between Al(3+) and acrylic acid (AA) and polyacrylic acid (PAA) as a model compound of fulvic acid was investigated. The interaction was examined at pH 3 so as to avoid the hydrolysis of Al(3+). The interaction between Al(3+) and AA was weak. However, the interaction between Al(3+) and PAA was strong and depended on the initial (COOH in PAA)/Al molar ratio (R(P)) of the solution. For the range of 1/R(P), the interaction between Al(3+) and PAA can be divided into three categories: (1) 1:1 Al-PAA-complex (an Al(3+) combines to a carboxyl group), (2) intermolecular Al-PAA-complex (an Al(3+) combines to more than 2 carboxyl groups of other Al-PAA-complexes) in addition to the 1:1 Al-PAA-complex and (3) precipitation of intermolecular complexes. In conclusion, R(P) is an important factor affecting the behavior of Al(3+) in acidic soil solution.

  14. Geothermal resources and energy complex use in Russia

    NASA Astrophysics Data System (ADS)

    Svalova, V.

    2009-04-01

    Geothermal energy use is the perspective way to clean sustainable development of the world. Russia has rich high and low temperature geothermal resources and makes good steps in their use. In Russia the geothermal resources are used predominantly for heat supply both heating of several cities and settlements on Northern Caucasus and Kamchatka with a total number of the population 500000. Besides in some regions of country the deep heat is used for greenhouses of common area 465000 m2. Most active the hydrothermal resources are used in Krasnodar territory, Dagestan and on Kamchatka. The approximately half of extracted resources is applied for heat supply of habitation and industrial puttings, third - to a heating of greenhouses, and about 13 % - for industrial processes. Besides the thermal waters are used approximately on 150 health resorts and 40 factories on bottling mineral water. The most perspective direction of usage of low temperature geothermal resources is the use of heat pumps. This way is optimal for many regions of Russia - in its European part, on Ural and others. The electricity is generated by some geothermal power plants (GeoPP) only in the Kamchatka Peninsula and Kuril Islands. At present three stations work in Kamchatka: Pauzhetka GeoPP (11MW e installed capacity) and two Severo-Mutnovka GeoPP ( 12 and 50 MWe). Moreover, another GeoPP of 100 MVe is now under preparation in the same place. Two small GeoPP are in operation in Kuril's Kunashir Isl, and Iturup Isl, with installed capacity of 2,б MWe and 6 MWe respectively. There are two possible uses of geothermal resources depending on structure and properties of thermal waters: heat/power and mineral extraction. The heat/power direction is preferable for low mineralized waters when valuable components in industrial concentration are absent, and the general mineralization does not interfere with normal operation of system. When high potential geothermal waters are characterized by the high mineralization and propensity for scaling, the extraction of mineral components should be considered. The mineral-extraction direction is basic for geothermal waters, containing valuable components in industrial quantities. Thus, the ability to extract minerals is dependent upon the use and maturity of recovery technologies. For such waters the heat is an added product, which use can raise efficiency of basic mineral production processes and even to save fuel. The process of extraction of valuable components should be dominant in such systems. The most significant deposits of thermal waters represent the brines containing from 35 up to 400 and more g/l of salts. They are mineral raw materials for many chemical elements. Many brines can become deposits of valuable chemical elements: cesium, boron, strontium, tantalum, magnesium, calcium, tungsten, etc. Basically it is possible to recover iodine, bromine, boron, chloride salts of ammonium, potassium, sodium, calcium and magnesium from natural solutions using inexpensive technological solutions. Extraction of other chemical elements is complicated due to high cost of technology. There is a perspective method of ion-exchange pitches for selective extraction of certain components from natural waters. In a basis of the method there is the principle of selective sorption of ions of useful elements or their complexes in solutions with special compounds. Works of some scientific institutes in Russia strive to create the procedures of chemical processing of hydrothermal minerals to expand the spheres of its economic application. Many laboratory and natural tests on extraction of valuable components from thermal waters confirm the necessity and an opportunity of complex use of this nonconventional raw material. It is planned to recover I, Br, KCl, CaCl, NaCl from brines in Yaroslavl area. New methods of mineral and valuable elements extraction from industrial solutions are developed on the basis of biosorbent use.

  15. Environmental mineralogy - Understanding element behavior in ecosystems

    NASA Astrophysics Data System (ADS)

    Brown, Gordon E., Jr.; Calas, Georges

    2011-02-01

    Environmental Mineralogy has developed over the past decade in response to the recognition that minerals are linked in many important ways with the global ecosystem. Minerals are the main repositories of the chemical elements in Earth's crust and thus are the main sources of elements needed for the development of civilization, contaminant and pollutant elements that impact global and local ecosystems, and elements that are essential plant nutrients. These elements are released from minerals through natural processes, such as chemical weathering, and anthropogenic activities, such as mining and energy production, agriculture and industrial activities, and careless waste disposal. Minerals also play key roles in the biogeochemical cycling of the elements, sequestering elements and releasing them as the primary minerals in crustal rocks undergo various structural and compositional transformations in response to physical, chemical, and biological processes that produce secondary minerals and soils. These processes have resulted in the release of toxic elements such as arsenic in groundwater aquifers, which is having a major impact on the health of millions of people in South and Southeast Asia. The interfaces between mineral surfaces and aqueous solutions are the locations of most chemical reactions that control the composition of the natural environment, including the composition of natural waters. The nuclear fuel cycle, from uranium mining to the disposition of high-level nuclear waste, is also intimately related to minerals. A fundamental understanding of these processes requires molecular-scale information about minerals, their bulk structures and properties such as solubility, their surfaces, and their interactions with aqueous solutions, atmospheric and soil gases, natural organic matter, and biological organisms. Gaining this understanding is further complicated by the presence of natural, incidental, and manufactured nanoparticles in the environment, which are becoming increasingly important due to the rapidly developing field of nanotechnology. As a result of this complexity, Environmental Mineralogy requires the use of the most modern molecular-scale analytical and theoretical methods and overlaps substantially with closely related fields such as Environmental Sciences, low-temperature Geochemistry, and Geomicrobiology. This paper provides brief overviews of the above topics and discusses the complexity of minerals, natural vs. anthropogenic inputs of elements and pollutants into the biosphere, the role of minerals in the biogeochemical cycling of elements, natural nanoparticles, and the Environmental Mineralogy of three major potential pollutant elements (Hg, As and U).

  16. Barite-polymetallic mineralization of Zmeinogorsk ore district and some genetic aspects of its formation

    NASA Astrophysics Data System (ADS)

    Bestemianova, K. V.; Grinev, O. M.

    2017-12-01

    Zmeinogorsky ore district is located in the northwest part of Ore Altai megatrough, which has long-lasting history of its development and complicated geological structure. Within the ore district, which is the northwest part of the devonian Zmeinogorsk-Bystrushinsky trough, ore mineralization is associated with the system of northwest border faults and cross branch faults. There were four main stages and five phases of minerogenesis. The first stage is the stage of oregenesis beginning and quartz-chlorite-sericite wall-rock alteration rocks formation. Ore deposition and intense tectonics took place during the second stage. The third stage is the most longstanding and productive ore formation stage. There are five distinct minerogenesis phases within this stage. The fourth stage expressed in erosion development and supergene alteration of already formed ore bodies with oxidation zone formation. Main ore minerals are pyrite, chalcopyrite, sphalerite and galena. Minor minerals are tetrahedrite, bornite, tennantite and chalcocite. Precious metals minerals are acanthite, gold, electrum, gold and silver amalgams. Barren minerals are barite, quartz, calcite, gypsum. According to obtained data average isotopic composition of third stage sulphides is: pyrite -0,2‰, chalcopyrite 0‰, galena +0,5‰, sphalerite -1,2‰ for the first complex; chalcopyrite -1,9‰, galena -3,4‰, sphalerite -2,3‰, tetrahedrite -3,7‰ for the second complex; tennantite -12,8‰, bornite -8,9‰ for the third complex. Sulfur isotopic compoisiton variations indicate source inhomogeneity. Thus, there was dominant source change from mantle one in the beginning to crustal one in the end. Main oregenesis stages took place in the range of temperatures between 170 and 210°С and in the mineral-forming solutions salinity range between 3 and 10 wt % NaCl equiv.

  17. Impact of environmental chemistry on mycogenic Mn oxide minerals

    NASA Astrophysics Data System (ADS)

    Santelli, C. M.; Farfan, G. A.; Post, A.; Post, J. E.

    2012-12-01

    Manganese (Mn) oxide minerals are ubiquitous in aquatic and terrestrial environments and their presence can have broad environmental consequences. In particular, Mn oxides scavenge nutrients and metals, degrade complex organics, and oxidize a variety of inorganic contaminants. The "reactivity" of Mn oxides, however, is highly dependent upon crystallite size, composition, and structure, which are largely determined by environmental factors such as solution chemistry. It is has been suggested that most Mn oxides in terrestrial and aquatic environments are formed by microbial activity; indeed, a diversity of Mn(II)-oxidizing bacteria and fungi have been isolated and their mineral byproducts are consistent with those observed in natural systems. Previous studies showed that Mn(II)-oxidizing Ascomycete fungi produce highly-disordered, nanocrystalline Mn oxides that are structurally similar to synthetic δ-MnO2 or natural vernadite. Unlike related studies with Mn-oxidizing bacteria, Mn oxides produced by these fungi did not "age" or transform to more crystalline mineral phases with time. We hypothesize that fungal growth conditions, in particular the low concentration of cations, are inhibiting secondary mineral formation. The overall goal of this research is to examine the structure and speciation of fungally-precipitated Mn oxides with respect to fungal species, time, and concentration of soluble Mn(II), Na, and Ca - three environmentally relevant cations that promote the transformation of δ-MnO2 to more crystalline mineral phases such as feitknechtite, birnessite, or ranciéite. For this study, we examined the Mn oxides formed by different species of Mn(II)-oxidizing fungi (Pyrenochaeta sp., Stagonospora sp., Plectosphaerella cucumerina., and Acremonium strictum). Isolates were grown for 8 or 16 days in a nutrient lean media consisting of yeast extract, trace elements and 0.2 mM MnCl2 supplemented with varying concentrations of Na, Ca, or Mn(II) compounds. The concentration of Mn(II) in solution was held constant (0, 0.15, 0.5, 1.0 and 1.5 mM) only in the Mn-supplemented experiment. Mycogenic Mn oxides were analyzed using X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS). During the experiments, it was observed that each fungal species responded differently to the varying growth media. The addition of Na inhibited growth and oxidation of several species, and the highest concentrations of Mn in solution proved toxic to a few species. Fungi grown with Na produced a highly-disordered phyllomanganate phase similar to birnessite or vernadite. During growth in Ca-rich solutions, however, a more crystalline ranciéite-like phase was formed with 10Å interlayer spacing that collapsed to 7Å upon drying. Although a feitknechtite-like phase was expected in experiments with Mn concentrations greater than 0.5 mM, a birnessite-like phase was formed. This suggests that a more complex solution chemistry is required for transformation to the more crystalline phases, or the presence of the fungal biomass is inhibiting the ripening of the Mn oxides. This information sheds lights on how growth conditions impact the primary (biologically-induced) and secondary (abiotic reactions) mineral products of fungal Mn(II)-oxidation, which ultimately influences the overall impact of these minerals in the environment.

  18. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications.

    PubMed

    Li, Hongbo; Dong, Xiaoling; da Silva, Evandro B; de Oliveira, Letuzia M; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Biochar produced by thermal decomposition of biomass under oxygen-limited conditions has received increasing attention as a cost-effective sorbent to treat metal-contaminated waters. However, there is a lack of information on the roles of different sorption mechanisms for different metals and recent development of biochar modification to enhance metal sorption capacity, which is critical for biochar field application. This review summarizes the characteristics of biochar (e.g., surface area, porosity, pH, surface charge, functional groups, and mineral components) and main mechanisms governing sorption of As, Cr, Cd, Pb, and Hg by biochar. Biochar properties vary considerably with feedstock material and pyrolysis temperature, with high temperature producing biochars with higher surface area, porosity, pH, and mineral contents, but less functional groups. Different mechanisms dominate sorption of As (complexation and electrostatic interactions), Cr (electrostatic interactions, reduction, and complexation), Cd and Pb (complexation, cation exchange, and precipitation), and Hg (complexation and reduction). Besides sorption mechanisms, recent advance in modifying biochar by loading with minerals, reductants, organic functional groups, and nanoparticles, and activation with alkali solution to enhance metal sorption capacity is discussed. Future research needs for field application of biochar include competitive sorption mechanisms of co-existing metals, biochar reuse, and cost reduction of biochar production. Published by Elsevier Ltd.

  19. Changes in mineral-associated soil organic carbon pools across a harvested temperate forest chronosequence

    NASA Astrophysics Data System (ADS)

    MacIntyre, S.; Kellman, L. M.; Gabriel, C. E.; Diochon, A.

    2016-12-01

    Due to their substantial pool size, changes in mineral soil carbon (C) stores have the potential to generate significant changes in forest soil C budgets. Harvesting represents a significant land use disturbance that can alter soil organic carbon (SOC) stores, with a number of field studies documenting large losses of SOC following clearcut harvesting. However, little is known about how the distribution of SOC changes amongst mineral-associated pools of differing crystallinity following this disturbance. The objective of this study was to quantify changes in mineral-associated SOC pool sizes through depth and time for podzol soils (mineral soil depths of 0-5, 5-10, 10-15, 15-20, 20-35, and 35-50 cm) of a temperate red spruce harvest chronosequence (representing stand ages of 1yr, 15yr, 45yr, 80yr, and 125+yr) in Nova Scotia, Canada. Samples were subjected to a 4-step sequential chemical dissolution to selectively extract C from mineral pools of increasing crystallinity: soluble minerals (deionized water), organo-metal complexes (Na-pyrophosphate), poorly crystalline minerals (hydroxylamine), and crystalline minerals (Na-dithionite HCl). Carbon concentrations were calculated for the solutions acquired during each stage of the selective dissolution process, providing a time series of changes in mineral-associated C through depth and time following harvesting. A loss of SOC from the organo-metal complexed pool following harvesting was observed, particularly in the deeper mineral soil (20-50cm), with this pool dominating the results. In the soluble and poorly crystalline pools, losses of C were also observed from the deeper mineral soil. Of the 5 sites, the 125+yr age class had the highest concentration of SOC associated with crystalline minerals, with the 0-5cm depth stratum holding a large portion of this C. This study may be useful as a model system for understanding how harvesting disturbance alters mineral pool SOM dynamics in humid temperate forest ecosystems.

  20. Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O

    NASA Astrophysics Data System (ADS)

    Pabalan, Roberto T.; Pitzer, Kenneth S.

    1987-09-01

    Mineral solubilities in binary and ternary electrolyte mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O are calculated to high temperatures using available thermodynamic data for solids and for aqueous electrolyte solutions. Activity and osmotic coefficients are derived from the ion-interaction model of Pitzer (1973, 1979) and co-workers, the parameters of which are evaluated from experimentally determined solution properties or from solubility data in binary and ternary mixtures. Excellent to good agreement with experimental solubilities for binary and ternary mixtures indicate that the model can be successfully used to predict mineral-solution equilibria to high temperatures. Although there are currently no theoretical forms for the temperature dependencies of the various model parameters, the solubility data in ternary mixtures can be adequately represented by constant values of the mixing term θ ij and values of ψ ijk which are either constant or have a simple temperature dependence. Since no additional parameters are needed to describe the thermodynamic properties of more complex electrolyte mixtures, the calculations can be extended to equilibrium studies relevant to natural systems. Examples of predicted solubilities are given for the quaternary system NaCl-KCl-MgCl 2-H 2O.

  1. Integrated Approach for Understanding Impurity Adsorption on Calcite: Mechanisms for Micro-scale Surface Phenomena

    NASA Astrophysics Data System (ADS)

    Vinson, M. D.; Arvidson, R. S.; Luttge, A.

    2004-12-01

    A longstanding goal within the field of environmental geochemistry has been the development of a fundamental understanding of the kinetics that governs the interactions of solution-borne impurities with the calcite mineral surface. Recent dissolution experiments using Mg2+, Mn2+, and Sr2+ have shown distinct differences in the interaction of these three impurity ions with the calcite crystal surface. Because the dissolution of carbonate minerals in soils and sediments influences the uptake and migration of groundwater contaminants, a rigorous understanding of the basic processes that occur at the mineral-fluid interface is necessary. We have used vertical scanning interferometry (VSI) coupled with scanning probe microscopy (SPM) to examine calcite crystal dissolution in the presence of Mg2+, Mn2+, and Sr2+, all known dissolution inhibitors and possible groundwater contaminants. We have studied the kinetics of impurity-crystal interactions at a pH 8.8, and in the presence or absence of dissolved inorganic carbon. Our data show that, when individually introduced into undersaturated solutions, Mg2+ and Mn2+ are shown to activate the calcite crystal surface, resulting in enhanced etch pit nucleation rates and step density. Conversely, Sr2+ is shown to cause passivation of the calcite surface. The effect is intensified when solutions are saturated with respect to atmospheric CO2. Results indicate that aqueous CO32- (or HCO3-) may influence how aqueous metal ionic complexes interact with the crystal surface. Furthermore, the influence is differently exhibited, and passivation or activation ultimately depends on the properties of the diffusing metal ion or metal-hydroxide complex. These properties include for example, differences in hydration enthalpy, the effective ionic radius, and electron shell configuration.

  2. Minimization of free radical damage by metal catalysis of multivitamin/multimineral supplements.

    PubMed

    Rabovsky, Alexander B; Komarov, Andrei M; Ivie, Jeremy S; Buettner, Garry R

    2010-11-23

    Multivitamin/multimineral complexes are the most common dietary supplements. Unlike minerals in foods that are incorporated in bioorganic structures, minerals in dietary supplements are typically in an inorganic form. These minerals can catalyze the generation of free radicals, thereby oxidizing antioxidants during digestion. Here we examine the ability of a matrix consisting of an amino acid and non-digestible oligosaccharide (AAOS) to blunt metal-catalyzed oxidations. Monitoring of ascorbate radical generated by copper shows that ascorbate is oxidized more slowly with the AAOS matrix than with copper sulfate. Measurement of the rate of oxidation of ascorbic acid and Trolox® by catalytic metals confirmed the ability of AAOS to slow these oxidations. Similar results were observed with iron-catalyzed formation of hydroxyl radicals. When compared to traditional forms of minerals used in supplements, we conclude that the oxidative loss of antioxidants in solution at physiological pH is much slower when AAOS is present.

  3. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil.

    PubMed

    Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej

    2016-04-01

    Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic>citric>acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric>oxalic>acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil

    NASA Astrophysics Data System (ADS)

    Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej

    2016-04-01

    Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12 h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic > citric > acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric > oxalic > acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil.

  5. Potential Aquifer Vulnerability in Regions Down-Gradient from ...

    EPA Pesticide Factsheets

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of these uranium ores is a process of contacting the uranium mineral deposit with leaching (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality impacts from: 1) potential excursions of leaching solutions away from the injection zone into down-dip, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies

  6. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system.

    PubMed

    Vidyadhar, A; Hanumantha Rao, K

    2007-02-15

    The adsorption mechanism of mixed cationic alkyl diamine and anionic sulfonate/oleate collectors at acidic pH values was investigated on microcline and quartz minerals through Hallimond flotation, electrokinetic and diffuse reflectance FTIR studies. In the presence of anionic collectors, neither of the minerals responded to flotation but the diamine flotation of the minerals was observed to be pH and concentration dependent. The presence of sulfonate enhanced the diamine flotation of the minerals by its co-adsorption. The difference in surface charge between the minerals at pH 2 was found to be the basis for preferential feldspar flotation from quartz in mixed diamine/sulfonate collectors. The infrared spectra revealed no adsorption of sulfonate collector when used alone but displayed its co-adsorption as diamine-sulfonate complex when used with diamine. The presence of sulfonate increased the diamine adsorption due to a decrease in the electrostatic head-head repulsion between the adjacent surface ammonium ions and thereby increasing the lateral tail-tail hydrophobic bonds. The mole ratio of diamine/sulfonate was found to be an important factor in the orientation of alkyl chains and thus the flotation response of minerals. The increase in sulfonate concentration beyond diamine concentration leads to the formation of soluble 1:2 diamine-sulfonate complex or precipitate and the adsorption of these species decreased the flotation since the alkyl chains are in chaotical orientation with a conceivable number of head groups directing towards the solution phase.

  7. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID MINERALS (OTHER THAN COAL) EXPLORATION AND...

  8. Mineralization of gellan gum hydrogels with calcium and magnesium carbonates by alternate soaking in solutions of calcium/magnesium and carbonate ion solutions.

    PubMed

    Lopez-Heredia, Marco A; Łapa, Agata; Reczyńska, Katarzyna; Pietryga, Krzysztof; Balcaen, Lieve; Mendes, Ana C; Schaubroeck, David; Van Der Voort, Pascal; Dokupil, Agnieszka; Plis, Agnieszka; Stevens, Chris V; Parakhonskiy, Bogdan V; Samal, Sangram Keshari; Vanhaecke, Frank; Chai, Feng; Chronakis, Ioannis S; Blanchemain, Nicolas; Pamuła, Elżbieta; Skirtach, Andre G; Douglas, Timothy E L

    2018-04-27

    Mineralization of hydrogels is desirable prior to applications in bone regeneration. CaCO 3 is a widely used bone regeneration material and Mg, when used as a component of calcium phosphate biomaterials, has promoted bone-forming cell adhesion and proliferation and bone regeneration. In this study, gellan gum (GG) hydrogels were mineralized with carbonates containing different amounts of calcium (Ca) and magnesium (Mg) by alternate soaking in, firstly, a calcium and/or magnesium ion solution and, secondly, a carbonate ion solution. This alternate soaking cycle was repeated five times. Five different calcium and/or magnesium ion solutions, containing different molar ratios of Ca to Mg ranging from Mg-free to Ca-free were compared. Carbonate mineral formed in all sample groups subjected to the Ca:Mg elemental ratio in the carbonate mineral formed was higher than in the respective mineralizing solution. Mineral formed in the absence of Mg was predominantly CaCO 3 in the form of a mixture of calcite and vaterite. Increasing the Mg content in the mineral formed led to the formation of magnesian calcite, decreased the total amount of the mineral formed and its crystallinity. Hydrogel mineralization and increasing Mg content in mineral formed did not obviously improve proliferation of MC3T3-E1 osteoblast-like cells or differentiation after 7 days. This article is protected by copyright. All rights reserved.

  9. Influence of an americium solid phase on americium concentrations in solutions

    NASA Astrophysics Data System (ADS)

    Rai, Dhanpat; Strickert, R. G.; Moore, D. A.; Serne, R. J.

    1981-11-01

    Americium-241 concentrations in solutions contacting contaminated sediments for up to 2 yr were measured as a function of pH. Steady-state concentrations were reached within a few days. The solubility-limited Am concentration was found to decrease approximately 10-fold with one unit increase in pH. The log equilibrium constant for the solubility of Am (soil) solid [Am (soil) + H + ⇌ Am (aq complex)+] was found to be -4.12. The predictions based upon thermodynamic data suggest that Am (aq complex)+ is likely to be Am(OH) 2+. Although the chemical formula of Am (soil) was not determined, it does not appear to be Am(OH) 3(a). Published data on sorption coefficients of Am by different rocks, soils, and minerals were critically evaluated. Final Am solution concentrations calculated from the sorption coefficients of a variety of earth materials with several solutions agreed well with the concentrations predicted from the solubility of Am (soil) solid, indicating that the sorption coefficient data are controlled by Am precipitation.

  10. Experimental dynamic metamorphism of mineral single crystals

    USGS Publications Warehouse

    Kirby, S.H.; Stern, L.A.

    1993-01-01

    This paper is a review of some of the rich and varied interactions between non-hydrostatic stress and phase transformations or mineral reactions, drawn mainly from results of experiments done on mineral single crystals in our laboratory or our co-authors. The state of stress and inelastic deformation can enter explicitly into the equilibrium phase relations and kinetics of mineral reactions. Alternatively, phase transformations can have prominent effects on theology and on the nature of inelastic deformation. Our examples represent five types of structural phase changes, each of which is distinguished by particular mechanical effects. In increasing structural complexity, these include: (1) displacive phase transformations involving no bond-breaking, which may produce anomalous brittle behavior. A primary example is the a-?? quartz transition which shows anomalously low fracture strength and tertiary creep behavior near the transition temperature; (2) martensitic-like transformations involving transformation strains dominated by shear deformation. Examples include the orthoenstatite ??? clinoenstatite and w u ??rtzite ??? sphalerite transformations; (3) coherent exsolution or precipitation of a mineral solute from a supersaturated solid-solution, with anisotropy of precipitation and creep rates produced under nonhydrostatic stress. Examples include exsolution of corundum from MgO ?? nAl2O3 spinels and Ca-clinopyroxene from orthopyroxene; (4) order-disorder transformations that are believed to cause anomalous plastic yield strengthening, such as MgO - nAl2O3 spinels; and (5) near-surface devolatilization of hydrous silicate single-crystals that produces a fundamental brittleness thought to be connected with dehydration at microcracks at temperatures well below nominal macroscopic dehydration temperatures. As none of these interactions between single-crystal phase transformations and non-hydrostatic stress is understood in detail, this paper serves as a challenge to field structural geologists to test whether interactions of these types occur in nature, and to theoreticians to reach a deeper understanding of the complex relations between phase transformations, the local state of stress and associated deformation and deformation rates. ?? 1993.

  11. Influence of mineral colloids and humic substances on uranium(VI) transport in water-saturated geologic porous media

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Cheng, Tao; Wu, Yang

    2014-12-01

    Mineral colloids and humic substances often co-exist in subsurface environment and substantially influence uranium (U) transport. However, the combined effects of mineral colloids and humic substances on U transport are not clear. This study is aimed at quantifying U transport and elucidating geochemical processes that control U transport when both mineral colloids and humic acid (HA) are present. U-spiked solutions/suspensions were injected into water-saturated sand columns, and U and colloid concentrations in column effluent were monitored. We found that HA promoted U transport via (i) formation of aqueous U-HA complexes, and (ii) competition against aqueous U for surface sites on transport media. Illite colloids had no influence on U transport at pH 5 in the absence of HA due to low mobility of the colloids. At pH 9, U desorbed from mobile illite and the presence of illite decreased U transport. At pH 5, high U transport occurred when both illite colloids and HA were present, which was attributed to enhanced U adsorption to illite colloids via formation of ternary illite-HA-U surface complexes, and enhanced illite transport due to HA attachment to illite and transport media. This study demonstrates that the combined effects of mineral colloids and HA on contaminant transport is different from simple addition of the individual effect.

  12. Arsenic-enriched Cu-Ni-PGE Mineralization in Wetlegs, Duluth Complex, St. Louis County, Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Raič, Sara; Mogessie, Aberra; Benkó, Zsolt; Molnár, Ferenc; Hauck, Steven; Severson, Mark

    2014-05-01

    The magmatic sulfide ore deposit Wetlegs is found within the troctolitic Partridge River Intrusion (PRI) of the 1.1 Ga Duluth Complex. It is of great interest, due to its highly mineralized zones containing Cu-Ni-Fe-Sulfides, platinum-group minerals (PGM) and arsenic-enriched ores. Sulfides appear as disseminated patches of primary pyrrhotite, chalcopyrite, Co-rich pentlandite and cubanite within a plagioclase, olivine and pyroxene matrix. Ores associated with hydrous silicate phases are secondary chalcopyrite, arsenic-enriched minerals, PGMs like sperrylite, stibiopalladinite and other precious minerals such as clausthalite, parkerite and electrum. Based on textural relationships, mineral compositions and sulfur isotopic studies, a paragenetic sequence of ore genesis in Wetlegs could be reconstructed starting with the formation of composite sulfides such as pyrrhotite, chalcopyrite, Co-enriched pentlandite and cubanite (at increased sulfur fugacity), defined as the Sulfide Stage. The Arsenide Stage is characterized by increased arsenic fugacity and a strong drop in sulfur fugacity with the following succession of precipitated minerals: 1) Monoarsenides (nickeline) found as remnants in diarsenides. 2) Diarsenides comprising members of the rammelsbergite - safflorite - loellingite solid-solution series (RSLss) and minerals of the rammelsbergite - loellingite solid-solutions series (RLss). Their crystallization temperature is between 550 and 625°C, estimated with solvus lines postulated by ROSEBOOM (1963) and GERVILLA & RØNSBO (1992) in the system CoAs2 - NiAs2 - FeAs2. This is subsequently followed by an Arsenide/Sulfide Stage which marks the formation of sulfarsenides of the cobaltite - gersdorffite solid-solution series at increased sulfur fugacity (drop in arsenic fugacity). Sulfarsenides display a clear cobalt trend from core to rim, and formed around 650°C with a decrease in temperature to ~ 500°C, documented by cobalt enriched rims, based on the solvus lines form HEM & MAKOVICKY (2004) and HEM (2006) in the system CoAsS - NiAsS - FeAsS. The presence of arsenides, sulfarsenides and graphite in footwall rocks may suggest the metasedimentary Virginia Formation as a potential source of As, Sb, and C. These elements were remobilized by hydrothermal fluids and introduced in the crystallizing magma to form arsenic-enriched Cu-Ni-PGE mineralization within the basal ultramafic rocks. δ34S of sulfides from representative samples of Wetlegs vary between 2.04 and 22.80 ‰. This suggests the involvement of crustal materials in addition to the magmatic source of sulfur in the Cu-Ni-PGE mineralization, as documented in previous studies (MOGESSIE & STUMPFL, 1992). We acknowledge financial support by the Austrian Research Fund (P23157-N21) to A. Mogessie GERVILLA, F. & RØNSBO, J. (1992): Neues Jahrb. Mineral., Monatsh. 13, pp. 193-206. HEM, S. R. (2006): Chem. Geol. 225, pp. 291-303. HEM. S. R. & MAKOVICKY, E. (2004): Canadian Mineralogist, v. 42, pp. 63-86. MOGESSIE, A. & STUMPLF, E. F. (1992): Australian Journal of Earth Sciences, v. 39, pp. 315-325. ROSEBOOM, E. H. (1963): American Mineralogist, v. 48, pp. 271-299.

  13. Colorimetric determination of selenium in mineral premixes .

    PubMed

    Hurlbut, J A; Burkepile, R G; Geisler, C A; Kijak, P J; Rummel, N G

    1997-01-01

    A method is described for determination of sodium selenite or sodium selenate in mineral-based premixes. It is based on the formation of intense-yellow piazselenol by Se(IV) and 3,3'-diaminobenzidine. Mineral premixes typically contain calcium carbonate as a base material and magnesium carbonate, silicon dioxide, and iron(III) oxide as minor components or additives. In this method, the premix is digested briefly in nitric acid, diluted with water, and filtered to remove any Iron(III) oxide. Ethylenediaminetetraacetic acid and HCl are added to the filtrate, which is heated to near boiling for 1 h to convert any selenate to selenite. After heating, the solution is buffered between pH 2 and 3 with NaOH and formic acid and treated with NH2OH and EDTA; any Se present forms a complex with 3,3'-diaminobenzidine at 60 degrees C. The solution is made basic with NH4OH, and the piazselenol is extracted into toluene. The absorbance of the complex in dried toluene is measured at 420 nm. The method was validated independently by 2 laboratories. Samples analyzed included calcium carbonate fortified with 100, 200, and 300 micrograms Se in the form of sodium selenite or sodium selenate, a calcium carbonate premix containing sodium selenite, a calcium carbonate premix containing sodium selenate, and a commercial premix; 5 replicates of each sample type were analyzed by each laboratory. Average recoveries ranged from 89 to 109% with coefficients of variation from 1.2 to 13.6%.

  14. Precipitation and Dissolution of Uranyl Phosphates in a Microfluidic Pore Structure

    NASA Astrophysics Data System (ADS)

    Werth, C. J.; Fanizza, M.; Strathmann, T.; Finneran, K.; Oostrom, M.; Zhang, C.; Wietsma, T. W.; Hess, N. J.

    2011-12-01

    The abiotic precipitation of uranium (U(VI)) was evaluated in a microfluidic pore structure (i.e. micromodel) to assess the efficacy of using a phosphate amendment to immobilize uranium in groundwater and mitigate the risk of this contaminant to potential down-gradient receptor sites. U(VI) was mixed transverse to the direction of flow with hydrogen phosphate (HPO42-), in the presence or absence of calcium (Ca2+) or sulfate (SO42-), in order to identify precipitation rates, the morphology and types of minerals formed, and the stability of these minerals to dissolution with and without bicarbonate (HCO3-) present. Raman backscattering spectroscopy and micro X-ray diffraction (μ-XRD) results both showed that the only mineral precipitated was chernikovite (also known as hydrogen uranyl phosphate; UO2HPO4), even though the formation of other minerals were thermodynamically favored depending on the experimental conditions. Precipitation and dissolution rates varied with influent conditions. Relative to when only U(VI) and HPO42- were present, precipitation rates were 2.3 times slower when SO42- was present, and 1.4 times faster when Ca2+ was present. These rates were inversely related to the size of crystals formed during precipitation. Dissolution rates for chernikovite increased with increasing HCO3- concentrations, consistent with formation of uranyl carbonate complexes in aqueous solution, and they were the fastest for chernikovite formed in the presence of SO42-, and slowest for the chernikovite formed in the presence of Ca2+. These rates are related to the ratios of mineral-water interfacial area to mineral volume. Fluorescent tracer studies and laser confocal microscopy images showed that densely aggregated precipitates blocked pores and reduced permeability. The results suggest that changes in the solute conditions evaluated affect precipitation rates, crystal morphology, and crystal stability, but not mineral type.

  15. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID...

  16. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID...

  17. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID...

  18. Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions

    USGS Publications Warehouse

    Chiou, C.T.; Shoup, T.D.; Porter, P.E.

    1985-01-01

    Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral contents. In aqueous systems, observed sorptive characteristics suggest that solute partitioning into the soil-humic phase is the primary mechanism of soil uptake. By contrast, data obtained from organic solutions on dehydrated soil partitioning into humic phase and adsorption by soil minerals is influenced by the soil-moisture content and by the solvent medium from which the solute is sorbed. ?? 1985.

  19. The Effect of Solution Chemistry on Nucleation of Nesquehonite

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zhu, C.; Wang, Z.

    2016-12-01

    The interfaces between minerals and aqueous solutions are key to important Earth surface processes, including chemical weathering, mineral dissolution/precipitation, and pollutant absorption/release. Mineral surface properties, such as the surface structure and the surface energy, determine the outcomes of many geochemical reactions. Several factors could affect surface energy, but the effect of solution chemistry, particularly the solution stoichiometry, on the surface energy and nucleation process is poorly understood. The goal of this study is to understand the effect of solution chemistry on the nucleation of nesquehonite. Nesquehonite nucleation experiments were conducted in aqueous solutions having similar Mg2+/ CO32- activity ratios, but different saturation states and solution pH. The experimental results show that induction-time estimates from our precipitation experiments with similar Mg2+/CO32- activity ratios are consistent with classical nucleation theory (CNT), while the surface energy derived from CNT varies with Mg2+/CO32- activity ratios. Our observations can be explained by the different absorption behaviors of Mg2+ and CO32- and and/or reduced Gibbs free energies through better screening of the electric double layer. A surface energy model involving solution composition is developed that combines surface complexation with electrostatic models. The new model takes into account how surface charge may affect surface energy. It implies that the highest surface energy may occur around the point of zero charge (p.z.c), where the nucleation is fastest (or conversely, where the induction time is shortest) under low saturation states, but not under high saturation states. An accelerated attachment rate of monomers at the p.z.c. is consistent with high surface energy, since it represents higher reactivity of surface ions and less work needed to break the solvated water molecules. This study provides deeper insights into mechanisms of nesquehonite nucleation in nature, and guidelines for accelerating the precipitation rates of nesquehonite.

  20. Relevant role of dissolved humic matter in phosphorus bioavailability in natural and agronomical ecosystems through the formation of Humic-(Metal)-Phosphate complexes

    NASA Astrophysics Data System (ADS)

    Baigorri, Roberto; Urrutia, Óscar; Erro, Javier; Pazos-Pérez, Nicolás; María García-Mina, José

    2016-04-01

    Natural Organic Matter (NOM) and the NOM fraction present in soil solution (dissolved organic matter: DOM) are currently considered as fundamental actors in soil fertility and crop mineral nutrition. Indeed, decreases in crop yields as well as soil erosion are closely related to low values of NOM and, in fact, the use of organic amendments as both soil improvers and plant growth enhancers is very usual in countries with soils poor in NOM. This role of NOM (and DOM) seems to be associated with the presence of bio-transformed organic molecules (humic substances) with high cation chelating-complexing ability. In fact, bioavailable micronutrients with metallic character in soil solutions of alkaline and calcareous soils are forming stable complexes with DOM. This beneficial action of DOM also concerns other plant nutrients such as inorganic phosphate (Pi). Among the different mechanisms involved in the beneficial action of DOM on P bioavailability, the possible formation of poly-nuclear complexes including stable chemical bonds between negative binding sites in humic substances and Pi through metal bridges in soil solution might be relevant, especially in acidic soils. In fact, several studies have proven that these complexes can be obtained in the laboratory and are very efficient in prevent Pi soil fixation and improve Pi root uptake. However, clear experimental evidence about their presence in soil solutions of natural and agronomical soil ecosystems has not published yet. We present here experimental results supporting the real presence of stable Pi-metal-Humic (PMH) complexes in the soil solution of several acidic soils. The study is based on the physico-chemical characterization (31P-NMR, FTIR, TEM-EDAX, ICP-OES) of the DOM fraction isolated by ultrafiltration from the soil solution of several representative acidic soils. In average, more than 60 % of Pi was found in the soil solution humic fraction forming stable humic-metal (Fe, Al) complexes.

  1. Biogenic Manganese-Oxide Mineralization is Enhanced by an Oxidative Priming Mechanism for the Multi-Copper Oxidase, MnxEFG.

    PubMed

    Tao, Lizhi; Simonov, Alexandr N; Romano, Christine A; Butterfield, Cristina N; Fekete, Monika; Tebo, Bradley M; Bond, Alan M; Spiccia, Leone; Martin, Lisandra L; Casey, William H

    2017-01-26

    In a natural geochemical cycle, manganese-oxide minerals (MnO x ) are principally formed through a microbial process, where a putative multicopper oxidase MnxG plays an essential role. Recent success in isolating the approximately 230 kDa, enzymatically active MnxEFG protein complex, has advanced our understanding of biogenic MnO x mineralization. Here, the kinetics of MnO x formation catalyzed by MnxEFG are examined using a quartz crystal microbalance (QCM), and the first electrochemical characterization of the MnxEFG complex is reported using Fourier transformed alternating current voltammetry. The voltammetric studies undertaken using near-neutral solutions (pH 7.8) establish the apparent reversible potentials for the Type 2 Cu sites in MnxEFG immobilized on a carboxy-terminated monolayer to be in the range 0.36-0.40 V versus a normal hydrogen electrode. Oxidative priming of the MnxEFG protein complex substantially enhances the enzymatic activity, as found by in situ electrochemical QCM analysis. The biogeochemical significance of this enzyme is clear, although the role of an oxidative priming of catalytic activity might be either an evolutionary advantage or an ancient relic of primordial existence. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Surface Complexation Modeling of Fluoride Adsorption by Soil and the Role of Dissolved Aluminum on Adsorption

    NASA Astrophysics Data System (ADS)

    Padhi, S.; Tokunaga, T.

    2017-12-01

    Adsorption of fluoride (F) on soil can control the mobility of F and subsequent contamination of groundwater. Hence, accurate evaluation of adsorption equilibrium is a prerequisite for understanding transport and fate of F in the subsurface. While there have been studies for the adsorption behavior of F with respect to single mineral constituents based on surface complexation models (SCM), F adsorption to natural soil in the presence of complexing agents needs much investigation. We evaluated the adsorption processes of F on a natural granitic soil from Tsukuba, Japan, as a function of initial F concentration, ionic strength, and initial pH. A SCM was developed to model F adsorption behavior. Four possible surface complexation reactions were postulated with and without including dissolved aluminum (Al) and Al-F complex sorption. Decrease in F adsorption with the increase in initial pH was observed in between the initial pH range of 4 to 9, and a decrease in the rate of the reduction of adsorbed F with respect to the increase in the initial pH was observed in the initial pH range of 5 to 7. Ionic strength variation in the range of 0 to 100mM had insignificant effect on F removal. Changes in solution pH were observed by comparing the solution before and after F adsorption experiments. At acidic pH, the solution pH increased, whereas at alkaline pH, the solution pH decreased after equilibrium. The SCM including dissolved Al and the adsorption of Al-F complex can simulate the experimental results quite successfully. Also, including dissolved Al and the adsorption of Al-F complex to the model explained the change in solution pH after F adsorption.

  3. Selenium adsorption to aluminum-based water treatment residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ippolito, James A.; Scheckel, Kirk G.; Barbarick, Ken A.

    2009-09-02

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 h in selenate or selenite solutions at pH values of 5-9, and then analyzed for selenium content. Selenate and selenite adsorption edges were unaffected across the pH range studied. Selenate adsorbed on to WTR, reference mineral phases, and amorphous aluminum hydroxide occurred as outer sphere complexes (relatively loosely bound), while selenite adsorption was identified as inner-sphere complexation (relatively tightly bound). Selenite sorption to WTR inmore » an anoxic environment reduced Se(IV) to Se(0), and oxidation of Se(0) or Se(IV) appeared irreversible once sorbed to WTR. Al-based WTR could play a favorable role in sequestering excess Se in affected water sources.« less

  4. MECHANISTIC ROLES OF SOIL HUMUS AND MINERALS IN THE SORPTION OF NONIONIC ORGANIC COMPOUNDS FROM AQUEOUS AND ORGANIC SOLUTIONS

    EPA Science Inventory

    Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral...

  5. REM-containing silicate concentrates

    NASA Astrophysics Data System (ADS)

    Pavlov, V. F.; Shabanova, O. V.; Pavlov, I. V.; Pavlov, M. V.; Shabanov, A. V.

    2016-01-01

    A new method of advanced complex processing of ores containing rare-earth elements (REE) is proposed to obtain porous X-ray amorphous aluminosilicate material with a stable chemical composition which concentrates oxides of rare-earth metals (REM). The ferromanganese oxide ores of Chuktukon deposit (Krasnoyarsk Region, RF) were used for the experiment. The obtained aluminosilicate material is appropriate for treatment with 5 - 15% solutions of mineral acids to leach REM.

  6. Carbonate ions and arsenic dissolution by groundwater

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.The role of bicarbonate in leaching arsenic into groundwater was investigated by conducting batch experiments using core samples of Marshall Sandstone from southeast Michigan and different bicarbonate solutions. The effects of pH and redox conditions on As dissolution were examined. Results showed that As was not leached significantly out of the Marshall Sandstone samples after 3 d using either deionized water or groundwater, but As was leached efficiently by sodium bicarbonate, potassium bicarbonate, and ferric chloride solutions. The leaching rate with sodium bicarbonate was about 25% higher than that with potassium bicarbonate. The data indicated that bicarbonate ion was involved primarily in As dissolution and that hydroxyl radical ion did not affect As dissolution to any significant degree. The amount of As leached was dependent upon the sodium bicarbonate concentration, increasing with reaction time for each concentration. Significant As leaching was found in the extreme pH ranges of <1.9 and 8.0-10.4. The resulting arseno-carbonate complexes formed were stable in groundwater.

  7. Light scattering experiments on aqueous solutions of selected cellulose ethers: contribution to the study of polymer-mineral interactions in a new injectable biomaterial.

    PubMed

    Bohic, S; Weiss, P; Roger, P; Daculsi, G

    2001-03-01

    Hydroxypropylmethylcellulose (HPMC) is used as a ligand for a bioactive calcium phosphate ceramic (the filler) in a ready-to-use injectable sterilized biomaterial for bone and dental surgery. Light scattering experiments were usually used to study high water-soluble polymers and to determine the basic macromolecular parameters. In order to gain a deeper understanding of polymer/mineral interactions in this type of material, we have investigated the effect of divalent and trivalent ions (Ca(2+), PO(4)(3-)) and steam sterilization on dilute solutions of HPMC and hydroxyethylcellulose (HEC). The sterilization process may cause some degradation of HEC taking into account its high molecular weight and some rigidity of the polymer chain. Moreover, in the case of HPMC, the changes in the conformations rather than degradation process are supposed. These effects of degradation and flocculation are strengthened in alkaline medium. Experimental data suggested the formation of chelate complexes between Ca(2+) and HPMC which improve its affinity to the mineral blend and consolidate the injectable biomaterial even in the case of its hydration by biological fluid. Copyright 2001 Kluwer Academic Publishers

  8. Method for producing oxygen from lunar materials

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A. (Inventor)

    1993-01-01

    This invention is related to producing oxygen from lunar or Martian materials, particularly from lunar ilmenite in situ. The process includes producing a slurry of the minerals and hot sulfuric acid, the acid and minerals reacting to form sulfates of the metal. Water is added to the slurry to dissolve the minerals into an aqueous solution, the first aqueous solution is separated from unreacted minerals from the slurry, and the aqueous solution is electrolyzed to produce the metal and oxygen.

  9. Surface reactions of iron - enriched smectites: adsorption and transformation of hydroxy fatty acids and phenolic acids

    NASA Astrophysics Data System (ADS)

    Polubesova, Tamara; Olshansky, Yaniv; Eldad, Shay; Chefetz, Benny

    2014-05-01

    Iron-enriched smectites play an important role in adsorption and transformation of soil organic components. Soil organo-clay complexes, and in particular humin contain hydroxy fatty acids, which are derived from plant biopolymer cutin. Phenolic acids belong to another major group of organic acids detected in soil. They participate in various soil processes, and are of concern due to their allelopathic activity. We studied the reactivity of iron-enriched smectites (Fe(III)-montmorillonite and nontronite) toward both groups of acids. We used fatty acids- 9(10),16-dihydroxypalmitic acid (diHPA), isolated from curtin, and 9,10,16-trihydroxypalmitic acid (triHPA); the following phenolic acids were used: ferulic, p-coumaric, syringic, and vanillic. Adsorption of both groups of acids was measured. The FTIR spectra of fatty acid-mineral complexes indicated inner-sphere complexation of fatty acids with iron-enriched smectites (versus outer-sphere complexation with Ca(II)-montmorillonite). The LC-MS results demonstrated enhanced esterification of fatty acids on the iron-enriched smectite surfaces (as compared to Ca(II)-montmorillonite). This study suggests that fatty acids can be esterified on the iron-enriched smectite surfaces, which results in the formation of stable organo-mineral complexes. These complexes may serve as a model for the study of natural soil organo-clay complexes and humin. The reaction of phenolic acids with Fe(III)-montmorillonite demonstrated their oxidative transformation by the mineral surfaces, which was affected by molecular structure of acids. The following order of their transformation was obtained: ferulic >syringic >p-coumaric >vanillic. The LC-MS analysis demonstrated the presence of dimers, trimers, and tetramers of ferulic acid on the surface of Fe(III)-montmorillonite. Oxidation and transformation of ferulic acid were more intense on the surface of Fe(III)-montmorillonite as compared to Fe(III) in solution due to stronger complexation on the Fe(III)-motnomrillonite surface. Our study demonstrate the importance of iron-enriched minerals for the abiotic formation of humic materials and for the transformation of aromatic (phenolic) pollutants.

  10. Minimization of free radical damage by metal catalysis of multivitamin/multimineral supplements

    PubMed Central

    2010-01-01

    Multivitamin/multimineral complexes are the most common dietary supplements. Unlike minerals in foods that are incorporated in bioorganic structures, minerals in dietary supplements are typically in an inorganic form. These minerals can catalyze the generation of free radicals, thereby oxidizing antioxidants during digestion. Here we examine the ability of a matrix consisting of an amino acid and non-digestible oligosaccharide (AAOS) to blunt metal-catalyzed oxidations. Monitoring of ascorbate radical generated by copper shows that ascorbate is oxidized more slowly with the AAOS matrix than with copper sulfate. Measurement of the rate of oxidation of ascorbic acid and Trolox® by catalytic metals confirmed the ability of AAOS to slow these oxidations. Similar results were observed with iron-catalyzed formation of hydroxyl radicals. When compared to traditional forms of minerals used in supplements, we conclude that the oxidative loss of antioxidants in solution at physiological pH is much slower when AAOS is present. PMID:21092298

  11. Redox Equilibria Involving Chromium Minerals in Aqueous Fluids in the Deep Earth - Implications for Diamond Formation

    NASA Astrophysics Data System (ADS)

    Huang, J.; Huang, F.; Hao, J.; Sverjensky, D. A.

    2017-12-01

    Diamonds are often associated with inclusions of garnet that are characteristically Cr-rich and Ca-poor, suggesting metasomatic reactions involving fluids [1]. To investigate these reactions, we developed a thermodynamic characterization of Cr-bearing minerals and integrated it with our database for the thermodynamic properties of aqueous Cr-species [2]. We retrieved thermodynamic properties of picrochromite (MgCr2O4), and knorringite (Mg3Cr2Si3O12) consistent with minerals in the Berman (1988) using calorimetric data and experimental phase equilibria involving the reactions: MgCr2O4 + SiO2 = Cr2O3 + MgSiO3 [2] and MgCr2O4 + 4MgSiO3 = Mg3Cr2Si3O12 + Mg2SiO4 [3], respectively.At high temperatures and pressures, neutral pH and FMQ, the predicted solubilities of eskolaite and knorringite equilibrium with Cr2+ in a pure water system are very low. However, we found that complexes of Cr2+ and Cl- could increase the solubilities of chromium minerals significantly. At 500°C and 0.2 - 1.0 GPa, we retrieved the CrCl(OH)0 neutral complex from experiments on the solubility of Cr2O3 in HCl solutions [4]. At 1,000°C and 4.0 GPa, we retrieved the properties of a CrCl3- complex from experiments on the solubility of Cr2O3 in KCl solutions [5]. The predicted solubility of a garnet containing 23 mole% of knorringite in equilibrium with CrCl3- in a peridotitic diamond-forming fluid is 22 millimolal (1,144 ppm). This result suggests that a redox reaction relating to diamond formation might involveMg3Al2Si3O12 + 0.5CO2(aq) + 2 CrCl3- + 2H+ = Mg3Cr2Si3O12 + 0.5C-Diamond + 2Al3+ + 6Cl-. In this way, high temperature and pressure fluids containing Cr(II)-complexes might promote the mobility of chromium and be involved in metasomatic reactions and diamond formation.[1]Boyd et al. (1993)[2] Hao et al. (submitted to Geochem. Persp. Letters)[3] Berman (1988)[4] Klemme et al. (2000)[5] Klemme et al. (2004)[6] Watenphul et al. (2014)[7] Klein-BenDavid et al. (2011)

  12. Optimization of the electro-Fenton and solar photoelectro-Fenton treatments of sulfanilic acid solutions using a pre-pilot flow plant by response surface methodology.

    PubMed

    El-Ghenymy, Abdellatif; Garcia-Segura, Sergi; Rodríguez, Rosa María; Brillas, Enric; El Begrani, Mohamed Soussi; Abdelouahid, Ben Ali

    2012-06-30

    A central composite rotatable design and response surface methodology were used to optimize the experimental variables of the electro-Fenton (EF) and solar photoelectro-Fenton (SPEF) degradations of 2.5L of sulfanilic acid solutions in 0.05M Na(2)SO(4). Electrolyses were performed with a pre-pilot flow plant containing a Pt/air diffusion reactor generating H(2)O(2). In SPEF, it was coupled with a solar photoreactor under an UV irradiation intensity of ca. 31Wm(-2). Optimum variables of 100mAcm(-2), 0.5mM Fe(2+) and pH 4.0 were determined after 240min of EF and 120min of SPEF. Under these conditions, EF gave 47% of mineralization, whereas SPEF was much more powerful yielding 76% mineralization with 275kWh kg(-1) total organic carbon (TOC) energy consumption and 52% current efficiency. Sulfanilic acid decayed at similar rate in both treatments following a pseudo-first-order kinetics. The final solution treated by EF contained a stable mixture of tartaric, acetic, oxalic and oxamic acids, which form Fe(III) complexes that are not attacked by hydroxyl radicals formed from H(2)O(2) and added Fe(2+). The quick photolysis of these complexes by UV light of sunlight explains the higher oxidation power of SPEF. NH(4)(+) was the main inorganic nitrogen ion released in both processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Improvements in geothermal electric power and silica production

    DOEpatents

    Hill, J.H.; Fulk, M.M.

    Electricity is generated from hot geothermal solution by extracting heat therefrom, mineral solids which form in a so cooled geothermal solution are separated to recover minerals and facilitate reinjection of the solution into the ground. The separated solids are treated to recover silica by addition of an acid (amorphous silica precipitates) or a base (other minerals precipitate and soulble silicates are formed which are subsequently precipitated by acid neutralization). If desired, after silica is separated, other minerals can be separated and recovered.

  14. Gallium(III) adsorption on carbonates and oxides: X-ray absorption fine structure spectroscopy study and surface complexation modeling.

    PubMed

    Pokrovsky, O S; Pokrovski, G S; Schott, J

    2004-11-15

    Adsorption of Ga on calcite, magnesite, amorphous silica, and manganese oxide as a function of pH and gallium concentration in solution was studied using a batch adsorption technique. Adsorbed complexes of Ga on calcite, magnesite, and delta-MnO2 were further characterized using XAFS spectroscopy. At high surface loadings from supersaturated solutions, Ga is likely to form a polymeric network at the surface (edge- and corner-sharing octahedra). At low surface loadings, Ga presents as isolated octahedra, probably attached to the Me-O sites on the surface, and coordinated by water molecules and hydroxide groups at 1.90-1.94 A. At pH>6, Ga therefore changes its coordination from 4 to 6 when adsorbing from solution (Ga(OH)(-)4(aq)) onto metal surface sites (MeOGa(OH)n(H2O)2-n(5-n), Me = Ca, Mg, or Mn, and n=1 and 2 for carbonate minerals and MnO2, respectively). Because the EXAFS is not capable of seeing hydrogen atoms, the protonation of surface complexes was determined by fitting the experimental pH-dependent Ga adsorption edge. A surface complexation model which assumes the constant capacitance of the electric double layer (CCM) and postulates the formation of positively charged, neutral and negatively charged surface complexes for carbonates, manganese oxide and silica, respectively, was used to describe the dependence of adsorption equilibria on aqueous solution composition in a wide range of pH and Ga concentration.

  15. Plants and microorganisms as drivers of mineral weathering

    NASA Astrophysics Data System (ADS)

    Dontsova, K.; Chorover, J.; Maier, R.; Hunt, E.; Zaharescu, D. G.

    2011-12-01

    Plants and microorganisms play important role in mineral weathering and soil formation modifying their environment to make it more hospitable for life. This presentation summarizes several collaborative studies that focused on understanding how interactions between plants and microorganisms, where plants provide the energy through photosynthesis, drive mineral weathering and result in soil formation. Plants influence weathering through multiple mechanisms that have been previously established, such as increase in CO2 concentration in the soil through root respiration and degradation of plant residues and exudates by heterotrophic microorganisms, release of organic acids that promote mineral dissolution, removal of weathering products from soil solution through uptake, and water redistribution. Weathering processes result in nutrient release that satisfies immediate needs of the plants and microorganisms, as well as precipitation of secondary phases, that provide surfaces for retention of nutrients and organic carbon accumulation. What makes understanding contribution of plants and microorganisms, such as bacteria and fungi, to mineral weathering challenging is the fact that they closely interact, enhancing and amplifying each other's contribution. In order to address multiple processes that contribute to and result from biological weathering a combination of chemical, biological, mineralogical, and computational techniques and methodologies is needed. This complex array of methodologies includes bulk techniques, such as determination of total dissolved organic and inorganic carbon and nitrogen, ion chromatography and high performance liquid chromatography to characterize amount and composition of exuded organic acids, inductively coupled plasma mass spectrometry to determine concentrations of lithogenic elements in solution, X-ray diffraction to characterize changes in mineral composition of the material, DNA extraction to characterize community structure, as well as microscopic techniques. These techniques in combination with numerical geochemical modeling are being employed to improve our understanding of biological weathering.

  16. Effects of mineral nutrition conditions on heat tolerance of chufa (Сyperus esculentus L.) plant communities to super optimal air temperatures in the BTLSS

    NASA Astrophysics Data System (ADS)

    Shklavtsova, E. S.; Ushakova, S. A.; Shikhov, V. N.; Anishchenko, O. V.

    2014-09-01

    The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 °C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 μmol m-2 s-1 PAR and at a temperature of 25 °C. Plants were grown in Knop’s solution and solutions based on human wastes mineralized according to Yu.A. Kudenko’s method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 μmol m-2 s-1 PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 μmol m-2 s-1 to 1150 μmol m-2 s-1 enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown.

  17. REE mobility during the alteration of Carbonatite and their economic potential.

    NASA Astrophysics Data System (ADS)

    Marien, Christian; Dijkstra, Arjan; Wilkins, Colin

    2016-04-01

    The supply risk of Rare Earth Elements is an unpredictable economic factor for the future application and development of modern technology for the EU. Therefore a better understanding of REE mobilisation during hydrothermal alteration of Carbonatites is essential for a safer supply of REE in general. The hydrothermal alteration of Carbonatite within the Fen Complex (Norway) forms a fine grained red hematized rock type, called Rødbergite, which is partially enriched in REE. The variation of REE within the Rødbergite is poorly understood and problematic for any future REE exploitation from Rødbergite. A genetic model of the formation of Rødbergite will provide more information about the economic potential of Rødbergite. The gradual transformation of carbonatite to Rødbergite is not easily observable due to sparse outcrop in the Fen Complex. A fresh road cut near the Bjørndallen farm (Fen Complex) provides a unique insight to the progressive hydrothermal alteration from carbonatite to Rødbergite and is therefore crucial for a genetic model of the formation of Rødbergite. 14 Samples were taken along the profile. The mineralogical, geochemical and textural characterization of the samples using the SEM as well as major-, trace- and isotopic elemental data revealed the breakdown of the primary minerals due to the infiltration of an oxidizing fluid along grain boundaries. The primary REE-minerals in unaltered Carbonatite are REE fluorocarbonates. With the increasing alteration to Rødbergite REE fluorocarbonates are progressively replaced by hematite. In contrast, monazite - a REE-phosphate - is the dominant REE mineral species in the Rødbergite. A transitional Rødbergite sample shows apatite aggregates with a strong preferential concentration of monazite along the rim of the apatite aggregates. This observation provides strong evidence for the solution of REE in the primary rock (carbonatite) by fluids and later precipitation of REE along phosphate bearing minerals (e.g. apatite) in order to form monazite. The latest results of the mineralogical investigation on the structural control of the REE mineralization, different generations of REE minerals and the potential concentration of REE in distinct zones in the profile, will also be presented. Future work will contribute to a better understanding of the REE mineralization process and therefore help to identify economically promising areas for a potential REE exploitation within the Fen Complex.

  18. Evaluation of proposed precipitation mechanisms for Mississippi Valley-type deposits

    USGS Publications Warehouse

    Spirakis, C.S.; Heyl, A.V.

    1996-01-01

    The mechanism of precipitation is an important aspect of any genetic model for Mississippi Valley-type deposits. Yet most of the precipitation mechanisms for minerals in the Mississippi Valley-type association have serious flaws. Solution mixing would require an unlikely series of solutions to account for the various minerals in the ores, and it does not account for the universal occurrence of organic matter in the ores nor for the oxidation state of sulfur in pyrite in the ores. Sulfate reduction addresses some of these problems, but is inconsistent with kinetic data and could not be reversed to account for the oscillations between precipitation and dissolution of sulfide minerals in the ores. Carbon dioxide effervescence does not address the precipitation of most minerals in the ores, and all of the evidence for effervescence may be explained in other ways. Cooling of the mineralizing solution could precipitate many minerals, but fluid inclusion data suggest that, in many deposits, the solution did not cool significantly as any particular stage formed. A credible genetic model also must explain why all of the minerals precipitated at the same sites; any combination of the above mechanisms which suggests that unrelated mechanisms occurred at the same sites by coincidence is unlikely. The most reasonable scenario is that a hot, thiosulfate-bearing mineralizing solution reacted in various ways with organic matter at the sites of mineralization to precipitate the ore minerals. The organic matter acted as a reductant, source of carbon dioxide, source of organic acids, and a substrate for bacterial metabolism of thiosulfate in various stages of mineralization. Thus organic matter links all stages of the mineralization to the same sites. ?? 1995 Elsevier Science B.V.

  19. Biosorption and Biomineralization of U(VI) by the Marine Bacterium Idiomarina loihiensis MAH1: Effect of Background Electrolyte and pH

    PubMed Central

    Morcillo, Fernando; González-Muñoz, María T.; Reitz, Thomas; Romero-González, María E.; Arias, José M.; Merroun, Mohamed L.

    2014-01-01

    The main goal of this study is to compare the effects of pH, uranium concentration, and background electrolyte (seawater and NaClO4 solution) on the speciation of uranium(VI) associated with the marine bacterium Idiomarina loihiensis MAH1. This was done at the molecular level using a multidisciplinary approach combining X-ray Absorption Spectroscopy (XAS), Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), and High Resolution Transmission Electron Microscopy (HRTEM). We showed that the U(VI)/bacterium interaction mechanism is highly dependent upon pH but also the nature of the used background electrolyte played a role. At neutral conditions and a U concentration ranging from 5·10−4 to 10−5 M (environmentally relevant concentrations), XAS analysis revealed that uranyl phosphate mineral phases, structurally resembling meta-autunite [Ca(UO2)2(PO4)2 2–6H2O] are precipitated at the cell surfaces of the strain MAH1. The formation of this mineral phase is independent of the background solution but U(VI) luminescence lifetime analyses demonstrated that the U(VI) speciation in seawater samples is more intricate, i.e., different complexes were formed under natural conditions. At acidic conditions, pH 2, 3 and 4.3 ([U] = 5·10−4 M, background electrolyte  = 0.1 M NaClO4), the removal of U from solution was due to biosorption to Extracellular Polysaccharides (EPS) and cell wall components as evident from TEM analysis. The L III-edge XAS and TRLFS studies showed that the biosorption process observed is dependent of pH. The bacterial cell forms a complex with U through organic phosphate groups at pH 2 and via phosphate and carboxyl groups at pH 3 and 4.3, respectively. The differences in the complexes formed between uranium and bacteria on seawater compared to NaClO4 solution demonstrates that the actinide/microbe interactions are influenced by the three studied factors, i.e., the pH, the uranium concentration and the chemical composition of the solution. PMID:24618567

  20. Eddy currents in the measurement of magnetic susceptibility of rocks

    NASA Astrophysics Data System (ADS)

    Ježek, Josef; Hrouda, František

    2018-01-01

    The in-phase and out-of-phase susceptibility of rocks is determined by the magnetic permeability of minerals, their viscous relaxation, and by eddy currents in electrically conductive minerals induced by the applied field. The last effect has been modelled by analytical solution of Maxwell equations for a conductive sphere immersed in a homogeneous, non-conductive medium with given permeability, in presence of an alternating field. The solution is a complex function of parameters describing the sphere (its size, conductivity and permeability), surrounding medium (permeability) and applied field (frequency). Without numerical evaluations, it is difficult to distinguish in-phase and out-of-phase (OPS) susceptibility. In this paper, approximate equations are derived for both susceptibility components, which depend only on the permeability contrast between the sphere and the surrounding medium, and the skin ratio, defined as the ratio between sphere radius and skin depth of the induced currents. These equations are used to obtain a systematic assessment of the role of electrical conductivity in determining the susceptibility of rock samples. The contribution of eddy currents to the susceptibility of diluted (<5%) magnetite particle dispersions is negligible at 1 kHz, but not at higher frequencies. Common rock-forming paramagnetic and diamagnetic minerals with weak electrical conductivity and magnetic permeability are characterized by negligible OPS at 1 kHz. Theoretically, measurable OPS and high phase angles can be produced by paramagnetic conductive minerals in certain combinations with a diamagnetic matrix. This can be excluded from practical point of view for paramagnetic minerals with susceptibilities >0.003 and conductivities not exceeding 5000 S/m.

  1. Photothermal radiometry and modulated luminescence examination of demineralized and remineralized dental lesions

    NASA Astrophysics Data System (ADS)

    Hellen, A.; Mandelis, A.; Finer, Y.

    2010-03-01

    Dental caries involves continuous challenges of acid-induced mineral loss and a counteracting process of mineral recovery. As an emerging non-destructive methodology, photothermal radiometry and modulated luminescence (PTR-LUM) has shown promise in measuring changes in tooth mineral content. Human molars (n=37) were subjected to demineralization in acid gel (pH 4.5, 10 days), followed by incubation in remineralisation solutions (pH 6.7, 4 weeks) without or with fluoride (1 or 1000 ppm). PTR-LUM frequency scans (1 Hz - 1 kHz) were performed prior to and during demineralization and remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion. The non-fluoridated group exhibited opposite amplitude and phase trends to those of the highly fluoridated group: smaller phase lag and larger amplitude. These results point to a complex interplay between surface and subsurface processes during remineralization, confining the thermal-wave centroid toward the dominating layer.

  2. Magnetite-apatite-dolomitic rocks of Ust-Chulman (Aldan shield, Russia): Seligdar-type carbonatites?

    NASA Astrophysics Data System (ADS)

    Prokopyev, Ilya R.; Doroshkevich, Anna G.; Redina, Anna A.; Obukhov, Andrey V.

    2018-04-01

    The Ust-Chulman apatite ore body is situated within the Nimnyrskaya apatite zone at the Aldan shield in Russia. The latest data confirm the carbonatitic origin of the Seligdar apatite deposit (Prokopyev et al. in Ore Geol Rev 81:296-308, 2017). The results of our investigations demonstrate that the magnetite-apatite-dolomitic rocks of the Ust-Chulman are highly similar to Seligdar-type dolomitic carbonatites in terms of the mineralogy and the fluid regime of formation. The ilmenite and spinel mineral phases occur as solid solutions with magnetite, and support the magmatic origin of the Ust-Chulman ores. The chemical composition of REE- and SO3-bearing apatite crystals and, specifically, monazite-(Ce) mineralisation and the formation of Nb-rutile, late hydrothermal sulphate minerals (barite, anhydrite) and haematite are typical for carbonatite complexes. The fluid inclusions study revealed similarities to the evolutionary trend of the Seligdar carbonatites that included changes of the hydrothermal solutions from highly concentrated chloride to medium-low concentrated chloride-sulphate and oxidized carbonate-ferrous.

  3. Interaction of inorganic anions with iron-mineral adsorbents in aqueous media--a review.

    PubMed

    Kumar, Eva; Bhatnagar, Amit; Hogland, William; Marques, Marcia; Sillanpää, Mika

    2014-01-01

    A number of inorganic anions (e.g., nitrate, fluoride, bromate, phosphate, and perchlorate) have been reported in alarming concentrations in numerous drinking water sources around the world. Their presence even in very low concentrations may cause serious environmental and health related problems. Due to the presence and significance of iron minerals in the natural aquatic environment and increasing application of iron in water treatment, the knowledge of the structure of iron and iron minerals and their interactions with aquatic pollutants, especially inorganic anions in water are of great importance. Iron minerals have been known since long as potential adsorbents for the removal of inorganic anions from aqueous phase. The chemistry of iron and iron minerals reactions in water is complex. The adsorption ability of iron and iron minerals towards inorganic anions is influenced by several factors such as, surface characteristics of the adsorbent (surface area, density, pore volume, porosity, pore size distribution, pHpzc, purity), pH of the solution, and ionic strength. Furthermore, the physico-chemical properties of inorganic anions (pore size, ionic radius, bulk diffusion coefficient) also significantly influence the adsorption process. The aim of this paper is to provide an overview of the properties of iron and iron minerals and their reactivity with some important inorganic anionic contaminants present in water. It also summarizes the usage of iron and iron minerals in water treatment technology. © 2013.

  4. Composition and method for self-assembly and mineralization of peptide-amphiphiles

    DOEpatents

    Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Pearland, TX

    2012-02-28

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  5. Composition and method for self-assembly and mineralization of peptide amphiphiles

    DOEpatents

    Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Houston, TX

    2009-06-30

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  6. Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals: Silica and alumina

    USGS Publications Warehouse

    Su, Y.-H.; Zhu, Y.-G.; Sheng, G.; Chiou, C.T.

    2006-01-01

    To characterize the linear adsorption phenomena in aqueous nonionic organic solute-mineral systems, the adsorption isotherms of some low-molecular- weightnonpolar nonionic solutes (1,2,3-trichlorobenzene, lindane, phenanthrene, and pyrene) and polar nonionic solutes (1,3-dinitrobenzene and 2,4-dinitrotoluene) from single-and binary-solute solutions on hydrophilic silica and alumina were established. Toward this objective, the influences of temperature, ionic strength, and pH on adsorption were also determined. It is found that linear adsorption exhibits low exothermic heats and practically no adsorptive competition. The solute-solid configuration and the adsorptive force consistent with these effects were hypothesized. For nonpolar solutes, the adsorption occurs presumably by London (dispersion) forces onto a water film above the mineral surface. For polar solutes, the adsorption is also assisted by polar-group interactions. The reduced adsorptive forces of solutes with hydrophilic minerals due to physical separation by the water film and the low fractions of the water-film surface covered by solutes offer a theoretical basis for linear solute adsorption, low exothermic heats, and no adsorptive competition. The postulated adsorptive forces are supported by observations that ionic strength or pH poses no effect on the adsorption of nonpolar solutes while it exhibits a significant effect on the uptake of polar solutes. ?? 2006 American Chemical Society.

  7. User's guide to PHREEQC (Version 2) : a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

    USGS Publications Warehouse

    Parkhurst, David L.; Appelo, C.A.J.

    1999-01-01

    PHREEQC version 2 is a computer program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations involving reversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and irreversible reactions, which include specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters, within specified compositional uncertainty limits.New features in PHREEQC version 2 relative to version 1 include capabilities to simulate dispersion (or diffusion) and stagnant zones in 1D-transport calculations, to model kinetic reactions with user-defined rate expressions, to model the formation or dissolution of ideal, multicomponent or nonideal, binary solid solutions, to model fixed-volume gas phases in addition to fixed-pressure gas phases, to allow the number of surface or exchange sites to vary with the dissolution or precipitation of minerals or kinetic reactants, to include isotope mole balances in inverse modeling calculations, to automatically use multiple sets of convergence parameters, to print user-defined quantities to the primary output file and (or) to a file suitable for importation into a spreadsheet, and to define solution compositions in a format more compatible with spreadsheet programs. This report presents the equations that are the basis for chemical equilibrium, kinetic, transport, and inverse-modeling calculations in PHREEQC; describes the input for the program; and presents examples that demonstrate most of the program's capabilities.

  8. Oxygen-isotope exchange and mineral alteration in gabbros of the Lower Layered Series, Kap Edvard Holm Complex, East Greenland

    USGS Publications Warehouse

    Fehlhaber, Kristen L.; Bird, Dennis K.

    1991-01-01

    Multiple intrusions of gabbros, mafic dikes, and syenites in the Kap Edvard Holm Complex gave rise to prolonged circulation of meteoric hydrothermal solutions and extreme isotope exchange and mineral alteration in the 3600-m-thick Lower Layered Series gabbros. In the Lower Layered Series, δ18O of plagioclase varies from +0.3‰ to -5.8‰, and it decreases with an increase in the volume of secondary talc, chlorite, and actinolite. In the same gabbros, pyroxenes have a more restricted range in δ18O, from 5.0‰ to 3.8‰ and values of δ18Opyroxene are independent of the abundance of secondary minerals, which ranges from 14% to 30%. These relations indicate that large amounts of water continued to flow through the rocks at temperatures of <500-600°C, altering the gabbros to assemblages of talc + chlorite + actinolite ± epidote ±albite and causing significant oxygen-isotope exchange in plagioclase, but not in pyroxene. The extensive low-temperature secondary mineralization and 18O depletion of plagioclase in the Lower Layered Series are associated with the later emplacement of dikes and gabbros and syenites, which created new fracture systems and provided heat sources for hydrothermal fluid circulation. This produced subsolidus mineral alteration and isotope exchange in the Lower Layered Series that are distinct from those in the Skaergaard and Cuillin gabbros of the North Atlantic Tertiary province, but are similar to those observed in some oceanic gabbros.

  9. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals

    NASA Astrophysics Data System (ADS)

    Deng, Jiu-shuai; Mao, Ying-bo; Wen, Shu-ming; Liu, Jian; Xian, Yong-jun; Feng, Qi-cheng

    2015-02-01

    Selective flotation separation of Cu-Zn mixed sulfides has been proven to be difficult. Thus far, researchers have found no satisfactory way to separate Cu-Zn mixed sulfides by selective flotation, mainly because of the complex surface and interface interaction mechanisms in the flotation solution. Undesired activation occurs between copper ions and the sphalerite surfaces. In addition to recycled water and mineral dissolution, ancient fluids in the minerals are observed to be a new source of metal ions. In this study, significant amounts of ancient fluids were found to exist in Cu-Zn sulfide and gangue minerals, mostly as gas-liquid fluid inclusions. The concentration of copper ions released from the ancient fluids reached 1.02 × 10-6 mol/L, whereas, in the cases of sphalerite and quartz, this concentration was 0.62 × 10-6 mol/L and 0.44 × 10-6 mol/L, respectively. As a result, the ancient fluid is a significant source of copper ions compared to mineral dissolution under the same experimental conditions, which promotes the unwanted activation of sphalerite. Therefore, the ancient fluid is considered to be a new factor that affects the selective flotation separation of Cu-Zn mixed sulfide ores.

  10. Electrochemical destruction of trans-cinnamic acid by advanced oxidation processes: kinetics, mineralization, and degradation route.

    PubMed

    Flores, Nelly; Thiam, Abdoulaye; Rodríguez, Rosa María; Centellas, Francesc; Cabot, Pere Lluís; Garrido, José Antonio; Brillas, Enric; Sirés, Ignasi

    2017-03-01

    Acidic solutions of trans-cinnamic acid at pH 3.0 have been comparatively treated by anodic oxidation with electrogenerated H 2 O 2 (AO-H 2 O 2 ), electro-Fenton (EF), and photoelectro-Fenton (PEF). The electrolytic experiments were carried out with a boron-doped diamond (BDD)/air-diffusion cell. The substrate was very slowly abated by AO-H 2 O 2 because of its low reaction rate with oxidizing • OH produced from water discharge at the BDD anode. In contrast, its removal was very rapid and at similar rate by EF and PEF due to the additional oxidation by • OH in the bulk, formed from Fenton's reaction between cathodically generated H 2 O 2 and added Fe 2+ . The AO-H 2 O 2 treatment yielded the lowest mineralization. The EF process led to persistent final products like Fe(III) complexes, which were quickly photolyzed upon UVA irradiation in PEF to give an almost total mineralization with 98 % total organic carbon removal. The effect of current density and substrate concentration on all the mineralization processes was examined. Gas chromatography-mass spectrometry (GC-MS) analysis of electrolyzed solutions allowed identifying five primary aromatics and one heteroaromatic molecule, whereas final carboxylic acids like fumaric, acetic, and oxalic were quantified by ion exclusion high-performance liquid chromatography (HPLC). From all the products detected, a degradation route for trans-cinnamic acid is proposed.

  11. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.

    PubMed

    Saunders, James A; Pivetz, Bruce E; Voorhies, Nathan; Wilkin, Richard T

    2016-12-01

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program. Published by Elsevier Ltd.

  12. New Geophysical Technique for Mineral Exploration and Mineral Discrimination Based on Electromagnetic Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael S. Zhdanov

    2005-03-09

    The research during the first year of the project was focused on developing the foundations of a new geophysical technique for mineral exploration and mineral discrimination, based on electromagnetic (EM) methods. The proposed new technique is based on examining the spectral induced polarization effects in electromagnetic data using modern distributed acquisition systems and advanced methods of 3-D inversion. The analysis of IP phenomena is usually based on models with frequency dependent complex conductivity distribution. One of the most popular is the Cole-Cole relaxation model. In this progress report we have constructed and analyzed a different physical and mathematical model ofmore » the IP effect based on the effective-medium theory. We have developed a rigorous mathematical model of multi-phase conductive media, which can provide a quantitative tool for evaluation of the type of mineralization, using the conductivity relaxation model parameters. The parameters of the new conductivity relaxation model can be used for discrimination of the different types of rock formations, which is an important goal in mineral exploration. The solution of this problem requires development of an effective numerical method for EM forward modeling in 3-D inhomogeneous media. During the first year of the project we have developed a prototype 3-D IP modeling algorithm using the integral equation (IP) method. Our IE forward modeling code INTEM3DIP is based on the contraction IE method, which improves the convergence rate of the iterative solvers. This code can handle various types of sources and receivers to compute the effect of a complex resistivity model. We have tested the working version of the INTEM3DIP code for computer simulation of the IP data for several models including a southwest US porphyry model and a Kambalda-style nickel sulfide deposit. The numerical modeling study clearly demonstrates how the various complex resistivity models manifest differently in the observed EM data. These modeling studies lay a background for future development of the IP inversion method, directed at determining the electrical conductivity and the intrinsic chargeability distributions, as well as the other parameters of the relaxation model simultaneously. The new technology envisioned in this proposal, will be used for the discrimination of different rocks, and in this way will provide an ability to distinguish between uneconomic mineral deposits and the location of zones of economic mineralization and geothermal resources.« less

  13. Alteration, adsorption and nucleation processes on clay-water interfaces: Mechanisms for the retention of uranium by altered clay surfaces on the nanometer scale

    NASA Astrophysics Data System (ADS)

    Schindler, Michael; Legrand, Christine A.; Hochella, Michael F.

    2015-03-01

    Nano-scale processes on the solid-water interface of clay minerals control the mobility of metals in the environment. These processes can occur in confined pore spaces of clay buffers and barriers as well as in contaminated sediments and involve a combination of alteration, adsorption and nucleation processes of multiple species and phases. This study characterizes nano-scale processes on the interface between clay minerals and uranyl-bearing solution near neutral pH. Samples of clay minerals with a contact pH of ∼6.7 are collected from a U mill and mine tailings at Key Lake, Saskatchewan, Canada. The tailings material contains Cu-, As-, Co-, Mo-, Ni-, Se-bearing polymetallic phases and has been deposited with a surplus of Ca(OH)2 and Na2CO3 slaked lime. Small volumes of mill-process solutions containing sulfuric acid and U are occasionally discharged onto the surface of the tailings and are neutralized after discharge by reactions with the slaked lime. Transmission electron microscopy (TEM) in combination with the focused ion beam (FIB) technique and other analytical methods (SEM, XRD, XRF and ICP-OES) are used to characterize the chemical and mineralogical composition of phases within confined pore spaces of the clay minerals montmorillonite and kaolinite and in the surrounding tailings material. Alteration zones around the clay minerals are characterized by different generations of secondary silicates containing variable proportions of adsorbed uranyl- and arsenate-species and by the intergrowth of the silicates with the uranyl-minerals cuprosklodowskite, Cu[(UO2)2(SiO3OH)2](H2O)6 and metazeunerite, Cu[(UO2)(AsO4)2](H2O)8. The majority of alteration phases such as illite, illite-smectite, kaolinite and vermiculite have been most likely formed in the sedimentary basin of the U-ore deposit and contain low amounts of Fe (<5 at.%). Iron-enriched Al-silicates or illite-smectites (Fe >10 at.%) formed most likely in the limed tailings at high contact pH (∼10.5) and their structure is characterized by a low degree of long-range order. Adsorption of U and nucleation of metazeunerite and cuprosklodowskite are strongly controlled by the presence of the adsorbed oxy-anion species arsenate and silica on the Fe-enriched silicates. Heterogeneous nucleation of nano-crystals of the uranyl minerals occurs most likely on adsorption sites of binary uranyl-, arsenate- and silica-complexes as well as on ternary uranyl-arsenate or uranyl-silicate complexes. The uranyl minerals occur as aggregates of misoriented nano-size crystals and are the result of supersaturated solutions and a high number of nucleation sites that prevented the formation of larger crystals through Oswald ripening. The results of this study provide an understanding of interfacial nano-scale processes between uranyl species and altered clay buffers in a potential Nuclear Waste repository as similar alteration conditions of clays may occur in a multi-barrier system.

  14. Crystalline solution series and order-disorder within the natrolite mineral group

    USGS Publications Warehouse

    Ross, M.; Flohr, M.J.K.; Ross, D.R.

    1992-01-01

    Electron microprobe and X-ray analyses were made of natrolite, tetranatrolite, gonnardite, and thomsonite from the Magnet Cove alkaline igneous complex, Arkansas, and of selected specimens from the U.S. National Museum. This information and data from the literature indicate that natrolite, mesolite, scolecite, edingtonite, and tetraedingtonite show only small deviations from the ideal stoichiometry. In contrast, gonnardite, tetranatrolite, and thomsonite show large deviations from the ideal end-member compositions and compose three crystalline series. The structures of the natrolite minerals are defined by combining each of the three types of framework structures with various combinations of channel-occupying polyhedra. Various polysomatic series can be constructed by combining slices of two basic structures to form new hybrid structures. -from Authors

  15. On the influence of carbonate in mineral dissolution: I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T = 25° C

    NASA Astrophysics Data System (ADS)

    Bruno, Jordi; Stumm, Werner; Wersin, Paul; Brandberg, Frederick

    1992-03-01

    We have studied the thermodynamics and kinetics of hematite dissolution in bicarbonate solutions under constant pCO 2. The solubility of hematite is increased in the presence of bicarbonate. We have established that the complexes responsible for this increase are FeOHCO 3 (aq) and Fe(CO 3) 2-. The stability constants of these complexes at the infinite dilution standard state are log β 11 = -3.83 ± 0.21 and log β 2 = 7.40 ± 0.11 , respectively (all errors are given at 2σ confidence level through this work). The rate of dissolution of hematite is enhanced in bicarbonate solutions. This rate of dissolution can be expressed as R diss = k 1[HCO 3-] 0.23 (mol m -2h -1), with k 1 = 1.42 10 -7h -1. The combination of the study of the surface complexation and kinetics of dissolution of hematite in bicarbonate solutions indicate that the dissolution of hematite is surface controlled and bicarbonate promoted. The rate of dissolution follows the expression R diss = k HCO 3-FeOH - HCO 3-}, where k HCO 3- = 1.1 10 -3 h -1. The implications of these findings in the oxic cycle of iron in natural waters are discussed, most importantly in order to explain the high-Fe(III) concentrations measured in groundwaters from the Poços de Caldas complex in Brazil.

  16. Reactive Transport Modeling of Induced Calcite Precipitation Reaction Fronts in Porous Media Using A Parallel, Fully Coupled, Fully Implicit Approach

    NASA Astrophysics Data System (ADS)

    Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.; Fox, D. T.; Fujita, Y.

    2010-12-01

    Inducing mineral precipitation in the subsurface is one potential strategy for immobilizing trace metal and radionuclide contaminants. Generating mineral precipitates in situ can be achieved by manipulating chemical conditions, typically through injection or in situ generation of reactants. How these reactants transport, mix and react within the medium controls the spatial distribution and composition of the resulting mineral phases. Multiple processes, including fluid flow, dispersive/diffusive transport of reactants, biogeochemical reactions and changes in porosity-permeability, are tightly coupled over a number of scales. Numerical modeling can be used to investigate the nonlinear coupling effects of these processes which are quite challenging to explore experimentally. Many subsurface reactive transport simulators employ a de-coupled or operator-splitting approach where transport equations and batch chemistry reactions are solved sequentially. However, such an approach has limited applicability for biogeochemical systems with fast kinetics and strong coupling between chemical reactions and medium properties. A massively parallel, fully coupled, fully implicit Reactive Transport simulator (referred to as “RAT”) based on a parallel multi-physics object-oriented simulation framework (MOOSE) has been developed at the Idaho National Laboratory. Within this simulator, systems of transport and reaction equations can be solved simultaneously in a fully coupled, fully implicit manner using the Jacobian Free Newton-Krylov (JFNK) method with additional advanced computing capabilities such as (1) physics-based preconditioning for solution convergence acceleration, (2) massively parallel computing and scalability, and (3) adaptive mesh refinements for 2D and 3D structured and unstructured mesh. The simulator was first tested against analytical solutions, then applied to simulating induced calcium carbonate mineral precipitation in 1D columns and 2D flow cells as analogs to homogeneous and heterogeneous porous media, respectively. In 1D columns, calcium carbonate mineral precipitation was driven by urea hydrolysis catalyzed by urease enzyme, and in 2D flow cells, calcium carbonate mineral forming reactants were injected sequentially, forming migrating reaction fronts that are typically highly nonuniform. The RAT simulation results for the spatial and temporal distributions of precipitates, reaction rates and major species in the system, and also for changes in porosity and permeability, were compared to both laboratory experimental data and computational results obtained using other reactive transport simulators. The comparisons demonstrate the ability of RAT to simulate complex nonlinear systems and the advantages of fully coupled approaches, over de-coupled methods, for accurate simulation of complex, dynamic processes such as engineered mineral precipitation in subsurface environments.

  17. Mineral Type and Solution Chemistry Affect the Structure and Composition of Actively Growing Bacterial Communities as Revealed by Bromodeoxyuridine Immunocapture and 16S rRNA Pyrosequencing.

    PubMed

    Kelly, L C; Colin, Y; Turpault, M-P; Uroz, S

    2016-08-01

    Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site.

  18. Dimension reduction method for SPH equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Scheibe, Timothy D.

    2011-08-26

    Smoothed Particle Hydrodynamics model of a complex multiscale processe often results in a system of ODEs with an enormous number of unknowns. Furthermore, a time integration of the SPH equations usually requires time steps that are smaller than the observation time by many orders of magnitude. A direct solution of these ODEs can be extremely expensive. Here we propose a novel dimension reduction method that gives an approximate solution of the SPH ODEs and provides an accurate prediction of the average behavior of the modeled system. The method consists of two main elements. First, effective equationss for evolution of averagemore » variables (e.g. average velocity, concentration and mass of a mineral precipitate) are obtained by averaging the SPH ODEs over the entire computational domain. These effective ODEs contain non-local terms in the form of volume integrals of functions of the SPH variables. Second, a computational closure is used to close the system of the effective equations. The computational closure is achieved via short bursts of the SPH model. The dimension reduction model is used to simulate flow and transport with mixing controlled reactions and mineral precipitation. An SPH model is used model transport at the porescale. Good agreement between direct solutions of the SPH equations and solutions obtained with the dimension reduction method for different boundary conditions confirms the accuracy and computational efficiency of the dimension reduction model. The method significantly accelerates SPH simulations, while providing accurate approximation of the solution and accurate prediction of the average behavior of the system.« less

  19. Adsorption Equilibrium and Kinetics at Goethite-Water and Related Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Lynn Ellen

    This research study is an important component of a broader comprehensive project, “Geochemistry of Interfaces: From Surfaces to Interlayers to Clusters,” which sought to identify and evaluate the critical molecular phenomena at metal-oxide interfaces that control many geochemical and environmental processes. The primary goal of this research study was to better understand and predict adsorption of metal ions at mineral/water surfaces. Macroscopic data in traditional batch experiments was used to develop predictive models that characterize sorption in complex systems containing a wide range of background solution compositions. Our studies focused on systems involving alkaline earth metal (Mg 2+, Ca 2+,more » Sr 2+, Ba 2+) and heavy metal (Hg 2+, Co 2+, Cd 2+, Cu 2+, Zn 2+, Pb 2+) cations. The anions we selected for study included Cl -, NO 3 -, ClO 4 -, SO 4 2-, CO 3 2- and SeO 3 2- and the background electrolyte cations we examined included (Na +, K +, Rb + and Cs +) because these represent a range of ion sizes and have varying potentials for forming ion-pairs or ternary complexes with the metal ions studied. The research led to the development of a modified titration congruency approach for estimating site densities for mineral oxides such as goethite. The CD-MUSIC version of the surface complexation modeling approach was applied to potentiometric titration data and macroscopic adsorption data for single-solute heavy metals, oxyanions, alkaline earth metals and background electrolytes over a range of pH and ionic strength. The model was capable of predicting sorption in bi-solute systems containing multiple cations, cations and oxyanions, and transition metal cations and alkaline earth metal ions. Incorporation of ternary complexes was required for modeling Pb(II)-Se(IV) and Cd(II)-Se(IV) systems. -Both crystal face contributions and capacitance values were shown to be sensitive to varying specific surface area but were successfully accounted for in the modeling strategy. The insights gained from the macroscopic, spectroscopic and CD-MUSIC modeling developed in this study can be used to guide the implementation of less complex models which may be more applicable to field conditions. The findings of this research suggest that surface complexation models can be used as a predictive tool for fate and transport modeling of metal ions and oxyanions in fresh and saline systems typical of energy production waters and wastewaters.« less

  20. Reactive transport simulation via combination of a multiphase-capable transport code for unstructured meshes with a Gibbs energy minimization solver of geochemical equilibria

    NASA Astrophysics Data System (ADS)

    Fowler, S. J.; Driesner, T.; Hingerl, F. F.; Kulik, D. A.; Wagner, T.

    2011-12-01

    We apply a new, C++-based computational model for hydrothermal fluid-rock interaction and scale formation in geothermal reservoirs. The model couples the Complex System Modelling Platform (CSMP++) code for fluid flow in porous and fractured media (Matthai et al., 2007) with the Gibbs energy minimization numerical kernel GEMS3K of the GEM-Selektor (GEMS3) geochemical modelling package (Kulik et al., 2010) in a modular fashion. CSMP++ includes interfaces to commercial file formats, accommodating complex geometry construction using CAD (Rhinoceros) and meshing (ANSYS) software. The CSMP++ approach employs finite element-finite volume spatial discretization, implicit or explicit time discretization, and operator splitting. GEMS3K can calculate complex fluid-mineral equilibria based on a variety of equation of state and activity models. A selection of multi-electrolyte aqueous solution models, such as extended Debye-Huckel, Pitzer (Harvie et al., 1984), EUNIQUAC (Thomsen et al., 1996), and the new ELVIS model (Hingerl et al., this conference), makes it well-suited for application to a wide range of geothermal conditions. An advantage of the GEMS3K solver is simultaneous consideration of complex solid solutions (e.g., clay minerals), gases, fluids, and aqueous solutions. Each coupled simulation results in a thermodynamically-based description of the geochemical and physical state of a hydrothermal system evolving along a complex P-T-X path. The code design allows efficient, flexible incorporation of numerical and thermodynamic database improvements. We demonstrate the coupled code workflow and applicability to compositionally and physically complex natural systems relevant to enhanced geothermal systems, where temporally and spatially varying chemical interactions may take place within diverse lithologies of varying geometry. Engesgaard, P. & Kipp, K. L. (1992). Water Res. Res. 28: 2829-2843. Harvie, C. E.; Møller, N. & Weare, J. H. (1984). Geochim. Cosmochim. Acta 48: 723-751. Kulik, D. A., Wagner, T., Dmytrieva S. V, et al. (2010). GEM-Selektor home page, Paul Scherrer Institut. Available at http://gems.web.psi.ch. Matthäi, S. K., Geiger, S., Roberts, S. G., Paluszny, A., Belayneh, M., Burri, A., Mezentsev, A., Lu, H., Coumou, D., Driesner, T. & Heinrich C. A. (2007). Geol. Soc. London, Spec. Publ. 292: 405-429. Thomsen, K. Rasmussen, P. & Gani, R. (1996). Chem. Eng. Sci. 51: 3675-3683.

  1. Effects of the microbial siderophore DFO-B on Pb and Cd speciation in aqueous solution.

    PubMed

    Mishra, Bhoopesh; Haack, Elizabeth A; Maurice, Patricia A; Bunker, Bruce A

    2009-01-01

    This study investigates the complexation environments of aqueous Pb and Cd in the presence of the trihydroxamate microbial siderophore, desferrioxamine-B (DFO-B) as a function of pH. Complexation of aqueous Pb and Cd with DFO-B was predicted using equilibrium speciation calculation. Synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy at Pb L(III) edge and Cd K edge was used to characterize Pb and Cd-DFO-B complexes at pH values predicted to best represent each of the metal-siderophore complexes. Pb was not found to be complexed measurably by DFO-B at pH 3.0, but was complexed by all three hydroxamate groups to form a totally "caged" hexadentate structure at pH 7.5-9.0. At the intermediate pH value (pH 4.8), a mixture of Pb-DFOB complexes involving binding of the metal through one and two hydroxamate groups was observed. Cd, on the other hand, remained as hydrated Cd2+ at pH 5.0, occurred as a mixture of Cd-DFOB and inorganic species at pH 8.0, and was bound by three hydroxamate groups from DFO-B at pH 9.0. Overall, the solution species observed with EXAFS were consistent with those predicted thermodynamically. However, Pb speciation at higher pH values differed from that predicted and suggests that published constants underestimate the binding constant for complexation of Pb with all three hydroxamate groups of the DFO-B ligand. This molecular-level understanding of metal-siderophore solution coordination provides physical evidence for complexes of Pb and Cd with DFO-B, and is an important first step toward understanding processes at the microbial- and/or mineral-water interface in the presence of siderophores.

  2. Cycling of oxyanion-forming trace elements in groundwaters from a freshwater deltaic marsh

    NASA Astrophysics Data System (ADS)

    Telfeyan, Katherine; Breaux, Alexander; Kim, Jihyuk; Kolker, Alexander S.; Cable, Jaye E.; Johannesson, Karen H.

    2018-05-01

    Pore waters and surface waters were collected from a freshwater system in southeastern Louisiana to investigate the geochemical cycling of oxyanion-forming trace elements (i.e., Mo, W, As, V). A small bayou (Bayou Fortier) receives input from a connecting lake (Lac des Allemands) and groundwater input at the head approximately 5 km directly south of the Mississippi River. Marsh groundwaters exchange with bayou surface water but are otherwise relatively isolated from outside hydrologic forcings, such as tides, storms, and effects from local navigation canals. Rather, redox processes in the marsh groundwaters appear to drive changes in trace element concentrations. Elevated dissolved S(-II) concentrations in marsh groundwaters suggest greater reducing conditions in the late fall and winter as compared to the spring and late summer. The data suggest that reducing conditions in marsh groundwaters initiate the dissolution of Fe(III)/Mn(IV) oxide/hydroxide minerals, which releases adsorbed and/or co-precipitated trace elements into solution. Once in solution, the fate of these elements is determined by complexation with aqueous species and precipitation with iron sulfide minerals. The trace elements remain soluble in the presence of Fe(III)- and SO42-- reducing conditions, suggesting that either kinetic limitations or complexation with aqueous ligands obfuscates the correlation between V and Mo sequestration in sediments with reducing or euxinic conditions.

  3. Reductive dissolution of As(V)-Fe oxyhydroxides: an experimental insight at biogeochemical interfaces in soil

    NASA Astrophysics Data System (ADS)

    Dia, A.; Davranche, M.; Fakih, M.; Nowack, B.; Morin, G.; Gruau, G.

    2009-04-01

    Iron (III) oxides are ubiquitous components of soils, sediments, aquifers and geological materials. Trace metals associate with Fe (III) oxides as adsorbed or co-precipitated species and, consequently the biogeochemical cycles of Fe and trace metals are closely linked. Using a new monitoring tool recently developed, this study was dedicated to understand how do interplay biological and mineralogical (crystallographic and specific surface area) controls in the Fe oxyhydroxide reductive dissolution within soils and which can be the consequences on associated trace metal release. For this purpose, polymer slides covered by synthetic As-spiked ferrihydrite (As-Fh) or As-spiked lepidocrocite (As-Lp) were inserted into an organic-rich wetland soil in non conventional columns system under anaerobic conditions. This technique was developed to allow the insertion of slides into a structured soil without significant disturbance and to avoid the mechanical abrasion of oxides from slides that would occur in an equilibrium batch system under stirring. Slides were recovered after different periods of time to evaluate (i) the impact of (bio)reduction on both Fe-oxide dissolution and secondary mineral precipitation and, (ii) the subsequent effects on As mobility. XRF analyses of the slides were conducted before and after contact with the soil to determine the amount of Fe and associated As remaining on the slides. Fe(II), acetate, nitrate, sulphate and total metals of the soil solution was followed through time by ion chromatography and ICP-MS measurements. The important bacterial colonization and occurrence of biofilm evidenced by SEM analyses of the slides suggested the presence of biologically mediated processes. As previously shown elsewhere the kinetics of the suspected occurring bacterial reduction differ significantly from abiotic reduction data from literature. The important point is that conversely to what has been observed in published experimental data, the dissolution rates remained here fairly constant through time since the organic matter present in the interacting solution complexed the released Fe(II), which was therefore not able to accumulate onto the bacterial cell surfaces. The organic matter mediated complexation of Fe(II) prevented thus the progressive inhibition of the enzymatic reduction to occur as elsewhere evidenced with other experimental conditions. As expected, the reductive dissolution of the less crystallized ferrihydrite started quicker than that of lepidocrocite. The newly formed minerals were mostly composed of Fe-sulphides. Iron(II) complexation by organic molecules in solution likely prevented formation of secondary Fe(II, III)-rich minerals. The relative proportion of As(III) increased with time on the As-Fh slides, and was combined with a decrease of the Fe/As ratio, suggesting a partial adsorption of As(III) onto minerals. By contrast, for lepidocrocite, the Fe/As ratio increased, suggesting that As(III) was less readsorbed due the lower available site number and the deletion of As adsorption sites on the reduced lepidocrocite surface. Only a weak proportion of As(III) was sequestered by readsorption onto unreduced Fe-oxides and possibly on secondary Fe-sulphide minerals, especially when the iron oxide had a low surface area. Therefore, wetlands and their waterlogged soils could be a non negligible source of As within soils, migrating first through soil solutions and then to the whole hydrosystem.

  4. Alternative solution model for the ternary carbonate system CaCO3 - MgCO3 - FeCO3 - I. A ternary Bragg-Williams ordering model

    USGS Publications Warehouse

    McSwiggen, P.L.

    1993-01-01

    The minerals of the ternary carbonate system CaCO3 - MgCO3 - FeCO3 represent a complex series of solid solutions and ordering states. An understanding of those complexities requires a solution model that can both duplicate the subsolidus phase relationships and generate correct values for the activities. Such a solution model must account for the changes in the total energy of the system resulting from a change in the ordering state of the individual constituents. Various ordering models have been applied to binary carbonate systems, but no attempts have previously been made to model the ordering in the ternary system. This study derives a new set of equations that allow for the equilibrium degree of order to be calculated for a system involving three cations mixing on two sites, as in the case of the ternary carbonates. The method is based on the Bragg-Williams approach. From the degree of order, the mole fractions of the three cations in each of the two sites can be determined. Once the site occupancies have been established, a Margules-type mixing model can be used to determine the free energy of mixing in the solid solution and therefore the activities of the various components. ?? 1993 Springer-Verlag.

  5. Socio-economic development of territories based on the principles of public-private partnership in the sphere of comprehensive mineral exploration

    NASA Astrophysics Data System (ADS)

    Nikitenko, S. M.; Goosen, E. V.

    2017-09-01

    The article explores the possibility of using instruments of public-private partnership for a paradigm shift in subsoil use in the fuel and energy complex of Russia. The modern Russian fuel and energy complex (FEC) is characterized by high depreciation of production assets, technological inferiority compared to the developed countries, etc. The solution to all these problems seems to be closely connected with the transition from extensive use of natural resources to comprehensive mineral exploration (CME), with a stable socio-economic development of territories and mutually beneficial partnership between science, business and government based on the principles of public-private partnership (PPP). The article discussed the three main directions of PPP projects development in subsoil use. The first direction comprises the projects aimed at the establishment of core mineral resource businesses on the basis of concession agreements and production sharing contracts. The second direction concerns the projects focused on the development of territories and objects of industrial and social infrastructure in resource regions. The third direction is formed by the projects aimed at the development of new industries, focused on the creation of centers of innovative development, formation of markets for innovative products and innovative clusters in the energy industry.

  6. Study of the intensification of solar photo-Fenton degradation of carbamazepine with ferrioxalate complexes and ultrasound.

    PubMed

    Expósito, A J; Monteagudo, J M; Durán, A; San Martín, I; González, L

    2018-01-15

    The intensification of the solar photo-Fenton system with ferrioxalate photoactive complexes and ultrasound applied to the mineralization of 15mg/L carbamazepine aqueous solution (CBZ) was evaluated. The experiments were carried out in a solar compound parabolic collector (CPC) pilot plant reactor coupled to an ultrasonic processor. The dynamic behavior of hydroxyl radicals generated under the different studied reaction systems was discussed. The initial concentrations of hydrogen peroxide and ferrous/oxalic acid and pH were found to be the most significant variables (32.79%, 25.98% and 26.04%, respectively). Under the selected optimal conditions ([H 2 O 2 ] 0 =150mg/L; [Fe 2+ ] 0 =2.5mg/L/[(COOH) 2 ] 0 =12.1mg/L; pH=5) CBZ was fully degraded after 5min and 80% of TOC was removed using a solar photo-Fenton system intensified with ferrioxalate (SPFF). However, no improvement in the mineralization using SPFF process combined with ultrasound was observed. More mild pH conditions could be used in the SPFF system if compared to the traditional photo-Fenton (pH 3) acidic systems. Finally, a possible reaction pathway for the mineralization of CBZ by the SPFF system was proposed and therein discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Sensitization of TiO2 nanosheets with Cu-biphenylamine frame work to enhance photocatalytic degradation performance of toxic organic contaminants: Synthesis, mechanism and kinetic studies.

    PubMed

    Khan, Muhammad Asim; Mutahir, Sadaf; Wang, Fengyun; Lei, Wu; Xia, Mingzhu

    2018-06-25

    TNS/Cu(X) composite materials were firstly synthesized via simple overnight stirring of TNS in the methanolic solution of Cu complexes. The developed TNS/Cu(X) composites having a well-designed nanostructure, in which TNS and Cu complexes were closely bounded with each other. Biphenylamine complexes fixed on TNS surface in form of Nano-capsules, which were confirmed by TEM and SEM, thus improving the surface area and subsequently charge separation. Innovatively merged photocatalysts of Cu complexes with TNS were successfully verified for photocatalytic mineralization of colored and colorless organic contaminants under the visible light degradation. As compared to original TNS, TNS/Cu(BA) showed prominent improvement in the catalytic actions. Kinetics i.e. t1/2 (half-life times period), Kapp, and R2 (linear regression co-efficient) were also studied. The amended materials created charge separation, by means of electrons gathering at the higher CB, and holes gathering at lower level VB of Cu complex, therefore improving mineralization efficiency of electrons and holes. TNS/Cu(BA) degrade 99% to 99.6% of MO & RhB dyes in 120 min, and 160 min, respectively, and 68 % of phenol and 53% of TCP were destroyed in 180 min. The resilient holes can directly destroy MO, RhB, phenol, and TCP. © 2018 IOP Publishing Ltd.

  8. Dzhida Ore District: Geology, Structural and Metallogenic Regionalization, Genetic Types of Ore Deposits, Geodynamic Conditions of Their Formation, Forecast, and Outlook for Development

    NASA Astrophysics Data System (ADS)

    Gordienko, I. V.; Gorokhovsky, D. V.; Smirnova, O. K.; Lantseva, V. S.; Badmatsyrenova, R. A.; Orsoev, D. A.

    2018-01-01

    Based on complex structural, rheological, and metallogenic studies, taking into account the results of earlier subject-specific, prospecting, mapping, and exploration works, it has been established that the geological structure of the district was caused by the ensimatic evolution of the Vendian-Early Paleozoic Dzhida island-arc system, in which oceanic and island-arc complexes served as a melanocratic basement for Late Paleozoic-Mesozoic active within-plate (riftogenic) processes, which gave rise to the formation of ore deposits and occurrences of strategic mineral commodities (Mo, W, Au, Pt, Ag, and rare elements, including REE). Mantle plumes and flows of deep-seated transmagmatic solutions (ore-forming fluids) played a critical role in these processes, the significance of which increases in upper crustal swarms of dikes and fault systems. The forecasts and development prospects of the Dzhida ore district envisage the expansion of geological prospecting and exploration, scientific research, and technological testing of ore for insight into strategic mineral commodities, as well as reanimation of mining within the areas of the Dzhida's large territorial and industrial complex (TIC) in eastern Siberia.

  9. Mineral induced phosphorylation of glycolate ion--a metaphor in chemical evolution

    NASA Technical Reports Server (NTRS)

    Kolb, V.; Zhang, S.; Xu, Y.; Arrhenius, G.

    1997-01-01

    Bilateral surface-active minerals with excess positive charge concentrate glycolate and trimetaphosphate ion from l0(-3) m aqueous solution to half-saturation of the internal surface sites, and induce phosphorylation of glycolate ion in the mineral with trimetaphosphate, sorbed from l0(-2) m solution. By utilizing reactants from dilute solution at near-neutral pH, and eliminating the need for participating organic nitrogen compounds, the reaction comprises several elements considered necessary for geochemical realism in models for molecular evolution.

  10. Physicochemical characterization of mineral (iron/zinc) bound caseinate and their mineral uptake in Caco-2 cells.

    PubMed

    Shilpashree, B G; Arora, Sumit; Kapila, Suman; Sharma, Vivek

    2018-08-15

    Milk proteins (especially caseins) are widely accepted as good vehicle for the delivery of various bioactive compounds including minerals. Succinylation is one of the most acceptable chemical modification techniques to enhance the mineral binding ability of caseins. Addition of minerals to succinylated proteins may alter their physicochemical and biochemical properties. Physicochemical characteristics of succinylated sodium caseinate (S.NaCN)-mineral (iron/zinc) complexes were elucidated. Chromatographic behaviour and fluorescence intensity confirmed the structural modification of S.NaCN upon binding with minerals. The bound mineral from protein complexes showed significantly higher (P < 0.05) in vitro bioavailability (mineral uptake) than mineral salts in Caco-2 cells. Also, iron bound S.NaCN showed higher cellular ferritin formation than iron in its free form. These mineral bound protein complexes with improved bioavailability could safely replace inorganic fortificants in various functional food formulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Transporters, channels, or simple diffusion? Dogmas, atypical roles and complexity in transport systems.

    PubMed

    Conde, Artur; Diallinas, George; Chaumont, François; Chaves, Manuela; Gerós, Hernâni

    2010-06-01

    The recent breakthrough discoveries of transport systems assigned with atypical functions provide evidence for complexity in membrane transport biochemistry. Some channels are far from being simple pores creating hydrophilic passages for solutes and can, unexpectedly, act as enzymes, or mediate high-affinity uptake, and some transporters are surprisingly able to function as sensors, channels or even enzymes. Furthermore, numerous transport studies have demonstrated complex multiphasic uptake kinetics for organic and mineral nutrients. The biphasic kinetics of glucose uptake in Saccharomyces cerevisiae, a result of several genetically distinct uptake systems operating simultaneously, is a classical example that is a subject of continuous debate. In contrast, some transporters display biphasic kinetics, being bona fidae dual-affinity transporters, their kinetic properties often modulated by post-translational regulation. Also, aquaporins have recently been reported to exhibit diverse transport properties and can behave as highly adapted, multifunctional channels, transporting solutes such as CO(2), hydrogen peroxide, urea, ammonia, glycerol, polyols, carbamides, purines and pyrimidines, metalloids, glycine, and lactic acid, rather than being simple water pores. The present review provides an overview on some atypical functions displayed by transporter proteins and discusses how this novel knowledge on cellular uptake systems may be related to complex multiphasic uptake kinetics often seen in a wide variety of living organisms and the intriguing diffusive uptake of sugars and other solutes. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Electrospray Charging of Minerals: Surface Chemistry and Applications to High-Velocity Microparticle Impacts

    NASA Astrophysics Data System (ADS)

    Daly, T.; Call, S.; Austin, D. E.

    2010-12-01

    Electrospray is a soft ionization technique commonly used to charge large biomolecules; it has, however, also been applied to inorganic compounds. We are extending this technique to mineral microparticles. Electrospray-charged mineral microparticles are interesting in the context of surface science because surface chemistry dictates where and how charge carriers can bond to mineral surfaces. In addition, using electrospray to charge mineral particles allows these particles to be electrostatically accelerated as projectiles in high- and hyper-velocity impacts. Since current techniques for producing high- and hyper-velocity microparticle impacts are largely limited to metal or metal-coated projectiles, using minerals as projectiles is a significant innovation. Electrospray involves three steps: creation of charged droplets containing solute/particles, evaporation and bifurcation of droplets, and desolvation of the solute/particles. An acidified solution is slowly pumped through a needle in a strong DC field, which causes the solution to break into tiny, charged droplets laden with protons. Solvent evaporates from the electrosprayed droplets as they move through the electric field toward a grounded plate, causing the charge on the droplet to increase relative to its mass. When the electrosprayed droplet’s charge becomes such that the droplet is no longer stable, it bifurcates, and each of the resulting droplets carries some of the original droplet’s charge. Evaporation and bifurcation continues until the solute particle is completely desolvated. The result is a protonated solute molecule or particle. We built an instrument that electrosprays particles into vacuum and measures them using an image charge detector. Mineral microparticles were prepared by grinding natural mineral samples to ~2 µm diameter. These microparticles are then added to a 4:1 methanol:water solution to create a 0.005% w/v suspension. The suspension is electrosprayed into vacuum, where the charge detector measures the electrosprayed mineral particles’ speed and charge. Quartz microparticles have been successfully electrosprayed. Variation in quartz microparticles’ charge as a function of pH is being evaluated. In addition, we are studying how to completely desolvate electrosprayed mineral particles. Desolvation is not trivial and often requires more than the passive passage of the droplets from the needle to the grounded plate and into vacuum. We are testing two desolvation methods: a heated beam tube and a heated capillary. Preliminary data suggests we have achieved complete desolvation with a hot beam tube. Although quartz’s surface chemistry is rather unique, successful electrospray of quartz microparticles strongly suggests that other minerals may also be electrosprayed. We are preparing olivine samples for electrospray. In addition, an instrument that creates high-velocity microparticle impacts using electrospray-charged mineral microparticles is being developed. This instrument will not only permit minerals to be used as projectiles, but also allows direction characterization of chemical speciation occurring during microparticle impacts.

  13. The fate of cyanide in leach wastes at gold mines: an environmental perspective

    USGS Publications Warehouse

    Johnson, Craig A.

    2015-01-01

    Cyanide-containing and cyanide-related species are subject to attenuation mechanisms that lead to dispersal to the atmosphere, chemical transformation to other carbon and nitrogen species, or sequestration as cyanometallic precipitates or adsorbed species on mineral surfaces. Dispersal to the atmosphere and chemical transformation amount to permanent elimination of cyanide, whereas sequestration amounts to storage of cyanide in locations from which it can potentially be remobilized by infiltrating waters if conditions change. From an environmental perspective, the most significant cyanide releases from gold leach operations involve catastrophic spills of process solutions or leakage of effluent to the unsaturated or saturated zones. These release pathways are unfavorable for two important cyanide attenuation mechanisms that tend to occur naturally: dispersal of free cyanide to the atmosphere and sunlight-catalyzed dissociation of strong cyanometallic complexes, which produces free cyanide that can then disperse to the atmosphere. The widest margins of environmental safety will be achieved where mineral processing operations are designed so that time for offgassing, aeration, and sunlight exposure are maximized in the event that cyanide-bearing solutions are released inadvertently.

  14. Carbonate mineralization via an amorphous calcium carbonate (ACC) pathway: Tuning polymorph selection by Mg, pH, and mixing environment

    NASA Astrophysics Data System (ADS)

    Dove, P. M.; Blue, C.; Mergelsberg, S. T.; Giuffre, A. J.; Han, N.; De Yoreo, J. J.

    2017-12-01

    Mineral formation by nonclassical processes is widespread with many pathways that include aggregation of nanoparticles, oriented attachment of fully formed crystals, and sequential nucleation/transformation of amorphous phases (De Yoreo et al., 2015, Science). Field observations indicate amorphous calcium carbonate (ACC) can be the initial precipitate when local conditions promote high supersaturations for short time periods. Examples include microbial mats, marine porewaters that undergo pulses of increased alkalinity, closed basin lakes, and sabkhas. The crystalline products exhibit diverse morphologies and complex elemental and isotopic signatures. This study quantifies relationships between solution composition and the crystalline polymorphs that transform from ACC (Blue et al., GCA, 2017). Our experimental design synthesized ACC under controlled conditions for a suite of compositions by tuning input pH, Mg/Ca, and total carbonate concentration. ACC products were allowed to transform within output suspensions under stirred or quiescent mixing while characterizing the polymorph and composition of evolving solutions and solids. We find that ACC transforms to crystalline polymorphs with a systematic relationship to solution composition to give a quantitative framework based upon solution aMg2+/aCa2+ and aCO32-/aCa2+. We also measure a polymorph-specific evolution of pH and Mg/Ca during the transformation that indicates the initial polymorph to form. Pathway is further modulated by stirring versus quiescent conditions. The findings reconcile discrepancies among previous studies of ACC to crystalline products and supports claims that monohydrocalcite may be an overlooked, transient phase during formation of some aragonite and calcite deposits. Organic additives and extreme pH are not required to tune composition and polymorph. Insights from this study reiterate the need to revisit long-standing dogmas regarding controls on CaCO3 polymorph selection. Classical models assume thermodynamic equilibria but cannot provide a reliable predictor of compositions when kinetic factors are driving mineralization. Nonclassical pathways to mineralization may be the missing link to interpreting unusual CaCO3 polymorphs, compositions and textures in modern and ancient carbonates.

  15. Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril'sk sulfide ores

    NASA Astrophysics Data System (ADS)

    Spiridonov, E. M.; Kulagov, E. A.; Serova, A. A.; Kulikova, I. M.; Korotaeva, N. N.; Sereda, E. V.; Tushentsova, I. N.; Belyakov, S. N.; Zhukov, N. N.

    2015-09-01

    The undeformed ore-bearing intrusions of the Noril'sk ore field (NOF) cut through volcanic rocks of the Late Permian-Early Triassic trap association folded in brachysynclines. Due to the nonuniform load on the roof of intrusive bodies, most sulfide melts were squeezed, up to the tops of ore-bearing intrusions; readily fusible Ni-Fe-Cu sulfide melts were almost completely squeezed. In our opinion, not only one but two stages of mineralization developed at the Noril'sk deposits: (i) syntrap magmatic and (ii) epigenetic post-trap metamorphic-hydrothermal. All platinum-group minerals (PGM) and minerals of gold are metasomatic in the Noril'sk ores. They replaced sulfide solid solutions and exsolution structures. All types of PGM and Au minerals occur in the ores, varying in composition from pyrrhotite to chalcopyrite, talnakhite, mooihoekite, and rich in galena; they are localized in the inner and outer contact zones and differ only in the quantitative proportions of ore minerals. The aureoles of PGM and Au-Ag minerals are wider than the contours of sulfide bodies and coincide with halos of fluid impact on orebodies and adjacent host rocks. The pneumatolytic PGM and Au-Ag minerals are correlated in abundance with the dimensions of sulfide bodies. Their amounts are maximal in veins of late fusible ore composed of eutectic PbS ss and iss intergrowths, as well as at their contacts. The Pd and Pt contents in eutectic sulfide ores of NOF are the world's highest. In the process of noble-metal mineral formation, the fluids supply Pd, Pt, Au, As, Sb, Sn, Bi, and a part of Te, whereas Fe, Ni, Cu, Pb, Ag, Rh, a part of Te and Pd are leached from the replaced sulfide minerals. The pneumatolytic PGM of the early stage comprises Pd and Pt intermetallic compounds enriched in Au along with Pd-Pt-Fe-Ni-Cu-Sn-Pb(As) and (Pd,Pt,Au)(Sn,Sb,Bi,Te,As) solid solutions. Pneumatolytic PGM and Au minerals of the middle stage are products of solid-phase transformation and recrystallization of early PGM in combination with the newly formed mineral species Sb-paolovite-insizwaite-geversite-maslovite, niggliite, tetraferroplatinum, rustenburgite-atokite-zvyagintsevite, moncheite, majakite, plumbopalladinite, polarite in association with altaite. The late minerals of the middle stage include stannopalladinite, tatianaite-taimyrite, Ag-Pd-Pt tetraauricupride, and cuproauride. PGM and Au-Ag minerals of the late stage are represented by sobolevskite-sudburyite-kotulskite, maslovite-michenerite, low-Sb paolovite, hessite, cabriite, Au-Ag minerals with fineness of 870-003, froodite, Sb-free insizwaite, Bi-free geversite, and Sb-free niggliite. Electrum and küstelite in PGM aggregates are not zoned. Crystals of Au-Ag minerals that grow over PGM minerals are smoothly zoned. Their zoning may be direct (crystal margins are enriched in Ag), inverse, oscillatory, and complex. Despite favorable annealing conditions, exsolution structures are not identified in Au-Ag minerals from the Noril'sk ores. Sperrylite—the latest of pneumatolytic PGM—occurs as metacrysts up to 14 cm in size. Sperrylite, which replaces high-Sb minerals, contains up to 11 wt % Sb. Pneumatolytic noble-metal minerals originated under the effect of the fluids released during crystallization of sulfide melts in an extremely reductive setting and at extremely low fS2; temperature drops from ~450 to ~350°C. Metamorphic-hydrothermal Ag mineralization (native silver, Hg-silver, sulfides and selenides, chalcopyrite-lenaite solid solutions, argentopentlandite), Pd mineralization (vysotskite, palladoarsenide, vincentite, Sb-free Ag-paolovite, malyshevite, native palladium), and Pt mineralization (kharaelakhite, cooperite, native platinum) develop in those parts of orebodies that are affected by low-grade metamorphism.

  16. Continuous air agglomeration method for high carbon fly ash beneficiation

    DOEpatents

    Gray, McMahon L.; Champagne, Kenneth J.; Finseth, Dennis H.

    2000-01-01

    The carbon and mineral components of fly ash are effectively separated by a continuous air agglomeration method, resulting in a substantially carboree mineral stream and a highly concentrated carbon product. The method involves mixing the fly ash comprised of carbon and inorganic mineral matter with a liquid hydrocarbon to form a slurry, contacting the slurry with an aqueous solution, dispersing the hydrocarbon slurry into small droplets within the aqueous solution by mechanical mixing and/or aeration, concentrating the inorganic mineral matter in the aqueous solution, agglomerating the carbon and hydrocarbon in the form of droplets, collecting the droplets, separating the hydrocarbon from the concentrated carbon product, and recycling the hydrocarbon.

  17. Interaction of root exudates with the mineral soil constituents and their effect on mineral weathering

    NASA Astrophysics Data System (ADS)

    Mimmo, T.; Terzano, R.; Medici, L.; Lettino, A.; Fiore, S.; Tomasi, N.; Pinton, R.; Cesco, S.

    2012-04-01

    Plants release significant amounts of high and low molecular weight organic compounds into the rhizosphere. Among these exudates organic acids (e.g. citric acid, malic acid, oxalic acid), phenolic compounds (e.g. flavonoids), amino acids and siderophores of microbial and/or plant origin strongly influence and modify the biogeochemical cycles of several elements, thus causing changes in their availability for plant nutrition. One class of these elements is composed by the trace elements; some of them are essential for plants even if in small concentrations and are considered micronutrients, such as Fe, Zn, Mn. Their solubility and bioavailability can be influenced, among other factors, by the presence in soil solution of low molecular weight root exudates acting as organic complexing agents that can contribute to the mineral weathering and therefore, to their mobilization in the soil solution. The mobilized elements, in function of the element and of its concentration, can be either important nutrients or toxic elements for plants. The objective of this study was to assess the influence of several root exudates (citric acid, malic acid, oxalic acid, genistein, quercetin and siderophores) on the mineralogy of two different soils (an agricultural calcareous soil and an acidic polluted soil) and to evaluate possible synergic or competitive behaviors. X-ray diffraction (XRD) coupled with Electron Probe Micro Analysis (EPMA) was used to identify the crystalline and amorphous phases which were subjected to mineral alteration when exposed to the action of root exudates. Solubilization of trace metals such as Cu, Zn, Ni, Cr, Pb, Cd as well as of major elements such as Si, Al, Fe and Mn was assessed by means of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Soil microorganisms have proven to decrease mineral weathering by reducing the concentration of active root exudates in solution. Results obtained are an important cornerstone to better understand the biogeochemical processes acting in the rhizosphere which can play an important role in the availability of trace elements (either nutrient or toxic) for plant uptake. Research is supported by MIUR - FIRB "Futuro in ricerca", internal grant of Unibz (TN5031 & TN5046) and the Autonomous Province of Bolzano (Rhizotyr TN5218).

  18. Increase of a BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Gros, Jean-Bernard; Ushakova, Sofya; Tikhomirov, Alexander A.; Kudenko, Yurii; Lasseur, Christophe; Shikhov, V.; Anischenko, O.

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plants cultivation in a Biological Life Support System. The plants which are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitamin variety, were taken as the investigation objects. The plants were grown by hydroponics method on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During the plants growth a definite amount of human mineralized waste was added daily in the nutrient solution. The nutrient solution was not changed during the entire vegetation period. Estimation of the plant needs in macro elements was based on a total biological productivity equal to 0.04 kg.day--1 .m-2 . As the plant requirements in potassium exceeded the potassium content in human waste, water extract of wheat straw containing the required potassium amount was added to the nutrient solution. Knop's solution was used in the control experiments. The experiment and control plants did not show significant differences in their photosynthetic apparatus state and productivity. A small decrease in total productivity of the experimental plants was observed which can result in some reduction of ˆ2 production in a BLSS. Most I probably it is due to the reduced nitrogen use. Therefore in a real BLSS after the mineralization of human feces and urine, it will be efficient to implement a more complete oxidation of nitrogencontaining compounds system, including nitrification. In this case the plants, prospective representatives of the BLSS photosynthesizing unit, could be cultivated on the solutions mainly based on human mineralized waste.

  19. Environmental Assessment for Construction of an Armed Forces Reserve Center Complex and Implementation of BRAC 05 Realignment Actions in Niagara Falls, New York

    DTIC Science & Technology

    2007-07-01

    and moves mainly in secondary fractures . Minerals in solution are calcite, dolomite , gypsum, and halite, resulting in hard and salty groundwater. Much...Lowland physiographic province. The Niagarian Provincial series is "richly fossiliferous" with 400 feet of deposits, including dolomite , limestone...delivered into the on-base distribution system through 10- to 12-inch mains. The. average water pressure supplied to the Installation is approximately

  20. Mineralogic sources of metals in leachates from the weathering of sedex, massive sulfide, and vein deposit mining wastes

    USGS Publications Warehouse

    Diehl, S.F.; Hageman, P.L.; Seal, R.R.; Piatak, N.M.; Lowers, H.

    2011-01-01

    Weathered mine waste consists of oxidized primary minerals and chemically unstable secondary phases that can be sources of readily soluble metals and acid rock drainage. Elevated concentrations of metals such as Cd, Cu, Fe, Mn, Ni, Pb, and Zn are observed in deionized water-based leachate solutions derived from complex sedex and Cu-Pb-Zn mine wastes. Leachate (USGS FLT) from the Elizabeth mine, a massive sulfide deposit, has a pH of 3.4 and high concentrations of Al (16700 ug/L), Cu (440 ug/L), and Zn (8620 ug/L). Leachate from the sedex Faro mine has a pH of 3.5 and high concentrations of Al (2040 ug/L), Cu (1930 ug/L), Pb (2080 ug/L), and Zn (52900 ug/L). In contrast, higher-pH leachates produced from tailings of polymetallic vein deposits have order of magnitude lower metal concentrations. These data indicate that highly soluble secondary mineral phases exist at the surface of waste material where the samples were collected. Sulfide minerals from all sites exhibit differential degrees of weathering, from dissolution etched grain rims, to rinds of secondary minerals, to skeletal remnants. These microscale mineral-dissolution textures enhance weathering and metal teachability of waste material. Besides the formation of secondary minerals, sulfide grains from dried tailings samples may be coated by amorphous Fe-Al-Si minerals that also adsorb metals such as Cu, Ni, and Zn.

  1. Mineral dissolution and secondary precipitation on quartz sand in simulated Hanford tank solutions affecting subsurface porosity

    NASA Astrophysics Data System (ADS)

    Wang, Guohui; Um, Wooyong

    2012-11-01

    Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the US Department of Energy's Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89 °C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineral phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.

  2. Measurement of the complex permittivity of dry rocks and minerals: application of polythene dilution method and Lichtenecker's mixture formulae

    NASA Astrophysics Data System (ADS)

    Zheng, Yongchun; Wang, Shijie; Feng, Junming; Ouyang, Ziyuan; Li, Xiongyao

    2005-12-01

    The complex permittivity of dry rocks and minerals varies over a very wide range, even within a sample there are variation at different temperatures and frequencies. Most rocks and minerals are inhomogeneous materials, therefore, most of the present methods of dielectric measurement designed for artificial homogeneous materials are not suitable for rocks and minerals. The resonant cavity perturbation (RCP) method is a reliable and simple technique to determine the complex permittivity of dielectric materials in the GHz range, and this method is also used extensively. However, the traditional RCP method is sensitive to the measurement of low dielectric constant (ɛ') and low loss factor (ɛ'' or tanδ) materials. The complex permittivity of most dry rocks and minerals exceeds the span vibration of the RCP method, and cannot be measured by the RCP method directly. This paper proposes a new method to measure the complex permittivity of dry rocks and minerals with the RCP method incorporated in the application of polythene (PE) dilution method and Lichtenecker's mixture formulae. Dry rocks and minerals were ground into fine powder. The powder of rocks and minerals was mixed with polythene powder in a definite volume per cent. The mixture was heated and pressed into a thin circular slice. The slice was processed into a small rectangular strip sample, the size of which was fitted to the demands of the RCP method. The complex permittivity of the strip was obtained by the RCP method. The relationship between the dielectric properties of the two-phase mixture and those of each phase in the mixture can be expressed by Lichtenecker's mixture formula. Thus the complex permittivity of dry rocks and minerals can be calculated from the complex permittivity of the mixture in case the complex permittivity of polythene is known. The presented method was verified by measurements of reference materials of various known complex permittivity and other reliable dielectric measurement methods. The results of the experiment showed that this new method is of high accuracy, small sample requirement, and convenient application. Moreover, the complex permittivity of rocks and minerals measured by this method is more reliable than the direct dielectric measurement of rocks or minerals without application of the polythene dilution method and Lichtenecker's mixture formulae.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empiricallymore » determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs.« less

  4. X-ray photoelectron spectroscopic study of the interaction of xanthate with coal pyrite and mineral pyrite surfaces

    NASA Astrophysics Data System (ADS)

    Khan, S. U. M.; Baltrus, J. P.; Lai, R. W.; Richardson, A. G.

    1991-06-01

    Coal pyrite and mineral pyrite surfaces were examined by X-ray photoelectron spectroscopy (XPS) before and after treatment in acidic and basic solutions of sodium ethyl xanthate (NaEtX). XPS showed that the degree of oxidation of coal and mineral pyrite surfaces increased when these pyrites were conditioned in basic solutions. However, conditioning in acidic solutions led to partial removal of surface oxidation from the pyrites. Addition of NaEtX to the acidic and basic solutions enhanced the removal of oxidation from pyrite surfaces. Pretreatment with sulfur dioxide further enhanced the removal of surface oxidation in the presence of NaEtX. Surface oxidation was typically less on mineral pyrite than coal pyrite surfaces following identical treatments. The flotation recoveries of the pyrites in the presence of NaEtX are greatest for the pyrites with the least amount of surface oxidation.

  5. A detailed study of ice nucleation by feldspar minerals

    NASA Astrophysics Data System (ADS)

    Whale, T. F.; Murray, B. J.; Wilson, T. W.; Carpenter, M. A.; Harrison, A.; Holden, M. A.; Vergara Temprado, J.; Morris, J.; O'Sullivan, D.

    2015-12-01

    Immersion mode heterogeneous ice nucleation plays a crucial role in controlling the composition of mixed phase clouds, which contain both supercooled liquid water and ice particles. The amount of ice in mixed phase clouds can affect cloud particle size, lifetime and extent and so affects radiative properties and precipitation. Feldspar minerals are probably the most important minerals for ice nucleation in mixed phase clouds because they nucleate ice more efficiently than other components of atmospheric mineral dust (Atkinson et al. 2013). The feldspar class of minerals is complex, containing numerous chemical compositions, several crystal polymorphs and wide variations in microscopic structure. Here we present the results of a study into ice nucleation by a wide range of different feldspars. We found that, in general, alkali feldspars nucleate ice more efficiently than plagioclase feldspars. However, we also found that particular alkali feldspars nucleate ice relatively inefficiently, suggesting that chemical composition is not the only important factor that dictates the ice nucleation efficiency of feldspar minerals. Ice nucleation by feldspar is described well by the singular model and is probably site specific in nature. The alkali feldspars that do not nucleate ice efficiently possess relatively homogenous structure on the micrometre scale suggesting that the important sites for nucleation are related to surface topography. Ice nucleation active site densities for the majority of tested alkali feldspars are similar to those found by Atkinson et al (2013), meaning that the validity of global aerosol modelling conducted in that study is not affected. Additionally, we have found that ice nucleation by feldspars is strongly influenced, both positively and negatively, by the solute content of droplets. Most other nucleants we have tested are unaffected by solutes. This provides insight into the mechanism of ice nucleation by feldspars and could be of importance when modelling ice nucleation in mixed phase clouds. Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Carslaw, K. S., Whale, T. F., Baustian, K. J., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 10.1038/nature12278, (2013).

  6. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolery, T.J.

    1992-09-14

    EQ3NR is an aqueous solution speciation-solubility modeling code. It is part of the EQ3/6 software package for geochemical modeling. It computes the thermodynamic state of an aqueous solution by determining the distribution of chemical species, including simple ions, ion pairs, and complexes, using standard state thermodynamic data and various equations which describe the thermodynamic activity coefficients of these species. The input to the code describes the aqueous solution in terms of analytical data, including total (analytical) concentrations of dissolved components and such other parameters as the pH, pHCl, Eh, pe, and oxygen fugacity. The input may also include a desiredmore » electrical balancing adjustment and various constraints which impose equilibrium with special pure minerals, solid solution end-member components (of specified mole fractions), and gases (of specified fugacities). The code evaluates the degree of disequilibrium in terms of the saturation index (SI = 1og Q/K) and the thermodynamic affinity (A = {minus}2.303 RT log Q/K) for various reactions, such as mineral dissolution or oxidation-reduction in the aqueous solution itself. Individual values of Eh, pe, oxygen fugacity, and Ah (redox affinity) are computed for aqueous redox couples. Equilibrium fugacities are computed for gas species. The code is highly flexible in dealing with various parameters as either model inputs or outputs. The user can specify modification or substitution of equilibrium constants at run time by using options on the input file.« less

  7. Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction

    NASA Astrophysics Data System (ADS)

    Chen, Ailiang; Li, Mengchun; Qian, Zhen; Ma, Yutian; Che, Jianyong; Ma, Yalin

    2016-10-01

    With the gradual depletion of zinc sulfide ores, exploration of zinc oxide ores is becoming more and more important. Hemimorphite is a major zinc oxide ore, attracting much attention in the field of zinc metallurgy although it is not the major zinc mineral. This paper presents a critical review of the treatment for extraction of zinc with emphasis on flotation, pyrometallurgical and hydrometallurgical methods based on the properties of hemimorphite. The three-dimensional framework structure of hemimorphite with complex linkage of its structural units lead to difficult desilicification before extracting zinc in the many metallurgical technologies. It is found that the flotation method is generally effective in enriching zinc minerals from hemimorphite ores into a high-grade concentrate for recovery of zinc. Pure zinc can be produced from hemimorphite or/and willemite with a reducing reagent, like methane or carbon. Leaching reagents, such as acid and alkali, can break the complex structure of hemimorphite to release zinc in the leached solution without generation of silica gel in the hydrometallurgical process. For optimal zinc extraction, combing flotation with pyrometallurgical or hydrometallurgical methods may be required.

  8. Separation and recovery of lead from a low concentration solution of lead(II) and zinc(II) using the hydrolysis production of poly styrene-co-maleic anhydride.

    PubMed

    Liang, Xing; Su, Yibing; Yang, Ying; Qin, Wenwu

    2012-02-15

    The PbZn separation/preconcentration technique, based on the complex formation reaction of Pb(II) and Zn(II), using a copolymer poly(styrene-co-maleic anhydride) (PSMA), without adding any carrier element was developed. The effects of several experimental parameters such as solution pH, temperature and adsorption time were studied. The experimental results show that the PSMA resin-Pb equilibrium was achieved in 2 min and the Pb(II) loading capacity is up to 641.62 mg g(-1) in aqueous solution under optimum conditions, which is much higher than the Zn(II) loading capacity within 80 min. The adsorption test for Pb(II) indicates that PSMA can recover Pb(II) from a mixed solution of Pb(II), Zn(II) and light metals such as Ca(II) and Mg(II) with higher adsorption rate and larger selective coefficient. A further study indicates that PSMA as chelating resins recovering Pb(II) can be regenerated via mineral acid (6M H(2)SO(4)). PSMA was synthesized by radical polymerization and tested as an adsorbent for the selective recovery of Pb(II). In addition, the formation procedure and structure of Pb-PSMA complex were also studied. Both the PSMA and the Pb-PSMA complex were characterized by means of FTIR spectroscopy, elemental analysis, gel permeation chromatography (GPC) and atomic absorption spectrometry (AAS). Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Complexation of Contaminants and Aqueous-Phase Ozone with Cyclodextrin for Emerging Contaminant Oxidative Degradation

    NASA Astrophysics Data System (ADS)

    Khan, N. A.; Carroll, K. C.

    2016-12-01

    Recalcitrant emerging contaminants in groundwater, such as 1,4-dioxane, require strong oxidants for complete mineralization, whereas strong oxidant efficacy for in-situ chemical oxidation (ISCO) is limited by oxidant decay, reactivity, and non-specificity. Hydroxypropyl-β-cyclodextrin (HPβCD) was examined for its ability to stabilize aqueous phase ozone (O3) and prolong oxidation potential through inclusion complex formation. Partial transformation of HPβCD by O3 was observed but HPβCD proved to be sufficiently resilient and only partially degraded in the presence of O3. The formation of a HPβCD:O3 inclusion clathrate complex was observed, and multiple methods for binding constant measurements carried out and compared for HPβCD complexes with O3 and multiple contaminants. The presence of HPβCD increased the O3 half-life linearly with increasing HPβCD:O3 molar ratio. The O3 half-life in solutions increased by as much as 40-fold relative to HPβCD-free O3 solutions, and complexation reversibility was confirmed. Decay rate coefficients increased for 1,4-dioxane, trichloroethene, and trichloroethane likely due to the formation of HPβCD-O3-contaminant ternary complexes. These results suggest that the use of clathrate stabilizers, such as HPβCD, can support the development of a facilitated-transport enabled ISCO for the O3 treatment of groundwater impacted by recalcitrant emerging contaminants.

  10. Experimental investigation of cesium mobility in the course of secondary mineral formations in Hanford sediment columns at 50 degrees C.

    PubMed

    Mashal, Kholoud Y; Cetiner, Ziya S

    2010-10-01

    Formation of secondary minerals and Cs mobility in Hanford sediments were investigated under conditions similar to the Hanford tank leak in a dynamic flow system at 50 degrees C. The objectives were to (1) examine the nature and locations of secondary mineral phases precipitated in the sediments and (2) quantify the amount of Cs retained by the sediment matrix at 50 degrees C. To this end, Hanford sediments were packed into 10-cm long columns and leached with simulated tank waste consisting of 1.4 M NaOH, 0.125 M NaAlO(2), 3.7 M NaNO(3), and 1.3 x 10(-4) M Cs at 50 degrees C. Compositions of outflow solution were monitored with time for up to 25 days, and the columns were then segmented into four 2.5-cm long layers. The colloidal fraction in these segments was characterized in terms of mineralogy, particle morphology, Cs content, and short-range Al and Si structure. It was observed that cancrinite and sodalite precipitated at 50 degrees C. Approximately 53% Cs was retained in the column treated by the simulated tank waste at this temperature. Cesium retention in the column was lowered in the high ionic strength solution due to competition from Na for the exchange sites. This can be explained by alteration of distribution and number of sorption sites which reduces the selectivity of Cs for Na, and through the formation of cancrinite and sodalite. The formation of hydroxide complexes in highly alkaline solutions could also contribute to relatively poor retention of Cs by hindering ion exchange mechanism.

  11. 46 CFR Table II to Part 150 - Grouping of Cargoes

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... solutions Clay slurry Corn syrup Dextrose solution 2,4-Dichlorophenoxyacetic acid, Diethanolamine salt... Coal tar, high temperature Coal tar pitch Decahydronaphthalene Degummed C9 (DOW) Diphenyl, Diphenyl... Gas, high pour Heartcut distillate Linseed Lubricating Mineral Mineral seal Motor Neatsfoot...

  12. 46 CFR Table II to Part 150 - Grouping of Cargoes

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... solutions Clay slurry Corn syrup Dextrose solution 2,4-Dichlorophenoxyacetic acid, Diethanolamine salt... Coal tar, high temperature Coal tar pitch Decahydronaphthalene Degummed C9 (DOW) Diphenyl, Diphenyl... Gas, high pour Heartcut distillate Linseed Lubricating Mineral Mineral seal Motor Neatsfoot...

  13. 46 CFR Table II to Part 150 - Grouping of Cargoes

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... solutions Clay slurry Corn syrup Dextrose solution 2,4-Dichlorophenoxyacetic acid, Diethanolamine salt... Coal tar, high temperature Coal tar pitch Decahydronaphthalene Degummed C9 (DOW) Diphenyl, Diphenyl... Gas, high pour Heartcut distillate Linseed Lubricating Mineral Mineral seal Motor Neatsfoot...

  14. Response of aluminum solubility to elevated nitrification in soil of a red spruce stand in eastern Maine

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.

    1997-01-01

    Elevated concentrations of soluble Al can impair tree growth and be toxic to aquatic biota, but effects of acidic deposition on Al solubility in forest soils are only partially understood because of complex interactions with H+ and organic matter. We therefore evaluated Al solubility in two red spruce stands in eastern Maine, one of which received dry (NH4)2SO4 at a rate of 1800 equiv ha-1 yr-1 during 19891995. Samples of soil (Spodosol Oa and Bh horizons) and soil solution were collected on five dates from 1992 to 1995. The treatment elevated nitrification, causing an increase in acid input that led to inorganic Al concentrations of greater than 60 ??mol L-1 in both the Oa and Bh horizons. Solubility of Al was also lower in the Bh horizon of the treated stand than in the reference stand, a response related to higher DOC concentrations in the treated stand. Concentrations of CuCl2 and pyrophosphate-extractable Al were higher in the Oa horizon of the treated watershed than the reference stand, a result of accelerated weathering of mineral particles caused by lower solution pH in the treated stand (3.47) than in the reference stand (3.69). Dissolved Al concentrations in these soils are the result of complex mechanisms through which mineral matter, organic matter, and pH interact to control Al solubility; mechanisms that are not incorporated in current Al solubility models.

  15. Impact of natural organic matter coatings on the microbial reduction of iron oxides

    NASA Astrophysics Data System (ADS)

    Poggenburg, Christine; Mikutta, Robert; Schippers, Axel; Dohrmann, Reiner; Guggenberger, Georg

    2018-03-01

    Iron (Fe) oxyhydroxides are important constituents of the soil mineral phase known to stabilize organic matter (OM) under oxic conditions. In an anoxic milieu, however, these Fe-organic associations are exposed to microbial reduction, releasing OM into soil solution. At present, only few studies have addressed the influence of adsorbed natural OM (NOM) on the reductive dissolution of Fe oxyhydroxides. This study therefore examined the impact of both the composition and concentration of adsorbed NOM on microbial Fe reduction with regard to (i) electron shuttling, (ii) complexation of Fe(II,III), (iii) surface site coverage and/or pore blockage, and (iv) aggregation. Adsorption complexes with varying carbon loadings were synthesized using different Fe oxyhydroxides (ferrihydrite, lepidocrocite, goethite, hematite, magnetite) and NOM of different origin (extracellular polymeric substances from Bacillus subtilis, OM extracted from soil Oi and Oa horizons). The adsorption complexes were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, electrophoretic mobility and particle size measurements, and OM desorption. Incubation experiments under anaerobic conditions were conducted for 16 days comparing two different strains of dissimilatory Fe(III)-reducing bacteria (Shewanella putrefaciens, Geobacter metallireducens). Mineral transformation during reduction was assessed via XRD and FTIR. Microbial reduction of the pure Fe oxyhydroxides was controlled by the specific surface area (SSA) and solubility of the minerals. For Shewanella putrefaciens, the Fe reduction of adsorption complexes strongly correlated with the concentration of potentially usable electron-shuttling molecules for NOM concentrations <2 mg C L-1, whereas for Geobacter metallireducens, Fe reduction depended on the particle size and thus aggregation of the adsorption complexes. These diverging results suggest that the influence of NOM on the stability of Fe-organic associations in soils cannot easily be assessed without considering the composition of the microbial soil community.

  16. Occurrence and mineral chemistry of chromite and related silicates from the Hongshishan mafic-ultramafic complex, NW China with petrogenetic implications

    NASA Astrophysics Data System (ADS)

    Ruan, Banxiao; Yu, Yingmin; Lv, Xinbiao; Feng, Jing; Wei, Wei; Wu, Chunming; Wang, Heng

    2017-10-01

    The Hongshishan mafic-ultramafic complex is located in the western Beishan Terrane, NW China, and hosts an economic Ni-Cu deposit. Chromite as accessory mineral from the complex is divided into three types based on its occurrence and morphology. Quantitative electron probe microanalysis (EPMA) have been conducted on the different types of chromites. Type 1 chromite occurs as inclusions within silicate minerals and has relatively homogeneous composition. Type 2 chromite occurs among serpentine, as interstitial phase. Type 3 chromite is zoned and exhibits a sudden change in compositions from core to rim. Type 1 chromite occurs in olivine gabbro and troctolite showing homogeneous composition. This chromite is more likely primary. Interstitial type 2 and zoned type 3 chromite has compositional variation from core to rim and is more likely modified. Abundant inclusions of orthopyroxene, phlogopite and hornblende occur within type 2 and type 3 chromites. The parental melt of type 1 chromite has an estimated composition of 14.5 wt% MgO, 12.3 wt% Al2O3 and 1.9 wt% TiO2 and is characterized by high temperature, picritic affinity, hydrous nature and high Mg and Ti contents. Compositions of chromite and clinopyroxene are distinct from those of Alaskan-type complexes and imply that the subduction-related environment is not reasonable. Post orogenic extension and the early Permian mantle plume are responsible for the emplacement of mafic-ultramafic complexes in the Beishan Terrane. The cores of zoned chromites are classified as ferrous chromite and the rims as ferrian chromite. The formation of ferrian rim involves reaction of ferrous chromite, forsterite and magnetite to produce ferrian chromite and chlorite, or alternaively, the rim can be simply envisioned as the result of external addition of magnetite in solution to the already formed ferrous chromite.

  17. Sulfide mineralization: Its role in chemical weathering of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1988-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produced degradation products in the Martian regolith. By analogy with terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato- and hydroxo-complex ions and sols formed gossans above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite) and silica (opal). Underlying groundwater, now permafrost, contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, etc., which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates and phyllosilicates during dust storms on Mars.

  18. Biomimetic Mineralization on a Macroporous Cellulose-Based Matrix for Bone Regeneration

    PubMed Central

    Petrauskaite, Odeta; Gomes, Pedro de Sousa; Fernandes, Maria Helena; Juodzbalys, Gintaras; Maminskas, Julius

    2013-01-01

    The aim of this study is to investigate the biomimetic mineralization on a cellulose-based porous matrix with an improved biological profile. The cellulose matrix was precalcified using three methods: (i) cellulose samples were treated with a solution of calcium chloride and diammonium hydrogen phosphate; (ii) the carboxymethylated cellulose matrix was stored in a saturated calcium hydroxide solution; (iii) the cellulose matrix was mixed with a calcium silicate solution in order to introduce silanol groups and to combine them with calcium ions. All the methods resulted in a mineralization of the cellulose surfaces after immersion in a simulated body fluid solution. Over a period of 14 days, the matrix was completely covered with hydroxyapatite crystals. Hydroxyapatite formation depended on functional groups on the matrix surface as well as on the precalcification method. The largest hydroxyapatite crystals were obtained on the carboxymethylated cellulose matrix treated with calcium hydroxide solution. The porous cellulose matrix was not cytotoxic, allowing the adhesion and proliferation of human osteoblastic cells. Comparatively, improved cell adhesion and growth rate were achieved on the mineralized cellulose matrices. PMID:24163816

  19. Adsorption of aliphatic polyhydroxy carboxylic acids on gibbsite: pH dependency and importance of adsorbate structure.

    PubMed

    Schneckenburger, Tatjana; Riefstahl, Jens; Fischer, Klaus

    2018-01-01

    Aliphatic (poly)hydroxy carboxylic acids [(P)HCA] occur in natural, e.g. soils, and in technical (waste disposal sites, nuclear waste repositories) compartments . Their distribution, mobility and chemical reactivity, e.g. complex formation with metal ions and radionuclides, depend, among others, on their adsorption onto mineral surfaces. Aluminium hydroxides, e.g. gibbsite [α-Al(OH) 3 ], are common constituents of related solid materials and mimic the molecular surface properties of clay minerals. Thus, the study was pursued to characterize the adsorption of glycolic, threonic, tartaric, gluconic, and glucaric acids onto gibbsite over a wide pH and (P)HCA concentration range. To consider specific conditions occurring in radioactive wastes, adsorption applying an artificial cement pore water (pH 13.3) as solution phase was investigated additionally. The sorption of gluconic acid at pH 4, 7, 9, and 12 was best described by the "two-site" Langmuir isotherm, combining "high affinity" sorption sites (adsorption affinity constants [Formula: see text] > 1 L mmol -1 , adsorption capacities < 6.5 mmol kg -1 ) with "low affinity" sites ([Formula: see text] < 0.1 L mmol -1 , adsorption capacities ≥ 19 mmol kg -1 ). The total adsorption capacities at pH 9 and 12 were roughly tenfold of that at pH 4 and 7. The S-shaped pH sorption edge of gluconic acid was modelled applying a constant capacitance model, considering electrostatic interactions, hydrogen bonding, surface complex formation, and formation of solved polynuclear complexes between Al 3+ ions and gluconic acid. A Pearson and Spearman rank correlation between (P)HCA molecular properties and adsorption parameters revealed the high importance of the size and the charge of the adsorbates. The adsorption behaviour of (P)HCAs is best described by a combination of adsorption properties of carboxylic acids at acidic pH and of polyols at alkaline pH. Depending on the molecular properties of the adsorbates and on pH, electrostatic interactions, hydrogen bonding, and ternary surface complexation contribute in varying degrees to the adsorption process. Linear distribution coefficients K d between 8.7 and 60.5 L kg -1 (1 mmol L -1 initial PHCA concentration) indicate a considerable mineral surface affinity at very high pH, thus lowering the PHCA fraction available for the complexation of metal ions including radionuclides in solution and their subsequent mobilization.

  20. Complementary effects of multi-protein components on biomineralization in vitro

    PubMed Central

    Ba, Xiaolan; Rafailovich, Miriam; Meng, Yizhi; Pernodet, Nadine; Wirick, Sue; Füredi-Milhofer, Helga; Qin, Yi-Xian; DiMasi, Elaine

    2016-01-01

    The extracellular matrix (ECM) is composed of mixed protein fibers whose precise composition affects biomineralization. New methods are needed to probe the interactions of these proteins with calcium phosphate mineral and with each other. Here we follow calcium phosphate mineralization on protein fibers self-assembled in vitro from solutions of fibronectin, elastin and their mixture. We probe the surface morphology and mechanical properties of the protein fibers during the early stages. The development of mineral crystals on the protein matrices is also investigated. In physiological mineralization solution, the elastic modulus of the fibers in the fibronectin-elastin mixture increases to a greater extent than that of the fibers from either pure protein. In the presence of fibronectin, longer exposure in the mineral solution leads to the formation of amorphous calcium phosphate particles templated along the self-assembled fibers, while elastin fibers only collect calcium without any mineral observed during early stage. TEM images confirm that small needle-shape crystals are confined inside elastin fibers which suppress the release of mineral outside the fibers during late stage, while hydroxyapatite crystals form when fibronectin is present. These results demonstrate complementary actions of the two ECM proteins fibronectin and elastin to collect cations and template mineral, respectively. PMID:20035875

  1. A method for the determination of vanadium and iron oxidation states in naturally occurring oxides and silicates

    USGS Publications Warehouse

    Wanty, R.B.; Goldhaber, M.B.

    1985-01-01

    A valence-specific analytical method for determining V3+ in ore minerals has been developed that involves two steps: dissolution of a mineral sample without disturbing the V3+/Vtot ratio, followed by determination of V3+ in the presence of V4+. The samples are dissolved in a mixture of hydrofluoric and sulphuric acids at 100?? in Teflon-lined reaction vessels. Tervalent vanadium is then determined colorimetrically by formation of a V3+-thiocyanate complex in aqueous-acetone medium. Fe3+ is measured semi-quantitatively in the same solution. The method has been tested with two naturally occurring samples containing vanadium and iron. The results obtained were supported by those obtained by other methods, including electron spin resonance spectroscopy, thermogravimetric analysis, and Mo??ssbauer spectroscopy. ?? 1985.

  2. New Insights into the Role of Pb-BHA Complexes in the Flotation of Tungsten Minerals

    NASA Astrophysics Data System (ADS)

    Yue, Tong; Han, Haisheng; Hu, Yuehua; Sun, Wei; Li, Xiaodong; Liu, Runqing; Gao, Zhiyong; Wang, Li; Chen, Pan; Zhang, Chenyang; Tian, Mengjie

    2017-11-01

    Lead ions (lead nitrate) were introduced to modify the surface properties of tungsten minerals, effectively improving the floatability, with benzohydroxamic acid (BHA) serving as the collector. Flotation tests indicated that Pb-BHA complexes were the active species responsible for flotation of the tungsten minerals. The developed Pb-BHA complexes and the novel flotation process effectively increased the recovery of scheelite and wolframite, simplified the technological process, and led to reduced costs. Fourier transform infrared spectra data showed the presence of adsorbed Pb-BHA complexes on the surface of the minerals. The characteristic peaks of BHA shifted by a considerable extent, indicating that chemical adsorption plays an important role in the flotation process. Zeta potential results confirmed physical adsorption of the positively charged Pb-BHA complexes on the mineral surfaces. The synergistic effect between chemical and physical adsorption facilitated the maximum flotation recovery of scheelite and wolframite.

  3. Mineralogy controls on reactive transport of Marcellus Shale waters.

    PubMed

    Cai, Zhang; Wen, Hang; Komarneni, Sridhar; Li, Li

    2018-07-15

    Produced or flowback waters from Marcellus Shale gas extraction (MSWs) typically are highly saline and contain chemicals including trace metals, which pose significant concerns on water quality. The natural attenuation of MSW chemicals in groundwater is poorly understood due to the complex interactions between aquifer minerals and MSWs, limiting our capabilities to monitor and predict. Here we combine flow-through experiments and process-based reactive transport modeling to understand mechanisms and quantify the retention of MSW chemicals in a quartz (Qtz) column, a calcite-rich (Cal) column, and a clay-rich (Vrm, vermiculite) column. These columns were used to represent sand, carbonate, and clay-rich aquifers. Results show that the types and extent of water-rock interactions differ significantly across columns. Although it is generally known that clay-rich media retard chemicals and that quartz media minimize water-rock interactions, results here have revealed insights that differ from previous thoughts. We found that the reaction mechanisms are much more complex than merely sorption and mineral precipitation. In clay rich media, trace metals participate in both ion exchange and mineral precipitation. In fact, the majority of metals (~50-90%) is retained in the solid via mineral precipitation, which is surprising because we typically expect the dominance of sorption in clay-rich aquifers. In the Cal column, trace metals are retained not only through precipitation but also solid solution partitioning, leading to a total of 75-99% retention. Even in the Qtz column, trace metals are retained at unexpectedly high percentages (~20-70%) due to precipitation. The reactive transport model developed here quantitatively differentiates the relative importance of individual processes, and bridges a limited number of experiments to a wide range of natural conditions. This is particularly useful where relatively limited knowledge and data prevent the prediction of complex rock-contaminant interactions and natural attenuation. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. [Effects of several low-molecular-weight organic acids on the release kinetic of endosulfan from red soil].

    PubMed

    Zhao, Zhen-hua; Wu, Yu; Jiang, Xin; Xia, Li-ling; Ni, Li-xiao

    2009-10-15

    The kinetic release behaviors of a-endosulfan from red soil with three kinds of low-molecular-weight organic acids (LMWOA: oxalate, tartrate and citrate) solution and water leaching were investigated by kinetic device designed by ourselves and batch method. The results show that: the release percentage of endosulfan from red soil by tartrate and citrate solution (10 mmol/L) can increase by 7%-18% more than that by distilled water and oxalate solution, especially for tartrate solution. There is no significant difference between distilled water and oxalate solution for the release percentage of endosulfan (p > 0.05). There are two stages of quick and slow for the release of endosulfan from red soil, and the leaching speed is quicker especially for the initial 200 mL leaching solution. When using distilled water or oxalate solution as leaching solution, the best equations that described the kinetic release behavior of endosulfan from red soil were parabola diffuse equation and double constant equation, and weren't the apparent first dynamics equation that represented the simple surface diffusion mechanism. The kinetic release behavior of endosulfan in tartrate or citrate leaching system can be described by Elovich equation (R2 > 0.99, p < 0.0001), it implied that the simple surface diffusion mechanism is not the primary factor that effected the release of endosulfan, which three-dimensional molecule structure is complex, from red soil in aqueous phase leaching systems, and it maybe related to the outward diffuse mechanism from soil particle, activation and deactivation function of soil particles surface, the dissolution of soil mineral surface and structure change of inherent organic matter that coating onto the soil mineral surface induced by LMW organic acid. It suggested that the tartrate and citrate induced the complication of the release mechanisms of the pesticides from red soil.

  5. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Matter, Juerg M.; Stute, Martin; Snæbjörnsdottir, Sandra Ó.; Oelkers, Eric H.; Gislason, Sigurdur R.; Aradottir, Edda S.; Sigfusson, Bergur; Gunnarsson, Ingvi; Sigurdardottir, Holmfridur; Gunnlaugsson, Einar; Axelsson, Gudni; Alfredsson, Helgi A.; Wolff-Boenisch, Domenik; Mesfin, Kiflom; Taya, Diana Fernandez de la Reguera; Hall, Jennifer; Dideriksen, Knud; Broecker, Wallace S.

    2016-06-01

    Carbon capture and storage (CCS) provides a solution toward decarbonization of the global economy. The success of this solution depends on the ability to safely and permanently store CO2. This study demonstrates for the first time the permanent disposal of CO2 as environmentally benign carbonate minerals in basaltic rocks. We find that over 95% of the CO2 injected into the CarbFix site in Iceland was mineralized to carbonate minerals in less than 2 years. This result contrasts with the common view that the immobilization of CO2 as carbonate minerals within geologic reservoirs takes several hundreds to thousands of years. Our results, therefore, demonstrate that the safe long-term storage of anthropogenic CO2 emissions through mineralization can be far faster than previously postulated.

  6. The investigations of changes in mineral-organic and carbon-phosphate ratios in the mixed saliva by synchrotron infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Seredin, Pavel; Goloshchapov, Dmitry; Kashkarov, Vladimir; Ippolitov, Yuri; Bambery, Keith

    The objective of this study was to investigate the efficiency of the saturation of mixed saliva by mineral complexes and groups necessary for the remineralisation of tooth enamel using exogenous and endogenous methods of caries prevention. Using IR spectroscopy and high-intensity synchrotron radiation, changes in the composition of the human mixed saliva were identified when exogenous and endogenous methods of caries prevention are employed. Based on the calculations of mineral/organic and carbon/phosphate ratios, changes in the composition of the human mixed saliva depending on a certain type of prevention were identified. It is shown that the use of a toothpaste (exogenous prevention) alone based on a multi-mineral complex including calcium glycerophosphate provides only a short-term effect of saturating the oral cavity with mineral complexes and groups. Rinsing of the oral cavity with water following the preventive use of a toothpaste completely removes the effect of the saturation of the mixed saliva with mineral groups and complexes. The use of tablets of a multi-mineral complex with calcium glycerophosphate (endogenous prevention) in combination with exogenous prevention causes an average increase of ∼10% in the content of mineral groups and complexes in the mixed saliva and allows long-term saturation of the oral fluid by them. This method outperforms the exogenous one owing to a long-term effect of optimal concentrations of endogenous and biologically available derivatives of phosphates on the enamel surface.

  7. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    DOEpatents

    Chaiko, David J.; Mego, William A.

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  8. An integrated monitoring network for hydrologic, geochemical, and sediment fluxes to characterize carbon-mineral fate in the Christina River Basin Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Sawyer, A. H.; Karwan, D. L.; Lazareva, O.

    2011-12-01

    Organic carbon (C) -mineral complexation mechanism plays an important role in C sequestration within watersheds. The primary goal of the Christina River Basin Critical Zone Observatory in SE Pennsylvania and N Delaware, USA (one of six National Science Foundation-funded observatories) is to quantify net carbon sink or source due to mineral production and transport and its dependence on land use. This effort requires an interdisciplinary understanding of carbon and mineral fluxes across interfaces between soil, aquifer, floodplain, and river. We have established a monitoring network that targets hydrologic, geochemical, and sedimentological transport processes across channel-floodplain-aquifer interfaces within White Clay Creek Watershed. Within the channel, suspended material is sampled and analyzed for organic and mineral composition as well as geochemical fingerprints. Surface water and groundwater are analyzed for C, Fe, and Mn chemistry. Within the floodplain, in-situ sensors monitor soil moisture, pressure, temperature, conductivity, and redox potential. Integrated data analysis should yield estimates of water and solute fluxes between the vadose zone, riparian aquifer, and stream. Our preliminary data show that storm events are important for carbon and mineral fluxes-suspended material in surface water changes in source and composition throughout the storm. Meanwhile, the variation in stream stage drives surface water-groundwater exchange, facilitating changes in redox potential and providing opportunity for enhanced transport and reactions involving C, Fe, and Mn in the riparian aquifer.

  9. Mineralization of organic-matter labile fragments in the humus-accumulative horizon of soddy-podzolic soil

    NASA Astrophysics Data System (ADS)

    Trofimov, S. Ya.; Lazarev, A. S.; Fokin, A. D.

    2012-12-01

    The mineralization rate of the 14C-labeled organic matter (OM) in the humus-accumulative AE horizon of a soddy-podzolic soil was determined in a laboratory experiment. The labeling was performed in a field experiment when microamounts of 14C-labeled glucose, glycine, and uracil were added to tree waste in sacks embedded in the upper layer of the forest litter. Samples containing 14C were taken from the AE horizon (above which the sacks with the labeled material were placed) 7 and 20 months after the beginning of the experiment. The soil samples were wetted to a water content corresponding to ˜80% of the total water capacity and placed in hermetic vessels containing vials with a periodically renewed alkali solution. The incubation was performed at room temperature for 3.5 months; the alkali solutions in the vials were replaced and titrated 12 times during this period. Mineralization curves were plotted from the amounts of carbon dioxide absorbed by a 0.3 N NaOH solution, which were calculated for each time interval; its 14C content was determined by the scintillation method. The experimental treatments also included the determination of the OM mineralization rate in material from the AE horizon pretreated with a heavy liquid or a heavy liquid and a 0.1 N NaOH solution. The differences between the mineralization rates of the labeled organic matter applied to the soil in the form of glucose, glycine, and uracil under the field conditions after the interaction for 7 and 20 months were revealed. The changes in the mineralization rate after the successive extraction of the labile organic matter with a heavy liquid and a 0.1 N NaOH solution were studied. It was shown that the transformation of the labeled low-molecular-weight organic compounds in the soil over 20 months included their strong inclusion into the humus composition, which was confirmed by the similar values of the mineralization constants of the native and 14C-labeled OM. In addition, the treatments with the heavy liquid or the heavy liquid and the NaOH solution had almost identical effects on the mineralization of the native and 14C-labeled OM. The mineralization constants of the native and 14C-labeled OM in the samples taken after 7 months of the field experiment differed significantly.

  10. Inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    NASA Astrophysics Data System (ADS)

    Ridley, Moira K.; Hiemstra, Tjisse; van Riemsdijk, Willem H.; Machesky, Michael L.

    2009-04-01

    Acid-base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multi-component mineral-aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488-508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca 2+ and Sr 2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 1 1 0 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Předota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Bénézeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties. Langmuir20, 4954-4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl - which was common to all solutions, but also for Rb + and K +. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na + ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb +, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.

  11. inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, Mora K.; Hiemstra, T; Van Riemsdijk, Willem H.

    Acid base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multicomponent mineral aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise,more » molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488 508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 110 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pr edota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Be ne zeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile water interface: linking molecular and macroscopic properties. Langmuir 20, 4954 4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl which was common to all solutions, but also for Rb+ and K+. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na+ ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb+, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.« less

  12. Tungsten Speciation and Solubility in Munitions-Impacted Soils.

    PubMed

    Bostick, Benjamín C; Sun, Jing; Landis, Joshua D; Clausen, Jay L

    2018-02-06

    Considerable questions persist regarding tungsten geochemistry in natural systems, including which forms of tungsten are found in soils and how adsorption regulates dissolved tungsten concentrations. In this study, we examine tungsten speciation and solubility in a series of soils at firing ranges in which tungsten rounds were used. The metallic, mineral, and adsorbed forms of tungsten were characterized using X-ray absorption spectroscopy and X-ray microprobe, and desorption isotherms for tungsten in these soils were used to characterize its solid-solution partitioning behavior. Data revealed the complete and rapid oxidation of tungsten metal to hexavalent tungsten(VI) and the prevalence of adsorbed polymeric tungstates in the soils rather than discrete mineral phases. These polymeric complexes were only weakly retained in the soils, and porewaters in equilibrium with contaminated soils had 850 mg L -1 tungsten, considerably in excess of predicted solubility. We attribute the high solubility and limited adsorption of tungsten to the formation of polyoxometalates such as W 12 SiO 40 4- , an α-Keggin cluster, in soil solutions. Although more research is needed to confirm which of such polyoxometalates are present in soils, their formation may not only increase the solubility of tungsten but also facilitate its transport and influence its toxicity.

  13. Enhanced Photocatalytic Property of Cu Doped Sodium Niobate

    DOE PAGES

    Xu, Jianbin; Zhang, Feng; Sun, Bingyang; ...

    2015-01-01

    Here, we investigate the photocatalytic activity of Cu doped NaNbO 3 powder sample prepared by the modified polymer complex method. The photocatalytic activity of hydrogen evolution from methanol aqueous solution was improved by Cu 2.6 at% doping. The photocatalytic degradation of rhodamine B (RhB) under visible light irradiation was enhanced in comparison with pristine NaNbO 3. Cu introduction improved the adsorption property of NaNbO 3, judging from the Fourier transform infrared spectra. Moreover, the ultraviolet light excitation in Cu doped sample would accelerate the mineralized process.

  14. PHOTOMETRIC DETERMINATION OF THORIUM IN ORES WITH ARSENAZO III (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savvin, S.B.; Bagreev, V.B.

    1960-01-01

    Th and certain other tetravalent elements such as U and Zr form internal complexes with the reagent arsenazo III (an organic sulfocompound containing As) which are stable in strong acids, sulfates, and phosphates. Th was determined photometrically in HCl solutions ranging from 0.01 to 10 N without finding it necessary to remove the sulfates, phosphates, or oxalates. The method was especially useful for working at concentrations from 0.05 to 1 of Th in the analysis of minerals such as alaskite granite, syenite, and nordmarkite. (TTT)

  15. Chemical composition and osmium-isotope systematics of primary and secondary PGM assemblages from high-Mg chromitite of the Nurali lherzolite massif, the South Urals, Russia

    NASA Astrophysics Data System (ADS)

    Malitch, K. N.; Anikina, E. V.; Badanina, I. Yu.; Belousova, E. A.; Pushkarev, E. V.; Khiller, V. V.

    2016-01-01

    The isotopic and geochemical characteristics of PGE mineralization in high-Mg chromitite from the banded dunite-wehrlite-clinopyroxenite complex of the Nurali lherzolite massif, the South Urals, Russia is characterized for the first time. Electron microprobe analysis and LA MC-ICP-MS mass spectrometry are used for studying Cr-spinel and platinum-group minerals (PGM). Two processes synchronously develop in high-Mg chromitite subject to metamorphism: (1) the replacement of Mg-Al-rich Cr-spinel, orthopyroxene, and diopside by chromite, Cr-amphibole, chlorite, and garnet; (2) the formation of a secondary mineral assemblage consisting of finely dispersed ruthenium or Ru-hexaferrum aggregate and silicate-oxide or silicate matter on the location of primary Ru-Os-sulfides of the laurite-erlichmanite solid solution series. Similar variations of Os-isotopic composition in both primary and secondary PGM assemblages are evidence for the high stability of the Os isotope system in PGM and for the possibility of using model 187Os/188Os ages in geodynamic reconstructions.

  16. From Peptides to Proteins: Systematic Control of Net Molecular Charge and Hydrophilicity on the Kinetics of Calcite Growth

    NASA Astrophysics Data System (ADS)

    Elhadj, S.; de Yoreo, J. J.; Hoyer, J. J.; Dove, P. M.

    2006-12-01

    The compartment-specific compositions of biologic molecules isolated from biominerals suggest that control of mineral growth may be linked to biochemical features. Here we define a systematic relationship between the ability of biomolecules in solution to promote the growth of calcite (CaCO3) and their net negative molecular charge and hydrophilicity. The degree of enhancement is dependent on peptide composition, but not on peptide sequence. Data analysis shows that this rate enhancement arises from an increase in the kinetic coefficient. We interpret the mechanism of growth enhancement to be a catalytic process whereby biomolecules reduce the magnitude of the diffusive barrier, Ek, by perturbations that displace water molecules- a water shell destruction mechanism. The result is a decrease in the repulsive barrier for attachment of solutes to the solid phase. This previously unrecognized relationship also rationalizes recently reported data showing acceleration of calcite growth rates over rates measured in the pure system by nanomolar levels of abalone nacre proteins. These findings show that the growth-modifying properties of small model peptides may be scaled up to analyze mineralization processes that are mediated by more complex proteins. We suggest that enhancement of calcite growth may now be estimated a priori from the composition of peptide sequences and the calculated values of hydrophilicity and net molecular charge without need for detailed tests for each biomolecule. This insight may contribute to an improved understanding of mineralization in diverse systems of biomineralization.

  17. In situ observation of fluoride-ion-induced hydroxyapatite collagen detachment on bone fracture surfaces by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kindt, J. H.; Thurner, P. J.; Lauer, M. E.; Bosma, B. L.; Schitter, G.; Fantner, G. E.; Izumi, M.; Weaver, J. C.; Morse, D. E.; Hansma, P. K.

    2007-04-01

    The topography of freshly fractured bovine and human bone surfaces was determined by the use of atomic force microscopy (AFM). Fracture surfaces from both kinds of samples exhibited complex landscapes formed by hydroxyapatite mineral platelets with lateral dimensions ranging from ~90 nm × 60 nm to ~20 nm × 20 nm. Novel AFM techniques were used to study these fracture surfaces during various chemical treatments. Significant topographical changes were observed following exposure to aqueous solutions of ethylenediaminetetraacetic acid (EDTA) or highly concentrated sodium fluoride (NaF). Both treatments resulted in the apparent loss of the hydroxyapatite mineral platelets on a timescale of a few seconds. Collagen fibrils situated beneath the overlying mineral platelets were clearly exposed and could be resolved with high spatial resolution in the acquired AFM images. Time-dependent mass loss experiments revealed that the applied agents (NaF or EDTA) had very different resulting effects. Despite the fact that the two treatments exhibited nearly identical results following examination by AFM, bulk bone samples treated with EDTA exhibited a ~70% mass loss after 72 h, whereas for the NaF-treated samples, the mass loss was only of the order of ~10%. These results support those obtained from previous mechanical testing experiments, suggesting that enhanced formation of superficial fluoroapatite dramatically weakens the protein-hydroxyapatite interfaces. Additionally, we discovered that treatment with aqueous solutions of NaF resulted in the effective extraction of noncollagenous proteins from bone powder.

  18. Increased BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Ushakova, S.; Tikhomirov, A.; Shikhov, V.; Kudenko, Yu.; Anischenko, O.; Gros, J.-B.; Lasseur, Ch.

    2009-10-01

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plant cultivation in a biological life support system (BLSS). Plants that are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitaminny variety, were used. The plants were grown hydroponically on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During plant growth, a determined amount of human mineralized waste was added daily to the nutrient solution. The nutrient solution remained unchanged throughout the vegetation period. Estimated plant requirements for macro-elements were based on a total biological productivity of 0.04 kg day -1 m -2. As the plant requirements for potassium exceeded the potassium content of human waste, a water extract of wheat straw containing the required amount of potassium was added to the nutrient solution. The Knop's solution was used in the control experiments. The experimental and control plants showed no significant differences in state or productivity of their photosynthetic apparatus. A small decrease in total productivity of the experimental plants was observed, which might result in some reduction of О 2 production in a BLSS.

  19. Studies of quaternary saline lakes-I. Hydrogen isotope fractionation in saline minerals

    USGS Publications Warehouse

    Matsuo, S.; Friedman, I.; Smith, G.I.

    1972-01-01

    Borax, gaylussite, nahcolite and trona were synthesized in aqueous solution at temperatures ranging from 8?? to 35??C. Except for borax, deuterium was always depleted in these hydrated minerals relative to the solutions from which they were crystallized. In borax, no significant fractionation was found. The fractionation factor of D H for the trona-water system exhibited a marked temperature dependence. By combining the deuterium contents of trona and the solution from which trona was crystallized, the following thermometer scale was obtained: In ( D H) trona ( D H)water = 1.420 ?? 104 T2 + 23.56 T (1). An attempt to establish a geothermometer based on C13 C12 fractionation between carbonate minerals and carbonate ions in aqueous solution was not successful. ?? 1972.

  20. TomoMiner and TomoMinerCloud: A software platform for large-scale subtomogram structural analysis

    PubMed Central

    Frazier, Zachary; Xu, Min; Alber, Frank

    2017-01-01

    SUMMARY Cryo-electron tomography (cryoET) captures the 3D electron density distribution of macromolecular complexes in close to native state. With the rapid advance of cryoET acquisition technologies, it is possible to generate large numbers (>100,000) of subtomograms, each containing a macromolecular complex. Often, these subtomograms represent a heterogeneous sample due to variations in structure and composition of a complex in situ form or because particles are a mixture of different complexes. In this case subtomograms must be classified. However, classification of large numbers of subtomograms is a time-intensive task and often a limiting bottleneck. This paper introduces an open source software platform, TomoMiner, for large-scale subtomogram classification, template matching, subtomogram averaging, and alignment. Its scalable and robust parallel processing allows efficient classification of tens to hundreds of thousands of subtomograms. Additionally, TomoMiner provides a pre-configured TomoMinerCloud computing service permitting users without sufficient computing resources instant access to TomoMiners high-performance features. PMID:28552576

  1. Colloid formation in Hanford sediments reacted with simulated tank waste.

    PubMed

    Mashal, Kholoud; Harsh, James B; Flury, Markus; Felmy, Andrew R; Zhao, Hongting

    2004-11-01

    Solutions of high pH, ionic strength, and aluminum concentration have leaked into the subsurface from underground waste storage tanks atthe Hanford Reservation in Washington State. Here, we test the hypothesis that these waste solutions alter and dissolve the native minerals present in the sediments and that colloidal (diameter < 2 microm) feldspathoids form. We reacted Hanford sediments with simulated solutions representative of Hanford waste tanks. The solutions consisted of 1.4 or 2.8 mol/kg NaOH, 0.125 or 0.25 mol/kg NaAlO4, and 3.7 mol/kg NaNO3 and were contacted with the sediments for a period of 25 or 40 days at 50 degrees C. The colloidal size fraction was separated from the sediments and characterized in terms of mineralogy, morphology, chemical composition, and electrophoretic mobility. Upon reaction with tank waste solutions, native minerals released Si and other elements into the solution phase. This Si precipitated with the Al present in the waste solutions to form secondary minerals, identified as the feldspathoids cancrinite and sodalite. The solution phase was modeled with the chemical equilibrium model GMIN for solution speciation and saturation indices with respect to sodalite and cancrinite. The amount of colloidal material in the sediments increased upon reaction with waste solutions. At the natural pH found in Hanford sediments (pH 8) the newly formed minerals are negatively charged, similar to the unreacted colloidal material present in the sediments. The formation of colloidal material in Hanford sediments upon reaction with tank waste solutions is an important aspect to consider in the characterization of Hanford tank leaks and may affect the fate of hazardous radionuclides present in the tank waste.

  2. Feasible way of Human Solid and Liquid Wastes' Inclusion Into Intersystem Mass Exchange of Biological-Technical Life Support Systems

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Tikhomirov, Alexander A.; Tikhomirova, Natalia; Kudenko, Yurii; Griboskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe

    The basic objective arising at use of mineralized human solid and liquid wastes serving as the source of mineral elements for plants cultivation in biological-technical life support systems appears to be NaCl presence in them. The given work is aimed at feasibility study of mineralized human metabolites' utilization for nutrient solutions' preparation for their further employment at a long-term cultivation of uneven-aged wheat and Salicornia europaea L. cenosis in a conveyer regime. Human solid and liquid wastes were mineralized by the "wet incineration" method developed by Yu. Kudenko. On their base the solutions were prepared which were used for cultivation of 5-aged wheat conveyer with the time step-interval of 14 days. Wheat was cultivated by hydroponics method on expanded clay aggregate. For partial demineralization of nutrient solution every two weeks after regular wheat harvesting 12 L of solution was withdrawn from the wheat irrigation tank and used for Salicornia europaea cultivation by the water culture method in a conveyer regime. The Salicornia europaea conveyer was represented by 2 ages with the time step-interval of 14 days. Resulting from repeating withdrawal of the solution used for wheat cultivation, sodium concentration in the wheat irrigation solution did not exceed 400 mg/l, and mineral elements contained in the taken solution were used for Salicornia europaea cultivation. The experiment lasted 7 months. Total wheat biomass productivity averaged 30.1 g*m-2*day-1 at harvest index equal to 36.8The work was carried out under support of SB RAS grant 132 and INTAS 05-1000008-8010

  3. The importance of dissolved free oxygen during formation of sandstone-type uranium deposits

    USGS Publications Warehouse

    Granger, Harry Clifford; Warren, C.G.

    1979-01-01

    One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.

  4. Gallium isotope fractionation during Ga adsorption on calcite and goethite

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Saldi, Giuseppe D.; Chen, JiuBin; Vetuschi Zuccolini, Marino; Birck, Jean-Louis; Liu, Yujie; Schott, Jacques

    2018-02-01

    Gallium (Ga) isotopic fractionation during its adsorption on calcite and goethite was investigated at 20 °C as a function of the solution pH, Ga aqueous concentration and speciation, and the solid to solution ratio. In all experiments Ga was found to be enriched in light isotopes at the solid surface with isotope fractionation △71Gasolid-solution up to -1.27‰ and -0.89‰ for calcite and goethite, respectively. Comparison of Ga isotopic data of this study with predictions for 'closed system' equilibrium and 'Rayleigh fractionation' models indicates that the experimental data are consistent with a 'closed system' equilibrium exchange between the fluid and the solid. The results of this study can be interpreted based on Ga aqueous speciation and the structure of Ga complexes formed at the solid surfaces. For calcite, Ga isotope fractionation is mainly triggered by increased Ga coordination and Ga-O bond length, which vary respectively from 4 and 1.84 Å in Ga(OH)4- to 6 and 1.94 Å in the >Ca-O-GaOH(OH2)4+ surface complex. For goethite, despite the formation of Ga hexa-coordinated >FeOGa(OH)20 surface complexes (Ga-O distances of 1.96-1.98 Å) both at acid and alkaline pH, a similar extent of isotope fractionation was found at acid and alkaline pH, suggesting that Ga(OH)4- is preferentially adsorbed on goethite for all investigated pH conditions. In addition, the observed decrease of Ga isotope fractionation magnitude observed with increasing Ga surface coverage for both calcite and goethite is likely related to the formation of Ga surface polymers and/or hydroxides with reduced Ga-O distances. This first study of Ga isotope fractionation during solid-fluid interactions suggests that the adsorption of Ga by oxides, carbonates or clay minerals could yield significant Ga isotope fractionation between secondary minerals and surficial fluids including seawater. Ga isotopes thus should help to better characterize the surficial biogeochemical cycles of gallium and its geochemical analog aluminum.

  5. Forsterite Carbonation in Wet Supercritical CO2 and Sodium Citrate

    NASA Astrophysics Data System (ADS)

    Qiu, L.; Schaef, T.; Wang, Z.; Miller, Q.; McGrail, P.

    2013-12-01

    Lin Qiu1*, Herbert T. Schaef2, Zhengrong Wang1, Quin R.S. Miller3, BP McGrail2 1. Yale University, New Haven, CT, USA 2. Pacific Northwest National Laboratory, Richland, WA, USA 3. University of Wyoming, Laramie, WY, USA Geologic reservoirs for managing carbon emissions (mostly CO2) have expanded over the last 5 years to include unconventional formations including basalts and fractured shales. Recently, ~1000 metric tons of CO2 was injected into the Columbia River Basalt (CRB) in Eastern Washington as part of the Wallula Pilot Project, Big Sky Regional Carbon Partnership. Based on reservoir conditions, the injected CO2 is present as a supercritical fluid that dissolves into the formation water over time, and reacts with basalt components to form carbonate minerals. In this paper, we discuss mineral transformation reactions occurring when the forsterite (Mg2SiO4) is exposed to wet scCO2 in equilibrium with pure water and sodium citrate solutions. Forsterite was selected as it is an important olivine group mineral present in igneous and mafic rocks. Citrate was selected as it has been shown to enhance mineral dissolution and organic ligands are possible degradation products of the microbial communities present in the formational waters of the CRB. For the supercritical phase, transformation reactions were examined by in situ high pressure x-ray diffraction (HXRD) in the presence of supercritical carbon dioxide (scCO2) in contact with water and sodium citrate solutions at conditions relevant to carbon sequestration. Experimental results show close-to-complete dissolution of forsterite in contact with scCO2 equilibrated with pure water for 90 hours (90 bar and 50°C). Under these conditions, thin films of water coated the mineral surface, providing a mechanism for silicate dissolution and transport of cations necessary for carbonate formation. The primary crystalline component initially detected with in situ HXRD was the hydrated magnesium carbonate, nesquehonite [MgCO3-3H2O], which reached a maximum concentration of 85 wt% within ~30 hours of the experiment before decreasing below detection limit. Detection of the anhydrous magnesium carbonate, magnesite [MgCO3], first occurred at 15 hours, but increased dramatically over the remaining course of the experiment to levels near 90 wt%. In contrast, the presence of sodium citrate solutions in the reactor could eliminate the formation of nesquehonite. Based on the in situ HXRD results, nesquehonite did not form during experiments having sodium citrate solutions of 0.1 M, and the forsterite carbonation proceeded directly to magnesite at a concentration 90 wt% after 80 hours. Testing with less or more concentrated sodium citrate solutions (0.01 or 0.5 M), the nesquehonite formation was not attenuated or overall carbonation rates were decreased, respectively. These results indicate the possibility of organic compounds to dissolve into wet supercritical CO2 fluids and impact the formation of hydrated crystalline carbonates (often considered as transitional phases in carbonation routes to more stable minerals). Likely processes under consideration include the formation of organic complexes with metal cations in the thin water film. These results also have implications for ex situ carbonation processes and highlight the possibility of utilizing organic additives to enhance mineral dissolution prior to carbonation.

  6. Gold enrichment and the Bi-Au association in pyrrhotite-rich massive sulfide deposits, Escanaba trough, Southern Gorda Ridge

    USGS Publications Warehouse

    Tormanen, T.O.; Koski, R.A.

    2005-01-01

    High gold contents (to 10.1 ppm, avg 1.4 ppm, n = 34) occur in pyrrhotite-rich massive sulfide samples from the sediment-covered floor of the Escanaba trough, the slow-spreading, southernmost segment of Gorda Ridge. These concentrations reflect the presence of primary gold, formed during high-temperature hydrothermal activity in mounds and chimneys, and secondary gold deposited during sea-floor weathering of massive sulfide. Primary gold occurs as fine-grained (2 ??m) secondary gold grains have a porous, flaky morphology and occur in samples in which pyrrhotite is oxidized and replaced by Fe oxyhydroxides, Fe sulfate, and sulfur. Mounds and chimneys dominated by pyrrhotite and containing lesser amounts of isocubanite, chalcopyrite, and Fe-rich sphalerite were formed by high-temperature (estimated range 325??-275??C), reduced, low-sulfur vent fluids. The mineral and fluid compositions during this main stage of hydrothermal venting reflect subsurface interaction between circulating hydrothermal fluids and turbiditic sediment containing as much as 1.1 percent organic carbon. As the deposition of pyrrhotite, Cu-Fe sulfides, and sphalerite waned, a volumetrically minor suite of sulfarsenide, arsenide, Bi, and Au minerals was deposited from highly reduced, late main-stage fluids diffusing through mounds and chimneys. The low solubility of Au as a bisulfide complex and the absence of fluid mixing during this stage of hydrothermal activity apparently inhibited the precipitation of gold directly from solution. Instead, gold precipitation is thought to be linked to elevated concentrations of Bi in the late main-stage fluids. The textural relationships of Au and Bi minerals in pyrrhotite-rich samples, low melting point of native bismuth (271.4??C), and recent experimental results on Au and Bi in hydrothermal fluids contribute to the hypothesis that gold was effectively scavenged from the Escanaba trough vent fluids by coexisting droplets of liquid bismuth. Additional phase relationships of alloys in the Au-Bi system indicate that deposition of native bismuth and maldonite occurred at temperatures as low as 241??C. Bismuth droplets trapped in void space between main-stage mineral grains scavenged gold from ambient hydrothermal fluid to a greater extent than bismuth enclosed by late-forming pyrrhotite. The limited solid solution of Au in Bi can explain the apparent exsolution texture in which gold blebs are hosted by native bismuth. The electrum, native bismuth (with gold inclusions), and galena represent the last traces of gold mineralization from late main-stage fluids. During sea-floor weathering and the oxidation of pyrrhotite in the mounds and chimneys, secondary gold formed as aggregates of colloidal particles along pH gradients between acidic pore waters and ambient seawater. Gold was mobilized from earlier formed primary gold minerals and transported as aqueous chloride complexes. The reduction of Au(III) by residual Fe2+ in partly altered pyrrhotite and adsorption of colloids by Fe oxyhydroxides may have influenced the location of secondary gold grains within the alteration front. Solubility differences between gold and silver chloride complexes at low temperature account for the low Ag content of secondary gold grains. The high concentrations of Bi, and thus the association of Au and Bi minerals in pyrrhotite-rich massive sulfide, can be ascribed to the extensive interaction of hydrothermal fluids with sediment in the Escanaba trough. In contrast, the absence of the Au-Bi association in massive sulfides at other ridges, including other sediment-covered sites at Middle Valley and the Guaymas basin

  7. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    PubMed

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  8. Release of Si from Silicon, a Ferrosilicon (FeSi) Alloy and a Synthetic Silicate Mineral in Simulated Biological Media

    PubMed Central

    Herting, Gunilla; Jiang, Tao; Sjöstedt, Carin; Odnevall Wallinder, Inger

    2014-01-01

    Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG), an alloy (ferrosilicon, FeSi) and a mineral (aluminium silicate, AlSi) has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH)4) in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral) resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media. PMID:25225879

  9. Polarized XANES and EXAFS spectroscopic investigation into copper(II) complexes on vermiculite

    NASA Astrophysics Data System (ADS)

    Furnare, Luca J.; Vailionis, Arturas; Strawn, Daniel G.

    2005-11-01

    Interaction of heavy metals with clay minerals can dominate solid-solution reactions in soil, controlling the fate of the metals in the environment. In this study we used powdered and polarized extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES) to investigate Cu sorbed on Llano vermiculite and compare the results to reported Cu sorption mechanism on Wyoming (WY) smectite and reduced South African (SA) vermiculite. Analysis of the Cu K-edge spectra revealed that Cu sorbed on Llano vermiculite at high ionic strength ( I) has the greatest degree of covalent bond character, followed by Cu sorbed on montmorillonite at high I, and Cu sorbed on reduced SA vermiculite at high I. Cu sorbed on clay minerals at low I has the least covalent character. EXAFS data from Cu sorbed Ca- and K-equilibrated Llano vermiculites showed the presence of a second-shell Al, Si, or Mg backscatterer at 3.02 Å. This distance is consistent with Cu sorbing via a corner-sharing monodentate or bidentate bond. Polarized XANES and EXAFS results revealed that the angle between the Cu atom and the mineral sorption sites is 68° with respect to the [001] direction. From the bond angle and the persistence of the second-shell backscatterer when the interlayer is collapsed (K-equilibration), we conclude that Cu adsorption on the Llano vermiculite is not occurring in the interlayer but rather Cu is adsorbing onto the edges of the vermiculite. Results from this research provide evidence that Cu forms inner-sphere and outer-sphere complexes on clay minerals, and does not form the vast multinuclear surface precipitates that have been observed for Co, Zn, and Ni.

  10. Genesis of the hydrothermal gold deposits in the Canan area, Lepaguare District, Honduras

    NASA Astrophysics Data System (ADS)

    Mattioli, Michele; Menichetti, Marco; Renzulli, Alberto; Toscani, Lorenzo; Salvioli-Mariani, Emma; Suarez, Pedro; Murroni, Alessandro

    2014-04-01

    The Canan area (Honduras) is characterized by a gold-bearing ore deposit that is associated with quartz-veined shear zones. Gold mineralization occurs in low-to medium-grade metamorphic host-rocks (graphitic and sericitic schists). Hydrothermal fluids, which are associated with the emplacement of Cretaceous-Tertiary granodioritic intrusions, are responsible for the formation of quartz veins and the hydrothermal alteration of wall-rocks. Three main altered zones have been detected in the wall-rocks as far as 150 cm from the quartz veins. The distal zone (up to 50-cm thick) contains quartz, chlorite and illite. The intermediate zone is the thickest (up to 80 cm) and is marked by quartz, muscovite, sulphides, kaolinite and native elements such as Au and Ag. The proximal zone, which is close to the quartz veins, is rather thin (up to 25 cm) and contains clay minerals, Al-oxides-hydroxides and sulphides. The transition from the distal to the proximal zone is accompanied by the enrichment of SiO2 and the depletion of all other major elements, except for Fe2O3(tot). Precious metals occur in the highest concentrations in the intermediate zone (Au up to 7.6 ppm and Ag up to 11 ppm). We suggest that gold was transported as a reduced sulphur complex and was precipitated from the hydrothermal solution by the reaction of the sulphur complexes with Fe2+ from the alteration of the mafic minerals of the host-rock. Fluid-wall-rock interactions seem to be the main cause of gold mineralization. Genetic relationships with a strike-slip fault system, hydrothermal alteration zones within the metamorphic wall-rocks, and an entire set of geochemical anomalies are consistent with orogenic-type gold deposits of the epizonal class.

  11. Mechanisms of interfacial reactivity in near surface and extreme environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Balaska, Eric; Weare, John

    The local water structure surrounding ions in aqueous solutions greatly affects their chemical properties such as reaction rates, ion association, and proton and electron transport. These properties result in the behavior of ions in natural aqueous environments. For example ore transport is facilitated by chloride ion pair formation and the reaction of ions in an interface is strongly dependent on the dehydration of the ion hydration shell. We are developing the use of high-­resolution XAFS observations and 1st principles based MD-­XAFS analysis (spectra simulated using 1st principle methods with no adjustable parameters, AIMD) to interpret the solution properties of stronglymore » interacting aqueous solutes under arbitrary pressure and temperature conditions. In the 1st principle MD-­XAFS method density functional theory (DFT) based MD simulations(Car and Parrinello, 1985) are used to generate a large ensemble of structural snap shots of the hydration region. These are then used to generate scattering intensities. I emphasize three points about this novel approach to analyzing XAFS data. 1st: As illustrated in Figure 1, the level of agreement between the calculated and observed intensities is considerably higher than has been obtained by any XAFS analysis to date (note 2nd shell region, R> 2 Å). 2nd: This result was obtained from a parameter free simulation with no fitting of the interaction potentials to any data. This supports the use of these methods for more difficult environments and more complex solutes (polyions). 3rd: New information about the shell structure (Figure 1) is now available because of this more detailed agreement. We note also that both multiple scattering and second shell features are well represented in the analysis. As far as we know this is the 1st analysis of second shell structure and multiple scattering. Excellent agreement has been obtained for most of the third row metal ions: Ca 2+, Zn 2+, Cu 2+, Ni 2+, Co 2+, Mn 2+, Fe 3+, Cr 3+. Calculations on these systems are demanding because of their open electronic shells, and high ionic charge. Principal Investigator: Professor John Weare (University of California, San Diego) The prediction of the interactions of geochemical fluids with minerals, nanoparticles, and colloids under extreme near surface conditions of temperature (T) and pressure (P) is a grand challenge research need in geosciences (U.S. DOE 2007, Basic Research Needs for Geosciences: Facilitating the 21st Energy Systems.). To evaluate the impact of these processes on energy production and management strategies it is necessary to have a high level of understanding of the interaction between complex natural fluids and mineral formations. This program emphasizes 1st principle parameter free simulations of complex chemical processes in solutions, in the mineral phase, and in the interfaces between these phases The development of new computational tools (with emphasis on oxide materials and reaction dynamics) tailored to treat wide range of conditions and time scales experienced in such geochemical applications is has been developed. Because of the sensitivity of the interaction in these systems to electronic structure and local bonding environments, and of the need to describe bond breaking/formation, our simulations are based on interactions calculated at the electronic structure level (ab-initio molecular dynamics, AIMD). The progress in the computational aspects of program may be summarized in terms of the following themes (objectives); Development of efficient parameter free dynamical simulation technology based on 1st principles force and energy calculations especially adapted for geochemical applications (e.g., mineral, interfaces and aqueous solutions) (continuing program); Calculation of the dynamics of water structure of in the surface-water interface of transition metal oxides and oxihydroxides; and Development of improved (beyond DFT+GGA) electronic structure calculations for minerals and the interface region that more accurately calculate electron correlation, spin density, and localization. The focus of the program is also on the iron oxide and oxihydroxide minerals and Fe 2+(aq)/Fe 3+(cr) oxidation in the mineral solution interface region. These methods included the development of model Hamilitonian methods that can be solved to near convergence for single site models (DMFT) and many-body perturbation methods (MP2, GW); Development of time decomposition methods to extend time scales of molecular dynamics (MD) simulations and support the use of high complexity electronic structure calculations (MP2, CCSD(T)) of forces for use in dynamical simulations where very high chemical accuracy is required (microsolvated reactions in absorbed surface layers); and The development of a new linear scaling finite element solver for eigenvalue problem that supports solution of quantum problems with unusual potential and boundary values. Application progress of the above new simulation technology to problems of geochemical interests includes; The prediction of metal oxide surface structure and the reduction/oxidation of Fe 3+(cr)/Fe 2+ (aq) in metal oxide (hematite, goethite)/solution interfaces. Result: water interacts strongly with the 001 Hematite surface; interaction of water with the 100 goethite is weak; The study of ion solvation and the composition of ion hydration shells under extreme conditions (focus on Fe 3+/2+, Al 3+ and Mg 2+ and their hydroxide speciation). Result: Ion association in water solutions can be calculated from 1st principle methods. Efficient sampling of the free energy requires more development; The continued development of new high resolution analysis of XAFS scattering of disordered systems (particularly Al, Mg) and of XANES calculations for aqueous ions. Result: EXAFS spectra can be calculated to high accuracy with DFT level dynamic simulations; The exploration of electron localization and electron transport in metal oxides (highly correlated materials). Result: Proper description of electron localization requires levels of calculation beyond DFT; and Localization of electrons in DFT type Hamiltonians was studied. Result: For very Dirac high exchange new solutions (New unphysical bifrucations) to the eigenvalue problem are found. The program was highly collaborative involving faculty and students in mathematics, physics and computer science departments as well as coworkers at the Pacific Northwest National Laboratories (PNNL). The students in this program had the opportunity to develop skills in the development of methods, the implementation of method on high performance parallel computers and the application of these methods to problem in geochemical science. Much of the software that was developed was incorporated in the NWchem software package maintained by PNNL.« less

  12. Mineralized aplite—pegmatite at Jabal Sa'id, Hijaz region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hackett, Damien

    The Jabal Sa'id aplite—pegmatite, located at 23°49'03″N, 40°56'30″E, is part of the Jabal Hadb ash Sharar granite complex and resulted from emplacement of a residual volatile-rich fraction of alkali granite magma dominantly above a chilled carapace. Mineralization is layered, with four peak grades in layers 20-25 m wide, one of which may represent a mineral resource with greater potential than the aplite—pegmatite as a whole. The grades of all elements, except Zr, increase towards the upper part of the body. Chemical composition is extremely variable. Major-oxide data confirm previously determined geochemical characteristics and genetic relationships that suggested this body is an apogranite. However, the abundant new data also show that differences between the aplite—pegmatite and cognate alkali microgranite are not as great as previously reported, except for Na 2O which is extremely depleted in the apogranite. REE data support suggested genetic relationships and indicate that feldspar fractionation was important during crystallization. They also show that the content of HREE is comparatively constant throughout the aplite—pegmatite, and that variations in total REE content are caused by variations in the content of LREE. Bastnaesite and synchysite-(Y) are the principal rare-earth-element minerals, and are accompanied by monazite and synchesite; pyrochlore and thorite are also important ore minerals. Other elements concentrated in the aplite—pegmatite, such as Ta, Sn and U, occur only in solid solution in these minerals. The grain size of the ore minerals is commonly in the range 0.02-0.2 mm, and the grain size of gangue minerals, quartz, microcline and lesser amounts of aegirine and arfvedsonite, is typically in the range 1.0-4.0 mm. The ore minerals occur typically along gangue mineral boundaries. Zoning within the body permits calculation of high- and low-grade reserves which correspond to the upper and lower part of the apogranite.

  13. Recovery TiO2 by leaching process of carbothermic reduced Kalimantan ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Sari, P. P.; Ramelan, A. H.

    2018-05-01

    Ilmenite naturally occurred in iron titanate (FeTiO3) minerals. The separation of natural ilmenite into TiO2 and Fe2O3 need to be explored to gain the high purity separation product. A new combination method named of carbothermic reduction, acidic-leaching and complexation by EDTA were proposed for separation TiO2 from Ilmenite. Roasting of ilmenite was carried out at 950 °C for 1 h by the addition of activated carbon with mass ratio of ilmenite : activated carbon =4:3. The carbothermic reduction was carried out to yield a high separation of initial content of ilmenite that will be easily to dissolve within hydrochloric acid solution in leaching process. The composition of ilmenite observed by X-Ray Fluoresences (XRF) changed after the carbothermic reduction process and the dominant content is TiO2 (57.56%). X-Ray Diffraction (XRD) of roasted ilmenite composed of decomposed product of ilmenite i.e. hematite (Fe2O3), TiO2 anatase, TiO2 rutile, and inorganic salt. The leaching of the roasted ilmenite has been done by sulphuric acid solution (6 M) to gain the titanyl sulphate solution. Separation of iron impurities of TiO2 gel from titanyl sulphate (TiOSO4) solution was conducted by complexation method using EDTA as a complexation agent. The characteristic of TiO2 obtained using XRD showed that TiO2 is anatase type and the percentage of TiO2 using XRF showed that TiO2 content of 86,03%.

  14. Extremophiles in Mineral Sulphide Heaps: Some Bacterial Responses to Variable Temperature, Acidity and Solution Composition

    PubMed Central

    Watling, Helen R.; Shiers, Denis W.; Collinson, David M.

    2015-01-01

    In heap bioleaching, acidophilic extremophiles contribute to enhanced metal extraction from mineral sulphides through the oxidation of Fe(II) and/or reduced inorganic sulphur compounds (RISC), such as elemental sulphur or mineral sulphides, or the degradation of organic compounds derived from the ore, biota or reagents used during mineral processing. The impacts of variable solution acidity and composition, as well as temperature on the three microbiological functions have been examined for up to four bacterial species found in mineral sulphide heaps. The results indicate that bacteria adapt to sufficiently high metal concentrations (Cu, Ni, Co, Zn, As) to allow them to function in mineral sulphide heaps and, by engaging alternative metabolic pathways, to extend the solution pH range over which growth is sustained. Fluctuating temperatures during start up in sulphide heaps pose the greatest threat to efficient bacterial colonisation. The large masses of ores in bioleaching heaps mean that high temperatures arising from sulphide oxidation are hard to control initially, when the sulphide content of the ore is greatest. During that period, mesophilic and moderately thermophilic bacteria are markedly reduced in both numbers and activity. PMID:27682094

  15. Effects of clay minerals on diethyl phthalate degradation in Fenton reactions.

    PubMed

    Chen, Ning; Fang, Guodong; Zhou, Dongmei; Gao, Juan

    2016-12-01

    Phthalate esters are a group of plasticizers, which are commonly detected in China's soils and surface water. Fenton reactions are naturally occurring and widely applied in the degradation of contaminants. However, limited research was considered the effects of clay minerals on contaminants degradation with OH oxidation. In this study, batch experiments were conducted to investigate the degradation of diethyl phthalate (DEP) in Fenton reactions in the presence of clay minerals, and the effects of clay type, Fe content in clay structure. The results showed the clay adsorption inhibited total degradation of DEP, and Fe content in clay structure played an important role in DEP degradation, including in solution and adsorbed in clay minerals. Clay minerals with less Fe content (<3%) quenched OH radical, while nontronite with Fe content 19.2% improved OH radical generation and accelerated DEP degradation in solution. The degradation of clay-adsorbed DEP was much slower than DEP in solution. Six main products of DEP degradation were identified, including monoethyl phthalate, phthalate acid, hydroxyl diethyl phthalate, etc. This study implied that phthalate ester's degradation would be much slower in natural water than expected in the presence of clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Heteroaggregation of graphene oxide with minerals in aqueous phase.

    PubMed

    Zhao, Jian; Liu, Feifei; Wang, Zhenyu; Cao, Xuesong; Xing, Baoshan

    2015-03-03

    Upon release into waters, sediments, and soils, graphene oxide (GO) may interact with fine mineral particles. We investigated the heteroaggregation of GO with different minerals, including montmorillonite, kaolinite, and goethite, in aqueous phase. GO significantly enhanced the dispersion of positively charged goethite (>50%) via heteroaggregation, while there was no interaction between GO and negatively charged montmorillonite or kaolinite. Electrostatic attraction was the dominant force in the GO-goethite heteroaggregation (pH 4.0-8.5), and the dissolved Fe ions (<0.16 mg/L) from goethite were unable to destabilize GO suspension. The GO-goethite heteroaggregation was further quantitatively investigated through GO adsorption study. All adsorption isotherms of GO at different solution pH (4.0 and 6.5) followed the Linear model. The apparent intercept (1.0-6.9 mg/g) was observed for all the adsorption isotherms, indicating that this fraction of adsorbed GO was difficult to desorb from goethite (defined here as irreversible adsorption) under the tested conditions. Desorption hysteresis was observed, which could be explained by the formation of multilayered GO-goethite complex with high configurational stability. These findings are useful for understanding the interaction of GO with mineral surfaces, and potential fate and toxicity of GO under natural conditions in aquatic environments, as well as in soils and sediments.

  17. Development of Atmospheric Chemistry-Aerosol Transport Model for Bioavailable Iron From Dust and Combustion Source

    NASA Astrophysics Data System (ADS)

    Ito, A.; Feng, Y.

    2009-12-01

    An accurate prediction of bioavailable iron fraction for ocean biota is hampered by uncertainties in modeling soluble iron fractions in atmospheric aerosols. It has been proposed that atmospheric processing of mineral aerosols by anthropogenic pollutants may be a key pathway to transform insoluble iron into soluble forms. The dissolution of dust minerals strongly depends on solution pH, which is sensitive to the heterogeneous uptake of soluble gases by the dust particle. Due to the complexity, previous model assessments generally use a common assumption in thermodynamical equilibrium between gas and aerosol phases. Here, we compiled an emission inventory of iron from combustion and dust source, and incorporated a dust iron dissolution scheme in a global chemistry-aerosol transport model (IMPACT). We will examine and discuss the uncertainties in estimation of dissolved iron as well as comparisons of the model results with available observations.

  18. A mineral separation procedure using hot Clerici solution

    USGS Publications Warehouse

    Rosenblum, Sam

    1974-01-01

    Careful boiling of Clerici solution in a Pyrex test tube in an oil bath is used to float minerals with densities up to 5.0 in order to obtain purified concentrates of monazite (density 5.1) for analysis. The "sink" and "float" fractions are trapped in solidified Clerici salts on rapid chilling, and the fractions are washed into separate filter papers with warm water. The hazardous nature of Clerici solution requires unusual care in handling.

  19. Modelling of trace metal uptake by roots taking into account complexation by exogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Jean-Marc, Custos; Christian, Moyne; Sterckeman, Thibault

    2010-05-01

    The context of this study is phytoextraction of soil trace metals such as Cd, Pb or Zn. Trace metal transfer from soil to plant depends on physical and chemical processes such as minerals alteration, transport, adsorption/desorption, reactions in solution and biological processes including the action of plant roots and of associated micro-flora. Complexation of metal ions by organic ligands is considered to play a role on the availability of trace metals for roots in particular in the event that synthetic ligands (EDTA, NTA, etc.) are added to the soil to increase the solubility of the contaminants. As this role is not clearly understood, we wanted to simulate it in order to quantify the effect of organic ligands on root uptake of trace metals and produce a tool which could help in optimizing the conditions of phytoextraction.We studied the effect of an aminocarboxilate ligand on the absorption of the metal ion by roots, both in hydroponic solution and in soil solution, for which we had to formalize the buffer power for the metal. We assumed that the hydrated metal ion is the only form which can be absorbed by the plants. Transport and reaction processes were modelled for a system made up of the metal M, a ligand L and the metal complex ML. The Tinker-Nye-Barber model was adapted to describe the transport of solutes M, L and ML in the soil and absorption of M by the roots. This allowed to represent the interactions between transport, chelating reactions, absorption of the solutes at the root surface, root growth with time, in order to simulate metal uptake by a whole root system.Several assumptions were tested such as i) absorption of the metal by an infinite sink and according to a Michaelis-Menten kinetics, solutes transport by diffusion with and without ii) mass flow and iii) soil buffer power for the ligand L. In hydroponic solution (without soil buffer power), ligands decreased the trace metal flux towards roots, as they reduced the concentration of hydrated metal ion. In soil, depending on the L/M ratio, the presence of metal complexes could increase the metal flux taken up by roots since the ligand desorbed the metal on soil solid phase while the complex dissociated and provided metal ions to the solution in the vicinity of the root.The model enabled to surround the conditions in which phytoextraction is thus optimized. In addition of complexation by organic ligands added to the soil, we expect to integrate complexation by roots organic exudates and by soil organic matter, as well as the competition of the metal ions with Ca2+ et H+.

  20. Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study.

    PubMed

    ThomasArrigo, Laurel K; Mikutta, Christian; Byrne, James; Kappler, Andreas; Kretzschmar, Ruben

    2017-06-20

    In freshwater wetlands, organic flocs are often found enriched in trace metal(loid)s associated with poorly crystalline Fe(III)-(oxyhydr)oxides. Under reducing conditions, flocs may become exposed to aqueous Fe(II), triggering Fe(II)-catalyzed mineral transformations and trace metal(loid) release. In this study, pure ferrihydrite, a synthetic ferrihydrite-polygalacturonic acid coprecipitate (16.7 wt % C), and As- (1280 and 1230 mg/kg) and organic matter (OM)-rich (18.1 and 21.8 wt % C) freshwater flocs dominated by ferrihydrite and nanocrystalline lepidocrocite were reacted with an isotopically enriched 57 Fe(II) solution (0.1 or 1.0 mM Fe(II)) at pH 5.5 and 7. Using a combination of wet chemistry, Fe isotope analysis, X-ray absorption spectroscopy (XAS), 57 Fe Mössbauer spectroscopy and X-ray diffraction, we followed the Fe atom exchange kinetics and secondary mineral formation over 1 week. When reacted with Fe(II) at pH 7, pure ferrihydrite exhibited rapid Fe atom exchange at both Fe(II) concentrations, reaching 76 and 89% atom exchange in experiments with 0.1 and 1 mM Fe(II), respectively. XAS data revealed that it transformed into goethite (21%) at the lower Fe(II) concentration and into lepidocrocite (73%) and goethite (27%) at the higher Fe(II) concentration. Despite smaller Fe mineral particles in the coprecipitate and flocs as compared to pure ferrihydrite (inferred from Mössbauer-derived blocking temperatures), these samples showed reduced Fe atom exchange (9-30% at pH 7) and inhibited secondary mineral formation. No release of As was recorded for Fe(II)-reacted flocs. Our findings indicate that carbohydrate-rich OM in flocs stabilizes poorly crystalline Fe minerals against Fe(II)-catalyzed transformation by surface-site blockage and/or organic Fe(II) complexation. This hinders the extent of Fe atom exchange at mineral surfaces and secondary mineral formation, which may consequently impair Fe(II)-activated trace metal(loid) release. Thus, under short-term Fe(III)-reducing conditions facilitating the fast attainment of solid-solution equilibria (e.g., in stagnant waters), Fe-rich freshwater flocs are expected to remain an effective sink for trace elements.

  1. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.

    PubMed

    Joshi, Mahesh Kumar; Pant, Hem Raj; Tiwari, Arjun Prasad; Maharjan, Bikendra; Liao, Nina; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-01-20

    In this study, cellulose based scaffolds were produced by electrospinning of cellulose acetate (CA) solution followed by its saponification with NaOH/ethanol system for 24h. The resulting nonwoven cellulose mat was treated with sodium borohydride (SB) solution. In situ hydrolysis of SB solution into the pores of the membrane produced hydrogen gas resulting a three-dimensional (3D) cellulose sponge. SEM images demonstrated an open porous and loosely packed fibrous mesh compared to the tightly packed single-layered structure of the conventional electrospun membrane. 3D cellulose sponge showed admirable ability to nucleate bioactive calcium phosphate (Ca-P) crystals in simulated body fluid (SBF) solution. SEM-EDX and X-ray diffraction studies revealed that the minerals deposited on the nanofibers have the nonstoichiometric composition similar to that of hydroxyapatite, the mineralized component of the bone. 3D cellulose sponge exhibited the better cell infiltration, spreading and proliferation compared to 2D cellulose mat. Therefore, a facile fabrication of 3D cellulose sponge with improved mineralization represents an innovative strategy for the bone tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Dissolution Rates and Mineral Lifetimes of Phosphate Containing Minerals and Implications for Mars

    NASA Astrophysics Data System (ADS)

    Adcock, C. T.; Hausrath, E.

    2011-12-01

    The objectives of NASA's Mars Exploration Program include exploring the planet's habitability and the possibility of past, present, or future life. This includes investigating "possible supplies of bioessential elements" [1]. Phosphate is one such bioessential element for life as we understand it. Phosphate is also abundant on Mars [2], and the phosphate rich minerals chlorapatite, fluorapatite, and merrillite have been observed in Martian meteorites [3]. Surface rock analyses from the MER Spirit also show the loss of a phosphate rich mineral from the rocks Wishstone and Watchtower at Gusev Crater [4,5], implying mineral dissolution. Dissolution rates of phosphate containing minerals are therefore important for characterizing phosphate mobility and bioavailability on Mars. Previous studies have measured dissolution rates of fluorapatite [6-8]. However, chlorapatite and merrillite (a non-terrestrial mineral similar to whitlockite) are more common phosphate minerals found in Martian meteorites [3], and few dissolution data exist for these minerals. We have begun batch dissolution experiments on chlorapatite, synthesized using methods of [9], and whitlockite, synthesized using a method modified from [10]. Additionally, we are dissolving Durango fluorapatite to compare to dissolution rates in literature, and natural Palermo whitlockite to compare to dissolution rates of our synthesized whitlockite. Batch dissolution experiments were performed after [8], using a 0.01 molar KNO3 solution with 0.1500g-0.3000g mineral powders and starting solution volumes of 180ml in LDPE reaction vessels. HNO3 or KOH were used to adjust initial pH as required. Dissolution rates are calculated from the rate of change of elemental concentration in solution as a function of time, and normalized to the mineral surface area as measured by BET. Resulting rates will be used to calculate mineral lifetimes for the different phosphate minerals under potential Mars-like aqueous conditions, and in future reactive transport modeling.

  3. Gold in minerals and the composition of native gold

    USGS Publications Warehouse

    Jones, Robert Sprague; Fleischer, Michael

    1969-01-01

    Gold occurs in nature mainly as the metal and as various alloys. It forms complete series of solid solutions with silver, copper, nickel, palladium, and platinum. In association with the platinum metals, gold occurs as free gold as well as in solid solution. The native elements contain the most gold, followed by the sulfide minerals. Several gold tellurides are known, but no gold selenides have been reported, and only one sulfide, the telluride-sulfide mineral nagyagite, is known. The nonmetallic minerals carry the least gold, and the light-colored minerals generally contain less gold than the dark minerals. Some conclusions in the literature are conflicting in regard to the relation of fineness of native gold to its position laterally and vertically within a lode, the nature of the country rocks, and the location and size of nuggets in a streambed, as well as to the variation of fineness within an individual nugget.

  4. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while widely considered to be facilitated by biological and chemical activities, may also be affected by soil retention properties.

  5. Transport of reacting solutes subject to a moving dissolution boundary: Numerical methods and solutions

    USGS Publications Warehouse

    Willis, Catherine; Rubin, Jacob

    1987-01-01

    A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters. Although the water flow rate does not explicitly appear in the equation for the velocity of the moving boundary, the speed of the boundary depends more on the flux rate than on the dispersion coefficient. The discontinuity in the gradient of the solute concentration profile at the boundary increases with convection and with the initial concentration of the mineral. Our implicit method is extended to allow participation of the solutes in complexation reactions as well as the precipitation-dissolution reaction. This extension is easily made and does not change the basic method.

  6. Mineral Dissolution and Secondary Precipitation on Quartz Sand in Simulated Hanford Tank Solutions Affecting Subsurface Porosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guohui; Um, Wooyong

    2012-11-23

    Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the U.S. Department of Energy’s Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89°C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineralmore » phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.« less

  7. Chemical openness and potential for misinterpretation of the solute environment of coastal sabkhat

    USGS Publications Warehouse

    Wood, W.W.; Sanford, W.E.; Frape, S.K.

    2005-01-01

    Sabkha deposits in the geologic record are commonly used to interpret the environmental conditions of deposition. Implicit in this use is the assumption that the solute system is chemically closed, that is, the authigenic minerals represent the composition of the fluids in their environment of origin. Thermodynamic and mass-balance calculations based on measurements of water and solute flux of contemporary Abu Dhabi coastal sabkha system, however, demonstrate that the system is open for sodium and chloride, where nearly half of the input is lost, but closed for sulfur, where nearly 100% is retained. Sulfur and chloride isotopes were consistent with this observation. If these sabkha deposits were preserved in the geologic record, they would suggest a solute environment rich in sulfate and poor in chloride; yet the reverse is true. In most coastal-sabkha environments, capillary forces bring solutes and water to the surface, where the water evaporates and halite, carnallite, sylvite, and other soluble minerals are precipitated. Retrograde minerals, such as anhydrite, calcite, dolomite, and gypsum, however, precipitate and accumulate in the capillary zone beneath the surface of the coastal sabkha. Because they possess relatively low solubility and are below the surface, these retrograde minerals are protected from dissolution and physical erosion occurring from infrequent but intense rainfall events. Thus, they are more likely to be preserved in the geological record than highly soluble minerals formed on the surface. ?? 2004 Elsevier B.V. All rights reserved.

  8. Platinum mineralization in the Kapalagulu Intrusion, western Tanzania

    NASA Astrophysics Data System (ADS)

    Wilhelmij, Harry R.; Cabri, Louis J.

    2016-03-01

    Low-grade copper and nickel mineralization was found near the eastern shore of Lake Tanganyika at Kungwe Bay in the early part of the twentieth century. The mineralization occurs in harzburgite at the base of a layered gabbro complex known as the Kapalagulu Intrusion, emplaced between the Paleoproterozoic Ubendian basement and overlying Neoproterozoic Itiaso Group metasediments. Several mining and exploration companies continued the geophysical and drilling exploration for base metals throughout the last century culminating in the discovery of high-grade platinum-group element (PGE) mineralization associated with chromitite and sulfide-bearing harzburgite within the southeastern extension of the Kapalagulu Intrusion (known as the Lubalisi Zone) that is covered by a layer of nickel-rich laterite regolith. The poorly layered southeastern harzburgite forms part of the >1500 m-thick Lower Ultramafic Sequence and resembles a dike-like body that flares upwards into a succession of well-layered gabbroic rocks of the Upper Mafic Sequence. No PGE mineralization has been found in the layered gabbro; all the mineralization is associated with the chromite- and sulfide-rich harzburgite of the Lower Ultramafic Sequence and the laterite regolith overlying the mineralized harzburgite. The Lubalisi Zone harzburgite is underlain by basal dunite and overlain by an interval of layered harzburgite and troctolite and this ultramafic sequence is folded into a syncline that plunges towards the northwest that has been modified by major dolerite-filled faults orientated subparallel to the fold axial surface. Extensive deep drilling in the Lubalisi Zone of the Kapalagulu Intrusion shows that the folded harzburgite can be subdivided into a lower feldspathic harzburgite, a harzburgite containing chromitite seams and intervals of sulfide and chromite mineralization known as the Main Chromite Sulfide Succession (MCSS), an overlying sulfide-rich harzburgite, and an upper feldspathic harzburgite. Impersistent, stratiform PGE mineralized horizons occur within the MCSS harzburgite from which drill core samples were taken for platinum-group mineral (PGM) characterization from two drill holes. Where the PGE reefs reach the surface there is residual PGE mineralization within the laterite regolith from which drill core samples were taken from various laterite lithological units for PGM characterization. As the harzburgite PGE reefs contain significant concentrations of both sulfide and chromite (including chromitite seams) they resemble the PGE-rich chromitite seams of the Bushveld Complex rather than the PGE-bearing Main Sulfide Zone of the Great Dyke and Main Sulfide Layer of the Munni Munni Complex. The dominant Pd PGM in three PGE reef samples varies, ranging ( n = 164, relative wt%) from bismuthides (63 %), bismuthtellurides (19 %), and tellurides (6 %), to tellurides (39 %), bismuthtellurides (24 %), stannides (14 %), and alloys (13 %), and to antimon-arsenides (33 %), stannides (21 %), bismuthides (17 %), tellurides (13 %), and alloys (10 %). From 13.5 % to 21.0 % of the total Pd occurs as a solid solution in pentlandite. The three samples have similar Pt PGM modal distributions ( n = 172, relative wt%); the dominant Pt mineral is sperrylite (79, 58, and 47 %) followed by tellurides (15, 17, 21 %), alloys (2, 1, 1 %), and sulfides (2, 1, 0 %). Comparison of Pd/Pt ratios from assays to those calculated from minerals show that the data for the Pt and Pd PGM are very robust, confirming the concentration methodology and characterization. Study of samples from a shallow drill hole penetrating the laterite regolith shows that the primary Pd mineralization has not survived oxidation, is mainly dispersed, but some was reconstituted to form secondary minerals: cabriite, unnamed tellurides, a selenide, a Pd-Te-Hg mineral, alloys and Pd-bearing secondary sulfides (millerite and heazlewoodite). The primary Pt minerals are more resistant to oxidation and dissolution, especially sperrylite and isoferroplatinum, but it is likely that other Pt alloys (tetraferroplatinum and tulameenite) are of secondary origin after dissolution of Pt tellurides.

  9. Fetuin-A/Albumin-Mineral Complexes Resembling Serum Calcium Granules and Putative Nanobacteria: Demonstration of a Dual Inhibition-Seeding Concept

    PubMed Central

    Young, David; Young, John D.

    2009-01-01

    Serum-derived granulations and purported nanobacteria (NB) are pleomorphic apatite structures shown to resemble calcium granules widely distributed in nature. They appear to be assembled through a dual inhibitory-seeding mechanism involving proteinaceous factors, as determined by protease (trypsin and chymotrypsin) and heat inactivation studies. When inoculated into cell culture medium, the purified proteins fetuin-A and albumin fail to induce mineralization, but they will readily combine with exogenously added calcium and phosphate, even in submillimolar amounts, to form complexes that will undergo morphological transitions from nanoparticles to spindles, films, and aggregates. As a mineralization inhibitor, fetuin-A is much more potent than albumin, and it will only seed particles at higher mineral-to-protein concentrations. Both proteins display a bell-shaped, dose-dependent relationship, indicative of the same dual inhibitory-seeding mechanism seen with whole serum. As ascertained by both seeding experiments and gel electrophoresis, fetuin-A is not only more dominant but it appears to compete avidly for nanoparticle binding at the expense of albumin. The nanoparticles formed in the presence of fetuin-A are smaller than their albumin counterparts, and they have a greater tendency to display a multi-layered ring morphology. In comparison, the particles seeded by albumin appear mostly incomplete, with single walls. Chemically, spectroscopically, and morphologically, the protein-mineral particles resemble closely serum granules and NB. These particles are thus seen to undergo an amorphous to crystalline transformation, the kinetics and completeness of which depend on the protein-to-mineral ratios, with low ratios favoring faster conversion to crystals. Our results point to a dual inhibitory-seeding, de-repression model for the assembly of particles in supersaturated solutions like serum. The presence of proteins and other inhibitory factors tend to block apatite nuclei formation or to stabilize the nascent nuclei as amorphous or semi-crystalline spherical nanoparticles, until the same inhibitory influences are overwhelmed or de-repressed, whereby the apatite nuclei grow in size to coalesce into crystalline spindles and films—a mechanism that may explain not only the formation of calcium granules in nature but also normal or ectopic calcification in the body. PMID:19956594

  10. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoming; Hu, Yongfeng; Tang, Yadong

    Phosphorous (P) sorption on mineral surfaces largely controls P mobility and bioavailability, hence its pollution potential, but the sorption speciation and mechanism remain poorly understood. In this study, we have identified and quantified the speciation of both phosphate and phytate sorbed on ferrihydrite with various P loadings at pH 3–8 using differential atomic pair distribution function (d-PDF) analysis, synchrotron-based X-ray diffraction (XRD), and P and Fe K-edge X-ray absorption near edge structure (XANES) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. With increasing P sorption loading for both phosphate and phytate, the sorption mechanism transits from bidentate-binuclear surface complexation tomore » unidentified ternary complexation and to precipitation of amorphous FePO 4 and amorphous Fe-phytate. At a given P sorption loading, phosphate precipitates more readily than phytate. Both phosphate and phytate promote ferrihydrite dissolution with phytate more intensively, but the dissolved FeIII concentration in the bulk solution is low because the majority of the released Fe III precipitate with the anions. Results also show that amorphous FePO 4 and amorphous Fe-phytate have similar PO 4 local coordination environment. In conclusion, these new insights into the P surface complexation and precipitation, and the ligand-promoted dissolution behavior improve our understanding of P fate in soils, aquatic environment and water treatment systems as mediated by mineral-water interfacial reactions.« less

  11. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces

    DOE PAGES

    Wang, Xiaoming; Hu, Yongfeng; Tang, Yadong; ...

    2017-09-26

    Phosphorous (P) sorption on mineral surfaces largely controls P mobility and bioavailability, hence its pollution potential, but the sorption speciation and mechanism remain poorly understood. In this study, we have identified and quantified the speciation of both phosphate and phytate sorbed on ferrihydrite with various P loadings at pH 3–8 using differential atomic pair distribution function (d-PDF) analysis, synchrotron-based X-ray diffraction (XRD), and P and Fe K-edge X-ray absorption near edge structure (XANES) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. With increasing P sorption loading for both phosphate and phytate, the sorption mechanism transits from bidentate-binuclear surface complexation tomore » unidentified ternary complexation and to precipitation of amorphous FePO 4 and amorphous Fe-phytate. At a given P sorption loading, phosphate precipitates more readily than phytate. Both phosphate and phytate promote ferrihydrite dissolution with phytate more intensively, but the dissolved FeIII concentration in the bulk solution is low because the majority of the released Fe III precipitate with the anions. Results also show that amorphous FePO 4 and amorphous Fe-phytate have similar PO 4 local coordination environment. In conclusion, these new insights into the P surface complexation and precipitation, and the ligand-promoted dissolution behavior improve our understanding of P fate in soils, aquatic environment and water treatment systems as mediated by mineral-water interfacial reactions.« less

  12. A geologic and mineral exploration spatial database for the Stillwater Complex, Montana

    USGS Publications Warehouse

    Zientek, Michael L.; Parks, Heather L.

    2014-01-01

    This report provides essential spatially referenced datasets based on geologic mapping and mineral exploration activities conducted from the 1920s to the 1990s. This information will facilitate research on the complex and provide background material needed to explore for mineral resources and to develop sound land-management policy.

  13. Thermodynamic Aspects of the Formation of Sulfate Minerals from Hot Gaseous Phase

    NASA Astrophysics Data System (ADS)

    Giere, R.; Majzlan, J.

    2006-12-01

    Minerals may form by solid-state reactions or by dissolution and precipitation from a fluid phase, be it magma, aqueous medium, or gas. The latter phase was traditionally not considered as important as the other ones, although it may be essential in some geological environments. Components of minerals (e.g., sulfur) are commonly transported by hot gases in volcanoes. Others may form in burning coal dumps or by burning fossil fuels for energy production. We have identified a number of minerals which precipitated from the hot gases escaping into the atmosphere from the smoke stack of a coal-fired power plant. This power plant uses coal or a mixture of coal and used tires to produce electricity. The phases identified by TEM are anglesite (PbSO4), gunningite (ZnSO4?H2O), anhydrite (CaSO4), and yavapaiite (KFe(SO4)2). In addition to these crystalline phases, amorphous sulfate materials and soot have been identified. All these materials were captured by filtering the escaping gases beyond the last filters intended to remove any particles from the gas stream. Therefore, they must have formed by precipitation from the hot gas and may present a significant pollution load in the vicinity of power plants. Verhulst et al. (1996) have shown that several metals are most likely transported as chloride complexes in the gas phase. Their assumption correlates well with the finding that the chloride-richer coal+tire mixture increases considerably amounts of emitted metals. Using thermodynamic data for these and other sulfate minerals, we are trying to understand and model the precipitation process of these minerals from hot gases at ambient pressures. In this contribution, we focus on the mineral mikasaite (trigonal Fe2(SO4)3). This mineral has been reported only from burning coal dumps (Miura et al. 1994). Using acid-solution calorimetry, we have determined the enthalpy of formation of mikasaite from elements at T = 298.15 K. We have further estimated the standard entropy of this mineral. Using the measured and estimated thermodynamic data for mikasaite and the published data for Fe-Cl complexes, we will present equilibrium diagrams for the Fe2O3-H2O-SO2-HCl system. In future, we are aiming at developing a thermodynamic database for the minerals found to precipitate from hot gases at burning coal dumps, power plants, and volcanic fumaroles. Verhulst, D., Buekens, A., Spencer, P., Eriksson, G., 1996: Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces. Environmental Science and Technology 30, 50-56. Miura H, Niida K, Hirama T, 1994: Mikasaite, (Fe3+, Al)2(SO4)3, a new ferric sulfate mineral from Mikasa City, Hokkaido, Japan. Mineralogical Magazine 58, 649-653.

  14. Solute mixing regulates heterogeneity of mineral precipitation in porous media: Effect of Solute Mixing on Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cil, Mehmet B.; Xie, Minwei; Packman, Aaron I.

    Synchrotron X-ray microtomography was used to track the spatiotemporal evolution of mineral precipitation and the consequent alteration of the pore structure. Column experiments were conducted by injecting CaCl2 and NaHCO3 solutions into granular porous media either as a premixed supersaturated solution (external mixing) or as separate solutions that mixed within the specimen (internal mixing). The two mixing modes produced distinct mineral growth patterns. While internal mixing promoted transverse heterogeneity with precipitation at the mixing zone, external mixing favored relatively homogeneous precipitation along the flow direction. The impact of precipitation on pore water flow and permeability was assessed via 3-D flowmore » simulations, which indicated anisotropic permeability evolution for both mixing modes. Under both mixing modes, precipitation decreased the median pore size and increased the skewness of the pore size distribution. Such similar pore-scale evolution patterns suggest that the clogging of individual pores depends primarily on local supersaturation state and pore geometry.« less

  15. Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: the Lagrangian approach.

    PubMed

    Soltanian, Mohamad Reza; Ritzi, Robert W; Dai, Zhenxue; Huang, Chao Cheng

    2015-03-01

    Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact of changing the mean, variance, and integral scale of K and Kd on reactive solute dispersion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life.

    PubMed

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D; Sears, S Kelly; Hesse, Reinhard; Vali, Hojatollah

    2012-06-01

    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.

  17. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life

    USGS Publications Warehouse

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D.; Sears, S. Kelly; Hesse, Reinhard; Vali, Hojatollah

    2012-01-01

    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.

  18. Basaltic caves at Craters of the Moon National Monument and Preserve as analogs for Mars

    NASA Astrophysics Data System (ADS)

    Hinman, N. W.; Richardson, C. D.; McHenry, L.; Scott, J. R.

    2010-12-01

    Basaltic caves and lava tubes offer stable physicochemical conditions for formation of secondary minerals. Such features, putatively observed on Mars, intercept groundwater to weather country rock, leading to formation of secondary minerals. Further, caves are stable environments to search for evidence of past life, as they could offer protection from the oxidizing martian atmosphere. Searching for signs of life in a cave that could protect bio/organic compounds would preclude the need for risky drilling on Mars. Craters of the Moon National Monument (COM) offers an opportunity to study caves in Holocene iron-rich basalt flows to characterize secondary mineral deposits and search for organic compounds associated with secondary minerals; COM basalts are a good analog for martian basalts because of their high iron but other elements are higher at COM than on Mars. The Blue Dragon flow (~2.1 ka) contains the majority of the accessible caves and lava tubes. Two types of secondary mineral deposits were observed in these caves: ceiling coatings and crack or floor precipitates. Hematite, silica, and calcite comprise ceiling coatings. The crack and floor precipitates are white, efflorescent deposits in cavities along cave walls and ceilings or in localized mounds on cave floors. The secondary minerals in crack and floor precipitates are mainly thenardite and mirabilite with some minor concentrations of trona and/or burkeite. Organic compounds were found associated with the efflorescent deposits. Formation of the deposits is likely due to chemical leaching of basalt by meteoritic water. To test this, fluids collected from the ceiling and walls of the caves were analyzed. Solutions were modeled with the geochemical code, PHREEQC. The model tracked composition as water evaporated. Selected minerals were allowed to precipitate as they became oversaturated. Among the first minerals to become oversaturated were quartz and calcite, which are observed in ceiling deposits. Iron minerals were not included as no iron was detected in solution. Results compared well with evaporation of solutions generated by simulating chemical weathering of minerals found in the basalt; this approach allowed iron minerals to precipitate during evaporation because minerals in the basalt contained iron. The minerals modeled upon evaporation included the minerals observed in the actual deposits - hematite, calcite, and quartz. Na-minerals neared saturation in simulations but were normally not saturated, leaving open the question of their origin. One possible explanation for the presence of Na-minerals could be seasonal ice formation in the caves followed by sublimation, leaving more concentrated solutions behind than were sampled here. A seasonal model for mineral deposition in caves could be relevant to deposits in martian caves. While the formation mechanism for the secondary minerals at COM is not completely understood, the presence of secondary minerals that harbor organic compounds in a cave environment that may be analogous to Mar has implications for where to search for signs of martian life.

  19. Understanding ice nucleation characteristics of selective mineral dusts suspended in solution

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2016-04-01

    Introduction & Objectives Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Kaufmann (PhD Thesis 2015, ETHZ) with Hoggar Mountain dust suspensions in various solutes (ammonium sulfate, PEG, malonic acid and glucose) showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear of how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust samples. In view of these results we run freezing experiments using a differential scanning calorimeter (DSC) with the following mineral dust particles suspended in pure water and ammonium sulfate solutions: Arizona Test Dust (ATD), microcline, and kaolinite (KGa-2, Clay Mineral Society). Methodology Suspensions of mineral dust samples (ATD: 2 weight%, microcline: 5% weight, KGa-2: 5% weight) are prepared in pure water with varying solute concentrations (ammonium sulfate: 0 - 10% weight). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich Chemical) and 5 wt% lanolin (Fluka Chemical) is emulsified with a rotor-stator homogenizer for 40 s at a rotation frequency of 7000 rpm. 4 - 10 mg of this mixture is pipetted in an aluminum pan (closed hermetically), placed in the DSC and subjected to three freezing cycles. The first and the third freezing cycles are executed at a cooling rate of 10 K/min to control the stability of the sample. The second freezing cycle is executed at a 1 K/min cooling rate and is used for evaluation. Freezing temperatures are obtained by evaluating the onset of the freezing signal in the DSC curve and plotted against water activity values corresponding to the solute concentration (obtained via Koop et al., (2000)). Observations A decrease in ice nucleation ability of the minerals (for immersion freezing) with increasing solute concentration (hence, decreasing water activity) was observed, similar as for homogeneous ice nucleation. Though the decrease was more pronounced in case of microcline and ATD as compared to kaolinite. Therefore, there seem to be specific interactions which needs to be studied further to explain the freezing behavior of minerals. The current study could be helpful in investigating the ice nucleation behavior of individual minerals when present in conjunction with a solute, viz. ammonium sulfate, which is of high atmospheric relevance. References Zobrist et al., (2008), doi: 10.1021/jp7112208. Koop et al., (2000), doi:10.1038/35020537. Kaufmann (PhD Thesis 2015, ETHZ).

  20. Borate minerals and origin of the RNA world.

    PubMed

    Grew, Edward S; Bada, Jeffrey L; Hazen, Robert M

    2011-08-01

    The RNA World is generally thought to have been an important link between purely prebiotic (>3.7 Ga) chemistry and modern DNA/protein biochemistry. One concern about the RNA World hypothesis is the geochemical stability of ribose, the sugar moiety of RNA. Prebiotic stabilization of ribose by solutions associated with borate minerals, notably colemanite, ulexite, and kernite, has been proposed as one resolution to this difficulty. However, a critical unresolved issue is whether borate minerals existed in sufficient quantities on the primitive Earth, especially in the period when prebiotic synthesis processes leading to RNA took place. Although the oldest reported colemanite and ulexite are 330 Ma, and the oldest reported kernite, 19 Ma, boron isotope data and geologic context are consistent with an evaporitic borate precursor to 2400-2100 Ma borate deposits in the Liaoning and Jilin Provinces, China, as well as to tourmaline-group minerals at 3300-3450 Ma in the Barberton belt, South Africa. The oldest boron minerals for which the age of crystallization could be determined are the metamorphic tourmaline species schorl and dravite in the Isua complex (metamorphism between ca. 3650 and ca. 3600 Ma). Whether borates such as colemanite, ulexite and kernite were present in the Hadean (>4000 Ma) at the critical juncture when prebiotic molecules such as ribose required stabilization depends on whether a granitic continental crust had yet differentiated, because in its absence we see no means for boron to be sufficiently concentrated for borates to be precipitated.

  1. Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1992-01-01

    The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.

  2. Stabilization and prolonged reactivity of aqueous-phase ozone with cyclodextrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dettmer, Adam; Ball, Raymond; Boving, Thomas B.

    Recalcitrant organic groundwater contaminants, such as 1,4-dioxane, may require strong oxidants for complete mineralization. However, their efficacy for in-situ chemical oxidation (ISCO) is limited by oxidant decay and reactivity. Hydroxypropyl-β-cyclodextrin (HPβCD) was examined for its ability to stabilize aqueous-phase ozone (O3) and prolong oxidation potential through inclusion complex formation. Partial transformation of HPβCD by O3 was observed. However, HPβCD proved to be sufficiently recalcitrant, because it was only partially degraded in the presence of O3. The formation of a HPβCD:O3 clathrate complex was observed, which stabilized decay of O3. The presence of HPβCD increased the O3 half-life linearly with increasingmore » HPβCD:O3 molar ratio. The O3 half-life in solutions increased by as much as 40-fold relative to HPβCD-free O3 solutions. Observed O3 release from HPβCD and indigo oxidation confirmed that the formation of the inclusion complex is reversible. This proof-of-concept study demonstrates that HPβCD can complex O3 while preserving its reactivity. These results suggest that the use of clathrate stabilizers, such as HPβCD, can support the development of a facilitated-transport enabled ISCO for the O3treatment of groundwater contaminated with recalcitrant compounds.« less

  3. Production characteristics of the complex "SLS-vegetables" as the element of bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Velichko, Vladimir; Tikhomirov, Alexander A.; Ushakova, Sofya; Tirranen, Lyalya; Gros, Jean-Bernard; Lasseur, Christophe

    Previously we had shown possibility of long-term cultivation of wheat and radish uneven-aged conveyer on the soil-like substrate (SLS) with periodic introduction in the SLS of edible (in the form of a mineral solution after physicochemical burning) and inedible biomass of the plants grown on it. The given work was aimed at the study of production characteristics of the plants cultivated on the SLS with a periodic introduction of plant biomass, which consisted of harvested inedible biomass and wheat straw. The wheat straw was introduced in the SLS to compensate carrying out of mineral elements from the SLS with the edible biomass of the harvested plants. Also possibility of joint cultivation of the chosen vegetable plants under the given way of plant inedible biomass introduction in the SLS was estimated. Chufa (Cyperus esculentus L.), radish (Raphanus sativus L.) and lettuce (Lactuca sativa L.) were taken as the objects of research. Plants were grown in the regime of the three-species uneven-aged conveyer. Before each next planting of plants we introduced in the SLS all inedible biomass of earlier harvested plants and wheat straw. The amount of introduced wheat straw depended on nitrogen content in edible biomass of the harvested plants. Plants irrigation was performed by means of common nutrient solution containing mineral elements extracted from the SLS. 2 concentration in a vegetation chamber was maintained in limits from 0.1The work was carried out under support of SB RAS grant 132 and INTAS grant 05-1000008-8010

  4. Mineral formation and organo-mineral controls on the bioavailability of carbon at the terrestrial-aquatic interface

    NASA Astrophysics Data System (ADS)

    Rod, K. A.; Smith, A. P.; Renslow, R.

    2016-12-01

    Recent evidence highlights the importance of organo-mineral interactions in regulating the source or sink capacity of soil. High surface area soils, such as allophane-rich or clay-rich soils, retain organic matter (OM) via sorption to mineral surfaces which can also contribute physical isolation in interlayer spaces. Despite the direct correlation between mineral surfaces and OM accumulation, the pedogenic processes controlling the abundance of reactive surface areas and their distribution in the mineral matrix remains unclear. As global soil temperatures rise, the dissolution of primary minerals and formation of new secondary minerals may be thermodynamically favored as part of soil weathering process. Newly formed minerals can supply surfaces for organo-metallic bonding and may, therefore, stabilize OM by surface bonding and physical exclusion. This is especially relevant in environments that intersect terrestrial and aquatic systems, such as the capillary fringe zone in riparian ecosystems. To test the mechanisms of mineral surface area protection of OM, we facilitated secondary precipitation of alumino-silicates in the presence of OM held at two different temperatures in natural Nisqually River sediments (Mt Rainier, WA). This was a three month reaction intended to simulate early pedogenesis. To tease out the influence of mineral surface area increase during pedogenesis, we incubated the sediments at two different soil moisture contents to induce biodegradation. We measured OM desorption, biodegradation, and the molecular composition of mineral-associated OM both prior to and following the temperature manipulation. To simulate the saturation of capillary fringe sediment and associated transport and reaction of OM, column experiments were conducted using the reacted sediments. More co-precipitation was observed in the 20°C solution compared to the 4°C reacted solution suggesting that warming trends alter mineral development and may remove more OM from solution. The results from the static experiments will be used to model and predict the impacts of mineral sorption and biological activity on OM persistence in the context of dynamic saturation conditions and heterogeneous material properties.

  5. pH : a key control of the nature and distribution of dissolved organic matter and associated trace metals in soil

    NASA Astrophysics Data System (ADS)

    Pédrot, M.; Dia, A.; Davranche, M.

    2009-04-01

    Dissolved organic matter is ubiquitous at the Earth's surface and plays a prominent role in controlling metal speciation and mobility from soils to hydrosystems. Humic substances (HS) are usually considered to be the most reactive fraction of organic matter. Humic substances are relatively small and formed by chemically diverse organic molecules, bearing different functional groups that act as binding sites for cations and mineral surfaces. Among the different environmental physicochemical parameters controlling the metal speciation, pH is likely to be the most important one. Indeed, pH affect the dissociation of functional groups, and thus can influence the HS structure, their ability to complex metals, their solubility degree allowing the formation of aggregates at the mineral surface. In this context, soil/water interactions conducted through batch system experiments, were carried out with a wetland organic-rich soil to investigate the effect of pH on the release of dissolved organic carbon (DOC) and associated trace elements. The pH was regulated between 4 and 7.5 using an automatic pH stat titrator. Ultrafiltration experiments were performed to separate the dissolved organic pool following decreasing pore sizes (30 kDa, 5 kDa and 2 kDa with 1 Da = 1 g.mol-1). The pH increase induced a significant DOC release, especially in heavy organic molecules (size >5 kDa) with a high aromaticity (>30 %). These were probably humic acids (HA). This HA release influenced (i) directly the trace element concentrations in soil solution since HA were enriched in several trace elements such as Th, REE, Y, U, Cr and Cu; and (ii) indirectly by the breaking of clay-humic complexes releasing Fe- and Al-rich nanoparticles associated with V, Pb and Ti. By contrast, at acid pH, most HS were complexed onto mineral surfaces. They also sequestered iron nanoparticles. Therefore, at low pH, most part of DOC molecules had a size < 5 kDa and lower aromaticity. Thus, the DOC was mostly composed of simple organic compounds little complexing. Consequently, the soil solution was depleted in trace elements such as Th, REE, Y, U, Cr, Cu, Al, Fe, V, Pb and Ti, but also enriched in Ca, Sr, Ba, Mn, Mg, Co, Zn and in a lesser proportion in Rb, Li and Ni. The aromaticity in the fractions <5 kDa was higher than in the fractions <30 kDa or <0.2 µm. Complementary experiments were performed to understand the HS size distribution and aromaticity according to pH and ionic strength .The molecular size and shape of HS is usually explained by two concepts: (i) the macropolymeric structure with heavy organic molecules considered to be flexible linear polyelectrolytes and (ii) the supramolecular structure with an association of a complex mixture of different molecules held together by dispersive weak forces. Ours results supported the HA supramolecular structure at neutral or basic pH conditions. But, at acid pH, a disruption of the humic supramolecular associations involved the release of small organic molecules with a high aromaticity. Moreover, this aromaticity variation can be due also to the presence of fulvic acids in the fractions <5 kDa and a mixture of heavy organic molecules little complexing in the fractions >5 kDa. These latter molecules displayed a low aromaticity decreasing the global aromaticity of the fractions <30 kDa and <0.2 µm. To summarize, these new data demonstrated that the DOC and trace element concentrations of the soil solutions were strongly controlled by pH. This parameter influenced the nature and the size of the DOC as well as, the trace element concentrations in the soil solutions, with a decreasing contribution of HA when pH decreased. This pH dependence is a key issue of concern since local (human pressure) and/or global (climatic) warning result in pH water changes.

  6. Post-depositional tectonic modification of VMS deposits in Iberia and its economic significance

    NASA Astrophysics Data System (ADS)

    Castroviejo, Ricardo; Quesada, Cecilio; Soler, Miguel

    2011-07-01

    The original stratigraphic relationships and structure of VMS deposits are commonly obscured by deformation. This can also affect their economic significance, as shown by several Iberian Pyrite Belt (IPB, SW Iberia) examples. The contrasting rheologic properties of the different lithologies present in an orebody (massive sulphide, feeder stockwork, alteration envelope, volcanic and sedimentary rocks) play a major role in determining its overall behaviour. Variscan thin-skinned tectonics led to stacking of the massive pyrite and stockwork bodies in duplex structures, resulting in local thickening and increased tonnage of minable mineralization. Furthermore, differential mechanical behaviour of the different sulphide minerals localised the detachments along relatively ductile sulphide-rich bands. The result was a geochemical and mineralogical reorganisation of most deposits, which now consist of barren, massive pyrite horses, bounded by base metal-rich ductile shear zones. Metal redistribution was enhanced by mobilisation of the base metal sulphides from the initially impoverished massive pyrite, through pressure-solution processes, to tensional fissures within the already ductile shear zones. In NW Iberia, VMS deposits were also strongly overprinted by the Variscan deformation during emplacement of the Cabo Ortegal and Órdenes allochthonous nappe complexes, but no stacking of the orebodies was produced. Original contacts were transposed, and the orebodies, their feeder zones and the country rock acquired pronounced laminar geometry. In lower-grade rocks (greenschist facies, Cabo Ortegal Complex), solution transfer mechanisms are common in pyrite, which remains in the brittle domain, while chalcopyrite shows ductile behaviour. In higher-grade rocks (amphibolite facies, Órdenes Complex), metamorphic recrystallisation overprints earlier deformation textures. The contrasting behaviour of the IPB and NW Iberian deposits is explained by key factors that affect their final geometry, composition and economics, such as pre-deformation structure, size and mineralogical composition of the orebody and associated lithologies, temperature, crustal level, deviatoric stress and availability of a fluid phase during deformation and the style and rate of deformation.

  7. Safety and Health Benefits of Novel Dietary Supplements Consisting Multiple Phytochemicals, Vitamins, Minerals and Essential Fatty Acids in High Fat Diet Fed Rats.

    PubMed

    Ramprasath, Vanu Ramkumar; Jones, Peter J H

    2016-01-01

    The objective was to determine safety and efficacy of health supplements "Beyond Tangy Tangerine," a multivitamin/mineral complex and combination of multivitamin/mineral complex, "Osteofx," a bone healthy supplement and "Ultimate Essential Fatty Acids" in Sprague Dawley rats consuming high-fat diets. Initially a pilot study was conducted which confirmed palatability and acceptability of supplements. In a second study, rats (n = 15/group) were randomized to Control; Multivitamin/mineral complex (2 g/kg BW) or Combination (2 g Multivitamin/mineral complex, 1.5 g Bone healthy supplement and 0.34 g Essential fatty acids/kg BW). No differences were observed in BW change, feed intake, organ weights or bone mineral composition with supplementations compared to control. Multivitamin/mineral complex supplementation decreased abdominal white adipose tissue weights (WAT) (p = .005), total (p = .033) and fat mass (p = .040), plasma IL-6 (p = .016) and ALKP (p = .038) and elevated plasma calcium (p < .001), phosphorus (p = .038), total protein (p = .002), albumin (p = .014) and globulin (p = .018), compared to control. Similarly, combination supplementation reduced WAT (p < .001), total (p = .023) and fat mass (p = .045), plasma triglycerides (p = .018), IL-6 (p = .002) and ALKP (p < .001) with increases in plasma calcium (p = .031), phosphorus (p < .001) compared to control. Results indicate that consuming either supplement can be considered safe and improves overall health by reducing inflammation, abdominal fat mass and plasma triglycerides, as well as promote bone health.

  8. Defining reactive sites on hydrated mineral surfaces: Rhombohedral carbonate minerals

    NASA Astrophysics Data System (ADS)

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Pokrovsky, Oleg S.; Schott, Jacques

    2009-08-01

    Despite the success of surface complexation models (SCMs) to interpret the adsorptive properties of mineral surfaces, their construct is sometimes incompatible with fundamental chemical and/or physical constraints, and thus, casts doubts on the physical-chemical significance of the derived model parameters. In this paper, we address the definition of primary surface sites (i.e., adsorption units) at hydrated carbonate mineral surfaces and discuss its implications to the formulation and calibration of surface equilibria for these minerals. Given the abundance of experimental and theoretical information on the structural properties of the hydrated (10.4) cleavage calcite surface, this mineral was chosen for a detailed theoretical analysis of critical issues relevant to the definition of primary surface sites. Accordingly, a single, generic charge-neutral surface site ( tbnd CaCO 3·H 2O 0) is defined for this mineral whereupon mass-action expressions describing adsorption equilibria were formulated. The one-site scheme, analogous to previously postulated descriptions of metal oxide surfaces, allows for a simple, yet realistic, molecular representation of surface reactions and provides a generalized reference state suitable for the calculation of sorption equilibria for rhombohedral carbonate minerals via Law of Mass Action (LMA) and Gibbs Energy Minimization (GEM) approaches. The one-site scheme is extended to other rhombohedral carbonate minerals and tested against published experimental data for magnesite and dolomite in aqueous solutions. A simplified SCM based on this scheme can successfully reproduce surface charge, reasonably simulate the electrokinetic behavior of these minerals, and predict surface speciation agreeing with available spectroscopic data. According to this model, a truly amphoteric behavior is displayed by these surfaces across the pH scale but at circum-neutral pH (5.8-8.2) and relatively high ΣCO 2 (⩾1 mM), proton/bicarbonate co-adsorption becomes important and leads to the formation of a charge-neutral H 2CO 3-like surface species which may largely account for the surface charge-buffering behavior and the relatively wide range of pH values of isoelectric points (pH iep) reported in the literature for these minerals.

  9. Solution of rocks and refractory minerals by acids at high temperatures and pressures. Determination of silica after decomposition with hydrofluoric acid

    USGS Publications Warehouse

    May, I.; Rowe, J.J.

    1965-01-01

    A modified Morey bomb was designed which contains a removable nichromecased 3.5-ml platinium crucible. This bomb is particularly useful for decompositions of refractory samples for micro- and semimicro-analysis. Temperatures of 400-450?? and pressures estimated as great as 6000 p.s.i. were maintained in the bomb for periods as long as 24 h. Complete decompositions of rocks, garnet, beryl, chrysoberyl, phenacite, sapphirine, and kyanite were obtained with hydrofluoric acid or a mixture of hydrofluoric and sulfuric acids; the decomposition of chrome refractory was made with hydrochloric acid. Aluminum-rich samples formed difficultly soluble aluminum fluoride precipitates. Because no volatilization losses occur, silica can be determined on sample solutions by a molybdenum-blue procedure using aluminum(III) to complex interfering fluoride. ?? 1965.

  10. Potentiometric assessment of iron release during ferritin reduction by exogenous agents.

    PubMed

    Vladimirova, Lilia S; Kochev, Valery K

    2010-09-01

    This work studied the possibilities for quantitative determination of iron mobilization in connection with ferritin reduction by ascorbic acid (vitamin C) and sodium dithionite in vitro. The iron storage protein was incubated with an excess of reductant in aerobic conditions in the absence of complexing agents in the medium. The release of Fe(2+) was let to go to completion, and the overall content of Fe(2+) in the solution was evaluated with the aid of potentiometric titration using Ce(4+) as an oxidizing titrant. Results suggest a moderate iron efflux under the influence of the chosen reducing agents. Although such a reduction of the protein mineral core by dihydroxyfumarate contributes greatly to the iron mobilization, ferritin behavior with vitamin C and dithionite seems to be different. Although redox properties of dihydroxyfumarate are determined by hydroxyl groups similar to those of ascorbic acid, the two compounds differ significantly in structure, and this could be the basis for an explanation of the specificities in their interaction with ferritin. As revealed by the study, potentiometric titration promises to be a reliable tool for evaluation of the amount of Fe(2+) present in the solution as a result of the reduction of the ferritin's mineral core. 2010 Elsevier Inc. All rights reserved.

  11. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.

    PubMed

    Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Organic-inorganic Interface in Nacre: Learning Lessons from Nature

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima; Askarinejad, Sina

    Problem-solving strategies of naturally growing composites such as nacre give us a fantastic vision to design and fabricate tough, stiff while strong composites. To provide the outstanding mechanical functions, nature has evolved complex and effective functionally graded interfaces. Particularly in nacre, organic-inorganic interface in which the proteins behave stiffer and stronger in proximity of calcium carbonate minerals provide an impressive role in structural integrity and mechanical deformation of the natural composite. The well-known shear-lag theory was employed on a simplified two-dimensional unit-cell of the multilayered composite considering the interface properties. The closed-form solutions for the displacements in the elastic components as a function of constituent properties can be used to calculate the effective mechanical properties of composite such as elastic modulus, strength and work-to-failure. The results solve the important mysteries about nacre and emphasize on the role of organic-inorganic interface properties and mineral bridges. Our results show that the properties of proteins in proximity of mineral bridges are also significant. More studies need to be performed on the strategies to enhance the interface properties in manmade composites. NSF Career Award no. 1281264.

  13. Degradation of ampicillin antibiotic by electrochemical processes: evaluation of antimicrobial activity of treated water.

    PubMed

    Vidal, Jorge; Huiliñir, Cesar; Santander, Rocío; Silva-Agredo, Javier; Torres-Palma, Ricardo A; Salazar, Ricardo

    2018-05-17

    Ampicillin (AMP) is an antibiotic widely used in hospitals and veterinary clinics around the world for treating infections caused by bacteria. Therefore, it is common to find traces of this antibiotic in wastewater from these entities. In this work, we studied the mineralization of this antibiotic in solution as well as the elimination of its antimicrobial activity by comparing different electrochemical advanced oxidation processes (EAOPs), namely electro-oxidation with hydrogen peroxide (EO-H 2 O 2 ), electro-Fenton (EF), and photo electro-Fenton (PEF). With PEF process, a high degradation, mineralization, and complete elimination of antimicrobial activity were achieved in 120-min electrolysis with high efficiency. In the PEF process, fast mineralization rate is caused by hydroxyl radicals (·OH) that are generated in the bulk, on the anode surface, by UV radiation, and most importantly, by the direct photolysis of complexes formed between Fe 3+ and some organic intermediates. Moreover, some products and intermediates formed during the degradation of the antibiotic Ampicillin, such as inorganic ions, carboxylic acids, and aromatic compounds, were determined by photometric and chromatographic methods. An oxidation pathway is proposed for the complete conversion to CO 2 .

  14. Logistic Principles Application for Managing the Extraction and Transportation of Solid Minerals

    NASA Astrophysics Data System (ADS)

    Tyurin, Alexey

    2017-11-01

    Reducing the cost of resources in solid mineral extraction is an urgent task. For its solution the article proposes logistic approach use to management of mining company all resources, including extraction processes, transport, mineral handling and storage. The account of the uneven operation of mining, transport units and complexes for processing and loading coal into railroad cars allows you to identify the shortcomings in the work of the entire enterprise and reduce resources use at the planned production level. In the article the mining planning model taking into account the dynamics of the production, transport stations and export coal to consumers rail transport on example of Krasnoyarsk region Nazarovo JSC «Razrez Sereul'skiy». Rolling planning methods use and data aggregation allows you to split the planning horizon (month) on equal periods and to use of dynamic programming method for building mining optimal production programme for the month. Coal mining production program definition technique will help align the work of all enterprise units, to optimize resources of all areas, to establish a flexible relationship between manufacturer and consumer, to take into account the irregularity of rail transport.

  15. Spectrometric determination of platinum with methoxypromazine maleate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thimmegowda, A.; Sankegowda, H.; Gowda, N.M.M.

    1984-03-01

    A simple, rapid, and sensitive spectrophotometric method has been developed for the determination of platinum in solution. The chromogenic reagent, methoxypromazine maleate, reacts with platinum(IV) almost instantaneously in phosphoric acid medium containing copper(II) catalyst to form a bluish pink 1:1 complex with an absorption maximum at 562 nm. The complexation is complete within 1 min. A 30-fold molar excess of the reagent over metal ion is necessary for completion of the reaction. Beer's law is obeyed over the concentration range of 0.4-9.8 ppm of platinum(IV) with an optimal range of 1.5-8.6 ppm. The molar absorptivity is 1.71 x 10/sub 4/more » L mol/sup -1/ cm/sup -1/ and the Sandell sensitivity is 11.4 ng cm/sup -2/. The apparent stability constant of the complex is log K = 5.58 +/- 0.1 at 27/sup 0/C. The effects of acid concentration, time, temperature, concentration of the reagent and copper, order of addition of reagents, and the interferences from various ions are investigated. The method has been used for the determination of platinum in synthetic solutions that approximate the composition of some alloys and minerals. 25 references, 1 figure, 2 tables.« less

  16. Mineral catalysis of a potentially prebiotic aldol condensation

    NASA Technical Reports Server (NTRS)

    De Graaf, R. M.; Visscher, J.; Xu, Y.; Arrhenius, G.; Schwartz, A. W.

    1998-01-01

    Minerals may have played a significant role in chemical evolution. In the course of investigating the chemistry of phosphonoacetaldehyde (PAL), an analogue of glycolaldehyde phosphate, we have observed a striking case of catalysis by the layered hydroxide mineral hydrotalcite ([Mg2Al(OH)6][Cl.nH2O]). In neutral or moderately basic aqueous solutions, PAL is unreactive even at a concentration of 0.1 M. In the presence of a large excess of NaOH (2 M), the compound undergoes aldol condensation to produce a dimer containing a C3-C4 double-bond. In dilute neutral solutions and in the presence of the mineral, however, condensation takes place rapidly, to produce a dimer which is almost exclusively the C2-C3 unsaturated product.

  17. Microbial utilization of low molecular weight organics in soil depends on the substances properties

    NASA Astrophysics Data System (ADS)

    Gunina, Anna

    2016-04-01

    Utilization of low molecular weight organic substances (LMWOS) in soil is regulated by microbial uptake from solution and following incorporation of into specific cell cycles. Various chemical properties of LMWOS, namely oxidation state, number of carbon (C) atoms, number of carboxylic (-COOH) groups, can affect their uptake from soil solution and further microbial utilization. The aim of the study was to trace the initial fate (including the uptake from soil solution and utilization by microorganisms) of three main classes of LMWOS, having contrast properties - sugars, carboxylic and amino acids. Top 10 cm of mineral soil were collected under Silver birch stands within the Bangor DIVERSE experiment, UK. Soil solution was extracted by centrifugation at 4000 rpm during 15 min. Soil was spiked with 14C glucose or fructose; malic, succinic or formic acids; alanine or glycine. No additional non-labeled LMWOS were added. 14C was traced in the dissolved organic matter (DOM), CO2, cytosol and soil organic matter (SOM) during one day. To estimate half-life times (T1 /2)of LMWOS in soil solution and in SOM pools, the single and double first order kinetic equations were fitted to the uptake and mineralization dynamics, respectively. The LMWOS T1 /2in DOM pool varied between 0.6-5 min, with the highest T1 /2for sugars (3.7 min) and the lowest for carboxylic acids (0.6-1.4 min). Thus, initial uptake of LMWOS is not a limiting step of microbial utilization. The T1 /2 of carboxylic and amino acids in DOM were closely related with oxidation state, showing that reduced substances remain in soil solution longer, than oxidized. The initial T1 /2 of LMWOS in SOM ranged between 30-80 min, with the longest T1 /2 for amino acids (50-80 min) and the shortest for carboxylic acids (30-48 min). These T1 /2values were in one-two orders of magnitude higher than LMWOS T1 /2 in soil solution, pointing that LMWOS mineralization occur with a delay after the uptake. Absence of correlations between LMWOS T1 /2 in SOM with C oxidation state, number of C atoms or number of -COOH groups in LMWOS demonstrates that intercellular metabolic pathways are more important. Mineralization of LMWOS amounted for 20-90% of total applied amount. Maximum mineralization was found for carboxylic acids and minimum for sugars, whereas 14C incorporation into cytosol and SOM pools followed the opposite trend. There were close positive correlation between the portion of mineralized C and substance oxidation state, but negative with the amount of C incorporated into the cytosol and SOM pools. This shows that substance properties affect the final partitioning of LMWOS-C between mineralized and utilized pools. Thus, initial uptake of LMWOS from soil solution and final partitioning of LMWOS-C between the mineralized and microbially utilized pools are related to their chemical properties. In contrast, LMWOS mineralization dynamics is regulated by intercellular metabolization pathways.

  18. Spectroscopic Evidence of the Improvement of Reactive Iron Mineral Content in Red Soil by Long-Term Application of Swine Manure

    PubMed Central

    Huang, Chichao; Liu, Sha; Li, Ruizhi; Sun, Fusheng; Zhou, Ying; Yu, Guanghui

    2016-01-01

    Mineral elements in soil solutions are thought to be the precursor of the formation of reactive minerals, which play an important role in global carbon (C) cycling. However, information regarding the regulation of mineral elements release in soil is scarce. Here, we examined the long-term (i.e., 23 yrs) effects of fertilisation practices on Fe minerals in a red soil in Southern China. The results from chemical analysis and Fourier-transform infrared spectroscopy showed that long-term swine manure (M) treatment released greater amounts of minerals into soil solutions than chemical fertilisers (NPK) treatment, and Fe played a dominant role in the preservation of dissolved organic C. Furthermore, Fe K-edge X-ray absorption near-edge fine structure spectroscopy demonstrated that reactive Fe minerals were mainly composed of less crystalline ferrihydrite in the M-treated soil and more crystalline goethite in the NPK-treated soil. In conclusion, this study reported spectroscopic evidence of the improvement of reactive Femineral content in the M-treated soil colloids when compared to NPK-treated soil colloids. PMID:26752419

  19. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    ;Clumped-isotope; thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope ;clumps;). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two types of experiments yielded statistically indistinguishable results, and these measurements yield a calibration that overlaps with our theoretical predictions for calcite at equilibrium. The slow-growing Devils Hole calcite exhibits Δ47 and δ18O values consistent with lattice equilibrium. Factors influencing DIC speciation (pH, salinity) and the timescale for DIC equilibration, as well as reactions at the mineral-solution interface, have the potential to influence clumped-isotope signatures and the δ18O of carbonate minerals. In fast-growing carbonate minerals, solution chemistry may be an important factor, particularly over extremes of pH and salinity. If a crystal grows too rapidly to reach an internal equilibrium (i.e., achieve the value for the temperature-dependent mineral lattice equilibrium), it may record the clumped-isotope signature of a DIC species (e.g., the temperature-dependent equilibrium of HCO3-) or a mixture of DIC species, and hence record a disequilibrium mineral composition. For extremely slow-growing crystals, and for rapidly-grown samples grown at a pH where HCO3- dominates the DIC pool at equilibrium, effects of solution chemistry are likely to be relatively small or negligible. In summary, growth environment, solution chemistry, surface equilibria, and precipitation rate may all play a role in dictating whether a crystal achieves equilibrium or disequilibrium clumped-isotope signatures.

  20. Mineral induced formation of sugar phosphates

    NASA Technical Reports Server (NTRS)

    Pitsch, S.; Eschenmoser, A.; Gedulin, B.; Hui, S.; Arrhenius, G.

    1995-01-01

    Glycolaldehyde phosphate, sorbed from highly dilute, weakly alkaline solution into the interlayer of common expanding sheet structure metal hydroxide minerals, condenses extensively to racemic aldotetrose-2, 4-diphophates, and aldohexose-2, 4, 6-triphosphates. The reaction proceeds mainly through racemic erythrose-2, 4-phosphate, and terminates with a large fraction of racemic altrose-2, 4, 6-phosphate. In the absence of an inductive mineral phase, no detectable homogeneous reaction takes place in the concentration- and pH range used. The reactant glycolaldehyde phosphate is practically completely sorbed within an hour from solutions with concentrations as low as 50 micron; the half-time for conversion to hexose phosphates is of the order of two days at room temperature and pH 9.5. Total production of sugar phosphates in the mineral interlayer is largely independent of the glycolaldehyde phosphate concentration in the external solution, but is determined by the total amount of GAP offered for sorption up to the capacity of the mineral. In the presence of equimolar amounts of rac-glyceraldehyde-2-phosphate, but under otherwise similar conditions, aldopentose-2, 4, -diphosphates also form, but only as a small fraction of the hexose-2, 4, 6-phosphates.

  1. From bulk soil to intracrystalline investigation of plant-mineral interaction

    NASA Astrophysics Data System (ADS)

    Lemarchand, D.; Voinot, A.; Chabaux, F.; Turpault, M.

    2011-12-01

    Understanding the controls and feedbacks regulating the flux of matter between bio-geochemical reservoirs in forest ecosystems receives a fast growing interest for the last decades. A complex question is to understand how minerals and vegetation interact in soils to sustain life and, to a broader scope, how forest ecosystems may respond to human activity (acid rain, harvesting,...) and climate perturbations (temperature, precipitation,...). Many mineralogical and biogeochemical approaches have longtime been developed, and occasionally coupled, in order to investigate the mechanisms by which chemical elements either are exchanged between soil particles and solutions, or are transferred to plants or to deeper soil layers and finally leave the system. But the characterization of particular processes like the contribution of minor reactive minerals to plant nutrition and global fluxes or the mechanisms by which biology can modify reaction rates and balance the bioavailability of nutrients in response to environmental perturbation sometimes fails because of the lack of suitable tracers. Recent analytical and conceptual advances have opened new perspectives for the use of light "non traditional" stable isotopes. Showing a wild range of concentrations and isotopic compositions between biogeochemical reservoirs in forest ecosystem, boron has physico-chemical properties particularly relevant to the investigation of water/rock interactions even when evolving biologically-mediated reactions. In this study, we focused on the distribution of boron isotopes from intracrystalline to bulk soil scales. An overview of the boron distribution and annual fluxes in the soil-plant system clearly indicates that the vegetation cycling largely controls the mobility of boron. We also observe that the mineral and biological B pools have drastically different isotopic signature that makes the transfer of B between them very easy to follow. In particular, the podzol soil we analyzed shows a clear contribution of vegetation-recycled B to neoformed mineral phases, whereas B in minerals from the brown acidic soil rather indicates predominant mineral dissolution with little or even no B supply from the soil solution. If B isotopes thus proved their sensitivity to the soil forming conditions, a simple isotopic budget also demonstrates that the isotopic signature shown by the vegetation cannot result from fractionation during boron absorption. Analyses of B isotopes within intracrystalline phyllosilicate minerals further identify the interfoliar layers as the major source of B during plant nutrition. Additionally, weathering experiments placing phyllosilicates in contact with various alteration agents (protons, organic acid or siderophore) point to the role of the latters as likely responsible for the boron liberation from the phyllosilicate interfoliar layers. This scenario gives the phyllosilicate interfoliar layers a central function in the plant nutrition in context studied here of soils developed on granitic bedrocks. It also implies a very dynamic system in which plants and minerals can exchange matter over very short periods of time.

  2. Organo-mineral fertilisers from glass-matrix and organic biomasses: a new way to release nutrients. A novel approach to fertilisation based on plant demand.

    PubMed

    Trinchera, Alessandra; Allegra, Maria; Rea, Elvira; Roccuzzo, Giancarlo; Rinaldi, Simona; Sequi, Paolo; Intrigliolo, Francesco

    2011-10-01

    A glass-matrix fertiliser (GMF), a by-product from ceramic industries, releases nutrients only in the presence of complexing solutions, similar to those exuded by plant roots. This ensures a slow release of nutrients over time, limiting the risk of their loss in the environment. With the aim to improve fertiliser performance, GMF was mixed with vine vinasse (DVV), pastazzo (a by-product of the citrus processing industry, PAS) or green compost (COMP) and nutrient release was evaluated by citric and chloridric acid extraction, at different concentrations. Theoretical and actual nutrients release were compared to evaluate possible synergistic effects due to the organic component added to the mineral fertiliser: phosphorus (+7.1%), K (+4.8%), Fe (+8.5%) and Zn (+5.5%) were released more efficiently by 2% citric acid from GMF + DVV, while Ca availability was increased (+5.3%) by 2% citric acid from GMF + PAS mixture. Both DVV and COMP increased by 12-18% the Fe release from GFM matrix. Organic biomasses added to GMF increased the release of some macro and micronutrients through an 'activation effect', which suggests the employment of these organo-mineral fertilisers also in short-cycle crops production. Moreover, the re-use of some agro-industrial organic residues gives another 'adding value' to this novel organo-mineral fertilfertilisers. Copyright © 2011 Society of Chemical Industry.

  3. MetClass: A software for the visualization and exploitation of Dill's (2010) "chessboard" classification of mineral deposits

    NASA Astrophysics Data System (ADS)

    Kaabeche, Hamza; Chabou, Moulley Charaf; Bendaoud, Abderrahmane; Bodinier, Jean-Louis; Lobry, Olivier; Retif, Fabien

    2016-06-01

    Rising economic value of a large number of metals as a result of their importance for new technologies and industrial development has renewed worldwide interest for mineral exploration and detailed studies of ore deposits. The Dill's (2010) "chessboard" classification of mineral deposits is the most recent attempt to provide an exhaustive overview of all mineral deposits known to date. However, the voluminous Dills review paper is accessible only in print or as PDF file. In this article, we present MetClass, software that provides advanced solutions to perform efficient research and statistics using Dill's classification and the related database. MetClass allows to assemble all results relevant to a given ore deposit on a user-friendly interface. This software is therefore a valuable tool for mineral exploration and research on ore deposits, as well as an educational solution for students in metallogeny.

  4. Experimental validation of Swy-2 clay standard's PHREEQC model

    NASA Astrophysics Data System (ADS)

    Szabó, Zsuzsanna; Hegyfalvi, Csaba; Freiler, Ágnes; Udvardi, Beatrix; Kónya, Péter; Székely, Edit; Falus, György

    2017-04-01

    One of the challenges of the present century is to limit the greenhouse gas emissions for the mitigation of climate change which is possible for example by a transitional technology, CCS (Carbon Capture and Storage) and, among others, by the increase of nuclear proportion in the energy mix. Clay minerals are considered to be responsible for the low permeability and sealing capacity of caprocks sealing off stored CO2 and they are also the main constituents of bentonite in high level radioactive waste disposal facilities. The understanding of clay behaviour in these deep geological environments is possible through laboratory batch experiments of well-known standards and coupled geochemical models. Such experimentally validated models are scarce even though they allow deriving more precise long-term predictions of mineral reactions and rock and bentonite degradation underground and, therefore, ensuring the safety of the above technologies and increase their public acceptance. This ongoing work aims to create a kinetic geochemical model of Na-montmorillonite standard Swy-2 in the widely used PHREEQC code, supported by solution and mineral composition results from batch experiments. Several four days experiments have been carried out in 1:35 rock:water ratio at atmospheric conditions, and with inert and CO2 supercritical phase at 100 bar and 80 ⁰C relevant for the potential Hungarian CO2 reservoir complex. Solution samples have been taken during and after experiments and their compositions were measured by ICP-OES. The treated solid phase has been analysed by XRD and ATR-FTIR and compared to in-parallel measured references (dried Swy-2). Kinetic geochemical modelling of the experimental conditions has been performed by PHREEQC version 3 using equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). The visualization of experimental and numerous modelling results has been automatized by R. Experiments and models show very fast reactions under the studied conditions and increased reactivity in presence of scCO2. A model sensitivity analysis has pointed out that the continuously changing solution composition results cannot be described by the change of the uncertain reactive surface area of mineral phases in the model and still several orders of magnitude different ion-concentrations are predicted. However, by considering the clay standard's cation exchange capacity divided proportionally among interlayer cations of Na-montmorillonite, the measured variation can be described on an order of magnitude level. It is furthermore indicated that not only the interlayer cations take part in this process but a minor proportion of other, structural ions as well, differently in the reference and scCO2 environments. Experimental methodological aspects of the work, such as solution sampling, solid sample post-experimental treatment, solution and solid sample analysis sensitivity, expected experimental by-products etc. are also to be addressed.

  5. Adsorption of aquatic humic substances on colloidal-size aluminum oxide particles: Influence of solution chemistry

    NASA Astrophysics Data System (ADS)

    Schlautman, Mark A.; Morgan, James J.

    1994-10-01

    The adsorption of Suwannee River humic substances (HS) on colloidal-size aluminum oxide particles was examined as a function of solution chemistry. The amount of humic acid (HA) or fulvic acid (FA) adsorbed decreased with increasing pH for all solutions of constant ionic strength. In NaCl solutions at fixed pH values, the adsorption of HA and FA increased with increasing ionic strength. The presence of Ca 2+ enhanced the adsorption of HA but had little effect on FA. For identical solution conditions, the amount (by mass) of HA adsorbed to alumina was always greater than FA. Adsorption densities for both HA and FA showed good agreement with the Langmuir equation, and interpretations of adsorption processes were made from the model parameters. For FA, ligand exchange appears to be the dominant adsorption reaction for the conditions studied here. Ligand exchange is also a major adsorption reaction for HA; however, other reactions contribute to adsorption for some solution compositions. At high pH, cation and water bridging become increasingly important for HA adsorption with increasing amounts of Na + and Ca 2+, respectively. At low to neutral pH values, increases in these same two cations make hydrophobic bonding more effective. Calculations of HS carboxyl group densities in the adsorbed layer support the proposed adsorption reactions. From the adsorption data it appears that fewer than 3.3 HS-COO - groups per nm 2 can be bound directly as inner-sphere complexes by the alumina surface. We propose that the influence of aqueous chemistry on HS adsorption reactions, and therefore on the types of HS surface complexes formed, affects the formation and nature of organic coatings on mineral surfaces.

  6. Modules based on the geochemical model PHREEQC for use in scripting and programming languages

    USGS Publications Warehouse

    Charlton, Scott R.; Parkhurst, David L.

    2011-01-01

    The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server—for example, Excel®, Visual Basic®, Python, or MATLAB". PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations.

  7. Modules based on the geochemical model PHREEQC for use in scripting and programming languages

    USGS Publications Warehouse

    Charlton, S.R.; Parkhurst, D.L.

    2011-01-01

    The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server-for example, Excel??, Visual Basic??, Python, or MATLAB??. PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations. ?? 2011.

  8. Chemical Bonding in Sulfide Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, David J.; Rosso, Kevin M.

    An understanding of chemical bonding and electronic structure in sulfide minerals is central to any attempt at understanding their crystal structures, stabilities and physical properties. It is also an essential precursor to understanding reactivity through modeling surface structure at the molecular scale. In recent decades, there have been remarkable advances in first principles (ab initio) methods for the quantitative calculation of electronic structure. These advances have been made possible by the very rapid development of high performance computers. Several review volumes that chart the applications of these developments in mineralogy and geochemistry are available (Tossell and Vaughan, 1992; Cygan andmore » Kubicki, 2001). An important feature of the sulfide minerals is the diversity of their electronic structures, as evidenced by their electrical and magnetic properties (see Pearce et al. 2006, this volume). Thus, sulfide minerals range from insulators through semiconductors to metals, and exhibit every type of magnetic behavior. This has presented problems for those attempting to develop bonding models for sulfides, and also led to certain misconceptions regarding the kinds of models that may be appropriate. In this chapter, chemical bonding and electronic structure models for sulfides are reviewed with emphasis on more recent developments. Although the fully ab initio quantitative methods are now capable of a remarkable degree of sophistication in terms of agreement with experiment and potential to interpret and predict behavior with varying conditions, both qualitative and more simplistic quantitative approaches will also be briefly discussed. This is because we believe that the insights which they provide are still helpful to those studying sulfide minerals. In addition to the application of electronic structure models and calculations to solid sulfides, work on sulfide mineral surfaces (Rosso and Vaughan 2006a,b) and solution complexes and clusters (Rickard and Luther, 2006) are discussed in detail later in this volume.« less

  9. Investigating the Basis of Biogenic Calcium Carbonate Formation from an Amorphous Precursor: Nature of the Transformation to Calcite on Hydroxyl Functionalized Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, D.; Lee, J. R.; Talley, C. E.; Murphy, K. E.; Han, T. Y.; Deyoreo, J. J.; Dove, P. M.

    2006-12-01

    Calcium carbonate biominerals are particularly significant because of their direct role in regulating the global carbon cycle, as well as their ubiquitous occurrence across earth environments. Biogenic carbonates are further distinguished by their broad phlyogenetic distribution; hence it has been suggested that unrelated eukaryotes must have used similar biochemical strategies to control mineralization. Recent studies have shown that an amorphous calcium carbonate (ACC) phase potentially plays a key role in the initial formation of carbonate minerals and in "shaping" them into complex morphologies widely seen in biominerals. Echinoderms, mollusks, and possibly many other organisms use ACC as a precursor phase that is first nucleated in cellularly controlled environments such as vesicles and subsequently transforms into a fully crystalline material. Recent studies on sea urchin embryos have shown that during transformation ACC develops short range that resembles calcite before fully crystallizing and serve as inspiration for our studies in synthetic systems. Self-assembled monolayers (SAM) on gold and silver have been used as simple model systems that approximate biological surfaces. Many studies have shown that thiol monolayers with hydroxyl termination stabilize a transitory ACC film that with prolonged exposure to aqueous solution transforms into calcite nucleated on {104} faces. Using Near Edge X-ray Absorption Fine Structure (NEXAFS) we studied SAM/mineral interactions with well ordered mercaptophenol monolayers showed that when these films are first exposed to calcium carbonate solutions, they become disordered and remain so after subsequent deposition of an ACC over-layer. Yet calcite nucleates and grows from the surface bound ACC with predominantly {104} orientation, which suggests a dynamic structural relationship between the SAMs and the mineral phase. While the monolayer/mineral phase interaction has been characterized, the mechanism for nucleating calcite from ACC on these SAMs remains unknown and is the objective of this research. Our preliminary observations of the transforming ACC film with in situ Raman spectroscopy have shown a strengthening of the symmetric mode of the carbonate ion suggesting ordering of the ACC. To fully determine the structural evolution of the mineral phase we will use both Raman and Extended X-Ray Absorption Fine Structure (EXAFS) measurements, coupled with morphological analysis using SEM.

  10. Sorption and speciation of selenium in boreal forest soil.

    PubMed

    Söderlund, Mervi; Virkanen, Juhani; Holgersson, Stellan; Lehto, Jukka

    2016-11-01

    Sorption and speciation of selenium in the initial chemical forms of selenite and selenate were investigated in batch experiments on humus and mineral soil samples taken from a 4-m deep boreal forest soil excavator pit on Olkiluoto Island, on the Baltic Sea coast in southwestern Finland. The HPLC-ICP-MS technique was used to monitor any possible transformations in the selenium liquid phase speciation and to determine the concentrations of selenite and selenate in the samples for calculation of the mass distribution coefficient, K d , for both species. Both SeO 3 2- and SeO 4 2- proved to be resistant forms in the prevailing soil conditions and no changes in selenium liquid phase speciation were seen in the sorption experiments in spite of variations in the initial selenium species, incubation time or conditions, pH, temperature or microbial activity. Selenite sorption on the mineral soil increased with time in aerobic conditions whilst the opposite trend was seen for the anaerobic soil samples. Selenite retention correlated with the contents of organic matter and weakly crystalline oxides of aluminum and iron, solution pH and the specific surface area. Selenate exhibited poorer sorption on soil than selenite and on average the K d values were 27-times lower. Mineral soil was more efficient in retaining selenite and selenate than humus, implicating the possible importance of weakly crystalline aluminum and iron oxides for the retention of oxyanions in Olkiluoto soil. Sterilization of the soil samples decreased the retention of selenite, thus implying some involvement of soil microbes in the sorption processes or a change in sample composition, but it produced no effect for selenate. There was no sorption of selenite by quartz, potassium feldspar, hornblende or muscovite. Biotite showed the best retentive properties for selenite in the model soil solution at about pH 8, followed by hematite, plagioclase and chlorite. The K d values for these minerals were 18, 14, 8 and 7 L/kg, respectively. It is proposed that selenite sorption is affected by the structural Fe(II) in biotite, which is capable of inducing the reduction of SeO 3 2- to Se(0). Selenite probably forms a surface complex with Fe(III) atoms on the surface of hematite, thus explaining its retention on this mineral. None of the minerals retained selenate to any extent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Use resources of human exometabolites of different oxidation levels for higher plants cultivation on the soil-like substrate as applied to closed ecosystems

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Alexander A.; Kudenko, Yurii; Ushakova, Sofya; Tirranen, Lyalya; Gribovskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe

    The technology of ‘wet incineration' of human exometabolites and inedible plants biomass by means of H2 O2 in alternating electromagnetic field to increase a closure of mass exchange processes in bioregenerative life support systems (BLSS) was developed at the Institute of Biophysics of the Siberian Branch of Russian Academy of Sciences (Krasnoyarsk, Russia). Human exometabolites mineralized can be used in a nutrient solution for plants cultivation in the BLSS phototrophic link. The objective of the given work appears to be the study of use resources of human exometabolites of different oxidation levels processed by the abovementioned method for higher plants cultivation on the soil-like substrate (SLS). The mineralized human wastes were tested for the purpose of their sterility. Then the effect of human exometabolites of different oxidation levels both on wheat productivity and on the SLS microflora composition was examined. The SLS extract with a definite amount of human mineralized wastes was used as an irrigation solution. The conducted experiments demonstrated that the H2 O2 decreasing to 1 ml on 1 g of feces and to 0.25 ml on 1 ml of urine had not affected the sterility of mineralized human wastes. Wheat cultivation on the SLS with the addition in an irrigation solution of mineralized human wastes in the amount simulating 1/6 of a daily human diet showed the absence of basic dependence of plants productivity on oxidation level of human exometabolites. Yet the analysis of the microflora composition of the irrigation solutions demonstrated its dependence on the oxidation level of the exometabolites introduced. The amount of yeast-like fungi increased in 20 times in the solutions containing less oxidized exometabolites in comparison with the variant in which the human wastes were subjected to a full-scale oxidation. Besides, the solutions with less oxidized exometabolites displayed a bigger content of plant pathogenic bacteria and denitrifies. Consequently the introduction of sterile human exometabolites of a deficient oxidation level in irrigation solutions significantly affects the composition of a microbiological element of these solutions that may result in disruption of the BLSS system on the whole.

  12. Experimental study of the solubilities of pyrite in NaCl-bearing aqueous solutions at 250-350°C

    NASA Astrophysics Data System (ADS)

    Ohmoto, Hiroshi; Hayashi, Ken-Ichiro; Kajisa, Yukari

    1994-05-01

    A total of sixty-three silica capsule experiments were performed to determine the solubilities of pyrite in NaCl-bearing aqueous solutions (0, 0.1, 0.5, 1, 2, 3, and 4 m) at 250, 300, and 350°C at pressures of vapor/liquid coexistence. The starting materials in the capsules were H2O(1) + FeS2( s) + S ° ( s) ± NaCl ( s). After reaction times up to ~ 60 days, the quenched solutions were analyzed for ΣFe, σH2S, ΣSO42-, and pH; the ΣFe content, ranging 5-1,300 ppm, generally increased with increasing temperature and ΣCl content of solution. The calculated solution compositions at the experimental P-T conditions fall mostly in the following ranges: pH = 2.0 to 3.2, logaH2s = -1.9 to -1.0, logaHSO4- = -3.8 to -2.0, and logaH2( aq) = -7.0 to -5.0. Evaluation of the experimental data suggests that the various redox equilibria between solution and mineral were attained in most of the experimental solutions. The pH, aH2S( aq) , and aH2( aq) of the solutions were controlled by the sulfur hydrolysis reaction (48° + 4 H2O( l) = 3 H2S( aq) + HSO4- + H+) and the sulfide/sulfate reaction ( H2S( aq) + 4 H2O( l) = 4 H2( aq) + H+ + HSO4-). The pyrite solubility is controlled by a general reaction: FeS2( s) + nCl- + 2 H+ + H2( aq) = FeCln2- n + 2 H2S( aq). The equilibrium constants for this reaction, as well as those for association of ferrous chloride complexes ( Fe2+ + nCl- = FeCln2- n), were obtained at 250, 300, and 350°C; they were used also to compute the equilibrium constants for the reactions controlling the solubilities of pyrrhotite, magnetite, and hematite: FeS( s) + 2 H+ + nCl- = FeCln2- n + H2S( aq); Fe3O4( s) + 6 H+ + 3 nCl- + H2( aq) = 3 FeCln2- n + H2O( aq); Fe2O3( s) + 4 H+ + 2 nCl- + H2( aq) = 2 FeCln2- n + 3 H2O( aq). Our experimental data suggest that the dominant Fe-Cl complex is FeCl + in solutions of ΣCl ≤ 0.5 m at 250°C and ΣCl ≤ 0.1 m at 300 and 350°C; FeCl 20 is dominant in solutions of the higher ΣCl contents at each temperature. The association constants for FeCl + and FeCl 2 estimated from this study are in good agreement with those estimated recently by HEINRICH and SEWARD (1990), DING and SEYFRIED (1992), Fein et al. (1992), and Palmer and Hyde (1992). Our solubility constants for pyrite are in good agreement with those obtained by CRERAR et al. (1978) and WOOD et al. (1987) for 3 m ΣCl solution at 350°C, but are 0.5-2 orders of magnitude higher than those obtained by them at lower temperatures and/or at lower ΣCl values. Our data suggest that natural hydrothermal fluids that are in equilibrium with pyrite, the most abundant sulfide mineral in the upper crust, are able to transport sufficient amounts (> 10 -m) of both Fe and H 2S to produce pyrite-rich ore deposits at temperatures above 250°C, and possibly at lower temperatures. The solubility of pyrite (and of other Fe-bearing minerals) is affected very little by a change of temperature, provided the pH, aH2( aq), aH2S( aq), and ΣCl values remain constant.

  13. The formation and stability of saline minerals at the Martian surface

    NASA Astrophysics Data System (ADS)

    Tosca, Nicholas James, III

    Evaporite minerals have been identified throughout the martian sedimentary record. Because evaporites can record detailed paleo-environmental information and often host fossil biosignatures on Earth, they are priority targets for future exploration. However, understanding processes that control the formation of these minerals on Mars requires an understanding of the behavior of Fe in highly concentrated evaporating fluids. In this study, a model is developed using the Pitzer ion interaction approach that accurately describes thermodynamic properties of the Fe2(SO4)3-H2SO4-H 2O system. Incorporating this model into a multicomponent thermodynamic database enables detailed study of evaporite mineral formation and stability on Mars. From geochemical modeling, the variation in evaporite mineralogy on Mars may be traced to volatile-anion input -- a variable intimately tied to pH. Using the "chemical divide" concept, evaporites at the martian surface can be used as sensitive probes of pH, atmospheric composition, and cation proportion in solution. Applying this approach to saline assemblages in Nakhlite meteorites and in Meridiani Planum sediments reveals two geochemical systems; each characterized by different pH and anion proportion. A complicating factor however is the concomitant oxidation of soluble Fe-bearing minerals. Such a process may have contributed to complex Fe mineralogy observed at Meridiani Planum through diagenesis. Fe-oxidation experiments at high ionic strength show a progression of mineral phases that begins with the formation of schwertmannite and subsequent ageing to jarosite and nano-crystalline goethite; a process strongly controlled by pH. Low water activity and small particle size drive the ageing of goethite to hematite which provides the final step of a mechanism that is consistent with the distribution of Fe-minerals at Meridiani Planum. These results show that the instability of Fe2+-sulfate minerals at the martian surface may lead to the association of Fe-oxide and Fe-hydroxysulfate minerals with evaporite salts. Indeed, such a geologic association has been observed through remote sensing techniques. Thus, as the Fe-sulfates are sensitive to pH, Fe-oxidation and relative humidity, understanding these phase relationships in greater detail will ultimately exploit the presence of these minerals as a unique set of geochemical probes.

  14. A coupled hydrodynamic-hydrochemical modeling for predicting mineral transport in a natural acid drainage system.

    NASA Astrophysics Data System (ADS)

    Zegers Risopatron, G., Sr.; Navarro, L.; Montserrat, S., Sr.; McPhee, J. P.; Niño, Y.

    2017-12-01

    The geochemistry of water and sediments, coupled with hydrodynamic transport in mountainous channels, is of particular interest in central Chilean Andes due to natural occurrence of acid waters. In this paper, we present a coupled transport and geochemical model to estimate and understand transport processes and fate of minerals at the Yerba Loca Basin, located near Santiago, Chile. In the upper zone, water presentes low pH ( 3) and high concentrations of iron, aluminum, copper, manganese and zinc. Acidity and minerals are the consequence of water-rock interactions in hydrothermal alteration zones, rich in sulphides and sulphates, covered by seasonal snow and glaciers. Downstream, as a consequence of neutral to alkaline lateral water contributions (pH >7) along the river, pH increases and concentration of solutes decreases. The mineral transport model has three components: (i) a hydrodynamic model, where we use HEC-RAS to solve 1D Saint-Venant equations, (ii) a sediment transport model to estimate erosion and sedimentation rates, which quantify minerals transference between water and riverbed and (iii) a solute transport model, based on the 1D OTIS model which takes into account the temporal delay in solutes transport that typically is observed in natural channels (transient storage). Hydrochemistry is solved using PHREEQC, a software for speciation and batch reaction. Our results show that correlation between mineral precipitation and dissolution according to pH values changes along the river. Based on pH measurements (and according to literature) we inferred that main minerals in the water system are brochantite, ferrihydrite, hydrobasaluminite and schwertmannite. Results show that our model can predict the transport and fate of minerals and metals in the Yerba Loca Basin. Mineral dissolution and precipitation process occur for limited ranges of pH values. When pH values are increased, iron minerals (schwertmannite) are the first to precipitate ( 2.5

  15. The Reduction of Cr(VI) to Cr(III) by Natural Fe-Bearing Minerals: A Synchrotron XAS Study

    NASA Astrophysics Data System (ADS)

    Xu, H.; Guo, X.; Ding, M.; Migdissov, A. A.; Boukhalfa, H.; Sun, C.; Roback, R. C.; Reimus, P. W.; Katzman, D.

    2017-12-01

    Cr(VI) in the form of CrO42- is a pollutant species in groundwater and soils that can pose health and environmental problems. Cr(VI) associated with use as a corrosion inhibitor at a power plant from 1956-1972 is present in a deep groundwater aquifer at Los Alamos National Laboratory. A potential remediation strategy for the Cr contamination is reduction of Cr(VI) to Cr(III) via the acceptance of electrons from naturally occurring or induced Fe(II) occurring in Fe-bearing minerals. In this work, using synchrotron-based X-ray techniques, we investigated the Cr reduction behavior by Fe-bearing minerals from outcrop and core samples representative of the contaminated portion of the aquifer. Samples were exposed to solutions with a range of known Cr (VI) concentrations. XANES and EXAFS spectra showed that all the Cr(VI) had been reduced to Cr(III), and micro XRF mapping revealed close correlation of Cr and Fe distribution, implying that Fe(II) in minerals reduced Cr(VI) in the solution. Similar behavior was observed from in-situ XANES measurements on Cr reduction and adsorption by mineral separates from the rock samples in Cr(VI)-bearing solutions. In addition, to obtain reference parameters for interpreting the data of natural samples, we collected Cr and Fe EXAFS spectra of Cr(III)-Fe(III) hydroxide solid solutions, which show progressive changes in the local structure around Cr and Fe over the whole series.

  16. Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure.

    PubMed

    Zhou, Wenjun; Ren, Lingwei; Zhu, Lizhong

    2017-04-01

    Clay minerals are the most popular adsorbents/amendments for immobilizing heavy metals in contaminated soils, but the dissolved organic matter (DOM) in soil environment would potentially affect the adsorption/immobilization capacity of clay minerals for heavy metals. In this study, the effects of DOM derived from chicken manure (CM) on the adsorption of cadmium (Cd 2+ ) on two clay minerals, bentonite and zeolite, were investigated. The equilibrium data for Cd 2+ sorption in the absence or presence of CM-DOM could be well-fitted to the Langmuir equation (R 2  > 0.97). The presence of CM-DOM in the aqueous solution was found to greatly reduce the adsorption capacity of both minerals for Cd 2+ , in particular zeolite, and the percentage decreases for Cd 2+ sorption increased with increasing concentrations of Cd 2+ as well as CM-DOM in aqueous solutions. The adsorption of CM-DOM on zeolite was greater than that on bentonite in the absence of Cd 2+ , however, a sharp increase was observed for CM-DOM sorption on bentonite with increasing Cd 2+ concentrations but little change for that on zeolite, which can be attributed to the different ternary structures on mineral surface. The CM-DOM modified clay minerals were utilized to investigate the effect of mineral-adsorbed CM-DOM on Cd 2+ sorption. The adsorbed form was found to inhibit Cd 2+ sorption, and further calculation suggested it primarily responsible for the overall decrease in Cd 2+ sorption on clay minerals in the presence of CM-DOM in aqueous solutions. An investigation for the mineral surface morphology suggested that the mineral-adsorbed CM-DOM decreased Cd 2+ sorption on bentonite mainly through barrier effect, while in the case of zeolite, it was the combination of active sites occupation and barrier effect. These results can serve as a guide for evaluating the performance of clay minerals in immobilizing heavy metals when animal manure is present in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Gamma spectrometry application of the Kola Peninsula (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovin, I.V.; Kolesnik, N.N.; Antipov, V.S.

    1973-03-01

    The methods and results are reported of a spectrometric study, carried out with the SP-3 instrument in Pre-Cambrian fornnations in the northwest ranges of Kola Peninsula for clarification of the radiochemical characteristics of the rocks of the region and of the distribution characteristics of radioactive elements in Cu-Ni mineralizations. It was established that the content of radioactive elements in the rocks varies within a wide interval and corresponds basically to the Vinogradov content. The radioactive element content in typical metamorphic and magmatic complexes and sulfide ores was determined. The spectrometric method can be used for the solution of various geologicalmore » problems. It is particularly useful for studying the separation of strata, the genesis of magmatic and metamorphic complexes, and the metamorphic and geochemical zonality and granitization processes. (tr-auth)« less

  18. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    USGS Publications Warehouse

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two types of experiments yielded statistically indistinguishable results, and these measurements yield a calibration that overlaps with our theoretical predictions for calcite at equilibrium. The slow-growing Devils Hole calcite exhibits Δ47 and δ18O values consistent with lattice equilibrium.Factors influencing DIC speciation (pH, salinity) and the timescale for DIC equilibration, as well as reactions at the mineral–solution interface, have the potential to influence clumped-isotope signatures and the δ18O of carbonate minerals. In fast-growing carbonate minerals, solution chemistry may be an important factor, particularly over extremes of pH and salinity. If a crystal grows too rapidly to reach an internal equilibrium (i.e., achieve the value for the temperature-dependent mineral lattice equilibrium), it may record the clumped-isotope signature of a DIC species (e.g., the temperature-dependent equilibrium of HCO3−) or a mixture of DIC species, and hence record a disequilibrium mineral composition. For extremely slow-growing crystals, and for rapidly-grown samples grown at a pH where HCO3- dominates the DIC pool at equilibrium, effects of solution chemistry are likely to be relatively small or negligible. In summary, growth environment, solution chemistry, surface equilibria, and precipitation rate may all play a role in dictating whether a crystal achieves equilibrium or disequilibrium clumped-isotope signatures.

  19. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    NASA Astrophysics Data System (ADS)

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong; Chorover, Jon; O'Day, Peggy A.

    2017-06-01

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium (U) concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this work, the dissolution rates of K- and Na-compreignacite (K2(UO2)6O4(OH)6·8H2O and Na2(UO2)6O4(OH)6·8H2O, respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved carbonate concentration (ca. 0.2 and 2.8 mmol L-1). Column materials were characterized before and after reaction with electron microscopy, bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area, and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total U mass from the columns, compared to <1% net loss in low carbonate BPW systems. Steady-state release of dissolved U was not observed with high carbonate solutions and post-reaction characterizations indicated a lack of development of leached or altered surfaces. Dissolution rates (normalized to specific surface area) were 2.5-3 orders-of-magnitude faster in high versus low carbonate BPW systems, with Na-compreignacite dissolving more rapidly than K-compreignacite under both BPW conditions, possibly due to greater ion exchange (1.57 · 10-10 vs. 1.28 · 10-13 mol m-2 s-1 [log R = -9.81 and -12.89] and 5.79 · 10-10 vs. 3.71 · 10-13 mol m-2 s-1 [log R = -9.24 and -12.43] for K- and Na-compreignacite, respectively). Experimental and spectroscopic results suggest that the dissolution rate is controlled by bond breaking of a uranyl group and detachment from polyhedral layers of the mineral structure. With higher dissolved carbonate concentrations, this rate-determining step is accelerated by the formation of Ca-uranyl carbonate complexes (dominant species under these conditions), which resulted in an increase of the dissolution rates. Optimization of both dissolution rate and mineral volume fraction in the reactive transport model to account for U mass removal during dissolution more accurately reproduced effluent data in high carbonate systems, and resulted in faster overall rates compared with a steady-state dissolution assumption. This study highlights the importance of coupling reaction and transport processes during the quantification of mineral dissolution rates to accurately predict the fate of contaminants such as U in porous geomedia.

  20. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this paper, the dissolution rates of K- and Na-compreignacite (K 2(UO 2) 6O 4(OH) 6·8H 2O and Na 2(UO 2) 6O 4(OH) 6·8H 2O respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved total carbonate content (ca. 0.2 and 2.8 mmolmore » L -1). Column materials were characterized before and after reaction with electron microscopy, bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total uranium mass from the columns, compared to <1% net loss in low carbonate BPW systems. Steady-state release of dissolved uranium was not observed with high carbonate solutions and post-reaction characterizations indicated a lack of development of leached or altered surfaces. Dissolution rates (normalized to specific surface area) were about 2.5-3 orders-of-magnitude faster in high versus low carbonate BPW systems, with Na-compreignacite dissolving more rapidly than K-compreignacite under both BPW conditions, possibly due to greater ion exchange (1.57·10 -10 vs. 1.28·10 -13 mol m -2 s -1 [log R = -9.81 and -12.89] and 5.79·10 -10 vs. 3.71·10 -13 mol m -2 s -1 [log R = -9.24 and -12.43] for K- and Na-compreignacite respectively). Experimental and spectroscopic results suggest that the dissolution rate is controlled by bond breaking of a uranyl group and detachment from polyhedral layers of the mineral structure. With higher dissolved carbonate concentrations, this rate-determining step is accelerated by the formation of Ca-uranyl carbonate complexes (dominant species under these conditions), which resulted in an increase of the dissolution rates. Optimization of both dissolution rate and mineral volume fraction in the reactive transport model to account for uranium mass removal during dissolution more accurately reproduced effluent data in high carbonate systems, and resulted in faster overall rates compared with a steady-state dissolution assumption. Finally, this study highlights the importance of coupling reaction and transport processes during the quantification of mineral dissolution rates to accurately predict the fate of contaminants such as uranium in porous geomedia.« less

  1. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    DOE PAGES

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong; ...

    2017-06-01

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this paper, the dissolution rates of K- and Na-compreignacite (K 2(UO 2) 6O 4(OH) 6·8H 2O and Na 2(UO 2) 6O 4(OH) 6·8H 2O respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved total carbonate content (ca. 0.2 and 2.8 mmolmore » L -1). Column materials were characterized before and after reaction with electron microscopy, bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total uranium mass from the columns, compared to <1% net loss in low carbonate BPW systems. Steady-state release of dissolved uranium was not observed with high carbonate solutions and post-reaction characterizations indicated a lack of development of leached or altered surfaces. Dissolution rates (normalized to specific surface area) were about 2.5-3 orders-of-magnitude faster in high versus low carbonate BPW systems, with Na-compreignacite dissolving more rapidly than K-compreignacite under both BPW conditions, possibly due to greater ion exchange (1.57·10 -10 vs. 1.28·10 -13 mol m -2 s -1 [log R = -9.81 and -12.89] and 5.79·10 -10 vs. 3.71·10 -13 mol m -2 s -1 [log R = -9.24 and -12.43] for K- and Na-compreignacite respectively). Experimental and spectroscopic results suggest that the dissolution rate is controlled by bond breaking of a uranyl group and detachment from polyhedral layers of the mineral structure. With higher dissolved carbonate concentrations, this rate-determining step is accelerated by the formation of Ca-uranyl carbonate complexes (dominant species under these conditions), which resulted in an increase of the dissolution rates. Optimization of both dissolution rate and mineral volume fraction in the reactive transport model to account for uranium mass removal during dissolution more accurately reproduced effluent data in high carbonate systems, and resulted in faster overall rates compared with a steady-state dissolution assumption. Finally, this study highlights the importance of coupling reaction and transport processes during the quantification of mineral dissolution rates to accurately predict the fate of contaminants such as uranium in porous geomedia.« less

  2. Origin of coffinite in sedimentary rocks by a sequential adsorption-reduction mechanism.

    USGS Publications Warehouse

    Goldhaber, M.B.; Hemingway, B.S.; Mohagheghi, A.; Reynolds, R.L.; Northrop, H.R.

    1987-01-01

    Coffinite is the dominant ore mineral in the V-U ores of the Tony-M mine in the Henry Mts mineral belt of the Colorado Plateau. This orebody was formed at a density-stratified solution interface between uranyl-ion-bearing meteoric water and a saline fluid which was locally reducing. The localization of U at this solution interface occurred by adsorption onto the surfaces of detrital minerals, this adsorption being related to the pH difference between the two fluids. Experimental evidence is presented showing that the adsorption facilitated the reduction of uranium to U(IV). This adsorbed, reduced uranium bonded with aqueous silica in the ore zone to form coffinite. The high concentration of silica (as a monomeric species) in the ore-forming solution stabilized coffinite in preference to uraninite.-R.A.H.

  3. Release behavior of uranium in uranium mill tailings under environmental conditions.

    PubMed

    Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan

    2017-05-01

    Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ultraviolet spectrophotometric determination of tantalum with pyrogallol

    USGS Publications Warehouse

    Dinnin, J.I.

    1953-01-01

    In a search for a more rapid method for the determination of tantalum in rocks and minerals, an intensive study was made of the tantalum-pyrogallol reaction recommended by Platanov and Krivoshlikov, and a better modified spectrophotometric procedure is given. The improved method consists in measuring the absorbancy of the tantalum-pyrogallol complex at 325 m?? in 4N hydrochloric acid and a fixed concentration (0.0175M) of ammonium oxalate. Beer's law is followed for the concentration range up to 40 ?? per ml. Sensitivity in terms of molar absorbancy index is 4775. Most interferences are additive in character and readily correctable. Separations or major corrections are required in the presence of significant amounts of molybdenum, tungsten, antimony, and uranium. The method has been successfully applied to three ores previously analyzed by gravimetric techniques. The method affords greater speed, sensitivity, and reproducibility in the determination of tantalum in rocks and minerals. A more reliable technique for preparing standard solutions of tantalum has been developed.

  5. Quantitative remineralization evolution kinetics of artificially demineralized human enamel using photothermal radiometry and modulated luminescence.

    PubMed

    Hellen, Adam; Mandelis, Andreas; Finer, Yoav; Amaechi, Bennett T

    2011-11-01

    Human molars were subjected to demineralization in acid gel followed by incubation in remineralization solutions without or with fluoride (1 or 1000 ppm). Photothermal radiometry (PTR) and modulated luminescence (LUM) frequency scans were performed prior to and during de/remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion to determine mineral loss and lesion depth. The remineralization process illustrated a complex interplay between surface and subsurface mineral deposition, confining the thermal-wave centroid toward the dominating layer. Experimental amplitudes and phases were fitted to a coupled diffuse-photon-density-wave and thermal-wave theoretical model used to quantitatively evaluate evolving changes in thermal and optical properties of de/remineralized enamel lesions. Additional information obtained from the LUM data corroborated the remineralization kinetics affecting the PTR signals. The results pointed to enhanced effectiveness of subsurface lesion remineralization in the presence of fluoride. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Organo-mineral complexation alters carbon and nitrogen cycling in stream microbial assemblages

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Wanek, Wolfgang; Prommer, Judith; Mooshammer, Maria; Battin, Tom

    2014-05-01

    Inland waters are of global biogeochemical importance receiving carbon inputs of ~ 4.8 Pg C y-1. Of this 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One important aspect is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. microbial utilization as organic carbon (C) and nitrogen (N) sources. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and streamwater sampled from the Oberer Seebach stream (Austria), tracing assimilation and mineralization of 13C and 15N labels from mineral-sorbed and dissolved amino acids. Here we present data on the effects of organo-mineral sorption upon amino acid mineralization and its C:N stoichiometry. Organo-mineral sorption had a significant effect upon microbial activity, restricting C and N mineralization by both the biofilm and streamwater treatments. Distinct differences in community response were observed, with both dissolved and mineral-stabilized amino acids playing an enhanced role in the metabolism of the streamwater microbial community. Mineral-sorption of amino acids differentially affected C & N mineralization and reduced the C:N ratio of the dissolved amino acid pool. The present study demonstrates that organo-mineral complexes restrict microbial degradation of OM and may, consequently, alter the carbon and nitrogen cycling dynamics within aquatic ecosystems.

  7. Mineral soil and solution responses to experimental N and S enrichment at the Bear Brook Watershed in Maine (BBWM)

    Treesearch

    I. Fernandez; L. Rustad; M. David; K. Nadelhoffer; M. Mitchell

    1999-01-01

    Buried mineral soil-bag,, and natural solutions were studied as indicators of forest ecosystem response to elevated N and S inputs at the Bear Brook Watershed in Maine (BBWM). The BBWM is the site of a paired watershed manipulation experiment in a northern New England forested ecosystem. The study includes two small (~10 ha each) catchments dominated by northern...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, Tommy Joe; Moon, Ji Won; Roh, Yul

    The behavior of metal ions leaching and precipitated mineral phases of metal-rich fly ash (FA) was examined in order to evaluate microbial impacts on carbon sequestration and metal immobilization. The leaching solutions consisted of aerobic deionized water (DW) and artificial eutrophic water (AEW) that was anaerobic, organic- and mineral-rich, and higher salinity as is typical of bottom water in eutrophic algae ponds. The Fe- and Ca-rich FAs were predominantly composed of quartz, mullite, portlandite, calcite, hannebachite, maghemite, and hematite. After 86 days, only Fe and Ca contents exhibited a decrease in leaching solutions while other major and trace elements showedmore » increasing or steady trends in preference to the type of FA and leaching solution. Ca-rich FA showed strong carbon sequestration efficiency ranging up to 32.3 g CO(2)/kg FA after 86 days, corresponding to almost 65% of biotic carbon sequestration potential under some conditions. Variations in the properties of FAs such as chemical compositions, mineral constituents as well as the type of leaching solution impacted CO(2) capture. Even though the relative amount of calcite increased sixfold in the AEW and the relative amount of mineral phase reached 37.3 wt% using Ca-rich FA for 86 days, chemical sequestration did not accomplish simultaneous precipitation and sequestration of several heavy metals.« less

  9. Ectopic mineralization disorders of the extracellular matrix of connective tissue: molecular genetics and pathomechanisms of aberrant calcification.

    PubMed

    Li, Qiaoli; Jiang, Qiujie; Uitto, Jouni

    2014-01-01

    Ectopic mineralization of connective tissues is a complex process leading to deposition of calcium phosphate complexes in the extracellular matrix, particularly affecting the skin and the arterial blood vessels and common in age-associated disorders. A number of initiating and contributing metabolic and environmental factors are linked to aberrant mineralization in these diseases, making the identification of precise pathomechanistic pathways exceedingly difficult. However, there has been significant recent progress in understanding the ectopic mineralization processes through study of heritable single-gene disorders, which have allowed identification of discrete pathways and contributing factors leading to aberrant connective tissue mineralization. These studies have provided support for the concept of an intricate mineralization/anti-mineralization network present in peripheral connective tissues, providing a perspective to development of pharmacologic approaches to limit the phenotypic consequences of ectopic mineralization. This overview summarizes the current knowledge of ectopic heritable mineralization disorders, with accompanying animal models, focusing on pseudoxanthoma elasticum and generalized arterial calcification of infancy, two autosomal recessive diseases manifesting with extensive connective tissue mineralization in the skin and the cardiovascular system. © 2013.

  10. Ectopic mineralization disorders of the extracellular matrix of connective tissue: Molecular genetics and pathomechanisms of aberrant calcification

    PubMed Central

    Li, Qiaoli; Jiang, Qiujie; Uitto, Jouni

    2013-01-01

    Ectopic mineralization of connective tissues is a complex process leading to deposition of calcium phosphate complexes in the extracellular matrix, particularly affecting the skin and the arterial blood vessels and common in age-associated disorders. A number of initiating and contributing metabolic and environmental factors are linked to aberrant mineralization in these diseases, making the identification of precise pathomechanistic pathways exceedingly difficult. However, there has been significant recent progress in understanding the ectopic mineralization processes through study of heritable single-gene disorders, which have allowed identification of discreet pathways and contributing factors leading to aberrant connective tissue mineralization. These studies have provided support for the concept of an intricate mineralization/anti-mineralization network present in peripheral connective tissues, providing a perspective to development of pharmacologic approaches to limit the phenotypic consequences of ectopic mineralization. This overview summarizes the current knowledge of ectopic heritable mineralization disorders, with accompanying animal models, focusing on pseudoxanthoma elasticum and generalized arterial calcification of infancy, two autosomal recessive diseases manifesting with extensive connective tissue mineralization in the skin and the cardiovascular system. PMID:23891698

  11. Effects of environment on microhardness of magnesium oxide

    NASA Technical Reports Server (NTRS)

    Ishigaki, H.; Buckley, D. H.

    1982-01-01

    Micro-Vickers hardness measurements of magnesium oxide single crystals were conducted in various environments. These environments included air, nitrogen gas, water, mineral oil with or without various additives, and aqueous solutions with various pH values. Indentations were made on the (100) plane with the diagonals of the indentation in the (100) direction. The results indicate that a sulfur containing additve in mineral oil increased hardness, a chlorine containing additive in mineral oil decreased hardness, and aqueous solutions of hydrogen chloride decreased hardness. Other environments were found to have little effect on hardness. Mechanically polished surfaces showed larger indentation creep than did as-cleaved surfaces.

  12. Synthesis of calcium vanadate minerals and related compounds

    USGS Publications Warehouse

    Marvin, Richard F.

    1956-01-01

    Synthesis of natural vanadates shows that most of them are stable in an acid environment. Phase studies of a portion of the system CaO-V2O5-H2O indicate that calcium vanadates are an indicator of environmental pH conditions. Some minerals, such as pascoute, indicate rapid evaporation of vanadite solutions; other minerals, such as hewettite, show that slow evaporation took place. Cursory examination of systems K2O-UO2-(NO3)2-V2O5 and CaO-UO2(NO3)2-V2O5, both in aqueous solution, has yielded information on the relationships among carnotite, tyuyamunite, and rauvite.

  13. In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds.

    PubMed

    Yang, Dongzhi; Jin, Yu; Zhou, Yingshan; Ma, Guiping; Chen, Xiangmei; Lu, Fengmin; Nie, Jun

    2008-03-10

    A biocomposite of hydroxyapatite (HAp) with electrospun nanofibrous scaffolds was prepared by using chitosan/polyvinyl alcohol (CS/PVA) and N-carboxyethyl chitosan/PVA (CECS/PVA) electrospun membranes as organic matrix, and HAp was formed in supersaturated CaCl2 and KH2PO4 solution. The influences of carboxylic acid groups in CECS/PVA fibrous scaffold and polyanionic additive poly(acrylic acid) (PAA) in the incubation solution on the crystal distribution of the HAp were investigated. Field-emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared (FTIR) were used to characterize the morphology and structure of the deposited mineral phase on the scaffolds. It was found that addition of PAA to the mineral solution and use of matrix with carboxylic acid groups promoted mineral growth and distribution of HAp. MTT testing and SEM imaging from mouse fibroblast (L929) cell culture revealed the attachment and growth of mouse fibroblast on the surface of biocomposite scaffold, and that the cell morphology and viability were satisfactory for the composite to be used in bioapplications.

  14. Effects of diurnal control in the mineral concentration of nutrient solution on tomato yield and nutrient absorption in hydroponics.

    PubMed

    Higashide, T; Shimaji, H; Takaichi, M

    1996-12-01

    We researched effects of diurnal change of the mineral concentration on tomato yield and nutrient absorption. First, we examined the effect on yield in a spray culture, in the experiment 1-1, when nitrate concentration of solution (N) and potassium concentration (K) were low and phosphate concentration (P) was high during the daytime, while N and K were high and P was low during the night, the yield was low. In the experiment 1-2, when N and K were high and P was low during the daytime, while N and K were low and P was high during the night, the yield was low. Second, we examined the effect on nutrient absorption in a water culture. Concentration of KNO3, of solution was changed in the daytime or the night. When KNO3 level was low during the daytime, while it was high during the night, total nitrate and potassium absorption for 24 hours was the highest. It were showed the possibility of the efficient supply of minerals to plants by the diurnal control in minerals.

  15. Propham mineralization in aqueous medium by anodic oxidation using boron-doped diamond anode: influence of experimental parameters on degradation kinetics and mineralization efficiency.

    PubMed

    Ozcan, Ali; Sahin, Yücel; Koparal, A Savaş; Oturan, Mehmet A

    2008-06-01

    This study aims the removal of a carbamate herbicide, propham, from aqueous solution by direct electrochemical advanced oxidation process using a boron-doped diamond (BDD) anode. This electrode produces large quantities of hydroxyl radicals from oxidation of water, which leads to the oxidative degradation of propham up to its total mineralization. Effect of operational parameters such as current, temperature, pH and supporting electrolyte on the degradation and mineralization rate was studied. The applied current and temperature exert a prominent effect on the total organic carbon (TOC) removal rate of the solutions. The mineralization of propham can be performed at any pH value between 3 and 11 without any loss in oxidation efficiency. The propham decay and its overall mineralization reaction follows a pseudo-first-order kinetics. The apparent rate constant value of propham oxidation was determined as 4.8 x 10(-4)s(-1) at 100 mA and 35 degrees C in the presence of 50mM Na(2)SO(4) in acidic media (pH: 3). A general mineralization sequence was proposed considering the identified oxidation intermediates.

  16. In vivo imaging of free radicals produced by multivitamin-mineral supplements.

    PubMed

    Rabovsky, Alexander B; Buettner, Garry R; Fink, Bruno

    2015-12-01

    Redox active minerals in dietary supplements can catalyze unwanted and potentially harmful oxidations. To determine if this occurs in vivo we employed electron paramagnetic (EPR) imaging. We used 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) as a reporter for one-electron oxidations, e.g . free radical-mediated oxidations; the one-electron oxidation product of CPH, 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (CP • ), is a nitroxide free radical that is relatively persistent in vivo and detectable by EPR. As model systems, we used research formulations of vitamin mineral supplements (RVM) that are typical of commercial products. In in vitro experiments, upon suspension of RVM in aqueous solution, we observed: (1) the uptake of oxygen in the solution, consistent with oxidation of the components in the RVM; (2) the ascorbate free radical, a real-time indicator of ongoing oxidations; and (3) when amino acid/oligosaccharide (AAOS; glycinate or aspartate with non-digestible oligofructose) served as the matrix in the RVM, the rate of oxidation was significantly slowed. In a murine model, EPR imaging showed that the ingestion of RVM along with CPH results in the one-electron oxidation of CPH by RVM in the digestive system. The resulting CP • distributes throughout the body. Inclusion of AAOS in the RVM formulation diminished the oxidation of CPH to CP • in vivo. These data demonstrate that typical formulations of multivitamin/multimineral dietary supplements can initiate the oxidation of bystander substances and that AAOS-complexes of essential redox active metals, e.g . copper and iron, have reduced ability to catalyze free radical formation and associated detrimental oxidations when a part of a multivitamin/multimineral formulation.

  17. In vivo imaging of free radicals produced by multivitamin-mineral supplements

    PubMed Central

    Buettner, Garry R.; Fink, Bruno

    2015-01-01

    Background Redox active minerals in dietary supplements can catalyze unwanted and potentially harmful oxidations. Methods To determine if this occurs in vivo we employed electron paramagnetic (EPR) imaging. We used 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) as a reporter for one-electron oxidations, e.g. free radical-mediated oxidations; the one-electron oxidation product of CPH, 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (CP•), is a nitroxide free radical that is relatively persistent in vivo and detectable by EPR. As model systems, we used research formulations of vitamin mineral supplements (RVM) that are typical of commercial products. Results In in vitro experiments, upon suspension of RVM in aqueous solution, we observed: (1) the uptake of oxygen in the solution, consistent with oxidation of the components in the RVM; (2) the ascorbate free radical, a real-time indicator of ongoing oxidations; and (3) when amino acid/oligosaccharide (AAOS; glycinate or aspartate with non-digestible oligofructose) served as the matrix in the RVM, the rate of oxidation was significantly slowed. In a murine model, EPR imaging showed that the ingestion of RVM along with CPH results in the one-electron oxidation of CPH by RVM in the digestive system. The resulting CP• distributes throughout the body. Inclusion of AAOS in the RVM formulation diminished the oxidation of CPH to CP• in vivo. Conclusions These data demonstrate that typical formulations of multivitamin/multimineral dietary supplements can initiate the oxidation of bystander substances and that AAOS-complexes of essential redox active metals, e.g. copper and iron, have reduced ability to catalyze free radical formation and associated detrimental oxidations when a part of a multivitamin/multimineral formulation. PMID:26705481

  18. Characterization of calcium isotopes in natural and synthetic barite

    USGS Publications Warehouse

    Griffith, E.M.; Schauble, E.A.; Bullen, T.D.; Paytan, A.

    2008-01-01

    The mineral barite (BaSO4) accommodates calcium in its crystal lattice, providing an archive of Ca-isotopes in the highly stable sulfate mineral. Holocene marine (pelagic) barite samples from the major ocean basins are isotopically indistinguishable from each other (??44/40Ca = -2.01 ?? 0.15???) but are different from hydrothermal and cold seep barite samples (??44/40Ca = -4.13 to -2.72???). Laboratory precipitated (synthetic) barite samples are more depleted in the heavy Ca-isotopes than pelagic marine barite and span a range of Ca-isotope compositions, ??44/40Ca = -3.42 to -2.40???. Temperature, saturation state, a Ba2 + / a SO42 -, and aCa2+/aBa2+ each influence the fractionation of Ca-isotopes in synthetic barite; however, the fractionation in marine barite samples is not strongly related to any measured environmental parameter. First-principles lattice dynamical modeling predicts that at equilibrium Ca-substituted barite will have much lower 44Ca/40Ca than calcite, by -9??? at 0 ??C and -8??? at 25 ??C. Based on this model, none of the measured barite samples appear to be in isotopic equilibrium with their parent solutions, although as predicted they do record lower ??44/40Ca values than seawater and calcite. Kinetic fractionation processes therefore most likely control the extent of isotopic fractionation exhibited in barite. Potential fractionation mechanisms include factors influencing Ca2+ substitution for Ba2+ in barite (e.g. ionic strength and trace element concentration of the solution, competing complexation reactions, precipitation or growth rate, temperature, pressure, and saturation state) as well as nucleation and crystal growth rates. These factors should be considered when investigating controls on isotopic fractionation of Ca2+ and other elements in inorganic and biogenic minerals. ?? 2008 Elsevier Ltd.

  19. Silver-bearing minerals in the Xinhua hydrothermal vein-type Pb-Zn deposit, South China

    NASA Astrophysics Data System (ADS)

    Wang, Minfang; Zhang, Xubo; Guo, Xiaonan; Pi, Daohui; Yang, Meijun

    2018-02-01

    Electron probe microanalysis (EPMA) results are reported for newly identified silver-bearing minerals from the Xinhua deposit, Yunkaidashan area, South China. The Xinhua deposit is a hydrothermal vein-type Pb-Zn deposit and is hosted in the Pubei Complex, which consists of a cordierite-biotite granite with a U-Pb zircon age of 244.3 ± 1.8-251.9 ± 2.2 Ma. The mineralization process is subdivided into four mineralization stages, characterized by the following mineral associations: mineralization stage I with quartz, pyrite, and sphalerite; mineralization stage II with siderite, galena, and tetrahedrite; mineralization stage III with quartz and galena; and mineralization stage IV with quartz, calcite, and baryte. Tetrahedrite series minerals, such as freibergite, argentotetrahedrite, and tennantite are the main Ag-bearing minerals in the Xinhua deposit. The greatest concentration of silver occurs in phases from mineralization stage II. Microscopic observations reveal close relationship between galena and tetrahedrite series minerals that mostly occur as irregular inclusions within galena. The negative correlation between Cu and Ag in the lattices of tetrahedrite series minerals suggests that Cu sites are occupied by Ag atoms. Zn substitution for Fe in argentotetrahedrite and Cd substitution for Pb in tetrahedrite are also observed. Micro-thermometric data reveal that both homogenization temperatures and calculated salinities of hydrothermal fluids decrease progressively from the early to the later mineralization stages. The metal ions, such as Ag+, Cu+, Pb2+, and Zn2+, are transported as chlorine complex ions in the early mineralization stage and as bisulfide complex ions in the late mineralization stage, caused by changes in oxygen fugacity, temperature, and pH of the hydrothermal fluids. Because of the varying solubility of different metal ions, Pb2+, Zn2+, and Cu2+ ions are initially precipitated as galena, sphalerite, and chalcopyrite, respectively. With decreasing temperature of the fluids, Pb2+ ions are incorporated along with Cu+, Sb3+, and As3+ ions into sulfosalt minerals, and Ag+ ions are coprecipitated with Cu+, Sb3+, and As3+ ions forming tetrahedrite series minerals or replacing earlier sulfides and sulfosalts.

  20. Iron (III) Matrix Effects on Mineralization and Immobilization of Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cynthia-May S. Gong; Tyler A. Sullens; Kenneth R. Czerwinski

    2006-01-01

    Abstract - A number of models for the Yucca Mountain Project nuclear waste repository use studies of actinide sorption onto well-defined iron hydroxide materials. In the case of a waste containment leak, however, a complex interaction between dissolved waste forms and failed containment vessel components can lead to immediate precipitation of migratory iron and uranyl in the silicate rich near-field environment. Use of the Fe(III) and UO22+ complexing agent acetohydroxamic acid (AHA) as a colorimetric agent for visible spectrophotometry is well-known. Using the second derivative of these spectra a distinct shift in iron complexation in the presence of silicate ismore » seen that is not seen with uranyl or alone. Silica also decreases the ability of uranyl and ferric solutions to absorb hydroxide, hastening precipitation. These ferric silicate precipitates are highly amorphous and soluble. Precipitates formed in the presence of uranyl below ~1 mol% exhibit lower solubility than precipitates from up to 50 mol % and of uranyl silicates alone.« less

  1. Physical-chemical treatment of wastes: a way to close turnover of elements in LSS

    NASA Astrophysics Data System (ADS)

    Kudenko, Yu A.; Gribovskaya, I. V.; Zolotukhin, I. G.

    2000-05-01

    "Man-plants-physical-chemical unit" system designed for space stations or terrestrial ecohabitats to close steady-state mineral, water and gas exchange is proposed. The physical-chemical unit is to mineralize all inedible plant wastes and physiological human wastes (feces, urine, gray water) by electromagnetically activated hydrogen peroxide in an oxidation reactor. The final product is a mineralized solution containing all elements balanced for plants' requirements. The solution has been successfully used in experiments to grow wheat, beans and radish. The solution was reusable: the evaporated moisture was replenished by the phytotron condensate. Sodium salination of plants was precluded by evaporating reactor-mineralized urine to sodium saturation concentration to crystallize out NaCl which can be used as food for the crew. The remaining mineralized product was brought back for nutrition of plants. The gas composition of the reactor comprises O 2, N 2, CO 2, NH 3, H 2. At the reactor's output hydrogen and oxygen were catalyzed into water, NH 3 was converted in a water trap into NH 4 and used for nutrition of plants. A special accessory at the reactor's output may produce hydrogen peroxide from intrasystem water and gas which makes possible to close gas loops between LSS components.

  2. Concentration gradients at the mineral-solution interface: implications for understanding dissolution mechanisms

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, Encarnacion; Patiño-López, Luis David; Putnis, Christine V.; Rodriguez-Navarro, Carlos; Putnis, Andrew

    2014-05-01

    Dissolution is a key process in fluid-rock interactions, such as in chemical weathering, CO2 carbonation reactions, metasomatism, and metamorphism. Many multicomponent rock-forming minerals are reported to dissolve incongruently, because the elemental molar ratios, measured in the fluid during dissolution experiments, that differ from those in the solid. This frequently results in the formation of chemically and structurally altered zones at the fluid-solid interface of varying thickness that are depleted in some elements relative to the bulk mineral composition. Although the mechanisms of the formation of these altered layers is still a matter of debate (see e.g. Ruiz-Agudo et al. 2012 and Schott et al. 2012), recent AFM studies on the dissolution of two multicomponent minerals, dolomite, Ca0.5Mg0.5CO3 (Urosevic et al. 2012), and wollastonite, CaSiO3 (Ruiz-Agudo et al. 2012), provide experimental evidence showing that these layers are formed in a two-step process: (i) stoichiometric dissolution of the pristine mineral surfaces and (ii) precipitation of a secondary phase. This occurs despite the fact that the bulk solution is undersaturated with respect to such a phase. It has been suggested that after stoichiometric dissolution of the mineral, a boundary layer of fluid in contact with the surface becomes supersaturated with respect to a secondary phase that then precipitates. Here we present in situ observations of the evolution of the fluid composition at the interface during dissolution in acidic solutions (pH 1.5) of dolomite and wollastonite using real-time phase-shift interferometry. We show that immediately when the sparingly soluble dolomite or wollastonite crystals are in contact with the solution, the refractive index of the solution at the crystal surface sharply increases. A steep refractive index gradient (i.e., concentration gradient) develops as a consequence of mineral dissolution producing an interfacial fluid with a different composition to the bulk. Similar observations have been made during the replacement of KBr by KCl (Putnis et al. 2005). Thus, it seems that incongruent dissolution is essentially similar to any other mineral-fluid equilibration process: when a fluid interacts with a mineral with which it is out of equilibrium the mineral will tend to dissolve. Depending on the fluid composition, the interfacial fluid may become supersaturated with respect to a secondary phase that will eventually nucleate on the parent mineral surface. Ruiz-Agudo E., Putnis, C.V., Rodríguez-Navarro, C. and Putnis A. (2012) Geology 40, 947-950 (2012) Urosevic M., Rodríguez-Navarro C., Putnis C.V., Cardell C., Putnis A. and Ruiz Agudo, E. (2012) In Geochimica et Cosmochimica Acta 80, 1-13 Schott J., Pokrovsky O.S., Spalla O., Devreux F., Gloter A. and Mielczarski J.A. (2012) Geochimica et Cosmochimica Acta 98, 259-281 Putnis C.V., Tsukamoto K. and Nishimura Y. (2005) American Mineralogist 90, 1909-1912

  3. Association Between Fish Oil Consumption and the Incidence of Mental Health Issues Among Active Duty Military Personnel

    DTIC Science & Technology

    2016-03-01

    minerals, individual vitamins or minerals, antioxidants, legal body-building supplements, herbal supplements, weight loss products in the past twelve...minerals, individual vitamins or minerals, antioxidants, legal body-building supplements, herbal supplements, or weight loss products” (DOD 2011...These solutions they may be seeking could be medicinal or more alternative in health such as fish oil supplements. Finally, with regard to Navy

  4. The separation of lanthanides and actinides in supercritical fluid carbon dioxide

    DOE PAGES

    Mincher, Bruce J.; Wai, Chien M.; Fox, Robert V.; ...

    2015-10-28

    Supercritical fluid carbon dioxide presents an attractive alternative to conventional solvents for recovery of the actinides and lanthanides. Carbon dioxide is a good solvent for fluorine and phosphate-containing ligands, including the traditional tributylphosphate ligand used in process-scale uranium separations. Actinide and lanthanide oxides may even be directly dissolved in carbon dioxide containing the complexes formed between these ligands and mineral acids, obviating the need for large volumes of acids for leaching and dissolution, and the corresponding organic liquid–liquid solvent extraction solutions. As a result, examples of the application of this novel technology for actinide and lanthanide separations are presented.

  5. Investigating Processes of Materials Formation via Liquid Phase and Cryogenic TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Yoreo, James J.; Sommerdijk, Nico

    2016-06-14

    The formation of materials in solutions is a widespread phenomenon in synthetic, biological and geochemical systems, occurring through dynamic processes of nucleation, self-assembly, crystal growth, and coarsening. The recent advent of liquid phase TEM and advances in cryogenic TEM are transforming our understanding of these phenomena by providing new insights into the underlying physical and chemical mechanisms. The techniques have been applied to metallic and semiconductor nanoparticles, geochemical and biological minerals, electrochemical systems, macromolecular complexes, and selfassembling systems, both organic and inorganic. New instrumentation and methodologies currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  6. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    A robotic miner digs in the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  7. An exploration in mineral supply chain mapping using tantalum as an example

    USGS Publications Warehouse

    Soto-Viruet, Yadira; Menzie, W. David; Papp, John F.; Yager, Thomas R.

    2013-01-01

    This report uses the supply chain of tantalum (Ta) to investigate the complexity of mineral and metal supply chains in general and show how they can be mapped. A supply chain is made up of all the manufacturers, suppliers, information networks, and so forth, that provide the materials and parts that go into making up a final product. The mineral portion of the supply chain begins with mineral material in the ground (the ore deposit); extends through a series of processes that include mining, beneficiation, processing (smelting and refining), semimanufacture, and manufacture; and continues through transformation of the mineral ore into concentrates, refined mineral commodities, intermediate forms (such as metals and alloys), component parts, and, finally, complex products. This study analyses the supply chain of tantalum beginning with minerals in the ground to many of the final goods that contain tantalum.

  8. Flexible bipolar nanofibrous membranes for improving gradient microstructure in tendon-to-bone healing.

    PubMed

    Li, Xiaoxi; Cheng, Ruoyu; Sun, Zhiyong; Su, Wei; Pan, Guoqing; Zhao, Song; Zhao, Jinzhong; Cui, Wenguo

    2017-10-01

    Enthesis is a specialized tissue interface between the tendon and bone. Enthesis structure is very complex because of gradient changes in its composition and structure. There is currently no strategy to create a suitable environment and to regenerate the gradual-changing enthesis because of the modular complexities between two tissue types. Herein, a dual-layer organic/inorganic flexible bipolar fibrous membrane (BFM) was successfully fabricated by electrospinning to generate biomimetic non-mineralized fibrocartilage and mineralized fibrocartilage in tendon-to-bone integration of enthesis. The growth of the in situ apatite nanoparticle layer was induced on the nano hydroxyapatite-poly-l-lactic acid (nHA-PLLA) fibrous layer in simulated body solution, and the poly-l-lactic acid (PLLA) fibrous layer retained its original properties to induce tendon regeneration. The in vivo results showed that BFM significantly increased the area of glycosaminoglycan staining at the tendon-bone interface and improved collagen organization when compared to the simplex fibrous membrane (SFM) of PLLA. Implanting the bipolar membrane also induced bone formation and fibrillogenesis as assessed by micro-CT and histological analysis. Biomechanical testing showed that the BFM group had a greater ultimate load-to-failure and stiffness than the SFM group at 12weeks after surgery. Therefore, this flexible bipolar nanofibrous membrane improves the healing and regeneration process of the enthesis in rotator cuff repair. In this study, we generated a biomimetic dual-layer organic/inorganic flexible bipolar fibrous membrane by sequential electrospinning and in situ biomineralization, producing integrated bipolar fibrous membranes of PLLA fibrous membrane as the upper layer and nHA-PLLA fibrous membrane as the lower layer to mimic non-mineralized fibrocartilage and mineralized fibrocartilage in tendon-to-bone integration of enthesis. Flexible bipolar nanofibrous membranes could be easily fabricated with gradient microstructure for enthesis regeneration in rotator cuff tears. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations

    DOE PAGES

    Migdisov, Artaches; Williams-Jones, A. E.; Brugger, J.; ...

    2016-06-11

    For many years, our understanding of the behavior of the REE in hydrothermal systems was based on semi-empirical estimates involving extrapolation of thermodynamic data obtained at 25 °C. Since then, a substantial body of experimental data has accumulated on the stability of aqueous complexes of the REE. These data have shown that some of the predictions of Haas et al. (1995) are accurate, but others may be in error by several orders of magnitude. However, application of the data in modeling hydrothermal transport and deposition of the REE has been severely hampered by the lack of data on the thermodynamicmore » properties of even the most common REE minerals. The discrepancies between the predictions and experimental determinations of the thermodynamic properties of aqueous REE species, together with the paucity of data on the stability of REE minerals, raise serious questions about the reliability of some models that have been proposed for the hydrothermal mobility of these critical metals. In this contribution, we review a body of high-temperature experimental data collected over the past 15 years on the stability of REE aqueous species and minerals. Using this new thermodynamic dataset, we re-evaluate the mechanisms responsible for hydrothermal transport and deposition of the REE. We also discuss the mechanisms that can result in REE fractionation during their hydrothermal transport and deposition. Here, our calculations suggest that in hydrothermal solutions, the main REE transporting ligands are chloride and sulfate, whereas fluoride, carbonate, and phosphate likely play an important role as depositional ligands. In addition to crystallographic fractionation, which is based on the differing affinity of mineral structures for the REE, our models suggest that the REE can be fractionated hydrothermally due to the differences in the stability of the LREE and HREE as aqueous chloride complexes.« less

  10. Quantification of Cation Sorption to Engineered Barrier Materials Under Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Brian; Schlautman, Mark; Rao, Linfeng

    The objective of this research is to examine mechanisms and thermodynamics of actinide sorption to engineered barrier materials (iron (oxyhydr)oxides and bentonite clay) for nuclear waste repositories under high temperature and high ionic strength conditions using a suite of macroscopic and microscopic techniques which will be coupled with interfacial reaction models. Gaining a mechanistic understanding of interfacial processes governing the sorption/sequestration of actinides at mineral-water interfaces is fundamental for the accurate prediction of actinide behavior in waste repositories. Although macroscale sorption data and various spectroscopic techniques have provided valuable information regarding speciation of actinides at solid-water interfaces, significant knowledge gapsmore » still exist with respect to sorption mechanisms and the ability to quantify sorption, particularly at high temperatures and ionic strengths. This objective is addressed through three major tasks: (1) influence of oxidation state on actinide sorption to iron oxides and clay minerals at elevated temperatures and ionic strengths; (2) calorimetric titrations of actinide-mineral suspensions; (3) evaluation of bentonite performance under repository conditions. The results of the work will include a qualitative conceptual model and a quantitative thermodynamic speciation model describing actinide partitioning to minerals and sediments, which is based upon a mechanistic understanding of specific sorption processes as determined from both micro-scale and macroscale experimental techniques. The speciation model will be a thermodynamic aqueous and surface complexation model of actinide interactions with mineral surfaces that is self-consistent with macroscopic batch sorption data, calorimetric and potentiometric titrations, X-ray absorption Spectroscopy (XAS, mainly Extended X-ray Absorption Fine Structure (EXAFS)), and electron microscopy analyses. The novelty of the proposed work lies largely in the unique system conditions which will be examined (i.e. elevated temperature and ionic strength) and the manner in which the surface complexation model will be developed in terms of specific surface species identified using XAS. These experiments will thus provide a fundamental understanding of the chemical and physical processes occurring at the solid-solution interface under expected repository conditions. Additionally, the focus on thermodynamic treatment of actinide ion interactions with minerals as proposed will provide information on the driving forces involved and contribute to the overall understanding of the high affinity many actinide ions have for oxide surfaces. The utility of this model will be demonstrated in this work through a series of advective and diffusive flow experiments.« less

  11. The Raman spectrum of Ca-Mg-Fe carbonates; Applications in geobiology

    NASA Astrophysics Data System (ADS)

    van Zuilen, M. A.; Rividi, N.; Ménez, B.; Philippot, P.

    2012-04-01

    Carbonates form a very important mineral group in geobiological studies. They are a common mineral matrix for putative carbonaceous microfossils in Archean greenstone belts, form an important chemical deposit in seafloor hydrothermal systems, and are a common product in biomineralization processes. In many geobiological studies there is a specific need for simple characterization of carbonate composition while avoiding complex sample preparation or sample destruction. Raman spectroscopy is a highly versatile non-destructive technique enabling in-situ characterization of minerals and carbonaceous materials. It can be combined with confocal microscopy enabling high-resolution Raman mapping of entire rock thin sections, or can be integrated in submersibles and potentially Mars-rovers for direct field-based mineral identification. It is thus important that well-established spectral databases exist which enable unambiguous identification of a wide variety of carbonate minerals. The most common carbonates in the Ca-Mg-Fe system include the CaCO3 polymorphs calcite, aragonite, and vaterite, as well as the solid solutions CaMg(CO3)2-CaFe(CO3)2 (dolomite-ankerite) and MgCO3-FeCO3 (magnesite-siderite). Although various carbonate end-members have been studied exhaustively by Raman spectroscopy, a simple protocol for rapid distinction of various carbonate solid solutions is still lacking. Here we present a detailed study of Raman shifts in various carbonate standards of known composition in the Ca-Mg-Fe system. Carbonates with rhombohedral symmetry display a Raman spectrum with six characteristic vibrational modes - four of these represent vibrations within the (CO3)2- unit and two represent external vibrations of the crystal lattice. We show that Raman band shifts of internal mode 2ν2 (range 1725-1765 cm-1), and external modes T (range 170-215 cm-1) and L (range 285-330 cm-1) for siderite-magnesite and ankerite-dolomite solid solutions display distinct and well defined positive correlations with Mg number (Mg/Mg+Fe+Mn+Ca). Raman shifts calibrated as a function of Mg number were used in turn to evaluate the chemical composition of natural carbonate samples. In particular it is shown that detailed micron-resolution Raman maps can be generated of carbonate crystal-zonation in hydrothermally altered sedimentary deposits from Archean greenstone belts. Large spectral-range analysis (140-2000 cm-1) in static-mode (centered at 1150 cm-1) allows for combined Raman mapping of both carbonate-composition (2ν2, T, L modes) as well as kerogen structural ordering (D1-D4 and G modes in the range 1100-1700 cm-1), and therefore allows for simultaneous characterization of putative organic microfossils and associated carbonate matrix in metamorphosed Archean rock samples. Finally, it will be shown that these carbonate solid solutions can be distinguished from other end-member carbonates such as calcite, vaterite and the orthorhombic polymorph aragonite.

  12. Novel Visualization Approaches in Environmental Mineralogy

    NASA Astrophysics Data System (ADS)

    Anderson, C. D.; Lopano, C. L.; Hummer, D. R.; Heaney, P. J.; Post, J. E.; Kubicki, J. D.; Sofo, J. O.

    2006-05-01

    Communicating the complexities of atomic scale reactions between minerals and fluids is fraught with intrinsic challenges. For example, an increasing number of techniques are now available for the interrogation of dynamical processes at the mineral-fluid interface. However, the time-dependent behavior of atomic interactions between a solid and a liquid is often not adequately captured by two-dimensional line drawings or images. At the same time, the necessity for describing these reactions to general audiences is growing more urgent, as funding agencies are amplifying their encouragement to scientists to reach across disciplines and to justify their studies to public audiences. To overcome the shortcomings of traditional graphical representations, the Center for Environmental Kinetics Analysis is creating three-dimensional visualizations of experimental and simulated mineral reactions. These visualizations are then displayed on a stereo 3D projection system called the GeoWall. Made possible (and affordable) by recent improvements in computer and data projector technology, the GeoWall system uses a combination of computer software and hardware, polarizing filters and polarizing glasses, to present visualizations in true 3D. The three-dimensional views greatly improve comprehension of complex multidimensional data, and animations of time series foster better understanding of the underlying processes. The visualizations also offer an effective means to communicate the complexities of environmental mineralogy to colleagues, students and the public. Here we present three different kinds of datasets that demonstrate the effectiveness of the GeoWall in clarifying complex environmental reactions at the atomic scale. First, a time-resolved series of diffraction patterns obtained during the hydrothermal synthesis of metal oxide phases from precursor solutions can be viewed as a surface with interactive controls for peak scaling and color mapping. Second, the results of Rietveld analysis of cation exchange reactions in Mn oxides has provided three-dimensional difference Fourier maps. When stitched together in a temporal series, these offer an animated view of changes in atomic configurations during the process of exchange. Finally, molecular dynamical simulations are visualized as three-dimensional reactions between vibrating atoms in both the solid and the aqueous phases.

  13. Isolation and characterization of lost copper and molybdenum particles in the flotation tailings of Kennecott copper porphyry ores

    NASA Astrophysics Data System (ADS)

    Tserendavga, Tsend-Ayush

    The importance of flotation separation has long been, and continues to be, an important technology for the mining industry, especially to metallurgical engineers. However, the flotation process is quite complex and expensive, in addition to being influenced by many variables. Understanding the variables affecting flotation efficiency and how valuable minerals are lost to the tailings gives metallurgists an advantage in their attempts to increase efficiency by designing operations to target the areas of greatest potential value. A successful, accurate evaluation of lost minerals in the tailings and appropriate solutions to improve flotation efficiency can save millions of dollars in the effective utilization of our mineral resources. In this dissertation research, an attempt has been made to understand the reasons for the loss of valuable mineral particles in the tailings from Kennecott Utah Copper ores. Possibilities include liberation, particle aggregation (slime coating) and surface chemistry issues associated with the flotation separation. This research generally consisted of three main aspects. The first part involved laboratory flotation experiments and factors, which affect the flotation efficiency. Results of flotation testing are reported that several factors such as mineral exposure/liberation and slime coating and surface oxidation strongly affect the flotation efficiency. The second part of this dissertation research was to develop a rapid scan dual energy (DE) methodology using 2D radiography to identify, isolate, and prepare lost sulfide mineral particles with the advantages of simple sample preparation, short analysis time, statistically reliable accuracy and confident identification. The third part of this dissertation research was concerned with detailed characterization of lost particles including such factors as liberation, slime coating, and surface chemistry characteristics using advanced analytical techniques and instruments. Based on the results from characterization, the extent to which these factors contribute to the loss of sulfide mineral particles in the tailings were determined.

  14. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates

    USGS Publications Warehouse

    Roger, Jennifer Roberts; Bennett, Philip C.

    2004-01-01

    Microorganisms play an important role in the weathering of silicate minerals in many subsurface environments, but an unanswered question is whether the mineral plays an important role in the microbial ecology. Silicate minerals often contain nutrients necessary for microbial growth, but whether the microbial community benefits from their release during weathering is unclear. In this study, we used field and laboratory approaches to investigate microbial interactions with minerals and glasses containing beneficial nutrients and metals. Field experiments from a petroleum-contaminated aquifer, where silicate weathering is substantially accelerated in the contaminated zone, revealed that phosphorus (P) and iron (Fe)-bearing silicate glasses were preferentially colonized and weathered, while glasses without these elements were typically barren of colonizing microorganisms, corroborating previous studies using feldspars. In laboratory studies, we investigated microbial weathering of silicates and the release of nutrients using a model ligand-promoted pathway. A metal-chelating organic ligand 3,4 dihydroxybenzoic acid (3,4 DHBA) was used as a source of chelated ferric iron, and a carbon source, to investigate mineral weathering rate and microbial metabolism.In the investigated aquifer, we hypothesize that microbes produce organic ligands to chelate metals, particularly Fe, for metabolic processes and also form stable complexes with Al and occasionally with Si. Further, the concentration of these ligands is apparently sufficient near an attached microorganism to destroy the silicate framework while releasing the nutrient of interest. In microcosms containing silicates and glasses with trace phosphate mineral inclusions, microbial biomass increased, indicating that the microbial community can use silicate-bound phosphate inclusions. The addition of a native microbial consortium to microcosms containing silicates or glasses with iron oxide inclusions correlated to accelerated weathering and release of Si into solution as well as the accelerated degradation of the model substrate 3,4 DHBA. We propose that silicate-bound P and Fe inclusions are bioavailable, and microorganisms may use organic ligands to dissolve the silicate matrix and access these otherwise limiting nutrients.

  15. Structural and Microstructural Correlations of Physical Properties in Natural Almandine-Pyrope Solid Solution: Al70Py29

    NASA Astrophysics Data System (ADS)

    Sibi, N.; Subodh, G.

    2017-12-01

    Garnets are naturally occurring minerals with the general formula X3Y2Z3O12 having various applications. In the present study, the structural and physical properties of a garnet mineral obtained from Indian Rare Earth Ltd., Manavalakurichi, Tamil Nadu, India were comprehensively investigated. The compositional analysis using electron probe micro analysis (EPMA) revealed that the mineral belongs to almandine-pyrope solid solution (Al70Py29) with the chemical formula (Fe1.72Mg0.8Mn0.01Ca0.02) (Fe0.04Al2.36) Si2.93O12. Rietveld refinement of the x-ray diffraction pattern confirms that the space group is Ia{ - }\\overline{3} d with refined cubic lattice parameter a = 11.550(4) Å. The refined occupancy values of multiple cations in the dodecahedral and octahedral sites are in agreement with the EPMA data. Fourier transform infrared and FT Raman spectra show bands corresponding to almandine-pyrope solid solution. Peak splitting of IR and Raman bands confirms presence of multiple cations in the dodecahedral site. Thermogravimetric/differential thermal analysis shows that the mineral is stable up to 600°C in spite of the presence of Fe2+ ions. Low temperature magnetic susceptibility data is in agreement with the amount of Fe2+ ions present in the mineral. The dielectric constant of the mineral varied from 6 to 16.5 when sintered at temperatures ranging from 600°C to 1250°C.

  16. Spectrophotometric determination of substrate-borne polyacrylamide.

    PubMed

    Lu, Jianhang; Wu, Laosheng

    2002-08-28

    Polyacrylamides (PAMs) have wide application in many industries and in agriculture. Scientific research and industrial applications manifested a need for a method that can quantify substrate-borne PAM. The N-bromination method (a PAM analytical technique based on N-bromination of amide groups and spectrophotometric determination of the formed starch-triiodide complex), which was originally developed for determining PAM in aqueous solutions, was modified to quantify substrate-borne PAM. In the modified method, the quantity of substrate-borne PAM was converted to a concentration of starch-triiodide complex in aqueous solution that was then measured by spectrophotometry. The method sensitivity varied with substrates due to sorption of reagents and reaction intermediates on the substrates. Therefore, separate calibration for each substrate was required. Results from PAM samples in sand, cellulose, organic matter burnt soils, and clay minerals showed that this method had good accuracy and reproducibility. The PAM recoveries ranged from 95.8% to 103.7%, and the relative standard deviations (n = 4) were <7.5% in all cases. The optimum range of PAM in each sample is 10-80 microg. The technique can serve as an effective tool in improving PAM application and facilitating PAM-related research.

  17. Mineral induction by immobilized phosphoproteins

    NASA Technical Reports Server (NTRS)

    Saito, T.; Arsenault, A. L.; Yamauchi, M.; Kuboki, Y.; Crenshaw, M. A.

    1997-01-01

    Dentin phosphoproteins are thought to have a primary role in the deposition of mineral on the collagen of dentin. In this study we determined the type of binding between collagen and phosphoproteins necessary for mineral formation onto collagen fibrils and whether the phosphate esters are required. Bovine dentin phosphophoryn or phosvitin from egg yolk were immobilized on reconstituted skin type I collagen fibrils by adsorption or by covalent cross-linking. In some samples the ester phosphate was removed from the covalently cross-linked phosphoproteins by treatment with acid phosphatase. All samples were incubated at 37 degrees C in metastable solutions that do not spontaneously precipitate. Reconstituted collagen fibrils alone did not induce mineral formation. The phosphoproteins adsorbed to the collagen fibrils desorbed when the mineralization medium was added, and mineral was not induced. The mineral induced by the cross-linked phosphoproteins was apatite, and the crystals were confined to the surface of the collagen fibrils. With decreasing medium saturation the time required for mineral induction increased. The interfacial tensions calculated for apatite formation by either phosphoprotein cross-linked to collagen were about the same as that for phosphatidic acid liposomes and hydroxyapatite. This similarity in values indicates that the nucleation potential of these highly phosphorylated surfaces is about the same. It is concluded that phosphoproteins must be irreversibly bound to collagen fibrils for the mineralization of the collagen network in solutions that do not spontaneously precipitate. The phosphate esters of phosphoproteins are required for mineral induction, and the carboxylate groups are not sufficient.

  18. Characteristics of mineral nutrition of plants in the bio-technical life support system with human wastes included in mass exchange

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Ushakova, Sofya; Kalacheva, Galina; Tikhomirov, Alexander

    2016-09-01

    The study addresses the effectiveness of using ion exchange substrates (IES) to optimize mineral nutrition of plants grown in the nutrient solutions containing oxidized human wastes for application in bio-technical life support systems. The study shows that the addition of IES to the root-inhabited substrate is favorable for the growth of wheat vegetative organs but causes a decrease in the grain yield. By contrast, the addition of IES to the nutrient solution does not influence the growth of vegetative organs but favors normal development of wheat reproductive organs. Thus, to choose the proper method of adjusting the solution with IES, one should take into account specific parameters of plant growth and development and the possibility of multiple recycling of IES based on the liquid products of mineralization of human wastes.

  19. A novel method for improving cerussite sulfidization

    NASA Astrophysics Data System (ADS)

    Feng, Qi-cheng; Wen, Shu-ming; Zhao, Wen-juan; Cao, Qin-bo; Lü, Chao

    2016-06-01

    Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests indicate that the addition of chloride ions prior to sulfidization can significantly increase the flotation recovery of cerussite, which is attributed to the formation of more lead sulfide species on the mineral surface. Solution measurement results suggest that the addition of chloride ions prior to sulfidization induces the transformation of more sulfide ions from pulp solution onto the mineral surface by the formation of more lead sulfide species. X-ray diffraction and energy-dispersive spectroscopy indicate that more lead sulfide species form on the mineral surface when chloride ions are added prior to sulfidization. These results demonstrate that the addition of chloride ions prior to sulfidization can significantly improve the sulfidization of cerussite, thereby enhancing the flotation performance.

  20. Comparison of different advanced oxidation processes for the removal of amoxicillin in aqueous solution.

    PubMed

    Souza, Fernanda Siqueira; da Silva, Vanessa Vargas; Rosin, Catiusa Kuchak; Hainzenreder, Luana; Arenzon, Alexandre; Féris, Liliana Amaral

    2018-03-01

    Amoxicillin (AMX) is a widely used penicillin-type antibiotic whose presence in the environment has been investigated. In this work, the degradation of the AMX in aqueous solutions by ozonation, ozonation with UV radiation (O 3 /UV), homogeneous catalytic ozonation (O 3 /Fe 2+ ) and homogeneous photocatalytic ozonation (O 3 /Fe 2+ /UV) was investigated. The performance results have been compared in terms of removal of amoxicillin and total organic carbon (mineralization efficiency). In all processes, complete amoxicillin degradation was obtained after 5 min. However, low mineralization was achieved. For the best available process, the potential toxicity of AMX intermediates formed after ozonation was examined using a Fish Embryo Toxicity test. Results reveal that O 3 in alkaline solution and O 3 /Fe 2+ /UV provide the highest mineralization rates. Ecotoxicity showed that no acute toxicity was observed during the exposure period of 96 h.

  1. The use of acetone to enhance the infiltration of HA nanoparticles into a demineralized dentin collagen matrix.

    PubMed

    Besinis, Alexandros; van Noort, Richard; Martin, Nicolas

    2016-03-01

    This study investigates the role of acetone, as a carrier for nano-hydroxyapatite (nano-HA) in solution, to enhance the infiltration of fully demineralized dentin with HA nanoparticles (NPs). Dentin specimens were fully demineralized and subsequently infiltrated with two types of water-based nano-HA solutions (one containing acetone and one without). Characterization of the dentin surfaces and nano-HA particles was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface wettability and infiltration capacity of the nano-HA solutions were quantified by means of contact angle measurements and energy dispersive X-ray spectroscopy (EDS), respectively. Contact angle measurements were taken at baseline and repeated at regular intervals to assess the effect of acetone. The P and Ca levels of infiltrated dentin specimens were measured and compared to sound dentin and non-infiltrated controls. The presence of acetone resulted in an eight-fold decrease in the contact angles of the nano-HA solutions recorded on the surface of demineralized dentin compared to nano-HA solutions without acetone (one-way ANOVA, p<0.05). Perfect wetting of the demineralized dentin surface was achieved 5min after the application of the nano-HA solution containing acetone. Infiltration of demineralized dentin with the nano-HA solution containing acetone restored the lost mineral content by 50%, whereas the mean mineralization values for P and Ca in dentin treated with the acetone-free nano-HA solution were less than 6%. Acetone was shown to act as a vehicle to enhance the capacity to infiltrate demineralized dentin with HA NPs. The successful infiltration of dentin collagen with HA NPs provides a suitable scaffold, whereby the infiltrated HA NPs have the potential to act as seeds that may initiate heterogenous mineral growth when exposed to an appropriate mineral-rich environment. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.

    2007-03-01

    A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.

  3. In situ spectroscopic and solution analyses of the reductive dissolution of Mn02 by Fe(II)

    USGS Publications Warehouse

    Villinski, John E.; O'Day, Peggy A.; Corley, Timothy L.; Conklin, Martha H.

    2001-01-01

    The reductive dissolution of MnO2 by Fe(II) under conditions simulating acid mine drainage (pH 3, 100 mM SO42-) was investigated by utilizing a flow-through reaction cell and synchrotron X-ray absorption spectroscopy. This configuration allows collection of in situ, real-time X-ray absorption near-edge structure (XANES) spectra and bulk solution samples. Analysis of the solution chemistry suggests that the reaction mechanism changed (decreased reaction rate) as MnO2 was reduced and Fe(III) precipitated, primarily as ferrihydrite. Simultaneously, we observed an additional phase, with the local structure of jacobsite (MnFe2O4), in the Mn XANES spectra of reactants and products. The X-ray absorbance of this intermediate phase increased during the experiment, implying an increase in concentration. The presence of this phase, which probably formed as a surface coating, helps to explain the reduced rate of dissolution of manganese(IV) oxide. In natural environments affected by acid mine drainage, the formation of complex intermediate solid phases on mineral surfaces undergoing reductive dissolution may likewise influence the rate of release of metals to solution.

  4. Geology of the Biwabik Iron Formation and Duluth Complex.

    PubMed

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.

  5. Geology of the Biwabik Iron Formation and Duluth Complex

    USGS Publications Warehouse

    Jirsa, M.A.; Miller, J.D.; Morey, G.B.

    2008-01-01

    The Biwabik Iron Formation is a ???1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by ???1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. ?? 2007 Elsevier Inc. All rights reserved.

  6. Automatic Detection and Recognition of Craters Based on the Spectral Features of Lunar Rocks and Minerals

    NASA Astrophysics Data System (ADS)

    Ye, L.; Xu, X.; Luan, D.; Jiang, W.; Kang, Z.

    2017-07-01

    Crater-detection approaches can be divided into four categories: manual recognition, shape-profile fitting algorithms, machine-learning methods and geological information-based analysis using terrain and spectral data. The mainstream method is Shape-profile fitting algorithms. Many scholars throughout the world use the illumination gradient information to fit standard circles by least square method. Although this method has achieved good results, it is difficult to identify the craters with poor "visibility", complex structure and composition. Moreover, the accuracy of recognition is difficult to be improved due to the multiple solutions and noise interference. Aiming at the problem, we propose a method for the automatic extraction of impact craters based on spectral characteristics of the moon rocks and minerals: 1) Under the condition of sunlight, the impact craters are extracted from MI by condition matching and the positions as well as diameters of the craters are obtained. 2) Regolith is spilled while lunar is impacted and one of the elements of lunar regolith is iron. Therefore, incorrectly extracted impact craters can be removed by judging whether the crater contains "non iron" element. 3) Craters which are extracted correctly, are divided into two types: simple type and complex type according to their diameters. 4) Get the information of titanium and match the titanium distribution of the complex craters with normal distribution curve, then calculate the goodness of fit and set the threshold. The complex craters can be divided into two types: normal distribution curve type of titanium and non normal distribution curve type of titanium. We validated our proposed method with MI acquired by SELENE. Experimental results demonstrate that the proposed method has good performance in the test area.

  7. Alteration of biochar characteristics through Post Production Treatments

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans-Peter; Kammann, Claudia; Glaser, Bruno

    2013-04-01

    The application of pure, untreated biochar to temperate soils does not lead to substantial increase in soil fertility and plant growth. Moreover, the application of 10 tonnes or more of biochar per hectare is not economically viable on most farms. To be more efficient in improving soil fertility, increasing SOM and ecosystem services, new methods of using biochar in farm settings need to be developed. To improve the effect of biochar on plant growth, biochar can be enhanced by (1) adding nutrients, (2) inoculating it with beneficial microorganisms, (3) improving its surface reactivity and thus its sorption dynamic, (4) increasing its porous volume, and/or (5) fostering the creation of biochar-mineral-organic complexes. These supplementary biochar enhancements can be achieved through different methods of feedstock blending and biochar post-production treatment which can be classified according to the resulting surface alteration of biochar: 1. Addition of nutrients, MOs, minerals in liquid solution which get soaked into the biochar pores without or with only slight surface alteration, resulting in enriched biochar. 2. Physico-chemical activation (treatment with acids, vapours, toasting with minerals …) resulting in alteration of the surface, pore volume and functional groups. 3. Bio-chemical activation through the interaction of biochar with organic compounds, minerals, nutrients and microorganisms in a biological very active environment, resulting in the complexation of biochar, minerals and organic compounds. Whereas physico-chemical activation is a highly technical process and has to be done by professional biochar producers, bio-chemical activation and enrichment can be done very efficiently by the farmer himself. On-farm enrichment and activation of biochar help to close the organic nutrient cycles of the farm, improving agronomic system efficiency and thus becoming economically viable. Adding biochar to highly labile organic matter like manure, sludge or compost improves decomposition and complexation, and helps to stabilize their nutrients and carbon. The combination of biochar and lacto-acid-bacteria in silage, feed, bedding and liquid manure treatment decreases methane and ammonia emissions, increases the feed-energy balance, and boosts animal health. On every step of this cascading use of biochar in animal husbandry, the biochar becomes more oxidized, more activated and more enriched with nutrients. When finally applied to the soil, biochar acts as carrier for nutrients and thus works to improve soil fertility. Much more research is needed in the field of biochar post-treatment and into each of the different possible farm uses. Nevertheless, sufficient serious research has already been done and published, enabling us to judge the importance of post-treating biochar to improve its agronomic performance and value.

  8. Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onori, Roberta, E-mail: Roberta.onori@uniroma1.it; Polettini, Alessandra; Pomi, Raffaella

    2011-02-15

    In the present study the evolution of mechanical strength and the leaching behavior of major and trace elements from activated incinerator bottom ash/Portland cement mixtures were investigated. Chemical and mechanical activation were applied with the purpose of improving the reactivity of bottom ash in cement blends. Chemical activation made use of NaOH, KOH, CaCl{sub 2} or CaSO{sub 4}, which were selected for the experimental campaign on the basis of the results from previous studies. The results indicated that CaCl{sub 2} exhibited by far the best effects on the evolution of the hydration process in the mixtures; a positive effect onmore » mechanical strength was also observed when CaSO{sub 4} was used as the activator, while the gain in strength produced by KOH and NaOH was irrelevant. Geochemical modeling of the leaching solutions provided information on the mineral phases responsible for the release of major elements from the hardened materials and also indicated the important role played by surface sorption onto amorphous Fe and Al minerals in dictating the leaching of Pb. The leaching of the other trace metal cations investigated (Cu, Ni and Zn) could not be explained by any pure mineral included in the thermodynamic database used, suggesting they were present in the materials in the form of complex minerals or phase assemblages for which no consistent thermodynamic data are presently available in the literature.« less

  9. Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends.

    PubMed

    Onori, Roberta; Polettini, Alessandra; Pomi, Raffaella

    2011-02-01

    In the present study the evolution of mechanical strength and the leaching behavior of major and trace elements from activated incinerator bottom ash/Portland cement mixtures were investigated. Chemical and mechanical activation were applied with the purpose of improving the reactivity of bottom ash in cement blends. Chemical activation made use of NaOH, KOH, CaCl(2) or CaSO(4), which were selected for the experimental campaign on the basis of the results from previous studies. The results indicated that CaCl(2) exhibited by far the best effects on the evolution of the hydration process in the mixtures; a positive effect on mechanical strength was also observed when CaSO(4) was used as the activator, while the gain in strength produced by KOH and NaOH was irrelevant. Geochemical modeling of the leaching solutions provided information on the mineral phases responsible for the release of major elements from the hardened materials and also indicated the important role played by surface sorption onto amorphous Fe and Al minerals in dictating the leaching of Pb. The leaching of the other trace metal cations investigated (Cu, Ni and Zn) could not be explained by any pure mineral included in the thermodynamic database used, suggesting they were present in the materials in the form of complex minerals or phase assemblages for which no consistent thermodynamic data are presently available in the literature. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Effect of fulvic acid surface coatings on plutonium sorption and desorption kinetics on goethite

    DOE PAGES

    Tinnacher, Ruth M.; Begg, James D.; Mason, Harris; ...

    2015-01-21

    The rates and extent of plutonium (Pu) sorption and desorption onto mineral surfaces are important parameters for predicting Pu mobility in subsurface environments. The presence of natural organic matter, such as fulvic acid (FA), may influence these parameters. We investigated the effects of FA on Pu(IV) sorption/desorption onto goethite in two scenarios: when FA was (1) initially present in solution or (2) found as organic coatings on the mineral surface. A low pH was used to maximize FA coatings on goethite. Experiments were combined with kinetic modeling and speciation calculations to interpret variations in Pu sorption rates in the presencemore » of FA. Our results indicate that FA can change the rates and extent of Pu sorption onto goethite at pH 4. Differences in the kinetics of Pu sorption were observed as a function of the concentration and initial form of FA. The fraction of desorbed Pu decreased in the presence of FA, indicating that organic matter can stabilize sorbed Pu on goethite. These results suggest that ternary Pu–FA–mineral complexes could enhance colloid-facilitated Pu transport. In conclusion, more representative natural conditions need to be investigated to quantify the relevance of these findings.« less

  11. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng; Jove-Colon, Carlos F.; Kuhlman, Kristopher L.

    2016-07-22

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruentmore » dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). In conclusion, our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications.« less

  12. Mineralogy and geochemistry of efflorescent minerals on mine tailings and their potential impact on water chemistry.

    PubMed

    Grover, B P C; Johnson, R H; Billing, D G; Weiersbye, I M G; Tutu, H

    2016-04-01

    In the gold mining Witwatersrand Basin of South Africa, efflorescent mineral crusts are a common occurrence on and nearby tailings dumps during the dry season. The crusts are readily soluble and generate acidic, metal- and sulphate-rich solutions on dissolution. In this study, the metal content of efflorescent crusts at an abandoned gold mine tailings dump was used to characterise surface and groundwater discharges from the site. Geochemical modelling of the pH of the solution resulting from the dissolution of the crusts was used to better understand the crusts' potential impact on water chemistry. The study involved two approaches: (i) conducting leaching experiments on oxidised and unoxidised tailings using artificial rainwater and dilute sulphuric acid and correlating the composition of crusts to these leachates and (ii) modelling the dissolution of the crusts in order to gain insight into their mineralogy and their potential impact on receiving waters. The findings suggested that there were two chemically distinct discharges from the site, namely an aluminium- and magnesium-rich surface water plume and an iron-rich groundwater plume. The first plume was observed to originate from the oxidised tailings following leaching with rainwater while the second plume originated from the underlying unoxidised tailings with leaching by sulphuric acid. Both groups of minerals forming from the respective plumes were found to significantly lower the pH of the receiving water with simulations of their dissolution found to be within 0.2 pH units of experimental values. It was observed that metals in a low abundance within the crust (for example, iron) had a stronger influence on the pH of the resulting solutions than metals in a greater abundance (aluminium or magnesium). Techniques such as powder X-ray diffraction (PXRD) and in situ mineral determination techniques such as remote sensing can effectively determine the dominant mineralogy. However, the minerals or metals incorporated through solid solution into bulk mineralogy that dominates the chemistry of the solutions upon their dissolution may occur in minor quantities that can only be predicted using chemical analysis. Their mineralogy can be predicted using geochemical modelling and can provide a set of hypothetical minerals that upon dissolution yield a solution similar to that of the actual crusts. This realisation has a bearing on decision-making such as in risk assessment and designing pollutant mitigation strategies.

  13. Two-dimensional NMR spectroscopy as a tool to link soil organic matter composition to ecosystem processes

    NASA Astrophysics Data System (ADS)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen

    2014-05-01

    Environmental factors (e.g. temperature and moisture) and the size and composition of soil microbial populations are often considered the main drivers of soil organic matter (SOM) mineralization. Less consideration is given to the role of SOM as a substrate for microbial metabolism and the importance of the organo-chemical composition of SOM on decomposition. In addition, a fraction of the SOM is often considered as recalcitrant to mineralization leading to accumulation of SOM. However, recently the concept of intrinsic recalcitrance of SOM to mineralization has been questioned. The challenge in investigating the role of SOM composition on its mineralization to a large extent stems from the difficulties in obtaining high resolution characterization of a very complex matrix. 13C nuclear magnetic resonance (NMR) spectroscopy is a widely used tool to characterize SOM. However, SOM is a very complex mixture and in the resulting 13C NMR spectra, the identified functional groups may represent different molecular fragments that appear in the same spectral region leading to broad peaks. These overlaps defy attempts to identify molecular moieties, and this makes it impossible to derive information at a resolution needed for evaluating e.g. recalcitrance of SOM. Here we applied a method, developed in wood science for the pulp paper industry, to achieve a better characterization of SOM. We directly dissolved finely ground organic layers of boreal forest floors-litters, fibric and humic horizons of both coniferous and broadleaved stands-in dimethyl sulfoxide and analyzed the resulting solution with a two-dimensional (2D) 1H-13C NMR experiment. We will discuss methodological aspects related to the ability to identify and quantify individual molecular moieties in SOM. We will demonstrate how the spectra resolve signals of CH groups in a 2D plane determined by the 13C and 1H chemical shifts, thereby vastly increasing the resolving power and information content of NMR spectra. The obtained 2D spectra resolve overlaps observed in 1D 13C spectra, so that hundreds of distinct CH moieties can be observed and many individual molecular fragments can be identified. For instance, in the aromatic spectral region, signals originating from various lignin monomers and unsaturated compounds can be resolved. This yields a detailed chemical fingerprint of the SOM samples, and valuable insights on molecular structures. We observed differences in the respective aromatic region of the 2D spectra of the litter layers and the fibric and humic horizons, in relation with humification processes. We were also able to relate the cross-peak complexity and abundance patterns of identifiable molecular moieties to variability in the temperature response of organic matter degradation, as assessed by Q10. To conclude, solution-state 2D NMR spectroscopy is a highly promising new tool to characterize SOM composition at the molecular level, which opens completely new possibilities to link SOM molecular composition to ecosystem processes, and their responses to environmental changes.

  14. Sampling the oxidative weathering products and the potentially acidic permafrost on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1988-01-01

    Large areas of Mars' surface are covered by oxidative weathering products containing ferric and sulfate ions having analogies to terrestrial gossans derived from sulfide mineralization associated with iron-rich basalts. Chemical weathering of such massive and disseminated pyrrhotite-pentlandite assemblages and host basaltic rocks in the Martian environment could have produced metastable gossaniferous phases (limonite containing poorly crystalline hydrated ferric sulfates and oxyhydroxides, clay silicates and opal). Underlying groundwater, now permafrost on Mars, may still be acidic due to incomplete buffering reactions by wall-rock alteration of unfractured host rock. Such acidic solutions stabilize temperature-sensitive complex ions and sols which flocculate to colloidal precipitates at elevated temperatures. Sampling procedures of Martian regolith will need to be designed bearing in mind that the frozen permafrost may be corrosive and be stabilizing unique complex ions and sols of Fe, Al, Mg, Ni and other minor elements.

  15. Understanding the ice nucleation characteristics of feldspars suspended in solution

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2017-04-01

    Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Zobrist et al. (2008) Arizona test dust, silver iodide, nonadecanol and silicon dioxide suspensions in various solutes showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust particles at a microphysical scale. To improve our understanding how solute and mineral dust particle surface interaction, we run freezing experiments using a differential scanning calorimeter (DSC) with microcline, sanidine, plagioclase, kaolinite and quartz particles suspended in pure water and solutions containing ammonia, ammonium bisulfate, ammonium sulfate, ammonium chloride, ammonium nitrate, potassium chloride, potassium sulfate, sodium sulfate and sulfuric acid. Methodology Suspensions of mineral dust samples (2 - 5 wt%) are prepared in water with varying solute concentrations (0 - 15 wt%). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich Chemical) and 5 wt% lanolin (Fluka Chemical) is emulsified with a rotor-stator homogenizer for 40 s at a rotation frequency of 7000 rpm. 4 - 10 mg of this mixture is pipetted in an aluminum pan (closed hermetically), placed in the DSC and subjected to three freezing cycles. The first and the third freezing cycles are executed at a cooling rate of 10 K/min to control the stability of the sample. The second freezing cycle is executed at a 1 K/min cooling rate and is used for evaluation. Freezing temperatures are obtained by evaluating the onset of the freezing signal in the DSC curve and plotted against water activity. Results Based on Koop et al. (2000), a general decreasing trend in ice nucleation efficiency of the mineral samples with increasing solute concentrations is expected. Interestingly, feldspars (microcline, sanidine, plagioclase) in very dilute solutions of ammonia and ammonium salts (water activity close to one) show an increase in ice nucleation efficiency of 4 to 6 K compared to that in pure water. Similar trends but less pronounced are observed for kaolinite while quartz shows barely any effect. Therefore, there seem to be specific interactions between the feldspar surface and ammonia and/or ammonium ions which result in an increase in freezing temperatures at low solute concentrations. The surface ion exchange seems to be secondary for this effect since it is also present in ammonia solution. We hypothesize that ammonia adsorbs on the aluminol/silanol groups present on feldspar (viz. aluminosilicate surface) surfaces (Nash and Marshall, 1957; Belchinskaya et al., 2013). Hence allowing one of the N-H bonds to stick outwards from the surface, facing towards the bulk water and providing a favorable template for ice to grow. The current study gives an insight into the ice nucleation behavior of aluminosilicate minerals when present in conjunction with chemical species, eg. ammonium/sulfates, which is of high atmospheric relevance. References Koop et al., (2000), doi:10.1038/35020537. Zobrist et al., (2008). J. Phys. Chem., 112:3965-3975. Nash and Marshall (1957). Proceedings Soil Sci. Society, 21:149-153. Belchinskaya et al., (2013). J. Applied Chemistry, doi:10.1155/2013/789410

  16. CO2 hydrate nucleation kinetics enhanced by an organo-mineral complex formed at the montmorillonite-water interface.

    PubMed

    Kyung, Daeseung; Lim, Hyung-Kyu; Kim, Hyungjun; Lee, Woojin

    2015-01-20

    In this study, we investigated experimentally and computationally the effect of organo-mineral complexes on the nucleation kinetics of CO2 hydrate. These complexes formed via adsorption of zwitter-ionic glycine (Gly-zw) onto the surface of sodium montmorillonite (Na-MMT). The electrostatic attraction between the −NH3(+) group of Gly-zw, and the negatively charged Na-MMT surface, provides the thermodynamic driving force for the organo-mineral complexation. We suggest that the complexation of Gly-zw on the Na-MMT surface accelerates CO2 hydrate nucleation kinetics by increasing the mineral–water interfacial area (thus increasing the number of effective hydrate-nucleation sites), and also by suppressing the thermal fluctuation of solvated Na(+) (a well-known hydrate formation inhibitor) in the vicinity of the mineral surface by coordinating with the −COO(–) groups of Gly-zw. We further confirmed that the local density of hydrate-forming molecules (i.e., reactants of CO2 and water) at the mineral surface (regardless of the presence of Gly-zw) becomes greater than that of bulk phase. This is expected to promote the hydrate nucleation kinetics at the surface. Our study sheds new light on CO2 hydrate nucleation kinetics in heterogeneous marine environments, and could provide knowledge fundamental to successful CO2 sequestration under seabed sediments.

  17. Sorption of Eu(III) on granite: EPMA, LA-ICP-MS, batch and modeling studies.

    PubMed

    Fukushi, Keisuke; Hasegawa, Yusuke; Maeda, Koushi; Aoi, Yusuke; Tamura, Akihiro; Arai, Shoji; Yamamoto, Yuhei; Aosai, Daisuke; Mizuno, Takashi

    2013-11-19

    Eu(III) sorption on granite was assessed using combined microscopic and macroscopic approaches in neutral to acidic conditions where the mobility of Eu(III) is generally considered to be high. Polished thin sections of the granite were reacted with solutions containing 10 μM of Eu(III) and were analyzed using EPMA and LA-ICP-MS. On most of the biotite grains, Eu enrichment up to 6 wt % was observed. The Eu-enriched parts of biotite commonly lose K, which is the interlayer cation of biotite, indicating that the sorption mode of Eu(III) by the biotite is cation exchange in the interlayer. The distributions of Eu appeared along the original cracks of the biotite. Those occurrences indicate that the prior water-rock interaction along the cracks engendered modification of biotite to possess affinity to the Eu(III). Batch Eu(III) sorption experiments on granite and biotite powders were conducted as functions of pH, Eu(III) loading, and ionic strength. The macroscopic sorption behavior of biotite was consistent with that of granite. At pH > 4, there was little pH dependence but strong ionic strength dependence of Eu(III) sorption. At pH < 4, the sorption of Eu(III) abruptly decreased with decreased pH. The sorption behavior at pH > 4 was reproducible reasonably by the modeling considering single-site cation exchange reactions. The decrease of Eu(III) sorption at pH < 4 was explained by the occupation of exchangeable sites by dissolved cationic species such as Al and Fe from granite and biotite in low-pH conditions. Granites are complex mineral assemblages. However, the combined microscopic and macroscopic approaches revealed that elementary reactions by a single mineral phase can be representative of the bulk sorption reaction in complex mineral assemblages.

  18. Molecular simulation of structure and diffusion at smectite-water interfaces: Using expanded clay interlayers as model nanopores

    DOE PAGES

    Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; ...

    2015-07-20

    In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay–water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water andmore » ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.« less

  19. Comparison contemporary methods of regeneration sodium-cationic filters

    NASA Astrophysics Data System (ADS)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Verkhovsky, A. E.; Ilyushin, A. S.; Aladushkin, S. V.

    2017-11-01

    Regeneration plays a crucial role in the field of efficient application sodium-cationic filters for softening the water. Traditionally used as regenerant saline NaCl. However, due to the modern development of the energy industry and its close relationship with other industrial and academic sectors the opportunity to use in the regeneration of other solutions. The report estimated data and application possibilities as regenerant solution sodium-cationic filters brine wells a high mineral content, as both primary application and after balneotherapeutic use reverse osmosis and concentrates especially recycled regenerant water repeated. Comparison of the effectiveness of these solutions with the traditional use of NaCl. Developed and tested system for the processing of highly mineralized brines wells after balneological use. Recommendations for use as regeneration solutions for the sodium-cationic unit considered solutions and defined rules of brine for regeneration costs.

  20. Experiencing Experimentation and Project Design.

    ERIC Educational Resources Information Center

    Demchik, Michael J.

    2001-01-01

    Introduces the pea plant experiment targeted to determine the effects of Knop's solution, a solution containing all the necessary minerals, on plant growth. Compares two groups of pea plants, one treated with Knop's solution and one treated with demineralized water. (YDS)

  1. Geology, petrology and geochronology of the Lago Grande layered complex: Evidence for a PGE-mineralized magmatic suite in the Carajás Mineral Province, Brazil

    NASA Astrophysics Data System (ADS)

    Teixeira, Antonio Sales; Ferreira Filho, Cesar Fonseca; Giustina, Maria Emilia Schutesky Della; Araújo, Sylvia Maria; da Silva, Heloisa Helena Azevedo Barbosa

    2015-12-01

    The Lago Grande and Luanga mafic-ultramafic complexes are part of a cluster of PGE-mineralized layered intrusions located in the Carajás Mineral Province (CMP) in the Amazonian Craton. The Lago Grande Complex is a NE-trending medium-size (12-km-long and average 1.7-km-wide) layered intrusion consisting mainly of mafic cumulate rocks (Mafic Zone) and minor ultramafic cumulates (Ultramafic Zone). Geological sections indicate that igneous layers are overturned, such that the Ultramafic Zone overly the Mafic Zone. The Ultramafic Zone, about 4 km long and 500 m wide, comprises an up to 250 m-thick sequence of interlayered harzburgite and orthopyroxenite at the base and orthopyroxenite at the top. The Mafic Zone consists of a monotonous sequence of gabbroic rocks with an estimated thickness of up to 1000 m in the central part. Primary igneous minerals of the Lago Grande Complex are partially replaced by metamorphic assemblages that indicate temperatures up to the amphibolite facies of metamorphism. This metamorphic alteration is heterogeneous and characterized by an extensive hydration that largely preserves primary textures and bulk chemical composition. The composition of the parental magma of the Lago Grande Complex has been inferred from the crystallization sequences of the intrusion and lithogeochemistry of cumulate rocks. The compositional range of cumulus Ol (Fo82.5-85.7) is consistent with a moderately primitive composition for the parental magma. Cumulus minerals in the layered rocks indicate that the sequence of crystallization in the Lago Grande Complex consists of Ol + Chr, Opx + Chr, Opx, Opx + Pl and Opx + Pl + Cpx. The early crystallization of Opx relative to Cpx suggests that the primary magma was silica saturated. Mantle-normalized alteration-resistant trace element profiles of gabbroic rocks are fractionated, as indicated by relative enrichment in LREE and Th, with pronounced negative Nb and Ta anomalies. Nd isotopic data obtained for both mafic and ultramafic lithotypes render Nd model ages between 2.94 and 3.56 Ga, with variably negative ɛNd (T = 2.72 Ga) values (-0.32 to -4.25). The crystallization sequence of the intrusion and the composition of cumulus minerals, together with lithogeochemical and Nd isotopic results, are consistent with an original mantle melt contaminated with older continental crust. The contamination of mafic magma with sialic crust is also consistent with intra-plate rifting models proposed in several studies of the CMP. Lithogeochemical and isotopic data from the Lago Grande Complex may also be interpreted as the result of melting an old lithospheric mantle, and alternative models should not be disregarded. PGE mineralizations occur in chromitites and associated with base metal sulfides in the Lago Grande Complex. Chromitite has the highest PGE content (up to 10 ppm) and is characterized by high Pt/Pd ratio (4.3). Mantle-normalized profile of chromitite is highly enriched in PPGE and similar to those from Middle Group (MG) and Upper Group (UG) chromitites from the Bushveld Complex. Platinum group minerals (PGM) occur mainly at the edge of chromite crystals in the Lago Grande chromitite, consisting of arsenides and sulfo-arsenides. Sulfide-bearing harzburgite samples of the Lago Grande complex have PGE content of up to 1 ppm and low Pt/Pd (0.2-0.3) ratios. The 2722 ± 53 Ma U-Pb zircon age determined in this study for the Lago Grande Complex overlaps with the crystallization age of the Luanga Complex. Previous interpretation that the Lago Grande and Luanga layered intrusions are part of a magmatic suite (i.e., Serra Leste Magmatic Suite) is now reinforced by similar fractionation sequences, comparable petrological evolution and overlapped U-Pb zircon ages. The occurrence of the same styles of PGE mineralization in the Lago Grande and Luanga complexes, together with remarkably similar chondrite-normalized PGE profiles and PGE minerals for chromitites of both complexes, support the concept that they belong to the same PGE-fertile magmatic suite. U-Pb isotope analyses of zircon crystals obtained on bright luminescent rims with typical recrystallization features reveal a cluster of concordant to slightly discordant dates pointing at 2553 ± 61 Ma. These are likely to correspond to a significant disturbance of the U-Pb system of the Lago Grande Complex during the ca. 2.55 Ga regional scale hydrothermal event associated with the origin of IOCG type deposits. Common Bi-Cl minerals associated with highly transformed PGE-mineralized zones also suggest hydrothermal alteration by the regional IOCG type system. This type of alteration identified in the Lago Grande mafic-ultramafic layered intrusions may provide the explanation for common Ni-Co anomalies identified in several Cu-Au deposits, as well as hydrothermal Au-Pd mineralizations in Carajás.

  2. Optical luminescence studies of the ethyl xanthate adsorption layer on the surface of sphalerite minerals.

    PubMed

    Todoran, R; Todoran, D; Szakács, Zs

    2016-01-05

    In this work we propose optical luminescence measurements as a method to evaluate the kinetics of adsorption processes. Measurement of the intensity of the integral optical radiation obtained from the mineral-xanthate interface layer, stimulated with a monochromatic pulsating optical signal, as a function of time were made. The luminescence radiation was obtained from the thin interface layer formed at the separation surface between the sphalerite natural mineral and potassium ethyl xanthate solution, for different solution concentrations and pH-es at the constant industry standard temperature. This method enabled us to determine the time to achieve dynamic equilibrium in the formation of the interface layer of approximately 20min, gaining information on the adsorption kinetics in the case of xanthate on mineral surface and leading to the optimization of the industrial froth flotation process. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Synthesis of long Prebiotic Oligomers on Mineral Surfaces

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Hill, Aubrey R., Jr.; Liu, Rihe; Orgel, Leslie E.

    1996-01-01

    Most theories of the origin of biological organization assume that polymers with lengths in the range of 30-60 monomers are needed to make a genetic system viable. But it has not proved possible to synthesize plausibly prebiotic polymers this long by condensation in aqueous solution, because hydrolysis competes with polymerization. The potential of mineral surfaces to facilitate prebiotic polymerization was pointed out long ago. Here we describe a system that models prebiotic polymerization by the oligomerization of activated monomers -both nucleotides and amino acids. We find that whereas the reactions in solution produce only short oligomers (the longest typically being a 10-mer), the presence of mineral surfaces (montmorillonite for nucleotides, illite and hydroxylapatite for amino adds) induces the formation of oligomers up to 55 monomers long. These are formed by successive "feedings" with the monomers; polymerization takes place on the mineral surfaces in a manner akin to solid-phase synthesis of biopolymers.

  4. Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia

    NASA Astrophysics Data System (ADS)

    Cooper, Rebecca Elizabeth; Eusterhues, Karin; Wegner, Carl-Eric; Totsche, Kai Uwe; Küsel, Kirsten

    2017-11-01

    The formation of Fe(III) oxides in natural environments occurs in the presence of natural organic matter (OM), resulting in the formation of OM-mineral complexes that form through adsorption or coprecipitation processes. Thus, microbial Fe(III) reduction in natural environments most often occurs in the presence of OM-mineral complexes rather than pure Fe(III) minerals. This study investigated to what extent does the content of adsorbed or coprecipitated OM on ferrihydrite influence the rate of Fe(III) reduction by Shewanella oneidensis MR-1, a model Fe(III)-reducing microorganism, in comparison to a microbial consortium extracted from the acidic, Fe-rich Schlöppnerbrunnen fen. We found that increased OM content led to increased rates of microbial Fe(III) reduction by S. oneidensis MR-1 in contrast to earlier findings with the model organism Geobacter bremensis. Ferrihydrite-OM coprecipitates were reduced slightly faster than ferrihydrites with adsorbed OM. Surprisingly, the complex microbial consortia stimulated by a mixture of electrons donors (lactate, acetate, and glucose) mimics S. oneidensis under the same experimental Fe(III)-reducing conditions suggesting similar mechanisms of electron transfer whether or not the OM is adsorbed or coprecipitated to the mineral surfaces. We also followed potential shifts of the microbial community during the incubation via 16S rRNA gene sequence analyses to determine variations due to the presence of adsorbed or coprecipitated OM-ferrihydrite complexes in contrast to pure ferrihydrite. Community profile analyses showed no enrichment of typical model Fe(III)-reducing bacteria, such as Shewanella or Geobacter sp., but an enrichment of fermenters (e.g., Enterobacteria) during pure ferrihydrite incubations which are known to use Fe(III) as an electron sink. Instead, OM-mineral complexes favored the enrichment of microbes including Desulfobacteria and Pelosinus sp., both of which can utilize lactate and acetate as an electron donor under Fe(III)-reducing conditions. In summary, this study shows that increasing concentrations of OM in OM-mineral complexes determines microbial Fe(III) reduction rates and shapes the microbial community structure involved in the reductive dissolution of ferrihydrite. Similarities observed between the complex Fe(III)-reducing microbial consortia and the model Fe(III)-reducer S. oneidensis MR-1 suggest electron-shuttling mechanisms dominate in OM-rich environments, including soils, sediments, and fens, where natural OM interacts with Fe(III) oxides during mineral formation.

  5. The reversibility of virus attachment to mineral surfaces

    USGS Publications Warehouse

    Loveland, J.P.; Ryan, J.N.; Amy, G.L.; Harvey, R.W.

    1996-01-01

    Virus transport through groundwater is limited by attachment to mineral surfaces and inactivation. Current virus transport models do not consider the implications of the reversibility of virus attachment to minerals. To explore the reversibility of virus attachment to mineral surfaces, we attached PRD1, a bacteriophage considered to be a good model of enteric viruses, to quartz and ferric oxyhydroxide-coated quartz surfaces over a range of pH values in equilibrium 'static columns'. Following attachment, we detached the viruses by replacing the pore solution with solutions of equal and higher pH. The extent of virus attachment followed an attachment 'edge' that occurred at a pH value about 2.5-3.5 pH units above the pH(IEP) of the mineral surfaces. Viruses attached below this edge were irreversibly attached until the pH of the detachment solution exceeded the pH value of the attachment edge. Viruses attached above this edge were reversibly attached. Derjaguin-Landau-Verwey-Overbeek (DEVO) potential energy calculations showed that the attachment edge occurred at the pH at which the potential energy of the primary minimum was near zero, implying that the position of the primary minimum (attractive or repulsive) controlled the equilibrium distribution of the viruses. The results suggest that the reversibility of virus attachment must be considered in virus transport models for accurate predictions of virus travel time.

  6. Solar photo-Fenton mineralization of antipyrine in aqueous solution.

    PubMed

    Durán, A; Monteagudo, J M; Sanmartín, I; Carrasco, A

    2013-11-30

    The mineralization of an aqueous solution of antipyrine (C11H12N2O), an emerging contaminant, using a solar photocatalytic oxidation process assisted with ferrioxalate was evaluated in a compound parabolic collector (CPC) pilot plant. Under the selected operating conditions ([H2O2] = 250 ppm, [Fe] = 14 ppm, pH = 2.7, and [(COOH)2·2H2O] = 80 ppm), 60% of TOC is removed just 5 min after treating an aqueous solution containing 50 ppm of antipyrine. The addition of oxalic acid up to a maximum concentration of 80 ppm significantly increases the mineralization rate during the first 15 min of the reaction. The synergism between the solar and dark H2O2/ferrioxalate process was quantified at 79%, calculated from the pseudo first-order mineralization rate constants. The operational costs due to the consumption of electrical energy, reagents and catalysts were calculated from the optimal conditions and compared with a novel sono-photocatalytic process using artificial UV-light. The results showed that the ferrioxalate-assisted solar photo-Fenton process was economically feasible, being able to achieve up to 60% mineralization with a total cost of 4.5 cent €/g TOC removed (1.1 €/m(3)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Titanium, vanadium, and niobium mineralization and alkali metasomatism from the Magnet Cove complex, Arkansas

    USGS Publications Warehouse

    Flohr, M.J.K.

    1994-01-01

    The Christy deposit formed through a series of complex processes. The initial phase of mineralization is directly related to the infiltration of novaculite by alkali-rich fluids that were probably derived from carbonatite magma. Titanium, V, Nb, and Li were introduced by the alkali-rich fluids at temperatures that were as high as 600??C. During the initial stage of mineralization, V was concentrated in aegirine and sodic amphibole, Li was concentrated in taeniolite, minor amounts of Ti were concentrated in aegirine, and pyrite formed. The replacement of novaculite by the aforementioned minerals yielded excess silica, which precipitated as quartz. Niobium- and V-bearing brookite precipitated with the quartz. Minerals formed during the first stage reacted with a second fluid at temperatures of 100?? to 300??C and V was then concentrated in smectite and goethite. The second fluid was a mixture of low-temperature metasomatic fluid and groundwater. Vanadium was further concentrated in clay minerals in goethite, and in vug minerals as low-temperature alteration proceeded. -from Author

  8. Rheological performance of bacterial cellulose based nonmineralized and mineralized hydrogel scaffolds

    NASA Astrophysics Data System (ADS)

    Basu, Probal; Saha, Nabanita; Bandyopadhyay, Smarak; Saha, Petr

    2017-05-01

    Bacterial cellulose (BC) based hydrogels (BC-PVP and BC-CMC) are modified with β-tri-calcium phosphate (β-TCP) and hydroxyapatite (HA) to improve the structural and functional properties of the existing hydrogel scaffolds. The modified hydrogels are then biomineralized with CaCO3 following liquid diffusion technique, where salt solutions of Na2CO3 (5.25 g/100 mL) and CaCl2 (7.35 g/100 mL) were involved. The BC-PVP and BC-CMC are being compared with the non-mineralized (BC-PVP-β-TCP/HA and BC-CMC-β-TCP/HA) and biomineralized (BC-PVP-β-TCP/HA-CaCO3 and BC-CMC-β-TCP/HA-CaCO3) hydrogels on the basis of their structural and rheological properties. The Fourier Transform Infrared (FTIR) spectral analysis demonstrated the presence of BC, CMC, PVP, β-TCP, HA in the non-mineralized and BC, CMC, PVP, β-TCP, HA and CaCO3 in the biomineralized samples. Interestingly, the morphological property of non-mineralized and biomineralized, hydrogels are different than that of BC-PVP and BC-CMC based novel biomaterials. The Scanning Electron Microscopic (SEM) images of the before mentioned samples reveal the denser structures than BC-PVP and BC-CMC, which exhibits the changes in their pore sizes. Concerning rheological analysis point of view, all the non-mineralized and biomineralized hydrogel scaffolds have shown significant elastic property. Additionally, the complex viscosity (η*) values have also found in decreasing order with the increase of angular frequency (ω) 0.1 rad.sec-1 to 100 rad.sec-1. All these BC based hydrogel scaffolds are elastic in nature, can be recommended for their application as an implant for bone tissue engineering.

  9. Advanced oxidation of real sulfamethoxazole + trimethoprim formulations using different anodes and electrolytes.

    PubMed

    Murillo-Sierra, Juan C; Sirés, Ignasi; Brillas, Enric; Ruiz-Ruiz, Edgar J; Hernández-Ramírez, Aracely

    2018-02-01

    A commercial sulfamethoxazole + trimethoprim formulation has been degraded in 0.050 M Na 2 SO 4 at pH 3.0 by electrochemical oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ), electro-Fenton (EF), photoelectro-Fenton with a 6-W UVA lamp (PEF) and solar photoelectro-Fenton (SPEF). The tests were performed in an undivided cell with an IrO 2 -based, Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H 2 O 2 electrogeneration. The anode material had little effect on the accumulated H 2 O 2 concentration. Both drugs always obeyed a pseudo-first-order decay with low apparent rate constant in EO-H 2 O 2 . Much higher values were found in EF, PEF and SPEF, showing no difference because the main oxidant was always OH formed from Fenton's reaction between H 2 O 2 and added Fe 2+ . The solution mineralization increased in the sequence EO-H 2 O 2  < EF < PEF < SPEF regardless of the anode. The IrO 2 -based and Pt anodes behaved similarly but BDD was always more powerful. In SPEF, similar mineralization profiles were found for all anodes because of the rapid removal of photoactive intermediates by sunlight. About 87% mineralization was obtained as maximum for the powerful SPEF with BDD anode. Addition of Cl - enhanced the decay of both drugs due to their quicker reaction with generated active chlorine, but the formation of persistent chloroderivatives decelerated the mineralization process. Final carboxylic acids like oxalic and oxamic were detected, yielding Fe(III) complexes that remained stable in EF with BDD but were rapidly photolyzed in SPEF with BDD, explaining its superior mineralization ability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Weathering of almandine garnet: influence of secondary minerals on the rate-determining step, and implications for regolith-scale Al mobilization

    Treesearch

    Jason R. Price; Debra S. Bryan-Ricketts; Diane Anderson; Michael A. Velbel

    2013-01-01

    Secondary surface layers form by replacement of almandine garnet during chemical weathering. This study tested the hypothesis that the kinetic role of almandine's weathering products, and the consequent relationships of primary-mineral surface texture and specific assemblages of secondary minerals, both vary with the solid-solution-controlled variations in Fe and...

  11. Monitoring of hydroxyapatite conversion by luminescence intensity of Eu3+ ions during mineralization of Eu3+-doped β-Ca2SiO4

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Chen, Jie; Li, Yadong; Seo, Hyo Jin

    2014-11-01

    β-Dicalcium silicate (β-Ca2SiO4) doped with Eu3+ was synthesized by sol-gel method. The luminescence intensity of the mineralization products formed during the hydroxyapatite (Ca10(PO4)6(OH)2, HA) conversion of Eu3+-doped β-Ca2SiO4, in 0.25 M K2HPO4 solution, were detected using luminescence spectroscopy. The results indicated that the luminescence intensity of Eu3+ ion gradually depressed with prolonged mineralization time, and it could hardly be detected with the complete transformation from β-Ca2SiO4:Eu3+ to hydroxyapatite. The change of Eu3+ ionic concentrations in the mineralization products and the final solutions after conversion reaction, were further examined using energy-dispersive X-ray and inductively-coupled plasma mass spectrometry, respectively. This suggested that the process of mineralization can be monitored with the luminescence intensity of Eu3+ ions in the mineralization products. The current study will open up a new and simple in vivo avenue for in situ monitoring hydroxyapatite conversion with a fiber luminescence spectrometer.

  12. Effect of basin physical characteristics on solute fluxes in nine alpine/subalpine basins, Colorado, USA

    USGS Publications Warehouse

    Sueker, J.K.; Clow, D.W.; Ryan, J.N.; Jarrett, R.D.

    2001-01-01

    Alpine/subalpine basins may exhibit substantial variability in solute fluxes despite many apparent similarities in basin characteristics. An evaluation of controls on spatial patterns in solute fluxes may allow development of predictive tools for assessing basin sensitivity to outside perturbations such as climate change or deposition of atmospheric pollutants. Relationships between basin physical characteristics, determined from geographical information system (GIS) tools, and solute fluxes and mineral weathering rates were explored for nine alpine/subalpine basins in Rocky Mountain National Park, Colorado, using correlation analyses for 1993 and 1994 data. Stream-water nitrate fluxes were correlated positively with basin characteristics associated with the talus environment; i.e., the fractional amounts of steep slopes (??? 30??), unvegetated terrain and young debris (primarily Holocene till) in the basins, and were correlated negatively with fractional amounts of subalpine meadow terrain. Correlations with nitrate indicate the importance of the talus environment in promoting nitrate flux and the mitigating effect of areas with established vegetation, such as subalpine meadows. Total mineral weathering rates for the basins ranged from about 300 to 600 mol ha-1 year -1. Oligoclase weathering accounted for 30 to 73% of the total mineral weathering flux, and was positively correlated with the amount of old debris (primarily Pleistocene glacial till) in the basins. Although calcite is found in trace amounts in bedrock, calcite weathering accounted for up to 44% of the total mineral weathering flux. Calcite was strongly correlated with steep slope, unvegetated terrain, and young debris-probably because physical weathering in steep-gradient areas exposes fresh mineral surfaces that contain calcite for chemical weathering. Oligoclase and calcite weathering are the dominant sources of alkalinity in the basins. However, atmospherically deposited acids consume much of the alkalinity generated by weathering of calcite and other minerals in the talus environment. Published in 2001 by John Wiley and Sons, Ltd.

  13. Effect of basin physical characteristics on solute fluxes in nine alpine/subalpine basins, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Sueker, Julie K.; Clow, David W.; Ryan, Joseph N.; Jarrett, Robert D.

    2001-10-01

    Alpine/subalpine basins may exhibit substantial variability in solute fluxes despite many apparent similarities in basin characteristics. An evaluation of controls on spatial patterns in solute fluxes may allow development of predictive tools for assessing basin sensitivity to outside perturbations such as climate change or deposition of atmospheric pollutants. Relationships between basin physical characteristics, determined from geographical information system (GIS) tools, and solute fluxes and mineral weathering rates were explored for nine alpine/subalpine basins in Rocky Mountain National Park, Colorado, using correlation analyses for 1993 and 1994 data. Stream-water nitrate fluxes were correlated positively with basin characteristics associated with the talus environment; i.e., the fractional amounts of steep slopes ( 30°), unvegetated terrain and young debris (primarily Holocene till) in the basins, and were correlated negatively with fractional amounts of subalpine meadow terrain. Correlations with nitrate indicate the importance of the talus environment in promoting nitrate flux and the mitigating effect of areas with established vegetation, such as subalpine meadows. Total mineral weathering rates for the basins ranged from about 300 to 600 mol ha-1 year-1. Oligoclase weathering accounted for 30 to 73% of the total mineral weathering flux, and was positively correlated with the amount of old debris (primarily Pleistocene glacial till) in the basins. Although calcite is found in trace amounts in bedrock, calcite weathering accounted for up to 44% of the total mineral weathering flux. Calcite was strongly correlated with steep slope, unvegetated terrain, and young debris - probably because physical weathering in steep-gradient areas exposes fresh mineral surfaces that contain calcite for chemical weathering. Oligoclase and calcite weathering are the dominant sources of alkalinity in the basins. However, atmospherically deposited acids consume much of the alkalinity generated by weathering of calcite and other minerals in the talus environment. Published in 2001 by John Wiley & Sons, Ltd.

  14. Adsorption of organic ligands on low surface charge clay minerals: the composition in the aqueous interface region.

    PubMed

    Jelavić, S; Stipp, S L S; Bovet, N

    2018-06-27

    An understanding of the mechanisms that control the adsorption of organic molecules on clay minerals is of interest in several branches of science and industry. Oil production using low salinity injection fluids can increase yields by as much as 40% over standard injection with seawater or formation water. The mechanism responsible for the low salinity response is still debated, but one hypothesis is a change in pore surface wettability. Organic contamination in soil and drinking water aquifers is a challenge for municipal water suppliers and for agriculture. A better understanding is needed for how mineral species, solution composition and pH affect the desorption of low molecular weight organic ligands from clay minerals and consequently their wettability. We used X-ray photoelectron spectroscopy under cryogenic conditions to investigate the in situ composition in the mineral-solution interface region in a series of experiments with a range of pH and ion concentrations. We demonstrate that both chlorite and kaolinite release organic molecules under conditions relevant for low salinity water flooding. This release increases with a higher solution pH but is only slightly affected by the character of the organic ligand. This is consistent with the observation that low salinity enhanced oil recovery correlates with the presence of chlorite and kaolinite. Our results indicate that the pore surface charge and salinity of formation water and injection fluids are key parameters in determining the low salinity response. In general, our results imply that clay mineral surface charge influences the composition in the interface through an affinity for organic molecules.

  15. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite.

    PubMed

    Chandra, A P; Gerson, A R

    2009-01-30

    A review of the considerable, but often contradictory, literature examining the specific surface reactions associated with copper adsorption onto the common metal sulfide minerals sphalerite, (Zn,Fe)S, and pyrite (FeS(2)), and the effect of the co-location of the two minerals is presented. Copper "activation", involving the surface adsorption of copper species from solution onto mineral surfaces to activate the surface for hydrophobic collector attachment, is an important step in the flotation and separation of minerals in an ore. Due to the complexity of metal sulfide mineral containing systems this activation process and the emergence of activation products on the mineral surfaces are not fully understood for most sulfide minerals even after decades of research. Factors such as copper concentration, activation time, pH, surface charge, extent of pre-oxidation, water and surface contaminants, pulp potential and galvanic interactions are important factors affecting copper activation of sphalerite and pyrite. A high pH, the correct reagent concentration and activation time and a short time delay between reagent additions is favourable for separation of sphalerite from pyrite. Sufficient oxidation potential is also needed (through O(2) conditioning) to maintain effective galvanic interactions between sphalerite and pyrite. This ensures pyrite is sufficiently depressed while sphalerite floats. Good water quality with low concentrations of contaminant ions, such as Pb(2+)and Fe(2+), is also needed to limit inadvertent activation and flotation of pyrite into zinc concentrates. Selectivity can further be increased and reagent use minimised by opting for inert grinding and by carefully choosing selective pyrite depressants such as sulfoxy or cyanide reagents. Studies that approximate plant conditions are essential for the development of better separation techniques and methodologies. Improved experimental approaches and surface sensitive techniques with high spatial resolution are needed to precisely verify surface structures formed after copper activation. Sphalerite and pyrite surfaces are characterised by varying amounts of steps and defects, and this heterogeneity suggests co-existence of more than one copper-sulfide structure after activation.

  16. Beryllium geochemistry in soils: Evaluation of 10Be/9Be ratios in authigenic minerals as a basis for age models

    USGS Publications Warehouse

    Barg, E.; Lal, D.; Pavich, M.J.; Caffee, M.W.; Southon, J.R.

    1997-01-01

    Soils contain a diverse and complex set of chemicals and minerals. Being an 'open system', both in the chemical and nuclear sense, soils have defied quantitative nuclear dating. However, based on the published studies of the cosmogenic atmospheric 10Be in soils, its relatively long half-life (1.5 Ma), and the fact that 10Be gets quickly incorporated in most soil minerals, this radionuclide appears to be potentially the most useful for soil dating. We therefore studied the natural variations in the specific activities of 10Be with respect to the isotope 9Be in mineral phases in eight profiles of diverse soils from temperate to tropical climatic regimes and evaluated the implications of the data for determining the time of formation of soil minerals, following an earlier suggestion [Lal et al., 1991. Development of cosmogenic nuclear methods for the study of soil erosion and formation rates. Current Sci. 61, 636-639.]. We find that the 10Be/9Be ratios in both bulk soils and in the authigenic mineral phases are confined within a narrower range than in 10Be concentrations. Also, the highest 10Be/9Be ratios in authigenic minerals are observed at the soil-rock interface as predicted by the model. We present model 10Be/9Be ages of the B-horizon and the corresponding soil formation rates for several soil profiles. The present study demonstrates that the 10Be/9Be ratios in the authigenic phases, e.g. clay and Fe-hydroxides, can indeed be used for obtaining useful model ages for soils younger than 10-15 Ma. However, the present work has to be pushed considerably further, to take into account more realistic age models in which, for instance, downward transport of 10Be and clays, and in-situ dissolution of clay minerals at depths, altering the 10Be/9Be ratios of the acidic solutions, are included. We show that in the case of younger soils (< 1 Ma) studied here, their 10Be inventories and 10Be/9Be ratios have been significantly disturbed possibly by mixing with transported soils. ?? 1997 Elsevier Science B.V.

  17. The role of fluids in rock layering development: a pressure solution self-organized process revealed by laboratory experiments

    NASA Astrophysics Data System (ADS)

    Gratier, Jean-Pierre; Noiriel, Catherine; Renard, Francois

    2015-04-01

    Natural deformation of rocks is often associated with stress-driven differentiation processes leading to irreversible transformations of their microstructures. The development mechanisms of such processes during diagenesis, tectonic, metamorphism or fault differentiation are poorly known as they are difficult to reproduce experimentally due to the very slow kinetics of stress-driven chemical processes. Here, we show that experimental compaction with development of differentiated layering, similar to what happens in natural deformation, can be obtained by indenter techniques in laboratory conditions. Samples of plaster mixed with clay and of diatomite loosely interbedded with volcanic dust were loaded in presence of their saturated aqueous solutions during several months at 40°C and 150°C, respectively. High-resolution X-ray microtomography and scanning electron microscopy observations show that the layering development is a pressure solution self-organized process. Stress-driven dissolution of the soluble minerals (either gypsum or silica) is initiated in the areas initially richer in insoluble minerals (clays or volcanic dust) because the kinetics of diffusive mass transfer along the soluble/insoluble mineral interfaces is much faster than along the healed boundaries of the soluble minerals. The passive concentration of insoluble minerals amplifies the localization of dissolution along some layers oriented perpendicular to the maximum compressive stress. Conversely, in the areas with initial low content in insoluble minerals and clustered soluble minerals, dissolution is slower. Consequently, these areas are less deformed, they host the re-deposition of the soluble species and they act as rigid objects that concentrate the dissolution near their boundaries thus amplifying the differentiation. A crucial parameter required for self-organized process of pressure solution is the presence of a fluid that is a good solvent of at least some of the rock-forming minerals. Another general requirement for the development of such differentiated layering is the heterogeneous mixing of variously soluble and insoluble species. From a general point of view, the development of diagenetic or tectonic layering has crucial consequences in geological processes. The main one is to modify the composition and microstructure of rocks by dissolution of the most soluble species, passive concentration of the insoluble species and re-deposition of the dissolved species at a distance that depends on the transport efficiency (diffusion or advection). Consequently, layering development modifies both the rheological and the transfer properties of rocks. It is the most common strain localization process in the upper crust when a reactive fluid phase is present, complementary to other strain localization processes in the lithosphere. A specific effect is the development of anisotropic properties that may favor local sliding on weak surfaces. This is particularly important in fault zones where pressure solution processes are at work. Modeling of differentiated layering during natural deformation must be rooted in the stress-driven dissolution and transport properties of the various minerals forming the rocks, and on the evolution of their rheological properties. The strength evolution can be taken into account through a weakening factor in the zone of dissolution and a strengthening factor in the zone of deposition. The kinetics evolution is controlled by the critical parameters of pressure solution.

  18. Up-scaling mineral-aqueous interfacial processes that govern isotope and trace element partitioning during calcite growth

    NASA Astrophysics Data System (ADS)

    Lammers, L. N.

    2014-12-01

    The dependence of the isotopic and trace element composition of calcium carbonate minerals on growth conditions including temperature, pH, and salinity is widely used to infer paleoclimate conditions. These inferences rely heavily on phenomenological observations of biogenic and inorganic precipitation both in and ex situ, where only limited variability in solution conditions can be explored. Ionic fluxes between the mineral surface and aqueous growth solution govern the net uptake of both stoichiometric and trace species during calcification, so developing a mechanistic understanding of the reactions governing these fluxes is critical to refine existing proxies and to develop new ones. The micro-scale mechanisms of calcite precipitation from aqueous solution have been extensively studied, and net ionic uptake post-nucleation is known to occur primarily at monomolecular kink sites along step edges at the mineral surface. In this talk, I will present a theoretical framework that uses the quasi-elementary ion attachment and detachment reactions governing ion uptake at kink sites to simultaneously model bulk mineral growth kinetics and tracer partitioning during calcite precipitation. Several distinct processes occur during ion uptake at kink sites that can influence the distribution of trace species, directly impacting the composition of various carbonate paleoproxies including δ44Ca, δ18O, Sr/Ca and Mg/Ca. The distribution of these trace species will be shown to depend on (1) the relative rates of ion desolvation during attachment to kink sites, (2) the relative rates of bond breaking during detachment from kink sites, and (3) the equilibrium partitioning of trace aqueous species. This model accounts for the impact of solution conditions on net ion fluxes and surface speciation, which in turn controls the population of kink sites available for direct ion exchange with the aqueous phase. The impacts of solution variables including pH, temperature and salinity can be treated independently, which unlike traditional partitioning studies allows the impacts of these parameters to be deconvolved. The type of theoretical framework discussed here can be readily extended to explicitly account for each of the major solution composition variables that are implicated in paleoproxy composition.

  19. Rare earth elements as a fingerprint of soil components solubilization

    NASA Astrophysics Data System (ADS)

    Davranche, M.; Grybos, M.; Gruau, G.; Pédrot, M.; Dia, A.

    2009-04-01

    The retention of rare earth element (REE) in the soil profile are mainly controlled by three factors, (i) the stability of the primary REE-carrying minerals, (ii) the presence of secondary phases as clays and Fe- and Mn-oxyhydroxides and (ii) the concentration of colloidal organic matter (OM). Considering that each soil phases (mineral or organic) displays (ii) various surface properties, such as specific area, surface sites density and nature and (ii) their own REE distribution inherited from the rock weathering, their mobilization through various chemical reactions (dissolution, colloidal release….) may involve the development of various shaped REE patterns in the soil solutions. REE fractionation from the different soil phases may therefore be used to identify the response of the soil system to a particular chemical process such as reductive and/or acidic dissolution. To test this purpose, an organic-rich wetland soil sample was incubated under anaerobic condition at both pH 5 and uncontrolled pH. The REE patterns developed in the soil solution were then compared to the REE patterns obtained through either aerobic at pH 3 and 7 incubations or a chemical reduction experiment (using hydroxylamine). REE patterns in anaerobic and aerobic at pH 7 experiments exhibited the same middle rare earth element (MREE) downward concavity significant of the complexation of REE with soil OM. By contrast, under acidic condition, the REE pattern exhibited a positive Eu anomaly due to the dissolution of soil feldspar. Finally, REE pattern obtained from the chemical reducing experiment showed an intermediary flat shape corresponding to a mixing between the soil organic and mineral phases dissolution. The comparison of the various REE pattern shapes allowed to conclude that (i) biological reduction of wetland soil involved amorphous Fe(III) colloids linked to OM and, (ii) that the REE mobility was controlled by the dynamic of OM in wetland soil. They also evidence the potential of REE to be use as a tracer of the soil phases involved in the various chemical processes running in soil solutions.

  20. Experimental study of terrestrial plant litter interaction with aqueous solutions

    NASA Astrophysics Data System (ADS)

    Fraysse, F.; Pokrovsky, O. S.; Meunier, J.-D.

    2010-01-01

    Quantification of silicon and calcium recycling by plants is hampered by the lack of physico-chemical data on reactivity of plant litter in soil environments. We applied a laboratory experimental approach for determining the silica and calcium release rates from litter of typical temperate and boreal plants: pine ( Pinus laricio), birch ( Betula pubescens), larch ( Larix gmelinii), elm ( Ulmus laevis Pall.), tree fern ( Dicksonia squarrosa), and horsetail (Equisetum arvense) in 0.01 M NaCl solutions, pH of 2-10 and temperature equals to 5, 25 and 40 °C. Open system, mixed-flow reactors equipped with dialysis compartment and batch reactors were used. Comparative measurements were performed on intact larch needles and samples grounded during different time, sterilized or not and with addition or not of sodium azide in order to account for the effect of surface to mass ratio and possible microbiological activity on the litter dissolution rates. Litter degradation results suggest that the silica release rate is independent on dissolved organic carbon release (cell breakdown) which implies the presence of phytoliths in a pure "inorganic" pool not complexed with organic matter. Calcium and DOC are released at the very first stage of litter dissolution while Si concentration increases gradually suggesting the presence of Ca and Si in two different pools. The dry-weight normalized dissolution rate at circum-neutral pH range (approx. 1-10 μmol/g DW/day) is 2 orders of magnitude higher than the rates of Si release from common soil minerals (kaolinite, smectite, illite). Minimal Ca release rates evaluated from batch and mixed-flow reactors are comparable with those of most reactive soil minerals such as calcite and apatite, and several orders of magnitude higher than the dissolution rates of major rock-forming silicates (feldspars, pyroxenes). The activation energy for Si liberation from plant litter is approx. 50 kJ/mol which is comparable with that of surface-controlled mineral dissolutions. It is shown that the Si release rate from the above-ground forest biomass is capable of producing the Si concentrations observed in soil solutions of surficial horizons and contribute significantly to the Si flux from the soil to the river.

  1. Mineral sulphide-lime reactions and effect of CaO/C mole ratio during carbothermic reduction of complex mineral sulphides

    NASA Astrophysics Data System (ADS)

    Hara, Yotamu Stephen Rainford

    2014-01-01

    Mineral sulphide (MS)-lime (CaO) ion exchange reactions (MS + CaO = MO + CaS) and the effect of CaO/C mole ratio during carbothermic reduction (MS + CaO + C = M + CaS + CO(g)) were investigated for complex froth flotation mineral sulphide concentrates. Phases in the partially and fully reacted samples were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The primary phases during mineral sulphide-lime ion exchange reactions are Fe3O4, CaSO4 Cu2S, and CaS. A complex liquid phase of Ca2CuFeO3S forms during mineral sulphide-lime exchange reactions above 1173 K. The formation mechanisms of Ca2CuFeO3S liquid phase are determined by characterising the partially reacted samples. The reduction rate and extent of mineral sulphides in the presence of CaO and C increase with the increase in CaO/C ratio. The metallic phases are surrounded by the CaS rich phase at CaO/C > 1, but the metallic phases and CaS are found as separate phases at CaO/C < 1. Experimental results show that the stoichiometric ratio of carbon should be slightly higher than that of CaO. The reactions between CaO and gangue minerals (SiO2 and Al2O3) are only observed at CaO/C > 1 and the reacted samples are excessively sintered.

  2. Effect of aluminium on dissolved organic matter mineralization in an allophanic and kaolinitic temperate rain forest soil

    NASA Astrophysics Data System (ADS)

    Merino, Carolina; Matus, Francisco; Fontaine, Sebastien

    2016-04-01

    Aluminium (Al) and it influence on the mineralization of dissolved organic matter (DOM) and thus on carbon (C) sequestration in forest soils is poorly understood. We hypothesized that an addition of Al to the soil solution beyond a molar Al:C ratio of 0.1, induces precipitation of the organic matter which leads to an excess Al in the soil solution causing an inhibitory effect for growing microorganisms. We investigated the effect of Al concentrations for the potential of C biodegradation at different Al:C ratios from DOM and Ah mineral soil horizons from two temperate rain forest soils from southern Chile. Dissolved organic matter and surface mineral horizons were incubated with initial molar Al:C ratio from 0.08 to 1.38 found under at field conditions. Mineralization was quantified by measurement of C-CO2 evolved during 15 days. Increasing the initial Al:C ratio > 0.12, led to a considerable reduction in mineralization (up to 70%). For Al:C ratio < 0.12, the mineralization rates from DOM and mineral soils were unaffected. Consequently, there would be a considerable reduction in the biodegradation of DOM and thus an increased in the C sequestration in mineral soils with molar Al:C ratio > 0.12. The observed DOM losses in the stream water of pristine southern forests can be explained by increasing the bioavailability of organic C for Al:C ratio < 0.12. Aluminium concentration had a marked effect at the spectral ART-FTIR bands assigned to cellulose-like and aromatic compounds in Ah mineral soil, diminishing the mineralization. The present results were also confirmed by the Al fluorescence using a confocal microscopy.

  3. A Complex Systems Model Approach to Quantified Mineral Resource Appraisal

    USGS Publications Warehouse

    Gettings, M.E.; Bultman, M.W.; Fisher, F.S.

    2004-01-01

    For federal and state land management agencies, mineral resource appraisal has evolved from value-based to outcome-based procedures wherein the consequences of resource development are compared with those of other management options. Complex systems modeling is proposed as a general framework in which to build models that can evaluate outcomes. Three frequently used methods of mineral resource appraisal (subjective probabilistic estimates, weights of evidence modeling, and fuzzy logic modeling) are discussed to obtain insight into methods of incorporating complexity into mineral resource appraisal models. Fuzzy logic and weights of evidence are most easily utilized in complex systems models. A fundamental product of new appraisals is the production of reusable, accessible databases and methodologies so that appraisals can easily be repeated with new or refined data. The data are representations of complex systems and must be so regarded if all of their information content is to be utilized. The proposed generalized model framework is applicable to mineral assessment and other geoscience problems. We begin with a (fuzzy) cognitive map using (+1,0,-1) values for the links and evaluate the map for various scenarios to obtain a ranking of the importance of various links. Fieldwork and modeling studies identify important links and help identify unanticipated links. Next, the links are given membership functions in accordance with the data. Finally, processes are associated with the links; ideally, the controlling physical and chemical events and equations are found for each link. After calibration and testing, this complex systems model is used for predictions under various scenarios.

  4. Origin of middle rare earth element enrichments in acid waters of a Canadian high Arctic lake.

    NASA Astrophysics Data System (ADS)

    Johannesson, Kevin H.; Zhou, Xiaoping

    1999-01-01

    -Middle rare earth element (MREE) enriched rock-normalized rare earth element (REE) patterns of a dilute acidic lake (Colour Lake) in the Canadian High Arctic, were investigated by quantifying whole-rock REE concentrations of rock samples collected from the catchment basin, as well as determining the acid leachable REE fraction of these rocks. An aliquot of each rock sample was leached with 1 N HNO 3 to examine the readily leachable REE fraction of each rock, and an additional aliquot was leached with a 0.04 M NH 2OH · HCl in 25% (v/v) CH 3COOH solution, designed specifically to reduce Fe-Mn oxides/oxyhydroxides. Rare earth elements associated with the leachates that reacted with clastic sedimentary rock samples containing petrographically identifiable Fe-Mn oxide/oxyhydroxide cements and/or minerals/amorphous phases, exhibited whole-rock-normalized REE patterns similar to the lake waters, whereas whole-rock-normalized leachates from mafic igneous rocks and other clastic sedimentary rocks from the catchment basin differed substantially from the lake waters. The whole-rock, leachates, and lake water REE data support acid leaching or dissolution of MREE enriched Fe-Mn oxides/oxyhydroxides contained and identified within some of the catchment basin sedimentary rocks as the likely source of the unique lake water REE patterns. Solution complexation modelling of the REEs in the inflow streams and lake waters indicate that free metal ions (e.g., Ln 3+, where Ln = any REE) and sulfate complexes (LnSO 4+) are the dominant forms of dissolved REEs. Consequently, solution complexation reactions involving the REEs during weathering, transport to the lake, or within the lake, cannot be invoked to explain the MREE enrichments observed in the lake waters.

  5. Biogenic production of cyanide and its application to gold recovery.

    PubMed

    Campbell, S C; Olson, G J; Clark, T R; McFeters, G

    2001-03-01

    Chromobacterium violaceum is a cyanogenic (cyanide-producing) microorganism. Cyanide is used on an industrial scale to complex and recover gold from ores or concentrates of ores bearing the precious metal. A potentially useful approach in gold mining operations could be to produce cyanide biologically in relatively small quantities at the ore surface. In this study, C. violaceum grown in nutrient broth formed a biofilm and could complex and solubilize 100% of the gold on glass test slides within 4-7 days. Approximately 50% of the cyanide- recoverable gold could be mobilized from a biooxidized sulfidic-ore concentrate. Complexation of cyanide in solution by gold appeared to have a beneficial effect on cell growth--viable cell counts were nearly two orders of magnitude greater in the presence of gold-coated slides or biooxidized ore substrates than in their absence. C. violaceum was cyanogenic when grown in alternative feedstocks. When grown in a mineral salt solution supplemented with 13.3% v/v swine fecal material (SFM), cells exhibited pigmentation and suspended cell concentrations comparable to cultures grown in nutrient broth. Glycine supplements stimulated production of cyanide in 13.3% v/v SFM. In contrast, glycine was inhibitory when added at the time of inoculation in the more concentrated SFM, decreasing cell numbers and reducing ultimate bulk-solution cyanide concentrations. However, aeration and addition of glycine to stationary phase cells grown on 13.3% v/v SFM anaerobically resulted in rapid production and high concentrations (up to 38 mg l(-1)) of cyanide. This indicates that biogenesis of cyanide may be supported in remote areas using locally produced and inexpensive agricultural feedstocks in place of commercial media.

  6. The source of dissolved silicon in soil surface solutions of a temperate forest ecosystem: Ge/Si and Si isotope ratios as biogeochemical tracers

    NASA Astrophysics Data System (ADS)

    Cornelis, J.; Delvaux, B.; Cardinal, D.; André, L.; Ranger, J.; Opfergelt, S.

    2010-12-01

    Understand the biogeochemical cycle of silicon (Si) in the Earth’s critical zone and the dissolved Si transfer from the litho-pedosphere into the hydrosphere is of great interest for the global balance of biogeochemical processes, including the global C cycle. Indeed, the interaction between Si and C cycles regulates the atmospheric CO2 through the chemical weathering of silicate minerals, the C sequestration in stable organo-mineral compounds and the Si nutrition of phytoplankton CO2-consumers in oceans. H4SiO4 released by mineral dissolution contributes to the critical zone evolution through neoformation of secondary minerals, adsorption onto hydroxyl-bearing phases and recycling by vegetation and return of phytoliths on topsoil. The neoformation of secondary precipitates (clay minerals and phytoliths polymerized in plants) and adsorption of Si onto Fe and Al (hydr)oxides are processes favoring the light Si isotope incorporation, generating rivers enriched in heavy Si isotopes. On the other hand, clay minerals and phytoliths display contrasting Ge/Si ratios since clay-sized weathering products are enriched in Ge and phytoliths are depleted in Ge. Thus stable Si isotope and Ge/Si ratios constitute very interesting proxies to trace transfer of Si in the critical zone. Here we report Si isotopic and Ge/Si ratios of the different Si pools in a temperate soil-tree system (Breuil experimental forest, France) involving various tree species grown on Alumnic Cambisol derived from granitic bedrock. Relative to granitic bedrock (δ30Si = -0.07 ‰; Ge/Si = 2.5 µmol/mol), clay-sized minerals are enriched in 28Si (-1.07 ‰) and Ge (6.2 µmol/mol) while phytoliths are enriched in 28Si (-0.28 to -0.64 ‰) and depleted in Ge (0.1 to 0.3 µmol/mol). This contrast allows us to infer the relative contribution of litho/pedogenic and biogenic mineral dissolution on the release of H4SiO4 in soil surface solutions. The Si-isotope signatures and Ge/Si ratios of forest floor solutions evolve towards lighter values (-1.38 and -2.05 ‰) and higher Ge/Si ratios (2.7 µmol/mol) relative to granite bedrock. This suggests a partial dissolution of 28Si and Ge-enriched secondary clays minerals incorporated by bioturbation in organic-rich horizons, with a fractionation releasing preferentially light Si isotopes. Without considering that organic acids promote dissolution of minerals, clay minerals detected in the organic layer (vermiculite, chlorite, illite and Ca-montmorillonite) are not stable and could have been partially dissolved and transformed in the chemical environment of forest floor. Sources of H4SiO4 in forest floor solutions are influenced by tree species which control the extent of clay-sized minerals mixed in organic horizons by bioturbation and, to a lesser extent, the Si recycling by forest vegetation.

  7. Application of thermal desorption for the identification of mercury species in solids derived from coal utilization.

    PubMed

    Rumayor, M; Diaz-Somoano, M; Lopez-Anton, M A; Martinez-Tarazona, M R

    2015-01-01

    The speciation of mercury is currently attracting widespread interest because the emission, transport, deposition and behaviour of toxic mercury species depend on its chemical form. The identification of these species in low concentrations is no easy task and it is even more complex in coal combustion products due to the fact that these products contain organic and mineral matter that give rise to broad peaks and make it difficult to carry out qualitative and quantitative analysis. In this work, a solution to this problem is proposed using a method based on thermal desorption. A sequential extraction procedure was employed for the comparison and validation of the method developed. Samples of fly ashes and soils were analyzed by both of these methods, and thermal desorption was found to be an appropriate technique for mercury speciation. Even in the case of low mercury contents, recovery percentages were close to 100%. The main mercury species identified in the samples studied were HgS and, to a lesser extent, HgO and HgSO4. In addition, although the presence of mercury complexes cannot be demonstrated, the desorption behaviour and sequential extraction results suggest that this element might be associated with the mineral matrix or with carbon particles in some of the solids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Regulated and Unregulated Fibrous Amphiboles of the Franciscan Formation Found in the Greater San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Bailey, R.

    2012-12-01

    The San Francisco Bay Area is underlain in numerous locales by rocks of the Franciscan Formation, a significant number of which contain amphibole minerals which may occur in a fibrous or asbestiform habit. Such rocks include altered mafic volcanic rocks, serpentine complexes and high pressure metamorphic rocks (e.g. green schist, blue schist, amphibolite, eclogite, etc.). Although it is commonly known that actinolite/tremolite may occur within these rock bodies, it is also true that all of the other "regulated" amphiboles (riebeckite (crocidolite), amosite (grunerite) and anthophyllite, have been identified as well. In addition, a considerable number of other "non-regulated" amphiboles with a fibrous or asbestiform habit have been identified including: glaucophane, winchite, richterite, "Libby amphibole", hornblende, barroisite, cummingtonite and others. Extensive solid solution exists between many of these amphiboles which can make definitive identification difficult. Also, the possibility of complex pressure-temperature paths for these rocks means a single amphibole fiber/crystal can exhibit zonation of, and/or intergrowths between, multiple amphibole phases. It is important that regulators and laboratories are aware of the potential presence of these amphibole minerals, and possibly others, in rock and soil found in the San Francisco Bay Area and that they are not automatically discarded from asbestos fiber counts when they are observed. Criteria for identifying the amphiboles discussed above will be presented.

  9. Evaluating Mineral-Associated Soil Organic Matter Pools as Indicators of Forest Harvesting Disturbance

    NASA Astrophysics Data System (ADS)

    Kellman, L. M.; Gabriel, C. E.

    2015-12-01

    Soil organic matter (SOM) in northern forest soils is associated with a suite of minerals that can confer SOM stability, resulting in the potential for long-term storage of carbon. Increasingly, evidence is suggesting that SOM in certain mineral phases is dynamic and vulnerable to soil disturbance. The objective of this research was to investigate changes in a suite of mineral-associated pools of SOM through depth in a temperate forest soil to determine which mineral-associated carbon pools are most sensitive to forest harvesting disturbance. Sequential selective dissolutions representing increasingly stable SOM pools (soluble minerals (deionized water); humus-mineral complexes (Na-pyrophosphate); poorly crystalline minerals (HCl hydroxylamine); and crystalline secondary minerals (Na-dithionite + HCl)) of mineral soils through depth to 50 cm were carried out in podzolic soils sampled from temperate red spruce forests of contrasting stand age in Nova Scotia, Canada. Results of this analysis point to a loss of carbon from SOM within the B-horizon of the most recently harvested site from the pyrophosphate-extracted humus mineral complexed SOM, suggesting that it is this exchangeable pool that appears to be destabilized following clearcut harvesting at these study sites. This suggests that recovery from this landuse disturbance is dependent upon increasing storage of this SOM pool, and that mineral-associated pools, particularly pyrophosphate-extractable SOM, may be a useful indicator of changes to soil carbon storage following land use change.

  10. Biogenic uraninite precipitation and its reoxidation by iron(III) (hydr)oxides: A reaction modeling approach

    NASA Astrophysics Data System (ADS)

    Spycher, Nicolas F.; Issarangkun, Montarat; Stewart, Brandy D.; Sevinç Şengör, S.; Belding, Eileen; Ginn, Tim R.; Peyton, Brent M.; Sani, Rajesh K.

    2011-08-01

    One option for immobilizing uranium present in subsurface contaminated groundwater is in situ bioremediation, whereby dissimilatory metal-reducing bacteria and/or sulfate-reducing bacteria are stimulated to catalyze the reduction of soluble U(VI) and precipitate it as uraninite (UO 2). This is typically accomplished by amending groundwater with an organic electron donor. It has been shown, however, that once the electron donor is entirely consumed, Fe(III) (hydr)oxides can reoxidize biogenically produced UO 2, thus potentially impeding cleanup efforts. On the basis of published experiments showing that such reoxidation takes place even under highly reducing conditions (e.g., sulfate-reducing conditions), thermodynamic and kinetic constraints affecting this reoxidation are examined using multicomponent biogeochemical simulations, with particular focus on the role of sulfide and Fe(II) in solution. The solubility of UO 2 and Fe(III) (hydr)oxides are presented, and the effect of nanoscale particle size on stability is discussed. Thermodynamically, sulfide is preferentially oxidized by Fe(III) (hydr)oxides, compared to biogenic UO 2, and for this reason the relative rates of sulfide and UO 2 oxidation play a key role on whether or not UO 2 reoxidizes. The amount of Fe(II) in solution is another important factor, with the precipitation of Fe(II) minerals lowering the Fe +2 activity in solution and increasing the potential for both sulfide and UO 2 reoxidation. The greater (and unintuitive) UO 2 reoxidation by hematite compared to ferrihydrite previously reported in some experiments can be explained by the exhaustion of this mineral from reaction with sulfide. Simulations also confirm previous studies suggesting that carbonate produced by the degradation of organic electron donors used for bioreduction may significantly increase the potential for UO 2 reoxidation through formation of uranyl carbonate aqueous complexes.

  11. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-16

    Team members cheer during their robot miner's turn in the mining arena on the third day of NASA's 9th Robotic Mining Competition, May 16, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  12. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    The robotic miner from Mississippi State University digs in the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  13. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    Team members from Purdue University prepare their uniquely-designed robot miner in the RoboPit at NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  14. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-16

    On the third day of NASA's 9th Robotic Mining Competition, May 16, two robot miners dig in the dirt in the mining arena at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  15. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes.

    PubMed

    Li, Junxia; Zhou, Hailing; Wang, Yanxin; Xie, Xianjun; Qian, Kun

    2017-06-01

    Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and k f -iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in k f -iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, k f -iodate value increases in several H 2 O 2 -treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest k f -iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes

    NASA Astrophysics Data System (ADS)

    Li, Junxia; Zhou, Hailing; Wang, Yanxin; Xie, Xianjun; Qian, Kun

    2017-06-01

    Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and kf-iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in kf-iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, kf-iodate value increases in several H2O2-treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest kf-iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater.

  17. Microcalorimetric and potentiometric titration studies on the adsorption of copper by P. putida and B. thuringiensis and their composites with minerals.

    PubMed

    Fang, Linchuan; Cai, Peng; Li, Pengxiang; Wu, Huayong; Liang, Wei; Rong, Xingmin; Chen, Wenli; Huang, Qiaoyun

    2010-09-15

    In order to have a better understanding of the interactions of heavy metals with bacteria and minerals in soil and associated environments, isothermal titration calorimetry (ITC), potentiometric titration and equilibrium sorption experiments were conducted to investigate the adsorption behavior of Cu(II) by Bacillus thuringiensis, Pseudomonas putida and their composites with minerals. The interaction of montmorillonite with bacteria increased the reactive sites and resulted in greater adsorption for Cu(II) on their composites, while decreased adsorption sites and capacities for Cu(II) were observed on goethite-bacteria composites. A gram-positive bacterium B. thuringiensis played a more important role than a gram-negative bacterium P. putida in determining the properties of the bacteria-minerals interfaces. The enthalpy changes (DeltaH(ads)) from endothermic (6.14 kJ mol(-1)) to slightly exothermic (-0.78 kJ mol(-1)) suggested that Cu(II) is complexed with the anionic oxygen ligands on the surface of bacteria-mineral composites. Large entropies (32.96-58.89 J mol(-1) K(-1)) of Cu(II) adsorption onto bacteria-mineral composites demonstrated the formation of inner-sphere complexes in the presence of bacteria. The thermodynamic data implied that Cu(II) mainly bound to the carboxyl and phosphoryl groups as inner-sphere complexes on bacteria and mineral-bacteria composites. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Speciation study in the sulfamethoxazole-copper-pH-soil system: implications for retention prediction.

    PubMed

    Morel, Marie-Christine; Spadini, Lorenzo; Brimo, Khaled; Martins, Jean M F

    2014-05-15

    Sulfamethoxazole (SMX) is a persistent sulfonamide antibiotic drug used in the veterinary and human medical sectors and is widely detected in natural waters. To better understand the reactive transport of this antibiotic in soil, the speciation of the SMX-Cu(II)-H(+) system in solution and the combined sorption of these components in a natural vineyard soil were investigated by acid-base titrimetry and infrared spectroscopy. Cu(II) is considered to represent a strongly complexing trace element cation (such as Cd(2+), Zn(2+), Pb(2+), Ni(2+), etc.) in comparison to more prevalent but more weakly binding cations (such as Ca(2+) and Mg(2+)). Titrimetric studies showed that, relative to other antibiotics, such as tetracycline, SMX is a weak copper chelating agent and a weak soil sorbent at the soil pH (pH6). However, the sorption of SMX in soil increases strongly (by a factor of 6) in the presence of copper. This finding strongly supports the hypothetical formation of ternary SMX-Cu-soil complexes, especially considering that copper is dominantly sorbed in a state at pH6. The data were successfully modelled with PhreeqC assuming the existence of binary and ternary surface complexes in equilibrium with aqueous Cu, SMX and Cu-SMX complexes. It is thought that other strongly complexing cations present on the surface of reactive organic and mineral soil phases, such as Cd(II), Ni(II), Zn(II), Pb(II), Fe(II/III), Mn(II/IV) and Al(III), affect the solid/solution partitioning of SMX. This study thus suggests that surface-adsorbed cations significantly increase the sorption of SMX. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Contribution of coated humic acids calculated through their surface coverage on nano iron oxides for ofloxacin and norfloxacin sorption.

    PubMed

    Peng, Hongbo; Liang, Ni; Li, Hao; Chen, Fangyuan; Zhang, Di; Pan, Bo; Xing, Baoshan

    2015-09-01

    Sorption of organic contaminants on organo-mineral complexes has been investigated extensively, but the sorption contribution of mineral particles was not properly addressed before calculating KOC, especially for ionic organic contaminants. We measured the surface coverage of a humic acid (HA) on nano iron oxides (n-Fe2O3) in a series of synthesized organo-mineral complexes. The contribution of the coated HA to ofloxacin (OFL) and norfloxacin (NOR) sorption in HA-n-Fe2O3 complexes was over 80% of the total sorption with the surface coverage of 36% and fOC of 1.6%. All the coated HA showed higher sorption to NOR and OFL in comparison to the original HA, suggesting HA fractionation and/or physical re-conformation during organo-mineral complex formation. The decreased KOC with multilayer coating may suggest the importance of site-specific interactions for OFL sorption, while the increased KOC with multilayer coating may suggest the importance of partitioning in hydrophobic region for NOR sorption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions.

    PubMed

    Diao, Mengxue; Taran, Elena; Mahler, Stephen; Nguyen, Anh V

    2014-10-01

    Bioleaching is a technology for the recovery of metals from minerals by means of microorganisms, which accelerate the oxidative dissolution of the mineral by regenerating ferric ions. Bioleaching processes take place at the interface of bacteria, sulfide mineral and leaching solution. The fundamental forces between a bioleaching bacterium and mineral surface are central to understanding the intricacies of interfacial phenomena, such as bacterial adhesion or detachment from minerals and the mineral dissolution. This review focuses on the current state of knowledge in the colloidal aspect of bacteria-mineral interactions, particularly for bioleaching bacteria. Special consideration is given to the microscopic structure of bacterial cells and the atomic force microscopy technique used in the quantification of fundamental interaction forces at nanoscale. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Estimation of the reactive mineral surface area during CO2-rich fluid-rock interaction: the influence of neogenic phases

    NASA Astrophysics Data System (ADS)

    Scislewski, A.; Zuddas, P.

    2010-12-01

    Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react with CO2-rich fluids, decreasing the effective reactive surface area. Predictive models of CO2 sequestration under geological conditions should take into account the inhibiting role of surface coating formation. The CO2 rich fluid-rock interactions may also have significant consequences on metal mobilization. Our results indicated that the formation of stable carbonate complexes enhances the solubility of uranium minerals of both albitite and granite, facilitating the U(IV) oxidation, and limiting the extent of uranium adsorption onto particles in oxidized waters. This clearly produces an increase of the uranium mobility with significant consequences for the environment.

  2. Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate

    NASA Astrophysics Data System (ADS)

    Li, Dong; Yin, Wan-zhong; Xue, Ji-wei; Yao, Jin; Fu, Ya-feng; Liu, Qi

    2017-07-01

    The effects of carbonate minerals (dolomite and siderite) on the flotation of hematite using sodium oleate as a collector were investigated through flotation tests, supplemented by dissolution measurements, solution chemistry calculations, zeta-potential measurements, Fourier transform infrared (FTIR) spectroscopic studies, and X-ray photoelectron spectroscopy (XPS) analyses. The results of flotation tests show that the presence of siderite or dolomite reduced the recovery of hematite and that the inhibiting effects of dolomite were stronger. Dissolution measurements, solution chemistry calculations, and flotation tests confirmed that both the cations (Ca2+ and Mg2+) and CO3 2- ions dissolved from dolomite depressed hematite flotation, whereas only the CO3 2- ions dissolved from siderite were responsible for hematite depression. The zeta-potential, FTIR spectroscopic, and XPS analyses indicated that Ca2+, Mg2+, and CO3 2- (HCO3 -) could adsorb onto the hematite surface, thereby hindering the adsorption of sodium oleate, which was the main reason for the inhibiting effects of carbonate minerals on hematite flotation.

  3. Weakly-agglomerated nanocrystalline (ZrO 2) 0.9(Yb 2O 3) 0.1 powders hydrothermally synthesized at low temperature

    NASA Astrophysics Data System (ADS)

    Dell'Agli, Gianfranco; Mascolo, Giuseppe; Mascolo, Maria Cristina; Pagliuca, Concetta

    2006-09-01

    Nanocrystalline ytterbia (10 mol%)-doped cubic zirconia powders were synthesized by hydrothermal treatment of either an amorphous co-precipitate of hydrated ytterbia-zirconia or of zirconia xerogel in mixture with crystalline Yb 2O 3. The treatments were performed at 110 °C in the presence of diluted (0.2 M) or concentrated (2.0 M) solution of (K 2CO 3 + KOH) mineralizer and for different reaction times. The reaction times for the full crystallization of cubic-YbSZ-based products were determined for both the employed precursors and for each mineralizer solution. The various fully crystallized products were characterized in their degree of agglomeration and sintered at 1500 °C for 2 h. The best performance on sintering was achieved with the less agglomerated powder synthesized from the mechanical mixture and in the presence of the diluted solution of the mineralizer. The resulting density was the highest achieved with materials having the same composition.

  4. Molecular Studies of Complex Soil Organic Matter Interactions with Metal Ions and Mineral Surfaces using Classical Molecular Dynamics and Quantum Chemistry Methods

    NASA Astrophysics Data System (ADS)

    Andersen, A.; Govind, N.; Laskin, A.

    2017-12-01

    Mineral surfaces have been implicated as potential protectors of soil organic matter (SOM) against decomposition and ultimate mineralization to small molecules which can provide nutrients for plants and soil microbes and can also contribute to the Earth's elemental cycles. SOM is a complex mixture of organic molecules of biological origin at varying degrees of decomposition and can, itself, self-assemble in such a way as to expose some biomolecule types to biotic and abiotic attack while protecting other biomolecule types. The organization of SOM and SOM with mineral surfaces and solvated metal ions is driven by an interplay of van der Waals and electrostatic interactions leading to partitioning of hydrophilic (e.g. sugars) and hydrophobic (e.g., lipids) SOM components that can be bridged with amphiphilic molecules (e.g., proteins). Classical molecular dynamics simulations can shed light on assemblies of organic molecules alone or complexation with mineral surfaces. The role of chemical reactions is also an important consideration in potential chemical changes of the organic species such as oxidation/reduction, degradation, chemisorption to mineral surfaces, and complexation with solvated metal ions to form organometallic systems. For the study of chemical reactivity, quantum chemistry methods can be employed and combined with structural insight provided by classical MD simulations. Moreover, quantum chemistry can also simulate spectroscopic signatures based on chemical structure and is a valuable tool in interpreting spectra from, notably, x-ray absorption spectroscopy (XAS). In this presentation, we will discuss our classical MD and quantum chemistry findings on a model SOM system interacting with mineral surfaces and solvated metal ions.

  5. Coupling of solar photoelectro-Fenton with a BDD anode and solar heterogeneous photocatalysis for the mineralization of the herbicide atrazine.

    PubMed

    Garza-Campos, Benjamín R; Guzmán-Mar, Jorge Luis; Reyes, Laura Hinojosa; Brillas, Enric; Hernández-Ramírez, Aracely; Ruiz-Ruiz, Edgar J

    2014-02-01

    Here, the synergetic effect of coupling solar photoelectro-Fenton (SPEF) and solar heterogeneous photocatalysis (SPC) on the mineralization of 200mL of a 20mg L(-1) atrazine solution, prepared from the commercial herbicide Gesaprim, at pH 3.0 was studied. Uniform, homogeneous and adherent anatase-TiO2 films onto glass spheres of 5mm diameter were prepared by the sol-gel dip-coating method and used as catalyst for SPC. However, this procedure yielded a poor removal of the substrate because of the low oxidation ability of positive holes and OH formed at the catalyst surface to destroy it. Atrazine decay was improved using anodic oxidation (AO), electro-Fenton (EF), SPEF and coupled SPEF-SPC at 100mA. The electrolytic cell contained a boron-doped diamond (BDD) anode and H2O2 was generated at a BDD cathode fed with an air flow. The removal and mineralization of atrazine increased when more oxidizing agents were generated in the sequence AO

  6. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1990-01-01

    This paper discusses the compositional and phase relationships among minerals in which rare earth elements (REE) occur as essential constituents (e.g., bastnaesite, monazite, xenotime, aeschynite, allanite). Particular consideration is given to the vector representation of complex coupled substitutions in selected REE-bearing minerals and to the REE partitioning between minerals as related to the acid-base tendencies and mineral stabilities. It is shown that the treatment of coupled substitutions as vector quantities facilitates graphical representation of mineral composition spaces.

  7. BeerOz, a set of Matlab routines for the quantitative interpretation of spectrophotometric measurements of metal speciation in solution

    NASA Astrophysics Data System (ADS)

    Brugger, Joël

    2007-02-01

    The modelling of the speciation and mobility of metals under surface and hydrothermal conditions relies on the availability of accurate thermodynamic properties for all relevant minerals, aqueous species, gases and surface species. Spectroscopic techniques obeying the Beer-Lambert law can be used to obtain thermodynamic properties for reactions among aqueous species (e.g., ligand substitution; protonation). BeerOz is a set of Matlab routines designed to perform both qualitative and quantitative analysis of spectroscopic data following the Beer-Lambert law. BeerOz is modular and can be customised for particular experimental strategies or for simultaneous refinement of several datasets obtained using different techniques. Distribution of species calculations are performed using an implementation of the EQBRM code, which allows for customised activity coefficient calculations. BeerOz also contains routines to study the n-dimensional solution space, in order to provide realistic estimates of errors and test for the existence of multiple local minima and correlation between the different refined variables. The paper reviews the physical principles underlying the qualitative and quantitative analysis of spectroscopic data collected on aqueous speciation, in particular for studying successive ligand replacement reactions, and presents the non-linear least-squares algorithm implemented in BeerOz. The discussion is illustrated using UV-Vis spectra collected on acidic Fe(III) solutions containing varying LiCl concentrations, and showing the change from the hexaaquo Fe(H 2O) 63+ complex to the tetrahedral FeCl 4- complex.

  8. Formation of Hematite fine crystals by hydrothermal alteration of synthetic Martian basalt, static and fluid flow experiments

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Isobe, H.

    2011-12-01

    Exploration made by Martian rovers and probes provided enormous information on the composition of the Martian surface materials. Origin and formation processes of the Martian surface materials should be various depending on topography and history of the Martian crust. Especially, iron minerals in the Martian soil should have essential role to characterize surface environment of the "red planet". In the present study, experimental reproduction of the Martian soil was carried out by hydrothermal alteration of the synthetic iron-rich basaltic rock. Experimental conditions for temperature and fluid composition followed Isobe and Yoshizawa (2010). Static alteration experiments are carried out at 100 °C and 150 °C, and mass ratio of the starting material to the pH1.0 sulfuric acid solution is 1:50. Run durations are 1, 2, 4 or 8 weeks. Appropriate mass of dry ice was sealed in the experimental vessels to expel atmospheric oxygen with CO2. For the static experiments, powdered starting materials were charged in PFA vial to keep textures of the run products. For the fluid flow experiments, we constructed closed loop with Teflon tube inclined approximately 45°. One of the vertical tube is charged with crushed synthetic basalt and heated approximately 150°C by aluminum block with ribbon heater. Surlfuric acid solution flows through the tube from bottom to top and cooled at the end of the aluminum block. Cooled solution returns to the bottom of the heated tube through another vertical tube without heating block. In the static condition run products, characteristic iron mineral particles are formed for 100°C and 150°C concordant with Isobe and Yoshizawa (2010). These iron minerals distributed not only inside the starting material powder but also on the surface of the reaction vessel and the PFA vial in the reactive solution. The surface of the reaction vessel shows orange and reddish color on 100°C and 150°C run products, respectively. By SEM observation, dissolution of melt and olivine grains were observed, and iron mineral particles substituted olivine partly. Diameters of the iron mineral particles are submicron to several micron meters at 100°C, and slowly increase with run durations and temperatures. In the fluid flow experiment, deposition of the characteristic iron minerals occur inside the heated tube. Distribution of iron minerals corresponds to temperature gradient and fluid flow direction. Iron minerals are partially covered by silica phase with submicron meters in thickness. The occurrence of the iron minerals in the run products of this study suggests that characteristic iron mineral fine particles including hematite and goethite were formed by acidic hydrothermal alteration of iron-rich basaltic rock even at remote region from the source materials.

  9. Impacts of Organic Ligands on Forsterite Reactivity in Supercritical CO2 Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Quin R.; Kaszuba, John; Schaef, Herbert T.

    2015-04-07

    Subsurface injection of CO2 for enhanced hydrocarbon recovery, hydraulic fracturing of unconventional reservoirs, and geologic carbon sequestration produces a complex geochemical setting in which CO2-dominated fluids containing dissolved water and organic compounds interact with rocks and minerals. The details of these reactions are relatively unknown and benefit from additional experimentally derived data. In this study, we utilized an in situ X-ray diffraction technique to examine the carbonation reactions of forsterite (Mg2SiO4) during exposure to supercritical CO2 (scCO2) that had been equilibrated with aqueous solutions of acetate, oxalate, malonate, or citrate at 50 °C and 90 bar. The organics affected themore » relative abundances of the crystalline reaction products, nesquehonite (MgCO3·3H2O) and magnesite (MgCO3), likely due to enhanced dehydration of the Mg2+ cations by the organic ligands. These results also indicate that the scCO2 solvated and transported the organic ligands to the forsterite surface. This phenomenon has profound implications for mineral transformations and mass transfer in the upper crust.« less

  10. Sources and geochemical evolution of cyanide and formaldehyde

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1991-01-01

    The major source of cyanide has, in current paleoatmospheric models, been assumed to be the reaction of photodissociated thermospheric nitrogen with a limiting supply of stratospheric methane. Formaldehyde may be produced with more ease from an atmosphere of carbon dioxide as the dominant carbon species, and from carbonate in solution or sorbed in double layer hydroxide minerals. Potentially more important sources for cyanide and other carbon containing molecules are the partially photoprotected northern and southern auroral ovals where continuous currents reaching several mega-amperes induce ion-molecule reactions, extending into the lower stratosphere. In simulated environments of this kind, the cyanide ion is known to be produced from oxidized carbon species potentially more abundant than methane. Rainout of cyanide and formaldehyde place them in two different geochemical reaction reservoirs. In the anoxic Archean hydrosphere, about 1mM in Fe2(+), the cyanide ion would have been efficiently converted to the stable ferrocyanide complex Fe(CN) sub 6(4-), protecting it from the commonly considered fate of decomposition by hydrolysis, and eventually incorporating it in pyroaurite type minerals, most efficiently in green rust where it converts to insoluble ferriferrocyanide, prussian blue.

  11. Influences of pH and CO2 on the formation of Metasilicate mineral water in Changbai Mountain, Northeast China

    NASA Astrophysics Data System (ADS)

    Yan, Baizhong; Xiao, Changlai; Liang, Xiujuan; Wu, Shili

    2017-07-01

    Mineral dissolution reactions actively participate in controlling the composition of mineral water. In this study, water soluble, acidic-alkaline and carbonated solution experiments were designed, and mineral reaction mechanisms were researched using chemical kinetics and the minimum free-energy method. The results showed that the release of metasilicate was controlled by pH, CO2, and rock characteristics. In the water soluble experiment, the release process of metasilicate in powdered rocks reached equilibrium after 40 days, while metasilicate in solid rocks took 170 days. The release process of metasilicate in solid rocks satisfied an asymptotic model, while in powdered rocks it accorded with the Stanford reaction kinetic model. In the acidic-alkaline experiment, metasilicate was released earlier under acidic conditions (2.46 < pH < 7) than under alkaline conditions (7 < pH < 10.61). The release process of metasilicate under acidic conditions reached equilibrium in 40 days, compared with 60 days for alkaline conditions. The addition of CO2 to the water solution was beneficial to the formation of metasilicate. Under neutral pH conditions, the reaction barely occurred. Under alkaline conditions, metasilicate was produced by the hydrolysis of metasilicate minerals. Under acidic and additional CO2 conditions, metasilicate formation was mainly via the reaction of H+, CO2, and metasilicate minerals. From these results, we concluded that the metasilicate mineral water from the Changbai Mountains, Jingyu County, is generated by a combination of the hydrolysis of metasilicate minerals and the reaction of H+, CO2, and metasilicate minerals. These results can contribute to a better development and protection of the mineral water resources in the Changbai Mountains.

  12. Effects of iron-containing minerals on hydrothermal reactions of ketones

    NASA Astrophysics Data System (ADS)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2018-02-01

    Hydrothermal organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental hydrothermal system. Ketones play a central role in many hydrothermal organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the hydrothermal chemistry of ketones is poorly understood. Under the hydrothermal conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the hydrothermal reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in hydrothermal solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated hydrothermal organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.

  13. 75 FR 3948 - Big Sky Energy Corp., Biomedical Waste Systems, Inc., Biometrics Security Technology, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ...., Breakaway Solutions, Inc., and BRE-X Minerals, Ltd.; Order of Suspension of Trading January 21, 2010. It... securities of BRE-X Minerals, Ltd. because it has not filed any periodic reports since the period ended...

  14. The influence of salivary variables on fluoride retention in dental plaque exposed to a mineral-enriching solution.

    PubMed

    Kato, K; Nakagaki, H; Arai, K; Pearce, E I F

    2002-01-01

    This study was carried out to examine interindividual differences in salivary variables related to plaque accumulation and to estimate their influence on the fluoride retention in plaque in vivo by a mineral-enriching solution. Two saliva samples were taken from 10 subjects, once after brushing and once after 24 h without brushing. Calcium, phosphate and monofluorophosphatase (MFPase) activity in the saliva samples were determined. The salivary flow rate and the debris index were also recorded. After plaque had formed over 3 days within in situ plaque-generating devices, subjects were instructed to rinse with a mineral-enriching mouthrinse three times a day on 4 consecutive days. Plaque exposed to distilled water plus flavoring agents served as a control. Fluoride-free dentifrice was used during the experimental period. Twenty-four hours after the last rinsing, the samples were removed from the mouth, and fluoride and mineral distributions in plaque analyzed using a method previously reported by the authors. Salivary flow, MFPase activity and calcium concentration in saliva were significantly higher after 24 h of plaque accumulation. Rinsing with the mineral-enriching solution produced retention of fluoride and phosphate in the outer and middle layers of plaque. Salivary calcium concentration had a direct effect on fluoride uptake in plaque, but no obvious relationship was found between other salivary variables and the plaque fluoride retention. The salivary calcium effect may be due to enhanced bacterial cell wall binding of fluoride via calcium bridging. Copyright 2002 S. Karger AG, Basel

  15. Optical luminescence studies of diffusion times at the potassium ethyl xanthate adsorption layer on the surface of sphalerite minerals

    NASA Astrophysics Data System (ADS)

    Todoran, R.; Todoran, D.; Anitas, E. M.; Szakács, Zs

    2016-08-01

    We propose reflectance measurements as a method for the evaluation of the kinetics of adsorption processes, to compute the diffusion times of the adsorption products at the thin layers formed at the sphalerite natural mineral-potassium ethyl xanthate solution interface. The method is based on the intensity measurement of the reflected monochromatic radiation obtained from the mineral-xanthate thin layer as a function of time. These determinations were made at the thin layer formed between the sphalerite or activated sphalerite natural minerals with potassium ethyl xanthate, for different solutions concentrations and pH values at constant temperature. Diffusion times of desorbed molecular species into the liquid bring important information about the global kinetics of the ions in this phase during adsorption processes at interfaces. Analysing the time dependence of this parameter one concluded on the diffusion properties of the xanthate molecule in the solution depending on its concentration and pH, knowing that at the initial time these molecules had a uniform spread. This method enabled us to determine that, in time interval of approximately 35 minutes to achieve dynamic equilibrium in the formation of the interface layer, one had three different kinetic behaviours of our systems. In the first 5-8 min one had highly adsorbent character, the state of equilibrium is followed by low adsorbent properties. Gaining information on the adsorption kinetics in the case of xanthate on mineral surface leads to the optimization of the industrial froth flotation process.

  16. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes.

    PubMed

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A; Rodríguez, Rosa M; Brillas, Enric

    2015-06-15

    The decolorization and mineralization of solutions containing 230 mg L(-1) of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H2O2. The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between H2O2 and added Fe(2+). The oxidation ability increased in the sequence EO-H2O2 < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO4(2-), ClO4(-) and NO3(-) media, whereas in Cl(-) medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC-MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO4(2-) medium and three chloroaromatics in Cl(-) solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH4(+), NO3(-) and SO4(2-) ions were released during the mineralization. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Modeling nuclear field shift isotope fractionation in crystals

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2013-12-01

    In this study nuclear field shift fractionations in solids (and chemically similar liquids) are estimated using calibrated density functional theory calculations. The nuclear field shift effect is a potential driver of mass independent isotope fractionation(1,2), especially for elements with high atomic number such as Hg, Tl and U. This effect is caused by the different shapes and volumes of isotopic nuclei, and their interactions with electronic structures and energies. Nuclear field shift isotope fractionations can be estimated with first principles methods, but the calculations are computationally difficult, limiting most theoretical studies so far to small gas-phase molecules and molecular clusters. Many natural materials of interest are more complex, and it is important to develop ways to estimate field shift effects that can be applied to minerals, solutions, in biomolecules, and at mineral-solution interfaces. Plane-wave density functional theory, in combination with the projector augmented wave method (DFT-PAW), is much more readily adapted to complex materials than the relativistic all-electron calculations that have been the focus of most previous studies. DFT-PAW is a particularly effective tool for studying crystals with periodic boundary conditions, and may also be incorporated into molecular dynamics simulations of solutions and other disordered phases. Initial calibrations of DFT-PAW calculations against high-level all-electron models of field shift fractionation suggest that there may be broad applicability of this method to a variety of elements and types of materials. In addition, the close relationship between the isomer shift of Mössbauer spectroscopy and the nuclear field shift isotope effect makes it possible, at least in principle, to estimate the volume component of field shift fractionations in some species that are too complex even for DFT-PAW models, so long as there is a Mössbauer isotope for the element of interest. Initial results will be presented for calculations of liquid-vapor fractionation of cadmium and mercury, which indicate an affinity for heavy isotopes in the liquid phase. In the case of mercury the results match well with recent experiments. Mössbauer-calibrated fractionation factors will also be presented for tin and platinum species. Platinum isotope behaviour in metals appears to particularly interesting, with very distinct isotope partitioning behaviour for iron-rich alloys, relative to pure platinum metal. References: 1) Bigeleisen, J. (1996) J. Am. Chem. Soc. 118, 3676-3680. 2) Nomura, M., Higuchi, N., Fujii, Y. (1996) J. Am. Chem. Soc. 118, 9127-9130.

  18. The surface chemistry of multi-oxide silicates

    NASA Astrophysics Data System (ADS)

    Oelkers, Eric H.; Golubev, Sergey V.; Chairat, Claire; Pokrovsky, Oleg S.; Schott, Jacques

    2009-08-01

    The surface chemistry of natural wollastonite, diopside, enstatite, forsterite, and albite in aqueous solutions was characterized using both electrokinetic techniques and surface titrations performed for 20 min in batch reactors. Titrations performed in such reactors allow determination of both proton consumption and metal release from the mineral surface as a function of pH. The compositions, based on aqueous solution analysis, of all investigated surfaces vary dramatically with solution pH. Ca and Mg are preferentially released from the surfaces of all investigated divalent metal silicates at pH less than ˜8.5-10 but preferentially retained relative to silica at higher pH. As such, the surfaces of these minerals are Si-rich and divalent metal poor except in strongly alkaline solutions. The preferential removal of divalent cations from these surfaces is coupled to proton consumption. The number of protons consumed by the preferential removal of each divalent cation is pH independent but depends on the identity of the mineral; ˜1.5 protons are consumed by the preferential removal of each Ca atom from wollastonite, ˜3 protons are consumed by the preferential removal of each Mg or Ca atom from diopside or enstatite, and ˜4 protons are consumed by the preferential removal of each Mg from forsterite. These observations are interpreted to stem from the creation of additional 'internal' adsorption sites by the preferential removal of divalent metal cations which can be coupled to the condensation of partially detached Si. Similarly, Na and Al are preferentially removed from the albite surface at 2 > pH > 11; mass balance calculations suggest that three protons are consumed by the preferential removal of each Al atom from this surface over this entire pH range. Electrokinetic measurements on fresh mineral powders yield an isoelectric point (pH IEP) 2.6, 4.4, 3.0, 4.5, and <1, for wollastonite, diopside, enstatite, forsterite, and albite, respectively, consistent with the predominance of SiO 2 in the surface layer of all of these multi-oxide silicates at acidic pH. Taken together, these observations suggest fundamental differences between the surface chemistry of simple versus multi-oxide minerals including (1) a dependency of the number and identity of multi-oxide silicate surface sites on the aqueous solution composition, and (2) the dominant role of metal-proton exchange reactions on the reactivity of multi-oxide mineral surfaces including their dissolution rate variation with aqueous solution composition.

  19. As, Bi, Hg, S, Sb, Sn and Te geochemistry of the J-M Reef, Stillwater Complex, Montana: constraints on the origin of PGE-enriched sulfides in layered intrusions

    USGS Publications Warehouse

    Zientek, M.L.; Fries, T.L.; Vian, R.W.

    1990-01-01

    The J-M Reef is an interval of disseminated sulfides in the Lower Banded series of the Stillwater Complex that is enriched in the platinum group elements (PGE). Palladium and Pt occur in solid solution in base-metal sulfides and as discrete PGE minerals. PGE minerals include sulfides, tellurides, arsenides, antimonides, bismuthides, and alloys with Fe, Sn, Hg, and Au. Several subpopulations can be delineated based on whole-rock chemical analyses for As, Bi, Cu, Hg, Pd, Pt, S, Sb and Te for samples collected from and adjacent to the J-M Reef. In general, samples from within the reef have higher Pt/Cu, Pd/Cu, Pd/Pt, Te/Bi and S/(Te+Bi) than those collected adjacent to the reef. Vertical compositional profiles through the reef suggest that Pd/Cu and Pt/Cu decrease systematically upsection from mineralized to barren rock. The majority of samples with elevated As, Sb and Hg occur adjacent to the reef, not within it, or in sulfide-poor rocks. Neither magma mixing nor fluid migration models readily explain why the minor quantities of sulfide minerals immediately adjacent to the sulfide-enriched layers that form the J-M Reef have different element ratios than the sulfide minerals that form the reef. If all the sulfides formed by exsolution during a magma mixing event and the modal proportion of sulfide now in the rocks are simply the result of mechanical processes that concentrated the sulfides into some layers and not others, then the composition of the sulfide would not be expected to be different. Models that rely upon ascending liquids or fluids are incompatible with the presence of sulfides that are not enriched in PGE immediately below or interlayered with the PGE-enriched sulfides layers. PGE-enriched postcumulus fluids should have reacted to the same extent with sulfides immediately outside the reef as within the reef. One explanation is that some of the sulfide minerals in the rocks outside the reef have a different origin than those that make up the reef. The sulfide minerals that form the reef may represent a cumulus sulfide phase that formed as the result of a magma-mixing event, achieved its high PGE contents at that time, and accumulated to form a layer. The rocks outside the reef may contain a large proportion of postcumulus sulfide minerals that formed as the last dregs of intercumulus liquids trapped in the interstitial spaces between the cumulus grains reached sulfur saturation and exsolved a sulfide liquid or precipitated a sulfide mineral. The PGE contents of these sulfides would be expected to be less than the cumulus sulfides that form the reef since they would have equilibrated with a much smaller volume of silicate liquid. Another explanation is that some of the sulfide droplets that formed as a result of the mixing event were trapped as inclusions in silicate minerals soon after they formed. This would reduce the amount of magma these sulfide droplets could equilibrate with and effectively reduce their PGE tenor. ?? 1990.

  20. User's guide to PHREEQC, a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations

    USGS Publications Warehouse

    Parkhurst, D.L.

    1995-01-01

    PHREEQC is a computer program written in the C pwgranuning language that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations, (2) reaction-path and advective-transport calculations involving specified irreversible reactions, mixing of solutions, mineral and gas equilibria surface-complex-ation reactions, and ion-exchange reactions, and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for composition differences between waters, within specified compositional uncertainties. PHREEQC is derived from the Fortran program PHREEQE, but it has been completely rewritten in C with the addition many new capabilities. New features include the capabilities to use redox couples to distribute redox elements among their valence states in speciation calculations; to model ion-exchange and surface-compiexation reactions; to model reactions with a fixed-pressure, multicomponent gas phase (that is, a gas bubble); to calculate the mass of water in the aqueous phase during reaction and transport calculations; to keep track of the moles of minerals present in the solid phases and determine antomaticaHy the thermodynamically stable phase assemblage; to simulate advective transport in combination with PHREEQC's reaction-modeling capability; and to make inverse modeling calculations that allow for uncertainties in the analytical data. The user interface is improved through the use of a simplified approach to redox reactions, which includes explicit mole-balance equations for hydrogen and oxygen; the use of a revised input that is modular and completely free format; and the use of mineral names and standard chemical symbolism rather than index numbers. The use of (2 eliminates nearly all limitations on army sizes, including numbers of elements, aqueous species, solutions, phases, and lengths of character strings. A new equation solver that optimizes a set of equalities subject to both equality and inequality constraints is used to determine the thermodynamically stable set of phases in equilibrium with a solution. A more complete Newton-Raphson formulation, master-species switching, and scaling of the algebraic equations reduce the number of failures of the nunmrical method in PHREEQC relative to PHREEQE. This report presents the equations that are the basis for chemical equilibrium and inverse-modeling calculations in PHREEQC, describes the input for the program, and presents twelve examples that demonstrate most of the program's capabilities.

  1. Peritoneal Dialysis Dose and Adequacy

    MedlinePlus

    ... and other minerals dissolved in water, called dialysis solution, is placed in a person's abdominal cavity through ... to pass from the blood into the dialysis solution. These wastes then leave the body when the ...

  2. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production

    PubMed Central

    Rau, Greg H.; Carroll, Susan A.; Bourcier, William L.; Singleton, Michael J.; Smith, Megan M.; Aines, Roger D.

    2013-01-01

    We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 105-fold increase in OH− concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH− initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification. PMID:23729814

  3. Reactivity of clay minerals with acids and alkalies

    USGS Publications Warehouse

    Carroll, Dorothy; Starkey, Harry C.

    1971-01-01

    One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6⋅45 N, 1:1), acetic acid (4⋅5 N, 1:3), sodium hydroxide (2⋅8 N), sodium chloride solution (pH 6⋅10; Na = 35‰; Cl = 21⋅5‰), and natural sea water (pH 7⋅85; Na = 35⋅5‰; Cl = 21⋅ 5‰) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective.

  4. Problem of the thermodynamic status of the mixed-layer minerals

    USGS Publications Warehouse

    Zen, E.-A.

    1962-01-01

    Minerals that show mixed layering, particularly with the component layers in random sequence, pose problems because they may behave thermodynamically as single phases or as polyphase aggregates. Two operational criteria are proposed for their distinction. The first scheme requires two samples of mixed-layer material which differ only in the proportions of the layers. If each of these two samples are allowed to equilibrate with the same suitably chosen monitoring solution, then the intensive parameters of the solution will be invariant if the mixed-layer sample is a polyphase aggregate, but not otherwise. The second scheme makes use of the fact that portions of many titration curves of clay minerals show constancy of the chemical activities of the components in the equilibrating solutions, suggesting phase separation. If such phase separation occurs for a mixed-layer material, then, knowing the number of independent components in the system, it should be possible to decide on the number of phases the mixed-layer material represents. Knowledge of the phase status of mixed-layer material is essential to the study of the equilibrium relations of mineral assemblages involving such material, because a given mixed-layer mineral will be plotted and treated differently on a phase diagram, depending on whether it is a single phase or a polyphase aggregate. Extension of the titration technique to minerals other than the mixed-layer type is possible. In particular, this method may be used to determine if cryptoperthites and peristerites are polyphase aggregates. In general, for any high-order phase separation, the method may be used to decide just at what point in this continuous process the system must be regarded operationally as a polyphase aggregate. ?? 1962.

  5. Quercetin as colorimetric reagent for determination of zirconium

    USGS Publications Warehouse

    Grimaldi, F.S.; White, C.E.

    1953-01-01

    Methods described in the literature for the determination of zirconium are generally designed for relatively large amounts of this element. A good procedure using colorimetric reagent for the determination of trace amounts is desirable. Quercetin has been found to yield a sensitive color reaction with zirconium suitable for the determination of from 0.1 to 50?? of zirconium dioxide. The procedure developed involves the separation of zirconium from interfering elements by precipitation with p-dimethylaminoazophenylarsonic acid prior to its estimation with quercetin. The quercetin reaction is carried out in 0.5N hydrochloric acid solution. Under the operating conditions it is indicated that quercetin forms a 2 to 1 complex with zirconium; however, a 2 to 1 and a 1 to 1 complex can coexist under special conditions. Approximate values for the equilibrium constants of the complexes are K1 = 0.33 ?? 10-5 and K2 = 1.3 ?? 10-9. Seven Bureau of Standards samples of glass sands and refractories were analyzed with excellent results. The method described should find considerable application in the analysis of minerals and other materials for macro as well as micro amounts of zirconium.

  6. Zeolite-clay mineral zonation of volcaniclastic sediments within the McDermitt caldera complex of Nevada and Oregon

    USGS Publications Warehouse

    Glanzman, Richard K.; Rytuba, James J.

    1979-01-01

    Volcaniclastic sediments deposited in the moat of the collapsed McDermitt caldera complex have been altered chiefly to zeolites and potassium feldspar. The original rhyolitic and peralkaline ash-flow tuffs are included in conglomerates at the caldera rims and grade into a lacustrine series near the center of the collapse. The tuffs show a lateral zeolitic alteration from almost fresh glass to clinoptilolite, clinoptilolite-mordenite, and erionite; to analcime-potassium feldspar; and finally to potassium feldspar. Vertical zonation is in approximately the same order. Clay minerals in associated mudstones, on the other hand, show little lateral variation but a distinct vertical zonation, having a basal dioctahedral smectite, a medial trioctahedral smectite, and an upper dioctahedral smectite. The medial trioctahedral smectite is enriched in lithium (as much as 6,800 ppm Li). Hydrothermal alteration of the volcaniclastic sediments, forming both mercury and uranium deposits, caused a distinct zeolite and clay-mineral zonation within the general lateral zonation. The center of alteration is generally potassium feldspar, commonly associated with alunite. Potassium feldspar grades laterally and vertically to either clinoptilolite or clinoptilolite-mordenite, generally associated with gypsum. This zone then grades vertically and laterally into fresh glass. The clay minerals are a dioctahedral smectite, a mixed-layer clay mineral, and a 7-A clay mineral. The mixed-layer and 7-A clay minerals are associated with the potassium feldspar-alunite zone of alteration, and the dioctahedral smectite is associated with clinoptilolite. This mineralogical zonation may be an exploration guide for mercury and uranium mineralization in the caldera complex environment.

  7. Analysis of mixed-layer clay mineral structures

    USGS Publications Warehouse

    Bradley, W.F.

    1953-01-01

    Among the enormously abundant natural occurrences of clay minerals, many examples are encountered in which no single specific crystallization scheme extends through a single ultimate grain. The characterization of such assemblages becomes an analysis of the distribution of matter within such grains, rather than the simple identification of mineral species. It having become established that the particular coordination complex typified by mica is a common component of many natural subcrystalline assemblages, the opportunity is afforded to analyze scattering from random associations of these complexes with other structural units. Successful analyses have been made of mixed hydration states of montmorillonite, of montmorillonite with mica, of vermiculite with mica, and of montmorillonite with chlorite, all of which are variants of the mica complex, and of halloysite with hydrated halloysite.

  8. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    PubMed

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  9. Surface Complexation Modeling of U(VI) Adsorption onto Savannah River Site Sediments

    NASA Astrophysics Data System (ADS)

    Dong, W.; Wan, J.; Tokunaga, T. K.; Denham, M.; Davis, J.; Hubbard, S. S.

    2011-12-01

    The Savannah River Site (SRS) was a U.S. Department of Energy facility for plutonium production during the Cold War. Waste plumes containing low-level radioactivity and acidic waste solutions were discharged to a series of unlined seepage basins in the F-Area of the SRS from 1955 to 1988. Although the site has undergone many years of active remediation, the groundwater remains acidic, and the concentrations of U and other radionuclides are still significantly higher than their Maximum Contaminant Levels (MCLs). The objective of this effort is to understand and predict U(VI) mobility in acidic waste plumes through developing surface complexation models (SCMs). Laboratory batch experiments were conducted to evaluate U adsorption behavior over the pH range of 3.0 to 9.5. Ten sorbent samples were selected including six contaminated sediment samples from three boreholes drilled within the plume and along the groundwater flow direction, two uncontaminated (pristine) sediment samples from a borehole outside of the plume, and two reference minerals, goethite and kaolinite (identified as the dominant minerals in the clay size fraction of the F-Area sediments). The results show that goethite and kaolinite largely control U partitioning behavior. In comparison with the pristine sediment, U(VI) adsorption onto contaminated sediments exhibits adsorption edges shifted toward lower pH by about 1.0 unit (e.g., from pH≈4.5 to pH≈3.5). We developed a SCMs based component additivity (CA) approach, which can successfully predict U(VI) adsorption onto uncontaminated SRS sediments. However, application of the same SCMs based CA approach to contaminated sediments resulted in underestimates of U(VI) adsorption at acidic pH conditions. The model sensitivity analyses indicate that both goethite and kaolinite surfaces co-contributed to U(VI) adsorption under acidic pH conditions. In particular, the exchange sites of clay minerals might play an important role in adsorption of U(VI) at pH < 5.0. These results suggested that the contaminated sediments might either contain other more reactive clay minerals such as smectite, or that the long-term acid-leaching process might have altered the surface reactivity of the original sediments. Further studies are needed to identify more reactive mineral facies and understand the effects of acid leaching on the surface reactivity of the sediments.

  10. Selective Adhesion of Thiobacillus ferrooxidans to Pyrite

    PubMed Central

    Ohmura, Naoya; Kitamura, Keiko; Saiki, Hiroshi

    1993-01-01

    Bacterial adhesion to mineral surfaces plays an important role not only in bacterial survival in natural ecosystems, but also in mining industry applications. Selective adhesion was investigated with Thiobacillus ferrooxidans by using four minerals, pyrite, quartz, chalcopyrite, and galena. Escherichia coli was used as a control bacterium. Contact angles were used as indicators of hydrophobicity, which was an important factor in the interaction between minerals and bacteria. The contact angle of E. coli in a 0.5% sodium chloride solution was 31°, and the contact angle of T. ferrooxidans in a pH 2.0 sulfuric acid solution was 23°. E. coli tended to adhere to more hydrophobic minerals by hydrophobic interaction, while T. ferrooxidans selectively adhered to iron-containing minerals, such as pyrite and chalcopyrite. Ferrous ion inhibited the selective adhesion of T. ferrooxidans to pyrite competitively, while ferric ion scarcely inhibited such adhesion. When selective adhesion was quenched by ferrous ion completely, adhesion of T. ferrooxidans was controlled by hydrophilic interactions. Adhesion of E. coli to pyrite exhibited a liner relationship on langmuir isotherm plots, but adhesion of T. ferrooxidans did not. T. ferrooxidans recognized the reduced iron in minerals and selectively adhered to pyrite and chalcopyrite by a strong interaction other than the physical interaction. PMID:16349106

  11. Interference of 1:1 and 2:1 layered phyllosilicates as excipients with ranitidine.

    PubMed

    Li, Zhaohui; Fitzgerald, Nicole M; Albert, Zachary; Jiang, Wei-Teh

    2016-04-01

    As natural ingredients and excipients, kaolinite and talc were frequently studied for their interactions with drugs in pharmaceutical formulations. In this study, the uptake of ranitidine (RT) on these two minerals was studied under different physic-chemical conditions and the mechanism of RT uptake on these two minerals contrasted. Although the thermodynamic and kinetic RT uptake on these two minerals was similar and the RT uptake on both minerals were limited to the external surfaces only, drastic difference in RT uptake was found under different equilibrium solution pH and ionic strength conditions. As cation exchange process was strongly affected by solution pH and ionic strength, the RT uptake on kaolinite was dominated by cation exchange and electrostatic interactions, while the RT uptake on talc was more controlled by inter- and intra- molecular hydrogen bonding interactions. For kaolinite, the limiting factor for RT uptake was the specific surface area due to monolayer RT adsorption. In contract, multilayer RT uptake was found on talc surfaces. No matter which mechanism dominated RT uptake on these minerals, the interaction should not be neglected in pharmaceutical formulations should these minerals be used as additives and/or excipients. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran

    NASA Astrophysics Data System (ADS)

    Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann G.; Pourkaseb, Houshang; Asadi, Sina; Saed, Madineh; Lentz, David R.

    2018-02-01

    The present work attempts to discriminate between the geochemical features of magmatic-hydrothermal systems involved in the early stages of mineralization in high grade versus low grade porphyry copper systems, using chemical compositions of silicate and sulfide minerals (i.e., plagioclase, biotite, pyrite and chalcopyrite). The data indicate that magmatic plagioclase in all of the porphyry copper systems studied here has high An% and Al content with a significant trend of evolution toward AlAl3SiO8 and □Si4O8 endmembers, providing insight into the high melt water contents of the parental magmas. Comparably, excess Al and An% in the high grade deposits appears to be higher than that of selected low grade deposits, representing a direct link between the amounts of exsolving hydrothermal fluids and the potential of metal endowment in porphyry copper deposits (PCDs). Also, higher Al contents accompanied by elevated An% are linked to the increasing intensity of disruptive alteration (phyllic) in feldspars from the high grade deposits. As calculated from biotite compositions, chloride contents are higher in the exsolving hydrothermal fluids that contributed to the early mineralization stages of highly mineralized porphyry systems. However, as evidenced by scattered and elevated log (fH2O)/(fHF) and log (fH2O)/(fHCl) values, chloride contents recorded in biotite could be influenced by post potassic fluids. Geothermometry of biotite associated with the onset of sulfide mineralization indicates that there is a trend of increasing temperature from high grade to low grade porphyry systems. Significantly, this is coupled with a sharp change in copper content of pyrite assemblages precipitated at the early stages of mineralization such that Cu decreased with increasing temperature. Based on EMPA and detailed WDS elemental mapping, trace elements do not exhibit complex compositional zoning or solid solution in the sulfide structure. Nevertheless, significant amounts of Cu and Au are contained in pyrite assemblages as micro- to nano-sized inclusions, especially in the high grade fertile porphyry deposits. However, unexpectedly high concentrations of Te, Se, and Re may be associated with early stage of sulfide mineralization, especially when there is no epithermal lithocap. This may highlight the significance of trace metals partitioning in the sulfides formed at the early stages of mineralization in PCDs.

  13. Phast4Windows: A 3D graphical user interface for the reactive-transport simulator PHAST

    USGS Publications Warehouse

    Charlton, Scott R.; Parkhurst, David L.

    2013-01-01

    Phast4Windows is a Windows® program for developing and running groundwater-flow and reactive-transport models with the PHAST simulator. This graphical user interface allows definition of grid-independent spatial distributions of model properties—the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones—and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point-by-point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field-scale simulations of geochemical processes and contaminant transport.

  14. Biodegradation of CuTETA, an effluent by-product in mineral processing.

    PubMed

    Cushing, Alexander M L; Kelebek, Sadan; Yue, Siqing; Ramsay, Juliana A

    2018-04-13

    Polyamines such as triethylenetetramine (TETA) and other amine chelators are used in mineral processing applications. Formation of heavy metal complexes of these reagents as a by-product in effluent water is a recent environmental concern. In this study, Paecilomyces sp. was enriched from soil on TETA as the sole source of carbon and nitrogen and was found to degrade > 96 and 90% CuTETA complexes at initial concentrations of 0.32 and 0.79 mM respectively, following 96-h incubation. After destabilization, most of the copper (> 78%) was complexed extracellularly and the rest was associated with the cell. Mass spectroscopy results provided confirmation that copper re-complexed with small, extracellular, and organic molecules. There are no reports in the literature that Paecilomyces or any other organism can grow on TETA or CuTETA. This study is the first to show that biological destabilization of CuTETA complexes in mineral processing effluents is feasible.

  15. A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines

    USGS Publications Warehouse

    Plummer, Niel; Parkhurst, D.L.; Fleming, G.W.; Dunkle, S.A.

    1988-01-01

    The program named PHRQPITZ is a computer code capable of making geochemical calculations in brines and other electrolyte solutions to high concentrations using the Pitzer virial-coefficient approach for activity-coefficient corrections. Reaction-modeling capabilities include calculation of (1) aqueous speciation and mineral-saturation index, (2) mineral solubility, (3) mixing and titration of aqueous solutions, (4) irreversible reactions and mineral water mass transfer, and (5) reaction path. The computed results for each aqueous solution include the osmotic coefficient, water activity , mineral saturation indices, mean activity coefficients, total activity coefficients, and scale-dependent values of pH, individual-ion activities and individual-ion activity coeffients , and scale-dependent values of pH, individual-ion activities and individual-ion activity coefficients. A data base of Pitzer interaction parameters is provided at 25 C for the system: Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O, and extended to include largely untested literature data for Fe(II), Mn(II), Sr, Ba, Li, and Br with provision for calculations at temperatures other than 25C. An extensive literature review of published Pitzer interaction parameters for many inorganic salts is given. Also described is an interactive input code for PHRQPITZ called PITZINPT. (USGS)

  16. Solute transport through a pine-bark based substrate under saturated and unsaturated conditions

    USDA-ARS?s Scientific Manuscript database

    An understanding of how dissolved mineral nutrient ions (solutes) move through pine bark substrates during the application of irrigation water is vital to better understand nutrient transport and leaching from containerized crops during an irrigation event. However, current theories on solute transp...

  17. Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse.

    PubMed

    Khadhraoui, M; Trabelsi, H; Ksibi, M; Bouguerra, S; Elleuch, B

    2009-01-30

    The objective of this study was to investigate the degradation and mineralization of an azo-dye, the Congo red, in aqueous solutions using ozone. Phytotoxicity and the inhibitory effects on the microbial activity of the raw and the ozonated solutions were also carried out with the aim of water reuse and environment protection. Decolorization of the aqueous solutions, disappearance of the parent compound, chemical oxygen demand (COD) and total organic carbon (TOC) removal were the main parameters monitored in this study. To control the mineralization of the Congo red, pH of the ozonated solution and heteroatoms released from the mother molecule such NH(4)(+), NO(3)(-) and SO(4)(2-) were determined. It was concluded that ozone by itself is strong enough to decolorize these aqueous solutions in the early stage of the oxidation process. Nonetheless, efficient mineralization had not been achieved. Significant drops in COD (54%) were registered. The extent of TOC removal was about 32%. Sulfur heteroatom was totally oxidized to SO(4)(2-) ions while the central -NN- azo ring was partially converted to NH(4)(+) and NO(3)(-). Results of the kinetic studies showed that ozonation of the selected molecule was a pseudo-first-order reaction with respect to dye concentration. The obtained results also demonstrate that ozone process reduced the phytotoxicity of the raw solution and enhanced the biodegradability of the treated azo-dyes-wastewater. Hence, this show that ozone remains one of the effective technologies for the discoloration and the detoxification of organic dyes in wastewater.

  18. Recovery of Volatile Fatty Acids from Fermented Wastewater by Adsorption

    PubMed Central

    2017-01-01

    Separation of volatile fatty acids (VFAs) from fermented wastewater is challenging, due to low VFA concentrations in mineral-rich streams. As a result, separation capacity and selectivity with traditional solvents and adsorbents are both compromised. In this study, using a complex artificial model solution mimicking real fermented wastewaters, it is shown that a simple and robust adsorption-based separation technique can retain a remarkable capacity and selectivity for VFAs. Four types of polystyrene-divinylbenzene-based resins (primary, secondary, and tertiary amine-functionalized, and nonfunctionalized) were examined as the adsorbents. The presence of chloride, sulfate, and phosphate salts resulted in coadsorption of their acidic forms HCl, H2SO4, and H3PO4 on amine-functionalized adsorbents, and severely reduced the VFA capacity. With the nonfunctionalized adsorbent, almost no mineral acid coadsorption was observed. This together with a high total VFA capacity of up to 76 g/kg in equilibrium with the model solution containing a total VFA concentration of 1 wt % resulted in a very high selectivity for the VFAs. Nitrogen-stripping with various temperature profiles was applied to regenerate the adsorbent, and study the potential for fractionation of the VFAs during regeneration. Butyric acid (HBu) was obtained in mole fractions of up to 0.8 using a stepwise increase in the stripping temperature from 25 °C via 120 to 200 °C. During four successive adsorption–regeneration cycles, no reduction in the adsorption capacity was observed. PMID:28989827

  19. Trace Element Speciation and Distribution Study at Shewanella oneidensis MR-1 Biofilm/Mineral/Water Interfaces

    NASA Astrophysics Data System (ADS)

    Gelabert, A.; Wang, Y.; Gescher, J.; Ha, J.; Cordova, C. D.; Singer, D. M.; Spormann, A. M.; Trainor, T. P.; Eng, P. J.; Brown, G. E.

    2006-12-01

    Fe- and Al-(oxyhydr)oxides are among the most reactive mineral surfaces contacted by surface and ground waters, and thus they constitute important sorbents for heavy metal and metalloid ions. As microbial biofilms may be present as coatings on these minerals, they are likely to induce major changes in surface charges and sorption capacities for metal(loid) ions compared to biofilm-free mineral surfaces. In addition, the micro- environments in biofilms can be quite different from those in bulk solutions, which can enhance (or inhibit) metal adsorption on mineral surfaces and produce biominerals that are not predicted by equilibrium thermodynamics based on the bulk solution values. In order to provide a more quantitative understanding of these effects, we have carried out a study of the interaction of Zn(II), Pb(II), and As(V) with Shewanella oneidensis (wild type, EPS-deficient mutant, and ppx- and ppk-deficient mutants) grown on highly polished and oriented single crystal surfaces of α-Al2O3 (1-102) and α-Fe2O3 (0001). This gram-negative bacterium commonly found in soil and sediments can use a wide range of electron donors and terminal electron acceptors including Fe(III) and Mn(IV) oxides under anaerobic conditions. In-situ ATR-FTIR analyses and potentiometric titrations of S. oneidensis biofilm collected from a glass bead-filled column inoculated with S. oneidensis were conducted in order to determine the nature of functional groups present on the bacterial surfaces, to quantify the site densities and protonation constants for these groups, and to determine the electrostatic parameters for S. oneidensis surfaces. GI-XAFS analyses performed on BL 11-2 at SSRL, together with macroscopic metal adsorption experiments as a function of pH (2 to 6.5), metal concentration (10-3 to 10-7 M), and ionic strength (10-1 to 10-3 M), were used to determine ion speciation and local coordination environments in the biofilm and to develop a surface complexation model describing the interactions among biofilm, metal(loid)s, and mineral surfaces. The long-period X-ray Standing Wave- fluorescent yield (XSW-FY) method, performed on BL ID-13-C at the APS, was used to obtain quantitative in situ information on the partitioning of Zn(II), Pb(II), and As(V) at these interfaces as a function of pH and ion concentration. XSW-FY results show that S. oneidensis biofilms do not block reactive sites on the hematite or alumina surfaces under our experimental conditions, which is consistent with the conclusion of our previous studies on trace element distributions at Burkholderia cepacia/mineral/water interfaces. Comparison of the observed trace element partitioning measured by XSW-FY with theoretical predictions of partitioning through thermodynamic models (using binding constants of metal(loid)s with the biofilm determined in this study and published binding constants of metal(loid)s with mineral substrates) allows us to describe biofilm local microenvironments and to understand how the biofilm coatings affect the reactivity of mineral surfaces.

  20. Influence of the current density on the electrochemical treatment of concentrated 1-butyl-3-methylimidazolium chloride solutions on diamond electrodes.

    PubMed

    Marcionilio, Suzana M L de Oliveira; Alves, Gisele M; E Silva, Rachel B Góes; Marques, Pablo J Lima; Maia, Poliana D; Neto, Brenno A D; Linares, José J

    2016-10-01

    This paper focuses on the influence of the current density treatment of a concentrated 1-butyl-3-methylimidazolium chloride (BMImCl) solution on an electrochemical reactor with a boron-doped diamond (BDD) anode. The decrease in the total organic carbon (TOC) and the BMImCl concentration demonstrate the capability of BDD in oxidizing ionic liquids (ILs) and further mineralizing (to CO2 and NO3 (-)) more rapidly at higher current densities in spite of the reduced current efficiency of the process. Moreover, the presence of Cl(-) led to the formation of oxychlorinated anions (mostly ClO3 (-) and ClO4 (-)) and, in combination with the ammonia generated in the cathode from the nitrate reduction, chloramines, more intensely at higher current density. Finally, the analysis of the intermediates formed revealed no apparent influence of the current density on the BMImCl degradation mechanism. The current density presents therefore a complex influence on the IL treatment process that is discussed throughout this paper.

  1. Catalytic wet air oxidation of aniline with nanocasted Mn-Ce-oxide catalyst.

    PubMed

    Levi, R; Milman, M; Landau, M V; Brenner, A; Herskowitz, M

    2008-07-15

    The catalytic wet air oxidation of aqueous solution containing 1000 ppm aniline was conducted in a trickle-bed reactor packed with a novel nanocasted Mn-Ce-oxide catalyst (surface area of 300 m2/g) prepared using SBA-15 silica as a hard template. A range of liquid hourly space velocities (5-20 h(-1)) and temperatures (110-140 degrees C) at 10 bar of oxygen were tested. The experiments were conducted to provide the intrinsic performance of the catalysts. Complete aniline conversion, 90% TOC conversion, and 80% nitrogen mineralization were achieved at 140 degrees C and 5 h(-1). Blank experiments yielded relatively low homogeneous aniline (<35%) and negligible TOC conversions. Fast deactivation of the catalysts was experienced due to leaching caused by complexation with aniline. Acidification of the solution with HCI (molar HCI to aniline ratio of 1.2) was necessary to avoid colloidization and leaching of the nanoparticulate catalyst components. The catalyst displayed stable performance for over 200 h on stream.

  2. Adsorption of fatty acids on iron (hydr)oxides from aqueous solutions.

    PubMed

    Chernyshova, Irina V; Ponnurangam, Sathish; Somasundaran, Ponisseril

    2011-08-16

    The interaction of iron (hydr)oxides with fatty acids is related to many industrial and natural processes. To resolve current controversies about the adsorption configurations of fatty acids and the conditions of the maximum hydrophobicity of the minerals, we perform a detailed study of the adsorption of sodium laurate (dodecanoate) on 150 nm hematite (α-Fe(2)O(3)) particles as a model system. The methods used include in situ FTIR spectroscopy, ex situ X-ray photoelectron spectroscopy (XPS), measurements of the adsorption isotherm and contact angle, as well as the density functional theory (DFT) calculations. We found that the laurate adlayer is present as a mixture of inner-sphere monodentate mononuclear (ISMM) and outer-sphere (OS) hydration shared complexes independent of the solution pH. Protonation of the OS complexes does not influence the conformational order of the surfactant tails. One monolayer, which is filled through the growth of domains and is reached at the micellization/precipitation edge of laurate, makes the particles superhydrophobic. These results contradict previous models of the fatty acid adsorption and suggest new interpretation of literature data. Finally, we discovered that the fractions of both the OS laurate and its molecular form increase in D(2)O, which can be used for interpreting complex spectra. We discuss shortcomings of vibrational spectroscopy in determining the interfacial coordination of carboxylate groups. This work advances the current understanding of the oxide-carboxylate interactions and the research toward improving performance of fatty acids as surfactants, dispersants, lubricants, and anticorrosion reagents.

  3. Acid pre-treatment method for in situ ore leaching

    DOEpatents

    Mallon, R.G.; Braun, R.L.

    1975-10-28

    An acid leaching method is described for the recovery of a desired element from a subterranean rubblized body of primary ore containing the element and also having associated therewith a carbonate mineral wherein the rubblized ore body is flooded with an aqueous acidic solution in order to release carbon dioxide from the associated carbonate mineral. After a substantial portion of the available carbon dioxide is released and removed from the ore body, as by venting to the atmosphere, an oxidizing gas is introduced into the flooded, rubblized ore to oxidize the ore and form an acid leach solution effective in the presence of the dissolved oxidizing gas to dissolve the ore and cause the desired element to go into solution. The leach solution is then circulated to the surface where the metal values are recovered therefrom.

  4. Use of ferric-impregnated volcanic ash for arsenate (V) adsorption from contaminated water with various mineralization degrees.

    PubMed

    Chen, Rongzhi; Zhang, Zhenya; Yang, Yingnan; Lei, Zhongfang; Chen, Nan; Guo, Xu; Zhao, Chao; Sugiura, Norio

    2011-01-15

    Ferric-impregnated volcanic ash (FVA) which consisted mainly of different forms of iron and aluminum oxide minerals was developed for arsenate (V) removal from an aqueous medium. The adsorption experiments were conducted in both DI water samples and actual water (Lake Kasumigaura, Japan) to investigate the effects of solution mineralization degree on the As(V) removal. Kinetic and equilibrium studies conducted in actual water revealed that the mineralization of water greatly elevated the As(V) adsorption on FVA. The experiment performed in DI water indicated that the existence of multivalence metallic cations significantly enhanced the As(V) adsorption ability, whereas competing anions such as fluoride and phosphate greatly decreased the As(V) adsorption. It is suggested that FVA is a cost-effective adsorbent for As(V) removal in low-level phosphate and fluoride solution. It was important to conduct the batch experiment using the actual water to investigate the arsenic removal on adsorbents. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Reaction behaviors of decomposition of monocrotophos in aqueous solution by UV and UV/O processes.

    PubMed

    Ku, Y; Wang, W; Shen, Y S

    2000-02-01

    The decomposition of monocrotophos (cis-3-dimethoxyphosphinyloxy-N-methyl-crotonamide) in aqueous solution by UV and UV/O(3) processes was studied. The experiments were carried out under various solution pH values to investigate the decomposition efficiencies of the reactant and organic intermediates in order to determine the completeness of decomposition. The photolytic decomposition rate of monocrotophos was increased with increasing solution pH because the solution pH affects the distribution and light absorbance of monocrotophos species. The combination of O(3) with UV light apparently promoted the decomposition and mineralization of monocrotophos in aqueous solution. For the UV/O(3) process, the breakage of the >C=C< bond of monocrotophos by ozone molecules was found to occur first, followed by mineralization by hydroxyl radicals to generate CO(3)(2-), PO4(3-), and NO(3)(-) anions in sequence. The quasi-global kinetics based on a simplified consecutive-parallel reaction scheme was developed to describe the temporal behavior of monocrotophos decomposition in aqueous solution by the UV/O(3) process.

  6. Magmatic ore deposits in layered intrusions - Descriptive model for reef-type PGE and contact-type Cu-Ni-PGE deposits

    USGS Publications Warehouse

    Zientek, Michael L.

    2012-01-01

    Layered, ultramafic to mafic intrusions are uncommon in the geologic record, but host magmatic ore deposits containing most of the world's economic concentrations of platinum-group elements (PGE) (figs. 1 and 2). These deposits are mined primarily for their platinum, palladium, and rhodium contents (table 1). Magmatic ore deposits are derived from accumulations of crystals of metallic oxides, or immiscible sulfide, or oxide liquids that formed during the cooling and crystallization of magma, typically with mafic to ultramafic compositions. "PGE reefs" are stratabound PGE-enriched lode mineralization in mafic to ultramafic layered intrusions. The term "reef" is derived from Australian and South African literature for this style of mineralization and used to refer to (1) the rock layer that is mineralized and has distinctive texture or mineralogy (Naldrett, 2004), or (2) the PGE-enriched sulfide mineralization that occurs within the rock layer. For example, Viljoen (1999) broadly defined the Merensky Reef as "a mineralized zone within or closely associated with an unconformity surface in the ultramafic cumulate at the base of the Merensky Cyclic Unit." In this report, we will use the term PGE reef to refer to the PGE-enriched mineralization, not the host rock layer. Within a layered igneous intrusion, reef-type mineralization is laterally persistent along strike, extending for the length of the intrusion, typically tens to hundreds of kilometers. However, the mineralized interval is thin, generally centimeters to meters thick, relative to the stratigraphic thickness of layers in an intrusion that vary from hundreds to thousands of meters. PGE-enriched sulfide mineralization is also found near the contacts or margins of layered mafic to ultramafic intrusions (Iljina and Lee, 2005). This contact-type mineralization consists of disseminated to massive concentrations of iron-copper-nickel-PGE-enriched sulfide mineral concentrations in zones that can be tens to hundreds of meters thick. The modes and textures of the igneous rocks hosting the mineralization vary irregularly on the scale of centimeters to meters; autoliths and xenoliths are common. Mineralization occurs in the igneous intrusion and in the surrounding country rocks. Mineralization can be preferentially localized along contact with country rocks that are enriched in sulfur-, iron-, or CO2-bearing lithologies. Reef-type and contact-type deposits, in particular those in the Bushveld Complex, South Africa, are the world's primary source of platinum and rhodium (tables 2 and 3; fig. 2). Reef-type PGE deposits are mined only in the Bushveld Complex (Merensky Reef and UG2), the Stillwater Complex (J-M Reef), and the Great Dyke (Main Sulphide Layer). PGE-enriched contact-type deposits are only mined in the Bushveld Complex. The other deposits in tables 2 and 3 are undeveloped; some are still under exploration.

  7. Deposition conditions and distribution features of native gold individuals in the veins of the Tokur mesothermal deposit, Russia

    NASA Astrophysics Data System (ADS)

    Ostapenko, N. S.; Neroda, O. N.

    2016-05-01

    The paper discusses factors in the deposition and concentration of native gold and the spatial distribution of its individuals within the sufide-poor gold-quartz veins at the mesoabyssal Tokur deposit. The major factors in deposition of gold were sealing of the hydrothermal system, a sudden drop in fluid pressure, and repeated immiscibility in the fluid. Native gold was deposited in relation to initial acts of prolonged and discrete opening and preopening of cavities in three mineral assemblages of the productive association II. Most native gold individuals with a visible size of 0.1-1.5 mm were together with the early generation of quartz 2 on cavity walls adjacent to altered rocks. This is caused by the high content of Au complexes in initial hydrothermal solutions favoring rapid oversaturation during cavity formation. Gold fills interstices between grains of quartz 2 throughout the deposit and mineral assemblages. The vertical-flow distribution of gold has been established in economic veins; the upper and middle levels are enriched in gold, and samples with the greatest gold grade of 100-500 g/t or higher are concentrated there. This is caused both by the predominance of mineral association II at these levels and probable natural flotation of gold grains contained in the gold-gas associate for immiscibility of the hydrothermal fluid at the second stage of the ore-forming process.

  8. Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method.

    PubMed

    Fan, Zixi; Zhang, Qian; Li, Meng; Niu, Dongyuan; Sang, Wenjiao; Verpoort, Francis

    2018-03-01

    In this work, a KMnO 4 -modified-biochar-based composite material with manganese oxide produced at 600 °C was fabricated to investigate the sorption mechanism of Cd(II) and to comprehensively evaluate the effect of the modification on biochar properties. Cd(II) adsorption mechanisms were mainly controlled by interaction with minerals, complexation with oxygen-containing functional groups, and cation-π interaction. The sorption capacity was significantly reduced after a deash treatment of biochar, almost shrunk by 3 and 3.5 times for pristine biochar (PBC) and modified biochar (MBC). For deashed PBC, oxygen-containing functional groups were the main contributor toward Cd(II) adsorption while interaction with minerals was significantly compromised and became negligible. The sorption capacity was also apparently decreased after the deash treatment of MBC; however, for deashed MBC, interaction with minerals still was the main contributor to the sorption ability, which could be attributed to the mechanism of interaction of Cd(II) with loaded MnO x on biochar. Cation-π interaction in MBC was notably enhanced compared to PBC due to the oxidation of KMnO 4 on biomass. Also, sorption performance by oxygen-containing functional groups was also enhanced. Hence, the modification by KMnO 4 has a significant effect on the Cd(II) sorption performance of biochar.

  9. Trace concentration - Huge impact: Nitrate in the calcite/Eu(III) system

    NASA Astrophysics Data System (ADS)

    Hofmann, Sascha; Voïtchovsky, Kislon; Schmidt, Moritz; Stumpf, Thorsten

    2014-01-01

    The interactions of trivalent lanthanides and actinides with secondary mineral phases such as calcite is of high importance for the safety assessment of deep geological repositories for high level nuclear waste (HLW). Due to similar ionic radii, calcium-bearing mineral phases are suitable host minerals for Ln(III) and An(III) ions. Especially calcite has been proven to retain these metal ions effectively by both surface complexation and bulk incorporation. Since anionic ligands (e.g., nitrate) are omnipresent in the geological environment and due to their coordinating properties, their influence on retentive processes should not be underestimated. Nitrate is a common contaminant in most HLW forms as a result of using nitric acid in fuel reprocessing. It is also formed by microbial activity under aerobic conditions. In this study, atomic force microscopy investigations revealed a major influence of nitrate upon the surface of calcite crystals. NaNO3 causes serious modifications even in trace amounts (<10-7 M) and forms a soft surface layer of low crystallinity on top of the calcite crystal. Time-resolved laser fluorescence spectroscopy of Eu(III) showed that, within this layer, Eu(III) ions are incorporated, while losing most of their hydration shell. The results show that solid solution modelling for actinides in calcite must take into account the presence of nitrate in pore and ground waters.

  10. Electro-fenton and photoelectro-fenton degradation of sulfanilic acid using a boron-doped diamond anode and an air diffusion cathode.

    PubMed

    El-Ghenymy, Abdellatif; Garrido, José Antonio; Centellas, Francesc; Arias, Conchita; Cabot, Pere Lluís; Rodríguez, Rosa María; Brillas, Enric

    2012-04-05

    The mineralization of sulfanilic acid has been studied by electro-Fenton (EF) and photoelectro-Fenton (PEF) reaction with UVA light using an undivided electrochemical cell with a boron-doped diamond (BDD) anode and an air diffusion cathode able to generate H(2)O(2). Organics were then oxidized by hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between generated H(2)O(2) and added Fe(2+). The UVA irradiation in PEF enhanced the production of hydroxyl radicals in the bulk, accelerating the removal of organics and photodecomposed intermediates like Fe(III)-carboxylate complexes. Partial decontamination of 1.39 mM sulfanilic acid solutions was achieved by EF until 100 mA cm(-2) at optimum conditions of 0.4 mM Fe(2+) and pH 3.0. The increase in current density and substrate content led to an almost total mineralization. In contrast, the PEF process was more powerful, yielding almost complete mineralization in less electrolysis time under comparable conditions. The kinetics for sulfanilic acid decay always followed a pseudo-first-order reaction. Hydroquinone and p-benzoquinone were detected as aromatic intermediates, whereas acetic, maleic, formic, oxalic, and oxamic acids were identified as generated carboxylic acids. NH(4)(+) ion was preferentially released in both treatments, along with NO(3)(-) ion in smaller proportion.

  11. Dissolution of nontronite in chloride brines and implications for the aqueous history of Mars

    NASA Astrophysics Data System (ADS)

    Steiner, M. H.; Hausrath, E. M.; Elwood Madden, M. E.; Tschauner, O.; Ehlmann, B. L.; Olsen, A. A.; Gainey, S. R.; Smith, J. S.

    2016-12-01

    Increasing evidence suggests the presence of recent liquid water, including brines, on Mars. Brines have therefore likely impacted clay minerals such as the Fe-rich mineral nontronite found in martian ancient terrains. To interpret these interactions, we conducted batch experiments to measure the apparent dissolution rate constant of nontronite at 25.0 °C at activities of water (aH2O) of 1.00 (0.01 M CaCl2 or NaCl), 0.75 (saturated NaCl or 3.00 mol kg-1 CaCl2), and 0.50 (5.00 mol kg-1 CaCl2). Experiments at aH2O = 1.00 (0.01 M CaCl2) were also conducted at 4.0 °C, 25.0 °C, and 45.0 °C to measure an apparent activation energy for the dissolution of nontronite. Apparent dissolution rate constants at 25.0 °C in CaCl2-containing solutions decrease with decreasing activity of water as follows: 1.18 × 10-12 ± 9 × 10-14 mol mineral m-2 s-1 (aH2O = 1.00) > 2.36 × 10-13 ± 3.1 × 10-14 mol mineral m-2 s-1 (aH2O = 0.75) > 2.05 × 10-14 ± 2.9 × 10-15 mol mineral m-2 s-1 (aH2O = 0.50). Similar results were observed at 25.0 °C in NaCl-containing solutions: 1.89 × 10-12 ± 1 × 10-13 mol mineral m-2 s-1 (aH2O = 1.00) > 1.98 × 10-13 ± 2.3 × 10-14 mol mineral m-2 s-1 (aH2O = 0.75). This decrease in apparent dissolution rate constants with decreasing activity of water follows a relationship of the form: log kdiss = 3.70 ± 0.20 × aH2O - 15.49, where kdiss is the apparent dissolution rate constant, and aH2O is the activity of water. The slope of this relationship (3.70 ± 0.20) is within uncertainty of that of other minerals where the relationship between dissolution rates and activity of water has been tested, including forsteritic olivine (log R = 3.27 ± 0.91 × aH2O - 11.00) (Olsen et al., 2015) and jarosite (log R = 3.85 ± 0.43 × aH2O - 12.84) (Dixon et al., 2015), where R is the mineral dissolution rate. This result allows prediction of mineral dissolution as a function of activity of water and suggests that with decreasing activity of water, mineral dissolution will decrease due to the role of water as a ligand in the reaction. Apparent dissolution rate constants in the dilute NaCl solution (1.89 × 10-12 ± 1 × 10-13 mol mineral m-2 s-1) are slightly greater than those in the dilute CaCl2 solutions (1.18 × 10-12 ± 9 × 10-14 mol mineral m-2 s-1). We attribute this effect to the exchange of Na with Ca in the nontronite interlayer. An apparent activation energy of 54.6 ± 1.0 kJ/mol was calculated from apparent dissolution rate constants in dilute CaCl2-containing solutions at temperatures of 4.0 °C, 25.0 °C, and 45.0 °C: 2.33 × 10-13 ± 1.3 × 10-14 mol mineral m-2 s-1 (4.0 °C), 1.18 × 10-12 ± 9 × 10-14 mol mineral m-2 s-1 (25.0 °C), and 4.98 × 10-12 ± 3.8 × 10-13 mol mineral m-2 s-1 (45.0 °C). The greatly decreased dissolution of nontronite in brines and at low temperatures suggests that any martian nontronite found to be perceptibly weathered may have experienced very long periods of water-rock interaction with brines at the low temperatures prevalent on Mars, with important implications for the paleoclimate and long-term potential habitability of Mars.

  12. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    A review is presented that mainly treats minerals in which the rare-earth elements are essential constituents, e.g., bastnaesite, monazite, xenotime, aeschynite, allanite. The chemical mechanisms and limits of REE substitution in some rock-forming minerals (zircon, apatite, titanite, garnet) are also derived. Vector representation of complex coupled substitutions in selected REE-bearing minerals is examined and some comments on REE-partitioning between minerals as related to acid-based tendencies and mineral stabilities are presented. As the same or analogous coupled substitutions involving the REE occur in a wide variety of mineral structures, they are discussed together.

  13. A compilation of mineral occurrences and the relationship of occurrences to structural elements of the Kentucky and Tennessee region

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.; Myers, D. M.

    1984-01-01

    A very prominent magnetic anomaly measured by MAGSAT over the eastern mid-continent of the United States was inferred to have a source region beneath Kentucky and Tennessee. Prominent aeromagnetic and gravity anomalies are also associated with the inferred source region. A crustal model constructed to fit these anomalies interpreted the complex as a large mafic plutonic intrusion of Precambrian age. The complex was named the Kentucky body. It was noticed that the Jessamine Dome, which is a locus of intense faulting and mineralization, occurs near the northern end of the Kentucky body, and that more generally there seemed to be a spatial relationship between mineral occurrence and the body. The relationship between mineral deposits in Kentucky and Tennessee and the Kentucky body was investigated. A compilation of mineral occurrences in the region, classified according to type and age, is presented.

  14. Sensitivity of mineral dissolution rates to physical weathering : A modeling approach

    NASA Astrophysics Data System (ADS)

    Opolot, Emmanuel; Finke, Peter

    2015-04-01

    There is continued interest on accurate estimation of natural weathering rates owing to their importance in soil formation, nutrient cycling, estimation of acidification in soils, rivers and lakes, and in understanding the role of silicate weathering in carbon sequestration. At the same time a challenge does exist to reconcile discrepancies between laboratory-determined weathering rates and natural weathering rates. Studies have consistently reported laboratory rates to be in orders of magnitude faster than the natural weathering rates (White, 2009). These discrepancies have mainly been attributed to (i) changes in fluid composition (ii) changes in primary mineral surfaces (reactive sites) and (iii) the formation of secondary phases; that could slow natural weathering rates. It is indeed difficult to measure the interactive effect of the intrinsic factors (e.g. mineral composition, surface area) and extrinsic factors (e.g. solution composition, climate, bioturbation) occurring at the natural setting, in the laboratory experiments. A modeling approach could be useful in this case. A number of geochemical models (e.g. PHREEQC, EQ3/EQ6) already exist and are capable of estimating mineral dissolution / precipitation rates as a function of time and mineral mass. However most of these approaches assume a constant surface area in a given volume of water (White, 2009). This assumption may become invalid especially at long time scales. One of the widely used weathering models is the PROFILE model (Sverdrup and Warfvinge, 1993). The PROFILE model takes into account the mineral composition, solution composition and surface area in determining dissolution / precipitation rates. However there is less coupling with other processes (e.g. physical weathering, clay migration, bioturbation) which could directly or indirectly influence dissolution / precipitation rates. We propose in this study a coupling between chemical weathering mechanism (defined as a function of reactive area, solution composition, temperature, mineral composition) and the physical weathering module in the SoilGen model which calculates the evolution of particle size (used for surface area calculation) as influenced by temperature gradients. The solution composition in the SoilGen model is also influenced by other processes such as atmospheric inputs, organic matter decomposition, cation exchange, secondary mineral formation and leaching. We then apply this coupled mechanism on a case study involving 3 loess soil profiles to analyze the sensitivity of mineral weathering rates to physical weathering. Initial results show some sensitivity but not that dramatic. The less sensitivity was attributed to dominance of resistant primary minerals (> 70% quartz). Scenarios with different sets of mineralogy will be tested and sensitivity results in terms of silicate mineral dissolution rates and CO2-consumption will be presented in the conference. References Sverdrup H and Warfvinge P., 1993. Calculating field weathering rates using a mechanistic geochemical model PROFILE. Applied Geochemistry, 8:273-283. White, A.F., 2009. Natural weathering rates of silicate minerals. In: Drever, J.I. (Ed.), Surface and Ground Water, Weathering and Soils. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. vol. 5. Elsevier-Pergamon, Oxford, pp. 133-168.

  15. A mechanistic study of the interaction of water-soluble borate glass with apatite-bound heterocyclic nitrogen-containing bisphosphonates.

    PubMed

    Pramanik, Chandrani; Sood, Parveen; Niu, Li-Na; Yuan, He; Ghoshal, Sushanta; Henderson, Walter; Liu, Yaodong; Jang, Seung Soon; Kumar, Satish; Pashley, David H; Tay, Franklin R

    2016-02-01

    Long-term oral and intravenous use of nitrogen-containing bisphosphonates (N-BPs) is associated with osteonecrosis of the jaw. Although N-BPs bind strongly to bone surfaces via non-covalent bonds, it is possible for extrinsic ions to dissociate bound N-BPs from mineralized bone by competitive desorption. Here, we investigate the effects and mechanism of using an ionic cocktail derived from borate bioactive glass for sequestration of heterocyclic N-BPs bound to apatite. By employing solid-state and solution-state analytical techniques, we confirmed that sequestration of N-BPs from bisphosphonate-bound apatite occurs in the presence of the borate-containing ionic cocktail. Simulations by density functional theory computations indicate that magnesium cation and borate anion are well within the extent of the risedronate or zoledronate anion to form precipitate complexes. The sequestration mechanism is due to the borate anion competing with bisphosphonates for similar electron-deficient sites on the apatite surface for binding. Thus, application of the borate-containing ionic cocktail represents a new topical lavage approach for removing apatite-bound heterocyclic N-BPs from exposed necrotic bone in bisphosphonate-related osteonecrosis of the jaw. Long-term oral consumption and injections of nitrogen-containing bisphosphonates (N-BPs) may result in death of the jaw bone when there is traumatic injury to the bone tissues. To date, there is no effective treatment for such a condition. This work reported the use of an ionic cocktail derived from water-soluble borate glass microfibers to displace the most potent type of N-BPs that are bound strongly to the mineral component on bone surfaces. The mechanism responsible for such an effect has been identified to be cation-mediated complexation of borate anions with negatively-charged N-BPs, allowing them to be released from the mineral surface. This borate-containing cocktail may be developed into a novel topical rinse for removing mineral-bound N-BPs from exposed dead bone. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments

    NASA Astrophysics Data System (ADS)

    Davis, James A.; Meece, David E.; Kohler, Matthias; Curtis, Gary P.

    2004-09-01

    Uranium(VI) adsorption onto aquifer sediments was studied in batch experiments as a function of pH and U(VI) and dissolved carbonate concentrations in artificial groundwater solutions. The sediments were collected from an alluvial aquifer at a location upgradient of contamination from a former uranium mill operation at Naturita, Colorado (USA). The ranges of aqueous chemical conditions used in the U(VI) adsorption experiments (pH 6.9 to 7.9; U(VI) concentration 2.5 · 10 -8 to 1 · 10 -5 M; partial pressure of carbon dioxide gas 0.05 to 6.8%) were based on the spatial variation in chemical conditions observed in 1999-2000 in the Naturita alluvial aquifer. The major minerals in the sediments were quartz, feldspars, and calcite, with minor amounts of magnetite and clay minerals. Quartz grains commonly exhibited coatings that were greater than 10 nm in thickness and composed of an illite-smectite clay with occluded ferrihydrite and goethite nanoparticles. Chemical extractions of quartz grains removed from the sediments were used to estimate the masses of iron and aluminum present in the coatings. Various surface complexation modeling approaches were compared in terms of the ability to describe the U(VI) experimental data and the data requirements for model application to the sediments. Published models for U(VI) adsorption on reference minerals were applied to predict U(VI) adsorption based on assumptions about the sediment surface composition and physical properties (e.g., surface area and electrical double layer). Predictions from these models were highly variable, with results overpredicting or underpredicting the experimental data, depending on the assumptions used to apply the model. Although the models for reference minerals are supported by detailed experimental studies (and in ideal cases, surface spectroscopy), the results suggest that errors are caused in applying the models directly to the sediments by uncertain knowledge of: 1) the proportion and types of surface functional groups available for adsorption in the surface coatings; 2) the electric field at the mineral-water interface; and 3) surface reactions of major ions in the aqueous phase, such as Ca 2+, Mg 2+, HCO 3-, SO 42-, H 4SiO 4, and organic acids. In contrast, a semi-empirical surface complexation modeling approach can be used to describe the U(VI) experimental data more precisely as a function of aqueous chemical conditions. This approach is useful as a tool to describe the variation in U(VI) retardation as a function of chemical conditions in field-scale reactive transport simulations, and the approach can be used at other field sites. However, the semi-empirical approach is limited by the site-specific nature of the model parameters.

  17. Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments

    USGS Publications Warehouse

    Davis, J.A.; Meece, D.E.; Kohler, M.; Curtis, G.P.

    2004-01-01

    Uranium(VI) adsorption onto aquifer sediments was studied in batch experiments as a function of pH and U(VI) and dissolved carbonate concentrations in artificial groundwater solutions. The sediments were collected from an alluvial aquifer at a location upgradient of contamination from a former uranium mill operation at Naturita, Colorado (USA). The ranges of aqueous chemical conditions used in the U(VI) adsorption experiments (pH 6.9 to 7.9; U(VI) concentration 2.5 ?? 10-8 to 1 ?? 10-5 M; partial pressure of carbon dioxide gas 0.05 to 6.8%) were based on the spatial variation in chemical conditions observed in 1999-2000 in the Naturita alluvial aquifer. The major minerals in the sediments were quartz, feldspars, and calcite, with minor amounts of magnetite and clay minerals. Quartz grains commonly exhibited coatings that were greater than 10 nm in thickness and composed of an illite-smectite clay with occluded ferrihydrite and goethite nanoparticles. Chemical extractions of quartz grains removed from the sediments were used to estimate the masses of iron and aluminum present in the coatings. Various surface complexation modeling approaches were compared in terms of the ability to describe the U(VI) experimental data and the data requirements for model application to the sediments. Published models for U(VI) adsorption on reference minerals were applied to predict U(VI) adsorption based on assumptions about the sediment surface composition and physical properties (e.g., surface area and electrical double layer). Predictions from these models were highly variable, with results overpredicting or underpredicting the experimental data, depending on the assumptions used to apply the model. Although the models for reference minerals are supported by detailed experimental studies (and in ideal cases, surface spectroscopy), the results suggest that errors are caused in applying the models directly to the sediments by uncertain knowledge of: 1) the proportion and types of surface functional groups available for adsorption in the surface coatings; 2) the electric field at the mineral-water interface; and 3) surface reactions of major ions in the aqueous phase, such as Ca2+, Mg2+, HCO3-, SO42-, H4SiO4, and organic acids. In contrast, a semi-empirical surface complexation modeling approach can be used to describe the U(VI) experimental data more precisely as a function of aqueous chemical conditions. This approach is useful as a tool to describe the variation in U(VI) retardation as a function of chemical conditions in field-scale reactive transport simulations, and the approach can be used at other field sites. However, the semi-empirical approach is limited by the site-specific nature of the model parameters. ?? 2004 Elsevier Ltd.

  18. The geology, mineralogy and paragenesis of the Castrovirreyna lead-zinc-silver deposits, Peru

    USGS Publications Warehouse

    Lewis, Richard Wheatley

    1964-01-01

    The Castrovirreyna mining district lies in the Andean Cordillera of South Central Peru, and has been worked sporadically since its discovery in 1591. Supergene silver ores were first mined. Currently the district produces about 20,000 tons of lead-zinc ore and 5000 tons of silver ore annually. The district is underlain by Tertiary andesitic rocks interbedded with basalts and intruded by small bodies of quartz latite porphyry. The terrane reflects recent glaciation and is largely covered by glacial debris. The ore deposits are steeply dipping veins that strike N. 60? E. to S. 50? E., and average 60 centimeters wide and 300 meters long. The principal veins are grouped around three centers, lying 5 kilometers apart along a line striking N. 55? E. They are, from east to west: San Genaro, Caudalosa, and La Virreyna. A less important set of veins, similarly aligned, lies 2 kilometers to the north. Most of the veins were worked to depths of about 30 meters, the limit of supergene enrichment; but in the larger veins hypogene ores have been worked to depths of over 150 meters. Galena, sphalerite, chalcopyrite, and tetrahedrite are common to all veins, but are most abundant in the westernmost veins at La Virreyna. In the center of the district, around Caudalosa, land sulfantimonides are the commonest ore minerals, and at the eastern end, around San Genaro and Astohuaraca, silver sulfosalts predominate. Supergene enrichment of silver is found at shallow depths in all deposits. Silver at San Genaro, however, was concentrated towards the surface by migration along hypogene physico-chemical gradients in time and space, as vein material was reworked by mineralizing fluids. The pattern of wallrock alteration throughout the district grades from silicification and scricitization adjacent to the veins, through argillization and propylitization, to widespread chloritization farther away. Mineralization can be divided into three stages: 1) Preparatory stage, characterized by silicification and pyritization; 2) Depositional stage, characterized by the deposition of base-metal sulfides; and 3) Reworking stage, characterized by the formation of lead sulfantimonides from galena at Caudalosa, and the deposition of silver sulfide and sulfosalts at San Genaro. Maximum temperatures, indicated by the wurtzite-sphalerite, famatinite-energite and chalcopyrite-sphalerite assemblages, did not exceed 350? C. The low iron content of sphalerite suggests that most of the base-metal sulfides were deposited below 250? C. The colloidal habits of pyrite and quartz in the preparatory and reworking stages imply relatively low temperatures of deposition, probably between 50? C and 100? C. Mineralization was shallow and pressures ranged from 17 atmospheres in the silver deposits to over 45 atmospheres in the lead sulfantimonide deposits. Mineralization at Castrovirreyna represents an open chemical system in which mineralizing fluids constantly modified the depositional environment while they themselves underwent modification. The deposits formed under nonequilibrium conditions from fluids containing complex ions and colloids. Reworking and migration along persistent physico-chemical gradients in time and space, from a deep source to the west concentrated base-metal sulfides in the western half, lead-antimony minerals in the center, and silver-antimony minerals in the eastern part of the district. Silver, antimony, and bismuth were kept in solution as complex ions until low temperature and pressure prevailed. They document in situ reworking by reacting with existing minerals. Physico-chemical gradients controlled the type of minerals deposited, whereas vein structure controlled the quantity deposited. Vein fissures formed by the equivalent of from east-west compression during Andean orogenesis and mineralization probably came from the underlying Andean Batholith.

  19. Mineralization Induction of Gingival Fibroblasts and Construction of a Sandwich Tissue-Engineered Complex for Repairing Periodontal Defects

    PubMed Central

    Wu, Mingxuan; Zhang, Yanning; Liu, Huijuan; Dong, Fusheng

    2018-01-01

    Background The ideal healing technique for periodontal tissue defects would involve the functional regeneration of the alveolar bone, cementum, and periodontal ligament, with new periodontal attachment formation. In this study, gingival fibroblasts were induced and a “sandwich” tissue-engineered complex (a tissue-engineered periodontal membrane between 2 tissue-engineered mineralized membranes) was constructed to repair periodontal defects. We evaluated the effects of gingival fibroblasts used as seed cells on the repair of periodontal defects and periodontal regeneration. Material/Methods Primitively cultured gingival fibroblasts were seeded bilaterally on Bio-Gide collagen membrane (a tissue-engineered periodontal membrane) or unilaterally on small intestinal submucosa segments, and their mineralization was induced. A tissue-engineered sandwich was constructed, comprising the tissue-engineered periodontal membrane flanked by 2 mineralized membranes. Periodontal defects in premolar regions of Beagles were repaired using the tissue-engineered sandwich or periodontal membranes. Periodontal reconstruction was compared to normal and trauma controls 10 or 20 days postoperatively. Results Periodontal defects were completely repaired by the sandwich tissue-engineered complex, with intact new alveolar bone and cementum, and a new periodontal ligament, 10 days postoperatively. Conclusions The sandwich tissue-engineered complex can achieve ideal periodontal reconstruction rapidly. PMID:29470454

  20. Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}

    NASA Astrophysics Data System (ADS)

    Gonzalez, Julia; Peña, Jasquelin

    2016-04-01

    Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the labile fraction may lower solution pH into a regime that favours abiotic oxidation of recalcitrant C by MnO2. This project demonstrates that the co-occurrence of mineral particles with metabolically active cells provides a direct link between the C and Mn cycles.

  1. Direct evidence of spatially selective iron mineralization using an immobilized ferritin protein cage.

    PubMed

    Uto, Koichiro; Yamamoto, Kazuya; Kishimoto, Naoko; Muraoka, Masahiro; Aoyagi, Takao; Yamashita, Ichiro

    2014-04-01

    (Apo)ferritins are cage-shaped proteins which have recently received a great deal of attention because the inner cavity of the protein shell can be used as a size-restricted reaction field for the synthesis of nanomaterials. The biomineralization behavior and inorganic nanoparticle (NP) synthesis mechanism of (apo)ferritin in solution systems have been studied but the mineralization behavior of (apo)ferritin on the substrates has not yet been well studied. Here, we conducted quantitative and kinetic analyses of the mineralization behavior of immobilized (apo)ferritin on a polyelectrolyte multilayer (PEM) using quartz crystal microbalance (QCM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) techniques. We demonstrated that the (apo)ferritin immobilized on a substrate synthesizes a ferrihydrite core within the confines of the protein cage; similar to a solution dispersed system. In addition, we applied a ferritin/apoferritin blended monolayer to the study of iron mineralization and revealed that biomineralization in this system is spatially selective. It is important to understand the mineralization mechanisms for the synthesis of other functional NPs as this approach has potential for a broad range of magnetic, catalytic, and biomedical sensing applications.

  2. Influence of geology on groundwater-sediment interactions in arsenic enriched tectono-morphic aquifers of the Himalayan Brahmaputra river basin

    NASA Astrophysics Data System (ADS)

    Verma, Swati; Mukherjee, Abhijit; Mahanta, Chandan; Choudhury, Runti; Mitra, Kaushik

    2016-09-01

    The present study interprets the groundwater solute chemistry, hydrogeochemical evolution, arsenic (As) enrichment and aquifer characterization in Brahmaputra River Basin (BRB) involving three geologically and tectono-morphically distinct regions located in northeastern India. These study regions consist of the northwestern (NW) and the northern (N) region, both located along the western and eastern parts of Eastern Himalayas and the southern (S) region (near Indo-Burmese Range and Naga hills) of the Brahmaputra basin which show distinct tectonic settings and sediment provenances in the Himalayan orogenic belt. Stable isotopic composition (δ2H and δ18O) in groundwater suggests that some evaporation may have taken place through recharging of ground water in the study areas. The major-ion composition shows that groundwater composition of the NW and N parts are between Casbnd HCO3 and Casbnd Nasbnd HCO3 while the S-region is dominated by Nasbnd Casbnd HCO3 hydrochemical facies. The major mineralogical composition of aquifer sediments indicates the dominant presence of iron(Fe)-oxide and oxyhydroxides, mica (muscovite and biotite), feldspar, pyroxene, amphibole, abundance of quartz and clay minerals whereas clay is predominantly present in sediments of S-aquifers. These mafic minerals, aluminosilicates and clay minerals might offer available reactive surface for As-adsorption and co-precipitatation with amorphous Fe. These associated adsorbed and co-precipitated As might be released due to reductive dissolution of Fe-oxide and oxyhydroxides in groundwater. These minerals are assumed to be possible sources of As in groundwater. The stability diagrams of groundwater data suggest that solute might have been introduced into groundwater from weathering of K-feldspar, plagioclase, pyroxene of Himalayan rocks, the Siwalik Group and Eastern Syntaxes in NW and N-regions. However, basic cations might be derived from weathering of K-feldspar, plagioclase, pyroxene and olivine those being major constituents in a gabbroic complex (ophiolite) and basalt terrain in S-region. The aquifers of S-region are severely contaminated with dissolved As compared to NW and N regions. Almost more than 92% of groundwater samples in the southern part (maximum 5.53 μM or 415 μg/L) are enriched with As, which draws a distinct difference from the NW and N parts of BRB aquifers. The redox-sensitive solutes (i.e., Fe, Mn, HCO3- and TOC) are positively correlated with As in NW and N-parts; whereas EH shows negative to very weak positive correlation which suggests that a redox-dependent mobilization plays important role in As liberation in NW and N parts of the basin. However, As in southern aquifers is not showing any correlation or weak negative correlation with redox-sensitive solutes; suggesting that multiple reactions and hydrogeochemical processes and their interaction control As mobilization and fate in the S-region of BRB. The occurrence of high concentrations of arsenic in groundwater of Brahmaputra basin is described through a crustal recycling model and tectonic movement between the Indian-Eurasian plates and Burmese micro-continents. As-enriched groundwater in Himalayan foreland basin in the BRB is probably a result of crustal evolution through which As is subsequently mobilized from aquifer matrix to solution in groundwater by water-sediment reaction under favorable biogeochemical conditions. The results of the study indicate geological control (i.e. change in lithofacies, tectonic set-up) on groundwater chemistry and distribution of redox-sensitive solutes such as As.

  3. Thallium (Tl) sorption onto illite and smectite: Implications for Tl mobility in the environment

    NASA Astrophysics Data System (ADS)

    Martin, Loïc A.; Wissocq, Aubéry; Benedetti, M. F.; Latrille, Christelle

    2018-06-01

    Clay minerals play a relevant role in the transport and fate of trace elements in the environment. Though illite has been referred as an important Thallium (Tl) bearing phase in soils, mechanisms and affinity of thallium for clay minerals remain poorly known. This study investigated the sorption behavior of thallium as Tl(I) onto illite and smectite, two clay minerals occurring mainly in soils and sediments. Different sorption experiments were carried out under various pH conditions and Tl concentrations, in competition with sodium and calcium at a constant ionic strength of 0.01 mol L-1. Our results showed that illite displayed more affinity than smectite for thallium. With illite, the distribution coefficients (Kd in L kg-1) varied between 102.75 ± 0.17 and 104.0 ± 0.17 in Na solutions versus between 102.25 ± 0.17 and 103.0 ± 0.17 in Ca solutions, depending on pH. With smectite, Kd (in L kg-1) ranged between 102.50 ± 0.16 and 103.20 ± 0.16 and between 101.25 ± 0.16 and 101.95 ± 0.16 in Na and Ca solutions, respectively. Sorption behavior was described with the Multi-Site Ion Exchanger model and selectivity coefficients with respect to protons were calculated for the first time. In all cases, independently of clay mineral and background electrolyte, low capacity but highly reactive sites were dominant in thallium uptake, highlighting Tl affinity for those sites. Moreover, the exchangeable and reversible interactions between Tl+ and clays reactive sites suggested that in changing conditions, thallium could be released in solution. The role of clay minerals in thallium environmental cycle is evident and confirmed illite to be a dominant Tl bearing phase, in some environment competing with manganese oxides. Compared to others Tl bearing mineral phases, clays are ranked as follows: MnO2 > illite > smectite ∼ ferrihydrite ≥ Al2O3 ∼ goethite > SiO2. Finally, over the three monovalent cations (Tl, Rb, Cs) Tl is the one less sorbed on illite independently of the background cations.

  4. Nectar minerals as regulators of flower visitation in stingless bees and nectar hoarding wasps.

    PubMed

    Afik, Ohad; Delaplane, Keith S; Shafir, Sharoni; Moo-Valle, Humberto; Quezada-Euán, J Javier G

    2014-05-01

    Various nectar components have a repellent effect on flower visitors, and their adaptive advantages for the plant are not well understood. Persea americana (avocado) is an example of a plant that secretes nectar with repellent components. It was demonstrated that the mineral constituents of this nectar, mainly potassium and phosphate, are concentrated enough to repel honey bees, Apis mellifera, a pollinator often used for commercial avocado pollination. Honey bees, however, are not the natural pollinator of P. americana, a plant native to Central America. In order to understand the role of nectar minerals in plant-pollinator relationships, it is important to focus on the plant's interactions with its natural pollinators. Two species of stingless bees and one species of social wasp, all native to the Yucatan Peninsula, Mexico, part of the natural range of P. americana, were tested for their sensitivity to sugar solutions enriched with potassium and phosphate, and compared with the sensitivity of honey bees. In choice tests between control and mineral-enriched solutions, all three native species were indifferent for mineral concentrations lower than those naturally occurring in P. americana nectar. Repellence was expressed at concentrations near or exceeding natural concentrations. The threshold point at which native pollinators showed repellence to increasing levels of minerals was higher than that detected for honey bees. The results do not support the hypothesis that high mineral content is attractive for native Hymenopteran pollinators; nevertheless, nectar mineral composition may still have a role in regulating flower visitors through different levels of repellency.

  5. Degradation diagnosis of transformer insulating oils with terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, Seung Beom; Kim, Won-Seok; Chung, Dong Chul; Joung, Jong Man; Kwak, Min Hwan

    2017-12-01

    We report the frequency-dependent complex optical constants, refractive index and absorption, and complex dielectric properties over the frequency range from 0.2 to 3.0 THz for aged power transformer mineral insulating oils. These results have been obtained using terahertz time-domain spectroscopy (THz-TDS) and demonstrate the double-Debye relaxation behavior of the mineral insulating oil. The measured complex optical and dielectric characteristics can be important benchmarks for liquid molecular dynamics and theoretical studies of insulating oils. Due to clear differences in THz responses of aged mineral insulating oils, THz-TDS can be used as a novel on-site diagnostic technique to monitor the insulation condition in aged power transformers and may be valuable alternative to characterize other developing eco-friendly insulating oils and industrial liquids.

  6. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites.

    PubMed

    Yang, Changbing; Dai, Zhenxue; Romanak, Katherine D; Hovorka, Susan D; Treviño, Ramón H

    2014-01-01

    This study developed a multicomponent geochemical model to interpret responses of water chemistry to introduction of CO2 into six water-rock batches with sedimentary samples collected from representative potable aquifers in the Gulf Coast area. The model simulated CO2 dissolution in groundwater, aqueous complexation, mineral reactions (dissolution/precipitation), and surface complexation on clay mineral surfaces. An inverse method was used to estimate mineral surface area, the key parameter for describing kinetic mineral reactions. Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification. Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content. The geochemical model confirmed that mobilization of trace metals was caused likely by mineral dissolution and surface complexation on clay mineral surfaces. Although dissolved inorganic carbon and pH may be used as indicative parameters in potable aquifers, selection of geochemical parameters for CO2 leakage detection is site-specific and a stepwise procedure may be followed. A combined study of the geochemical models with the laboratory batch experiments improves our understanding of the mechanisms that dominate responses of water chemistry to CO2 leakage and also provides a frame of reference for designing monitoring strategy in potable aquifers.

  7. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    NASA Astrophysics Data System (ADS)

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal

    2016-04-01

    Khanlogh iron deposit lies on Sabzehvar-Ghoochan Cenozoic magmatic belt in northwest of Neyshaboor, NE Iran. The lithologic units in this area include a series of sub-volcanic intrusive rocks like diorite porphyry, quartz-diorite porphyry, and micro-granodiorite of Oligocene age. Mineralization in this area occurred as veins, dissemination, and open space filling in brecciated zones within the host sub-volcanic intrusive bodies. Three distinct types of mineral associations can be distinguished, (1) diopside-magnetite, (2) magnetite-apatite, and (3) apatite-calcite. Microscopic examinations along with SEM and EPMA studies demonstrated that magnetite is the most common ore mineral occurring as solitary crystals. The euhedral magnetite crystals are accompanied by lamellar destabilized ilmenite and granular fluorapatite in magnetite-apatite ores. The results of EPMA revealed that the lamellar ilmenite, relative to host magnetite crystal, is notably enriched in MgO and MnO (average of 3.3 and 2.6 wt%, respectively; n=5), whereas magnetite is slighter enriched in Ti (TiO2 around 1.8 wt%) being average of MgO, MnO and V2O3 of 0.6wt%, 0.2wt%, and 0.6 wt% (respectively; n=20). Minerals such as chlorapatite, calcite, and chalcedony are also present in the magnetite-apatite ores. The samples from apatite-calcite ores contain coarse crystals of apatite and rhomboedral calcite. The plot of the EPMA data of Khanlogh iron ore samples on diagram of TiO2-V2O5 (Hou et al, 2011) illustrated that the data points lies between the well-known Kiruna and El Laco (Chile) iron deposits. The magnetite crystals in the sub-volcanic host rocks were possibly formed by immiscible iron oxide fluids during magmatic stage. However, the magnetite and apatite existing in the veins and breccia zones may have developed by high temperature hydrothermal fluids. Studies done by Purtov and Kotelnikova (1993) proved that the proportion of Ti in magnetite is related to fluoride complex in the hydrothermal fluids. The high fluorine content of the apatite at Khanlogh may testify to the presence of Ti-fluoride complex in the fluids. Formation of apatite crystals was concurrent with development of titanium lamellae in magnetite. The apatite possesses high REE content which is possibly associated with monazite inclusions. The SEM studies better show these inclusions are occasionally present at the margin of apatite crystals and veins. Based upon field relations, microscopic examinations, and the results of XRD analyses, sodic (albite), propylitic (epidote, chlorite, calcite), and argillic (montmorillonite) alterations are developed in the study area. The principal minerals in these alteration zones are albite, epidote, sericite, chlorite, quartz, calcite, and montmorllonite. Mineralogy, alteration, geochemistry, structure, and texture of the ores at Khanlogh indicate that the magnetite and apatite were chiefly formed by hydrothermal solutions which were enriched in iron mainly transported by F- and Cl- rich fluids. Reference Hou,,T., Zhaochong, Z., Timothy, K., (2011). Gushan magnetite-apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type? Ore geology review, 43, 333-346. Purtov, V.K., Kotelnikova, A.L. (1993). Solubility of titanium in chloride and fluoride hydrothermal solution. International Geology Review 35, 274 -287.

  8. Mechanism of selenite removal by a mixed adsorbent based on Fe-Mn hydrous oxides studied using X-ray absorption spectroscopy.

    PubMed

    Chubar, Natalia; Gerda, Vasyl; Szlachta, Małgorzata

    2014-11-18

    Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3(2-) trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.

  9. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton.

    PubMed

    Sirés, Ignasi; Arias, Conchita; Cabot, Pere Lluís; Centellas, Francesc; Garrido, José Antonio; Rodríguez, Rosa María; Brillas, Enric

    2007-01-01

    Acidic aqueous solutions of clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid), the bioactive metabolite of various lipid-regulating drugs, have been degraded by indirect electrooxidation methods such as electro-Fenton and photoelectro-Fenton with Fe(2+) as catalyst using an undivided electrolytic cell with a Pt anode and an O(2)-diffusion cathode able to electrogenerate H(2)O(2). At pH 3.0 about 80% of mineralization is achieved with the electro-Fenton method due to the efficient production of oxidant hydroxyl radical from Fenton's reaction between Fe(2+) and H(2)O(2), but stable Fe(3+) complexes are formed. The photoelectro-Fenton method favors the photodecomposition of these species under UVA irradiation, reaching more than 96% of decontamination. The mineralization current efficiency increases with rising metabolite concentration up to saturation and with decreasing current density. The photoelectro-Fenton method is then viable for treating acidic wastewaters containing this pollutant. Comparative degradation by anodic oxidation (without Fe(2+)) yields poor decontamination. Chloride ion is released during all degradation processes. The decay kinetics of clofibric acid always follows a pseudo-first-order reaction, with a similar rate constant in electro-Fenton and photoelectro-Fenton that increases with rising current density, but decreases at greater metabolite concentration. 4-Chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol, along with carboxylic acids such as 2-hydroxyisobutyric, tartronic, maleic, fumaric, formic and oxalic, are detected as intermediates. The ultimate product is oxalic acid, which forms very stable Fe(3+)-oxalato complexes under electro-Fenton conditions. These complexes are efficiently photodecarboxylated in photoelectro-Fenton under the action of UVA light.

  10. The geochemistry of water near a surficial organic-rich uranium deposit, northeastern Washington State, U.S.A.

    USGS Publications Warehouse

    Zielinski, R.A.; Otton, J.K.; Wanty, R.B.; Pierson, C.T.

    1987-01-01

    The chemistry of three stream, three spring and six near-surface waters in the vicinity of a Holocene organic-rich uranium deposit is described, with particular emphasis on the chemistry of U. Results characterize the solution behavior of uranium as U-bearing water interacts with relatively undecomposed, surficial organic matter. Of the measured major and trace chemical species, only U is consistently highly enriched (17-318 ppb) relative to reported values for regional waters, or to literature values for waters in largely granitic terrains. R-mode factor analysis of the chemical data suggests that most U is present in a soluble form, but that some U is also associated with fine suspended particulates of clay, organic matter, or hydrous oxides. Calculations that apply thermodynamic data to predict U speciation in solution indicate the relative importance of uranyl carbonate and uranyl phosphate complexes. Analysis of more finely filtered samples (0.05 ??m vs. 0.45 ??m), and direct radiographic observations using fission-track detectors suspended in the waters indicate the presence of some uraniferous particulate matter. Application of existing thermodynamic data for uranous- and uranyl-bearing minerals indicates that all waters are undersaturated with U minerals as long as ambient Eh ??? +0.1 v. If coexisting surface and near-surface waters are sufficiently oxidizing, initial fixation of U in the deposit should be by a mechanism of adsorption. Alternatively, more reducing conditions may prevail in deeper pore waters of the organic-rich host sediments, perhaps leading to direct precipitation or diagenetic formation of U4+ minerals. A 234U 238U alpha activity ratio of 1.08 ?? 0.02 in a spring issuing from a hillslope above the deposit suggests a relatively soluble source of U. In contrast, higher activity ratios of 234U 238U (??? 1.3) in waters in contact with the uraniferous valley-fill sediments suggest differences in the nature of interaction between groundwater and the local, U-rich source rocks. ?? 1987.

  11. Platinum-group elements in southern Africa: mineral inventory and an assessment of undiscovered mineral resources: Chapter Q in Global mineral resource assessment

    USGS Publications Warehouse

    Zientek, Michael L.; Causey, J. Douglas; Parks, Heather L.; Miller, Robert J.

    2014-01-01

    The large layered intrusions in southern Africa—the Bushveld Complex and the Great Dyke—are now and will continue to be a major source of the world’s supply of PGE. Mining will not deplete the identified mineral resources and reserves or potential undiscovered mineral resources for many decades; however, in the near-term, PGE supply could be affected by social, environmental, political, and economic factors.

  12. Thermodynamics of rock forming crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1971-01-01

    Analysis of phase diagrams and cation distributions within crystalline solutions as means of obtaining thermodynamic data on rock forming crystalline solutions is discussed along with some aspects of partitioning of elements in coexisting phases. Crystalline solutions, components in a silicate mineral, and chemical potentials of these components were defined. Examples were given for calculating thermodynamic mixing functions in the CaW04-SrW04, olivine-chloride solution, and orthopyroxene systems.

  13. Interaction of Corundum, Wollastonite and Quartz With H2O-NaCl Solutions at 800 C and 10 Kbar

    NASA Astrophysics Data System (ADS)

    Newton, R. C.; Manning, C. E.

    2005-12-01

    Aqueous fluids are potentially important transport agents in subduction zones and other high-P metamorphic environments. Recent studies indicate that at high P and T, the solubilities of major rock-forming elements are strongly enhanced by the formation of metal-chloride complexes, metal-hydroxide complexes and polynuclear metal-hydroxide clusters. However, the relative abundances of these species and the energetics of their interactions in high-pressure environments remains largely unknown. We measured the solubilities of corundum (Al2O3) and wollastonite (CaSiO3) at 800 °C and 10 kbar in H2O-NaCl solutions to halite saturation (XNaCl = 0.6) . Both minerals show marked enhancement of solubility with increasing salinity. Al2O3 mol fraction rises rapidly to XNaCl = 0.1, and then declines slowly towards halite saturation. Quenched experimental fluids have neutral pH. Modeling based on ideal solution of ions and molecules leads to a simple dissolution reaction and corresponding molality (m=mol/kg H2O) expression: Al2O3(cor) + Na+ + 3H2O = NaAl(OH)4 + Al(OH)2+ and mAl2O3 = [0.0232(aNaCl)1/4(aH2O)3/2+0.00123][1+2XNaCl/(1-XNaCl)] where H2O and NaCl activities are given by aH2O = (2-XNaCl)/(2+XNaCl) and aNaCl = 4(XNaCl)2/(1 + XNaCl)2. Wollastonite solubility in NaCl solutions is accurately described by: mCaSiO3 = 0.6734XNaCl + 0.1183(XNaCl)1/2 + 0.0204. There is a roughly 50-fold enhancement of dissolved wollastonite at halite saturation. Quenched experimental fluids are strongly basic (pH=11). A consistent dissolution reaction must therefore be similar to: CaSiO3(wo) + Na+ + Cl- = CaCl+ + OH- + HNaSiO3 Quartz solubility declines monotonically from mSiO2 = 1.248 in pure H2O to 0.20 at halite saturation. Quenched fluids are neutral, indicating that quartz does not react with solvent NaCl. The only salinity control on solubility is decrease of H2O activity. The simple dissolution behaviors to be deduced from measurements on these minerals suggest that fluid-rock interaction in deep-crust/upper mantle metamorphic processes may be generally understandable in terms of quasi-ideal mixing models.

  14. Exsolution as an Example of Complex-System Behavior

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Dutrow, B. L.

    2010-12-01

    Exsolution in minerals is an important process that occurs in a wide range of mineral groups (e.g. alkali feldspars, pyroxenes, amphiboles, carbonates, oxides, sulfides) in response to changing physical conditions. Exsolution describes a physical process in which a mineral with an initially homogeneous solid solution separates into at least two distinct derivative minerals of disparate composition and is typically interpreted as the product of unmixing in response to lattice strain during slow cooling. Such a process is typically taught in introductory mineralogy and petrology courses, in part because exsolution textures can be readily observed in hand sample or thin section. Exsolution is typically represented on equilibrium binary phase diagrams (T-X), and compositions of the unmixed products can be used in geothermobarometry to calculate temperatures and pressures of initial equilibration or compositions of the unmixed products. Although central to course content, traditional approaches to teaching exsolution are largely descriptive, and do not address the underlying principles that drive this phenomenon: that is, dissipation of energy results in segregating and self-organizing behavior of the system. This process exemplifies complex-system behavior. We use perthite formation (i.e. exsolution in the alkali feldspar system) in a series of scaffolded exercises to teach and more completely demonstrate complex-system behavior. These exercises include the use of: 1) hand samples and a series of optical and TEM photomicrographs to display the scale invariance of perthite textures; 2) a puzzle activity in which a chessboard is used as an analog model of atomic positions and nickels and pennies are used to represent individual atoms (Na and K respectively); sequential moves to optimize contacts with similar coins approximates minimization of lattice energies and reveals a power-law relationship as the system becomes increasingly segregated as a function of time to create exsolution textures; 3) the NetLogo computer modeling program to demonstrate segregating behavior; 4) visualizations based on the binary alkali feldspar phase diagram to demonstrate changes to the state of the system over a range of temperatures, and 5) a series of follow-on thought questions. An interesting apparent paradox that our students should consider concerns the flow of mass and energy in natural systems. Commonly, we simply note that mass and energy typically flow down natural gradients (thermal, chemical potential) to attain a homogeneous equilibrium state; however, exsolution produces a segregated state of the system in the lowest energy configuration. Why? Complex-system behavior can be discovered in a wide range of geological phenomena such as exsolution, and could be explicitly identified throughout the geoscience curriculum as a mechanism to teach about interacting systems.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catalano, Jeffrey G.; Giammar, Daniel E.; Wang, Zheming

    Phosphate addition is an in situ remediation approach that may enhance the sequestration of uranium without requiring sustained reducing conditions. However, the geochemical factors that determine the dominant immobilization mechanisms upon phosphate addition are insufficiently understood to design efficient remediation strategies or accurately predict U(VI) transport. The overall objective of our project is to determine the dominant mechanisms of U(VI)-phosphate reactions in subsurface environments. Our research approach seeks to determine the U(VI)-phosphate solid that form in the presence of different groundwater cations, characterize the effects of phosphate on U(VI) adsorption and precipitation on smectite and iron oxide minerals, examples ofmore » two major reactive mineral phases in contaminated sediments, and investigate how phosphate affects U(VI) speciation and fate during water flow through sediments from contaminated sites. The research activities conducted for this project have generated a series of major findings. U(VI) phosphate solids from the autunite mineral family are the sole phases to form during precipitation, with uranyl orthophosphate not occurring despite its predicted greater stability. Calcium phosphates may take up substantial quantities of U(VI) through three different removal processes (adsorption, coprecipitation, and precipitation) but the dominance of each process varies with the pathway of reaction. Phosphate co-adsorbs with U(VI) onto smectite mineral surfaces, forming a mixed uranium-phosphate surface complex over a wide range of conditions. However, this molecular-scale association of uranium and phosphate has not effect on the overall extent of uptake. In contrast, phosphate enhanced U(VI) adsorption to iron oxide minerals at acidic pH conditions but suppresses such adsorption at neutral and alkaline pH, despite forming mixed uranium-phosphate surface complexes during adsorption. Nucleation barriers exist that inhibit U(VI) phosphate solids from precipitating in the presence of smectite and iron oxide minerals as well as sediments from contaminated sites. Phosphate addition enhances retention of U(VI) by sediments from the Rifle, CO and Hanford, WA field research sites, areas containing substantial uranium contamination of groundwater. This enhanced retention is through adsorption processes. Both fast and slow uptake and release behavior is observed, indicating that diffusion of uranium between sediment grains has a substantial effect of U(VI) fate in flowing groundwater systems. This project has revealed the complexity of U(VI)-phosphate reactions in subsurface systems. Distinct chemical processes occur in acidic and alkaline groundwater systems. For the latter, calcium phosphate formation, solution complexation, and competition between phosphate and uranium for adsorption sites may serve to either enhance or inhibit U(VI) removal from groundwater. Under the groundwater conditions present at many contaminated sites in the U.S., phosphate appears to general enhance U(VI) retention and limit transport. However, formation of low-solubility uranium phosphate solids does not occur under field-relevant conditions, despite this being the desired product of phosphate-based remediation approaches. In addition, simple equilibrium approaches fail to well-predict uranium fate in contaminated sediments amended with phosphate, with reactive transport models that include reaction rates and mass transport through occluded domains needed to properly describe the system. Phosphate addition faces challenges to being effective as a stand-alone groundwater treatment approach but would prove beneficial as an add-on to other treatment methods that will further limit uranium migration in the subsurface.« less

  16. Study of oil-water partitioning of a chemical dispersant using an acute bioassay with marine crustaceans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, P.G.; Abernethy, S.; Mackay, D.

    1982-01-01

    The toxicity of seawater dispersions of a chemical dispersant to two marine crustaceans was investigated in the presence and absence of various quantities of a non-toxic mineral oil. From the results and a physical-chemical partitioning analysis, a limiting value of the oil-water partition coefficient of the toxic compounds is deduced suggesting that essentially all of the toxic compounds in the dispersant will partition into solution in water following dispersant application to an oil spill. This conclusion simplifies interpretation and prediction of the toxic effects of a dispersed oil spill. The combined bioassay-partitioning procedure may have applications to the study ofmore » the toxicity of other complex mixtures such as industrial effluents.« less

  17. Textile-reinforced concrete using composite binder based on new types of mineral raw materials

    NASA Astrophysics Data System (ADS)

    Lesovik, V. S.; Glagolev, E. S.; Popov, D. Y.; Lesovik, G. A.; Ageeva, M. S.

    2018-03-01

    To determine the level of development of science, it is necessary to start with a particular stage in the development of society. At present, the purpose of building materials science is to create composites, which ensure safety of buildings and structures, including their protection against certain natural and man-made impacts. A new stage in construction materials science envisages the development of a technology for creating composites comfortable for a particular person. To implement this, a new paradigm for designing and synthesizing building materials with a new raw material base is needed. The optimization of the “human-material-habitat” system is a complex task, for the solution of which transdisciplinary approaches are required.

  18. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from Case Western Reserve University pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  19. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from The University of Utah pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  20. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    First-time participants from Saginaw Valley State University pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  1. Robotic Mining Competition - Opening Ceremony

    NASA Image and Video Library

    2018-05-15

    On the second day of NASA's 9th Robotic Mining Competition, May 15, team members from Temple University work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  2. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-16

    Team members from the University of Colorado at Boulder pause with their robot miner outside of the mining arena on the third day of NASA's 9th Robotic Mining Competition, May 16, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  3. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-16

    On the third day of NASA's 9th Robotic Mining Competition, May 16, team members from Temple University prepare their robot miner for its turn in the mining arena at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  4. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-16

    On the third day of NASA's 9th Robotic Mining Competition, May 16, team members prepare their robot miner for its turn in the mining arena at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  5. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from The University of Alabama pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  6. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-16

    On the third day of NASA's 9th Robotic Mining Competition, May 16, judges watch as a robot miner digs in the dirt in the mining arena at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  7. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-16

    On the third day of NASA's 9th Robotic Mining Competition, May 16, team members from the University of Portland prepare their robot miner for its turn in the mining arena at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  8. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-16

    Members of a college team watch on the monitor as their robot miner digs in the mining arena on the third day of NASA's 9th Robotic Mining Competition, May 16, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  9. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from the South Dakota School of Mines & Technology pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  10. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-16

    On the third day of NASA's 9th Robotic Mining Competition, May 16, a university team cleans their robot miner after its turn in the mining arena at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  11. Robotic Mining Competition - Opening Ceremony

    NASA Image and Video Library

    2018-05-15

    Team members from Iowa State University prepare their robot miner on the second day of NASA's 9th Robotic Mining Competition, May 15, in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  12. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-16

    On the third day of NASA's 9th Robotic Mining Competition, May 16, team members from the University of Portland pause with their robot miner before its turn in the mining arena at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  13. Robotic Mining Competition - Setup

    NASA Image and Video Library

    2018-05-14

    On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, college team members work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  14. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-16

    Team members from New York University prepare their robot miner for its turn in the mining arena on the third day of NASA's 9th Robotic Mining Competition, May 16, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  15. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from New York University work on their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  16. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from York College CUNY are with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  17. Robotic Mining Competition - Activities

    NASA Image and Video Library

    2018-05-17

    Team members from the University of Arkansas pause with their robot miner in the RobotPits on the fourth day of NASA's 9th Robotic Mining Competition, May 17, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  18. Modeling selenate adsorption behavior on oxides, clay minerals, and soils using the triple layer model

    USDA-ARS?s Scientific Manuscript database

    Selenate adsorption behavior was investigated on amorphous aluminum oxide, amorphous iron oxide, goethite, clay minerals: kaolinites, montmorillonites, illite, and 18 soil samples from Hawaii, and the Southwestern and the Midwestern regions of the US as a function of solution pH. Selenate adsorpti...

  19. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model

    USDA-ARS?s Scientific Manuscript database

    Selenite adsorption behavior was investigated on amorphous aluminum and iron oxides, clay minerals: kaolinite, montmorillonite, and illite, and 45 surface and subsurface soil samples from the Southwestern and Midwestern regions of the USA as a function of solution pH. Selenite adsorption decreased ...

  20. Picloram and Aminopyralid Sorption to Soil and Clay Minerals

    USDA-ARS?s Scientific Manuscript database

    Aminopyralid sorption data are lacking, and these data are needed to predict off-target transport and plant available herbicide in soil solution. The objective of this research was to determine the sorption of picloram and aminopyralid to five soils and three clay minerals and determine if the pote...

  1. Temperature Oscillation Modulated Self-Assembly of Periodic Concentric Layered Magnesium Carbonate Microparticles

    PubMed Central

    Li, Shihong; Wang, Zheng Jim; Chang, Ting-Tung

    2014-01-01

    Intriguing patterns of periodic, concentric, layered, mineral microstructure are present in nature and organisms, yet they have elusive geneses. We hypothesize temperature oscillation can be an independent factor that causes the self-assembly of such patterns in mineral phases synthesized in solution. Static experiments verify that rhythmic concentric multi-layered magnesium carbonate microhemispheres can be synthesized from bicarbonate solution by temperature oscillation, without use of a chemical template, additive or gel-diffusion system. Appropriate reactant concentration and initial pH value can restrain the competitive growth of other mineral generations. Polarized light microscopy images indicate the microhemispheres are crystalline and the crystallinity increases with incubation time. The thickness of a single mineral layer of microhemisphere in microscale is precisely controlled by the waveform parameters of the temperature oscillation, while the layer number, which can reach tens to about one hundred, is constrained by the temperature oscillation period number. FT-IR spectra show that these microhemispheres synthesized under different conditions can be identified as the basic form of magnesium carbonate, hydromagnesite (Mg5(CO3)4(OH)2⋅4H2O). SEM images exhibit the characteristic microscopic texture of the alternating dark and light rings of these microhemispheres. TEM images and ED patterns suggest the nanoflakes of microhemispheres are present in polycrystalline form with some degree of oriented assembly. The temperature oscillation modulated self-assembly may offer a new mechanism to understand the formation of layered microstructure of minerals in solution, and provide a non-invasive and programmable means to synthesize hierarchically ordered materials. PMID:24520410

  2. Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25-250 °C temperature range

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; John, Cédric M.; Jourdan, Anne-Lise; Davis, Simon; Crawshaw, John

    2015-05-01

    Many fields of Earth sciences benefit from the knowledge of mineral formation temperatures. For example, carbonates are extensively used for reconstruction of the Earth's past climatic variations by determining ocean, lake, and soil paleotemperatures. Furthermore, diagenetic minerals and their formation or alteration temperature may provide information about the burial history of important geological units and can have practical applications, for instance, for reconstructing the geochemical and thermal histories of hydrocarbon reservoirs. Carbonate clumped isotope thermometry is a relatively new technique that can provide the formation temperature of carbonate minerals without requiring a priori knowledge of the isotopic composition of the initial solution. It is based on the temperature-dependent abundance of the rare 13C-18O bonds in carbonate minerals, specified as a Δ47 value. The clumped isotope thermometer has been calibrated experimentally from 1 °C to 70 °C. However, higher temperatures that are relevant to geological processes have so far not been directly calibrated in the laboratory. In order to close this calibration gap and to provide a robust basis for the application of clumped isotopes to high-temperature geological processes we precipitated CaCO3 (mainly calcite) in the laboratory between 23 and 250 °C. We used two different precipitation techniques: first, minerals were precipitated from a CaCO3 supersaturated solution at atmospheric pressure (23-91 °C), and, second, from a solution resulting from the mixing of CaCl2 and NaHCO3 in a pressurized reaction vessel at a pressure of up to 80 bar (25-250 °C).

  3. [Interaction of clay minerals with microorganisms: a review of experimental data].

    PubMed

    Naĭmark, E B; Eroshchev-Shak, V A; Chizhikova, N P; Kompantseva, E I

    2009-01-01

    A review of publications containing results of experiments on the interaction of microorganisms with clay minerals is presented. Bacteria are shown to be involved in all processes related to the transformation of clay minerals: formation of clays from metamorphic and sedimentary rocks, formation of clays from solutions, reversible transitions of different types of clay minerals, and consolidation of clay minerals into sedimentary rocks. Integration of these results allows to conclude that bacteria reproduced all possible abiotic reactions associated with the clay minerals, these reactions proceed much faster with the bacteria being involved. Thus, bacteria act as a living catalyst in the geochemical cycle of clay minerals. The ecological role of bacteria can be considered as a repetition of a chemical process of the abiotic world, but with the use of organic catalytic innovation.

  4. Metamorphic P-T-t path retrieved from metapelites in the southeastern Taihua metamorphic complex, and the Paleoproterozoic tectonic evolution of the southern North China Craton

    NASA Astrophysics Data System (ADS)

    Lu, Jun-Sheng; Zhai, Ming-Guo; Lu, Lin-Sheng; Wang, Hao Y. C.; Chen, Hong-Xu; Peng, Tao; Wu, Chun-Ming; Zhao, Tai-Ping

    2017-02-01

    The Taihua metamorphic complex in the southern part of the North China Craton is composed of tonalite-trondhjemite-granodiorite (TTG) gneisses, amphibolites, metapelitic gneisses, marbles, quartzites, and banded iron formations (BIFs). The protoliths of the complex have ages ranging from ∼2.1 to ∼2.9 Ga and was metamorphosed under the upper amphibolite to granulite facies conditions with NWW-SEE-striking gneissosity. Metapelitites from the Wugang area have three stages of metamorphic mineral assemblages. The prograde metamorphic mineral assemblage (M1) includes biotite + plagioclase + quartz + ilmenite preserved as inclusions in garnet porphyroblasts. The peak mineral assemblage (M2) consists of garnet porphyroblasts and matrix minerals of sillimanite + biotite + plagioclase + quartz + K-feldspar + ilmenite + rutile + pyrite. The retrograde mineral assemblage (M3), biotite + plagioclase + quartz, occurs as symplectic assemblages surrounding embayed garnet porphyroblasts. Garnet porphyroblasts are chemically zoned. Pseudosection calculated in the NCKFMASHTO model system suggests that mantles of garnet porphyroblasts define high-pressure granulites facies P-T conditions of 12.2 kbar and 830 °C, whereas garnet rims record P-T conditions of 10.2 kbar and 840 °C. Integrating the prograde mineral assemblages, zoning of garnet porphyroblasts with symplectic assemblages, a clockwise metamorphic P-T path can be retrieved. High resolution SIMS U-Pb dating and LA-ICP-MS trace element measurements of the metamorphic zircons demonstrate that metapelites in Wugang possibly record the peak or near peak metamorphic ages of ∼1.92 Ga. Furthermore, 40Ar/39Ar dating of biotite in metapelites suggests that the cooling of the Taihua complex may have lasted until ∼1.83 Ga. Therefore, a long-lived Palaeoproterozoic metamorphic event may define a slow exhumation process. Field relationship and new metamorphic data for the Taihua metamorphic complex does not support the previous model in which the Tran-North China Craton (TNCO) was formed through the collision between the East and West blocks.

  5. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations.

    PubMed

    Greathouse, Jeffery A; Cygan, Randall T

    2006-06-15

    Molecular dynamics simulations were performed to provide a systematic study of aqueous uranyl adsorption onto the external surface of 2:1 dioctahedral clays. Our understanding of this key process is critical in predicting the fate of radioactive contaminants in natural groundwaters. These simulations provide atomistic detail to help explain experimental trends in uranyl adsorption onto natural media containing smectite clays. Aqueous uranyl concentrations ranged from 0.027 to 0.162 M. Sodium ions and carbonate ions (0.027-0.243 M) were also present in the aqueous regions to more faithfully model a stream of uranyl-containing groundwater contacting a mineral system comprised of Na-smectite. No adsorption occurred near the pyrophyllite surface, and there was little difference in uranyl adsorption onto the beidellite and montmorillonite, despite the difference in location of clay layer charge between the two. At low uranyl concentration, the pentaaquouranyl complex dominates in solution and readily adsorbs to the clay basal plane. At higher uranyl (and carbonate) concentrations, the mono(carbonato) complex forms in solution, and uranyl adsorption decreases. Sodium adsorption onto beidellite occurred both as inner- and outer-sphere surface complexes, again with little effect on uranyl adsorption. Uranyl surface complexes consisted primarily of the pentaaquo cation (85%) and to a lesser extent the mono(carbonato) species (15%). Speciation diagrams of the aqueous region indicate that the mono(carbonato)uranyl complex is abundant at high ionic strength. Oligomeric uranyl complexes are observed at high ionic strength, particularly near the pyrophyllite and montmorillonite surfaces. Atomic density profiles of water oxygen and hydrogen atoms are nearly identical near the beidellite and montmorillonite surfaces. Water structure therefore appears to be governed by the presence of adsorbed ions and not by the location of layer charge associated with the substrate. The water oxygen density near the pyrophyllite surface is similar to the other cases, but the hydrogen density profile indicates reduced hydrogen bonding between adsorbed water molecules and the surface.

  6. MULTIPLE EPISODES OF IGNEOUS ACTIVITY, MINERALIZATION, AND ALTERATION IN THE WESTERN TUSHAR MOUNTAINS, UTAH.

    USGS Publications Warehouse

    Cunningham, Charles G.; Steven, Thomas A.; Campbell, David L.; Naeser, Charles W.; Pitkin, James A.; Duval, Joseph S.

    1984-01-01

    The report outlines the complex history of igneous activity and associated alteration and mineralization in the western Tushar Mountains, Utah and pointss out implciations for minerals exploration. The area has been subjected to recurrent episodes of igneous intrusion, hydrothermal alteration, and mineralization, and the mineral-resource potential of the different mineralized areas is directly related to local geologic history. The mineral commodities to be expected vary from one hydrothermal system to another, and from one depth to another within any given system. Uranium and molybdenum seem likely to have the greatest economic potential, although significant concentrations of gold may also exist.

  7. Arsenic in hydrothermal apatite: Oxidation state, mechanism of uptake, and comparison between experiments and nature

    NASA Astrophysics Data System (ADS)

    Liu, Weihua; Mei, Yuan; Etschmann, Barbara; Brugger, Joël; Pearce, Mark; Ryan, Chris G.; Borg, Stacey; Wykes, Jeremey; Kappen, Peter; Paterson, David; Boesenberg, Ulrike; Garrevoet, Jan; Moorhead, Gareth; Falkenberg, Gerald

    2017-01-01

    Element substitution that occurs during fluid-rock interaction permits assessment of fluid composition and interaction conditions in ancient geological systems, and provides a way to fix contaminants from aqueous solutions. We conducted a series of hydrothermal mineral replacement experiments to determine whether a relationship can be established between arsenic (As) distribution in apatite and fluid chemistry. Calcite crystals were reacted with phosphate solutions spiked with As(V), As(III), and mixed As(III)/As(V) species at 250 °C and water-saturated pressure. Arsenic-bearing apatite rims formed in several hours, and within 48 h the calcite grains were fully replaced. X-ray Absorption Near-edge Spectroscopy (XANES) data show that As retained the trivalent oxidation state in the fully-reacted apatite grown from solutions containing only As(III). Extended X-ray Fine Spectroscopy (EXAFS) data reveal that these As(III) ions are surrounded by about three oxygen atoms at an Assbnd O bond length close to that of an arsenate group (AsO43-), indicating that they occupy tetrahedral phosphate sites. The three-coordinated As(III)-O3 structure, with three oxygen atoms and one lone electron pair around As(III), was confirmed by geometry optimization using ab initio molecular simulations. The micro-XANES imaging data show that apatite formed from solutions spiked with mixed As(III) and As(V) retained only As(V) after completion of the replacement reaction; in contrast, partially reacted samples revealed a complex distribution of As(V)/As(III) ratios, with As(V) concentrated in the center of the grain and As(III) towards the rim. Most natural apatites from the Ernest Henry iron oxide copper gold deposit, Australia, show predominantly As(V), but two grains retained some As(III) in their core. The As-anomalous amphibolite-facies gneiss from Binntal, Switzerland, only revealed As(V), despite the fact that these apatites in both cases formed under conditions where As(III) is expected to be the dominant As form in hydrothermal fluids. These results show that incorporation of As in apatite is a complicated process, and sensitive to the local fluid composition during crystallization, and that some of the complexity in As zoning in partially reacted apatite may be due to local fluctuations of As(V)/As(III) ratios in the fluid and to kinetic effects during the mineral replacement reaction. Our study shows for the first time that As(III) can be incorporated into the apatite structure, although not as efficiently as As(V). Uptake of As(III) is probably highly dependent on the reaction mechanism. As(III)O33- moieties replace phosphate groups, but cause a high strain on the lattice; as a result, As(III) is easily exchanged (or oxidized) for As(V) during hydrothermal recrystallization, and the fully reacted grains only record the preferred oxidation state (i.e., As(V)) from mixed-oxidation state solutions. Overall this study shows that the observed oxidation state of As in apatite may not reflect the original As(III)/As(V) ratio of the parent fluid, due to the complex nature of As(III) uptake and possible in situ oxidation during recrystallization.

  8. Managing the potential risks of using bacteria-laden water in mineral processing to protect freshwater.

    PubMed

    Liu, Wenying; Moran, Chris J; Vink, Sue

    2013-06-18

    The minerals industry is being driven to access multiple water sources and increase water reuse to minimize freshwater withdrawal. Bacteria-laden water, such as treated effluent, has been increasingly used as an alternative to freshwater for mineral processing, in particular flotation, where conditions are favorable for bacterial growth. However, the risk posed by bacteria to flotation efficiency is poorly understood. This could be a barrier to the ongoing use of this water source. This study tested the potential of a previously published risk-based approach as a management tool to both assist mine sites in quantifying the risk from bacteria, and finding system-wide cost-effective solutions for risk mitigation. The result shows that the solution of adjusting the flotation chemical regime could only partly control the risk. The second solution of using tailings as an absorbent was shown to be effective in the laboratory in reducing bacterial concentration and thus removing the threat to flotation recovery. The best solution is likely to combine internal and external approaches, that is, inside and outside processing plants. Findings in this study contribute possible methods applicable to managing the risk from water-borne bacteria to plant operations that choose to use bacteria-containing water, when attempting to minimize freshwater use, and avoiding the undesirable consequences of increasing its use.

  9. Bitumen recovery from oil sands using deep eutectic solvent and its aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pulati, Nuerxida

    Oil sands compose a significant proportion of the world's known oil reserves. Oil sands are also known as tar sands and bituminous sands, are complex mixtures of sand, clays, water and bitumen, which is "heavy" and highly viscous oil. The extraction and separation of bitumen from oil sands requires significant amount of energy and large quantities of water and poses several environmental challenges. Bitumen can be successfully separated from oil sands using imidazolium based ionic liquids and nonpolar solvents, however, ionic liquids are expensive and toxic. In this thesis, the ionic liquid alternatives- deep eutectic solvent, were investigated. Oil sands separation can be successfully achieved by using deep eutectic solvents DES (choline chloride and urea) and nonpolar solvent naphtha in different types of oil sands, including Canadian ("water-wet"), Utah ("oil-wet") and low grade Kentucky oil sands. The separation quality depends on oil sands type, including bitumen and fine content, and separation condition, such as solvent ratio, temperature, mixing time and mechanical centrifuge. This separation claims to the DES ability to form ion /charge layering on mineral surface, which results in reduction of adhesion forces between bitumen and minerals and promote their separation. Addition of water to DES can reduce DES viscosity. DES water mixture as a media, oil sands separation can be achieved. However, concentration at about 50 % or higher might be required to obtain a clear separation. And the separation efficiency is oil sands sample dependent. The highest bitumen extraction yield happened at 75% DES-water solution for Utah oil sands samples, and at 50 60% DES-water solutions for Alberta oil sands samples. Force curves were measured using Atomic Force Microscopy new technique, PeakForce Tapping Quantitative Nanomechanical Mapping (PFTQNM). The results demonstrate that, by adding DES, the adhesion force between bitumen and silica and dissipation energy will decrease comparing to DI water. At higher concentration DES solution (>80%DES), the amount of decrease can be up to 80-90%. In lower concentration, at about 50% decrease was observed. The results provide fundamental insights into the mechanism of bitumen separation from oil sands. The reduction of adhesion force between bitumen and minerals (silica) in DES media is the main reason which facilitates the separation between them, which by means existence of DES will favor bitumen and minerals separation. Comparing to other techniques, DES based separation is environmentally compatible and economically viable. The separation can easily happen at room temperature. Choline chloride and urea are biodegradable, environmentally compatible, accessible in large scale and easily prepared by mixing and heating (<80 °C). Further improvement is needed regarding to separation quality and efficiency, either in the direction of developing better separation techniques or by looking for chemical additives which can improve separation and reduce environmental side-effects.

  10. Targeted Ablation of the Abcc6 Gene Results in Ectopic Mineralization of Connective Tissues

    PubMed Central

    Klement, John F.; Matsuzaki, Yasushi; Jiang, Qiu-Jie; Terlizzi, Joseph; Choi, Hae Young; Fujimoto, Norihiro; Li, Kehua; Pulkkinen, Leena; Birk, David E.; Sundberg, John P.; Uitto, Jouni

    2005-01-01

    Pseudoxanthoma elasticum (PXE), characterized by connective tissue mineralization of the skin, eyes, and cardiovascular system, is caused by mutations in the ABCC6 gene. ABCC6 encodes multidrug resistance-associated protein 6 (MRP6), which is expressed primarily in the liver and kidneys. Mechanisms producing ectopic mineralization as a result of these mutations remain unclear. To elucidate this complex disease, a transgenic mouse was generated by targeted ablation of the mouse Abcc6 gene. Abcc6 null mice were negative for Mrp6 expression in the liver, and complete necropsies revealed profound mineralization of several tissues, including skin, arterial blood vessels, and retina, while heterozygous animals were indistinguishable from the wild-type mice. Particularly striking was the mineralization of vibrissae, as confirmed by von Kossa and alizarin red stains. Electron microscopy revealed mineralization affecting both elastic structures and collagen fibers. Mineralization of vibrissae was noted as early as 5 weeks of age and was progressive with age in Abcc6−/− mice but was not observed in Abcc6+/− or Abcc6+/+ mice up to 2 years of age. A total body computerized tomography scan of Abcc6−/− mice revealed mineralization in skin and subcutaneous tissue as well as in the kidneys. These data demonstrate aberrant mineralization of soft tissues in PXE-affected organs, and, consequently, these mice recapitulate features of this complex disease. PMID:16135817

  11. Application of Remote-Sensing Observations for Detecting Patterns of Localization of Cu-Ni Mineralization of the Norilsk Ore Region

    NASA Astrophysics Data System (ADS)

    Milovsky, G. A.; Ishmukhametova, V. T.; Shemyakina, E. M.

    2017-12-01

    The methods of a complex analysis of materials of space, gravimetric, and magnetometric surveys were developed on the basis of a study of reference fields of the Norilsk ore region (Imangda, etc.) for detection patterns of the localization of Cu-Ni (with PGMs) mineralization in intrusive complexes of the northwestern frame of the Siberian Platform.

  12. [Modern hygiene products impact on oral microbial, pH and mineral balance].

    PubMed

    Gromova, S N; Rumiantsev, V A

    2012-01-01

    Several toothpastes are compared in the study: "Zhemchuzhnaya-complex protection" containing as abrasive substance finely dispersed dicalcium phosphate phosphathydrate, "Noviy zhemchug ftor" and "Zhemchug svezhaya myata" with calcium carbonate. "Zhemchuzhnaya-complex protection" and "Noviy zhemchug ftor" both contain sodium monophosphate as active substance. Impact of these toothpastes on oral microbial, pH and mineral balance was assessed in the study.

  13. Adult nutrition and butterfly fitness: effects of diet quality on reproductive output, egg composition, and egg hatching success

    PubMed Central

    Geister, Thorin L; Lorenz, Matthias W; Hoffmann, Klaus H; Fischer, Klaus

    2008-01-01

    Background In the Lepidoptera it was historically believed that adult butterflies rely primarily on larval-derived nutrients for reproduction and somatic maintenance. However, recent studies highlight the complex interactions between storage reserves and adult income, and that the latter may contribute significantly to reproduction. Effects of adult diet were commonly assessed by determining the number and/or size of the eggs produced, whilst its consequences for egg composition and offspring viability were largely neglected (as is generally true for insects). We here specifically focus on these latter issues by using the fruit-feeding tropical butterfly Bicyclus anynana, which is highly dependent on adult-derived carbohydrates for reproduction. Results Adult diet of female B. anynana had pronounced effects on fecundity, egg composition and egg hatching success, with butterflies feeding on the complex nutrition of banana fruit performing best. Adding vitamins and minerals to a sucrose-based diet increased fecundity, but not offspring viability. All other groups (plain sucrose solution, sucrose solution enriched with lipids or yeast) had a substantially lower fecundity and egg hatching success compared to the banana group. Differences were particularly pronounced later in life, presumably indicating the depletion of essential nutrients in sucrose-fed females. Effects of adult diet on egg composition were not straightforward, indicating complex interactions among specific compounds. There was some evidence that total egg energy and water content were related to hatching success, while egg protein, lipid, glycogen and free carbohydrate content did not seem to limit successful development. Conclusion The patterns shown here exemplify the complexity of reproductive resource allocation in B. anynana, and the need to consider egg composition and offspring viability when trying to estimate the effects of adult nutrition on fitness in this butterfly and other insects. PMID:18616795

  14. Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals and industrial wastes as a Novel Carbon Capture and Storage Technology

    NASA Astrophysics Data System (ADS)

    Park, A. H. A.

    2014-12-01

    Increasing concentration of CO2 in the atmosphere is attributed to rising consumption of fossil fuels around the world. The development of solutions to reduce CO2 emissions to the atmosphere is one of the most urgent needs of today's society. One of the most stable and long-term solutions for storing CO2 is via carbon mineralization, where minerals containing metal oxides of Ca or Mg are reacted with CO2 to produce thermodynamically stable Ca- and Mg-carbonates that are insoluble in water. Carbon mineralization can be carried out in-situ or ex-situ. In the case of in-situ mineralization, the degree of carbonation is thought to be limited by both mineral dissolution and carbonate precipitation reaction kinetics, and must be well understood to predict the ultimate fate of CO2 within geological reservoirs. While the kinetics of in-situ mineral trapping via carbonation is naturally slow, it can be enhanced at high temperature and high partial pressure of CO2. The addition of weak organic acids produced from food waste has also been shown to enhance mineral weathering kinetics. In the case of the ex-situ carbon mineralization, the role of these ligand-bearing organic acids can be further amplified for silicate mineral dissolution. Unfortunately, high mineral dissolution rates often lead to the formation of a silica-rich passivation layer on the surface of silicate minerals. Thus, the use of novel solvent mixture that allows chemically catalyzed removal of this passivation layer during enhanced Mg-leaching surface reaction has been proposed and demonstrated. Furthermore, an engineered biological catalyst, carbonic anhydrase, has been developed and evaluated to accelerate the hydration of CO2, which is another potentially rate-limiting step of the carbonation reaction. The development of these novel catalytic reaction schemes has significantly improved the overall efficiency and sustainability of in-situ and ex-situ mineral carbonation technologies and allowed direct capture and storage of CO2 from mixture gas streams eliminating the energy-intensive solvent regeneration and CO2 compression steps.

  15. Entropy and charge in molecular evolution--the case of phosphate

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.; Sales, B.; Mojzsis, S.; Lee, T.; Bada, J. L. (Principal Investigator)

    1997-01-01

    Biopoesis, the creation of life, implies molecular evolution from simple components, randomly distributed and in a dilute state, to form highly organized, concentrated systems capable of metabolism, replication and mutation. This chain of events must involve environmental processes that can locally lower entropy in several steps; by specific selection from an indiscriminate mixture, by concentration from dilute solution, and in the case of the mineral-induced processes, by particular effectiveness in ordering and selective reaction, directed toward formation of functional biomolecules. Numerous circumstances provide support for the notion that negatively charged molecules were functionally required and geochemically available for biopoesis. Sulfite ion may have been important in bisulfite complex formation with simple aldehydes, facilitating the initial concentration by sorption of aldehydes in positively charged surface active minerals. Borate ion may have played a similar, albeit less investigated role in forming charged sugar complexes. Among anionic species, oligophosphate ions and charged phosphate esters are likely to have been of even more wide ranging importance, reflected in the continued need for phosphate in a proposed RNA world, and extending its central role to evolved biochemistry. Phosphorylation is shown to result in selective concentration by surface sorption of compounds, otherwise too dilute to support condensation reactions. It provides protection against rapid hydrolysis of sugars and, by selective concentration, induces the oligomerization of aldehydes. As a manifestation of life arisen, phosphate already appears in an organic context in the oldest preserved sedimentary record.

  16. Sensitive life detection strategies for low-biomass environments: optimizing extraction of nucleic acids adsorbing to terrestrial and Mars analogue minerals.

    PubMed

    Direito, Susana O L; Marees, Andries; Röling, Wilfred F M

    2012-07-01

    The adsorption of nucleic acids to mineral matrixes can result in low extraction yields and negatively influences molecular microbial ecology studies, in particular for low-biomass environments on Earth and Mars. We determined the recovery of nucleic acids from a range of minerals relevant to Earth and Mars. Clay minerals, but also other silicates and nonsilicates, showed very low recovery (< 1%). Consequently, optimization of DNA extraction was directed towards clays. The high temperatures and acidic conditions used in some methods to dissolve mineral matrices proved to destruct DNA. The most efficient method comprised a high phosphate solution (P/EtOH; 1 M phosphate, 15% ethanol buffer at pH 8) introduced at the cell-lysing step in DNA extraction, to promote chemical competition with DNA for adsorption sites. This solution increased DNA yield from clay samples spiked with known quantities of cells up to nearly 100-fold. DNA recovery was also enhanced from several mineral samples retrieved from an aquifer, while maintaining reproducible DGGE profiles. DGGE profiles were obtained for a clay sample for which no profile could be generated with the standard DNA isolation protocol. Mineralogy influenced microbial community composition. The method also proved suitable for the recovery of low molecular weight DNA (< 1.5 kb). © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Desorption and mobility mechanisms of co-existing polycyclic aromatic hydrocarbons and heavy metals in clays and clay minerals.

    PubMed

    Saeedi, Mohsen; Li, Loretta Y; Grace, John R

    2018-05-15

    The effects of soil components such as clay minerals and as humic acids, as well as co-existing metals and polycyclic aromatic hydrocarbons, on desorption and mobility are examined. Three types of artificially blended clay and clay mineral mixtures (pure kaolinite, kaolinite + sand and kaolinite + sand + bentonite), each with different humic acid content, were tested for desorption and mobility of acenaphthene, fluorene and fluoranthene by three extracting solutions CaCl 2 (0.01 M) and EDTA (0.01M) with non-ionic surfactants (Tween 80 and Triton X100). Heavy metals (Ni, Pb and Zn) were also studied for desorption and mobility. The influence of co-present metals on simultaneous desorption and mobility of PAHs was investigated as well. The results showed that <10% of metals in the clay mineral mixtures were mobile. Combined EDTA and non-ionic solutions can enhance the desorption and mobility of PAHs to >80% in clay mineral mixtures containing no sand, while in the same soils containing ∼40% sand, the desorption exceeded 90%. Heavy metals, as well as increasing humic acids content in the clay mineral mixtures, decreased the desorption and mobility of PAHs, especially for soils containing no sand, and for fluoranthene compared with fluorene and acenaphthene. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    USGS Publications Warehouse

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  19. Color measurement of methylene blue dye/clay mixtures and its application using economical methods

    NASA Astrophysics Data System (ADS)

    Milosevic, Maja; Kaludjerovic, Lazar; Logar, Mihovil

    2016-04-01

    Identifying the clay mineral components of clay materials by staining tests is rapid and simple, but their applicability is restricted because of the mutual interference of the common components of clay materials and difficulties in color determination. The change of color with concentration of the dye is related to the use of colorants as a field test for identifying clay minerals and has been improved over the years to assure the accuracy of the tests (Faust G. T., 1940). The problem of measurement and standardization of color may be solved by combination of colors observed in staining tests with prepared charts of color chips available in the Munsell Book of Color, published by Munsell Color Co. Under a particular set of illumination conditions, a human eye can achieve an approximate match between the color of the dyed clay sample and that of a standard color chip, even though they do have different spectral reflectance characteristics. Experiments were carried out with diffuse reflectance spectroscopy on selected clay samples (three montmorillonite, three kaolinite and one mix-layer clay samples) saturated with different concentration of methylene blue dye solution. Dominant wavelength and purity of the color was obtained on oriented dry samples and calculated by use of the I. C. I. (x, y) - diagram in the region of 400-700 nm (reflectance spectra) without MB and after saturation with different concentrations of MB solutions. Samples were carefully photographed in the natural light environment and processed with user friendly and easily accessible applications (Adobe color CC and ColorHexa encyclopedia) available for android phones or tablets. Obtained colors were compared with Munsell standard color chips, RGB and Hexa color standards. Changes in the color of clay samples in their interaction with different concentration of the applied dye together with application of economical methods can still be used as a rapid fieldwork test. Different types of clay minerals can be distinguished by application of at least three concentrations of the methylene blue dye on the same sample and observing the color change in comparison with standardized color chips that can be easily obtained and free of charge. If the color tests are properly used in conjunction with other more complex analytical procedures, they can be helpful addition in identification of different clay minerals, especially montmorillonite and kaolinite minerals. - Faust G. T., 1940, Staining of clay minerals as a rapid means of identification in natural and beneficiated products, U. S. Bur. Mines, Investigation Report. N0.3522 - Munsell Color, Munsell Book of Color, 1942. Macbeth Division of Kollmorgen Corporation, Maryland, U.S.A. - https://color.adobe.com/create/color-wheel/ - http://www.colorhexa.com/

  20. Landed XRD/XRF analysis of prime targets in the search for past or present Martian life.

    PubMed

    Vaniman, D; Bish, D; Blake, D; Elliott, S T; Sarrazin, P; Collins, S A; Chipera, S

    1998-12-25

    Mars landers seeking evidence for past or present life will be guided by information from orbital mapping and from previous surface exploration. Several target options have been proposed, including sites that may harbor extant life and sites most likely to preserve evidence of past life These sites have specific mineralogic characteristics. Extant life might be gathered around the sinters and associated mineral deposits of rare active fumaroles, or held within brine pockets and inclusions in a few evaporite-mineral deposits. Possibilities for fossilization include deltaic and lake-bottom sediments of once-flooded craters, sinters formed by ancient hot-spring deposits, and the carbonate deposits associated with some evaporite systems. However, the highly varied mineralogy of fossil occurrences on Earth leads to the inference that Mars, an equally complex planet, could host a broad variety of potential fossilizing deposits. The abundance of volcanic systems on Mars and evidence for close associations between volcanism and water release suggest possibilities of organism entrapment and mineralization in volcaniclastic deposits, as found in some instances on Earth. Thus the targets being considered for exploration include a wide variety of unique deposits that would be characterized by silica or various nonsilicate minerals. Beyond these "special" deposits and in the most general case, an ability to distinguish mineralized from uncemented volcanic detritus may be the key to success in finding possible fossil-bearing authigenic mineralogies. A prototype miniaturized X ray diffraction/X ray fluorescence (XRD/XRF) instrument has been evaluated with silica, carbonate, and sulfate minerals and with a basalt, to examine the capabilities of this tool in mineralogic and petrologic exploration for exobiological goals. This instrument. CHEMIN (chemical and mineralogical analyzer), is based on an innovative low-power X ray tube, transmission geometry, and CCD collection and discrimination of diffracted and fluoresced X rays. The ability to accumulate and integrate the entire circumference of each complete Debye diffraction ring compensates for poor powder preparations, as might be produced by robotic sampling systems. With CHEMIN, a wide range of minerals can be uniquely identified. Using Rietveld analysis of the XRD results, mineral quantification is also possible. Expanded capabilities in phase analysis and constrained data solutions using quantitative XRD and XRF are within reach.

  1. Biodurability of chrysotile and tremolite asbestos

    NASA Astrophysics Data System (ADS)

    Oze, C.; Solt, K.

    2008-12-01

    Chrysotile and tremolite asbestos represent two mineralogical categories of regulated asbestos commonly evaluated in epidemiological, toxicological, and pathological studies. Lung and digestive fluids are undersaturated with respect to chrysotile and tremolite asbestos (i.e. dissolution is thermodynamically favorable), where the dissolution kinetics control the durability of these minerals in respiratory and gastric systems. Here we examined the biodurability of chrysotile and tremolite asbestos in simulated body fluids (SBFs) as a function of mineral surface area over time. Batch experiments in simulated gastric fluid (SGF; HCl and NaCl solution at pH 1.2) and simulated lung fluid (SLF; a modified Gamble's solution at pH 7.4) were performed at 37°C over 720 hours. The rate-limiting step of Si release for both minerals was used to determine and compare dissolution rates. Chrysotile and tremolite asbestos are less biodurable in SGF compared to SLF. Based on equal suspension densities (surface area per volume of solution, m2 L- 1), chrysotile undergoes dissolution approximately 44 times faster than tremolite asbestos in SGF; however, amphibole asbestos dissolves approximately 6 times faster than chrysotile in SLF. Provided identical fiber dimensions, fiber dissolution models demonstrate that chrysotile is more biodurable in SLF and less biodurable in SGF compared to tremolite asbestos. Overall, the methodology employed here provides an alternative means to evaluate asbestos material fiber lifetimes based on mineral surface considerations.

  2. Application of Remote-Sensing Observations for Detecting Patterns of Localization of PGM Mineralization of Western Bushveld

    NASA Astrophysics Data System (ADS)

    Milovsky, G. A.; Ishmukhametova, V. T.; Orlyankin, V. N.; Shemyakina, E. M.

    2017-12-01

    The differentiated Bushveld complex is studied by remote-space and gravimagnetic methods. The syncline of Western Bushveld is recognized in the southwestern part of the complex, which is characterized by a radial and ring structure of the higher order. The structures, which control the localization of Pt mineralization, are revealed and the possible use of the Landsat 7 ETM+ multizonal space survey is shown for recognizing the rocks of the Basal, Critical, Main, and Upper zones of the norite complex of Western Bushveld.

  3. Self-organizing biochemical cycles

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.; Bada, J. L. (Principal Investigator)

    2000-01-01

    I examine the plausibility of theories that postulate the development of complex chemical organization without requiring the replication of genetic polymers such as RNA. One conclusion is that theories that involve the organization of complex, small-molecule metabolic cycles such as the reductive citric acid cycle on mineral surfaces make unreasonable assumptions about the catalytic properties of minerals and the ability of minerals to organize sequences of disparate reactions. Another conclusion is that data in the Beilstein Handbook of Organic Chemistry that have been claimed to support the hypothesis that the reductive citric acid cycle originated as a self-organized cycle can more plausibly be interpreted in a different way.

  4. Main types of rare-metal mineralization in Karelia

    NASA Astrophysics Data System (ADS)

    Ivashchenko, V. I.

    2016-03-01

    Rare-metal mineralization in Karelia is represented by V, Be, U deposits and In, Re, Nb, Ta, Li, Ce, La, and Y occurrences, which are combined into 17 types of magmatic, pegmatite, albitite-greisen, hydrothermal-metasomatic, sedimentary, and epigenetic groups. The main vanadium resources are localized in the Onega ore district. These are deposits of the Padma group (556 kt) and the Pudozhgorsky complex (1.5 Mt). The REE occurrences are primarily characterized by Ce-La specialization. The perspective of HREE is related to the Eletozero-Tiksheozero alkaline and Salmi anorthosite-rapakivi granite complexes. Rare-metal pegmatites bear complex mineralization with insignificant low-grade resources. The Lobash and Jalonvaara porphyry Cu-Mo deposits are potential sources of rhenium: Re contents in molybdenite are 20-70 and 50-246 ppm and hypothetical resources are 12 and 7.5 t, respectively. The high-grade (˜100 ppm) and metallogenic potential of indium (˜2400 t) make the deposits of the Pitkäranta ore district leading in the category of Russian ore objects most prospective for indium. Despite the diverse rare-metal mineralization known in Karelia, the current state of this kind of mineral commodities at the world market leaves real metallogenic perspective only for V, U, Re, In, and Nb.

  5. Recovery of Crystallographic Texture in Remineralized Dental Enamel

    PubMed Central

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain structural integrity. PMID:25360532

  6. Recovery of crystallographic texture in remineralized dental enamel.

    PubMed

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain structural integrity.

  7. Co-precipitation of dissolved organic matter by calcium carbonate in Pyramid Lake, Nevada

    USGS Publications Warehouse

    Leenheer, Jerry A.; Reddy, Michael M.

    2008-01-01

    Our previous research has demonstrated that dissolved organic matter (DOM) influences calcium carbonate mineral formation in surface and ground water. To better understand DOM mediation of carbonate precipitation and DOM co-precipitation and/or incorporation with carbonate minerals, we characterized the content and speciation of DOM in carbonate minerals and in the lake water of Pyramid Lake, Nevada, USA. A 400-gram block of precipitated calcium carbonate from the Pyramid Lake shore was dissolved in 8 liters of 10% acetic acid. Particulate matter not dissolved by acetic acid was removed by centrifugation. DOM from the carbonate rock was fractionated into nine portions using evaporation, dialysis, resin adsorption, and selective precipitations to remove acetic acid and inorganic constituents. The calcium carbonate rock contained 0.23% DOM by weight. This DOM was enriched in polycarboxylic proteinaceous acids and hydroxy-acids in comparison with the present lake water. DOM in lake water was composed of aliphatic, alicyclic polycarboxylic acids. These compound classes were found in previous studies to inhibit calcium carbonate precipitation. DOM fractions from the carbonate rock were 14C-age dated at about 3,100 to 3,500 years before present. The mechanism of DOM co-precipitation and/or physical incorporation in the calcium carbonate is believed to be due to formation of insoluble calcium complexes with polycarboxylic proteinaceous acids and hydroxy-acids that have moderately large stability constants at the alkaline pH of the lake. DOM co-precipitation with calcium carbonate and incorporation in precipitated carbonate minerals removes proteinaceous DOM, but nearly equivalent concentrations of neutral and acidic forms of organic nitrogen in DOM remain in solution. Calcium carbonate precipitation during lime softening pretreatment of drinking water may have practical applications for removal of proteinaceous disinfection by-product precursors.

  8. The spectroscopic study of building composites containing natural sorbents.

    PubMed

    Król, M; Mozgawa, W

    2011-08-15

    This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag(+), Pb(2+), Zn(2+), Cd(2+) and Cr(3+)) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm(-1)). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm(-1)--the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm(-1)--the range of the bands originating from OH(-) groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Separation of sodium-22 from irradiated targets

    DOEpatents

    Taylor, Wayne A.; Jamriska, David

    1996-01-01

    A process for selective separation of sodium-22 from an irradiated target including dissolving an irradiated target to form a first solution, contacting the first solution with hydrated antimony pentoxide to selectively separate sodium-22 from the first solution, separating the hydrated antimony pentoxide including the separated sodium-22 from the first solution, dissolving the hydrated antimony pentoxide including the separated sodium-22 in a mineral acid to form a second solution, and, separating the antimony from the sodium-22 in the second solution.

  10. Slow-Release Fertilizers For Plants

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Golden, D. C.

    1995-01-01

    Synthetic mineral provides growing plants with nutrients, including micronutrients. Dissolves slowly in moist soil or in hydroponic solution, releasing constituents. Mineral synthetic apatite into which nutrients calcium, phosphorous, iron, manganese, copper, zinc, molybdenum, chlorine, boron, and sulfur incorporated in form of various salts. Each pellet has homogeneous inorganic composition. Composition readily adjusted to meet precise needs of plant.

  11. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, K.

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board, and is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit processes. The guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations.

  12. Microwave hydrothermal-assisted preparation of novel spinel-NiFe2O4/natural mineral composites as microwave catalysts for degradation of aquatic organic pollutants.

    PubMed

    Shen, Manli; Fu, Lu; Tang, Jianhua; Liu, Mingyu; Song, Youtao; Tian, Fangyuan; Zhao, Zhigang; Zhang, Zhaohong; Dionysiou, Dionysios D

    2018-05-15

    In this study, novel spinel-NiFe 2 O 4 /natural mineral (sepiolite, diatomite and kaolinite) composites were developed using microwave (MW) hydrothermal method, and applied in MW-induced catalytic degradation (NiFe 2 O 4 /natural mineral/MW) of organic pollutants such as sodium dodecyl benzene sulfonate (SDBS), azo fuchsine (AF), methyl parathion (MP), and crystal violet (CVL) in solution. Catalytic activities of three NiFe 2 O 4 /natural mineral composites were compared. The effects of material synthesis process parameters such as molar ratios of NiFe 2 O 4 and natural mineral, and pH of precursor solutions for synthesizing catalysts, and degradation parameters such as MW irradiation time and catalyst reuse cycles were also investigated. The principle on NiFe 2 O 4 /natural mineral/MW degradation was provided. The results reveal that organic pollutants in wastewater can be removed completely using NiFe 2 O 4 /natural mineral/MW within minutes. NiFe 2 O 4 /sepiolite shows higher catalytic activity than the others. The calculated degradation rate constants are 1.865, 0.672, 0.472, and 0.329 min -1 for SDBS, AF, MP, and CVL, respectively, using NiFe 2 O 4 /sepiolite/MW system. The performance of NiFe 2 O 4 /natural mineral can be maintained for three reuse cycles. Active species OH, O 2 - , and h + play main roles in NiFe 2 O 4 /sepiolite/MW degradation. Hence, NiFe 2 O 4 /sepiolite/MW technology with rapid and cost-effective degradation, magnetic separation, and no secondary pollution, demonstrates to be promising in treating organic contaminants in wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Effect of ionic activity products on the structure and composition of mineral self assembled on three-dimensional poly(lactide-co-glycolide) scaffolds

    PubMed Central

    Shin, Kyungsup; Jayasuriya, Ambalangodage C.; Kohn, David H.

    2009-01-01

    A biomimetic approach involving the self-assembly of mineral within the pores of three-dimensional porous polymer scaffolds is a promising strategy to integrate advantages of inorganic and organic phases into a single material for hard tissue engineering. Such a material enhances the ability of progenitor cells to differentiate down an osteoblast lineage in vitro and in vivo, compared with polymer scaffolds. The mechanisms regulating mineral formation in this one-step process, however, are poorly understood, especially the effects of ionic activity products (IP) of the mineralizing solution and incubation time. The aims of this study were to define the structure and composition of mineral formed within the pores of biodegradable polymer scaffolds as a function of IP and time. Three-dimensional poly(lactide-co-glycolide) scaffolds were fabricated by solvent casting/particulate leaching and incubated for 4–16 days in six variants of simulated body fluid whose IPs were varied by adjusting ionic concentrations. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy demonstrated the formation of carbonated apatite with sub-micrometer sized crystals that grew into spherical globules extending out of the scaffold pore surfaces. As IP increased, more mineral grew on the scaffold pore surfaces, but the apatite became less crystalline and the Ca/P molar ratio decreased from 1.63 ± 0.005 to 1.51 ± 0.002. Since morphology, composition, and structure of mineral are factors that affect cell function, this study demonstrates that the IP of the mineralizing solution is an important modulator of material properties, potentially leading to enhanced control of cell function. PMID:17584901

  14. Experimental evidence for chemo-mechanical coupling during carbon mineralization in ultramafic rocks

    NASA Astrophysics Data System (ADS)

    Lisabeth, H. P.; Zhu, W.; Kelemen, P. B.; Ilgen, A.

    2017-09-01

    Storing carbon dioxide in the subsurface as carbonate minerals has the benefit of long-term stability and immobility. Ultramafic rock formations have been suggested as a potential reservoir for this type of storage due to the availability of cations to react with dissolved carbon dioxide and the fast reaction rates associated with minerals common in ultramafic formations; however, the rapid reactions have the potential to couple with the mechanical and hydraulic behavior of the rocks and little is known about the extent and mechanisms of this coupling. In this study, we argue that the dissolution of primary minerals and the precipitation of secondary minerals along pre-existing fractures in samples lead to reductions in both the apparent Young's modulus and shear strength of aggregates, accompanied by reduction in permeability. Hydrostatic and triaxial deformation experiments were run on dunite samples saturated with de-ionized water and carbon dioxide-rich solutions while stress, strain, permeability and pore fluid chemistry were monitored. Sample microstructures were examined after reaction and deformation using scanning electron microscopy (SEM). The results show that channelized dissolution and carbonate mineral precipitation in the samples saturated with carbon dioxide-rich solutions modify the structure of grain boundaries, leading to the observed reductions in stiffness, strength and permeability. A geochemical model was run to help interpret fluid chemical data, and we find that the apparent reaction rates in our experiments are faster than rates calculated from powder reactors, suggesting mechanically enhanced reaction rates. In conclusion, we find that chemo-mechanical coupling during carbon mineralization in dunites leads to substantial modification of mechanical and hydraulic behavior that needs to be accounted for in future modeling efforts of in situ carbon mineralization projects.

  15. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2011-01-01

    Mobility of potential or actual contaminants from mining and mineral processing activities depends on (1) occurrence: is the mineral source of the contaminant actually present? (2) abundance: is the mineral present in sufficient quantity to make a difference? (3) reactivity: what are the energetics, rates, and mechanisms of sorption and mineral dissolution and precipitation relative to the flow rate of the water? and (4) hydrology: what are the main flow paths for contaminated water? Estimates of relative proportions of minerals dissolved and precipitated can be made with mass-balance calculations if minerals and water compositions along a flow path are known. Combined with discharge, these mass-balance estimates quantify the actual weathering rate of pyrite mineralization in the environment and compare reasonably well with laboratory rates of pyrite oxidation except when large quantities of soluble salts and evaporated mine waters have accumulated underground. Quantitative mineralogy with trace-element compositions can substantially improve the identification of source minerals for specific trace elements through mass balances. Post-dissolution sorption and precipitation (attenuation) reactions depend on the chemical behavior of each element, solution composition and pH, aqueous speciation, temperature, and contact-time with mineral surfaces. For example, little metal attenuation occurs in waters of low pH (2, and redox-sensitive oxyanions (As, Sb, Se, Mo, Cr, V). Once dissolved, metal and metalloid concentrations are strongly affected by redox conditions and pH. Iron is the most reactive because it is rapidly oxidized by bacteria and archaea and Fe(III) hydrolyzes and precipitates at low pH (1–3) which is related directly to its first hydrolysis constant, pK1 = 2.2. Several insoluble sulfate minerals precipitate at low pH including anglesite, barite, jarosite, alunite and basaluminite. Aluminum hydrolyzes near pH 5 (pK1 = 5.0) and provides buffering and removal of Al by mineral precipitation from pH 4–5.5. Dissolved sulfate behaves conservatively because the amount removed from solution by precipitation is usually too small relative to the high concentrations in the water column and relative to the flow rate of the water.

  16. Age and geodynamic setting of the formation of the dess gold-silver deposit (North Stanovoi metallogenic zone, southeastern fringes of the North Asian Craton)

    NASA Astrophysics Data System (ADS)

    Buchko, I. V.; Sorokin, A. A.; Ponomarchuk, V. A.; Travin, A. V.; Sorokin, A. P.; Buchko, Ir. V.

    2010-12-01

    This article discusses the results of 40Ar/39Ar geochronological studies on the age of the gold-silver mineralization of the Dess occurrence hosted by the granitoids of the Tynda-Bakaran rock complex, which is 129-128 Ma. This estimate coincides with the time of the formation of the Mo mineralization (125-122 Ma) hosted by the rocks of the same rock complex. This allows dating the Au-Ag and Mo mineralizations from the same ore formation period that manifests itself in the granitoids of the North Stanovoi metallogenic belt that were formed in the environment of a transform continental margin. There exists the following sequence of changes in the mineral occurrences from the south to the north: Au-Ag-Au-Mo(Au).

  17. PyXRD v0.6.7: a free and open-source program to quantify disordered phyllosilicates using multi-specimen X-ray diffraction profile fitting

    NASA Astrophysics Data System (ADS)

    Dumon, M.; Van Ranst, E.

    2016-01-01

    This paper presents a free and open-source program called PyXRD (short for Python X-ray diffraction) to improve the quantification of complex, poly-phasic mixed-layer phyllosilicate assemblages. The validity of the program was checked by comparing its output with Sybilla v2.2.2, which shares the same mathematical formalism. The novelty of this program is the ab initio incorporation of the multi-specimen method, making it possible to share phases and (a selection of) their parameters across multiple specimens. PyXRD thus allows for modelling multiple specimens side by side, and this approach speeds up the manual refinement process significantly. To check the hypothesis that this multi-specimen set-up - as it effectively reduces the number of parameters and increases the number of observations - can also improve automatic parameter refinements, we calculated X-ray diffraction patterns for four theoretical mineral assemblages. These patterns were then used as input for one refinement employing the multi-specimen set-up and one employing the single-pattern set-ups. For all of the assemblages, PyXRD was able to reproduce or approximate the input parameters with the multi-specimen approach. Diverging solutions only occurred in single-pattern set-ups, which do not contain enough information to discern all minerals present (e.g. patterns of heated samples). Assuming a correct qualitative interpretation was made and a single pattern exists in which all phases are sufficiently discernible, the obtained results indicate a good quantification can often be obtained with just that pattern. However, these results from theoretical experiments cannot automatically be extrapolated to all real-life experiments. In any case, PyXRD has proven to be useful when X-ray diffraction patterns are modelled for complex mineral assemblages containing mixed-layer phyllosilicates with a multi-specimen approach.

  18. Weathering behavior of REE-Y in a granitic soil profile (Case of Strengbach watershed)

    NASA Astrophysics Data System (ADS)

    Gangloff, Sophie; Stille, Peter; Chabaux, François

    2017-04-01

    Rare earth elements and yttrium (REE-Y) can be used as tracers of bedrock weathering and soil formation. One of the aims of this study is to better understand the different phenomena which impact the REE-Y mobilization and modify the REE-Y pattern along a soil profile. Our study has been performed on a granitic soil profile and soil solutions corresponding, sampled in a forest parcel covered with spruces from the Strengbach catchment. The behavior of the REE-Y pattern are compared with previously published results. The samples were collected from 2009 to 2013 and ultra-filtered to determine the spatial and temporal influence as well as that of the colloidal and dissolved fractions on the evolution of the REE-Y patterns. The EFTi of the soil indicates that during alteration process, phosphate minerals and zircon might be dissolved and induce the formation of secondary mineral phase like xenotime in the deeper soil horizons. The ultra-filtered soil solutions from humic horizon show that the REE-Y are principally enriched in the colloidal fraction controlling the REE-Y dynamic while in the deeper soil solutions colloidal and dissolved fractions influence the REE-Y. The mobility of REE-Y is controlled by the dissolution of the zircon and phosphate minerals, the precipitation of the REE-Y(PO4) and the evolution of OC with depth. The comparative study of the soil profile, soil water extracts and soil solutions show that (Eu*/Eu)DS anomaly reflects weathering of plagioclase in the micropores and the migration of the released Eu to the macropores, the (Ce*/Ce) anomaly, is stabilized by the electron shuttling of the humic acid (aromaticity) and provides information on the redox conditions only in the deeper soil horizons depleted in humic acid and finally the HREE enrichment in the deeper soil solutions results from the partial dissolution of secondary minerals in the upper soil horizons (above 30 cm depth).

  19. Cesium recovery from aqueous solutions

    DOEpatents

    Goodhall, C. A.

    1960-09-13

    A process for recovering cesium from aqueous solutions is given in which precipitation on zinc ferricyanide is used. The precipitation is preferably carried out in solutions containing at least 0.0004M zinc ferricyanide, an acidity ranging from 0.2N mineral acid to 0.61N acid deficiency, and 1 to 2.5M aluminum nitrate. (D.L.C.)

  20. Characterization and in vitro biological evaluation of mineral/osteogenic growth peptide nanocomposites synthesized biomimetically on titanium

    NASA Astrophysics Data System (ADS)

    Chen, Cen; Kong, Xiangdong; Zhang, Sheng-Min; Lee, In-Seop

    2015-04-01

    Nanocomposite layers of mineral/osteogenic growth peptide (OGP) were synthesized on calcium phosphate coated titanium substrates by immersing in calcium-phosphate buffer solution containing OGP. Peptide incorporated mineral was characterized by determining quantity loaded, effects on mineral morphology and structure. Also, the biological activity was investigated by cell adhesion, proliferation assay, and measurement of alkaline phosphatase (ALP) activity. X-ray photoelectron spectroscopy (XPS) and micro-bicinchoninic acid (BCA) assay revealed that OGP was successfully incorporated with mineral and the amount was increased with immersion time. Incorporated OGP changed the mineral morphology from sharp plate-like shape to more rounded one, and the octacalcium phosphate structure of the mineral was gradually transformed into apatite. With confocal microscopy to examine the incorporation of fluorescently labeled peptide, OGP was evenly distributed throughout mineral layers. Mineral/OGP nanocomposites promoted cell adhesion and proliferation, and also increased ALP activity of mesenchymal stem cells (MSCs). Results presented here indicated that the mineral/OGP nanocomposites formed on titanium substrates had the potential for applications in dental implants.

  1. Geochemical characteristics of Kırka (Sarıkaya) borate deposit, northwestern Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Koçak, İ.; Koç, Ş.

    2016-02-01

    The Kırka borate deposit was deposited in a Miocene lacustrine basin which is closely associated with volcanic activity which lasted from Paleogene to the beginning of Quaternary. Borate mineralization alternates with claystone, mudstone, tuff and fine-layered limestone and mostly shows a lenticular structure. The mineral paragenesis is composed of borax, tincalconite, ulexite, kurnakovite, probertite, tunellite, colemanite, dolomite, smectite group minerals, illite and some firstly reported minerals for the Kırka deposit including hydrochloroborite, brianroulstonite, hilgardite-4M and searlesite minerals. In comparison to average values of earth crust, concentrations of Cs, Sr, Li, As and Se were significantly enriched with respective rates of 21, 15, 14, 3 and 188 folds. Regarding KY, KS1 and KS2 locations, there are differences in both element abundances and their geochemical tendencies which are attributed to variations in discharge regime and physico-chemical conditions of the depositional environment. Independent behaviour of B2O3 might indicate that boron is not associated with clays and carbonates and, therefore, most part of boron must be derived from volcanic activity (hydrothermal solutions, gases). REE data indicate that the Kırka borate deposit was formed in a sedimentary environment where highly alkaline (high pH) hydrothermal solutions also took part in borate precipitation process.

  2. Lindane degradation by electrooxidation process: Effect of electrode materials on oxidation and mineralization kinetics.

    PubMed

    Dominguez, Carmen M; Oturan, Nihal; Romero, Arturo; Santos, Aurora; Oturan, Mehmet A

    2018-05-15

    This study focuses on the effect of electrode materials on abatement of lindane (an organochlorine pesticide) by electrooxidation process. Comparative performances of different anodic (platinum (Pt), dimensionally stable anode (DSA) and boron-doped diamond (BDD)) and cathodic (carbon sponge (CS), carbon felt (CF) and stainless steel (SS)) materials on lindane electrooxidation and mineralization were investigated. Special attention was paid to determine the role of chlorine active species during the electrooxidation process. The results showed that better performances were obtained when using a BDD anode and CF cathode cell. The influence of the current density was assessed to optimize the oxidation of lindane and the mineralization of its aqueous solution. A quick (10 min) and complete oxidation of 10 mg L -1 lindane solution and relatively high mineralization degree (80% TOC removal) at 4 h electrolysis were achieved at 8.33 mA cm -2 current density. Lindane was quickly oxidized by in-situ generated hydroxyl radicals, (M( • OH)), formed from oxidation of water on the anode (M) surface following pseudo first-order reaction kinetics. Formation of chlorinated and hydroxylated intermediates and carboxylic acids during the treatment were identified and a plausible mineralization pathway of lindane by hydroxyl radicals was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Cation Uptake and Allocation by Red Pine Seedlings under Cation-Nutrient Stress in a Column Growth Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhenqing; Balogh-Brunstad, Zsuzsanna; Grant, Michael R.

    Background and Aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient limitation on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to nine months under a range of Ca- and K-limited conditions. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after nine months ofmore » plant growth and K was the limiting nutrient for biomass production. The Ca/Sr and K/Rb ratio results allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.« less

  4. Influence of Oxalate on Ni Fate during Fe(II)-Catalyzed Recrystallization of Hematite and Goethite.

    PubMed

    Flynn, Elaine D; Catalano, Jeffrey G

    2018-06-05

    During biogeochemical iron cycling at redox interfaces, dissolved Fe(II) induces the recrystallization of Fe(III) oxides. Oxalate and other organic acids promote dissolution of these minerals and may also induce recrystallization. These processes may redistribute trace metals among the mineral bulk, mineral surface, and aqueous solution. However, the impact of interactions among organic acids, dissolved Fe(II), and iron oxide minerals on trace metal fate in such systems is unclear. The present study thus explores the effect of oxalate on Ni release from and incorporation into hematite and goethite in the absence and presence of Fe(II). When Ni is initially structurally incorporated into the iron oxides, both oxalate and dissolved Fe(II) promote the release of Ni to aqueous solution. When both species are present, their effects on Ni release are synergistic at pH 7 but inhibitory at pH 4, indicating that cooperative and competitive interactions vary with pH. In contrast, oxalate suppresses Ni incorporation into goethite and hematite during Fe(II)-induced recrystallization, decreasing the proportion of Ni substituting in a mineral structure by up to 36%. These observations suggest that at redox interfaces oxalate largely enhances trace metal mobility. In such settings, oxalate, and likely other organic acids, may thus enhance micronutrient availability and inhibit contaminant sequestration.

  5. Mineralogy, paragenesis, and mineral zoning of the Bulldog Mountain vein system, Creede District, Colorado

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Heald Whitehouse-Veaux, Pamela

    1994-01-01

    The Bulldog Mountain vein system, Creede district, Colorado, is one of four major epithermal vein systems from which the bulk of the district's historical Ag-Pb-Zn-Cu production has come. Ores deposited along the vein system were discovered in 1965 and were mined from 1969 to 1985.Six temporally gradational mineralization stages have been identified along the Bulldog Mountain vein system, each with a characteristic suite of minerals deposited or leached and a characteristic distribution within the vein system; some of these stages are also strongly zoned within the vein system. Stage A was dominated by deposition of rhodochrosite along the lower levels of the Bulldog Mountain ore zone. Stage B in the northern parts of the ore zone is characterized by abundant fine-grained sphalerite and galena, with lesser tetrahedrite and minor chlorite and hematite. With increasing elevation to the south, stage B ores become progressively more barite and silver rich, with alternating barite and fine-grained sphalerite + galena generations; native silver + or - acanthite assemblages are also locally abundant within southern stage B barite sulfide ores, whereas chalcopyrite and other Cu and Ag sulfides and sulfosalts are present erratically in minor amounts. Stage C in the upper and northern portions of the ore zone is characterized by abundant quartz and fluorite, minor adularia, hematite, Mn siderite, sphalerite, and galena, and major leaching of earlier barite; to the south, some barite and sulfides may have been deposited. Stage D sphalerite and galena were deposited in the upper and northern portions of the ore zone; a barite- and silver-rich facies of this stage may also be present in the southern portions of the vein system. Late in stage D, mineralogically complex assemblages containing chalcopyrite, tetrahedrite, polybasite, bornite, pyrargyrite, and a variety of other sulfides and sulfosalts were deposited in modest amounts throughout the vein system. This complex assemblage marked the transition to stage E. During stage E, the final sulfide stage, abundant botryoidal pyrite and marcasite with lesser stibnite, sphalerite, and sulfosalts were deposited primarily along the top of the Bulldog Mountain ore zone. Stage F, the final mineralization stage along the vein system, is marked by wire silver and concurrent leaching of earlier sulfides and sulfosalts; this stage may reflect the transition to a supergene environment.The sequence of mineralization stages identified in this study along the Bulldog Mountain system can be correlated with corresponding stages identified by other researchers along the OH and P veins, and the southern Amethyst vein system. Mineral zoning patterns identified along the Bulldog Mountain vein system also parallel larger scale zoning patterns across the central and southern Creede district.The complex variations in mineral assemblages documented in time and space along the Bulldog Mountain vein system were produced by the combined effects of many processes. Large-scale changes in vein mineralogy over time produced discrete mineralization stages. Short-term mineralogical fluctuations produced complex interbanding of mineralogically distinct generations. Fluid chemistry evolution within the vein system produced large-scale lateral zoning patterns within certain stages. Hypogene leaching substantially modified the distributions of some minerals. Finally, structural activity, mineral deposition, and mineral leaching modified fluid flow pathways repeatedly during mineralization, and so added to the complex mineral distribution patterns within the vein system.

  6. Clay mineral formation and transformation in rocks and soils

    USGS Publications Warehouse

    Eberl, D.D.

    1983-01-01

    Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.

  7. Silicate and carbonate mineral weathering in soil profiles developed on Pleistocene glacial drift (Michigan, USA): Mass balances based on soil water geochemistry

    NASA Astrophysics Data System (ADS)

    Jin, Lixin; Williams, Erika L.; Szramek, Kathryn J.; Walter, Lynn M.; Hamilton, Stephen K.

    2008-02-01

    Geochemistry of soil, soil water, and soil gas was characterized in representative soil profiles of three Michigan watersheds. Because of differences in source regions, parent materials in the Upper Peninsula of Michigan (the Tahquamenon watershed) contain only silicates, while those in the Lower Peninsula (the Cheboygan and the Huron watersheds) have significant mixtures of silicate and carbonate minerals. These differences in soil mineralogy and climate conditions permit us to examine controls on carbonate and silicate mineral weathering rates and to better define the importance of silicate versus carbonate dissolution in the early stage of soil-water cation acquisition. Soil waters of the Tahquamenon watershed are the most dilute; solutes reflect amphibole and plagioclase dissolution along with significant contributions from atmospheric precipitation sources. Soil waters in the Cheboygan and the Huron watersheds begin their evolution as relatively dilute solutions dominated by silicate weathering in shallow carbonate-free soil horizons. Here, silicate dissolution is rapid and reaction rates dominantly are controlled by mineral abundances. In the deeper soil horizons, silicate dissolution slows down and soil-water chemistry is dominated by calcite and dolomite weathering, where solutions reach equilibrium with carbonate minerals within the soil profile. Thus, carbonate weathering intensities are dominantly controlled by annual precipitation, temperature and soil pCO 2. Results of a conceptual model support these field observations, implying that dolomite and calcite are dissolving at a similar rate, and further dissolution of more soluble dolomite after calcite equilibrium produces higher dissolved inorganic carbon concentrations and a Mg 2+/Ca 2+ ratio of 0.4. Mass balance calculations show that overall, silicate minerals and atmospheric inputs generally contribute <10% of Ca 2+ and Mg 2+ in natural waters. Dolomite dissolution appears to be a major process, rivaling calcite dissolution as a control on divalent cation and inorganic carbon contents of soil waters. Furthermore, the fraction of Mg 2+ derived from silicate mineral weathering is much smaller than most of the values previously estimated from riverine chemistry.

  8. "Supergreen" Renewables: Integration of Mineral Weathering Into Renewable Energy Production for Air CO2 Removal and Storage as Ocean Alkalinity

    NASA Astrophysics Data System (ADS)

    Rau, G. H.; Carroll, S.; Ren, Z. J.

    2015-12-01

    Excess planetary CO2 and accompanying ocean acidification are naturally mitigated on geologic time scales via mineral weathering. Here, CO2 acidifies the hydrosphere, which then slowly reacts with silicate and carbonate minerals to produce dissolved bicarbonates that are ultimately delivered to the ocean. This alkalinity not only provides long-term sequestration of the excess atmospheric carbon, but it also chemically counters the effects of ocean acidification by stabilizing or raising pH and carbonate saturation state, thus helping rebalance ocean chemistry and preserving marine ecosystems. Recent research has demonstrated ways of greatly accelerating this process by its integration into energy systems. Specifically, it has been shown (1) that some 80% of the CO2 in a waste gas stream can be spontaneously converted to stable, seawater mineral bicarbonate in the presence of a common carbonate mineral - limestone. This can allow removal of CO2 from biomass combustion and bio-energy production while generating beneficial ocean alkalinity, providing a potentially cheaper and more environmentally friendly negative-CO2-emissions alternative to BECCS. It has also been demonstrated that strong acids anodically produced in a standard saline water electrolysis cell in the formation of H2 can be reacted with carbonate or silicate minerals to generate strong base solutions. These solutions are highly absorptive of air CO2, converting it to mineral bicarbonate in solution. When such electrochemical cells are powered by non-fossil energy (e.g. electricity from wind, solar, tidal, biomass, geothermal, etc. energy sources), the system generates H2 that is strongly CO2-emissions-negative, while producing beneficial marine alkalinity (2-4). The preceding systems therefore point the way toward renewable energy production that, when tightly coupled to geochemical mitigation of CO2 and formation of natural ocean "antacids", forms a high capacity, negative-CO2-emissions, "supergreen" source of fuel or electrcity. 1) http://pubs.acs.org/doi/pdf/10.1021/es102671x2) http://pubs.acs.org/doi/full/10.1021/es800366q3) http://www.pnas.org/content/110/25/10095.full.pdf4) http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00875

  9. Geophysical interpretation of U, Th, and rare earth element mineralization of the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeast Alaska

    USGS Publications Warehouse

    McCafferty, Anne E.; Stoeser, Douglas B.; Van Gosen, Bradley S.

    2014-01-01

    A prospectivity map for rare earth element (REE) mineralization at the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeastern Alaska, was calculated from high-resolution airborne gamma-ray data. The map displays areas with similar radioelement concentrations as those over the Dotson REE-vein-dike system, which is characterized by moderately high %K, eU, and eTh (%K, percent potassium; eU, equivalent parts per million uranium; and eTh, equivalent parts per million thorium). Gamma-ray concentrations of rocks that share a similar range as those over the Dotson zone are inferred to locate high concentrations of REE-bearing minerals. An approximately 1300-m-long prospective tract corresponds to shallowly exposed locations of the Dotson zone. Prospective areas of REE mineralization also occur in continuous swaths along the outer edge of the pluton, over known but undeveloped REE occurrences, and within discrete regions in the older Paleozoic country rocks. Detailed mineralogical examinations of samples from the Dotson zone provide a means to understand the possible causes of the airborne Th and U anomalies and their relation to REE minerals. Thorium is sited primarily in thorite. Uranium also occurs in thorite and in a complex suite of ±Ti±Nb±Y oxide minerals, which include fergusonite, polycrase, and aeschynite. These oxides, along with Y-silicates, are the chief heavy REE (HREE)-bearing minerals. Hence, the eU anomalies, in particular, may indicate other occurrences of similar HREE-enrichment. Uranium and Th chemistry along the Dotson zone showed elevated U and total REEs east of the Camp Creek fault, which suggested the potential for increased HREEs based on their association with U-oxide minerals. A uranium prospectivity map, based on signatures present over the Ross-Adams mine area, was characterized by extremely high radioelement values. Known uranium deposits were identified in the U-prospectivity map, but the largest tract occurs over a radioelement-rich granite phase within the pluton that is likely not related to mineralization. Neither mineralization type displays a well-defined airborne magnetic signature.

  10. Electrochemical Applications in Metal Bioleaching.

    PubMed

    Tanne, Christoph Kurt; Schippers, Axel

    2017-12-10

    Biohydrometallurgy comprises the recovery of metals by biologically catalyzed metal dissolution from solids in an aqueous solution. The application of this kind of bioprocessing is described as "biomining," referring to either bioleaching or biooxidation of sulfide metal ores. Acidophilic iron- and sulfur-oxidizing microorganisms are the key to successful biomining. However, minerals such as primary copper sulfides are recalcitrant to dissolution, which is probably due to their semiconductivity or passivation effects, resulting in low reaction rates. Thus, further improvements of the bioleaching process are recommendable. Mineral sulfide dissolution is based on redox reactions and can be accomplished by electrochemical technologies. The impact of electrochemistry on biohydrometallurgy affects processing as well as analytics. Electroanalysis is still the most widely used electrochemical application in mineralogical research. Electrochemical processing can contribute to bioleaching in two ways. The first approach is the coupling of a mineral sulfide to a galvanic partner or electrocatalyst (spontaneous electron transfer). This approach requires only low energy consumption and takes place without technical installations by the addition of higher redox potential minerals (mostly pyrite), carbonic material, or electrocatalytic ions (mostly silver ions). Consequently, the processed mineral (often chalcopyrite) is preferentially dissolved. The second approach is the application of electrolytic bioreactors (controlled electron transfer). The electrochemical regulation of electrolyte properties by such reactors has found most consideration. It implies the regulation of ferrous and ferric ion ratios, which further results in optimized solution redox potential, less passivation effects, and promotion of microbial activity. However, many questions remain open and it is recommended that reactor and electrode designs are improved, with the aim of finding options for simplified biohydrometallurgical processing. This chapter focuses on metal sulfide dissolution via bioleaching and does not include other biohydrometallurgical processes such as microbial metal recovery from solution.

  11. Abiotic transformation of high explosives by freshly precipitated iron minerals in aqueous Fe¹¹ solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boparai, Hardiljeet K.; Comfort, Steve; Satapanajaru, Tunlawit

    Zerovalent iron barriers have become a viable treatment for field-scale cleanup of various ground water contaminants. While contact with the iron surface is important for contaminant destruction, the interstitial pore water within and near the iron barrier will be laden with aqueous, adsorbed and precipitated FeII phases. These freshly precipitated iron minerals could play an important role in transforming high explosives (HE). Our objective was to determine the transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and TNT (2,4,6-trinitrotoluene) by freshly precipitated iron FeII/FeIII minerals. This was accomplished by quantifying the effects of initial FeII concentration, pH, and the presence of aquifermore » solids (FeIII phases) on HE transformation rates. Results showed that at pH 8.2, freshly precipitated iron minerals transformed RDX, HMX, and TNT with reaction rates increasing with increasing FeII concentrations. RDX and HMX transformations in these solutions also increased with increasing pH (5.8-8.55). By contrast, TNT transformation was not influenced by pH (6.85-8.55) except at pH values <6.35. Transformations observed via LC/MS included a variety of nitroso products (RDX, HMX) and amino degradation products (TNT). XRD analysis identified green rust and magnetite as the dominant iron solid phases that precipitated from the aqueous FeII during HE treatment under anaerobic conditions. Geochemical modeling also predicted FeII activity would likely be controlled by green rust and magnetite. These results illustrate the important role freshly precipitated FeII/FeIII minerals in aqueous FeII solutions play in the transformation of high explosives.« less

  12. Computational prediction of Mg-isotope fractionation between aqueous [Mg(OH2)6]2+ and brucite

    NASA Astrophysics Data System (ADS)

    Colla, Christopher A.; Casey, William H.; Ohlin, C. André

    2018-04-01

    The fractionation factor in the magnesium-isotope fractionation between aqueous solutions of magnesium and brucite changes sign with increasing temperature, as uncovered by recent experiments. To understand this behavior, the Reduced Partition Function Ratios and isotopic fractionation factors (Δ26/24Mgbrucite-Mg(aq)) are calculated using molecular models of aqueous [Mg(OH2)6]2+ and the mineral brucite at increasing levels of density functional theory. The calculations were carried out on the [Mg(OH2)6]2+·12H2O cluster, along with different Pauling-bond-strength-conserving models of the mineral lattice of brucite. Three conclusions were reached: (i) all levels of theory overestimate bond distances in the aqua ion complex relative to Tutton's salts; (ii) the calculations predict that brucite at 298.15 K is always enriched in the heavy isotope, in contrast with experimental observations; (iii) the temperature dependencies of Wimpenny et al. (2014) and Li et al. (2014) could only be achieved by fixing the bond distances in the [Mg(OH2)6]2+·12H2O cluster to values close to those observed in crystals that trap the hydrated ion.

  13. Geochemical modeling of reactions and partitioning of trace metals and radionuclides during titration of contaminated acidic sediments.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-11-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.

  14. Slides showing aeromagnetic and gravity data for regional mineral exploration in Colorado, New Mexico, and Arizona

    USGS Publications Warehouse

    Klein, Douglas P.

    1983-01-01

    Examples of aeromagnetic and gravity data over 1? x 2? areas are presented for regions near the Cripple Creek mining area, Colorado, and the Lordsburg-Tyrone-Silver City mining areas, southern New Mexico and Arizona. These data indicate broad crustal structures and compositional variations that are marked by magnetization and density contrasts. The focus is on anomalies that may signal large-dimension controlling structures for the emplacement of economic mineral deposits. An example is a continuous, quasi-linear, north-trending gradient in both gravity and magnetic data located west of Cripple Creek area along long. 105? 30? W. This trend correlates with two mineral deposits of the Southern Rocky Mountains Front Range. It also correlates in part with an area of volcanic rock and with a mapped fault complex (Elkhorn-Currant Creek-Else-Westcliffe). The trend is interpreted to indicate a continuous crustal fault system, although exposures of this system are discontinuous between areas of alluvium and volcanic-rock cover. Similar geophysical trends exist in the Silver City to Tyrone area, where northeast-and northwest-trending anomalies appear to be marked by intrusion and mineralization. In this area, northwest-trending alluvial basins favor the use of geophysics to infer economically accessible but hidden bedrock whose association with exposed mineralization seems possible. An example of an inferred broad and relatively shallow, but hidden bedrock complex in association with more areally-limited mineralization is the Victorio Mountains area about 34 mi (55 km) south-southeast of Tyrone, New Mexico. The mineralization is within faulted sediments whose outcrop covers a small portion of the geophysical anomaly-complex.

  15. Description of slides showing aeromagnetic and gravity data for regional mineral exploration in Colorado, New Mexico, and Arizona

    USGS Publications Warehouse

    Klein, Douglas P.

    1983-01-01

    Examples of aeromagnetic and gravity data over 1? x 2? areas are presented for regions near the Cripple Creek mining area, Colorado, and the Lordsburg-Tyrone-Silver City mining areas, southern New Mexico and Arizona. These data indicate broad crustal structures and compositional variations that are marked by magnetization and density contrasts. The focus is on anomalies that may signal large-dimension controlling structures for the emplacement of economic mineral deposits. An example is a continuous, quasi-linear, north-trending gradient in both gravity and magnetic data located west of Cripple Creek area along long. 105? 30? W. This trend correlates with two mineral deposits of the Southern Rocky Mountains Front Range. It also correlates in part with an area of volcanic rock and with a mapped fault complex (Elkhorn-Currant Creek-Else-Westcliffe). The trend is interpreted to indicate a continuous crustal fault-system, although exposures of this system are discontinuous between areas of alluvium and volcanic-rock cover. Similar geophysical trends exist in the Silver City to Tyrone area, where northeast-and northwest-trending anomalies appear to be marked by intrusion and mineralization. In this area, northwest-trending alluvial basins favor the use of geophysics to infer economically accessible but hidden bedrock whose association with exposed mineralization seems possible. An example of an inferred broad and relatively shallow, but hidden bedrock complex in association with more areally-limited mineralization is the Victorio Mountains area about 34 mi (55 km) south-southeast of Tyrone, New Mexico. The mineralization is within faulted sediments whose outcrop covers a small portion of the geophysical anomaly-complex.

  16. Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: Geochemical controls on constituent concentrations

    USGS Publications Warehouse

    Cravotta, C.A.

    2008-01-01

    Water-quality data for discharges from 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania reveal complex relations among the pH and dissolved solute concentrations that can be explained with geochemical equilibrium models. Observed values of pH ranged from 2.7 to 7.3 in the coal-mine discharges (CMD). Generally, flow rates were smaller and solute concentrations were greater for low-pH CMD samples; pH typically increased with flow rate. Although the frequency distribution of pH was similar for the anthracite and bituminous discharges, the bituminous discharges had smaller median flow rates; greater concentrations of SO4, Fe, Al, As, Cd, Cu, Ni and Sr; comparable concentrations of Mn, Cd, Zn and Se; and smaller concentrations of Ba and Pb than anthracite discharges with the same pH values. The observed relations between the pH and constituent concentrations can be attributed to (1) dilution of acidic water by near-neutral or alkaline ground water; (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals; and (3) aqueous SO4-complexation and surface-complexation (adsorption) reactions. The formation of AlSO4+ and AlHSO42 + complexes adds to the total dissolved Al concentration at equilibrium with Al(OH)3 and/or Al hydroxysulfate phases and can account for 10-20 times greater concentrations of dissolved Al in SO4-laden bituminous discharges compared to anthracite discharges at pH of 5. Sulfate complexation can also account for 10-30 times greater concentrations of dissolved FeIII concentrations at equilibrium with Fe(OH)3 and/or schwertmannite (Fe8O8(OH)4.5(SO4)1.75) at pH of 3-5. In contrast, lower Ba concentrations in bituminous discharges indicate that elevated SO4 concentrations in these CMD sources could limit Ba concentrations by the precipitation of barite (BaSO4). Coprecipitation of Sr with barite could limit concentrations of this element. However, concentrations of dissolved Pb, Cu, Cd, Zn, and most other trace cations in CMD samples were orders of magnitude less than equilibrium with sulfate, carbonate, and/or hydroxide minerals. Surface complexation (adsorption) by hydrous ferric oxides (HFO) could account for the decreased concentrations of these divalent cations with increased pH. In contrast, increased concentrations of As and, to a lesser extent, Se with increased pH could result from the adsorption of these oxyanions by HFO at low pH and desorption at near-neutral pH. Hence, the solute concentrations in CMD and the purity of associated "ochres" formed in CMD settings are expected to vary with pH and aqueous SO4 concentration, with potential for elevated SO4, As and Se in ochres formed at low pH and elevated Cu, Cd, Pb and Zn in ochres formed at near-neutral pH. Elevated SO4 content of ochres could enhance the adsorption of cations at low pH, but decrease the adsorption of anions such as As. Such information on environmental processes that control element concentrations in aqueous samples and associated precipitates could be useful in the design of systems to reduce dissolved contaminant concentrations and/or to recover potentially valuable constituents in mine effluents.

  17. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity

    NASA Technical Reports Server (NTRS)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.

    2016-01-01

    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  18. Phast4Windows: a 3D graphical user interface for the reactive-transport simulator PHAST.

    PubMed

    Charlton, Scott R; Parkhurst, David L

    2013-01-01

    Phast4Windows is a Windows® program for developing and running groundwater-flow and reactive-transport models with the PHAST simulator. This graphical user interface allows definition of grid-independent spatial distributions of model properties-the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones-and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point-by-point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field-scale simulations of geochemical processes and contaminant transport. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  19. Geological structure and prospects of noble metal ore mineralization of the Khayrkhan gabbroid massif (Western Mongolia)

    NASA Astrophysics Data System (ADS)

    Kurumshieva, K. R.; Gertner, I. F.; Tishin, P. A.

    2017-12-01

    An analysis of the distribution of noble metals in zones of sulfide mineralization makes it possible to justify the isolation of four ore-bearing horizons with a specific geochemical zonation. A rise in the gold content relative to palladium and platinum is observed from the bottom upwards along the section of the stratified series of gabbroids. The study of the mineral phases of sulphides and the noble minerals itself indicates the evolution of hydrothermal solutions, which determines the different activity and mobility of the fluid (mercury, tellurium, sulfur) and ore (copper, nickel, iron, platinum, gold and silver) components.

  20. Hydrochemical evolution of regional groundwaters to playa brines in central Australia

    NASA Astrophysics Data System (ADS)

    Jankowski, J.; Jacobson, G.

    A large-scale groundwater system in central Australia discharges to a chain of playas. Recharge in calcrete and fractured rock aquifers gives rise to relatively low-salinity HCO 3 Cl SO 4 groundwaters, which evolve through regional saline groundwaters, to highly saline playa brines. The hydrochemical evolution of the groundwaters follows the anionic sequence HCO 3 Cl SO 4 → ClbHCO 3SO 4 → ClSO 4HCO 3 → ClSO 4 → Cl. With increasing salinity, there is a relative increase in Na, K, Mg, Cl and SO 4; however, there is a relative decrease in HCO 3, Ca, and SiO 2 owing to the precipitation of carbonate, sulphate and silicate minerals, and the resultant brines are depleted in these ions. Significant chemical variation in the composition of playa brines is a result of complex processes of solution, evaporative concentration, precipitation and mineralogical change, including dolomitisation. Thermodynamic calculations based on the Pitzer equations have enabled a general model to be developed for these evolutionary processes in saline groundwaters up to the stage of halite saturation. At an early stage the regional groundwaters are saturated with respect to the carbonate minerals, dolomite first, then calcite. With increasing salinity, sulphate minerals begin to precipitate: saturation with respect to gypsum is attained at a chlorinity of 19‰, and saturation with respect to anhydrite is attained at 122‰. The playa brines attain saturation with respect to halite at a chlorinity of 144‰. Solute budgets based on a chloride concentration factor show that final playa brines are 178 times more concentrated than recharge groundwaters, and confirm the virtually complete loss of HCO 3, Ca and SiO 2 through precipitation. There are subtle differences in the hydrochemistry of different central Australian playa brines and also vis-à-vis playa brines described from other parts of the world. Most Australian playas have brines of the ClNa type with SO 4 and Mg also important. The generally accepted Hardie-Eugster model for brine evolution and mineral precipitation sequences has therefore been modified and extended. Three pathways are defined, following calcite precipitation, on the basis of the ratio of molar Ca to alkalinity; these pathways lead to saline waters with different compositions. Subsequent evolution of the brines depends on the ratios between molar SO 4, Mg, Ca and alkalinity.

Top