Sample records for mineral density reflects

  1. The evaluation of bone mineral density based on nutritional status, age, and anthropometric parameters in elderly women.

    PubMed

    Ozeraitiene, Violeta; Būtenaite, Violeta

    2006-01-01

    To examine the relationship between bone mineral density and nutritional status, age, and anthropometrical data in elderly women. A validated international nutrition-risk-screening questionnaire, the Mini Nutritional Assessment, was used for evaluation of nutrition. The Mini Nutritional Assessment is a clinical tool consisting of four items: anthropometric assessment, global evaluation, dietetic assessment, and subjective assessment. Height and body weight were measured while the participants wore indoor clothes and no shoes; mid-arm and calf circumferences were measured with tape measure. The measurements of skinfold thickness on triceps, waist, and thigh were taken with a caliper. Bone mineral density was measured at distal radius of the nondominant forearm by dual x-ray absorptiometry. Our results indicate that anthropometric parameters (height, weight, body mass index, skinfold thickness) in elderly women with osteoporosis were the smallest. It was determined that more fats and proteins are reserved in the body, the greater the bone mineral density is. The nutritional status and age had a significant influence on bone mineral density. It was determined that women with osteoporosis had a tendency for greater malnutrition risk according to Mini Nutritional Assessment. Women with osteoporosis had worse appetites and suffered from cardiovascular diseases more often. It was determined that the nutritional status of elderly women, assessed by the Mini Nutritional Assessment questionnaire, reflects bone mineral density. It was found that women's age and anthropometric data, reflecting fat reserves in the body (body mass index, skinfold thickness), are significantly related to low bone mineral density.

  2. The association between mammographic breast density and bone mineral density in the study of women's health across the nation.

    PubMed

    Crandall, Carolyn J; Zheng, Yan; Karlamangla, Arun; Sternfeld, Barbara; Habel, Laurel A; Oestreicher, Nina; Johnston, Janet; Cauley, Jane A; Greendale, Gail A

    2007-08-01

    Bone mineral density and mammographic breast density are each associated with markers of lifetime estrogen exposure. The association between mammographic breast density and bone mineral density in early perimenopausal women is unknown. We analyzed data from a cohort (n = 501) of premenopausal (no change in menstrual regularity) and early perimenopausal (decreased menstrual regularity in past 3 months) participants of African-American, Caucasian, Chinese, and Japanese ethnicity in the Study of Women's Health Across the Nation. Using multivariable linear regression, we examined the cross-sectional association between percent mammographic density and bone mineral density (BMD). Percent mammographic density was statistically significantly inversely associated with hip BMD and lumbar spine BMD after adjustment (body mass index, ethnicity, age, study site, parity, alcohol intake, cigarette smoking, physical activity, age at first childbirth) in early perimenopausal, but not premenopausal, women. In early perimenopausal women, every 0.1g/cm(2) greater hip BMD predicted a 2% lower percent mammographic density (95% confidence interval -37.0 to -0.6%, p = 0.04). Mammographic breast density is inversely associated with BMD in the perimenopausal participants of this community-based cohort. The biological underpinnings of these findings may reflect differential responsiveness of breast and bone mineral density to the steroid milieu.

  3. Interpreting spectral unmixing coefficients: From spectral weights to mass fractions

    NASA Astrophysics Data System (ADS)

    Grumpe, Arne; Mengewein, Natascha; Rommel, Daniela; Mall, Urs; Wöhler, Christian

    2018-01-01

    It is well known that many common planetary minerals exhibit prominent absorption features. Consequently, the analysis of spectral reflectance measurements has become a major tool of remote sensing. Quantifying the mineral abundances, however, is not a trivial task. The interaction between the incident light rays and particulate surfaces, e.g., the lunar regolith, leads to a non-linear relationship between the reflectance spectra of the pure minerals, the so-called ;endmembers;, and the surface's reflectance spectrum. It is, however, possible to transform the non-linear reflectance mixture into a linear mixture of single-scattering albedos of the Hapke model. The abundances obtained by inverting the linear single-scattering albedo mixture may be interpreted as volume fractions which are weighted by the endmember's extinction coefficient. Commonly, identical extinction coefficients are assumed throughout all endmembers and the obtained volume fractions are converted to mass fractions using either measured or assumed densities. In theory, the proposed method may cover different grain sizes if each grain size range of a mineral is treated as a distinct endmember. Here, we present a method to transform the mixing coefficients to mass fractions for arbitrary combinations of extinction coefficients and densities. The required parameters are computed from reflectance measurements of well defined endmember mixtures. Consequently, additional measurements, e.g., the endmember density, are no longer required. We evaluate the method based on laboratory measurements and various results presented in the literature, respectively. It is shown that the procedure transforms the mixing coefficients to mass fractions yielding an accuracy comparable to carefully calibrated laboratory measurements without additional knowledge. For our laboratory measurements, the square root of the mean squared error is less than 4.82 wt%. In addition, the method corrects for systematic effects originating from mixtures of endmembers showing a highly varying albedo, e.g., plagioclase and pyroxene.

  4. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    NASA Technical Reports Server (NTRS)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  5. Metacarpal head biomechanics: a comparative backscattered electron image analysis of trabecular bone mineral density in Pan troglodytes, Pongo pygmaeus, and Homo sapiens.

    PubMed

    Zeininger, Angel; Richmond, Brian G; Hartman, Gideon

    2011-06-01

    Great apes and humans use their hands in fundamentally different ways, but little is known about joint biomechanics and internal bone variation. This study examines the distribution of mineral density in the third metacarpal heads in three hominoid species that differ in their habitual joint postures and loading histories. We test the hypothesis that micro-architectural properties relating to bone mineral density reflect habitual joint use. The third metacarpal heads of Pan troglodytes, Pongo pygmaeus, and Homo sapiens were sectioned in a sagittal plane and imaged using backscattered electron microscopy (BSE-SEM). For each individual, 72 areas of subarticular cortical (subchondral) and trabecular bone were sampled from within 12 consecutive regions of the BSE-SEM images. In each area, gray levels (representing relative mineralization density) were quantified. Results show that chimpanzee, orangutan, and human metacarpal III heads have different gray level distributions. Weighted mean gray levels (WMGLs) in the chimpanzee showed a distinct pattern in which the 'knuckle-walking' regions (dorsal) and 'climbing' regions (palmar) are less mineralized, interpreted to reflect elevated remodeling rates, than the distal regions. Pongo pygmaeus exhibited the lowest WMGLs in the distal region, suggesting elevated remodeling rates in this region, which is loaded during hook grip hand postures associated with suspension and climbing. Differences among regions within metacarpal heads of the chimpanzee and orangutan specimens are significant (Kruskal-Wallis, p < 0.001). In humans, whose hands are used for manipulation as opposed to locomotion, mineralization density is much more uniform throughout the metacarpal head. WMGLs were significantly (p < 0.05) lower in subchondral compared to trabecular regions in all samples except humans. This micro-architectural approach offers a means of investigating joint loading patterns in primates and shows significant differences in metacarpal joint biomechanics among great apes and humans. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Effects of tamoxifen on bone mineral density and metabolism in postmenopausal women with early-stage breast cancer.

    PubMed

    Zidan, Jamal; Keidar, Zohar; Basher, Walid; Israel, Ora

    2004-01-01

    At the present time, tamoxifen is the most widely used anti-estrogen for adjuvant therapy and metastatic disease in postmenopausal women with breast cancer, a population at high risk for osteoporosis. This prospective study was designed to evaluate the effect of adjuvant tamoxifen on bone mineral density and all biochemical markers concomitantly in women with early-stage breast cancer in one study. Using dual-energy X-ray absorptiometry, prior to and 12 mo after tamoxifen treatment, bone mineral density in lumbar spine and femoral neck was measured in 44 women with T1-T2N0M0 estrogen-receptor-positive breast cancer receiving adjuvant treatment with tamoxifen 20 mg/d. Biomarkers that can affect bone mineral metabolism were measured before and after 3 and 12 mo of tamoxifen treatment. Bone mineral density was minimally increased in lumbar spine and femoral neck after 12 mo treatment with tamoxifen (p = 0.79 and 0.55, respectively). No differences were found in serum levels of calcium, phosphate, creatinine, ALAT, albumin, LDH, calcitonin, or estradiol. A significant decrease in osteocalcin levels was found after 3 and 12 mo (p < or = 0.01). TSH and PTH levels were increased (p < or = 0.05) after 3 mo, returning to baseline after 12 mo. In conclusion, tamoxifen has an estrogen-like effect on bone metabolism in postmenopausal women and is associated with preservation of bone mineral density in lumbar spine and femoral neck. Changes in serum concentration of biochemical markers may reflect decreased bone turnover or bone remodeling and add to the understanding of tamoxifen's effect on bone mineral density.

  7. Organic C and N stabilization in a forest soil: evidence from sequential density fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sollins, P; Swanston, C; Kleber, M

    2005-07-15

    In mineral soil, organic matter (OM) accumulates mainly on and around surfaces of silt- and clay-size particles. When fractionated according to particle density, C and N concentration (per g fraction) and C/N of these soil organo-mineral particles decrease with increasing particle density across soils of widely divergent texture, mineralogy, location, and management. The variation in particle density is explained potentially by two factors: (1) a decrease in the mass ratio of organic to mineral phase of these particles, and (2) variations in density of the mineral phase. The first explanation implies that the thickness of the organic accumulations decreases withmore » increasing particle density. The decrease in C/N can be explained at least partially by especially stable sorption of cationic peptidic compounds (amine, amide, and pyrrole) directly to mineral surfaces, a phenomenon well documented both empirically and theoretically. These peptidic compounds, along with ligand-exchanged carboxylic compounds, could then form a stable inner organic layer onto which less polar organics could sorb more readily than onto the highly charged mineral surfaces (''onion'' layering model). To explore mechanisms underlying this trend in C concentration and C/N with particle density, we sequentially density fractionated an Oregon andic soil at 1.65, 1.85, 2.00, 2.28, and 2.55 g cm{sup -3} and analyzed the six fractions for measures of organic matter and mineral phase properties. All measures of OM composition showed either: (1) a monotonic change with density, or (2) a monotonic change across the lightest fractions, then little change over the heaviest fractions. Total C, N, and lignin phenol concentration all decreased monotonically with increasing density, and {sup 14}C mean residence time (MRT) increased with particle density from ca. 150 y to >980 y in the four organo-mineral fractions. In contrast, C/N, {sup 13}C and {sup 15}N concentration all showed the second pattern. All these data are consistent with a general pattern of an increase in extent of microbial processing with increasing organo-mineral particle density, and also with an ''onion'' layering model. X-ray diffraction before and after separation of magnetic materials showed that the sequential density fractionation isolated pools of differing mineralogy, with layer-silicate clays dominating in two of the intermediate fractions and primary minerals in the heaviest two fractions. There was no indication that these differences in mineralogy controlled the differences in density of the organo-mineral particles in this soil. Thus, our data are consistent with the hypothesis that variation in particle density reflects variation in thickness of the organic accumulations and with an ''onion'' layering model for organic matter accumulation on mineral surfaces. However, the mineralogy differences among fractions made it difficult to test either the layer-thickness or ''onion'' layering models with this soil. Although sequential density fractionation isolated pools of distinct mineralogy and organic-matter composition, more work will be needed to understand mechanisms relating the two factors.« less

  8. Prenatal stress changes courtship vocalizations and bone mineral density in mice.

    PubMed

    Schmidt, Michaela; Lapert, Florian; Brandwein, Christiane; Deuschle, Michael; Kasperk, Christian; Grimsley, Jasmine M; Gass, Peter

    2017-01-01

    Stress during the prenatal period has various effects on social and sexual behavior in both human and animal offspring. The present study examines the effects of chronic restraint stress in the second vs third trimester in pregnancy and glucocorticoid receptor (GR) heterozygous mutation on C57BL/6N male offspring's vocal courtship behavior in adulthood by applying a novel analyzing method. Finally, corticosterone and testosterone levels as well as bone mineral density were measured. Prenatal stress in the third, but not in the second trimester caused a significant qualitative change in males' courtship vocalizations, independent of their GR genotype. Bone mineral density was decreased also by prenatal stress exclusively in the third trimester in GR mutant and wildtype mice and - in contrast to corticosterone and testosterone - highly correlated with courtship vocalizations. In Gr +/- males corticosterone serum levels were significantly increased in animals that had experienced prenatal stress in the third trimester. Testosterone serum levels were overall increased in Gr +/- males in comparison to wildtypes as a tendency - whereas prenatal stress had no influence. Prenatal stress alters adult males' courtship vocalizations exclusively when applied in the third trimester, with closely related changes in bone mineral density. Bone mineral density seems to reflect best the complex neuroendocrine mechanisms underlying the production of courtship vocalizations. Besides, we demonstrated for the first time elevated basal corticosterone levels in Gr +/- males after prenatal stress which suggests that the Gr +/- mouse model of depression might also serve as a model of prenatal stress in male offspring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Polymorphism of the vitamin D3 receptor gene and bone mineral density in girls with functional hypothalamic amenorrhea subjected to oestroprogestagen treatment.

    PubMed

    Sowińska-Przepiera, Elżbieta; Andrysiak-Mamos, Elżbieta; Syrenicz, Justyna; Jarząbek-Bielecka, Grażyna; Friebe, Zbigniew; Syrenicz, Anhelli

    2011-01-01

    We investigated whether the vitamin D3 receptor gene (VDR) polymorphism can modulate therapeutic response of functional hypothalamic amenorrhea (FHA) patients to the oestroprogestagen (EP) treatment. The study included 84 FHA girls and 50 controls. FHA patients underwent a four-year sequential EP therapy with 17-β oestradiol (2 mg from the 2(nd) to 25(th) day of the menstrual cycle) and didrogesterone (10 mg from the 16(th) to the 25(th) day). Their hormonal parameters were monitored along with bone turnover marker levels and bone mineral density (BMD). Additionally, the VDR gene BsmI polymorphism was determined. Hormonal therapy was reflected by a substantial improvement of BMD. However, the values of BMD observed after four years of treatment in FHA patients were still significantly lower than baseline bone mineral density determined in the control group (1.007 ± 0.100 vs. 1.141 ± 0.093 g/cm(2), respectively; p < 0.001). No significant effects of the VDR genotype were observed on the dynamics of BMD during consecutive years of hormonal treatment and mean bone mineral density determined after completing the therapy (1.006 ± 0.101 vs. 1.013 ± 0.114 vs. 1.006 ± 0.094 g/cm(2) for BB, bb and Bb genotypes, respectively; p = 0.973). This study did not confirm that VDR polymorphism can modulate therapeutic outcome of FHA girls subjected to the hormonal treatment. Nonetheless, this study confirmed the effectiveness of EP therapy in the simultaneous treatment of menstrual disorders and the normalisation of bone mineral density in FHA patients.

  10. Implications of US Nutrition Facts Label Changes on Micronutrient Density of Fortified Foods and Supplements.

    PubMed

    McBurney, Michael I; Hartunian-Sowa, Sonia; Matusheski, Nathan V

    2017-06-01

    The US FDA published new nutrition-labeling regulations in May 2016. For the first time since the implementation of the Nutrition Labeling and Education Act of 1990, the Daily Value (DV) for most vitamins will change, as will the units of measurement used in nutrition labeling for some vitamins. For some food categories, the Reference Amounts Customarily Consumed (RACCs) will increase to reflect portions commonly consumed on a single occasion. These regulatory changes are now effective, and product label changes will be mandatory beginning 26 July 2018. This commentary considers the potential impact of these regulatory changes on the vitamin and mineral contents of foods and dietary supplements. Case studies examined potential effects on food fortification and nutrient density. The updated DVs may lead to a reduction in the nutrient density of foods and dietary supplements with respect to 8 vitamins (vitamin A, thiamin, riboflavin, niacin, vitamin B-6, vitamin B-12, biotin, and pantothenic acid) and 6 minerals (zinc, selenium, copper, chromium, molybdenum, and chloride), and have mixed effects on 2 vitamins where the amount required per serving is affected by chemical structure (i.e., form) (natural vitamin E compared with synthetic vitamin E and folic acid compared with folate). Despite an increased DV for vitamin D, regulations limit food fortification. The adoption of Dietary Folate Equivalents for folate labeling may lead to reductions in the quantity of folic acid voluntarily added per RACC. Finally, because of increased RACCs in some food categories to reflect portions that people typically eat at one time, the vitamin and mineral density of these foods may be affected adversely. In totality, the United States is entering an era in which the need to monitor dietary intake patterns and nutritional status is unprecedented. © 2017 American Society for Nutrition.

  11. Relationships among diet, physical activity, and dual plane dual-energy X-ray absorptiometry bone outcomes in pre-pubertalgirls.

    PubMed

    Ren, Jie; Brann, Lynn S; Bruening, Kay S; Scerpella, Tamara A; Dowthwaite, Jodi N

    2017-12-01

    In pre-pubertal girls, nutrient intakes and non-aquatic organized activity were evaluated as factors in vertebral body bone mass, structure, and strength. Activity, vitamin B 12 , and dietary fiber predicted bone outcomes most consistently. Exercise and vitamin B 12 appear beneficial, whereas high fiber intake appears to be adverse for vertebral body development. Childhood development sets the baseline for adult fracture risk. Most studies evaluate development using postero-anterior (PA) dual-energy X-ray absorptiometry (DXA) areal bone mineral density, bone mineral content, and bone mineral apparent density. In a prior analysis, we demonstrated that PA DXA reflects posterior element properties, rather than vertebral body fracture sites, such that loading is associated with subtle differences in vertebral body geometry, not 3D density. The current analysis is restricted to pre-pubertal girls, for a focused exploration of key nutrient intakes and physical activity as factors in dual plane indices of vertebral body geometry, density, and strength. This cross-sectional analysis used paired PA and supine lateral (LAT) lumbar spine DXA scans to assess "3D" vertebral body bone mineral apparent density (PALATBMAD), "3D" index of structural strength in axial compression (PALATIBS), and fracture risk index (PALATFRI). Diet data were collected using the Youth/Adolescent Questionnaire (YAQ, 1995); organized physical activity was recorded via calendar-based form. Pearson correlations and backward stepwise multiple linear regression analyzed associations among key nutrients, physical activity, and bone outcomes. After accounting for activity and key covariates, fiber, unsupplemented vitamin B 12 , zinc, carbohydrate, vitamin C, unsupplemented magnesium, and unsupplemented calcium intake explained significant variance for one or more bone outcomes (p < 0.05). After adjustment for influential key nutrients and covariates, activity exposure was associated with postero-anterior (PA) areal bone mineral density, PA bone mineral content, PA width, lateral (LAT) BMC, "3D" bone cross-sectional area (coronal plane), "3D" PALATIBS, and PALATFRI benefits (p < 0.05). Physical activity, fiber intake, and unsupplemented B 12 intake appear to influence vertebral body bone mass, density, geometry, and strength in well-nourished pre-pubertal girls; high fiber intakes may adversely affect childhood vertebral body growth.

  12. Patterns of reflected radiance associated with geobotanical anomalies

    NASA Technical Reports Server (NTRS)

    Birnie, R. W.; Stone, T. A.; Francica, J. R.

    1985-01-01

    This paper summarizes three remote sensing experiments in which changes in remotely measured reflected radiance patterns of vegetation correlated with changes in geology. In two cases using airborne spectroradiometer data, changes in the physical properties of a uniform species correlated with zones of porphyry copper mineralization. In another case using Landsat digital data, changes were detected in the distribution and density of a number of species and combined with soil brightness data to produce a composite index useful for distinguishing lithologies.

  13. Temporal and spatial distribution of alteration, mineralization and fluid inclusions in the transitional high-sulfidation epithermal-porphyry copper system at Red Mountain, Arizona

    USGS Publications Warehouse

    Lecumberri-Sanchez, Pilar; Newton, M. Claiborne; Westman, Erik C.; Kamilli, Robert J.; Canby, Vertrees M.; Bodnar, Robert J.

    2013-01-01

    Red Mountain, Arizona, is a Laramide porphyry Cu system (PCD) that has experienced only a modest level of erosion compared to most other similar deposits in the southwestern United States. As a result, the upper portion of the magmatic–hydrothermal system, which represents the transition from shallower high-sulfidation epithermal mineralization to deeper porphyry Cu mineralization, is well preserved. Within the Red Mountain system, alteration, mineralization and fluid inclusion assemblages show a systematic distribution in both time and space. Early-potassic alteration (characterized by the minerals biotite and magnetite) is paragenetically earlier than late-potassic alteration (K-feldspar–anhydrite) and both are followed by later phyllic (sericite–pyrite) alteration. Advanced argillic alteration (pyrophyllite–alunite–other clay minerals) is thought to be coeval with or postdate phyllic alteration. Minerals characteristic of advanced argillic alteration are present in the near surface. Phyllic alteration extends to greater depths compared to advanced argillic alteration. Early-potassic and late-potassic alteration are only observed in the deepest part of the system. Considerable overlap of phyllic alteration with both early-potassic and late-potassic alteration zones is observed. The hypogene mineralization contains 0.4–1.2% Cu and is spatially and temporally related to the late-potassic alteration event. Molybdenum concentration is typically In the deepest part of the system, an early generation of low-to-moderate density and salinity liquid + vapor inclusions with opaque daughter minerals is followed in time by halite-bearing inclusions that also contain opaque daughter minerals indicating that an early intermediate-density magmatic fluid evolved to a high-density, high-salinity mineralizing fluid. The increase in density and salinity of fluids with time observed in the deeper parts of the system may be the result of immiscibility (“boiling”) of the earlier magmatic fluids or may reflect the compositional evolution of fluids that exsolved from the magma. Trails of inclusions consisting of only vapor-rich inclusions are common in the shallow parts of the system, and are associated with advanced argillic alteration, suggesting that intense boiling (“flashing”) occurred at (or below) this level. Fluid inclusion assemblages consisting of coexisting vapor-rich and halite-bearing inclusions are observed in samples extending from the surface to the upper part of the late-potassic zone, indicating that fluid immiscibility occurred within this depth interval.

  14. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.

    PubMed

    Li, Yue; Machala, Libor; Yan, Weile

    2016-02-02

    Heterogeneous iron species at the mineral/water interface are important catalysts for the generation of reactive oxygen species at circumneutral pH. One significant pathway leading to the formation of such species arises from deposition of dissolved iron onto mineral colloids due to changes in redox conditions. This study investigates the catalytic properties of Fe impregnated on silica, alumina, and titania nanoparticles (as prototypical mineral colloids). Fe impregnation was carried out by immersing the mineral nanoparticles in dilute Fe(II) or Fe(III) solutions at pH 6 and 3, respectively, in an aerobic environment. The uptake of iron per unit surface area follows the order of nTiO2 > nAl2O3 > nSiO2 for both types of Fe precursors. Impregnation of mineral particles in Fe(II) solutions results in predominantly Fe(III) species due to efficient surface-mediated oxidation. The catalytic activity of the impregnated solids to produce hydroxyl radical (·OH) from H2O2 decomposition was evaluated using benzoic acid as a probe compound under dark conditions. Invariably, the rates of benzoic acid oxidation with different Fe-laden particles increase with the surface density of Fe until a critical density above which the catalytic activity approaches a plateau, suggesting active Fe species are formed predominantly at low surface loadings. The critical surface density of Fe varies with the mineral substrate as well as the aqueous Fe precursor. Fe impregnated on TiO2 exhibits markedly higher activity than its Al2O3 and SiO2 counterparts. The speciation of interfacial Fe is analyzed with diffuse reflectance UV-vis analysis and interpretation of the data in the context of benzoic oxidation rates suggests that the surface activity of the solids for ·OH generation correlates strongly with the isolated (i.e., mononuclear) Fe species. Therefore, iron dispersed on mineral colloids is a significant form of reactive iron surfaces in the aquatic environment.

  15. Body composition and bone mineral density of collegiate American football players

    PubMed Central

    Turnagöl, Hüseyin Hüsrev

    2016-01-01

    Abstract The aim of this study was to compare whole and segmental body composition and bone mineral density of collegiate American football players by playing positions. Forty collegiate American football players voluntarily participated in this study. Participants were categorized by playing positions into one of five categories i.e., defensive linemen, offensive linemen, defensive secondary players, offensive secondary players and receivers. Whole body composition and bone mineral density were measured by dual x-ray absorptiometry. Offensive and defensive linemen had higher body mass, a body mass index, lean mass and a fat mass index compared to the remaining three positions and a higher lean mass index compared to offensive secondary players and receivers. Offensive linemen had a higher body fat percentage and lower values of upper to lower lean mass than offensive and defensive secondary players and receivers, and higher total mass to the lean mass ratio and fat mass to the lean mass ratio compared to the other players. Offensive linemen had a higher fat mass index and fat mass to the lean mass ratio than defensive linemen. However, in all other measures they were similar. Offensive and defensive secondary players and receivers were similar with respect to the measured variables. Bone mineral density of the players was within the normal range and no difference in lean mass was observed between the legs. In conclusion, findings of this study showed that the total and segmental body composition profile of collegiate American football players reflected the demands of particular playing positions. PMID:28149373

  16. Influence of bone mineral density measurement on fracture risk assessment tool® scores in postmenopausal Indian women.

    PubMed

    Daswani, Bhavna; Desai, Meena; Mitra, Sumegha; Gavali, Shubhangi; Patil, Anushree; Kukreja, Subhash; Khatkhatay, M Ikram

    2016-03-01

    Fracture risk assessment tool® calculations can be performed with or without addition of bone mineral density; however, the impact of this addition on fracture risk assessment tool® scores has not been studied in Indian women. Given the limited availability and high cost of bone mineral density testing in India, it is important to know the influence of bone mineral density on fracture risk assessment tool® scores in Indian women. Therefore, our aim was to assess the contribution of bone mineral density in fracture risk assessment tool® outcome in Indian women. Apparently healthy postmenopausal Indian women (n = 506), aged 40-72 years, without clinical risk factors for bone disease, were retrospectively selected, and their fracture risk assessment tool® scores calculated with and without bone mineral density were compared. Based on WHO criteria, 30% women were osteoporotic, 42.9% were osteopenic and 27.1% had normal bone mineral density. Fracture risk assessment tool® scores for risk of both major osteoporotic fracture and hip fracture significantly increased on including bone mineral density (P < 0.0001). When criteria of National Osteoporosis Foundation, US was applied number of participants eligible for medical therapy increased upon inclusion of bone mineral density, (for major osteoporotic fracture risk number of women eligible without bone mineral density was 0 and with bone mineral density was 1, P > 0.05, whereas, for hip fracture risk number of women eligible without bone mineral density was 2 and with bone mineral density was 17, P < 0.0001). Until the establishment of country-specific medication intervention thresholds, bone mineral density should be included while calculating fracture risk assessment tool® scores in Indian women. © The Author(s) 2016.

  17. Molecular dynamics simulation of water at mineral surfaces: Structure, dynamics, energetics and hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Kalinichev, A. G.; Wang, J.; Kirkpatrick, R.

    2006-05-01

    Fundamental molecular-level understanding of the properties of aqueous mineral interfaces is of great importance for many geochemical and environmental systems. Interaction between water and mineral surfaces substantially affects the properties of both phases, including the reactivity and functionality of the substrate surface, and the structure, dynamics, and energetics of the near surface aqueous phase. Experimental studies of interfacial water structure and dynamics using surface-sensitive techniques such as sum-frequency vibrational spectroscopy or X-ray and neutron reflectivity are not always possible for many practically important substrates, and their results often require interpretation concerning the atomistic mechanisms responsible for the observed behavior. Molecular computer simulations can provide new insight into the underlying molecular- level relationships between the inorganic substrate structure and composition and the structure, ordering, and dynamics of interfacial water. We have performed a series of molecular dynamics (MD) computer simulations of aqueous interfaces with several silicates (quartz, muscovite, and talc) and hydroxides (brucite, portlandite, gibbsite, Ca/Al and Mg/Al double hydroxides) to quantify the effects of the substrate mineral structure and composition on the structural, transport, and thermodynamic properties of water on these mineral surfaces. Due to the prevalent effects of the development of well-interconnected H-bonding networks across the mineral- water interfaces, all the hydroxide surfaces (including a fully hydroxylated quartz surface) show very similar H2O density profiles perpendicular to the interface. However, the predominant orientations of the interfacial H2O molecules and their detailed 2-dimensional near-surface structure and dynamics parallel to the interface are quite different reflecting the differences in the substrate structural charge distribution and the density and orientations of the surface OH groups. The H2O density profiles and other structural and dynamic characteristics of water at the two siloxane surfaces are very different from each other and from the hydroxide surfaces, since the muscovite surface is negatively charged and hydrophilic, while the talc surface is electrostatically neutral and hydrophobic. In general, at hydrophilic neutral surfaces both donating and accepting H-bonds from the H2O molecules are contributing to the development of the interfacial H-bond network, whereas at hydrophilic but charged surfaces only accepting or donating H-bonds with H2O molecules are possible. At the hydrophobic talc surface H-bonds among H2O molecules dominate the interfacial H-bond network and the water-surface interactions are very weak. The first water layer at all substrates is well ordered parallel to the surface, reflecting substrate crystal structures and indicating the reduced translational and orientational mobility of interfacial H2O molecules. At longer time scale (~100ps) their dynamics can be decomposed into a slow, virtually frozen, regime due to the substrate- bound H2O and a faster regime of almost free water reflecting the dynamics far from the surface. At shorter times (>10ps) the two dynamical regimes are superimposed. The much higher ordering of interfacial water (compared to bulk liquid) can not be adequately described as simply "ice-like". To some extent, it rather resembles the behavior of supercooled water.

  18. Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr. (Principal Investigator); Hutchinson, R. M.; Sawatzky, D. L.; Trexler, D. W.; Bruns, D. L.; Nicolais, S. M.

    1973-01-01

    The author has identified the following significant results. Topography was found to be the most important factor defining folds on ERTS-1 imagery of northwestern Colorado; tonal variations caused by rock reflectance and vegetation type and density are the next most important factors. Photo-linears mapped on ERTS-1 imagery of central Colorado correlate well with ground-measured joint and fracture trends. In addition, photo-linears have been successfully used to determine the location and distribution of metallic mineral deposits in the Colorado Mineral Belt. True color composites are best for general geologic analysis and false color composites prepared with positive/negative masks are useful for enhancing local geologic phenomena. During geologic analysis of any given area, ERTS-1 imagery from several different dates should be studied.

  19. Microstructural features of carious human enamel imaged with back-scattered electrons.

    PubMed

    Pearce, E I; Nelson, D G

    1989-02-01

    We have used back-scattered electrons (BE) in the scanning electron microscope to produce mineral density images of enamel. Flat surfaces of artificially-carious enamel, softened in an intra-oral experiment, and naturally-carious (white spot) enamel were polished to a high gloss with diamond lapping compound, rendering them almost featureless by secondary electron scanning electron microscopy. They were then examined at 10 to 30 kV in a Philips 505 instrument fitted with a 4-quadrant BE detector. Study of surfaces prepared approximately parallel to the natural surface showed that mineral was lost from both prism core and the interprismatic region, leaving a thin mineral-rich rim at the prism periphery. The same lesions viewed longitudinally on a surface prepared perpendicular to the natural surface showed mineral-rich bands at the prism margins in the outer enamel. Near the advancing front of the lesion, the prism junctions were widened and the prism cores sometimes hypermineralized. Natural lesions sectioned in the prism long axis showed features previously seen with other techniques, e.g., cross-striations and striae of Retzius, but in much greater detail. Mineral enrichment at the prism periphery in the lesion body and a widening of the prism junction at the advancing fronts of lesions in permanent teeth were most obvious. Calculations showed that with an accelerating voltage of 30 kV, the images reflected mineral density up to 4 microns beneath the surface. BE microscopy produces a high-resolution image of mineral loss or gain in carious enamel, with relatively easy sample preparation.

  20. The relationship between bone mineral density and mammographic density in Korean women: the Healthy Twin study.

    PubMed

    Sung, Joohon; Song, Yun-Mi; Stone, Jennifer; Lee, Kayoung

    2011-09-01

    Mammographic density is one of the strong risk factors for breast cancer. A potential mechanism for this association is that cumulative exposure to mammographic density may reflect cumulative exposure to hormones that stimulate cell division in breast stroma and epithelium, which may have corresponding effects on breast cancer development. Bone mineral density (BMD), a marker of lifetime estrogen exposure, has been found to be associated with breast cancer. We examined the association between BMD and mammographic density in a Korean population. Study subjects were 730 Korean women selected from the Healthy Twin study. BMD (g/cm(2)) was measured with dual-energy X-ray absorptiometry. Mammographic density was measured from digital mammograms using a computer-assisted thresholding method. Linear mixed model considering familial correlations and a wide range of covariates was used for analyses. Quantitative genetic analysis was completed using SOLAR. In premenopausal women, positive associations existed between absolute dense area and BMD at ribs, pelvis, and legs, and between percent dense area and BMD at pelvis and legs. However, in postmenopausal women, there was no association between BMD at any site and mammographic density measures. An evaluation of additive genetic cross-trait correlation showed that absolute dense area had a weak-positive additive genetic cross-trait correlation with BMD at ribs and spines after full adjustment of covariates. This finding suggests that the association between mammographic density and breast cancer could, at least in part, be attributable to an estrogen-related hormonal mechanism.

  1. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status

    PubMed Central

    Rodrigues, Edil de Albuquerque; dos Santos, Marcos André Moura; da Silva, Amanda Tabosa Pereira; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara e Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-01-01

    ABSTRACT Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228

  2. Lower Serum Creatinine Is Associated with Low Bone Mineral Density in Subjects without Overt Nephropathy

    PubMed Central

    Huh, Ji Hye; Choi, Soo In; Lim, Jung Soo; Chung, Choon Hee; Shin, Jang Yel; Lee, Mi Young

    2015-01-01

    Background Low skeletal muscle mass is associated with deterioration of bone mineral density. Because serum creatinine can serve as a marker of muscle mass, we evaluated the relationship between serum creatinine and bone mineral density in an older population with normal renal function. Methods Data from a total of 8,648 participants (4,573 men and 4,075 postmenopausal women) aged 45–95 years with an estimated glomerular filtration rate >60 ml/min/1.73 m2 were analyzed from the Fourth Korea National Health and Nutrition Examination Survey (2008–2010). Bone mineral density (BMD) and appendicular muscle mass (ASM) were measured using dual-energy X-ray absorptiometry. Receiver operating characteristic curve analysis revealed that the cut points of serum creatinine for sarcopenia were below 0.88 mg/dl in men and 0.75 mg/dl in women. Subjects were divided into two groups: low creatinine and upper normal creatinine according to the cut point value of serum creatinine for sarcopenia. Results In partial correlation analysis adjusted for age, serum creatinine was positively associated with both BMD and ASM. Subjects with low serum creatinine were at a higher risk for low BMD (T-score ≤ –1.0) at the femur neck, total hip and lumbar spine in men, and at the total hip and lumbar spine in women after adjustment for confounding factors. Each standard deviation increase in serum creatinine was significantly associated with reduction in the likelihood of low BMD at the total hip and lumbar spine in both sexes (men: odds ratio (OR) = 0.84 [95% CI = 0.74−0.96] at the total hip, OR = 0.8 [95% CI = 0.68−0.96] at the lumbar spine; women: OR = 0.83 [95% CI = 0.73–0.95] at the total hip, OR=0.81 [95% CI = 0.67–0.99] at the lumbar spine). Conclusions Serum creatinine reflected muscle mass, and low serum creatinine was independently associated with low bone mineral density in subjects with normal kidney function. PMID:26207750

  3. Impaired rib bone mass and quality in end-stage cystic fibrosis patients.

    PubMed

    Mailhot, Geneviève; Dion, Natalie; Farlay, Delphine; Rizzo, Sébastien; Bureau, Nathalie J; Jomphe, Valérie; Sankhe, Safiétou; Boivin, Georges; Lands, Larry C; Ferraro, Pasquale; Ste-Marie, Louis-Georges

    2017-05-01

    Advancements in research and clinical care have considerably extended the life expectancy of cystic fibrosis (CF) patients. However, with this extended survival come comorbidities. One of the leading co-morbidities is CF-related bone disease (CFBD), which progresses with disease severity and places patients at high risk for fractures, particularly of the ribs and vertebrae. Evidence that CF patients with vertebral fractures had higher bone mineral density (BMD) than the nonfracture group led us to postulate that bone quality is impaired in these patients. We therefore examined rib specimens resected at the time of lung transplant in CF patients to measure parameters of bone quantity and quality. In this exploratory study, we analysed 19 end-stage CF and 13 control rib specimens resected from otherwise healthy lung donors. BMD, bone microarchitecture, static parameters of bone formation and resorption and microcrack density of rib specimens were quantified by imaging, histomorphometric and histological methods. Variables reflecting the mineralization of ribs were assessed by digitized microradiography. The degree of bone mineralization (g/cm 3 ) and the heterogeneity index of the mineralization (g/cm 3 ) were calculated for trabecular and cortical bone. Compared to controls, CF ribs exhibited lower areal and trabecular volumetric BMD, decreased trabecular thickness and osteoid parameters, and increased microcrack density, that was particularly pronounced in specimens from patients with CF-related diabetes. Static parameters of bone resorption were similar in both groups. Degree of mineralization of total bone, but not heterogeneity index, was increased in CF specimens. The combination of reduced bone mass, altered microarchitecture, imbalanced bone remodeling (maintained bone resorption but decreased formation), increased microdamage and a small increase of the degree of mineralization, may lead to decreased bone strength, which, when coupled with chronic coughing and chest physical therapy, may provide an explanation for the increased incidence of rib fractures previously reported in this population. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. X-ray Raman scattering for structural investigation of silica/silicate minerals

    NASA Astrophysics Data System (ADS)

    Fukui, H.; Kanzaki, M.; Hiraoka, N.; Cai, Y. Q.

    2009-03-01

    We have performed X-ray Raman scattering (XRS) measurements on the oxygen K and silicon L absorption edges of four silica minerals: α-quartz, α-cristobalite, coesite, and stishovite. We have also calculated the partial electron densities of states (DOSs) and compared these with the XRS spectra. This study demonstrates that the short-range structure around the atom of interest strongly influences the XRS spectral features. Importantly, the oxygen K-edge XRS spectra are found to reflect the p-orbital DOS while the silicon L-edge spectra reflect the s- and d-orbital DOSs, even when a product of a momentum transfer and a mean radius of a electron orbit (1 s for oxygen and 2 p for silicon), Qr, is close to or larger than unity. Building on this, calculations of the partial DOSs for other silica phases are presented, including ultra-high-pressure phases, which provide a good reference for further XRS study of silica and silicate minerals. XRS measurements should be performed on not only either of oxygen or silicon but also on many kinds of constituent elements to reveal the structural change of glasses/melts of silicates under extreme conditions.

  5. Visible and near-infrared (0.4-2.5 μm) reflectance spectra of playa evaporite minerals

    USGS Publications Warehouse

    Crowley, James K.

    1991-01-01

    Visible and near-infrared (VNIR; 0.4–2.4 μm) reflectance spectra were recorded for 35 saline minerals that represent the wide range of mineral and brine chemical compositions found in playa evaporite settings. The spectra show that many of the saline minerals exhibit diagnostic near-infrared absorption bands, chiefly attributable to vibrations of hydrogen-bonded structural water molecules. VNIR reflectance spectra can be used to detect minor hydrate phases present in mixtures dominated by anhydrous halite or thenardite, and therefore will be useful in combination with X ray diffraction data for characterizing natural saline mineral assemblages. In addition, VNIR reflectance spectra are sensitive to differences in sample hydration state and should facilitate in situ studies of minerals that occur as fragile, transitory dehydration products in natural salt crusts. The use of spectral reflectance measurements in playa studies should aid in mapping evaporite mineral distributions and may provide insight into the geochemical and hydrological controls on playa mineral and brine development.

  6. Value of Reflected Light Microscopy in Teaching.

    ERIC Educational Resources Information Center

    Pasteris, Jill Dill

    1983-01-01

    Briefly reviews some optical and other physical properties of minerals that can be determined in reflected/incident light. Topics include optical properties of minerals, reflectance, internal reflections, color, bireflectance and reflection pleochroism, anisotropism, zonation, and reflected light microscopy as a teaching tool in undergraduate…

  7. Osteoporosis, Fractures, and Diabetes

    PubMed Central

    2014-01-01

    It is well established that osteoporosis and diabetes are prevalent diseases with significant associated morbidity and mortality. Patients with diabetes mellitus have an increased risk of bone fractures. In type 1 diabetes, the risk is increased by ∼6 times and is due to low bone mass. Despite increased bone mineral density (BMD), in patients with type 2 diabetes the risk is increased (which is about twice the risk in the general population) due to the inferior quality of bone. Bone fragility in type 2 diabetes, which is not reflected by bone mineral density, depends on bone quality deterioration rather than bone mass reduction. Thus, surrogate markers and examination methods are needed to replace the insensitivity of BMD in assessing fracture risks of T2DM patients. One of these methods can be trabecular bone score. The aim of the paper is to present the present state of scientific knowledge about the osteoporosis risk in diabetic patient. The review also discusses the possibility of problematic using the study conclusions in real clinical practice. PMID:25050121

  8. Urban-Rural Differences in Bone Mineral Density: A Cross Sectional Analysis Based on the Hyderabad Indian Migration Study.

    PubMed

    Viljakainen, Heli T; Ben-Shlomo, Yoav; Kinra, Sanjay; Ebrahim, Shah; Kuper, Hannah; Radhakrishna, K V; Kulkarni, Bharati; Tobias, Jon H

    2015-01-01

    Fracture risk is rising in countries undergoing rapid rural to urban migration, but whether this reflects an adverse effect of urbanization on intrinsic bone strength, as reflected by bone mineral density (BMD), is currently unknown. Lumbar spine (LS) and total hip (TH) BMD, and total body fat and lean mass, were obtained from DXA scans performed in the Hyderabad arm of the Indian Migration Study (54% male, mean age 49 years). Sib-pair comparisons were performed between rural-urban migrants (RUM) and rural non-migrated (RNM) siblings (N = 185 sib-pairs). In analyses adjusted for height, gender, age and occupation, rural to urban migration was associated with higher lumbar and hip BMD and greater predicted hip strength; ΔLS BMD 0.030 (0.005, 0.055) g/cm2, ΔTH BMD 0.044 (0.024; 0.064) g/cm2, Δcross-sectional moment of inertia 0.162 (0.036, 0.289) cm4. These differences were largely attenuated after adjusting for body composition, insulin levels and current lifestyle factors ie. years of smoking, alcohol consumption and moderate to vigorous physical activity. Further analyses suggested that differences in lean mass, and to a lesser extent fat mass, largely explained the BMD differences which we observed. Rural to urban migration as an adult is associated with higher BMD and greater predicted hip strength, reflecting associated alterations in body composition. It remains to be seen how differences in BMD between migration groups will translate into fracture risk in becoming years.

  9. Low bone mineral density in ambulatory persons with cerebral palsy? A systematic review.

    PubMed

    Mus-Peters, Cindy T R; Huisstede, Bionka M A; Noten, Suzie; Hitters, Minou W M G C; van der Slot, Wilma M A; van den Berg-Emons, Rita J G

    2018-05-22

    Non-ambulatory persons with cerebral palsy are prone to low bone mineral density. In ambulatory persons with cerebral palsy, bone mineral density deficits are expected to be small or absent, but a consensus conclusion is lacking. In this systematic review bone mineral density in ambulatory persons with cerebral palsy (Gross Motor Function Classification Scales I-III) was studied. Medline, Embase, and Web of Science were searched. According to international guidelines, low bone mineral density was defined as Z-score ≤ -2.0. In addition, we focused on Z-score ≤ -1.0 because this may indicate a tendency towards low bone mineral density. We included 16 studies, comprising 465 patients aged 1-65 years. Moderate and conflicting evidence for low bone mineral density (Z-score ≤ -2.0) was found for several body parts (total proximal femur, total body, distal femur, lumbar spine) in children with Gross Motor Function Classification Scales II and III. We found no evidence for low bone mineral density in children with Gross Motor Function Classification Scale I or adults, although there was a tendency towards low bone mineral density (Z-score ≤ -1.0) for several body parts. Although more high-quality research is needed, results indicate that deficits in bone mineral density are not restricted to non-ambulatory people with cerebral palsy. Implications for Rehabilitation Although more high-quality research is needed, including adults and fracture risk assessment, the current study indicates that deficits in bone mineral density are not restricted to non-ambulatory people with CP. Health care professionals should be aware that optimal nutrition, supplements on indication, and an active lifestyle, preferably with weight-bearing activities, are important in ambulatory people with CP, also from a bone quality point-of-view. If indicated, medication and fall prevention training should be prescribed.

  10. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    PubMed Central

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p < 0.005; BW: R2 = 0.63, p < 0.0005) and age (31P: R2 = 0.39, p < 0.05; BW: R2 = 0.70, p < 0.0001), and positively with pQCT density (31P: R2 = 0.46, p < 0.05; BW: R2 = 0.50, p < 0.005). In contrast, the bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  11. Selected physical properties of rocks from the Baid al Jimalah West tungsten deposit, Kingdom of Saudi Arabia, and recommendations for geophysical surveys

    USGS Publications Warehouse

    Gettings, M.E.

    1983-01-01

    Bulk density and magnetic susceptibility of 11 outcrop samples representing the Proterozoic lithologic units at the Baid al Jimalah West tungsten deposit, Kingdom of Saudi Arabia were measured. Induced polarization response, apparent resistivity, and electromagnetic conductivity were determined for four specimens of the sample suite. Measurements show that there is a negative density contrast of about -0.17 g-cm^-3 between metasedimentary rocks of the Murdama group and the Bald al Jimalah graaite and that this contrast decreases with increasing mineralization of the granite. Similarly, the bulk magnetic susceptibility of the granite is about one-third that of the Murdama rocks for this sample suite; however, magnetic susceptibility increases with increasing mineralization in the granite specimens. Electromagnetic conductivities are uniformly low, in part because the specimens are weathered, but probably also because intense silicification accompanies the mineralization. Induced polarization chargeability increases in the granitic specimens with increasing mineralization and reflects higher percentages of sulfide minerals. Chargeability for the mineralized rocks is about four times higher than for the Murdama host rocks, and apparent resistivity values are about one-fifth the values of host rocks. Based on these results, it is recommended that during reconnaissance exploration of the area 15 detailed high-precision gravity profiles at 10 m to 50 m station spacing and eight induced polarization dipole-dipole profiles at 25 m dipole spacing and maximum 'n' of 6 be measured. To help define subsurface structure, a high-precision, ground-magnetic survey (map at 2-gamma contour interval) and a four-channel gamma ray spectrometric survey on a 25x50 m grid covering the area of the profiles are recommended.

  12. Radiative Transfer of Solar Light in Dense Complex Media : Theoretical and Experimental Achievements by the Planetary Community

    NASA Astrophysics Data System (ADS)

    Doute, S.; Schmitt, B.

    2004-05-01

    Visible and near infrared imaging spectroscopy is one of the key techniques to detect, map and characterize mineral and volatile species existing at the surface of the planets. Indeed the chemical composition, granularity, texture, physical state, etc, of the materials determine the existence and morphology of the absorption bands. However the development of quantitative methods to analyze reflectance spectra requires mastering of a very challenging physics: the reflection of solar light by densely packed, absorbent and highly scattering materials that usually present a fantastic structural complexity at different spatial scales. Volume scattering of photons depends on many parameters like the intrinsic optical properties, the shapes, sizes and the packing density of the mineral or icy grains forming the natural media. Their discontinuous and stochastic nature plays a great role especially for reflection and shading by the top few grains of the surface. Over several decades, the planetary community has developed increasingly sophisticated tools to handle this problem of radiative transfer in dense complex media in order to fulfill its needs. Analytical functions with a small number of non physical adjusting parameters were first proposed to reproduce the photometry of the planets and satellites. Then reflectance models were built by implementing methods of radiative transfer in continuously absorbent and scattering medium. A number of very restricting hypothesis forms the basis of these methods, e.g. low particles density, scattering treated in the far field approximation. A majority of these assumptions does not stand when treating planetary regoliths or volatile deposits. In addition, the classical methods completely bypass effects due to the constructive interference of scattered waves for backscattering or specular geometries (e.g. the opposition effect). Different, sometimes competing, approaches have been proposed to overcome some of these limitations. In particular Monte Carlo ray tracing simulations have been recently carried out to investigate properties of particulate media that are traditionally ignored or crudely treated: packing density, micro-roughness, etc. The efforts of the community to address the later problems are not only theoretical but also experimental with the development of several dedicated goniometers.

  13. Association of Thr420Lys polymorphism in DBP gene with fat-soluble vitamins and low radial bone mineral density in postmenopausal Thai women.

    PubMed

    Chupeerach, Chaowanee; Tungtrongchitr, Anchalee; Phonrat, Benjaluck; Schweigert, Florian J; Tungtrongchitr, Rungsunn; Preutthipan, Sangchai

    2012-02-01

    To investigate the genetic markers for osteoporosis bone mineral density by the genotyping of rs7041, rs4588 and rs1352845 in the DBP gene with either bone mineral density or serum 25-hydroxycholecalciferol, retinol and α-tocopherol, among 365 postmenopausal Thai women. The DBP genotypes were analyzed by a PCR restriction fragment-length polymorphism method. Serum 25-hydroxycholecalciferol was assessed using a commercial chemiluminescent immunoassay. Serum retinol and α-tocopherol were measured by reverse-phase high-performance liquid chromatography. After adjustment for age >50 years, elder Thai subjects with low BMI (≤25 kg/m(2)) and carrying the rs4588 CC genotype had a higher risk of radial bone mineral density osteoporosis (odds ratio: 6.29; p = 0.048). The rs1352845 genotype also had a statistical association with total hip bone mineral density; however, it disappeared after adjustment for age and BMI. No association was found in fat-soluble vitamins with bone mineral density. DBP genotypes may influence the osteoporosis bone mineral density in postmenopausal Thai women.

  14. Mineral resource of the month: beryllium

    USGS Publications Warehouse

    Shedd, Kim B.

    2006-01-01

    Beryllium metal is lighter than aluminum and stiffer than steel. These and other properties, including its strength, dimensional stability, thermal properties and reflectivity, make it useful for aerospace and defense applications, such as satellite and space-vehicle structural components. Beryllium’s nuclear properties, combined with its low density, make it useful as a neutron reflector and moderator in nuclear reactors. Because it is transparent to most X rays, beryllium is used as X-ray windows in medical, industrial and analytical equipment.

  15. Correlation of infrared reflectance ratios at 2.3 microns/1.6 micron and 1.1 micron/1.6 micron with delta O-18 values delineating fossil hydrothermal systems in the Idaho batholith

    NASA Technical Reports Server (NTRS)

    Gillespie, A. R.; Criss, R. E.

    1983-01-01

    Reflectance ratios from laboratory spectra and airborne multispectral images are found to be strongly correlated with delta O-18 values of granite rocks in the Idaho batholith. The correlation is largely a result of interactions between hot water and rock, which lowered the delta O-18 values of the rocks and produced secondary hydrous material. Maps of the ratio of reflectivities at 2.3 and 1.6 microns should delineate fossil hydrothermal systems and provide estimates of alteration intensity. However, hydrous minerals produced during deuteric alteration or weathering cannot be unambiguously distinguished in remotely sensed images from the products of propylitic alteration without the use of narrow-band scanners. The reflectivity at 1.6 micron is strongly correlated with rock density and may be useful in distinguishing rock types in granitic terranes.

  16. Copy number variation of the APC gene is associated with regulation of bone mineral density☆

    PubMed Central

    Chew, Shelby; Dastani, Zari; Brown, Suzanne J.; Lewis, Joshua R.; Dudbridge, Frank; Soranzo, Nicole; Surdulescu, Gabriela L.; Richards, J. Brent; Spector, Tim D.; Wilson, Scott G.

    2012-01-01

    Introduction Genetic studies of osteoporosis have commonly examined SNPs in candidate genes or whole genome analyses, but insertions and deletions of DNA, collectively called copy number variations (CNVs), also comprise a large amount of the genetic variability between individuals. Previously, SNPs in the APC gene have been strongly associated with femoral neck and lumbar spine volumetric bone mineral density in older men. In addition, familial adenomatous polyposis patients carrying heterozygous mutations in the APC gene have been shown to have significantly higher mean bone mineral density than age- and sex-matched controls suggesting the importance of this gene in regulating bone mineral density. We examined CNV within the APC gene region to test for association with bone mineral density. Methods DNA was extracted from venous blood, genotyped using the Human Hap610 arrays and CNV determined from the fluorescence intensity data in 2070 Caucasian men and women aged 47.0 ± 13.0 (mean ± SD) years, to assess the effects of the CNV on bone mineral density at the forearm, spine and total hip sites. Results Data for covariate adjusted bone mineral density from subjects grouped by APC CNV genotype showed significant difference (P = 0.02–0.002). Subjects with a single copy loss of APC had a 7.95%, 13.10% and 13.36% increase in bone mineral density at the forearm, spine and total hip sites respectively, compared to subjects with two copies of the APC gene. Conclusions These data support previous findings of APC regulating bone mineral density and demonstrate that a novel CNV of the APC gene is significantly associated with bone mineral density in Caucasian men and women. PMID:22884971

  17. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae

    PubMed Central

    Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko

    2012-01-01

    There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20–40 years) and a group of elderly women (n = 5, age: 70–95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (−2.374 vs. −2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. PMID:22946475

  18. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae.

    PubMed

    Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko

    2012-11-01

    There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20-40 years) and a group of elderly women (n = 5, age: 70-95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (-2.374 vs. -2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.

  19. Practice of martial arts and bone mineral density in adolescents of both sexes

    PubMed Central

    Ito, Igor Hideki; Mantovani, Alessandra Madia; Agostinete, Ricardo Ribeiro; Costa, Paulo; Zanuto, Edner Fernando; Christofaro, Diego Giulliano Destro; Ribeiro, Luis Pedro; Fernandes, Rômulo Araújo

    2016-01-01

    Abstract Objective: The purpose of this study was to analyze the relationship between martial arts practice (judo, karate and kung-fu) and bone mineral density in adolescents. Methods: The study was composed of 138 (48 martial arts practitioners and 90 non-practitioners) adolescents of both sexes, with an average age of 12.6 years. Bone mineral density was measured using Dual-Energy X-ray Absorptiometry in arms, legs, spine, trunk, pelvis and total. Weekly training load and previous time of engagement in the sport modality were reported by the coach. Partial correlation tested the association between weekly training load and bone mineral density, controlled by sex, chronological age, previous practice and somatic maturation. Analysis of covariance was used to compare bone mineral density values according to control and martial arts groups, controlled by sex, chronological age, previous practice and somatic maturation. Significant relationships between bone mineral density and muscle mass were inserted into a multivariate model and the slopes of the models were compared using the Student t test (control versus martial art). Results: Adolescents engaged in judo practice presented higher values of bone mineral density than the control individuals (p-value=0.042; Medium Effect size [Eta-squared=0.063]), while the relationship between quantity of weekly training and bone mineral density was significant among adolescents engaged in judo (arms [r=0.308] and legs [r=0.223]) and kung-fu (arms [r=0.248] and spine [r=0.228]). Conclusions: Different modalities of martial arts are related to higher bone mineral density in different body regions among adolescents. PMID:27017002

  20. Risk factors for low bone mineral density in children and adolescents with inflammatory bowel disease.

    PubMed

    Lopes, Letícia Helena Caldas; Sdepanian, Vera Lucia; Szejnfeld, Vera Lúcia; de Morais, Mauro Batista; Fagundes-Neto, Ulysses

    2008-10-01

    To evaluate bone mineral density of the lumbar spine in children and adolescents with inflammatory bowel disease, and to identify the clinical risk factors associated with low bone mineral density. Bone mineral density of the lumbar spine was evaluated using dual-energy X-ray absorptiometry (DXA) in 40 patients with inflammatory bowel disease. Patients were 11.8 (SD = 4.1) years old and most of them were male (52.5%). Multiple linear regression analysis was performed to identify potential associations between bone mineral density Z-score and age, height-for-age Z-score, BMI Z-score, cumulative corticosteroid dose in milligrams and in milligrams per kilogram, disease duration, number of relapses, and calcium intake according to the dietary reference intake. Low bone mineral density (Z-score bellow -2) was observed in 25% of patients. Patients with Crohn's disease and ulcerative colitis had equivalent prevalence of low bone mineral density. Multiple linear regression models demonstrated that height-for-age Z-score, BMI Z-score, and cumulative corticosteroid dose in mg had independent effects on BMD, respectively, beta = 0.492 (P = 0.000), beta = 0.460 (P = 0.001), beta = - 0.014 (P = 0.000), and these effects remained significant after adjustments for disease duration, respectively, beta = 0.489 (P = 0.013), beta = 0.467 (P = 0.001), and beta = - 0.005 (P = 0.015). The model accounted for 54.6% of the variability of the BMD Z-score (adjusted R2 = 0.546). The prevalence of low bone mineral density in children and adolescents with inflammatory bowel disease is considerably high and independent risk factors associated with bone mineral density are corticosteroid cumulative dose in milligrams, height-for-age Z-score, and BMI Z-score.

  1. Reliability of analysis of the bone mineral density of the second and fifth metatarsals using dual-energy x-ray absorptiometry (DXA).

    PubMed

    Pritchard, N Stewart; Smoliga, James M; Nguyen, Anh-Dung; Branscomb, Micah C; Sinacore, David R; Taylor, Jeffrey B; Ford, Kevin R

    2017-01-01

    Metatarsal fractures, especially of the fifth metatarsal, are common injuries of the foot in a young athletic population, but the risk factors for this injury are not well understood. Dual-energy x-ray absorptiometry (DXA) provides reliable measures of regional bone mineral density to predict fracture risk in the hip and lumbar spine. Recently, sub-regional metatarsal reliability was established in fresh cadaveric specimens and associated with ultimate fracture force. The purpose of this study was to assess the reliability of DXA bone mineral density measurements of sub-regions of the second and fifth metatarsals in a young, active population. Thirty two recreationally active individuals participated in the study, and the bone density of the second (2MT) and fifth (5MT) metatarsals of each subject was measured using a Hologic QDR x-ray bone densitometer. Scans were analyzed separately by two raters, and regional bone mineral density, bone mineral content, and area measurements were calculated for the proximal, shaft, and distal regions of the bone. Intra-rater, inter-rater, and scan-rescan reliability were then determined for each region. Proximal and shaft bone mineral density measurements of the second and fifth metatarsal were reliable. ICC's were variable across regions and metatarsals, with the distal region being the poorest. Bone mineral density measurements of the metatarsals may be a better indicator of fracture risk of the metatarsals than whole body measurements. A reliable method for measuring the regional bone mineral densities of the metatarsals was found. However, inter-rater reliability and scan-rescan reliability for the distal regions were poor. Future research should examine the relationship between DXA bone mineral density measurements and fracture risk at the metatarsals.

  2. [Practice of martial arts and bone mineral density in adolescents of both sexes].

    PubMed

    Ito, Igor Hideki; Mantovani, Alessandra Madia; Agostinete, Ricardo Ribeiro; Costa Junior, Paulo; Zanuto, Edner Fernando; Christofaro, Diego Giulliano Destro; Ribeiro, Luis Pedro; Fernandes, Rômulo Araújo

    2016-06-01

    The purpose of this study was to analyze the relationship between martial arts practice (judo, karate and kung-fu) and bone mineral density in adolescents. The study was composed of 138 (48 martial arts practitioners and 90 non-practitioners) adolescents of both sexes, with an average age of 12.6 years. Bone mineral density was measured using Dual-Energy X-ray Absorptiometry in arms, legs, spine, trunk, pelvis and total. Weekly training load and previous time of engagement in the sport modality were reported by the coach. Partial correlation tested the association between weekly training load and bone mineral density, controlled by sex, chronological age, previous practice and somatic maturation. Analysis of covariance was used to compare bone mineral density values according to control and martial arts groups, controlled by sex, chronological age, previous practice and somatic maturation. Significant relationships between bone mineral density and muscle mass were inserted into a multivariate model and the slopes of the models were compared using the Student t test (control versus martial art). Adolescents engaged in judo practice presented higher values of bone mineral density than the control individuals (p-value=0.042; Medium Effect size [Eta-squared=0.063]), while the relationship between quantity of weekly training and bone mineral density was significant among adolescents engaged in judo (arms [r=0.308] and legs [r=0.223]) and kung-fu (arms [r=0.248] and spine [r=0.228]). Different modalities of martial arts are related to higher bone mineral density in different body regions among adolescents. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  3. Bone mineral density in subjects using central nervous system-active medications.

    PubMed

    Kinjo, Mitsuyo; Setoguchi, Soko; Schneeweiss, Sebastian; Solomon, Daniel H

    2005-12-01

    Decreased bone mineral density defines osteoporosis according to the World Health Organization and is an important predictor of future fractures. The use of several types of central nervous system-active drugs, including benzodiazepines, anticonvulsants, antidepressants, and opioids, have all been associated with increased risk of fracture. However, it is unclear whether such an increase in risk is related to an effect of bone mineral density or to other factors, such as increased risk of falls. We sought to examine the relationship between bone mineral density and the use of benzodiazepines, anticonvulsants, antidepressants, and opioids in a representative US population-based sample. We analyzed data on adults aged 17 years and older from the Third National Health and Nutrition Examination Survey (NHANES III, 1988-1994). Total femoral bone mineral density of 7114 male and 7532 female participants was measured by dual-energy x-ray absorptiometry. Multivariable linear regression models were used to quantify the relation between central nervous system medication exposure and total femoral bone mineral density. Models controlled for relevant covariates, including age, sex, and body mass index. In linear regression models, significantly reduced bone mineral density was found in subjects taking anticonvulsants (0.92 g/cm2; 95% confidence interval [CI]: 0.89 to 0.94) and opioids (0.92 g/cm2; 95% CI: 0.88 to 0.95) compared with nonusers (0.95 g/cm2; 95% CI: 0.95 to 0.95) after adjusting for several potential confounders. The other central nervous system-active drugs--benzodiazepines or antidepressants--were not associated with significantly reduced bone mineral density. In cross-sectional analysis of NHANES III, anticonvulsants and opioids (but not benzodiazepines or antidepressants) were associated with significantly reduced bone mineral density. These findings have implications for fracture-prevention strategies.

  4. [The relationship between the parameters of mineral density of bone tissue and somatotype in women residing in the Republic of Karelia].

    PubMed

    Pashkova, I G; Gaivoronskiy, I V; Aleksina, L A; Kornev, M A

    2014-01-01

    Comprehensive anthropometric and densitometric study using the dual x-ray absorptiometry was conducted to determine the relationship between the mineral density of bone tissue and somatotype in 360 women aged 20 to 87 years, permanently residing in the Republic of Karelia. Significant direct correlation was detected between the somatotype and the amount of mineral substances in the vertebrae, bone mineral density and the area of the lumbar vertebrae. Bone mineral density level of the lumbar vertebrae was higher in women with europlastic and athletic somatotypes, which were characterized by high values of body mass and length, body muscle and fat mass. Low values of bone mineral density of vertebrae were identified in women belonging to subathletic, mesoplastic and stenoplastic somatotypes. The risk of developing osteopenia and osteoporosis is increased in women with low body muscle mass.

  5. Arctic Deep Water Ferromanganese-Oxide Deposits Reflect the Unique Characteristics of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe J.; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah R.; Till, Claire P.

    2017-11-01

    Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, and HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits. The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ˜15 Myr ago.

  6. Arctic deep-water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean

    USGS Publications Warehouse

    Hein, James; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah; Till, Claire P.

    2017-01-01

    Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits.The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ∼15 Myr ago.

  7. Bone mineral content and bone mineral density are lower in older than in younger females with Rett syndrome

    USDA-ARS?s Scientific Manuscript database

    Although bone mineral deficits have been identified in Rett syndrome (RTT), the prevalence of low bone mineral density (BMD) and its association with skeletal fractures and scoliosis has not been characterized fully in girls and women with RTT. Accordingly, we measured total body bone mineral conten...

  8. The effect of retained intramedullary nails on tibial bone mineral density.

    PubMed

    Allen, J C; Lindsey, R W; Hipp, J A; Gugala, Z; Rianon, N; LeBlanc, A

    2008-07-01

    Intramedullary nailing has become a standard treatment for adult tibial shaft fractures. Retained intramedullary nails have been associated with stress shielding, although their long-term effect on decreasing tibial bone mineral density is currently unclear. The purpose of this study was to determine if retained tibial intramedullary nails decrease tibial mineral density in patients with successfully treated fractures. Patients treated with statically locked intramedullary nails for isolated, unilateral tibia shaft fractures were studied. Inclusion required that fracture had healed radiographically and that the patient returned to the pre-injury activity level. Data on patient demographic, fracture type, surgical technique, implant, and post-operative functional status were tabulated. Dual energy X-ray absorptiometry was used to measure bone mineral density in selected regions of the affected tibia and the contralateral intact tibia. Image reconstruction software was employed to ensure symmetry of the studied regions. Twenty patients (mean age 43; range 22-77 years) were studied at a mean of 29 months (range 5-60 months) following intramedullary nailing. There was statistically significant reduction of mean bone mineral density in tibiae with retained intramedullary nails (1.02 g/cm(2) versus 1.06 g/cm(2); P=0.04). A significantly greater decrease in bone mineral density was detected in the reamed versus non-reamed tibiae (-7% versus +6%, respectively; P<0.05). The present study demonstrates a small, but statistically significant overall bone mineral density decrease in healed tibiae with retained nails. Intramedullary reaming appears to be a factor potentiating the reduction of tibia bone mineral density in long-term nail retention.

  9. Surface materials map of Afghanistan: iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Kokaly, Raymond F.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected iron-bearing minerals and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of iron-bearing minerals and other materials having diagnostic absorptions at visible and near-infrared wavelengths. These absorptions result from electronic processes in the minerals. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  10. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs.

    PubMed

    Cummings, Steven R; Karpf, David B; Harris, Fran; Genant, Harry K; Ensrud, Kristine; LaCroix, Andrea Z; Black, Dennis M

    2002-03-01

    To estimate how much the improvement in bone mass accounts for the reduction in risk of vertebral fracture that has been observed in randomized trials of antiresorptive treatments for osteoporosis. After a systematic search, we conducted a meta-analysis of 12 trials to describe the relation between improvement in spine bone mineral density and reduction in risk of vertebral fracture in postmenopausal women. We also used logistic models to estimate the proportion of the reduction in risk of vertebral fracture observed with alendronate in the Fracture Intervention Trial that was due to improvement in bone mineral density. Across the 12 trials, a 1% improvement in spine bone mineral density was associated with a 0.03 decrease (95% confidence interval [CI]: 0.02 to 0.05) in the relative risk (RR) of vertebral fracture. The reductions in risk were greater than predicted from improvement in bone mineral density; for example, the model estimated that treatments predicted to reduce fracture risk by 20% (RR = 0.80), based on improvement in bone mineral density, actually reduce the risk of fracture by about 45% (RR = 0.55). In the Fracture Intervention Trial, improvement in spine bone mineral density explained 16% (95% CI: 11% to 27%) of the reduction in the risk of vertebral fracture with alendronate. Improvement in spine bone mineral density during treatment with antiresorptive drugs accounts for a predictable but small part of the observed reduction in the risk of vertebral fracture.

  11. Surface materials map of Afghanistan: carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of minerals that have diagnostic absorption features in the shortwave infrared wavelengths. These absorption features result primarily from characteristic chemical bonds and mineralogical vibrations. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  12. Tibial component coverage based on bone mineral density of the cut tibial surface during unicompartmental knee arthroplasty: clinical relevance of the prevention of tibial component subsidence.

    PubMed

    Lee, Yong Seuk; Yun, Ji Young; Lee, Beom Koo

    2014-01-01

    An optimally implanted tibial component during unicompartmental knee arthroplasty would be flush with all edges of the cut tibial surface. However, this is often not possible, partly because the tibial component may not be an ideal shape or because the ideal component size may not be available. In such situations, surgeons need to decide between component overhang and underhang and as to which sites must be covered and which sites could be undercovered. The objectives of this study were to evaluate the bone mineral density of the cut surface of the proximal tibia around the cortical rim and to compare the bone mineral density according to the inclusion of the cortex and the site-specific matched evaluation. One hundred and fifty consecutive patients (100 men and 50 women) were enrolled in this study. A quantitative computed tomography was used to determine the bone density of the cut tibial surface. Medial and lateral compartments were divided into anterior, middle, and posterior regions, and these three regions were further subdivided into two regions according to containment of cortex. The site-specific matched comparison (medial vs. lateral) of bone mineral density was performed. In medial sides, the mid-region, including the cortex, showed the highest bone mineral density in male and female patients. The posterior region showed the lowest bone mineral density in male patients, and the anterior and posterior regions showed the lowest bone mineral density in female patients. Regions including cortex showed higher bone mineral density than pure cancellous regions in medial sides. In lateral sides, posterior regions including cortex showed highest bone mineral density with statistical significance in both male and female patients. The anterior region showed the lowest bone mineral density in both male and female patients. The mid-region of the medial side and the posterior region of the lateral side are relatively safe without cortical coverage when the component is not flush with all edges of the tibia. Cortical coverage is strongly recommended for the prevention of subsidence of the tibial component in the posterior region of the medial side, and in the anterior region of the lateral side.

  13. Effect of parity on bone mineral density: A systematic review and meta-analysis.

    PubMed

    Song, Seung Yeon; Kim, Yejee; Park, Hyunmin; Kim, Yun Joo; Kang, Wonku; Kim, Eun Young

    2017-08-01

    Parity has been suggested as a possible factor affecting bone health in women. However, study results on its association with bone mineral density are conflicting. PubMed, EMBASE, the Cochrane Library, and Korean online databases were searched using the terms "parity" and "bone mineral density", in May 2016. Two independent reviewers extracted the mean and standard deviation of bone mineral density measurements of the femoral neck, spine, and total hip in nulliparous and parous healthy women. Among the initial 10,146 studies, 10 articles comprising 24,771 women met the inclusion criteria. The overall effect of parity on bone mineral density was positive (mean difference=5.97mg/cm 2 ; 95% CI 2.37 to 9.57; P=0.001). The effect appears site-specific as parity was not significantly associated with the bone mineral density of the femoral neck (P=0.09) and lumbar spine (P=0.17), but parous women had significantly higher bone mineral density of the total hip compared to nulliparous women (mean difference=5.98mg/cm 2 ; 95% CI 1.72 to 10.24; P=0.006). No obvious heterogeneity existed among the included studies (femoral neck I 2 =0%; spine I 2 =31%; total hip I 2 =0%). Parity has a positive effect on bone in healthy, community-dwelling women and its effect appears site-specific. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Identification and significance of accessory minerals from a bituminous coal

    USGS Publications Warehouse

    Finkelman, R.B.; Stanton, R.W.

    1978-01-01

    A scanning electron microscope (SEM) has been used to study the in situ accessory minerals in polished blocks and pellets of petrographically analysed samples of the Waynesburg coal (hvb). Individual grains from the low-temperature ash (LTA) of the same coal were also studied. The visual resolution of the SEM permitted the detection of submicron mineral grains, which could then be analysed by the attached energy-dispersive system. Emphasis was placed on the highly reflective grains in the carbominerite bands. Among the most abundant accessory minerals observed were rutile, zircon, and rare-earth-bearing minerals. Small (1-5 ??m) particles of what may be authigenic iron-rich chromite and a nickel silicate form rims on quartz grains. The SEM also permits the observation of grain morphology and mineral intergrowths. These data are useful in determining authigenicity and diagenic alteration. Substances in density splits of LTA include authigenic, detrital, extraterrestrial magnetite, tourmaline, and evaporite (?) minerals, and a fluorine-bearing amphibole. This analytical approach allows the determination of specific sites for many of the trace elements in coals. In the Waynesburg coal, most of the chromium is in the iron-chromium rims, the fluorine is in the amphibole, and the rare-earth elements are in rare-earth-bearing minerals. The ability to relate trace-element data to specific minerals will aid in predicting the behaviour of elements in coal during combustion, liquefaction, gasification, weathering, and leaching processes. This ability also permits insight into the degree of mobility of these elements in coal and provides clues to sedimentological and diagenetic conditions. ?? 1978.

  15. Risk Factors for Low Bone Mineral Density in Individuals Residing in a Facility for the People with Intellectual Disability

    ERIC Educational Resources Information Center

    Jaffe, J. S.; Timell, A. M.; Elolia, R.; Thatcher, S. S.

    2005-01-01

    Background: Individuals with intellectual disability (ID) are known to have a high prevalence of both low bone mineral density (BMD) and fractures with significant attendant morbidity. Effective strategies aimed at reducing fractures will be facilitated by the identification of predisposing risk factors. Methods: Bone mineral density was measured…

  16. Exercise and Bone Density: Meta-Analysis.

    DTIC Science & Technology

    1999-09-01

    1998, (4) changes in bone mineral density (regional, total) reported in adults ages 18 years and older . Disagreements between the Principal...individual patient data. C. So What? Our work to date suggests that exercise helps to increase and maintain bone mineral density in older (>31 years of age ...between January 1962 and December 1998, (4) changes in bone mineral density (regional, total) reported in adults ages 18 years and older . If you have any

  17. Bone Mineral Density as a Marker of Cumulative Estrogen Exposure in Psychotic Disorder: A 3 Year Follow-Up Study.

    PubMed

    van der Leeuw, Christine; Peeters, Sanne; Domen, Patrick; van Kroonenburgh, Marinus; van Os, Jim; Marcelis, Machteld

    2015-01-01

    Altered estrogen-induced neuroprotection has been implicated in the etiology of psychotic disorders. Using bone mineral density as a marker of lifetime estrogen exposure, a longitudinal family study was conducted to discriminate between etiological mechanisms and secondary effects of disease and treatment. Dual X-ray absorptiometry scans were acquired twice, with an interval of 3 years, in 30 patients with psychotic disorder (male (M)/female (F): 24/6, mean age of 32 years at second measurement), 44 non-psychotic siblings of patients with a psychotic disorder (M/F: 26/18, mean age 32) and 27 controls (M/F: 7/20, mean age 35). Total bone mineral density, Z-scores and T-scores were measured in the lumbar spine and proximal femur. Associations between group and bone mineral density changes were investigated with multilevel random regression analyses. The effect of prolactin-raising antipsychotic medication was evaluated. (Increased risk of) psychotic disorder was not associated with disproportionate bone mineral density loss over a three year period. Instead, femoral bone mineral density measures appeared to decrease less in the patient versus control comparison (total BMD: B = 0.026, 95% CI 0.002 to 0.050, p = 0.037; Z-score: B = 0.224, 95% CI 0.035 to 0.412, p = 0.020; and T-score: B = 0.193, 95% CI 0.003 to 0.382, p = 0.046). Current or past use of a prolactin-raising antipsychotic medication was not associated with bone mineral density changes. In this small longitudinal study, there was no evidence of ongoing estrogen deficiency in psychotic disorder as there was no excessive loss of bone mineral density over a 3-year period in patients using antipsychotic medication.

  18. Bone Mineral Density as a Marker of Cumulative Estrogen Exposure in Psychotic Disorder: A 3 Year Follow-Up Study

    PubMed Central

    van der Leeuw, Christine; Peeters, Sanne; Domen, Patrick; van Kroonenburgh, Marinus; van Os, Jim; Marcelis, Machteld

    2015-01-01

    Altered estrogen-induced neuroprotection has been implicated in the etiology of psychotic disorders. Using bone mineral density as a marker of lifetime estrogen exposure, a longitudinal family study was conducted to discriminate between etiological mechanisms and secondary effects of disease and treatment. Dual X-ray absorptiometry scans were acquired twice, with an interval of 3 years, in 30 patients with psychotic disorder (male (M)/female (F): 24/6, mean age of 32 years at second measurement), 44 non-psychotic siblings of patients with a psychotic disorder (M/F: 26/18, mean age 32) and 27 controls (M/F: 7/20, mean age 35). Total bone mineral density, Z-scores and T-scores were measured in the lumbar spine and proximal femur. Associations between group and bone mineral density changes were investigated with multilevel random regression analyses. The effect of prolactin-raising antipsychotic medication was evaluated. (Increased risk of) psychotic disorder was not associated with disproportionate bone mineral density loss over a three year period. Instead, femoral bone mineral density measures appeared to decrease less in the patient versus control comparison (total BMD: B = 0.026, 95% CI 0.002 to 0.050, p = 0.037; Z-score: B = 0.224, 95% CI 0.035 to 0.412, p = 0.020; and T-score: B = 0.193, 95% CI 0.003 to 0.382, p = 0.046). Current or past use of a prolactin-raising antipsychotic medication was not associated with bone mineral density changes. In this small longitudinal study, there was no evidence of ongoing estrogen deficiency in psychotic disorder as there was no excessive loss of bone mineral density over a 3-year period in patients using antipsychotic medication. PMID:26309037

  19. Organic carbon characteristics in density fractions of soils with contrasting mineralogies

    NASA Astrophysics Data System (ADS)

    Yeasmin, Sabina; Singh, Balwant; Johnston, Cliff T.; Sparks, Donald L.

    2017-12-01

    This study was aimed to evaluate the role of minerals in the preservation of organic carbon (OC) in different soil types. Sequential density fractionation was done to isolate particulate organic matter (POM, <1.8 g cm-3) and mineral associated OM (MOM: 1.8-2.2, 2.2-2.6 and >2.6 g cm-3) from four soils, i.e., a Ferralsol, a Luvisol, a Vertisol and a Solonetz. Organic matter (OM) in the density fractions was characterised using diffuse reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and mass spectroscopy in the original states (i.e., without any chemical pre-treatment), and after 6% sodium hypochlorite (NaOCl) and 10% hydrofluoric acid (HF) treatments. The NaOCl oxidation resistant fraction was considered as a relatively stable pool of OC and the HF soluble fraction was presumed as the mineral bound OC. Phyllosilicate-dominated soils, i.e., Vertisol, Luvisol and Solonetz, contained a greater proportion of POM than Fe and Al oxide-dominated Ferralsol. Wider C:N ratio and lower δ13C and δ15N in POM suggest the dominance of labile OC in this fraction and this was also supported by a greater proportion of NaOCl oxidised OC in the same fraction that was enriched with aliphatic C. The sequential density fractionation method effectively isolated OM into three distinct groups in the soils: (i) OM associated with Fe and Al oxides (>1.8 g cm-3 in the Ferralsol); (ii) OM associated with phyllosilicates (1.8-2.6 g cm-3) and (iii) OM associated with quartz and feldspar (>2.6 g cm-3) in the other three soils. Greater oxidation resistance, and more dissolution of OC during the HF treatment in the Fe and Al oxides dominated fractions suggest a greater potential of these minerals to protect OC from oxidative degradation as compared to the phyllosilicates, and quartz and feldspar matrices. OM associated with Fe and Al oxides was predominantly aromatic and carboxylate C. Decreased C:N ratio in the NaOCl oxidation resistant OM and HF soluble OM of phyllosilicates, and quartz and feldspars dominant fractions compared to their untreated fractions indicate a preferred retention of N rich organic compounds by these minerals. OM associated with phyllosilicates was enriched with protonated amide N and aromatic C. Quartz and feldspars associated OM comprised of N containing organic compounds and polysaccharides, although we don't expect any role of these minerals in their preservation. Our results imply that the abundance and surface properties of minerals in the soil largely control the dynamics of OC and subsequently protect OC from microbial cycling.

  20. Measurement of hard tissue density based on image density of intraoral radiograph

    NASA Astrophysics Data System (ADS)

    Katsumata, Akitoshi; Fukui, Tatsumasa; Shimoda, Shinji; Kobayashi, Kaoru; Hayashi, Tatsuro

    2018-02-01

    We developed a DentalSCOPE computer program to measure the bone mineral density (BMD) of the alveolar bone. Mineral density measurement of alveolar bone may be useful to predict possible patients who will occur medication-related osteonecrosis of the jaw (MRONJ). Because these osteoporosis medicines affect the mineral density of alveolar bone significantly. The BMD of alveolar bone was compared between dual-energy X-ray absorptiometry (DEXA) and the DentalSCOPE program. A high correlation coefficient was revealed between the DentalSCOPE measurement and the DEXA measurement.

  1. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet.

    PubMed

    Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner

    2015-01-01

    The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.

  2. Mineral deposit densities for estimating mineral resources

    USGS Publications Warehouse

    Singer, Donald A.

    2008-01-01

    Estimates of numbers of mineral deposits are fundamental to assessing undiscovered mineral resources. Just as frequencies of grades and tonnages of well-explored deposits can be used to represent the grades and tonnages of undiscovered deposits, the density of deposits (deposits/area) in well-explored control areas can serve to represent the number of deposits. Empirical evidence presented here indicates that the processes affecting the number and quantity of resources in geological settings are very general across many types of mineral deposits. For podiform chromite, porphyry copper, and volcanogenic massive sulfide deposit types, the size of tract that geologically could contain the deposits is an excellent predictor of the total number of deposits. The number of mineral deposits is also proportional to the type’s size. The total amount of mineralized rock is also proportional to size of the permissive area and the median deposit type’s size. Regressions using these variables provide a means to estimate the density of deposits and the total amount of mineralization. These powerful estimators are based on analysis of ten different types of mineral deposits (Climax Mo, Cuban Mn, Cyprus massive sulfide, Franciscan Mn, kuroko massive sulfide, low-sulfide quartz-Au vein, placer Au, podiform Cr, porphyry Cu, and W vein) from 108 permissive control tracts around the world therefore generalizing across deposit types. Despite the diverse and complex geological settings of deposit types studied here, the relationships observed indicate universal controls on the accumulation and preservation of mineral resources that operate across all scales. The strength of the relationships (R 2=0.91 for density and 0.95 for mineralized rock) argues for their broad use. Deposit densities can now be used to provide a guideline for expert judgment or used directly for estimating the number of most kinds of mineral deposits.

  3. Discrimination of fish oil and mineral oil slicks on sea water

    NASA Technical Reports Server (NTRS)

    Mac Dowall, J.

    1969-01-01

    Fish oil and mineral oil slicks on sea water can be discriminated by their different spreading characteristics and by their reflectivities and color variations over a range of wavelengths. Reflectivities of oil and oil films are determined using a duel beam reflectance apparatus.

  4. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry.

    PubMed

    Esfahanizadeh, Nasrin; Davaie, Sotoudeh; Rokn, A R; Daneshparvar, Hamid Reza; Bayat, Noushin; Khondi, Nasrin; Ajvadi, Sara; Ghandi, Mostafa

    2013-07-01

    The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA) was carried out to determine bone mineral density (BMD) of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson's correlation coefficient. The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001). There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005). There was a negative correlation (P < 0.01) between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones.

  5. Total and bone-specific alkaline phosphatase are associated with bone mineral density over time in end-stage renal disease patients starting dialysis.

    PubMed

    Bergman, Annelie; Qureshi, Abdul Rashid; Haarhaus, Mathias; Lindholm, Bengt; Barany, Peter; Heimburger, Olof; Stenvinkel, Peter; Anderstam, Björn

    2017-04-01

    Alkaline phosphatase (ALP) and bone-specific ALP (BALP) are implicated in the abnormal skeletal mineralization and accelerated vascular calcification in chronic kidney disease (CKD) patients. Whereas ALP and BALP may predict mortality in CKD, BALP is reported to have higher sensitivity and specificity than total ALP in reflecting histological alterations in bone; however, results on their associations with bone mineral density (BMD) are inconsistent. Here we evaluated associations of total ALP and BALP with BMD during up to 24 months in end-stage renal disease (ESRD) patients. In this longitudinal study, 194 ESRD patients (median age 57 years, 66 % male, 32 % diabetes mellitus, mean body mass index 24.8 kg/m 2 ) underwent measurements of total ALP and BALP and total and regional body BMD (by dual-energy X-ray absorptiometry) at dialysis initiation (n = 194), and after 12 (n = 98) and 24 months (n = 40) on dialysis. At baseline, patients had median total ALP 65.4 (43.3-126.4) U/l, BALP 13.5 (7.1-27.3) µg/l and BMD 1.14 (0.97-1.31) g/cm 2 . During the study period, serum concentrations of ALP and BALP increased significantly (p < 0.001), whereas total and regional BMD remained stable. BMD correlated inversely with total ALP (rho = -0.20, p = 0.005) and BALP (rho = -0.30, p < 0.001) at baseline, and correlations were similar also at 12 and 24 months. ALP and BALP are equally accurate albeit weak predictors of BMD in ESRD patients, both at baseline and longitudinally. The dissociation between stable BMD and increasing ALP and BALP may possibly reflect increased soft tissue calcifications with time on dialysis.

  6. The role of upper mantle mineral phase transitions on the current structure of large-scale Earth's mantle convection.

    NASA Astrophysics Data System (ADS)

    Thoraval, C.

    2017-12-01

    Describing the large-scale structures of mantle convection and quantifying the mass transfer between upper and lower mantle request to account for the role played by mineral phase transitions in the transition zone. We build a density distribution within the Earth mantle from velocity anomalies described by global seismic tomographic models. The density distribution includes thermal anomalies and topographies of the phase transitions at depths of 410 and 660 km. We compute the flow driven by this density distribution using a 3D spherical circulation model, which account for depth-dependent viscosity. The dynamic topographies at the surface and at the CMB and the geoid are calculated as well. Within the range of viscosity profiles allowing for a satisfying restitution of the long wavelength geoid, we perform a parametric study to decipher the role of the characteristics of phase diagrams - mainly the Clapeyron's slopes - and of the kinetics of phase transitions, which may modify phase transition topographies. Indeed, when a phase transition is delayed, the boundary between two mineral phases is both dragged by the flow and interfere with it. The results are compared to recent estimations of surface dynamic topography and to the phase transition topographies as revealed by seismic studies. The consequences are then discussed in terms of structure of mantle flow. Comparisons between various tomographic models allow us to enlighten the most robust features. At last, the role played by the phase transitions on the lateral variations of mass transfer between upper and lower mantle are quantified by comparison to cases with no phase transitions and confronted to regional tomographic models, which reflect the variability of the behaviors of the descending slabs in the transition zone.

  7. A chronology of Late-Pleistocene permafrost events in southern New Jersey, eastern USA

    USGS Publications Warehouse

    French, H.M.; Demitroff, M.; Forman, S.L.; Newell, Wayne L.

    2007-01-01

    Frost fissures, filled with wind-abraded sand and mineral soil, and numerous small-scale non-diastrophic deformations, occur in the near-surface sediments of the Pine Barrens of southern New Jersey. The fissures are the result of thermal-contraction cracking and indicate the previous existence of either permafrost or seasonally-frozen ground. The deformations reflect thermokarst activity that occurred when permafrost degraded, icy layers melted and density-controlled mass displacements occurred in water-saturated sediments. Slopes and surficial materials of the area reflect these cold-climate conditions. Optically-stimulated luminescence permits construction of a tentative Late-Pleistocene permafrost chronology. This indicates Illinoian, Early-Wisconsinan and Late-Wisconsinan episodes of permafrost and/or deep seasonal frost and a Middle-Wisconsinan thermokarst event. Copyright ?? 2007 John Wiley & Sons, Ltd.

  8. Spectroscopy and reactivity of mineral analogs of the Martian soil

    NASA Technical Reports Server (NTRS)

    Banin, A.; Orenberg, J.; Roush, T.

    1991-01-01

    To answer the question of why life occurred on Earth but not on Mars requires a study of the geochemical and physical aspects of the Martian soil. Some of the best Mars analog mineral models of the soil have been prepared and justified according to known constraints of chemical composition, reflectance spectroscopy, and chemical reactivity. Detailed laboratory reflectance spectra in the ultraviolet, visible, and near infrared (.30 to 2.5 microns) and the infrared (2.5 to 25 microns) regions have been obtained for the pure candidate minerals and some analog mixtures and compared to Mars reflectance spectra. Modeling of the reflectance spectra from optical constraints determined for the analog minerals has begun and will be interpreted in terms of the effects of particle size variation, component mixing, and soil packing upon remotely sensed reflectance spectra. This has implications not only for Mars, but for other planets and planetoids. The ratio of Fe(II)/Fe(III) in the Martian soil analog materials on spectral reflectance in the visible range has begun, and the results will be evaluated according to conformity with the visible Mars reflectance spectrum. Some initial LR and GEX data have been collected for the mineral samples and their mixtures, which can be compared with the Viking data and interpreted in terms of the redox (Fe(II)/Fe(III) environment.

  9. Biochemical distributions (amino acids, neutral sugars, and lignin phenols) among size-classes of modern marine sediments from the Washington coast

    NASA Astrophysics Data System (ADS)

    Keil, Richard G.; Tsamakis, Elizabeth; Giddings, J. Calvin; Hedges, John I.

    1998-04-01

    In order to examine relationships of organic matter source, composition, and diagenesis with particle size and mineralogy in modern marine depositional regimes, sediments from the continental shelf and slope along the Northwest Pacific rim (Washington coast, USA) were sorted into hydrodynamic size fractions (sand: >250, 63-250 μm; silt: 35-63, 17-35, 8-17, 3-8 μm; and clay-sized: 1-3, 0.5-1, <0.5 μm). The size fractions were then density fractionated to separate distinct organic debris from mineral-associated organic matter, and the various separates were analyzed for their amino acid, aldose, and lignin compositions. The composition of organic matter in the separates changes markedly as a function of particle size and density. Large compositional differences were observed between the clay-sized fractions (dominated mineralogically by smectites), the sand-sized mineral-associated isolates (quartz-rich), and floated coarse organic matter (dominated by vascular plant debris). Organic matter intimately associated with the clay-sized fractions shows the most extensive diagenetic alteration, as reflected in high abundances of nonprotein amino acids (especially β-alanine), elevated lignin phenol acid/aldehyde ratios, and high relative concentrations of the deoxyhexoses fucose and rhamnose. Organic matter in the silt fractions, though degraded, is not as diagenetically altered as in the clay fractions. Enrichment of pollen grains in the silt-size material is reflected by high cinnamic acid to ferulic acid lignin phenol ratios. The highest pollen biochemical signal is observed in the silt fractions of the deepest station (1835 m), where pollen abundances are also highest. Organic matter tightly bound in the silt and sand-sized fractions are enriched in aldoses and show indications of enhanced microbial biomass as reflected by high weight percentages of ribose. Distinct organic debris was composed of relatively unaltered vascular plant remains as reflected by high lignin phenol yields and low acid/aldehyde ratios. Clay-size fractions are enriched in nitrogenous components, as reflected by elevated yields of total and basic amino acids (especially lysine). Silt- and sand-size fractions rich in quartz and albite show slightly higher yields of neutral amino acids. Consistent trends across all size classes and among the different depositional settings illustrates that only a small portion of the organic matter is present as distinct organic debris (e.g. pollen, vascular plant tissues, etc.), but that this debris can be isolated in specific size classes. The data for surface-associated organic matter are consistent with, but not conclusive of, selective partitioning of some organic matter to specific mineral surfaces. The dominant size class-specific trends in organic matter composition are due to changes in both source and diagenetic alteration.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonneville, Alain H.; Kouzes, Richard T.

    Imaging subsurface geological formations, oil and gas reservoirs, mineral deposits, cavities or magma chambers under active volcanoes has been for many years a major quest of geophysicists and geologists. Since these objects cannot be observed directly, different indirect geophysical methods have been developed. They are all based on variations of certain physical properties of the subsurface that can be detected from the ground surface or from boreholes. Electrical resistivity, seismic wave’s velocities and density are certainly the most used properties. If we look at density, indirect estimates of density distributions are performed currently by seismic reflection methods - since themore » velocity of seismic waves depend also on density - but they are expensive and discontinuous in time. Direct estimates of density are performed using gravimetric data looking at variations of the gravity field induced by the density variations at depth but this is not sufficiently accurate. A new imaging technique using cosmic-ray muon detectors has emerged during the last decade and muon tomography - or muography - promises to provide, for the first time, a complete and precise image of the density distribution in the subsurface. Further, this novel approach has the potential to become a direct, real-time, and low-cost method for monitoring fluid displacement in subsurface reservoirs.« less

  11. Effects of antiepileptic drugs on bone mineral density and bone metabolism in children: a meta-analysis*

    PubMed Central

    Zhang, Ying; Zheng, Yu-xin; Zhu, Jun-ming; Zhang, Jian-min; Zheng, Zhe

    2015-01-01

    Objective: The aim of our meta-analysis was to assess the effects of antiepileptic drugs on bone mineral density and bone metabolism in epileptic children. Methods: Searches of PubMed and Web of Science were undertaken to identify studies evaluating the association between antiepileptic drugs and bone mineral density and bone metabolism. Results: A total of 22 studies with 1492 subjects were included in our research. We identified: (1) a reduction in bone mineral density at lumbar spine (standardized mean difference (SMD)=−0.30, 95% confidence interval (CI) [−0.61, −0.05]), trochanter (mean difference (MD)=−0.07, 95% CI [−0.10, −0.05]), femoral neck (MD=−0.05, 95% CI [−0.09, −0.02]), and total body bone mineral density (MD=−0.33, 95% CI [−0.51, −0.15]); (2) a reduction in 25-hydroxyvitamin D (MD=−3.37, 95% CI [−5.94, −0.80]) and an increase in serum alkaline phosphatase (SMD=0.71, 95% CI [0.38, 1.05]); (3) no significant changes in serum parathyroid hormone, calcium, or phosphorus. Conclusions: Our meta-analysis suggests that treatment with antiepileptic drugs may be associated with decreased bone mineral density in epileptic children. PMID:26160719

  12. Extreme obesity reduces bone mineral density: complementary evidence from mice and women.

    PubMed

    Núñez, Nomelí P; Carpenter, Catherine L; Perkins, Susan N; Berrigan, David; Jaque, S Victoria; Ingles, Sue Ann; Bernstein, Leslie; Forman, Michele R; Barrett, J Carl; Hursting, Stephen D

    2007-08-01

    To evaluate the effects of body adiposity on bone mineral density in the presence and absence of ovarian hormones in female mice and postmenopausal women. We assessed percentage body fat, serum leptin levels, and bone mineral density in ovariectomized and non-ovariectomized C57BL/6 female mice that had been fed various calorically dense diets to induce body weight profiles ranging from lean to very obese. Additionally, we assessed percentage body fat and whole body bone mineral density in 37 overweight and extremely obese postmenopausal women from the Women's Contraceptive and Reproductive Experiences study. In mice, higher levels of body adiposity (>40% body fat) were associated with lower bone mineral density in ovariectomized C57BL/6 female mice. A similar trend was observed in a small sample of postmenopausal women. The complementary studies in mice and women suggest that extreme obesity in postmenopausal women may be associated with reduced bone mineral density. Thus, extreme obesity (BMI > 40 kg/m2) may increase the risk for osteopenia and osteoporosis. Given the obesity epidemic in the U.S. and in many other countries, and, in particular, the rising number of extremely obese adult women, increased attention should be drawn to the significant and interrelated public health issues of obesity and osteoporosis.

  13. Associated Factors of Bone Mineral Density and Osteoporosis in Elderly Males

    PubMed Central

    Heidari, Behzad; Muhammadi, Abdollah; Javadian, Yahya; Bijani, Ali; Hosseini, Reza; Babaei, Mansour

    2016-01-01

    Background Low bone mineral density and osteoporosis is prevalent in elderly subjects. This study aimed to determine the associated factors of bone mineral density and osteoporosis in elderly males. Methods All participants of the Amirkola health and ageing project cohort aged 60 years and older entered the study. Bone mineral density at femoral neck and lumbar spine was assessed by the dual energy X-ray absorptiometry (DXA) method. Osteoporosis was diagnosed by the international society for clinical densitometry criteria and the association of bone mineral density and osteoporosis with several clinical, demographic and biochemical parameters. Multiple logistic regression analysis was used to determine independent associations. Results A total of 553 patients were studied and 90 patients (16.2%) had osteoporosis at either femoral neck or lumbar spine. Diabetes, obesity, metabolic syndrome, overweight, and quadriceps muscle strength > 30 kg, metabolic syndrome, abdominal obesity and education level were associated with higher bone mineral density and lower prevalence of osteoporosis, whereas age, anemia, inhaled corticosteroids and fracture history were associated with lower bone mineral density and higher prevalence of osteoporosis (P = 0.001). After adjustment for all covariates, osteoporosis was negatively associated only with diabetes, obesity, overweight, and QMS > 30 kg and positively associated with anemia and fracture history. The association of osteoporosis with other parameters did not reach a statistical level. Conclusions The findings of the study indicate that in elderly males, diabetes, obesity and higher muscle strength was associated with lower prevalence of osteoporosis and anemia, and prior fracture with higher risk of osteoporosis. This issue needs further longitudinal studies. PMID:28835759

  14. Single x-ray transmission system for bone mineral density determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Mendoza, Daniel; Vargas-Vazquez, Damian; Espinosa-Arbelaez, Diego G.

    2011-12-15

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many differentmore » applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm{sup 2})], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.« less

  15. Osteoprotegerin autoantibodies do not predict low bone mineral density in middle-aged women.

    PubMed

    Vaziri-Sani, Fariba; Brundin, Charlotte; Agardh, Daniel

    2017-12-01

    Autoantibodies against osteoprotegerin (OPG) have been associated with osteoporosis. The aim was to develop an immunoassay for OPG autoantibodies and test their diagnostic usefulness of identifying women general population with low bone mineral density. Included were 698 women at mean age 55.1 years (range 50.4-60.6) randomly selected from the general population. Measurement of wrist bone mineral density (g/cm 2 ) was performed of the non-dominant wrist by dual-energy X-ray absorptiometry (DXA). A T-score < - 2.5 was defined as having a low bone mineral density. Measurements of OPG autoantibodies were carried by radiobinding assays. Cut-off levels for a positive value were determined from the deviation from normality in the distribution of 398 healthy blood donors representing the 99.7th percentile. Forty-five of the 698 (6.6%) women were IgG-OPG positive compared with 2 of 398 (0.5%) controls ( p  < 0.0001) and 35 of the 698 (5.0%) women had a T-score < - 2.5. There was no difference in bone mineral density between IgG-OPG positive (median 0.439 (range 0.315-0.547) g/cm 2 ) women and IgG-OPG negative (median 0.435 (range 0.176-0.652) g/cm 2 ) women ( p  = 0.3956). Furthermore, there was neither a correlation between IgG-OPG levels and bone mineral density (r s  = 0.1896; p  = 0.2068) nor T-score (r s  = 0.1889; p  = 0.2086). Diagnostic sensitivity and specificity of IgG-OPG for low bone mineral density were 5.7% and 92.9%, and positive and negative predictive values were 7.4% and 90.8%, respectively. Elevated OPG autoantibody levels do not predict low bone mineral density in middle-aged women selected from the general population.

  16. Single x-ray transmission system for bone mineral density determination

    NASA Astrophysics Data System (ADS)

    Jimenez-Mendoza, Daniel; Espinosa-Arbelaez, Diego G.; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Vargas-Vazquez, Damian; Rodriguez-Garcia, Mario E.

    2011-12-01

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm2)], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  17. Ultrasonic wave propagation in trabecular bone predicted by the stratified model

    NASA Technical Reports Server (NTRS)

    Lin, W.; Qin, Y. X.; Rubin, C.

    2001-01-01

    The objective of this study was to investigate ultrasound propagation in trabecular bone by considering the wave reflection and transmission in a multilayered medium. The use of ultrasound to identify those at risk of osteoporosis is a promising diagnostic method providing a measure of bone mineral density (BMD). A stratified model was proposed to study the effect of transmission and reflection of ultrasound wave within the trabecular architecture on the relationship between ultrasound and BMD. The results demonstrated that ultrasound velocity in trabecular bone was highly correlated with the bone apparent density (r=0.97). Moreover, a consistent pattern of the frequency dependence of ultrasound attenuation coefficient has been observed between simulation using this model and experimental measurement of trabecular bone. The normalized broadband ultrasound attenuation (nBUA) derived from the simulation results revealed that nBUA was nonlinear with respect to trabecular porosity and BMD. The curve of the relationship between nBUA and BMD was parabolic in shape, and the peak magnitude of nBUA was observed at approximately 60% of bone porosity. These results agreed with the published experimental data and demonstrated that according to the stratified model, reflection and transmission were important factors in the ultrasonic propagation through the trabecular bone.

  18. Skeletal Fluorosis Due To Inhalation Abuse of a Difluoroethane-Containing Computer Cleaner.

    PubMed

    Tucci, Joseph R; Whitford, Gary M; McAlister, William H; Novack, Deborah V; Mumm, Steven; Keaveny, Tony M; Whyte, Michael P

    2017-01-01

    Skeletal fluorosis (SF) is endemic in many countries and millions of people are affected worldwide, whereas in the United States SF is rare with occasional descriptions of unique cases. We report a 28-year-old American man who was healthy until 2 years earlier when he gradually experienced difficulty walking and an abnormal gait, left hip pain, loss of mobility in his right wrist and forearm, and progressive deformities including enlargement of the digits of both hands. Dual-energy X-ray absorptiometry (DXA) of his lumbar spine, femoral neck, total hip, and the one-third forearm revealed bone mineral density (BMD) Z-scores of +6.2, +4.8, +3.0, and -0.2, respectively. Serum, urine, and bone fluoride levels were all elevated and ultimately explained by chronic sniffing abuse of a computer cleaner containing 1,1-difluoroethane. Our findings reflect SF due to the unusual cause of inhalation abuse of difluoroethane. Because this practice seems widespread, particularly in the young, there may be many more such cases. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  19. Optical properties behavior of three optical filters and a mirror used in the internal optical head of a Raman laser spectrometer after exposed to proton radiation

    NASA Astrophysics Data System (ADS)

    Guembe, V.; Alvarado, C. G.; Fernández-Rodriguez, M.; Gallego, P.; Belenguer, T.; Díaz, E.

    2017-11-01

    The Raman Laser Spectrometer is one of the ExoMars Pasteur Rover's payload instruments that is devoted to the analytical analysis of the geochemistry content and elemental composition of the observed minerals provided by the Rover through Raman spectroscopy technique. One subsystem of the RLS instrument is the Internal Optical Head unit (IOH), which is responsible for focusing the light coming from the laser onto the mineral under analysis and for collecting the Raman signal emitted by the excited mineral. The IOH is composed by 4 commercial elements for Raman spectroscopy application; 2 optical filters provided by Iridian Spectral Technologies Company and 1 optical filter and 1 mirror provided by Semrock Company. They have been exposed to proton radiation in order to analyze their optical behaviour due to this hostile space condition. The proton irradiation test was performed following the protocol of LINES lab (INTA). The optical properties have been studied through transmittance, reflectance and optical density measurements, the final results and its influence on optical performances are presented.

  20. Preliminary studies of mineralization during distraction osteogenesis.

    PubMed

    Aronson, J; Good, B; Stewart, C; Harrison, B; Harp, J

    1990-01-01

    Distraction osteogenesis by the Ilizarov method was performed on 20 dogs. Mineralization at the site of the left tibial metaphyseal lengthening was measured by weekly quantitative computer tomography (QCT) using the contralateral tibia as a control. Four dogs each were killed on Days 7, 14, 21, and 28 of distraction in order to correlate QCT with microradiology, nondecalcified histology, quantitative calcium analysis, and scanning electron microscopy. It was consistently found that intramembranous ossification proceeded centripetally from each corticotomy surface toward the central fibrous interzone. Bone columns crystallized along longitudinally oriented collagen bundles, expanding circumferentially to surrounding bundles. As the distraction gap increased, the bone columns increased in length and in diameter, while the fibrous interzone remained about 4 mm long. Histologically, the bone columns resembled stalagmites and stalactites, as seen by microradiography and scanning electron microscopy, that projected from each corticotomy surface toward the center. These cones reached maximum diameters of 150-200 mu at the corticotomy surfaces. Radiodensity (QCT) increased gradually from the central fibrous interzone toward each corticotomy surface. Mineral density, as determined by calcium quantification, reflected the microscopic geometry and radiographic polarity.

  1. Quantitative characterization of crude oils and fuels in mineral substrates using reflectance spectroscopy: Implications for remote sensing

    NASA Astrophysics Data System (ADS)

    Scafutto, Rebecca Del'Papa Moreira; Souza Filho, Carlos Roberto de

    2016-08-01

    The near and shortwave infrared spectral reflectance properties of several mineral substrates impregnated with crude oils (°APIs 19.2, 27.5 and 43.2), diesel, gasoline and ethanol were measured and assembled in a spectral library. These data were examined using Principal Component Analysis (PCA) and Partial Least Squares (PLS) Regression. Unique and characteristic absorption features were identified in the mixtures, besides variations of the spectral signatures related to the compositional difference of the crude oils and fuels. These features were used for qualitative and quantitative determination of the contaminant impregnated in the substrates. Specific wavelengths, where key absorption bands occur, were used for the individual characterization of oils and fuels. The intensity of these features can be correlated to the abundance of the contaminant in the mixtures. Grain size and composition of the impregnated substrate directly influence the variation of the spectral signatures. PCA models applied to the spectral library proved able to differentiate the type and density of the hydrocarbons. The calibration models generated by PLS are robust, of high quality and can also be used to predict the concentration of oils and fuels in mixtures with mineral substrates. Such data and models are employable as a reference for classifying unknown samples of contaminated substrates. The results of this study have important implications for onshore exploration and environmental monitoring of oil and fuels leaks using proximal and far range multispectral, hyperspectral and ultraespectral remote sensing.

  2. Identification of Uranium Minerals in Natural U-Bearing Rocks Using Infrared Reflectance Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiswenger, Toya N.; Gallagher, Neal B.; Myers, Tanya L.

    The identification of minerals, including uranium-bearing minerals, is traditionally a labor-intensive-process using x-ray diffraction (XRD), fluorescence, or other solid-phase and wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field identification, handheld infrared reflectance spectrometers can also be used in industrial or field environments, with rapid, non-destructive identification possible via spectral analysis of the solid’s reflectance spectrum. We have recently developed standard laboratory measurement methods for the infrared (IR) reflectance of solids and have investigated using these techniques for the identification of uranium-bearing minerals, using XRD methods for ground-truth. Due to the rich colors of such species,more » including distinctive spectroscopic signatures in the infrared, identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g. boltwoodite, schoepite, tyuyamunite, carnotite, etc.) or non-uranium minerals. The method can be used to detect not only pure and partial minerals, but is quite sensitive to chemical change such as hydration (e.g. schoepite). We have further applied statistical methods, in particular classical least squares (CLS) and multivariate curve resolution (MCR) for discrimination of such uranium minerals and two uranium pure chemicals (U3O8 and UO2) against common background materials (e.g. silica sand, asphalt, calcite, K-feldspar) with good success. Each mineral contains unique infrared spectral features; some of the IR features are similar or common to entire classes of minerals, typically arising from similar chemical moieties or functional groups in the minerals: phosphates, sulfates, carbonates, etc. These characteristic 2 infrared bands generate the unique (or class-specific) bands that distinguish the mineral from the interferents or backgrounds. We have observed several cases where the chemical moieties that provide the spectral discrimination in the longwave IR do so by generating upward-going reststrahlen bands in the reflectance data, but the same minerals have other weaker (overtone) bands, sometimes from the same chemical groups, that are manifest as downward-going transmission-type features in the midwave and shortwave infrared.« less

  3. Development of a theory of the spectral reflectance of minerals, part 4

    NASA Technical Reports Server (NTRS)

    Aronson, J. R.; Emslie, A. G.; Smith, E. M.

    1972-01-01

    A theory of the spectral reflectance or emittance of particulate minerals was developed. The theory is expected to prove invaluable in the interpretation of the remote infrared spectra of planetary surfaces.

  4. Multispectral color photography for mineral exploration by the remote sensing of biogeochemical anomalies

    NASA Technical Reports Server (NTRS)

    Yost, E.

    1975-01-01

    Selected band multispectral photography was evaluated as a mineral exploration tool by detecting stress on trees caused by underground mineralization. Ground truth consisted of two test sites in the Prescott National Forest within which the mineralization had been established by a drilling program. Species of trees were categorized as background, intermediate, and anomalous based upon where they grew with respect to this underlying mineralization. Soil geochemistry and the metal content of ashed samples of the trees were studied in relation to the inferred locus of mineralization. Computer analysis of the reflectance spectra of mineralized trees confirmed that the relative percent reflectance differences of trees growing in anomalous areas was less than that of the same tree species growing in background areas.

  5. Seismic anisotropy of the crystalline crust: What does it tell us?

    USGS Publications Warehouse

    Rabbel, Wolfgang; Mooney, Walter D.

    1996-01-01

    The study of the directional dependence of seismic velocities (seismic anisotropy) promises more refined insight into mineral composition and physical properties of the crystalline crust than conventional deep seismic refraction or reflection profiles providing average values of P-and S-wave velocities. The alignment of specific minerals by ductile rock deformation, for instance, causes specific types of seismic anisotropy which can be identified by appropriate field measurements.Vice versa, the determination of anisotropy can help to discriminate between different rock candidates in the deep crust. Seismic field measurements at the Continental Deep Drilling Site (KTB, S Germany) are shown as an example that anisotropy has to be considered in crustal studies. At the KTB, the dependence of seismic velocity on the direction of wave propagation in situ was found to be compatible with the texture, composition and fracture density of drilled crustal rocks.

  6. Surface compositional mapping by spectral ratioing of ERTS-1 MSS data in the Wind River Basin and Range, Wyoming

    NASA Technical Reports Server (NTRS)

    Vincent, R. K. (Principal Investigator); Salmon, B. C.; Pillars, W. W.; Harris, J. E.

    1975-01-01

    The author has identified the following significant results. ERTS data collected in August and October 1972 were processed on digital and special purpose analog recognition computers using ratio enhancement and pattern recognition. Ratios of band-averaged laboratory reflectances of some minerals and rock types known to be in the scene compared favorably with ratios derived from the data by ratio normalization procedures. A single ratio display and density slice of the visible channels of ERTS MSS data, Channel 5/Channel 4 (R5,4), separated the Triassic Chugwater formation (redbeds) from other formations present and may have enhanced iron oxide minerals present at the surface in abundance. Comparison of data sets collected over the same area at two different times of the year by digital processing indicated that spectral variation due to environmental factors was reduced by ratio processing.

  7. Availability of a library of infrared (2.1-25.0 microns) mineral spectra

    NASA Technical Reports Server (NTRS)

    Salisbury, John W.; Vergo, Norma; Walter, Louis S.

    1989-01-01

    All previously published libraries of infrared mineral spectra are in the form of transmitance. Reflectance spectra are, however, more useful for remote sensing and some potential laboratory applications, such as the use of an infrared microscope for mineral identification on polished sections. This note points out that construction of a new library of infrared (2.1-25.0 microns) mineral spectra is in progress. Both transmittance and reflectance measurements of a selection of 63 different, well-characterized minerals have been published to date. These data are available in both hard copy and digital form.

  8. Treatment of low bone density in young people with cystic fibrosis: a multicentre, prospective, open-label observational study of calcium and calcifediol followed by a randomised placebo-controlled trial of alendronate.

    PubMed

    Bianchi, Maria Luisa; Colombo, Carla; Assael, Baroukh M; Dubini, Antonella; Lombardo, Mariangela; Quattrucci, Serena; Bella, Sergio; Collura, Mirella; Messore, Barbara; Raia, Valeria; Poli, Furio; Bini, Rita; Albanese, Carlina V; De Rose, Virginia; Costantini, Diana; Romano, Giovanna; Pustorino, Elena; Magazzù, Giuseppe; Bertasi, Serenella; Lucidi, Vincenzina; Traverso, Gabriella; Coruzzo, Anna; Grzejdziak, Amelia D

    2013-07-01

    Long-term complications of cystic fibrosis include osteoporosis and fragility fractures, but few data are available about effective treatment strategies, especially in young patients. We investigated treatment of low bone mineral density in children, adolescents, and young adults with cystic fibrosis. We did a multicentre trial in two phases. We enrolled patients aged 5-30 years with cystic fibrosis and low bone mineral density, from ten cystic fibrosis regional centres in Italy. The first phase was an open-label, 12-month observational study of the effect of adequate calcium intake plus calcifediol. The second phase was a 12-month, double-blind, randomised, placebo-controlled, parallel group study of the efficacy and safety of oral alendronate in patients whose bone mineral apparent density had not increased by 5% or more by the end of the observational phase. Patients were randomly assigned to either alendronate or placebo. Both patients and investigators were masked to treatment assignment. We used dual x-ray absorptiometry at baseline and every 6 months thereafter, corrected for body size, to assess lumbar spine bone mineral apparent density. We assessed bone turnover markers and other laboratory parameters every 3-6 months. The primary endpoint was mean increase of lumbar spine bone mineral apparent density, assessed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT01812551. We screened 540 patients and enrolled 171 (mean age 13·8 years, SD 5·9, range 5-30). In the observational phase, treatment with calcium and calcifediol increased bone mineral apparent density by 5% or more in 43 patients (25%). 128 patients entered the randomised phase. Bone mineral apparent density increased by 16·3% in the alendronate group (n=65) versus 3·1% in the placebo group (n=63; p=0·0010). 19 of 57 young people (33·3%) receiving alendronate attained a normal-for-age bone mineral apparent density Z score. In the observational phase, five patients had moderate episodes of hypercalciuria, which resolved after short interruption of calcifediol treatment. During the randomised phase, one patient taking alendronate had mild fever versus none in the placebo group; treatment groups did not differ significantly for other adverse events. Correct calcium intake plus calcifediol can improve bone mineral density in some young patients with cystic fibrosis. In those who do not respond to calcium and calcifediol alone, alendronate can safely and effectively increase bone mineral density. Telethon Foundation (Italy). Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Identification of Uranium Minerals in Natural U-Bearing Rocks Using Infrared Reflectance Spectroscopy.

    PubMed

    Beiswenger, Toya N; Gallagher, Neal B; Myers, Tanya L; Szecsody, James E; Tonkyn, Russell G; Su, Yin-Fong; Sweet, Lucas E; Lewallen, Tricia A; Johnson, Timothy J

    2018-02-01

    The identification of minerals, including uranium-bearing species, is often a labor-intensive process using X-ray diffraction (XRD), fluorescence, or other solid-phase or wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field applications, handheld infrared (IR) reflectance spectrometers can now also be used in industrial or field environments, with rapid, nondestructive identification possible via analysis of the solid's reflectance spectrum providing information not found in other techniques. In this paper, we report the use of laboratory methods that measure the IR hemispherical reflectance of solids using an integrating sphere and have applied it to the identification of mineral mixtures (i.e., rocks), with widely varying percentages of uranium mineral content. We then apply classical least squares (CLS) and multivariate curve resolution (MCR) methods to better discriminate the minerals (along with two pure uranium chemicals U 3 O 8 and UO 2 ) against many common natural and anthropogenic background materials (e.g., silica sand, asphalt, calcite, K-feldspar) with good success. Ground truth as to mineral content was attained primarily by XRD. Identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g., boltwoodite, tyuyamunite, etc.) or non-uranium minerals. The characteristic IR bands generate unique (or class-specific) bands, typically arising from similar chemical moieties or functional groups in the minerals: uranyls, phosphates, silicates, etc. In some cases, the chemical groups that provide spectral discrimination in the longwave IR reflectance by generating upward-going (reststrahlen) bands can provide discrimination in the midwave and shortwave IR via downward-going absorption features, i.e., weaker overtone or combination bands arising from the same chemical moieties.

  10. [Dietary patterns in college freshmen and its relation to bone mineral density].

    PubMed

    Wang, Sufang; Mu, Min; Zhao, Yan; Wang, Xiaoqin; Shu, Long; Li, Qingyan; Li, Yingchun

    2012-07-01

    In order to investigate the bone density of freshmen, and to analyze the association between dietary pattern and bone mineral density (BMD). A questionnaire survey on the situation of dietary pattern was conducted in 1414 freshmen. Effective dietary survey questionnaires and bone mineral density measurements were completed for 1319 participants. Bone mass was assessed by using an Ultrasound Bone Densitometer on the right calcaneus (CM-200, Furuno Electric Corporation, Japan), and the speed of sound (SOS, m/s) was used as an indicator for bone density. Factor analysis with varimax rotation was used to identify the dietary patterns. After adjusting for confounders, covariance with Bonferroni's was used to further examine the associations between dietary patterns and bone mineral density (BMD). (1) Four major dietary patterns were noticed. Western food pattern (high consumption in hamburger, fried food, nuts, biscuit, chocolate, cola, coffee, sugars). Animal protein pattern (high consumption in pork, mutton, beef, poultry meat, animal liver). Calcium pattern (high consumption in fresh fruits, eggs, fish and shrimps, kelp laver and sea fish, milk and dairy products, beans and bean products). Traditional Chinese pattern (high consumption in rice and grain, fresh fruits, fresh vegetables, pork). (2) No association was observed between the western food pattern and bone mineral density. High animal protein pattern showed lower SOS value compared with low animal protein pattern. High calcium pattern showed higher SOS value compared with low calcium pattern. High traditional Chinese pattern showed higher SOS value compared with the low traditional Chinese pattern. Dietary patterns are closely related with bone mineral density (BMD) of freshmen.

  11. [The burden of disease attributed to low bone mineral density among population aged ≥40 years old in China, 1990 and 2013].

    PubMed

    Zhao, Z P; Ai, H H; Li, Y C; Wang, L M; Yin, P; Zhang, M; Deng, Q; Huang, Z J; Liu, J M; Liu, Y N; Gao, Y J; Zhou, M G

    2016-09-06

    Objective: To identify cause-specific death and attributed burden of low bone mineral density in China among population aged ≥40 years old , 1990 and 2013. Methods: By using data from Global Burden of Disease(GBD)2013, this study analyzed death caused by low mineral density, and disability-adjusted life years(DALY)among population aged 40 and above in China(not including Taiwan, China). This study also analyzed DALY by composition of injury which due to low bone mineral density. It also analyzed changes in DALY by provinces in China, 1990 and 2013. An average world population age-structure for the period 2000- 2025 was adopted to calculate the age standardized rates. Results: In 2013, there were 38.1 thousands male and 30.7 thousands female who aged 40 and above dead due to low bone mineral density in China. The burden of injury caused by low bone mineral density was more sever in male than female, which accounted for 1.525 million DALY in male and 0.873 million DALY in female. In 1990, low bone mineral density attributed transportation and accidental injury caused 0.794 million and 0.567 million DALY losses, respectively. In 2013, low bone mineral density attributed transportation and accidental injury caused 1.421 million and 0.951 million DALY losses, respectively. Compared to 1990, DALY losses caused by transportation and accidental injury, increased by 79.1% and 67.6%, respectively. In 1990, DALY rate losses due to low bone mineral density attributed transportation and accidental injury were 68.1 per 100 000 and 48.7 per 100 000, respectively. In 2013, DALY rate losses due to low bone mineral density attributed transportation and accidental injury were 102.0 per 100 000 and 68.2 per 100 000, respectively. Compared to 1990, DALY rates which caused by transportation and accidental injury, increased by 49.8% and 40.2%, respectively. According to the ranking of standardized DALY rate in 2013 by provinces, the top 3 provinces, which standardized DALYs attributed to low bone mineral density lost the most, were Zhejiang Province(2.6 per 100 000), Jiangsu Province(2.4 per 100 000), and Fujian Province(2.2 per 100 000). Compared to 1990, the standardized rate of DALY decreased in 27 provinces, while the DALY rate increased in only 6 provinces which included Ningxia Hui Autonomous Region, Qinghai Province, Hebei Province, Guangxi Zhuang Autonomous Region, and Henan Province and Xinjiang Uygur Autonomous Region. Conclusion: This study found that the burden of health losses attributed to it was higher in men than in women. Compared to 1990, DALY rates decreased in most of the provinces, however, the rates of losses of DALY which caused by transportation and accidental injury were still increasing.

  12. Microscopic iron metal on glass and minerals - A tool for studying regolith maturity

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Morris, R. V.; Lauer, H. V., Jr.; Mckay, D. S.

    1993-01-01

    A novel method of producing mixtures of glass or minerals with iron metal is presented. A portion of the Fe(2+) in basaltic glass and minerals can be reduced to metal in a few hours at 1100 C and an oxygen fugacity well below the iron-wustite buffer. Part of the iron metals forms rounded submicrometer blebs on the surfaces and in some cases within the grains. A concentration of such blebs equivalent to 20-30 percent of a grain's surface area can totally dominate the reflectance spectra of basaltic glass, pyroxene, and olivine. The production of optically opaque iron metal blebs, combined with the decline in Fe(2+), affects the glass and mineral reflectance spectra in three ways: by lowering the overall reflectivity, reducing the spectral contrast of absorption features, and producing a continuum with a general rise in reflectivity toward longer wavelengths.

  13. [High prevalence of osteoporosis in asymptomatic postmenopausal Mapuche women].

    PubMed

    Ponce, Lucía; Larenas, Gladys; Riedemann, Pablo

    2002-12-01

    Genetic and environmental factors are responsible for variations in the frequency of osteoporosis. Prevalence of osteoporosis in Mapuche women (native Chileans) is unknown. To assess the prevalence and risk factors for osteoporosis in Mapuche women. A random sample of 95 asymptomatic postmenopausal Mapuche females, stratified by age, was studied. Women with diseases or medications that could interfere with calcium metabolism were excluded. Spine and femoral neck bone mass density was determined using a Lunar DPX Alpha densitometer. Seventeen percent of women had normal bone mineral density in both spine and femoral neck. In the spine, 25.3% had a normal bone mineral density, 17.9% had osteopenia and 56.8% had osteoporosis. In the femoral neck, 34.7% had a normal bone mineral density, 57.9% had osteopenia, and 7.4% had osteoporosis. There was a positive correlation between bone mineral density and body mass index. Women with more than one hour per day of physical activity, had a significantly lower proportion of osteopenia or osteoporosis. No association between bone mineral density and parity or calcium intake, was observed. There is a high prevalence of osteopenia and osteoporosis among Mapuche women. Osteoporosis was associated with low body mass index.

  14. Ziminaite, Fe3+VO4, a new howardevansite-group mineral from the Bezymyannyi volcano, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Pekov, Igor V.; Siidra, Oleg I.; Yapaskurt, Vasiliy O.; Polekhovsky, Yury S.; Kartashov, Pavel M.

    2018-06-01

    The new mineral ziminaite, ideally Fe3+VO4, was found in fumarole sublimates at the Bezymyannyi volcano, Kamchatka, Russia. Ziminaite occurs as lamellar, tabular or flattened prismatic crystals up to 10 × 30 × 50 μm typically epitaxially overgrowing koksharovite, and as aggregates (up to 0.15 mm) associated with bannermanite in cavities in volcanic scoria. The mineral is translucent, yellowish-brown with an adamantine luster. The calculated density is 3.45 g cm- 3. In reflected light, ziminaite is light grey. Bireflectance is weak, internal reflections are deep yellow. The reflectance values [ R max -R min, % (λ, nm)] are: 17.7-16.3 (470), 15.7-14.1 (546), 15.1-13.8 (589), 14.7-13.6 (650). Chemical composition (wt%) is: MgO 2.20, CaO 0.01, Al2O3 7.81, Fe2O3 27.18, TiO2 4.50, SiO2 0.26, P2O5 0.09, V2O5 57.01, total 99.06. The empirical formula, based on 24 O atoms, is: (Fe3 + 3.29Al1.48Ti0.54Mg0.53)Σ5.84(V6.05Si0.04P0.01)Σ6.10O24 (Z = 1). Ziminaite is triclinic, P \\overline {1}, a 8.012(4), b 9.345(5), c 6.678(3) Å, α 106.992(10), β 101.547(8), γ 96.594(11)º, V 460.4(4) Å3, Z = 6. The strongest reflections of the powder X-ray diffraction pattern [ d,Å( I)( hkl)] are: 3.751(17)(1-21, 12 - 1), 3.539(86)(120), 3.270(67)(01-2), 3.209(100)(2-20), 3.090(20)(2-11, 002), 3.041(18)(03 - 1, 02-2), 2.934(14)(12 - 2, 030) and 1.665(24)(023, 12 - 4). The crystal structure, solved from single-crystal data ( R 1 = 0.085), is based upon heteropolyhedral framework built by VO4 tetrahedra and Fe3+-centred octahedra and five-fold polyhedra. Ziminaite belongs to the howardevansite group being its first member without species-defining uni- or divalent cations and with all large cation sites vacant. The mineral is named after the Zimina volcano situated near the discovery locality.

  15. Spectral reflectance properties (0.4-2.5 um) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulfate-hydrate minerals associated with sulfide-bearing mine waste

    USGS Publications Warehouse

    Crowley, J.K.; Williams, D.E.; Hammarstrom1, J.M.; Piatak, N.; Mars, J.C.; Chou, I-Ming

    2006-01-01

    Fifteen Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate mineral species commonly associated with sulphide bearing mine wastes were characterized by using X-ray powder diffraction and scanning electron microscope methods. Diffuse reflectance spectra of the samples show diagnostic absorption features related to electronic processes involving ferric and/or ferrous iron, and to vibrational processes involving water and hydroxyl ions. Such spectral features enable field and remote sensing based studies of the mineral distributions. Because secondary minerals are sensitive indicators of pH, Eh, relative humidity, and other environmental conditions, spectral mapping of these minerals promises to have important applications to mine waste remediation studies. This report releases digital (ascii) spectra (spectral_data_files.zip) of the fifteen mineral samples to facilitate usage of the data with spectral libraries and spectral analysis software. The spectral data are provided in a two-column format listing wavelength (in micrometers) and reflectance, respectively.

  16. Prediction of low bone mass using a combinational approach of cortical and trabecular bone measures from dental panoramic radiographs.

    PubMed

    Kathirvelu, D; Anburajan, M

    2014-09-01

    The aim of this study is to extract cortical and trabecular features of the mandible and to develop a novel combinational model of mandibular cortical thickness, trabecular bone area and age in order to predict low bone mineral density or osteoporosis from a dental panoramic radiograph. The study involved 64 south Indian women (age = 52.5 ± 12.7 years) categorised into two groups (normal and low bone mineral density) based on total femur bone mineral density. The dental panoramic radiographs were obtained by a digital scanner, and measurement of total bone mineral density at the right femur was performed by a dual-energy X-ray absorptiometry scanner. The mandibular cortical thickness and panoramic mandibular index were measured bilaterally, and the mean values were considered. The region of interest of 128 × 128 pixels around the mental foramen region was manually cropped and subjected to pre-processing, normalisation and average threshold-based segmentation to determine trabecular bone area. Multiple linear regression analyses of cortical and trabecular measures along with age were performed to develop a combinational model to classify subjects as normal and low bone mineral density. The proposed approach demonstrated strong correlation (r = 0.76; p < 0.01) against the total bone mineral density and resulted in accuracy, sensitivity and positive predictive values of 0.84, 0.92 and 0.85, respectively; the receiver operating characteristic outcomes disclosed that the area under the curve was 0.89.Our results suggest that the proposed combinational model could be useful to diagnose subjects with low bone mineral density. © IMechE 2014.

  17. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    USGS Publications Warehouse

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  18. The association between childhood fractures and adolescence bone outcomes: a population-based study, the Tromsø Study, Fit Futures.

    PubMed

    Christoffersen, T; Emaus, N; Dennison, E; Furberg, A-S; Gracia-Marco, L; Grimnes, G; Nilsen, O A; Vlachopoulos, D; Winther, A; Ahmed, L A

    2018-02-01

    Childhood fracture may predict persistent skeletal fragility, but it may also reflect high physical activity which is beneficial to bone development. We observe a difference in the relationship between previous fracture and bone outcome across physical activity level and sex. Further elaboration on this variation is needed. Childhood fracture may be an early marker of skeletal fragility, or increased levels of physical activity (PA), which are beneficial for bone mineral accrual. This study investigated the association between a previous history of childhood fracture and adolescent bone mineral outcomes by various PA levels. We recruited 469 girls and 492 boys aged 15-18 years to this study. We assessed PA levels by questionnaire and measured areal bone mineral density (aBMD) and bone mineral content (BMC) using dual-energy X-ray absorptiometry (DXA) at arm, femoral neck (FN), total hip (TH), and total body (TB) and calculated bone mineral apparent density (BMAD, g/cm 3 ). Fractures from birth to time of DXA measurements were retrospectively recorded. We analyzed differences among participants with and without fractures using independent sample t test. Multiple linear regression was used to examine the association between fractures and aBMD and BMC measurements according to adolescent PA. Girls with and without a previous history of fracture had similar BMC, aBMD, and BMAD at all sites. In multiple regression analyses stratified by physical activity intensity (PAi), there was a significant negative association between fracture and aBMD-TH and BMC-FN yet only in girls reporting low PAi. There was a significant negative association between forearm fractures, BMAD-FN, and BMAD-arm among vigorously active boys. Our findings indicate a negative association between childhood fractures and aBMD/BMC in adolescent girls reporting low PAi. In boys, such an association appears only in vigorously active participants with a history of forearm fractures.

  19. Applied anatomic site study of palatal anchorage implants using cone beam computed tomography.

    PubMed

    Lai, Ren-fa; Zou, Hui; Kong, Wei-dong; Lin, Wei

    2010-06-01

    The purpose of this study was to conduct quantitative research on bone height and bone mineral density of palatal implant sites for implantation, and to provide reference sites for safe and stable palatal implants. Three-dimensional reformatting images were reconstructed by cone beam computed tomography (CBCT) in 34 patients, aged 18 to 35 years, using EZ Implant software. Bone height was measured at 20 sites of interest on the palate. Bone mineral density was measured at the 10 sites with the highest implantation rate, classified using K-mean cluster analysis based on bone height and bone mineral density. According to the cluster analysis, 10 sites were classified into three clusters. Significant differences in bone height and bone mineral density were detected between these three clusters (P<0.05). The greatest bone height was obtained in cluster 2, followed by cluster 1 and cluster 3. The highest bone mineral density was found in cluster 3, followed by cluster 1 and cluster 2. CBCT plays an important role in pre-surgical treatment planning. CBCT is helpful in identifying safe and stable implantation sites for palatal anchorage.

  20. Bone mineral density level by dual energy X-ray absorptiometry in rheumatoid arthritis.

    PubMed

    Makhdoom, Asadullah; Rahopoto, Muhammad Qasim; Awan, Shazia; Tahir, Syed Muhammad; Memon, Shazia; Siddiqui, Khaleeque Ahmed

    2017-01-01

    To observe the level of bone mineral density by Dual Energy X-ray Absorptiometry in rheumatoid arthritis patients. The observational study was conducted at Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan, from January 2011 to December 2014. Bone mineral density was measured from the femoral neck, ward's triangle and lumbar spine, in patients 25-55 years of age, who were diagnosed with rheumatoid arthritis. All the cases were assessed for bone mineral density from appendicular as well as axial skeleton. Data was collected through a designed proforma and analysis was performed using SPSS 21. Of the 229 rheumatoid arthritis patients, 33(14.4%) were males. Five (15.1%) males had normal bone density, 14(42.4%) had osteopenia and 14(42.4%) had osteoporosis. Of the 196(85.5%) females, 45(29.9%) had normal bone density, 72 (37.7%) had osteopenia and 79(40.30%) had osteoporosis. Of the 123(53.7%) patients aged 30-50 years, 38(30.9%) had normal bone density, 59(48.0%) had osteopenia, and 26(21.1%) had osteoporosis. Of the 106(46.3%) patients over 50 years, 12(11.3%) had normal bone density, 27 (25.5%) had osteopenia and 67(63.2%) had osteoporosis. Osteoporosis and osteopenia were most common among rheumatoid arthritis patients. Assessment of bone mineral density by Dual Energy X-ray Absorptiometry can lead to quick relief in the clinical symptoms with timely therapy.

  1. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry

    PubMed Central

    Esfahanizadeh, Nasrin; Davaie, Sotoudeh; Rokn, A. R.; Daneshparvar, Hamid Reza; Bayat, Noushin; Khondi, Nasrin; Ajvadi, Sara; Ghandi, Mostafa

    2013-01-01

    Background: The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. Materials and Methods: A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA) was carried out to determine bone mineral density (BMD) of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson's correlation coefficient. Results: The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001). There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005). There was a negative correlation (P < 0.01) between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. Conclusion: The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones. PMID:24130580

  2. Why is Mineral-Associated Organic Matter Enriched in 15N? Evidence from Grazed Pasture Soil

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.; Wells, N. S.; Mudge, P. L.; Clough, T. J.; Schipper, L. A.; Ghani, A.; Stevenson, B.

    2014-12-01

    Throughout the scientific literature, measurements across soil depth and density fractions suggest that, with few exceptions, mineral-associated organic matter (OM) has higher δ15N than non-mineral-associated OM. This implies that the δ15N difference between N inputs and mineral-stabilized OM may characterize the microbial processes involved in stabilization and mineral association. Yet current understanding of observed N isotope fractionation in terrestrial ecosystems suggests the large isotope effects are expressed during inorganic N transformations from NH4 to gaseous loss pathways of NH3 volatilization and denitrification. How can the relative importance of N isotope fractionation during OM stabilization versus loss pathways be resolved? We recently examined N isofluxes when a temporary nitrogen excess is created by urine deposition in a New Zealand dairy pasture. We found that the N isotopic composition of volatilized NH3, and NO3 available for leaching or denitrification could not be linked back to the added N using Rayleigh distillation models. Instead, the results imply that the added N was immobilized, and the N available for losses was increasingly derived from mineralization of organic matter during the course of the experiment. These results are consistent with recent evidence of enhanced OM mineralization in urine patches, understanding of N isotope mass balances and long-standing evidence that gross mineralization and immobilization fluxes greatly exceed net mineralization and nitrification, except at very high N saturation. These results suggest that where 15N enrichment occurs due to fractionating loss pathways, the isotope effects are primarily transmitted to immobilized N, forming 15N enriched stabilized OM. This further explains earlier findings that the δ15N of soil OM represents an integrated indicator of losses, reflecting the intensity and duration of pastoral agriculture. We suggest that development of an indicator based on δ15N in mineral-associated OM might relate mineralization rates to the δ15N of stabilized or immobilized N.

  3. LOW BONE MINERAL DENSITY AMONG PATIENTS WITH NEWLY DIAGNOSED RHEUMATOID ARTHRITIS.

    PubMed

    Arain, Shafique Rehman; Riaz, Amir; Nazir, Lubna; Umer, Tahira Perveen; Rasool, Tabe

    2016-01-01

    Osteoporosis is an early and common feature in rheumatoid arthritis. Apart from other manifestations, Osteoporosis is an extra-articular manifestation of rheumatoid arthritis whichmay result in increased risk of fractures, morbidity mortality, and associated healthcare costs. This study evaluates bone mineral density changes in patients withrheumatoid arthritis of recent-onset. This cross sectional descriptive study was conducted in the Rheumatology Department of a tertiary care hospital in Karachi. Data was collected from 76 patients presenting with seropositive or seronegative rheumatoid arthritis. Bone mineral density of these patients measured at lumbar spine and hip by using dual energy x-ray absorptiometrys can. Variables like age, gender, BMI, menstrual status, disease duration, erythrocyte sedimentation rate, vitamin D level, clinical disease activity index and seropositivity for rheumatoid arthritis were measured along with outcome variables. A total of 104 patients fulfilling inclusion criteria were registered with 28 excluded from study. A mong the remaining 76 patients, 68 (89.50%) were female, with mean age of patients (with low bone mineral density) as 50.95 ± 7.87 years. Nineteen (25%) patients had low bone mineral density, 68.52% had low BMD at spine while 10.52% at hip and 21.05% at spine and hip both. Low bone mineral density was found higher in patients with seronegative 7 (50%) as compared to seropositive patients 12 (19.4%) (p-value 0.017), whereas low bone mineral d ensity was found higher 12 (70.6%) among post-menopausal women. Low BMD was found in 25% of patients at earlier stage of the rheumatoid arthritis with seropositivity, age and menopausal status as significant risk factors.

  4. The Relationships between Two Different Drinking Water Fluoride Levels, Dental Fluorosis and Bone Mineral Density of Children

    PubMed Central

    Grobler, S.R; Louw, A.J; Chikte, U.M.E; Rossouw, R.J; van W Kotze, T.J.

    2009-01-01

    This field study included the whole population of children aged 10–15 years (77 from a 0.19 mg/L F area; 89 from a 3.00 mg/L F area), with similar nutritional, dietary habits and similar ethnic and socioeconomic status. The fluoride concentration in the drinking water, the bone mineral content, the bone density and the degree of dental fluorosis were determined. The left radius was measured for bone width, bone mineral content, and bone mineral density. The mean fluorosis score was 1.3 in the low fluoride area and 3,6 in the high fluoride area. More than half the children in the low fluoride area had no fluorosis (scores 0 and 1) while only 5% in the high fluoride area had none. Severe fluorosis (30%) was only observed in the high fluoride area. The Wilcoxon Rank Sum Test indicated that fluorosis levels differed significantly (p < 0.05) between the two areas. No relationships were found between dental fluorosis and bone width or between fluorosis and bone mineral density in the two areas (Spearment Rank correlations). A significant increase in bone width was found with age but no differences amongst and boys and girls. A significant positive correlation was found in the high fluoride area between bone mineral density over age. In the 12-13 and 13-14 year age groups in the high fluoride area, girls had higher bone mineral densities. However, a significant negative correlation (p<0.02) was found for the low fluoride area (0.19 mg/L F) over age. PMID:19444344

  5. Bone Mineral Density of Indian Children and Adolescents with Cystic Fibrosis.

    PubMed

    Gupta, Sumita; Mukherjee, Aparna; Khadgawat, Rajesh; Kabra, Madhulika; Lodha, Rakesh; Kabra, Sushil K

    2017-07-15

    To document bone mineral density of children and adolescents with cystic fibrosis. Cross-sectional study. Tertiary-care center of Northern India, July 2012 to August 2015. 52 children aged 6-18 years with cystic fibrosis and 62 healthy controls of similar age and sex. Both patients and controls were stratified into two groups, as pre-pubertal and peri-/post-pubertal, and compared for whole body bone mineral density, measured using dual energy X-ray absorptiometry. Serum levels of calcium, phosphate, alkaline phosphatase, 25-hydroxyvitamin D and parathyroid hormone were measured in children with cystic fibrosis. Compared with controls, the mean (SD) bone mineral density of children with cystic fibrosis was significantly lower in both the pre-pubertal (0.7 (0.1) g/cm2 vs 0.9 (0.1) g/cm2; P<0.001)) and peri-/post-pubertal groups (0.9 (0.1) g/cm2 vs 1.1 (0.1) g/cm2; P<0.001). Also, the mean (SD) bone mineral apparent density of pre-pubertal and peri-/post-pubertal cystic fibrosis patients was lower than the controls (P <0.001 and P= 0.01, respectively). Thirty-seven (71.2%) cystic fibrosis patients had serum 25-hydroxyvitamin D level below 15 ng/mL. Bone mineral density of children with cystic fibrosis was significantly lower than controls; majority of them were vitamin-D deficient. Intervening at an early stage of the disease and providing optimal therapy involving simultaneous management of the several factors affecting bone mineral accretion may be beneficial in improving bone health of these patients.

  6. Meeting calcium recommendations during middle childhood reflects mother-daughter beverage choices and predicts bone mineral status2

    PubMed Central

    Fisher, Jennifer O; Mitchell, Diane C; Smiciklas-Wright, Helen; Mannino, Michelle L; Birch, Leann L

    2008-01-01

    Background Longitudinal data regarding the influence of beverage intakes on calcium adequacy are lacking. Objective This study evaluated calcium intake from ages 5 to 9 y as a function of mother-daughter beverage choices and as a predictor of bone mineral status. Design Intakes of energy, calcium, milk, sweetened beverages, fruit juices, and non-energy-containing beverages were measured with the use of three 24-h dietary recalls in 192 non-Hispanic white girls aged 5, 7, and 9 y and their mothers. Calcium intakes from ages 5 to 9 y were categorized as either meeting or falling below recommended adequate intakes (AIs). The girls’ bone mineral status was assessed with dual-energy X-ray absorptiometry at age 9 y. Results The mean 5-y calcium intake was related to bone mineral density at age 9 y (β = 0.27, P < 0.001). The girls who met the AI for calcium were not heavier (P = 0.83) but had higher energy intakes (P < 0.0001) than did the girls who consumed less than the AI. Compared with the girls who consumed less than the AI, the girls who met the AI consumed, on average, almost twice as much milk (P < 0.0001), had smaller decreases in milk intake (P < 0.01), and consumed 18% less sweetened beverages (P < 0.01) from ages 5 to 9 y; the 2 groups did not differ significantly in juice and non-energy-containing beverage intakes. The girls who met the AI were also served milk more frequently than were the girls who consumed less than the AI (P < 0.0001) and had mothers who drank milk more frequently (P < 0.01) than did the mothers of the girls who consumed less than the AI. Conclusions These findings provide new longitudinal evidence that calcium intake predicts bone mineral status during middle childhood and reflects mother-daughter beverage choice patterns that are established well before the rapid growth and bone mineralization observed in adolescence. PMID:15051617

  7. Availability of a library of infrared (2.1-25.0 μm) mineral spectra

    USGS Publications Warehouse

    Salisbury, John W.; Walter, Louis S.; Vergo, Norma

    1989-01-01

    All previously published libraries of infrared mineral spectra are in the form of transmittance.  Reflectance spectra are, however, more useful for remote sensing and some potential laboratory applications, such as the use of an infrared microscope for mineral identification on polished sections. This note points out that construction of a new library of infrared (2.1-25.0 μm) mineral spectra is in progress. Both transmittance and reflectance measurements of a selection of 63 different, well-characteized minerals have been published to date. These data are available in both hard copy and digital form.

  8. Organic and inorganic molecules as probes of mineral surfaces (Invited)

    NASA Astrophysics Data System (ADS)

    Sverjensky, D. A.

    2010-12-01

    Although the multi-site nature of mineral surfaces is to be expected based on the underlying crystal structure, definitive evidence of the need to use more than one site in modelling proton surface charge or adsorption of a single adsorbate at the mineral-water interface is lacking. Instead, a single-site approach affords a practical way of averaging over all possible crystal planes and sites in a powdered mineral sample. Extensive analysis of published proton surface charge and adsorption of metals on oxide mineral surfaces can be undertaken with a single site density for each mineral based on tritium exchange or estimation from averages of the site densities of likely exposed surfaces. Even in systems with competing metals (e.g. Cu and Pb on hematite), the same site density as used for proton surface charge can be employed depending on the reaction stoichiometry. All of this indicates that protons and metals can bind to a great variety of sites with the same overall site density. However, simple oxyanions such as carbonate, sulfate, selenate, arsenate and arsenite require a much lower site density for a given mineral. For example, on goethite these oxyanions utilize a site density that correlates with the BET surface area of the goethite. In this way, the oxyanions can be thought of as selectively probing the available sites on the mineral. The correlation probably arises because goethites with different BET surface areas have different proportions of singly and multiply-bonded oxygens, and only the singly-bonded oxygens are useful for inner-sphere surface complexation by the ligand exchange mechanism. Small organic molecules behave in a remarkably similar way. For example, adsorption of oxalate on goethite, and aspartate, glutamate, dihydroxyphenylalanine, lysine and arginine on rutile are all consistent with a much smaller site density than those required for metals such as calcium or neodymium. Overall, these results suggest that both inorganic oxyanions and organic molecules containing carboxylate functional groups serve as much more sensitive probes of the surface structures of minerals than do protons or metals.

  9. A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    da Silva, Aline Santana; Fernandes, Flávio Cesar Bedatty; Tognolli, João Olímpio; Pezza, Leonardo; Pezza, Helena Redigolo

    2011-09-01

    This article describes a simple, inexpensive, and environmentally friendly method for the monitoring of glyphosate using diffuse reflectance spectroscopy. The proposed method is based on reflectance measurements of the colored compound produced from the spot test reaction between glyphosate and p-dimethylaminocinnamaldehyde ( p-DAC) in acid medium, using a filter paper as solid support. Experimental designs were used to optimize the analytical conditions. All reflectance measurements were carried out at 495 nm. Under optimal conditions, the glyphosate calibration graphs obtained by plotting the optical density of the reflectance signal (A R) against the concentration were linear in the range 50-500 μg mL -1, with a correlation coefficient of 0.9987. The limit of detection (LOD) for glyphosate was 7.28 μg mL -1. The technique was successfully applied to the direct determination of glyphosate in commercial formulations, as well as in water samples (river water, pure water and mineral drinking water) after a previous clean-up or pre-concentration step. Recoveries were in the ranges 93.2-102.6% and 91.3-102.9% for the commercial formulations and water samples, respectively.

  10. A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy.

    PubMed

    da Silva, Aline Santana; Fernandes, Flávio Cesar Bedatty; Tognolli, João Olímpio; Pezza, Leonardo; Pezza, Helena Redigolo

    2011-09-01

    This article describes a simple, inexpensive, and environmentally friendly method for the monitoring of glyphosate using diffuse reflectance spectroscopy. The proposed method is based on reflectance measurements of the colored compound produced from the spot test reaction between glyphosate and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, using a filter paper as solid support. Experimental designs were used to optimize the analytical conditions. All reflectance measurements were carried out at 495 nm. Under optimal conditions, the glyphosate calibration graphs obtained by plotting the optical density of the reflectance signal (AR) against the concentration were linear in the range 50-500 μg mL(-1), with a correlation coefficient of 0.9987. The limit of detection (LOD) for glyphosate was 7.28 μg mL(-1). The technique was successfully applied to the direct determination of glyphosate in commercial formulations, as well as in water samples (river water, pure water and mineral drinking water) after a previous clean-up or pre-concentration step. Recoveries were in the ranges 93.2-102.6% and 91.3-102.9% for the commercial formulations and water samples, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Atlas of reflectance spectra of terrestrial, lunar and meteoritic powders and frosts from 92 to 1800 nm

    NASA Technical Reports Server (NTRS)

    Wagner, Jeffrey; Hapke, Bruce; Wells, Eddie

    1987-01-01

    The reflectance spectra of powdered samples of selected minerals, meteorites, lunar materials and frosts are presented as an aid in the interpretation of present and future remote sensing data of solar system objects. Spectra obtained in separate wavelength regions have been combined and normalized, yielding coverage from 92 to 1800 nm. Spectral features include reflectance maxima in the far UV region produced by valence-conduction interband transitions, and reflectance minima in the near UV, visible and near IR regions, produced by charge transfer and crystal field transitions. Specific maxima and minima are diagnostic of mineral type and composition; additionally, the minerals present in mixtures such as meteorites and lunar samples can be determined.

  12. Women with previous stress fractures show reduced bone material strength

    PubMed Central

    Duarte Sosa, Daysi; Fink Eriksen, Erik

    2016-01-01

    Background and purpose — Bone fragility is determined by bone mass, bone architecture, and the material properties of bone. Microindentation has been introduced as a measurement method that reflects bone material properties. The pathogenesis of underlying stress fractures, in particular the role of impaired bone material properties, is still poorly understood. Based on the hypothesis that impaired bone material strength might play a role in the development of stress fractures, we used microindentation in patients with stress fractures and in controls. Patients and methods — We measured bone material strength index (BMSi) by microindentation in 30 women with previous stress fractures and in 30 normal controls. Bone mineral density by DXA and levels of the bone markers C-terminal cross-linking telopeptide of type-1 collagen (CTX) and N-terminal propeptide of type-1 procollagen (P1NP) were also determined. Results — Mean BMSi in stress fracture patients was significantly lower than in the controls (SD 72 (8.7) vs. 77 (7.2); p = 0.02). The fracture subjects also had a significantly lower mean bone mineral density (BMD) than the controls (0.9 (0.02) vs. 1.0 (0.06); p = 0.03). Bone turnover—as reflected in serum levels of the bone marker CTX—was similar in both groups, while P1NP levels were significantly higher in the women with stress fractures (55 μg/L vs. 42 μg/L; p = 0.03). There was no correlation between BMSi and BMD or bone turnover. Interpretation — BMSi was inferior in patients with previous stress fracture, but was unrelated to BMD and bone turnover. The lower values of BMSi in patients with previous stress fracture combined with a lower BMD may contribute to the increased propensity to develop stress fractures in these patients. PMID:27321443

  13. BMI, hypertension and low bone mineral density in adult men and women.

    PubMed

    Szklarska, Alicja; Lipowicz, Anna

    2012-08-01

    The aim of this work was to estimate the body mass index (BMI) at which risk of hypertension is lowest in men and women, while concurrently considering the protective role of adipose tissue in osteoporosis. Healthy, occupationally active inhabitants of the city of Wrocław, Poland, 1218 women and 434 men were studied. BMI, systolic and diastolic blood pressures, bone mineral density (BMD) of the trabecular compartment and distal radius of the non-dominant hand were recorded. Overweight in young women (≤45 years) was associated with increased risk of hypertension, whereas the risk of low bone mineral was decreased for the same BMI. In older women (>45 years), a BMI>27 was the threshold for increased risk of hypertension. In this age group, extremely slim women (BMI<21) had the highest risk of low bone mineral density. In younger males (≤45 years), risk of hypertension was lowest among the thinnest subjects (BMI<21). Increase in BMI over 21 kg/m(2) increased the risk of hypertension. The probability of low bone mineral density was the same in all BMI categories of men. In older men (>45 years), the thinnest (BMI<21) had higher risk of hypertension. To begin from BMI=25 kg/m(2), there was a monotonous increase in risk of hypertension in men. Higher risk for low bone mineral density was observed in older men with the BMI<23. Among younger adults, risk of hypertension and low bone mineral density increase at BMI≥21 kg/m(2) in men and BMI≥23 kg/m(2) in women. Among older men and women, the BMI threshold was 27 kg/m(2). Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Molar volumes and densities of minerals

    USGS Publications Warehouse

    Robie, Richard A.; Bethke, Philip M.

    1962-01-01

    These tables present critically chosen "best values" for the density and molar volume of selected mineral compounds. No attempt was made to be all-inclusive; rather we have tried to present data for chemically and physically well-defined phases for which the molar volume and/or density was knovvn to the order of 0. 2 percent.

  15. Identification of mineral composition and weathering product of tuff using reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hyun, C.; Park, H.

    2009-12-01

    Tuff is intricately composed of various types of rock blocks and ash matrixes during volcanic formation processes. Qualitative identification and quantitative assessment of mineral composition of tuff usually have been done using manual inspection with naked-eyes and various chemical analyses. Those conventional methods are destructive to objects, time consuming and sometimes carry out biased results from subjective decision making. To overcome limits from conventional methods, assessment technique using reflectance spectroscopy was applied to tuff specimens. Reflectance spectroscopy measures electromagnetic reflectance on rock surface and can extract diagnostic absorption features originated from chemical composition and crystal structure of constituents in the reflectance curve so mineral species can be discriminated qualitatively. The intrinsic absorption feature from particular mineral can be converted to absorption depth representing relative coverage of the mineral in the measurement area by removing delineated convex hull from raw reflectance curve. The spectral measurements were performed with field spectrometer FieldSpec®3 of ASD Inc. and the wavelength range of measurement was form 350nm to 2500nm. Three types of tuff blocks, ash tuff, green lapilli tuff and red lapilli tuff, were sampled from Hwasun County in Korea and the types of tuffs. The differences between green tuff and red tuff are from the color of their matrixes. Ash tuff consists of feldspars and quartz and small amount of chalcedony, calcite, dolomite, epidote and basalt fragments. Green lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, sericite, chlorite, quartzite and basalt fragments. Red lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, limonite, zircon, chlorite, quartzite and basalt fragments. The tuff rocks were coarsely crushed and blocks and matrixes were separated to measure standard spectral reflectance of each constituent. Unmixing of mineral composition and their weathering products of blocks and matrixes in tuff were conducted and the ratio of mineral composition was calculated for each specimen. This study was supported by National Research Institute of Cultural Heritage (project title: Development on Evaluation Technology for Weathering Degree of Stone Cultural Properties, project no.: 09B011Y-00150-2009).

  16. Detection of changes in bone quality of osteoporotic model induced by sciatic nerve resection by using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishimaru, Yasumitsu; Oshima, Yusuke; Imai, Yuuki; Iimura, Tadahiro; Takanezawa, Sota; Hino, Kazunori; Miura, Hiromasa

    2018-02-01

    To detect the bone quality loss in osteoporosis, we performed Raman spectroscopic analysis of sciatic nerve resection (NX) mice. Eight months after surgery, lower limbs were collected from the mice and fixed with 70% ethanol. Raman spectra of anterior cortical surface of the proximal tibia at 5 points in each bone were measured by RENISHAW inVia Raman Microscope. Excitation wave length was 785 nm. We also performed DXA and micro CT measurement to confirm the bone mineral density and bone microstructure in the osteoporotic model induced by sciatic nerve resection. In the result of Raman spectroscopy, we detected changes of Raman peak intensity ratio in carbonate/phosphate, mineral/combined proline and hydroxyproline and mineral/phenylalanine. In addition, in the result of micro CT, we found significant changes in VOX BV/TV, Trabecular number, thickness, cancellous bone mineral density, cortical thickness and cortical bone mineral density. The results suggest that not only the bone mineral density but also bone quality reduced in the NX mice. We conclude that Raman spectroscopy is a useful for bone quality assessment as a complementary technique for conventional diagnostics.

  17. Increased serum cartilage oligomeric matrix protein levels and decreased patellar bone mineral density in patients with chondromalacia patellae

    PubMed Central

    Murphy, E; FitzGerald, O; Saxne, T; Bresnihan, B

    2002-01-01

    Background: Chondromalacia patellae is a potentially disabling disorder characterised by features of patellar cartilage degradation. Objective: To evaluate markers of cartilage and bone turnover in patients with chondromalacia patellae. Methods: 18 patients with chondromalacia patellae were studied. Serum cartilage oligomeric matrix protein (s-COMP) and bone sialoprotein (s-BSP) levels were measured by enzyme linked immunosorbent assay (ELISA) and compared with those of age and sex matched healthy control subjects. Periarticular bone mineral density (BMD) of both knee joints was assessed by dual energy x ray absorptiometry (DXA). Results: s-COMP levels were significantly raised in all patients with chondromalacia patellae compared with healthy control subjects (p=0.0001). s-BSP levels did not differ significantly between the groups (p=0.41). BMD of the patella was significantly reduced in patients with chondromalacia patellae compared with the control subjects (p=0.016). In patients with bilateral chondromalacia patellae, BMD of the patella was lower in the more symptomatic knee joint (p=0.005). Changes in periarticular BMD were localised to the patella and were not present in femoral regions. Neither s-COMP (p=0.18) nor s-BSP (p=0.40) levels correlated with patellar BMD. Conclusions: Increased s-COMP levels, reflecting cartilage degradation, and reduced BMD localised to the patella may represent clinically useful markers in the diagnosis and monitoring of patients with chondromalacia patellae. Measures of cartilage degradation did not correlate with loss of patellar bone density, suggesting dissociated pathophysiological mechanisms. PMID:12379520

  18. Increased serum cartilage oligomeric matrix protein levels and decreased patellar bone mineral density in patients with chondromalacia patellae.

    PubMed

    Murphy, E; FitzGerald, O; Saxne, T; Bresnihan, B

    2002-11-01

    Chondromalacia patellae is a potentially disabling disorder characterised by features of patellar cartilage degradation. To evaluate markers of cartilage and bone turnover in patients with chondromalacia patellae. 18 patients with chondromalacia patellae were studied. Serum cartilage oligomeric matrix protein (s-COMP) and bone sialoprotein (s-BSP) levels were measured by enzyme linked immunosorbent assay (ELISA) and compared with those of age and sex matched healthy control subjects. Periarticular bone mineral density (BMD) of both knee joints was assessed by dual energy x ray absorptiometry (DXA). s-COMP levels were significantly raised in all patients with chondromalacia patellae compared with healthy control subjects (p=0.0001). s-BSP levels did not differ significantly between the groups (p=0.41). BMD of the patella was significantly reduced in patients with chondromalacia patellae compared with the control subjects (p=0.016). In patients with bilateral chondromalacia patellae, BMD of the patella was lower in the more symptomatic knee joint (p=0.005). Changes in periarticular BMD were localised to the patella and were not present in femoral regions. Neither s-COMP (p=0.18) nor s-BSP (p=0.40) levels correlated with patellar BMD. Increased s-COMP levels, reflecting cartilage degradation, and reduced BMD localised to the patella may represent clinically useful markers in the diagnosis and monitoring of patients with chondromalacia patellae. Measures of cartilage degradation did not correlate with loss of patellar bone density, suggesting dissociated pathophysiological mechanisms.

  19. Reflectance spectroscopy of oxalate minerals and relevance to Solar System carbon inventories

    NASA Astrophysics Data System (ADS)

    Applin, Daniel M.; Izawa, Matthew R. M.; Cloutis, Edward A.

    2016-11-01

    The diversity of oxalate formation mechanisms suggests that significant concentrations of oxalic acid and oxalate minerals could be widely distributed in the Solar System. We have carried out a systematic study of the reflectance spectra of oxalate minerals and oxalic acid, covering the 0.2-16 μm wavelength region. Our analyses show that oxalates exhibit unique spectral features that enable discrimination between oxalate phases and from other commonly occurring compounds, including carbonates, in all regions of the spectrum except for the visible. Using these spectral data, we consider the possible contribution of oxalate minerals to previously observed reflectance spectra of many objects throughout the Solar System, including satellites, comets, and asteroids. We find that polycarboxylic acid dimers and their salts may explain the reflectance spectra of many carbonaceous asteroids in the 3 μm spectral region. We suggest surface concentration of these compounds may be a type of space weathering from the photochemical and oxidative decomposition of the organic macromolecular material found in carbonaceous chondrites. The stability and ubiquity of these minerals on Earth, in extraterrestrial materials, and in association with biological processes make them useful for many applications in Earth and planetary sciences.

  20. Oxyvanite, V3O5, a new mineral species and the oxyvanite-berdesinskiite V2TiO5 series from metamorphic rocks of the Slyudyanka Complex, southern Baikal region

    NASA Astrophysics Data System (ADS)

    Reznitsky, L. Z.; Sklyarov, E. V.; Armbruster, T.; Ushchapovskaya, Z. F.; Galuskin, E. V.; Polekhovsky, Yu. S.; Barash, I. G.

    2010-12-01

    Oxyvanite has been identified as an accessory mineral in Cr-V-bearing quartz-diopside meta- morphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. The new mineral was named after constituents of its ideal formula (oxygen and vanadium). Quartz, Cr-V-bearing tremolite and micas, calcite, clinopyroxenes of the diopside-kosmochlor-natalyite series, Cr-bearing goldmanite, eskolaite-karelianite dravite-vanadiumdravite, V-bearing titanite, ilmenite, and rutile, berdesinskiite, schreyerite, plagioclase, scapolite, barite, zircon, and unnamed U-Ti-V-Cr phases are associated minerals. Oxyvanite occurs as anhedral grains up to 0.1-0.15 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black, with black streak and resinous luster. The microhardness (VHN) is 1064-1266 kg/mm2 (load 30 g), and the mean value is 1180 kg/mm2. The Mohs hardness is about 7.0-7.5. The calculated density is 4.66(2) g/cm3. The color of oxyvanite is pale cream in reflected light, without internal reflections. The measured reflectance in air is as follows (λ, nm- R, %): 440-17.8; 460-18; 480-18.2; 520-18.6; 520-18.6; 540-18.8; 560-18.9; 580-19; 600-19.1; 620-19.2; 640-19.3; 660-19.4; 680-19.5; 700-19.7. Oxyvanite is monoclinic, space group C2/ c; the unit-cell dimensions are a = 10.03(2), b = 5.050(1), c = 7.000(1) Å, β = 111.14(1)°, V = 330.76(5)Å3, Z = 4. The strongest reflections in the X-ray powder pattern [ d, Å, ( I in 5-number scale)( hkl)] are 3.28 (5) (20 bar 2 ); 2.88 (5) (11 bar 2 ); 2.65, (5) (310); 2.44 (5) (112); 1.717 (5) (42 bar 2 ); 1.633 (5) (31 bar 4 ); 1.446 (4) (33 bar 2 ); 1.379 (5) (422). The chemical composition (electron microprobe, average of six point analyses, wt %): 14.04 TiO2, 73.13 V2O3 (53.97 V2O3calc, 21.25 VO2calc), 10.76 Cr2O3, 0.04 Fe2O3, 0.01 Al2O3, 0.02 MgO, total is 100.03. The empirical formula is (V{1.70/3+} Cr0.30)2.0(V{0.59/4+} Ti0.41)1.0O5. Oxyvanite is the end member of the oxyvanite-berdesinskiite series with homovalent isomorphic substitution of V4+ for Ti. The type material has been deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.

  1. [Metabolic status and bone mineral density in patients with pseudarthrosis of long bones in hyperhomocysteinemia].

    PubMed

    Bezsmertnyĭ, Iu O

    2013-06-01

    In article described research of the metabolic status and bone mineral density in 153 patients with with pseudarthrosis of long bones, in individuals with consolidated fractures and healthy people. The violations of reparative osteogenesis at hyperhomocysteinemia are accompanied by disturbances of the functional state of bone tissue, inhibition of biosynthetic and increased destruction processes, reduced bone mineral density in the formation of osteopenia and osteoporosis. The degree and direction of change of bone depends on the type of violation of reparative osteogenesis.

  2. [Disorder of bone mineral density in patients with the digestive system diseases].

    PubMed

    Embutnieks, Iu V; Drozdov, V N; Chernyshova, I V; Topcheeva, O N; Koricheva, E S; Albulova, E A

    2011-01-01

    This article studies the clinical features of the flow of the gastrointestinal tract and liver in the formation of osteopenia and osteoporosis. Were shown the incidence of disorders of bone mineral density in patients with chronic pancreatitis, liver cirrhosis, gallstone disease, inflammatory bowel diseases, and diseases accompanied by syndrome of malabsorption (gluten enteropathy, a syndrome of short small intestine). Were established population (age, sex, lower body mass index, menopause), clinical and laboratory factors indicating high risk of lower bone mineral density in these patients.

  3. Bone mineral loss in young women with amenorrhoea.

    PubMed Central

    Davies, M C; Hall, M L; Jacobs, H S

    1990-01-01

    OBJECTIVE--To examine the impact of amenorrhoea on bone mineral density in women of reproductive age. DESIGN--Cross sectional study of 200 amenorrhoeic women compared with normally menstruating controls. SETTING--Teaching hospital outpatient clinic specialising in reproductive medicine. SUBJECTS--200 Women aged 16-40 with a past or current history of amenorrhoea from various causes and of a median duration of three years, and a control group of 57 age matched normal volunteers with no history of menstrual disorder. MAIN OUTCOME MEASURE--Bone mineral density in the lumbar spine (L1-L4) as measured by dual energy x ray absorptiometry. RESULTS--The amenorrhoeic group showed a mean reduction in bone mineral density of 15% (95% confidence interval 12% to 18%) as compared with controls (mean bone mineral density 0.89 (SD 0.12) g/cm2 v 1.05 (0.09) g/cm2 in controls). Bone loss was related to the duration of amenorrhoea and the severity of oestrogen deficiency rather than to the underlying diagnosis. Patients with a history of fracture had significantly lower bone density than those without a history of fracture. Ten patients had suffered an apparently atraumatic fracture. CONCLUSIONS--Amenorrhoea in young women should be investigated and treated to prevent bone mineral loss. Menopausal women with a past history of amenorrhoea should be considered to be at high risk of osteoporosis. PMID:2224267

  4. Preferential reduction of bone mineral density at the femur reflects impairment of physical activity in patients with low-activity rheumatoid arthritis.

    PubMed

    Sugiguchi, Shigeru; Goto, Hitoshi; Inaba, Masaaki; Nishizawa, Yoshiki

    2010-02-01

    Bone mineral density (BMD) and factors influencing BMD in rheumatoid arthritis (RA) under good or moderate control were examined to assess management of osteoporosis in RA. BMD of the lumbar spine, femur, and distal radius was measured in 105 female patients with well-controlled RA. Laboratory and clinical variables associated with disease activity were measured in the same subjects, and correlations between these variables and BMD were evaluated. The RA patients showed a greater decrease in BMD of the femoral neck than of the lumbar spine. Age, Health Assessment Questionnaire (HAQ) score, and Larsen damage score had negative correlations with BMD of the femoral neck. In multiple regression analysis of the parameters associated with BMD of the femoral neck in simple regression analysis, an increase in HAQ score showed a negative correlation with BMD of the femoral neck. After initiation of treatment with alendronate (ALN), BMD of the femoral neck increased and correlated with improvement in HAQ score. A decrease in BMD of the femoral neck is a characteristic of RA. This suggests that muscle tonus has more effect than weight-bearing activity on BMD in patients with RA. BMD of the femoral neck is a useful index for general evaluation of RA patients.

  5. Application of Natural Mineral Additives in Construction

    NASA Astrophysics Data System (ADS)

    Linek, Malgorzata; Nita, Piotr; Wolka, Paweł; Zebrowski, Wojciech

    2017-12-01

    The article concerns the idea of using selected mineral additives in the pavement quality concrete composition. The basis of the research paper was the modification of cement concrete intended for airfield pavements. The application of the additives: metakaolonite and natural zeolite was suggested. Analyses included the assessment of basic physical properties of modifiers. Screening analysis, assessment of micro structure and chemical microanalysis were conducted in case of these materials. The influence of the applied additives on the change of concrete mix parameters was also presented. The impact of zeolite and metakaolinite on the mix density, oxygen content and consistency class was analysed. The influence of modifiers on physical and mechanical changes of the hardened cement concrete was discussed (concrete density, compressive strength and bending strength during fracturing) in diversified research periods. The impact of the applied additives on the changes of internal structure of cement concrete was discussed. Observation of concrete micro structure was conducted using the scanning electron microscope. According to the obtained lab test results, parameters of the applied modifiers and their influence on changes of internal structure of cement concrete are reflected in the increase of mechanical properties of pavement quality concrete. The increase of compressive and bending strength in case of all analysed research periods was proved.

  6. Hypoparathyroidism: clinical features, skeletal microstructure and parathyroid hormone replacement

    PubMed Central

    Rubin, Mishaela R.; Bilezikian, John P.

    2013-01-01

    Objective Hypoparathyroidism is a disorder in which parathyroid hormone is deficient in the circulation due most often to immunological destruction of the parathyroids or to their surgical removal. The objective of this work was to define the abnormalities in skeletal microstructure as well as to establish the potential efficacy of PTH(1-84) replacement in this disorder. Subjects and methods Standard histomorphometric and μCT analyses were performed on iliac crest bone biopsies obtained from patients with hypoparathyroidism. Participants were treated with PTH(1-84) for two years. Results Bone density was increased and skeletal features reflected the low turnover state with greater BV/TV, Tb. Wi and Ct. Wi as well as suppressed MS and BFR/BS as compared to controls. With PTH(1-84), bone turnover and bone mineral density increased in the lumbar spine. Requirements for calcium and vitamin D fell while serum and urinary calcium concentrations did not change. Conclusion Abnormal microstructure of the skeleton in hypoparathyroidism reflects the absence of PTH. Replacement therapy with PTH has the potential to correct these abnormalities as well as to reduce the requirements for calcium and vitamin D. PMID:20485912

  7. Skeletal development of mice lacking bone sialoprotein (BSP)--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    PubMed

    Bouleftour, Wafa; Boudiffa, Maya; Wade-Gueye, Ndeye Marième; Bouët, Guénaëlle; Cardelli, Marco; Laroche, Norbert; Vanden-Bossche, Arnaud; Thomas, Mireille; Bonnelye, Edith; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie Hélène; Malaval, Luc

    2014-01-01

    Adult Ibsp-knockout mice (BSP-/-) display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn)/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice, while impairing primary mineralization.

  8. The subchondral bone plate.

    PubMed

    Müller-Gerbl, M

    1998-01-01

    Pauwels (1965) and subsequent workers in the same field have shown that the distribution of the subchondral density within a joint surface can serve as a parametric measurement which reflects the main stress acting on a joint. Our own investigations on anatomical specimens have demonstrated that this subchondral mineralization does indeed show regular distribution patterns from which conclusions about the mechanical situation within an individual joint may be drawn. Since radiographical densitometry and histological methods are only available for determining the adaptive reaction of the bone to the particular mechanical situation in a joint after death, the information obtained applies only to an end situation and tells us nothing about the development of the changes with time. Furthermore, investigations carried out on human specimens by radiographical densitometry mostly apply to samples of a particular age, since such specimens can be acquired only from departments of pathology, forensic medicine or anatomy. The functional reactions of the bone tissue to repeated long-term changes in the loading--lengthy immobilization and subsequent remobilization, for instance, or heavy loading over a considerable period of time--cannot be followed by any ordinary method in experimental animals, since the death of the animal is a prerequisite for the precise quantitative examination of the bone tissue. This applies also to attempts to follow the process by means of animal experiments. CT OAM has been developed as a method which, based on CT, can provide a surface representation of the 3-D density distribution in the joints of living subjects. Comparative studies were carried out to establish and confirm the validity of the procedure. These have shown (1) that the results obtained from anatomical specimens are identical with those obtained in the living; (2) that secondary CT sections are suitable for evaluation and that the spectrum of joint surfaces examined can be extended to include the whole joint (if this were not so, effects caused by the apparatus--particularly the partial-volume effect--would render the procedure impossible); and finally (3) that the distribution of the Hounsfield density within the subchondral bone represents the distribution of the mineralization. The mineralization patterns found by us in different joints of normal subjects have shown that these patterns can be brought into line with current models of joint mechanics. The radiocarpal joint, for instance, has revealed the various types of loading occurring within physiological limits. Information has also been obtained about the age-related changes taking place in the hip, wrist and ankle joints. The increase of the total mineralization in gymnasts can be related to the qualitative and quantitative adaptation to an increased peak loading, and reduced mineralization to a lengthy reduction in use during, for instance, postoperative immobilization. In groups of patients with various diseases of mechanical origin (shoulder instability, malalignment of the main axis, defective repositioning of healed fractures, rupture of the rotator cuff, meniscectomy or rupture of the anterior cruciate ligament), a pattern of mineralization is found which is different from the normal picture. These findings reflect the abnormal mechanical situation. The mineralization pattern of the femoropatellar joint has revealed the differing etiologies of medial and lateral cartilage damage and the examination of patients with lunatomalacia has made it possible to recognize a genetic disposition. The postoperative comparison of the mineralization patterns of patients with genu varum who have undergone a correction osteotomy and the results of animal experiments on various procedures for reconstructing the anterior cruciate ligament or a primary replacement of the meniscus, have produced results which make it possible to judge the success or failure of the operation. (ABSTRACT TRUNCATED)

  9. Evaluation of factors related to bone disease in Polish children and adolescents with cystic fibrosis.

    PubMed

    Sands, Dorota; Mielus, Monika; Umławska, Wioleta; Lipowicz, Anna; Oralewska, Beata; Walkowiak, Jarosław

    2015-09-01

    The aim of the study was to evaluate factors related to bone formation and resorption in Polish children and adolescents with cystic fibrosis and to examine the effect of nutritional status, biochemical parameters and clinical status on bone mineral density. The study group consisted of 100 children and adolescents with cystic fibrosis with a mean age 13.4 years old. Anthropometric measurements, included body height, body mass and body mass index (BMI); bone mineral densitometry and biochemical testing were performed. Bone mineral density was measured using a dual-energy X-ray absorption densitometer. Biochemical tests included serum calcium, phosphorus, parathyroid hormone and vitamin D concentrations, as well as 24-h urine calcium and phosphorus excretion. Pulmonary function was evaluated using FEV1%, and clinical status was estimated using the Shwachman-Kulczycki score. Standardized body height, body mass and BMI were significantly lower than in the reference population. Mean serum vitamin D concentration was decreased. Pulmonary disease was generally mild, with a mean FEV1% of 81%. Multivariate linear regression revealed that the only factors that had a significant effect on bone marrow density were BMI and FEV1%. There were no significant correlations between bone mineral density and the results of any of the biochemical tests performed. Nutritional status and bone mineral density were significantly decreased in children and adolescents with cystic fibrosis. In spite of abnormalities in biochemical testing, the factors that were found to have the strongest effect on bone mineral density were standardized BMI and clinical status. Copyright © 2015. Published by Elsevier Urban & Partner Sp. z o.o.

  10. Bone mineral density among systemic lupus erythematosus patient age 5-18 years with glucocorticoid treatment in child and adolescent outpatient clinic, Cipto Mangunkusumo Hospital, Jakarta

    NASA Astrophysics Data System (ADS)

    Indriyani, N.; Tridjaja, B.; Medise, B. E.; Kurniati, N.

    2017-08-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease affecting children; its morbidity and mortality rates are significant. One risk factor for morbidity is chronic corticosteroid use. The aim of this study is to determine the occurrence rate of low bone mineral density; discuss the characteristics, including cumulative and daily doses of corticosteroid, body mass index, Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), calcium, and vitamin D intake; and assess bone metabolism laboratory parameters, including serum calcium, vitamin D, alkaline phosphatase (ALP), phosphorus, and cortisol among children with SLE receiving corticosteroids. This was a descriptive, cross-sectional study involving 16 children with SLE attending the child and adolescent outpatient clinic at Cipto Mangunkusumo Hospital in November-December 2016. Low bone mineral density occurred among 7/16 patients. The mean total bone mineral density was 0.885 ± 0.09 g/cm2. Children with SLE receiving corticosteroid had low calcium (8.69 ± 0.50 mg/dl), vitamin D (19.3 ± 5.4 mg/dl), ALP (79.50 [43.00-164.00] U/l), and morning cortisol level (1.20 [0.0-10.21] ug/dl), as well as calcium (587.58 ± 213.29 mg/d) and vitamin D (2.9 [0-31.8] mcg/d) intake. The occurrence of low bone mineral density was observed among children with SLE receiving corticosteroid treatment. Low bone mineral density tends to occur among patients with higher cumulative doses and longer duration of corticosteroid treatments.

  11. Bone mineral density trends in Indian patients with hyperthyroidism--effect of antithyroid therapy.

    PubMed

    Dhanwal, Dinesh Kumar; Gupta, Nandita

    2011-09-01

    Hyperthyroidism is associated with bone loss, which is reversible after treatment. The extent of reversibility of loss of bone mass density (BMD) in hyperthyroid patients after treatment especially at forearm is not clear. Therefore, the present study was conducted to assess degree of reversibility in bone mineral density following one-year medical treatment in Indian patients with hyperthyroidism. A total of 30 consecutive patients with hyperthyroidism were included in this one year study at All India Institute of Medical Sciences, New Delhi, India. All the patients were assessed for parameters of bone mineral homeostasis such as calcium, phosphorous, alkaline phosphatase, 25-hydroxy vitamin D [25 (OH) D], parathyroid hormone (PTH) at the time of diagnosis and after one year medical treatment. Bone mineral density was measured using Hologic DXA scan at hip, spine and forearm. All the patients received medical therapy with carbimazole. The parameters of bone homeostasis and bone mineral density at base line and after one year medical treatment was compared. All patients attained euthyroid status after eight weeks of carbimazole therapy. Parameters of bone homeostasis such as calcium, phosphorous, 25 (OH) D and PTH did not show any significant change from base line. Bone mineral density expressed as bone mineral content in gm/cm2 at left hip neck, trochanteric and intertrochanteric region was significantly higher after carbimazole therapy (745.2 +/- 127.6 gm/cm2 vs. 688.2 +/- 123.5 gm/cm2; p = 0.02, 573.4 +/- 109.9 gm/cm2 vs. 641.0 +/- 138.0 gm/cm2, p = 0.005 and 1008.6 +/- 185.5 gm/cm2 vs. 938.0 +/- 145.3 gm/cm2 p = 0.0131 respectively). Bone mineral density at lumbar spine expressed as either T and Z score was significantly higher after treatment (10 months of euthyroid state) (-0.6 +/- 1.3 vs. -1.7 +/- 1.2, p = 0.013 and -0.4 +/- 1.2 vs. -1.4 +/- 1.2, p = 0.012 respectively). However Bone mineral measures as T and Z score at left forearm decreased significantly after one year of medical therapy. In Indian patients with hyperthyroidism, the pattern of recovery of bone loss after one year of antithyroid therapy suggests early recovery at hip and lumbar spine and deterioration at forearm.

  12. Different Indices of Fetal Growth Predict Bone Size and Volumetric Density at 4 Years of Age

    PubMed Central

    Harvey, Nicholas C; Mahon, Pamela A; Robinson, Sian M; Nisbet, Corrine E; Javaid, M Kassim; Crozier, Sarah R; Inskip, Hazel M; Godfrey, Keith M; Arden, Nigel K; Dennison, Elaine M; Cooper, Cyrus

    2011-01-01

    We have demonstrated previously that higher birth weight is associated with greater peak and later-life bone mineral content and that maternal body build, diet, and lifestyle influence prenatal bone mineral accrual. To examine prenatal influences on bone health further, we related ultrasound measures of fetal growth to childhood bone size and density. We derived Z-scores for fetal femur length and abdominal circumference and conditional growth velocity from 19 to 34 weeks’ gestation from ultrasound measurements in participants in the Southampton Women’s Survey. A total of 380 of the offspring underwent dual-energy X-ray absorptiometry (DXA) at age 4 years [whole body minus head bone area (BA), bone mineral content (BMC), areal bone mineral density (aBMD), and estimated volumetric BMD (vBMD)]. Volumetric bone mineral density was estimated using BMC adjusted for BA, height, and weight. A higher velocity of 19- to 34-week fetal femur growth was strongly associated with greater childhood skeletal size (BA: r = 0.30, p < .0001) but not with volumetric density (vBMD: r = 0.03, p = .51). Conversely, a higher velocity of 19- to 34-week fetal abdominal growth was associated with greater childhood volumetric density (vBMD: r = 0.15, p = .004) but not with skeletal size (BA: r = 0.06, p = .21). Both fetal measurements were positively associated with BMC and aBMD, indices influenced by both size and density. The velocity of fetal femur length growth from 19 to 34 weeks’ gestation predicted childhood skeletal size at age 4 years, whereas the velocity of abdominal growth (a measure of liver volume and adiposity) predicted volumetric density. These results suggest a discordance between influences on skeletal size and volumetric density. PMID:20437610

  13. Localized tissue mineralization regulated by bone remodelling: A computational approach

    PubMed Central

    Decco, Oscar; Adams, George; Cook, Richard B.; García Aznar, José Manuel

    2017-01-01

    Bone is a living tissue whose main mechanical function is to provide stiffness, strength and protection to the body. Both stiffness and strength depend on the mineralization of the organic matrix, which is constantly being remodelled by the coordinated action of the bone multicellular units (BMUs). Due to the dynamics of both remodelling and mineralization, each sample of bone is composed of structural units (osteons in cortical and packets in cancellous bone) created at different times, therefore presenting different levels of mineral content. In this work, a computational model is used to understand the feedback between the remodelling and the mineralization processes under different load conditions and bone porosities. This model considers that osteoclasts primarily resorb those parts of bone closer to the surface, which are younger and less mineralized than older inner ones. Under equilibrium loads, results show that bone volumes with both the highest and the lowest levels of porosity (cancellous and cortical respectively) tend to develop higher levels of mineral content compared to volumes with intermediate porosity, thus presenting higher material densities. In good agreement with recent experimental measurements, a boomerang-like pattern emerges when plotting apparent density at the tissue level versus material density at the bone material level. Overload and disuse states are studied too, resulting in a translation of the apparent–material density curve. Numerical results are discussed pointing to potential clinical applications. PMID:28306746

  14. Time, space, and composition relations among northern Nevada intrusive rocks and their metallogenic implications

    USGS Publications Warehouse

    duBray, E.A.

    2007-01-01

    Importantly, modal composition, age, and geochemical characteristics of intrusions associated with large mineral deposits along the trends, are indistinguishable from non-mineralized intrusions in northern Nevada and thus do not identify intrusions associated with significant deposits. Moreover, intrusion age and composition show little correlation with mineral-deposit type, abundance, and size. Given the lack of diagnostic characteristics for intrusions associated with deposits, it is uncertain whether age, modal composition, and geochemical data can identify intrusions associated with mineral deposits. These findings suggest that associations between northern Nevada intrusions and mineral deposits reflect superimposition of many geologic factors, none of which was solely responsible for mineral-deposit formation. These factors might include intrusion size, efficiency of fluid and metal extraction from magma, prevailing redox and sulfidation conditions, or derivation of metals and ligands from host rocks and groundwater. The abundance and diversity of mineral deposits in northern Nevada may partly reflect geochemical inheritance, for example, along the mineral trends rather than the influence of petrologically unique magma or associated fluids.

  15. Correlation of quantitative computed tomographic subchondral bone density and ash density in horses.

    PubMed

    Drum, M G; Les, C M; Park, R D; Norrdin, R W; McIlwraith, C W; Kawcak, C E

    2009-02-01

    The purpose of this study was to compare subchondral bone density obtained using quantitative computed tomography with ash density values from intact equine joints, and to determine if there are measurable anatomic variations in mean subchondral bone density. Five adult equine metacarpophalangeal joints were scanned with computed tomography (CT), disarticulated, and four 1-cm(3) regions of interest (ROI) cut from the distal third metacarpal bone. Bone cubes were ashed, and percent mineralization and ash density were recorded. Three-dimensional models were created of the distal third metacarpal bone from CT images. Four ROIs were measured on the distal aspect of the third metacarpal bone at axial and abaxial sites of the medial and lateral condyles for correlation with ash samples. Overall correlations of mean quantitative CT (QCT) density with ash density (r=0.82) and percent mineralization (r=0.93) were strong. There were significant differences between abaxial and axial ROIs for mean QCT density, percent bone mineralization and ash density (p<0.05). QCT appears to be a good measure of bone density in equine subchondral bone. Additionally, differences existed between axial and abaxial subchondral bone density in the equine distal third metacarpal bone.

  16. Spectral reflectance properties (0.4-2.5 μm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes

    USGS Publications Warehouse

    Crowley, J.K.; Williams, D.E.; Hammarstrom, J.M.; Piatak, N.; Chou, I.-Ming; Mars, J.C.

    2003-01-01

    Diffuse reflectance spectra of 15 mineral species commonly associated with sulphide-bearing mine wastes show diagnostic absorption bands related to electronic processes involving ferric and/or ferrous iron, and to vibrational processes involving water and hydroxyl. Many of these absorption bands are relatively broad and overlapping; however, spectral analysis methods, including continuum removal and derivative analysis, permit most of the minerals to be distinguished. Key spectral differences between the minerals are illustrated in a series of plots showing major absorption band centres and other spectral feature positions. Because secondary iron minerals are sensitive indicators of pH, Eh, relative humidity, and other environmental conditions, spectral mapping of mineral distributions promises to have important application to mine waste remediation studies.

  17. IGF-1 and IGF-binding proteins and bone mass, geometry, and strength: relation to metabolic control in adolescent girls with type 1 diabetes.

    PubMed

    Moyer-Mileur, Laurie J; Slater, Hillarie; Jordan, Kristine C; Murray, Mary A

    2008-12-01

    Children and adolescents with poorly controlled type 1 diabetes mellitus (T1DM) are at risk for decreased bone mass. Growth hormone (GH) and its mediator, IGF-1, promote skeletal growth. Recent observations have suggested that children and adolescents with T1DM are at risk for decreased bone mineral acquisition. We examined the relationships between metabolic control, IGF-1 and its binding proteins (IGFBP-1, -3, -5), and bone mass in T1DM in adolescent girls 12-15 yr of age with T1DM (n = 11) and matched controls (n = 10). Subjects were admitted overnight and given a standardized diet. Periodic blood samples were obtained, and bone measurements were performed. Serum GH, IGFBP-1 and -5, glycosylated hemoglobin (HbA(1c)), glucose, and urine magnesium levels were higher and IGF-1 values were lower in T1DM compared with controls (p < 0.05). Whole body BMC/bone area (BA), femoral neck areal BMD (aBMD) and bone mineral apparent density (BMAD), and tibia cortical BMC were lower in T1DM (p < 0.05). Poor diabetes control predicted lower IGF-1 (r(2) = 0.21) and greater IGFBP-1 (r(2) = 0.39), IGFBP-5 (r(2) = 0.38), and bone-specific alkaline phosphatase (BALP; r(2) = 0.41, p < 0.05). Higher urine magnesium excretion predicted an overall shorter, lighter skeleton, and lower tibia cortical bone size, mineral, and density (r(2) = 0.44-0.75, p < 0.05). In the T1DM cohort, earlier age at diagnosis was predictive of lower IGF-1, higher urine magnesium excretion, and lighter, thinner cortical bone (r(2) >or=0.45, p < 0.01). We conclude that poor metabolic control alters the GH/IGF-1 axis, whereas greater urine magnesium excretion may reflect subtle changes in renal function and/or glucosuria leading to altered bone size and density in adolescent girls with T1DM.

  18. Cortical and Trabecular Bone Microstructure Did Not Recover at Weight-Bearing Skeletal Sites and Progressively Deteriorated at Non-Weight-Bearing Sites During the Year Following International Space Station Missions.

    PubMed

    Vico, Laurence; van Rietbergen, Bert; Vilayphiou, Nicolas; Linossier, Marie-Thérèse; Locrelle, Hervé; Normand, Myriam; Zouch, Mohamed; Gerbaix, Maude; Bonnet, Nicolas; Novikov, Valery; Thomas, Thierry; Vassilieva, Galina

    2017-10-01

    Risk for premature osteoporosis is a major health concern in astronauts and cosmonauts; the reversibility of the bone lost at the weight-bearing bone sites is not established, although it is suspected to take longer than the mission length. The bone three-dimensional structure and strength that could be uniquely affected by weightlessness is currently unknown. Our objective is to evaluate bone mass, microarchitecture, and strength of weight-bearing and non-weight-bearing bone in 13 cosmonauts before and for 12 months after a 4-month to 6-month sojourn in the International Space Station (ISS). Standard and advanced evaluations of trabecular and cortical parameters were performed using high-resolution peripheral quantitative computed tomography. In particular, cortical analyses involved determination of the largest common volume of each successive individual scan to improve the precision of cortical porosity and density measurements. Bone resorption and formation serum markers, and markers reflecting osteocyte activity or periosteal metabolism (sclerostin, periostin) were evaluated. At the tibia, in addition to decreased bone mineral densities at cortical and trabecular compartments, a 4% decrease in cortical thickness and a 15% increase in cortical porosity were observed at landing. Cortical size and density subsequently recovered and serum periostin changes were associated with cortical recovery during the year after landing. However, tibial cortical porosity or trabecular bone failed to recover, resulting in compromised strength. The radius, preserved at landing, unexpectedly developed postflight fragility, from 3 months post-landing onward, particularly in its cortical structure. Remodeling markers, uncoupled in favor of bone resorption at landing, returned to preflight values within 6 months, then declined farther to lower than preflight values. Our findings highlight the need for specific protective measures not only during, but also after spaceflight, because of continuing uncertainties regarding skeletal recovery long after landing. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  19. Calcaneal bone mineral density and mechanical strength of the metatarsals.

    PubMed

    Lidtke, R H; Patel, D; Muehleman, C

    2000-10-01

    The primary aim of this study was to determine the predictive value of the bone mineral density of the calcaneus for fracture of the metatarsals. The authors report a strong positive correlation between the bone mineral density of the calcaneus and the four-point bending strength of each of the five metatarsals (r2 = 0.76, 0.64, 0.70, 0.68, and 0.78 for metatarsals 1 through 5, respectively). In addition, the relative strengths of the metatarsals and the correlation with their in vivo loads during gait as previously reported in the literature are discussed.

  20. Liver Enzymes and Bone Mineral Density in the General Population.

    PubMed

    Breitling, Lutz Philipp

    2015-10-01

    Liver enzyme serum levels within and just above the normal range are strong predictors of incident morbidity and mortality in the general population. However, despite the close links between hepatic pathology and impaired bone health, the association of liver enzymes with osteoporosis has hardly been investigated. The aim of the present study was to clarify whether serum liver enzyme levels in the general population are associated with bone mineral density. This was an observational, cross-sectional study. Participants and Main Outcome: Data on 13 849 adult participants of the Third National Health and Nutrition Examination Survey were used to quantify the independent associations of γ-glutamyltransferase, alanine transaminase, and aspartate transaminase with femoral neck bone mineral density assessed by dual-energy x-ray absorptiometry. In multiple regression models adjusting for numerous confounding variables, γ-glutamyltransferase showed a weak inverse association with bone mineral density (P = .0063). There also was limited evidence of a nonmonotonous relationship with alanine transaminase, with peak bone mineral density in the second quartile of enzyme activity (P = .0039). No association was found for aspartate transaminase. Although mechanistically plausible associations were found in the present study, the rather weak nature of these patterns renders it unlikely that liver enzyme levels could be of substantial use for osteoporosis risk stratification in the general population.

  1. Serum leptin, bone mineral density and the healing of long bone fractures in men with spinal cord injury.

    PubMed

    Wang, Lei; Liu, Linjuan; Pan, Zhanpeng; Zeng, Yanjun

    2015-11-16

    Previously reported fracture rates in patients with spinal cord injury range from 1% to 20%. However, the exact role of spinal cord injury in bone metabolism has not yet been clarified. In order to investigate the effects of serum leptin and bone mineral density on the healing of long bone fractures in men with spinal cord injury, 15 male SCI patients and 15 matched controls were involved in our study. The outcome indicated that at 4 and 8 weeks after bone fracture, callus production in patients with spinal cord injury was lower than that in controls. Besides, bone mineral density was significantly reduced at 2, 4 and 8 weeks. In addition, it was found that at each time point, patients with spinal cord injury had significantly higher serum leptin levels than controls and no association was found between serum leptin level and bone mineral density of lumbar vertebrae. Moreover, bone mineral density was positively correlated with bone formation in both of the groups. These findings suggest that in early phases i.e. week 4 and 8, fracture healing was impaired in patients with spinal cord injury and that various factors participated in the complicated healing process, such as hormonal and mechanical factors.

  2. Bone microarchitecture is more severely affected in patients on hemodialysis than in those receiving peritoneal dialysis.

    PubMed

    Pelletier, Solenne; Vilayphiou, Nicolas; Boutroy, Stéphanie; Bacchetta, Justine; Sornay-Rendu, Elisabeth; Szulc, Pawel; Arkouche, Walid; Guebre-Egziabher, Fitsum; Fouque, Denis; Chapurlat, Roland

    2012-09-01

    We used high-resolution quantitative computed tomography to study the microarchitecture of bone in patients with chronic kidney disease on dialysis. We compared bone characteristics in 56 maintenance hemodialysis (21 women, 14 post-menopausal) and 23 peritoneal dialysis patients (9 women, 6 post-menopausal) to 79 healthy men and women from two cohorts matched for age, body mass index, gender, and menopausal status. All underwent dual-energy X-ray absorptiometry of the spine and hip to measure areal bone mineral density, and high-resolution peripheral quantitative computed tomography of the radius and tibia to measure volumetric bone mineral density and microarchitecture. When compared to their matched healthy controls, patients receiving hemodialysis and peritoneal dialysis had a significantly lower areal bone mineral density in the hip. Hemodialysis patients had significantly lower total, cortical, and trabecular volumetric bone mineral density at both sites. Hemodialysis patients had significantly lower trabecular volumetric bone mineral density and microarchitecture at the tibia than the peritoneal dialysis patients. Overall, peritoneal dialysis patients were less affected, their cortical thickness at the distal tibia being the only significant difference versus controls. Thus, we found more severe trabecular damage at the weight-bearing tibia in hemodialysis compared to peritoneal dialysis patients, but this latter finding needs confirmation in larger cohorts.

  3. Friend or foe: high bone mineral density on routine bone density scanning, a review of causes and management.

    PubMed

    Gregson, Celia L; Hardcastle, Sarah A; Cooper, Cyrus; Tobias, Jonathan H

    2013-06-01

    A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders.

  4. Friend or foe: high bone mineral density on routine bone density scanning, a review of causes and management

    PubMed Central

    Hardcastle, Sarah A.; Cooper, Cyrus; Tobias, Jonathan H.

    2013-01-01

    A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders. PMID:23445662

  5. [Analysis of elderly outpatients in relation to nutritional status, sarcopenia, renal function, and bone density].

    PubMed

    Salmaso, Franciany Viana; Vigário, Patrícia dos Santos; Mendonça, Laura Maria Carvalho de; Madeira, Miguel; Vieira Netto, Leonardo; Guimarães, Marcela Rodrigues Moreira; Farias, Maria Lucia Fleiuss de

    2014-04-01

    To evaluate relationships between nutritional status, sarcopenia and osteoporosis in older women. We studied 44 women, 67-94 years, by mini-nutritional assessment (MAN), glomerular filtration corr. 1.73 m(2), body mass index (BMI), arm circumference and calf (CP and CB), bone mineral density and body composition, DXA (fat mass MG; lean MM). We gauge sarcopenia: IMM MM = MSS + MIS/height(2). We used the Pearson correlation coefficient, p < 0.05 as significant. MNA and IMM were positively correlated with BMI, CP, CB and MG. Age influenced negatively FG corr., BMI, FM, IMM and CP. Fourteen had a history of osteoporotic fractures. The lowest T-score was directly related to MAN and MG. CONCLUSIONS The aging caused the decline of FG, fat mass and muscle; the calf circumference, and brachial reflected nutritional status and body composition; and major influences on BMD were nutritional status and fat mass.

  6. The Soy Isoflavones to Reduce Bone Loss (SIRBL) Study: Three Year Effects on pQCT Bone Mineral Density and Strength Measures in Postmenopausal Women

    USDA-ARS?s Scientific Manuscript database

    Soy isoflavones exert inconsistent bone density preserving effects, but the bone strength preserving effects in humans are unknown. Our double-blind randomized controlled trial examined 2 soy isoflavone doses (80 or 120 mg/d) vs placebo tablets on volumetric bone mineral density (vBMD) and strength ...

  7. Menstrual state and exercise as determinants of spinal trabecular bone density in female athletes.

    PubMed Central

    Wolman, R L; Clark, P; McNally, E; Harries, M; Reeve, J

    1990-01-01

    OBJECTIVE--To study the effects of amenorrhoea and intensive back exercise on the bone mineral density of the lumbar spine in female athletes. DESIGN--Cross sectional study comparing amenorrhoeic with eumenorrhoeic athletes and rowers with non-rowers. SETTING--The British Olympic Medical Centre, Northwick Park Hospital. PATIENTS--46 Elite female athletes comprising 19 rowers, 18 runners, and nine dancers, of whom 25 were amenorrhoeic and 21 eumenorrhoeic. MAIN OUTCOME MEASURE--Trabecular bone mineral density of the lumbar spine measured by computed tomography. RESULTS--Mean trabecular bone mineral density was 42 mg/cm3 (95% confidence interval 22 to 62 mg/cm3) lower in the amenorrhoeic than the eumenorrhoeic athletes; this difference was highly significant (p = 0.0002). Mean trabecular bone mineral density was 21 mg/cm3 (1 to 41 mg/cm3) lower in the non-rowers than the rowers; this was also significant (p = 0.05). There was no interaction between these two effects (p = 0.28). CONCLUSION--The effect of intensive exercise on the lumbar spine partially compensates for the adverse effect of amenorrhoea on spinal trabecular bone density. Images p516-a PMID:2207417

  8. Regional distribution of mineral and matrix in the femurs of rats flown on Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Mechanic, Gerald L.; Arnaud, Sara B.; Boyde, Alan; Bromage, Timothy G.; Buckendahl, Patricia

    1990-01-01

    The location and nature of the defect in mineralization known to occur in growing animals after spaceflight are studied. The distribution of bone mineral density in situ is mapped, and these images are correlated with the chemical composition of the diaphyseal bone. Concentrations of mineral and osteocalcin are found to be low in the distal half of the diaphysis and concentrations of collagen to be low with evidence of increased synthesis in the proximal half of the diaphysis of the flight bones. X-ray microtomography indicates a longitudinal gradient of decreasing mineralization toward the distal diaphysis. Analysis of embedded sections by backscattered electrons reveals patterns of mineral distribution in the proximal, central, and distal regions of the diaphysis and also shows a net reduction in mineral levels toward the distal shaft. Increases in mineral density to higher fractions in controls are less in the flight bones at all three levels.

  9. A new mineral species rossovskyite, (Fe3+,Ta)(Nb,Ti)O4: crystal chemistry and physical properties

    NASA Astrophysics Data System (ADS)

    Konovalenko, Sergey I.; Ananyev, Sergey A.; Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Aksenov, Sergey M.; Baeva, Anna A.; Gainov, Ramil R.; Vagizov, Farit G.; Lopatin, Oleg N.; Nebera, Tatiana S.

    2015-11-01

    A new mineral rossovskyite named after L.N. Rossovsky was discovered in granite pegmatites of the Bulgut occurrence, Altai Mts., Western Mongolia. Associated minerals are microcline, muscovite, quartz, albite, garnet of the almandine-spessartine series, beryl, apatite, triplite, zircon, pyrite, yttrobetafite-(Y) and schorl. Rossovskyite forms flattened anhedral grains up to 6 × 6 × 2 cm. The color of the mineral is black, and the streak is black as well. The luster is semi-metallic, dull. Mohs hardness is 6. No cleavage or parting is observed. Rossovskyite is brittle, with uneven fracture. The density measured by the hydrostatic weighing method is 6.06 g/cm2, and the density calculated from the empirical formula is 6.302 g/cm3. Rossovskyite is biaxial, and the color in reflection is gray to dark gray. The IR spectrum contains strong band at 567 cm-1 (with shoulders at 500 and 600 cm-1) corresponding to cation-oxygen stretching vibrations and weak bands at 1093 and 1185 cm-1 assigned as overtones. The reflection spectrum in visible range is obtained. According to the Mössbauer spectrum, the ratio Fe2+:Fe3+ is 35.6:64.4. The chemical composition is as follows (electron microprobe, Fe apportioned between FeO and Fe2O3 based on Mössbauer data, wt%): MnO 1.68, FeO 5.92, Fe2O3 14.66, TiO2 7.69, Nb2O5 26.59, Ta2O5 37.51, WO3 5.61, total 99.66. The empirical formula calculated on four O atoms is: {{Mn}}_{0.06}^{2 + } {{Fe}}_{0.21}^{2 + } {{Fe}}_{0.47}^{3 + } Ti0.25Nb0.51Ta0.43W0.06O4. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is monoclinic, space group P2/ c, a = 4.668(1), b = 5.659(1), c = 5.061(1) Å, β = 90.21(1)º; V = 133.70(4) Å3, Z = 2. Topologically, the structure of rossovskyite is analogous to that of wolframite-group minerals. The crystal-chemical formula of rossovskyite is [(Fe3+, Fe2+, Mn)0.57Ta0.32Nb0.11][Nb0.40Ti0.25Fe0.18Ta0.11W0.06]O4. The strongest lines of the powder X-ray diffraction pattern [ d, Å (I, %) ( hkl)] are as follows: 3.604 (49) (110), 2.938 (100) (-1-11), 2.534 (23) (002), 2.476 (29) (021), 2.337 (27) (200), 1.718 (26) (-202), 1.698 (31) (-2-21), 1.440 (21) (-311). The type specimen of rossovskyite is deposited in the Mineralogical Museum of the Tomsk State University, Tomsk, 634050 Russia, with the inventory number 20927.

  10. Influence of Long-Term Fertilization on Spore Density and Colonization of Arbuscular Mycorrhizal Fungi in a Brown Soil

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Luo, Peiyu; Yang, Jinfeng

    2017-12-01

    This study aims to explore changes of long-term fertilization on spore density and colonization of AMF (Arbuscular mycorrhizal fungi) under a 38-y long-term fertilization in a brown soil. Soil samples (0-20 cm,20-40cm,40-60cm)were taken from the six treatments of the long-term fertilization trial in October 2016:no fertilizer (CK), N1(mineral nitrogen fertilizer), N1P (mineral nitrogen and phosphate fertilizer), N1PK (mineral nitrogen, phosphate and potassic fertilizer), pig manure (M2), M2N1P (pig manure, mineral nitrogen andphosphate fertilizer).Spores were isolated from soils by wet sieving and sucrose density gradient centrifugation; mycorrhizal colonization levels were determined by the gridline intersect. The spore density was highest in the topsoils (0-20 cm), and was decreased with increasing of soil depth in each treatment. The spores density of M2N1P treatment was significantly higher than that of other treatments in each soil layer. Application of inorganic fertilizer (especially inorganic with organic fertilizer) can greatly improve the level of colonization. Our results suggested that long-term fertilization significantly affects spore density and colonization of AMF, however, spore density is not related to colonization rate.

  11. Association of ACTN3 polymorphisms with BMD, and physical fitness of elderly women.

    PubMed

    Min, Seok-Ki; Lim, Seung-Taek; Kim, Chang-Sun

    2016-10-01

    [Purpose] Association of ACTN3 polymorphism with bone mineral density and the physical fitness of elderly women is still unclear. Therefore, this study investigated the association between ACTN3 genotype and bone mineral density, and the physical fitness of elderly women. [Subjects and Methods] Sixty-eight elderly women (67.38 ± 3.68 years) were recruited at a Seongbuk-Gu (Seoul, Korea) Medical Service Public Health Center. Measurements of physical fitness included muscle strength, muscle endurance, flexibility, agility, balance and VO 2 max. Bone mineral density (BMD), upper limb muscle mass, lower limb muscle mass, percent body fat and body fat mass for the entire body were measured by dual-energy X-ray absorptiometry and an analyzer. Genotyping for the ACTN3 R577X (rs1815739) polymorphism was performed using the TaqMan approach. [Results] ACTN3 gene distribution of subjects were in the Hardy-Weinberg equilibrium (p=0.694). The relative bone mineral density trunk, pelvis and spine differed significantly among the ACTN3 genotypes. There were no significant differences among bone mineral densities of the head, arms, legs, ribs and total, but the RR genotype tended to be higher than other genotypes. Physical fitness was not significantly different among the ACTN3 genotypes. [Conclusion] These results suggest that ACTN3 gene polymorphisms could be used as one of the genetic determinants of bone mass in elderly women, and in particular, they indicate that individuals with the RR genotype have higher BMD and bone mineral composition.

  12. Effects of cast-mediated immobilization on bone mineral mass at various sites in adolescents with lower-extremity fracture.

    PubMed

    Ceroni, Dimitri; Martin, Xavier; Delhumeau, Cécile; Rizzoli, René; Kaelin, André; Farpour-Lambert, Nathalie

    2012-02-01

    Leg or ankle fractures occur commonly in the pediatric population and are primarily treated with closed reduction and cast immobilization. The most predictable consequences of immobilization and subsequent weight-bearing restriction are loss of bone mineral mass, substantial muscle atrophy, and functional limitations. The purposes of this study were to determine if lower-limb fractures in adolescents are associated with abnormal bone mineral density or content at the time of fracture, and to quantify bone mineral loss at various sites due to cast-mediated immobilization and limited weight-bearing. We recruited fifty adolescents aged ten to sixteen years who had undergone cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of the total body, lumbar spine, hip, leg, and calcaneus were performed at the time of fracture and at cast removal. Patients with a fracture were paired with healthy controls according to sex and age. Values at baseline and at cast removal, or at equivalent time intervals in the control group, were compared between groups and between the injured and uninjured legs of the adolescents with the fracture. At the time of fracture, there were no observed differences in the bone mineral density or bone mineral content Z-scores of the total body or the lumbar spine, or in the bone mineral density Z-scores of the calcaneus, between the injured and healthy subjects. At cast removal, bone mineral parameters on the injured side were significantly lower than those on the uninjured side in the injured group. Differences ranged from -5.8% to -31.7% for bone mineral density and from -5.2% to -19.4% for bone mineral content. During the cast period, the injured adolescents had a significant decrease of bone mineral density at the hip, greater trochanter, calcaneus, and total lower limb as compared with the healthy controls. Lower-limb fractures are not related to osteopenia in adolescents at the time of fracture. However, osteopenia does develop in the injured limb during cast immobilization for fracture treatment. Further investigation is required to determine if the bone mineral mass will return to normal or if a permanent decrease is to be expected, which may constitute a hypothetical risk of sustaining a second fracture.

  13. Effect of black carbon on dust property retrievals from satellite observations

    NASA Astrophysics Data System (ADS)

    Lin, Tang-Huang; Yang, Ping; Yi, Bingqi

    2013-01-01

    The effect of black carbon on the optical properties of polluted mineral dust is studied from a satellite remote-sensing perspective. By including the auxiliary data of surface reflectivity and aerosol mixing weight, the optical properties of mineral dust, or more specifically, the aerosol optical depth (AOD) and single-scattering albedo (SSA), can be retrieved with improved accuracy. Precomputed look-up tables based on the principle of the Deep Blue algorithm are utilized in the retrieval. The mean differences between the retrieved results and the corresponding ground-based measurements are smaller than 1% for both AOD and SSA in the case of pure dust. However, the retrievals can be underestimated by as much as 11.9% for AOD and overestimated by up to 4.1% for SSA in the case of polluted dust with an estimated 10% (in terms of the number-density mixing ratio) of soot aggregates if the black carbon effect on dust aerosols is neglected.

  14. Visible and near-IR spectral reflectance of geologically important materials: A short review

    NASA Technical Reports Server (NTRS)

    Singer, R. B.

    1982-01-01

    Examples of reflectance spectra are presented and discussed for various mineral groups including pyroxenes, olivene, phylosilicates, amphiboles, feldspars, oxides and hydroxides, carbonates, and mixtures of minerals. The physical sources of some spectral features are also reviewed such as charge transfer and conduction bands, crystal field absorptions, and vibrational absorptions.

  15. Process recognition in multi-element soil and stream-sediment geochemical data

    USGS Publications Warehouse

    Grunsky, E.C.; Drew, L.J.; Sutphin, D.M.

    2009-01-01

    Stream-sediment and soil geochemical data from the Upper and Lower Coastal Plains of South Carolina (USA) were studied to determine relationships between soils and stream sediments. From multi-element associations, characteristic compositions were determined for both media. Primary associations of elements reflect mineralogy, including heavy minerals, carbonates and clays, and the effects of groundwater. The effects of groundwater on element concentrations are more evident in soils than stream sediments. A "winnowing index" was created using ratios of Th to Al that revealed differing erosional and depositional environments. Both soils and stream sediments from the Upper and Lower Coastal Plains show derivation from similar materials and subsequent similar multi-element relationships, but have some distinct differences. In the Lower Coastal Plain, soils have high values of elements concentrated in heavy minerals (Ce, Y, Th) that grade into high values of elements concentrated into finer-grain-size, lower-density materials, primarily comprised of carbonates and feldspar minerals (Mg, Ca, Na, K, Al). These gradational trends in mineralogy and geochemistry are inferred to reflect reworking of materials during marine transgressions and regressions. Upper Coastal Plain stream-sediment geochemistry shows a higher winnowing index relative to soil geochemistry. A comparison of the 4 media (Upper Coastal Plain soils and stream sediments and Lower Coastal Plain soils and stream sediments) shows that Upper Coastal Plain stream sediments have a higher winnowing index and a higher concentration of elements contained within heavy minerals, whereas Lower Coastal Plain stream sediments show a strong correlation between elements typically contained within clays. It is not possible to calculate a functional relationship between stream sediment-soil compositions for all elements due to the complex history of weathering, deposition, reworking and re-deposition. However, depending on the spatial separation of the stream-sediment and soil samples, some elements are more highly correlated than others. Crown Copyright ?? 2009.

  16. A Developed Spectral Identification Tree for Mineral Mapping using Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Gan, Fuping; Wang, Runsheng; Yan, Bokun; Shang, Kun

    2016-04-01

    The relationship between the spectral features and the composition of minerals are the basis of mineral identification using hyperspectral data. The reflectance spectrum of minerals results from the systematic combination of several modes of interaction between electromagnetic energy and mineral particles in the form of reflection and absorption. Minerals tend to have absorbing features at specific wavelengths with a characteristic shape, which can be used as diagnostic indicators for identification. The spectral identification tree (SIT) method for mineral identification is developed in our research to map minerals accurately and applied in some typical mineral deposits in China. The SIT method is based on the diagnostic absorption features of minerals through comparing and statistically analyzing characteristic spectral data of minerals. We establish several levels of identification rules for the type, group and species of minerals using IF-THEN rule according to the spectral identification criteria so that the developed SIT can be further used to map minerals at different levels of detail from mineral type to mineral species. Identifiable minerals can be grouped into six types: Fe2+-bearing, Fe3+-bearing, Mn2+-bearing, Al-OH-bearing, Mg-OH-bearing and carbonate minerals. Each type can be further divided into several mineral groups. Each group contains several mineral species or specific minerals. A mineral spectral series, therefore, can be constructed as "type-group-species-specific mineral (mineral variety)" for mineral spectral identification. It is noted that the mineral classification is based mainly on spectral reflectance characteristics of minerals which may not be consistent with the classification in mineralogy. We applied the developed SIT method to the datasets acquired at the Eastern Tianshan Mountains of Xinjiang (HyMap data) and the Qulong district of Xizang (Hyperion data). In Xinjiang, the two major classes of Al-OH and Mg-OH minerals were mapped firstly. Then montmorillonite, kaolinite and muscovite were identified in the area of the Al-OH bearing minerals, and chlorite and epidote were identified in the area of the Mg-OH bearing minerals. Muscovite of rich Al and poor Al were further identified in the area of muscovite. In Xizang, Al-rich and Al-poor muscovite, kaolinite, chlorite and malachite were identified using SIT method. In all, the developed SIT method can further reduce the effect of other materials and focus on targeted minerals. In particular, the discrimination accuracy will be improved when the most diagnostic absorption spectral features are used in the developed SIT method.

  17. Sex-related differences of bone properties of pelvic limb and bone metabolism indices in 14-month-old ostriches (Struthio camelus).

    PubMed

    Krupski, W; Tatara, M R; Charuta, A; Brodzki, A; Szpetnar, M; Jóźwik, A; Strzałkowska, N; Poławska, E; Łuszczewska-Sierakowska, I

    2018-06-01

    1. Sex-related differences of long pelvic limb bones and serum bone metabolism indices were evaluated in 14-month-old female (N = 7) and male (N = 7) ostriches of similar body weights. 2. Densitometric parameters of femur, tibia and tarsometatarsus were determined using quantitative computed tomography (volumetric bone mineral density, calcium hydroxyapatite density and mean volumetric bone mineral density) and dual energy X-ray absorptiometry (bone mineral density and bone mineral content) methods. Geometrical parameters such as cortical bone area, cross-sectional area, second moment of inertia, mean relative wall thickness and cortical index were determined in the midshaft of bones. Mechanical properties of bones (maximum elastic strength and ultimate strength) were evaluated using three-point bending test. Serum concentrations of free amino acids, osteocalcin, N-terminal propeptide of type I procollagen, C-terminal telopeptides of type II collagen and total antioxidative capacity were also determined. 3. Bone weight and relative bone weight of all bones were significantly higher in males than in females. Significantly lower values of trabecular bone mineral density and calcium hydroxyapatite density were found in the trabecular bone of tibia in males. The highest number of the sex-related differences was observed in the tarsometatarsus where bone length, bone mineral content, cortical bone area, cross-sectional area and ultimate strength were higher in males. Serum concentrations of taurine, hydroxyproline, valine and isoleucine were significantly higher in males. 4. Higher loading of the tarsometatarsus in comparison to femur and tibia may be an important factor interacting with sex hormones in regulation of bone formation and mineralisation processes. Sex-related differences of bone properties were associated with increased serum concentration of selected amino acids in males.

  18. Increased fracture risk and low bone mineral density in patients with loeys-dietz syndrome.

    PubMed

    Tan, Eric W; Offoha, Roosevelt U; Oswald, Gretchen L; Skolasky, Richard L; Dewan, Ashvin K; Zhen, Gehua; Shapiro, Jay R; Dietz, Harry C; Cao, Xu; Sponseller, Paul D

    2013-08-01

    Loeys-Dietz syndrome is a recently recognized connective tissue disorder with widespread systemic involvement. Little is known about its skeletal phenotype. Our goal was to investigate the risk of fracture and incidence of low bone mineral density in patients with Loeys-Dietz syndrome. We performed a cross-sectional, descriptive, survey-based study with subsequent chart review from July 2011 to April 2012. Fifty-seven patients (26 men, 31 women) with Loeys-Dietz syndrome confirmed by genetic testing completed the survey (average age, 25.3 years; range, 0.9-79.6 years). There were a total of 51 fractures (33 patients): 35 fractures in the upper extremities, 14 in the lower extremities, and two in the spine. Fourteen patients (24.6%) reported two or more fractures. There was a 50% risk of fracture by age 14 years. The incidence of any fracture in this cohort was 3.86 per 100 person-years. Seventeen patients had dual-energy X-ray absorptiometry scans available for review, 11 (64.7%) of whom had at least one fracture. Thirteen included lumbar spine absorptiometry reports; eight (61.5%) indicated low or very low bone mineral density. In the left hip, ten of 14 participants (71.4%) had low or very low bone mineral density. In the left femoral neck, nine of 13 participants (69.2%) had low or very low bone mineral density. The lowest Z- and T-scores were not associated with an increased number of fractures. Patients with Loeys-Dietz syndrome have a high risk of fracture and a high incidence of low bone mineral density. Copyright © 2013 Wiley Periodicals, Inc.

  19. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral Surface Materials Map of Quadrangle 3268, Khayr Kot (521) and Urgun (522) Quadrangles, Afghanistan, Showing Iron-bearing Minerals and Other Materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) quadrangles, Afghanistan, showing iron-bearing minerals and other material

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus.

    PubMed

    Medina-Gomez, Carolina; Kemp, John P; Dimou, Niki L; Kreiner, Eskil; Chesi, Alessandra; Zemel, Babette S; Bønnelykke, Klaus; Boer, Cindy G; Ahluwalia, Tarunveer S; Bisgaard, Hans; Evangelou, Evangelos; Heppe, Denise H M; Bonewald, Lynda F; Gorski, Jeffrey P; Ghanbari, Mohsen; Demissie, Serkalem; Duque, Gustavo; Maurano, Matthew T; Kiel, Douglas P; Hsu, Yi-Hsiang; C J van der Eerden, Bram; Ackert-Bicknell, Cheryl; Reppe, Sjur; Gautvik, Kaare M; Raastad, Truls; Karasik, David; van de Peppel, Jeroen; Jaddoe, Vincent W V; Uitterlinden, André G; Tobias, Jonathan H; Grant, Struan F A; Bagos, Pantelis G; Evans, David M; Rivadeneira, Fernando

    2017-07-25

    Bone mineral density is known to be a heritable, polygenic trait whereas genetic variants contributing to lean mass variation remain largely unknown. We estimated the shared SNP heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM) and total-body less head bone mineral density (TBLH-BMD) regions in 10,414 children. The estimated SNP heritability is 43% (95% CI: 34-52%) for TBLH-BMD, and 39% (95% CI: 30-48%) for TB-LM, with a shared genetic component of 43% (95% CI: 29-56%). We identify variants with pleiotropic effects in eight loci, including seven established bone mineral density loci: WNT4, GALNT3, MEPE, CPED1/WNT16, TNFSF11, RIN3, and PPP6R3/LRP5. Variants in the TOM1L2/SREBF1 locus exert opposing effects TB-LM and TBLH-BMD, and have a stronger association with the former trait. We show that SREBF1 is expressed in murine and human osteoblasts, as well as in human muscle tissue. This is the first bivariate GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral density and lean mass.Bone mineral density and lean skeletal mass are heritable traits. Here, Medina-Gomez and colleagues perform bivariate GWAS analyses of total body lean mass and bone mass density in children, and show genetic loci with pleiotropic effects on both traits.

  2. Relationship of bone mineral density to progression of knee osteoarthritis

    USDA-ARS?s Scientific Manuscript database

    Objective. To evaluate the longitudinal relationship between bone mineral density (BMD) and BMD changes and the progression of knee osteoarthritis (OA), as measured by cartilage outcomes. Methods. We used observational cohort data from the Vitamin D for Knee Osteoarthritis trial. Bilateral femoral ...

  3. Quantification of root caries using optical coherence tomography and microradiography: a correlational study.

    PubMed

    Amaechi, Bennett T; Podoleanu, Adrian Gh; Komarov, Gleb; Higham, Susan M; Jackson, David A

    2004-01-01

    The use of transverse microradiography (TMR) to quantify the amount of mineral lost during demineralization of tooth tissue has long been established. In the present study, the use of an en-face Optical Coherence Tomography (OCT) technology to detect and quantitatively monitor the mineral changes in root caries was investigated and correlated with TMR. We used an OCT system, developed initially for retina imaging, and which can collect A-scans, B-scans (longitudinal images) and C-scans (en-face images) to quantitatively assess the development of root caries. The power to the sample was 250 microW, wavelength lambda = 850 nm and the optical source linewidth was 16 microm. Both the transversal and longitudinal images showed the caries lesion as volumes of reduced reflectivity. Quantitative analysis using the A-scan (reflectivity versus depth curve) showed that the tissue reflectivity decreased with increasing demineralization time. A linear correlation (r = 0.957) was observed between the mineral loss measured by TMR and the percentage reflectivity loss in demineralized tissue measured by OCT. We concluded that OCT could be used to detect incipient root caries, and that the reflectivity loss in root tissue during demineralization, measured by OCT, could be related to the amount of mineral lost during the demineralization.

  4. Application of Polychromatic µCT for Mineral Density Determination

    PubMed Central

    Zou, W.; Hunter, N.; Swain, M.V.

    2011-01-01

    Accurate assessment of mineral density (MD) provides information critical to the understanding of mineralization processes of calcified tissues, including bones and teeth. High-resolution three-dimensional assessment of the MD of teeth has been demonstrated by relatively inaccessible synchrotron radiation microcomputed tomography (SRµCT). While conventional desktop µCT (CµCT) technology is widely available, polychromatic source and cone-shaped beam geometry confound MD assessment. Recently, considerable attention has been given to optimizing quantitative data from CµCT systems with polychromatic x-ray sources. In this review, we focus on the approaches that minimize inaccuracies arising from beam hardening, in particular, beam filtration during the scan, beam-hardening correction during reconstruction, and mineral density calibration. Filtration along with lowest possible source voltage results in a narrow and near-single-peak spectrum, favoring high contrast and minimal beam-hardening artifacts. More effective beam monochromatization approaches are described. We also examine the significance of beam-hardening correction in determining the accuracy of mineral density estimation. In addition, standards for the calibration of reconstructed grey-scale attenuation values against MD, including K2PHO4 liquid phantom, and polymer-hydroxyapatite (HA) and solid hydroxyapatite (HA) phantoms, are discussed. PMID:20858779

  5. Correlation between ultrasound velocity and densitometry in fresh and demineralized cortical bone

    PubMed Central

    de Mesquita, Alessandro Queiroz; Barbieri, Giuliano; Barbieri, Claudio Henrique

    2016-01-01

    OBJECTIVE: To compare ultrasound propagation velocity with densitometry in the diaphyseal compact cortical bone of whole sheep metatarsals. METHODS: The transverse ultrasound velocity and bone mineral density of 5-cm-long diaphyseal bone segments were first measured. The bone segments were then divided into four groups of 15 segments each and demineralized in an aqueous 0.5 N hydrochloric acid solution for 6, 12, 24 or 36 hours. All measurements were repeated after demineralization for each time duration and the values measured before and after demineralization were compared. RESULTS: Ultrasound velocity and bone mineral density decreased with demineralization time, and most differences in the pre- and post-demineralization values within each group and between groups were significant: A moderate correlation coefficient (r=0.75956) together with a moderate agreement was determined between both post-demineralization parameters, detected by the Bland-Altman method. CONCLUSION: We conclude that both ultrasound velocity and bone mineral density decrease as a result of demineralization, thus indicating that bone mineral content is of great importance for maintaining the acoustic parameters of cortical bone, as observed for cancellous bone. Ultrasound velocity can be used to evaluate both compact cortical bone quality and bone mineral density. PMID:27982167

  6. Correlation between ultrasound velocity and densitometry in fresh and demineralized cortical bone.

    PubMed

    Mesquita, Alessandro Queiroz de; Barbieri, Giuliano; Barbieri, Claudio Henrique

    2016-11-01

    To compare ultrasound propagation velocity with densitometry in the diaphyseal compact cortical bone of whole sheep metatarsals. The transverse ultrasound velocity and bone mineral density of 5-cm-long diaphyseal bone segments were first measured. The bone segments were then divided into four groups of 15 segments each and demineralized in an aqueous 0.5 N hydrochloric acid solution for 6, 12, 24 or 36 hours. All measurements were repeated after demineralization for each time duration and the values measured before and after demineralization were compared. Ultrasound velocity and bone mineral density decreased with demineralization time, and most differences in the pre- and post-demineralization values within each group and between groups were significant: A moderate correlation coefficient (r=0.75956) together with a moderate agreement was determined between both post-demineralization parameters, detected by the Bland-Altman method. We conclude that both ultrasound velocity and bone mineral density decrease as a result of demineralization, thus indicating that bone mineral content is of great importance for maintaining the acoustic parameters of cortical bone, as observed for cancellous bone. Ultrasound velocity can be used to evaluate both compact cortical bone quality and bone mineral density.

  7. Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra

    NASA Technical Reports Server (NTRS)

    Johnson, Paul E.; Smith, Milton O.; Adams, John B.

    1992-01-01

    Algorithms were developed, based on Hapke's (1981) equations, for remote determinations of mineral abundances and particle sizes from reflectance spectra. In this method, spectra are modeled as a function of end-member abundances and illumination/viewing geometry. The method was tested on a laboratory data set. It is emphasized that, although there exist more sophisticated models, the present algorithms are particularly suited for remotely sensed data, where little opportunity exists to independently measure reflectance versus article size and phase function.

  8. Incidence of Osteoporosis in Patients with Urolithiasis

    PubMed Central

    Bijelic, Radojka; Milicevic, Snjezana; Balaban, Jagoda

    2014-01-01

    ABSTRACT Introduction. Clinical researches have shown an increased bone disintegration and lower bone mass in patients with calcium urolithiasis. Goal. The goal of our research was to establish the incidence of osteoporosis in adult patients with calcium urolithiasis, on the basis of measuring mineral bone density, using DEXA method, with a special reflection on age subgroups. Material and methods. Clinical research was prospective and it was implemented at the University Clinical Center of Banja Luka, at the Clinic for Endocrinology, Diabetes and Metabolic Diseases and at the Urology Clinic. Material in this research consisted of patients divided in two groups, a working and a control group. One hundred and twenty (120) patients were included in both these groups, divided in three age subgroups: 20-40, 40-60 and over 60. The working group consisted of the patients with calcium urolithiasis and the control group consisted of patients without calcium urolithiasis. Establishing of mineral bone density at L2-L4 of lumbal spine vertebrae and hip was done for the patients in both these groups, using DEXA method. Results. Analysis of mineral bone density using DEXA method in patients in age groups of working and control groups, as well as in the total sample of working and control groups, have shown that the patients of the working group, over 60, had a decreased mineral bone density (30% of osteopenia and 15% osteoporosis) significantly more expressed when compared to the other two age groups (12.5% in the subgroup 20-40 and 17.5% in the subgroup 40-60), which presents a statistically significant difference (p<0.05). In the control group, when taking into account age groups, osteopenia and osteoporosis were marked in 37.5% and 2.5% in the group of patients over 60, whereas in the youngest population, 5% of osteopenia was found, which presents a statistically significant difference (p<0.05). When observing the total sample of working and control group, there was a statistically significant difference in the working and control group (p<0.01); incidence of osteoporosis in the working group amounted to 7.5% and in the control group it was 0.8%. Conclusion. Urolithiasis and osteoporosis are two multifactorial diseases which are evidently reciprocal. This is why we suggest that educating the population about the risk factors for occurrence of these diseases as well as preventive measures that may contribute to their decrease should begin as early as possible. PMID:25568567

  9. Effect of whole body vibration training on quadriceps strength, bone mineral density, and functional capacity in children with hemophilia: a randomized clinical trial.

    PubMed

    El-Shamy, S

    2017-06-01

    The objective was to evaluate the effects of whole body vibration training on quadriceps strength, bone mineral density, and functional capacity in children with hemophilia. Thirty children with hemophilia with age ranging from 9 to 13 years were selected and randomly assigned to either the study group that received whole body vibration training (30-40 Hz, 2-4 mm of peak-to-peak vertical plate displacement for 15 minutes/day, 3 days/week/ 12 weeks) plus the conventional physical therapy program or the control group that performed a conventional physical therapy program only. Outcomes included quadriceps strength, bone mineral density, and the functional capacity. Children in the study group showed a significant improvement in all outcomes compared with the control group. The quadriceps peak torque after treatment was 70.26 and 56.46 Nm for the study and control group, respectively (p⟨0.001). The lumbar spine bone mineral density after treatment was 0.85 and 0.72 g/cm 2 for the study and control group, respectively (p⟨0.001). The functional capacity after treatment was 325 and 290 m for the study and control group, respectively (p=0.006). Whole body vibration training is an effective modality in increasing quadriceps strength, bone mineral density, and functional capacity in children with hemophilia.

  10. Silicosis decreases bone mineral density in rats.

    PubMed

    Hui, Zhang; Dingjie, Xu; Yuan, Yuan; Zhongqiu, Wei; Na, Mao; Mingjian, Bei; Yu, Gou; Guangyuan, Liu; Xuemin, Gao; Shifeng, Li; Yucong, Geng; Fang, Yang; Summer, Ross; Hong, Xu

    2018-06-01

    Silicosis is the most common occupational lung disease in China, and is associated with a variety of complications, many of which are poorly understood. For example, recent data indicate that silicosis associates with the development of osteopenia, and in some cases this bone loss is severe, meeting criteria for osteoporosis. Although many factors are likely to contribute to this relationship, including a sedentary lifestyle in patients with advanced silicotic lung disease, we hypothesized that silica might directly reduce bone mineral density. In the present study, six Wistar rats were exposed to silica for 24 weeks in order to induce pulmonary silicosis and examine the relationship to bone mineral density. As expected, all rats exposed to silica developed severe pulmonary fibrosis, as manifested by the formation of innumerable silicotic nodules and the deposition of large amounts of interstitial collagen. Moreover, micro-CT results showed that bone mineral density (BMD) was also significantly reduced in rats exposed to silica when compared control animals and this associated with a modest reduction in serum calcium and 25-hydroxyvitamin D levels. In addition, we found that decreased BMD was also linked to increased osteoclast activity as well as fibrosis-like changes, and to the deposition of silica within bone marrow. In summary, our findings support the hypothesis that silicosis reduces bone mineral density and provide support for ongoing investigations into the mechanisms causing osteopenia in silicosis patients. Copyright © 2018. Published by Elsevier Inc.

  11. Effect of whole body vibration training on quadriceps strength, bone mineral density, and functional capacity in children with hemophilia: a randomized clinical trial

    PubMed Central

    El-Shamy, S.

    2017-01-01

    Objectives: The objective was to evaluate the effects of whole body vibration training on quadriceps strength, bone mineral density, and functional capacity in children with hemophilia. Methods: Thirty children with hemophilia with age ranging from 9 to 13 years were selected and randomly assigned to either the study group that received whole body vibration training (30-40 Hz, 2-4 mm of peak-to-peak vertical plate displacement for 15 minutes/day, 3 days/week/ 12 weeks) plus the conventional physical therapy program or the control group that performed a conventional physical therapy program only. Outcomes included quadriceps strength, bone mineral density, and the functional capacity. Results: Children in the study group showed a significant improvement in all outcomes compared with the control group. The quadriceps peak torque after treatment was 70.26 and 56.46 Nm for the study and control group, respectively (p<0.001). The lumbar spine bone mineral density after treatment was 0.85 and 0.72 g/cm2 for the study and control group, respectively (p<0.001). The functional capacity after treatment was 325 and 290 m for the study and control group, respectively (p=0.006). Conclusions: Whole body vibration training is an effective modality in increasing quadriceps strength, bone mineral density, and functional capacity in children with hemophilia. PMID:28574408

  12. Decreased Bone Mineral Density in Prader-Willi Syndrome: Comparison With Obese Subjects

    PubMed Central

    Butler, Merlin G.; Haber, Lawrence; Mernaugh, Ray; Carlson, Michael G.; Price, Ron; Feurer, Irene D.

    2016-01-01

    Bone density, anthropometric data, and markers of bone turnover were collected on 21 subjects diagnosed with Prader-Willi syndrome (PWS) and compared with 9 subjects with obesity of unknown cause. In addition, urinary N-telopeptide levels were obtained in all subjects. N-telopeptides are the peptide fragments of type I collagen, the major bone matrix material. During periods of active bone degradation or high bone turnover, high levels of N-telopeptides are excreted in the urine. However, no significant difference was detected in the urinary N-telopeptide levels when corrected for creatinine excretion (raw or transformed data) between our subjects with obesity or PWS and the observed effect size of the between-group difference was small. Although N-telopeptide levels were higher but not significantly different in the subjects with PWS compared with obese controls, the subjects with PWS had significantly decreased total bone and spine mineral density and total bone mineral content (all P < 0.001). No differences in N- telopeptide levels or bone mineral density were observed between subjects with PWS and chromosome 15q deletion or maternal disomy. Thus, decreased bone mineral density in subjects with PWS may relate to the lack of depositing bone mineral during growth when bones are becoming more dense (e.g., during adolescence), possibly because of decreased production of sex or growth hormones and/or long-standing hypotonia. It may not be caused by loss, or active degradation, of bone matrix measurable by the methods described in this study further supporting the possible need for hormone therapy during adolescence. PMID:11745993

  13. Association of ACTN3 polymorphisms with BMD, and physical fitness of elderly women

    PubMed Central

    Min, Seok-Ki; Lim, Seung-Taek; Kim, Chang-Sun

    2016-01-01

    [Purpose] Association of ACTN3 polymorphism with bone mineral density and the physical fitness of elderly women is still unclear. Therefore, this study investigated the association between ACTN3 genotype and bone mineral density, and the physical fitness of elderly women. [Subjects and Methods] Sixty-eight elderly women (67.38 ± 3.68 years) were recruited at a Seongbuk-Gu (Seoul, Korea) Medical Service Public Health Center. Measurements of physical fitness included muscle strength, muscle endurance, flexibility, agility, balance and VO2max. Bone mineral density (BMD), upper limb muscle mass, lower limb muscle mass, percent body fat and body fat mass for the entire body were measured by dual-energy X-ray absorptiometry and an analyzer. Genotyping for the ACTN3 R577X (rs1815739) polymorphism was performed using the TaqMan approach. [Results] ACTN3 gene distribution of subjects were in the Hardy-Weinberg equilibrium (p=0.694). The relative bone mineral density trunk, pelvis and spine differed significantly among the ACTN3 genotypes. There were no significant differences among bone mineral densities of the head, arms, legs, ribs and total, but the RR genotype tended to be higher than other genotypes. Physical fitness was not significantly different among the ACTN3 genotypes. [Conclusion] These results suggest that ACTN3 gene polymorphisms could be used as one of the genetic determinants of bone mass in elderly women, and in particular, they indicate that individuals with the RR genotype have higher BMD and bone mineral composition. PMID:27821924

  14. ASTER spectral sensitivity of carbonate rocks - Study in Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Rajendran, Sankaran; Nasir, Sobhi

    2014-02-01

    Remote sensing satellite data plays a vital role and capable in detecting minerals and discriminating rock types for explorations of mineral resources and geological studies. Study of spectral absorption characters of remotely sensed data are under consideration by the exploration and mining companies, and demonstrating the spectral absorption characters of carbonates on the cost-effective multispectral image (rather than the hyperspectral, Lidar image) for easy understanding of all geologists and exploration communities of carbonates is very much important. The present work is an integrated study and an outcome of recently published works on the economic important carbonate rocks, includes limestone, marl, listwaenites and carbonatites occurred in parts of the Sultanate of Oman. It demonstrates the spectral sensitivity of such rocks for simple interpretation over satellite data and describes and distinguishes them based on the absorptions of carbonate minerals in the spectral bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) for mapping and exploration studies. The study results that the ASTER spectral band 8 discriminates the carbonate rocks due to the presence of predominantly occurred carbonate minerals; the ASTER band 5 distinguishes the limestones and marls (more hydroxyl clay minerals) from listwaenite (hydrothermally altered rock) due to the presence of altered minerals and the ASTER band 4 detects carbonatites (ultramafic intrusive alkaline rocks) which contain relatively more silicates. The study on the intensity of the total absorptions against the reflections of these rocks shows that the limestones and marls have low intensity in absorptions (and high reflection values) due to the presence of carbonate minerals (calcite and dolomite) occurred in different proportions. The listwaenites and carbonatites have high intensity of absorptions (low reflection values) due to the occurrence of Mn-oxide in listwaenites and carbonates in carbonatites apart the influence of major carbonate minerals that occurred predominantly in these rocks. The study of ASTER thermal infrared (TIR) spectral bands distinguished the marls have low emissivity of energy due to the presence of hydroxyl bearing alumina-silicate minerals from the other rocks such as limestones, listwaenites and carbonatites which have high emissivity due to the absence of hydroxyl bearing alumina-silicate minerals and the presence of carbonate minerals and carbonates. Further, the study demonstrates and confirms the spectral sensitivity of marls and carbonatites. Marls have high reflectivity in ASTER visible near infrared (VNIR) and shortwave infrared (SWIR) spectral bands and low emissivity of energy in ASTER TIR spectral bands due to the presence of hydroxyl bearing alumina-silicate minerals. Carbonatites have low reflectivity in ASTER VNIR-SWIR spectral bands and high emissivity in ASTER TIR spectral bands due to the absence of hydroxyl bearing alumina-silicate minerals and the presence of the carbonate minerals and carbonates. These have been discussed by providing the grey scale color image of 14 ASTER spectral bands of the study sites. The study is based on the interpretation of image spectra of multispectral image conducted to map such economic valuable carbonate rocks. It provides a simple methods and basic knowledge, which are of great help to the geology and exploration communities. It is recommended to the geologists, industrialists, exploration communities of carbonates and mine owners to take up the knowledge for economic exploration of such deposits. Further, the study has proved that the technique is time and cost effective in mapping of such deposits and can be used to the areas which have extremely rugged topography occurred in similar arid region, where difficult to do exhaustive sampling and not reachable for conventional geological mapping.

  15. Exercise Training and Bone Mineral Density.

    ERIC Educational Resources Information Center

    Lohman, Timothy G.

    1995-01-01

    The effect of exercise on total and regional bone mineral density (BMD) in postmenopausal women is reviewed. Studies on non-estrogen-replete postmenopausal women show 1-2% changes in regional BMD with 1 year of weight-bearing exercises. Studies of exercise training in the estrogen-replete postmenopausal population suggest large BMD changes.…

  16. Osteoporosis in Groups with Intellectual Disability.

    ERIC Educational Resources Information Center

    Center, J. R.; And Others

    1994-01-01

    Fifty-three adults with intellectual impairment referred to an endocrinology clinic in New South Wales (Australia) were measured for lumbar bone mineral density. Bone mineral density was significantly lower in this group than in an age and sex matched control group. Risk factors included male gender, physical inactivity, small body size,…

  17. Correlation Between the Extent of Catalytic Activity and Charge Density of Montmorillonites

    PubMed Central

    Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-01-01

    Abstract The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH3-(CH2)n-NH3]+, where n = 3–16 and 18, and then measuring d(001), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed. Key Words: Mars—Origin of life—Montmorillonite—Mineral catalysis—Layer charge density—X–ray diffractometry. Astrobiology 10, 743–749. PMID:20854214

  18. Spatio-temporal variation in a seed bank of a semi-arid region in northeastern Brazil

    NASA Astrophysics Data System (ADS)

    da Silva, Kleber A.; dos Santos, Danielle M.; dos Santos, Josiene M. F. F.; de Albuquerque, Ulysses P.; Ferraz, Elba M. N.; Araújo, Elcida de L.

    2013-01-01

    This study aimed to evaluate variations in the seed bank within a 3-year temporal series in order to answer the following questions: 1) Does the seed bank's species richness and seed density differ among climatic seasons and between years? 2) Are there differences in the richness and density of seed banks between the litter and mineral soil? 3) Can the seed bank's species richness and seed density be explained by characteristics such as the previous year's precipitation and soil depth (litter or mineral soil)? The samples were collected from litter and mineral soil (0-5 cm), in 210 sub-plots, during the dry and rainy seasons of each year (August 2005 through February 2008). Overall, 79 species were recorded. On average, 1 168, 304 and 302 seeds.m-2 were recorded in the seed bank during years I, II and III, respectively. This study showed that the Caatinga's seed bank is rich in herbaceous species, yet species' density and richness are low in the litter. Furthermore, about 43% of the variation in species richness and density was explained by soil depth (litter and mineral soil) and previous years' rainfall.

  19. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3466, La`l wa Sar Jangal (507) and Bamyan (508) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangles 3668 and 3768, Baghlan (221), Taluqan (222), Imam Sahib (215), and Rustaq (216) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangles 3666 and 3766, Balkh (219), Mazar-e Sharif (220), Qarqin (213), and Hazara Toghai (214) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral surface materials map of quadrangle 3466, La`l wa Sar Jangal (507) and Bamyan (508) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangles 2962 and 3062, Gawdezereh (615), Galachah (616), Chahar Burjak (609), and Khan Neshin (610) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangles 3360 and 3460, Kawir-e Naizar (413), Kohe-Mahmudo-Esmailjan (414), Kol-e Namaksar (407), and Ghoriyan (408) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangle 3268, Khayr Kot (521) and Urgun (522) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangles 2962 and 3062, Gawdezereh (615), Galachah (616), Chahar Burjak (609), and Khan Neshin (610) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangles 3668 and 3768, Baghlan (221), Taluqan (222), Imam Sahib (215), and Rustaq (216) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangles 3664 and 3764, Char Shengo (123), Shibirghan (124), Jalajin (117), and Kham-Ab (118) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral Surface Materials Map of Quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) Quadrangles, Afghanistan, Showing Carbonates, Phyllosilicates, Sulfates, Altered Minerals, and Other Materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangles 3666 and 3766, Balkh (219), Mazar-e Sharif (220), Qarqin (213), and Hazara Toghai (214) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangles 3360 and 3460, Kawir-e Naizar (413), Kohe-Mahmudo-Esmailjan (414), Kol-e Namaksar (407), and Ghoriyan (408) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral surface materials map of quadrangle 3260, Dasht-e-Chah-e-Mazar (419) and Anar Darah (420) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangle 3260, Dasht-e-Chah-e-Mazar (419) and Anar Darah (420) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangles 3664 and 3764, Char Shengo (123), Shibirghan (124), Jalajin (117), and Kham-Ab (118) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Geothermal studies in oil field districts of North China

    NASA Astrophysics Data System (ADS)

    Wang, Ji-An; Wang, Ji-Yang; Yan, Shu-Zhen; Lu, Xiu-Wen

    In North China, Tertiary sediments give the main oil-genetic series. The mean value of terrestrial heat flow density has been considered to be 60 - 65 mW/m2, and the geothermal gradient in Tertiary sediments usually ranges from 30 to 40° C/km in the region studied. Supposing that the onset of oil generation lies at about 90° C, the upper limit of the depth of oil-generation is at about 2000 to 2500 m depth. Recent paleogeothermal studies using vitrinite reflectance, clay and authigenic minerals, as well as other methods showed that in Eocene the geothermal gradient has been higher than at present. Some results were obtained and discussed.

  17. Assessment of bone mineral density by DXA and the trabecular microarchitecture of the calcaneum by texture analysis in pre- and postmenopausal women in the evaluation of osteoporosis.

    PubMed

    Karunanithi, R; Ganesan, S; Panicker, T M R; Korath, M Paul; Jagadeesan, K

    2007-10-01

    The in vivo evaluation of trabecular bone structure could be useful in the diagnosis of osteoporosis for the characterization of therapeutic response and understanding the role of parameters other than bone mineral density (BMD) in defining skeletal status. This study was made to evaluate changes taking place in the trabecular architecture of bone with age and menopausal status in women. The findings are compared with the femoral neck bone as well as the trochantar bone mineral density determined by dual energy X-ray absorptiometry (DXA), which is a standard reference test for evaluation of osteoporosis. Seventy females were recruited for the study, 25 premenopausal (mean age ± SD: 39.4 ± 3.8) and 45 postmenopausal (mean age ± SD: 57.9 ± 7.9) women. The right femoral neck bone mineral density was measured for them by dual energy X-ray absorptiometry (DXA). For the same individuals, lateral view radiographs of the right calcaneum were taken as well. The radiographs were digitized and the region of interest (ROI) of 256 × 256 pixels was selected, the run length matrix was computed for calculating seven parameters [Table 1] and the two dimensional fast Fourier transform of the image was calculated. Using the FFT, the power spectral density (PSD) was derived and the root mean square (RMS) value was determined. Our results confirm that age has a significant influence on the texture of the trabecular bone and bone mineral density.

  18. Nickeltalmessite, Ca2Ni(AsO4)2 · 2H2O, a new mineral species of the fairfieldite group, Bou Azzer, Morocco

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Mukhanova, A. A.; Möckel, S.; Belakovsky, D. I.; Levitskaya, L. A.

    2010-12-01

    Nickeltalmessite, Ca2Ni(AsO4)2 · 2H2O, a new mineral species of the fairfieldite group, has been found in association with annabergite, nickelaustinite, pecoraite, calcite, and a mineral of the chromite-manganochromite series from the dump of the Aït Ahmane Mine, Bou Azzer ore district, Morocco. The new mineral occurs as spheroidal aggregates consisting of split crystals up to 10 × 10 × 20 μm in size. Nickeltalmessite is apple green, with white streak and vitreous luster. The density measured by the volumetric method is 3.72(3) g/cm3; calculated density is 3.74 g/cm3. The new mineral is colorless under a microscope, biaxial, positive: α = 1.715(3), β = 1.720(5), γ = 1.753(3), 2 V meas = 80(10)°, 2 V calc = 60.4. Dispersion is not observed. The infrared spectrum is given. As a result of heating of the mineral in vacuum from 24° up to 500°C, weight loss was 8.03 wt %. The chemical composition (electron microprobe, wt %) is as follows: 25.92 CaO, 1.23 MgO, 1.08 CoO, 13.01 NiO, 52.09 As2O5; 7.8 H2O (determined by the Penfield method); the total is 101.13. The empirical formula calculated on the basis of two AsO4 groups is Ca2.04(Ni0.77Mg0.13Co0.06)Σ0.96 (AsO4)2.00 · 1.91H2O. The strongest reflections in the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are: 5.05 (27) (001) (100), 3.57 (43) (011), 3.358 (58) (110), 3.202 (100) (020), 3.099 (64) (0 bar 2 1), 2.813 (60), ( bar 1 21), 2.772 (68) (2 bar 1 0), 1.714 (39) ( bar 3 31). The unit-cell dimensions of the triclinic lattice (space group P1 or P) determined from the X-ray powder data are: a = 5.858(7), b = 7.082(12), c = 5.567(6) Å, α = 97.20(4), β = 109.11(5), γ = 109.78(5)°, V = 198.04 Å3, Z = 1. The mineral name emphasizes its chemical composition as a Ni-dominant analogue of talmessite. The type material of nickeltalmessite is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, registration number 3750/1.

  19. Tomographic imaging of bone composition using coherently scattered x rays

    NASA Astrophysics Data System (ADS)

    Batchelar, Deidre L.; Dabrowski, W.; Cunningham, Ian A.

    2000-04-01

    Bone tissue consists primarily of calcium hydroxyapatite crystals (bone mineral) and collagen fibrils. Bone mineral density (BMD) is commonly used as an indicator of bone health. Techniques available at present for assessing bone health provide a measure of BMD, but do not provide information about the degree of mineralization of the bone tissue. This may be adequate for assessing diseases in which the collagen-mineral ratio remains constant, as assumed in osteoporosis, but is insufficient when the mineralization state is known to change, as in osteomalacia. No tool exists for the in situ examination of collagen and hydroxyapatite density distributions independently. Coherent-scatter computed tomography (CSCT) is a technique we are developing that produces images of the low- angle scatter properties of tissue. These depend on the molecular structure of the scatterer making it possible to produce material-specific maps of each component in a conglomerate. After corrections to compensate for exposure fluctuations, self-attenuation of scatter and the temporal response of the image intensifier, material-specific images of mineral, collagen, fat and water distributions are obtained. The gray-level in these images provides the volumetric density of each component independently.

  20. Bone mineral density, serum albumin and serum magnesium.

    PubMed

    Saito, Noboru; Tabata, Naoto; Saito, Saburou; Andou, Yoshihisa; Onaga, Yukiko; Iwamitsu, Akihiro; Sakamoto, Morihide; Hori, Tuyoshi; Sayama, Harumi; Kawakita, Toshiko

    2004-12-01

    This study explores clinical and laboratory abnormalities that contribute to the prevalence of bone fractures in frail and control elderly patients, to ascertain factors that relate to bone strength and fragility. Patients were selected as free from renal failure and not taking supplements or medications that affect their magnesium status, and categorized according to their underlying diseases, sex and age, and evaluated by tests of bone strength. Findings, differentiating elderly patients on the basis of their magnesium, calcium, serum albumin, body mass, bone mineral density and their fracture occurrence were tabulated. Evidence is presented of low magnesium and albumin serum levels, especially in women with low bone density, as well as of low calcium and trace minerals.

  1. Optical changes of dentin in the near-IR as a function of mineral content

    NASA Astrophysics Data System (ADS)

    Berg, Rhett A.; Simon, Jacob C.; Fried, Daniel; Darling, Cynthia L.

    2017-02-01

    The optical properties of human dentin can change markedly due to aging, friction from opposing teeth, and acute trauma, resulting in the formation of transparent or sclerotic dentin with increased mineral density. The objective of this study was to determine the optical attenuation coefficient of human dentin tissues with different mineral densities in the near-infrared (NIR) spectral regions from 1300-2200 nm using NIR transillumination and optical coherence tomography (OCT). N=50 dentin samples of varying opacities were obtained by sectioning whole extracted teeth into 150 μm transverse sections at the cemento-enamel junction or the apical root. Transillumination images were acquired with a NIR camera and attenuation measurements were acquired at various NIR wavelengths using a NIR sensitive photodiode. Samples were imaged with transverse microradiography (gold standard) in order to determine the mineral density of each sample.

  2. Biologically controlled minerals as potential indicators of life

    NASA Technical Reports Server (NTRS)

    Schwartz, D. E.; Mancinelli, R. L.; Kaneshiro, E.

    1991-01-01

    Minerals can be produced and deposited either by abiotic or biologic means. Regardless of their origin, mineral crystals reflect the environment conditions (e.g., temperature, pressure, chemical composition, and redox potential) present during crystal formation. Biologically-produced mineral crystals are grown or reworked under the control of their host organism and reflect an environment different from the abiotic environment. In addition, minerals of either biologic or abiotic origin have great longevities. For these reasons, biologically produced minerals have been proposed as biomarkers. Biomarkers are key morphological, chemical, and isotopic signatures of living systems that can be used to determine if life processes have occurred. Studies of biologically controlled minerals produced by the protist, Paramecium tetraurelia, were initiated since techniques have already been developed to culture them and isolate their crystalline material, and methods are already in place to analyze this material. Two direct crystalline phases were identified. One phase, whose chemical composition is high in Mg, was identified as struvite. The second phase, whose chemical composition is high in Ca, has not been previously found occurring naturally and may be considered a newly discovered material. Analyses are underway to determine the characteristics of these minerals in order to compare them with characteristics of these minerals in order to compare them with characteristics of minerals formed abiotically, but with the same chemical composition.

  3. Associations of low vitamin D and elevated parathyroid hormone concentrations with bone mineral density in perinatally HIV-infected children

    USDA-ARS?s Scientific Manuscript database

    Background: Perinatally HIV-infected (PHIV) children have, on average, lower bone mineral density (BMD) than perinatally HIV-exposed uninfected (PHEU) and healthy children. Low 25-hydroxy vitamin D [25(OH)D] and elevated parathyroid hormone (PTH) concentrations may lead to suboptimal bone accrual. ...

  4. Association between sleep duration, insomnia symptoms and bone mineral density in older Puerto Rican adults

    USDA-ARS?s Scientific Manuscript database

    Objective: To examine the association between sleep patterns (sleep duration and insomnia symptoms) and total and regional bone mineral density (BMD) among older Boston Puerto Rican adults. Materials/Methods: We conducted a cross-sectional study including 750 Puerto Rican adults, aged 47–79 y livi...

  5. Longitudinal study of bone loss in chronic spinal cord injury patients

    PubMed Central

    Karapolat, Inanc; Karapolat, Hale Uzumcugil; Kirazli, Yesim; Capaci, Kazim; Akkoc, Yesim; Kumanlioglu, Kamil

    2015-01-01

    [Purpose] This prospective longitudinal study evaluated the changes in bone metabolism markers and bone mineral density of spinal cord injury patients over 3 years. We also assessed the relationships among the bone mineral density, bone metabolism, and clinical data of spinal cord injury patients. [Subjects and Methods] We assessed the clinical data (i.e., immobilization due to surgery, neurological status, neurological level, and extent of lesion) in 20 spinal cord injury patients. Bone mineral density, and hormonal and biochemical markers of the patients were measured at 0, 6, 12, and 36 months. [Results] Femoral neck T score decreased significantly at 36 months (p < 0.05). Among the hormonal markers, parathyroid hormone and vitamin D were significantly elevated, while bone turnover markers (i.e., deoxypyridinoline and osteocalcin) were significantly decreased at 12 and 36 months (p < 0.05). [Conclusion] Bone mineral density of the femoral neck decreases significantly during the long-term follow-up of patients with spinal cord injury due to osteoporosis. This could be due to changes in hormonal and bone turnover markers. PMID:26157234

  6. Spatial patterns in heavy-mineral concentrations along the Curonian Spit coast, southeastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Pupienis, Donatas; Buynevich, Ilya; Ryabchuk, Daria; Jarmalavičius, Darius; Žilinskas, Gintautas; Fedorovič, Julija; Kovaleva, Olga; Sergeev, Alexander; Cichoń-Pupienis, Anna

    2017-08-01

    The 98-km-long Curonian Spit is fronted by beaches mainly composed of quartz sand with minor high-density fractions. In this study heavy-mineral concentration (HMC) trends and grain-size statistical parameters were used to assess their role as indicators of natural processes, human activities, and patterns of longshore transport. A total of 92 surface sand samples were collected at 1 km intervals from the middle of the beach along the Baltic Sea shoreline of the spit between Klaipėda strait in Lithuania and Zelenogradsk in Russia. HMC contribution was assessed in the laboratory using bulk low-field magnetic susceptibility (MS) as a proxy for ferrimagnetic and paramagnetic mineral content. Quartz-dominated (background) sand is generally characterized by low MS values of κ < 50 μSI, whereas higher values κ > 150 μSI are typical for heavy-mineral-rich sand. The greatest MS values along the middle of the beach occur in the southern part of the spit and are 40 times higher than in the northern sector. This pattern suggests the existence of a longshore particle flux with HMC distribution having the potential as a useful tracer of longshore sediment transport. Local anomalously high MS excursions are associated with contribution of iron-rich materials from adjacent man-made structures. Therefore, temporally constrained HMC distribution along the middle of the beach reflects the cumulative effect of antecedent geologic framework, longshore sediment transfer, erosional and accretionary processes, wave and wind climate, and local coastal protective structures.

  7. Mineral density volume gradients in normal and diseased human tissues

    DOE PAGES

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; ...

    2015-04-09

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-raymore » fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.« less

  8. Mineral density volume gradients in normal and diseased human tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-raymore » fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.« less

  9. Mineral density volume gradients in normal and diseased human tissues.

    PubMed

    Djomehri, Sabra I; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W; Yun, Wenbing; Lau, S H; Webb, Samuel; Ho, Sunita P

    2015-01-01

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095 mg/cc, bone: 570-1415 mg/cc, cementum: 1240-1340 mg/cc, dentin: 1480-1590 mg/cc, cementum affected by periodontitis: 1100-1220 mg/cc, hypomineralized carious dentin: 345-1450 mg/cc, hypermineralized carious dentin: 1815-2740 mg/cc, and dental calculus: 1290-1770 mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.

  10. Mineral Density Volume Gradients in Normal and Diseased Human Tissues

    PubMed Central

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.

    2015-01-01

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations. PMID:25856386

  11. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    2002-01-01

    Exploration budgets fell for a fourth successive year in 2001. These decreases reflected low mineral commodity prices, mineral-market investment reluctance, company failures and a continued trend of company mergers and takeovers.

  12. Integrated geophysical imaging of a concealed mineral deposit: a case study of the world-class Pebble porphyry deposit in southwestern Alaska

    USGS Publications Warehouse

    Shah, Anjana K.; Bedrosian, Paul A.; Anderson, Eric D.; Kelley, Karen D.; Lang, James

    2013-01-01

    We combined aeromagnetic, induced polarization, magnetotelluric, and gravity surveys as well as drillhole geologic, alteration, magnetic susceptibility, and density data for exploration and characterization of the Cu-Au-Mo Pebble porphyry deposit. This undeveloped deposit is almost completely concealed by postmineralization sedimentary and volcanic rocks, presenting an exploration challenge. Individual geophysical methods primarily assist regional characterization. Positive chargeability and conductivity anomalies are observed over a broad region surrounding the deposit, likely representing sulfide minerals that accumulated during multiple stages of hydrothermal alteration. The mineralized area occupies only a small part of the chargeability anomaly because sulfide precipitation was not unique to the deposit, and mafic rocks also exhibit strong chargeability. Conductivity anomalies similarly reflect widespread sulfides as well as water-saturated glacial sediments. Mineralogical and magnetic susceptibility data indicate magnetite destruction primarily within the Cu-Au-Mo mineralized area. The magnetic field does not show a corresponding anomaly low but the analytic signal does in areas where the deposit is not covered by postmineralization igneous rocks. The analytic signal shows similar lows over sedimentary rocks outside of the mineralized area, however, and cannot uniquely distinguish the deposit. We find that the intersection of positive chargeability anomalies with analytic signal lows, indicating elevated sulfide concentrations but low magnetite at shallow depths, roughly delineates the deposit where it is covered only by glacial sediments. Neither chargeability highs nor analytic signal lows are present where the deposit is covered by several hundred meters of sedimentary and volcanic rocks, but a 3D resistivity model derived from magnetotelluric data shows a corresponding zone of higher conductivity. Gravity data highlight geologic features within the deposit, including shallow diorite sills that locally contain higher-grade mineralization. The results thus show ways in which an integrated survey approach might be used to distinguish zones of potentially economic mineralization.

  13. Cervical vertebral bone mineral density changes in adolescents during orthodontic treatment.

    PubMed

    Crawford, Bethany; Kim, Do-Gyoon; Moon, Eun-Sang; Johnson, Elizabeth; Fields, Henry W; Palomo, J Martin; Johnston, William M

    2014-08-01

    The cervical vertebral maturation (CVM) stages have been used to estimate facial growth status. In this study, we examined whether cone-beam computed tomography images can be used to detect changes of CVM-related parameters and bone mineral density distribution in adolescents during orthodontic treatment. Eighty-two cone-beam computed tomography images were obtained from 41 patients before (14.47 ± 1.42 years) and after (16.15 ± 1.38 years) orthodontic treatment. Two cervical vertebral bodies (C2 and C3) were digitally isolated from each image, and their volumes, means, and standard deviations of gray-level histograms were measured. The CVM stages and mandibular lengths were also estimated after converting the cone-beam computed tomography images. Significant changes for the examined variables were detected during the observation period (P ≤0.018) except for C3 vertebral body volume (P = 0.210). The changes of CVM stage had significant positive correlations with those of vertebral body volume (P ≤0.021). The change of the standard deviation of bone mineral density (variability) showed significant correlations with those of vertebral body volume and mandibular length for C2 (P ≤0.029). The means and variability of the gray levels account for bone mineral density and active remodeling, respectively. Our results indicate that bone mineral density distribution and the volume of the cervical vertebral body changed because of active bone remodeling during maturation. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. Molecular mechanics of mineralized collagen fibrils in bone

    PubMed Central

    Nair, Arun K.; Gautieri, Alfonso; Chang, Shu-Wei; Buehler, Markus J.

    2013-01-01

    Bone is a natural composite of collagen protein and the mineral hydroxyapatite. The structure of bone is known to be important to its load-bearing characteristics, but relatively little is known about this structure or the mechanism that govern deformation at the molecular scale. Here we perform full-atomistic calculations of the three-dimensional molecular structure of a mineralized collagen protein matrix to try to better understand its mechanical characteristics under tensile loading at various mineral densities. We find that as the mineral density increases, the tensile modulus of the network increases monotonically and well beyond that of pure collagen fibrils. Our results suggest that the mineral crystals within this network bears up to four times the stress of the collagen fibrils, whereas the collagen is predominantly responsible for the material’s deformation response. These findings reveal the mechanism by which bone is able to achieve superior energy dissipation and fracture resistance characteristics beyond its individual constituents. PMID:23591891

  15. Somatic maturation and the relationship between bone mineral variables and types of sports among adolescents: cross-sectional study.

    PubMed

    Agostinete, Ricardo Ribeiro; Ito, Igor Hideki; Kemper, Han; Pastre, Carlos Marcelo; Rodrigues-Júnior, Mário Antônio; Luiz-de-Marco, Rafael; Fernandes, Rômulo Araújo

    2017-01-01

    Peak height velocity (PHV) is an important maturational event during adolescence that affects skeleton size. The objective here was to compare bone variables in adolescents who practiced different types of sports, and to identify whether differences in bone variables attributed to sports practice were dependent on somatic maturation status. Cross-sectional study, São Paulo State University (UNESP). The study was composed of 93 adolescents (12 to 16.5 years old), divided into three groups: no-sport group (n = 42), soccer/basketball group (n = 26) and swimming group (n = 25). Bone mineral density and content were measured using dual-energy x-ray absorptiometry and somatic maturation was estimated through using peak height velocity. Data on training load were provided by the coaches. Adolescents whose PHV occurred at an older age presented higher bone mineral density in their upper limbs (P = 0.018). After adjustments for confounders, such as somatic maturation, the swimmers presented lower values for bone mineral density in their lower limbs, spine and whole body. Only the bone mineral density in the upper limbs was similar between the groups. There was a negative relationship between whole-body bone mineral content and the weekly training hours (β: -1563.967; 95% confidence interval, CI: -2916.484 to -211.450). The differences in bone variables attributed to sport practice occurred independently of maturation, while high training load in situations of hypogravity seemed to be related to lower bone mass in swimmers.

  16. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes

    PubMed Central

    Morgan, Jennifer L. L.; Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Smith, Scott M.; Anbar, Ariel D.

    2012-01-01

    The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible. PMID:22652567

  17. Spectral reflectance of carbonate minerals and rocks in the visible and near infrared (0.35 - 2.55 microns) and its applications in carbonate petrology

    NASA Technical Reports Server (NTRS)

    Gaffey, S. J.

    1984-01-01

    Reflection spectroscopy in the visible and near infrared (0.35 to 2.55 micron) offers a rapid, inexpensive, nondestructive tool for determining the mineralogy and investigating the minor element chemistry of the hard-to-discriminate carbonate minerals, and can, in one step, provide information previously obtainable only by the combined application of two or more analytical techniques. When light interacts with a mineral certain wavelengths are preferentially absorbed. The number, positions, widths and relative intensities of these absorptions are diagnostic of the mineralogy and chemical composition of the sample. At least seven bands due to vibrations of the carbonate radical occur between 1.60 and 2.55 micron. Positions of these bands vary from one carbonae mineral to another and can be used for mineral identification. Cation mass is the primary factor controlling band position; cation radius plays a secondary role.

  18. A Crosswalk of Mineral Commodity End Uses and North American Industry Classification System (NAICS) codes

    USGS Publications Warehouse

    Barry, James J.; Matos, Grecia R.; Menzie, W. David

    2015-09-14

    The links between the end uses of mineral commodities and the NAICS codes provide an instrument for analyzing the use of mineral commodities in the economy. The crosswalk is also a guide, highlighting those industrial sectors in the economy that rely heavily on mineral commodities. The distribution of mineral commodities across the economy is dynamic and does differ from year to year. This report reflects a snapshot of the state of the economy and mineral commodities in 2010.

  19. Treatment with eldecalcitol positively affects mineralization, microdamage, and collagen crosslinks in primate bone.

    PubMed

    Saito, Mitsuru; Grynpas, Marc D; Burr, David B; Allen, Matthew R; Smith, Susan Y; Doyle, Nancy; Amizuka, Norio; Hasegawa, Tomoka; Kida, Yoshikuni; Marumo, Keishi; Saito, Hitoshi

    2015-04-01

    Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6 months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0 mg/mL) and low-density (<2.0 mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage, and non-enzymatic collagen crosslinks all increase. Bone anabolic agents such as parathyroid hormone decrease bone mineralization and bone microdamage by stimulating bone remodeling. ELD did not fit into either category. Histological analysis indicated that the ELD treatment strongly suppressed bone resorption by reducing the number of osteoclasts, while also stimulating focal bone formation without prior bone resorption (bone minimodeling). These bidirectional activities of ELD may account for its unique effects on bone quality. Copyright © 2014. Published by Elsevier Inc.

  20. Intestinal Calcium Absorption among Hypercalciuric Patients with or without Calcium Kidney Stones.

    PubMed

    Vezzoli, Giuseppe; Macrina, Lorenza; Rubinacci, Alessandro; Spotti, Donatella; Arcidiacono, Teresa

    2016-08-08

    Idiopathic hypercalciuria is a frequent defect in calcium kidney stone formers that is associated with high intestinal calcium absorption and osteopenia. Characteristics distinguishing hypercalciuric stone formers from hypercalciuric patients without kidney stone history (HNSFs) are unknown and were explored in our study. We compared 172 hypercalciuric stone formers with 36 HNSFs retrospectively selected from patients referred to outpatient clinics of the San Raffaele Hospital in Milan from 1998 to 2003. Calcium metabolism and lumbar bone mineral density were analyzed in these patients. A strontium oral load test was performed: strontium was measured in 240-minute urine and serum 30, 60, and 240 minutes after strontium ingestion; serum strontium concentration-time curve and renal strontium clearance were evaluated to estimate absorption and excretion of divalent cations. Serum strontium concentration-time curve (P<0.001) and strontium clearance (4.9±1.3 versus 3.5±2.7 ml/min; P<0.001) were higher in hypercalciuric stone formers than HNSFs, respectively. The serum strontium-time curve was also higher in hypercalciuric stone formers with low bone mineral density (n=42) than in hypercalciuric stone formers with normal bone mineral density (n=130; P=0.03) and HNSFs with low (n=22; P=0.01) or normal bone mineral density (n=14; P=0.02). Strontium clearance was greater in hypercalciuric stone formers with normal bone mineral density (5.3±3.4 ml/min) than in hypercalciuric stone formers and HNSFs with low bone mineral density (3.6±2.5 and 3.1±2.5 ml/min, respectively; P=0.03). Multivariate regression analyses displayed that strontium absorption at 30 minutes was positively associated calcium excretion (P=0.03) and negatively associated with lumbar bone mineral density z score (P=0.001) in hypercalciuric stone formers; furthermore, hypercalciuric patients in the highest quartile of strontium absorption had increased stone production risk (odds ratio, 5.06; 95% confidence interval, 1.2 to 20.9; P=0.03). High calcium absorption in duodenum and jejunum may expose hypercalciuric patients to the risk of stones because of increased postprandial calcium concentrations in urine and tubular fluid. High calcium absorption may identify patients at risk of bone loss among stone formers. Copyright © 2016 by the American Society of Nephrology.

  1. Melt segregation from partially molten source regions - The importance of melt density and source region size

    NASA Technical Reports Server (NTRS)

    Stolper, E.; Hager, B. H.; Walker, D.; Hays, J. F.

    1981-01-01

    An investigation is conducted regarding the changes expected in the density contrast between basic melts and peridotites with increasing pressure using the limited data available on the compressibilities of silicate melts and data on the densities of mantle minerals. It is concluded that since compressibilities of silicate melts are about an order of magnitude greater than those of mantle minerals, the density contrast between basic melts and mantle minerals must diminish significantly with increasing pressure. An earlier analysis regarding the migration of liquid in partially molten source regions conducted by Walker et al. (1978) is extended, giving particular attention to the influence of the diminished density contrast between melt and residual crystals with increasing source region depth and to the influence of source region size. This analysis leads to several generalizations concerning the factors influencing the depths at which magmas will segregate from their source regions and the degrees of partial melting that can be achieved in these source regions before melt segregation occurs.

  2. Bone density changes in premature ovarian insufficiency patients who have had term pregnancies.

    PubMed

    Velasco, Mariana; Holloway, Debra; Rymer, Janice

    2014-12-01

    Premature ovarian insufficiency affects 1% of women under the age of 40 and is associated with a hypoestrogenic state, potentially leading to multiple comorbidities including reduced bone density and fertility. An unpredictable ovarian function is observed in 50% of patients with 5-10% being able to achieve a pregnancy. Longitudinal studies have shown a temporary decline in bone mineral density of up to 5% during pregnancy and lactation in healthy women, with the loss of bone density post-partum being proportional to the period of breastfeeding. Effects of pregnancy in women with premature ovarian insufficiency have not been widely documented. Nevertheless, a lower bone mineral density baseline has been observed pre-conceptually, associated with both the hypoestrogenic state of the condition and the possibility that premature ovarian insufficiency was developed prior to achieving peak bone mass. This may suggest that breastfeeding could cause further deterioration in bone mineral density that may not be easy to recover from due to the reduced baseline levels. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Lack of deleterious effect of slow-release sodium fluoride treatment on cortical bone histology and quality in osteoporotic patients

    NASA Technical Reports Server (NTRS)

    Zerwekh, J. E.; Antich, P. P.; Sakhaee, K.; Prior, J.; Gonzales, J.; Gottschalk, F.; Pak, C. Y.

    1992-01-01

    We evaluated the effects of intermittent slow-release sodium fluoride (SRNaF) and continuous calcium citrate therapy on cortical bone histology, reflection ultrasound velocity (material strength) and back-scattered electron image analysis (BEI) in 26 osteoporotic patients before and following therapy. All measurements were made on transiliac crest bone biopsies obtained before and following 2 years of therapy in each patient. For all 26 patients there were no significant changes in cortical bone histomorphometric parameters. In 15 patients in whom bone material quality was assessed by reflection ultrasound, there was no change in velocity (4000 +/- 227 SD to 4013 +/- 240 m/s). BEI disclosed no mineralization defects or the presence of woven bone. Mean atomic number (density) of bone increased slightly, but significantly (9.261 +/- 0.311 to 9.457 +/- 0.223, P = 0.031). While these changes are less marked than those observed for cancellous bone, they indicate that this form of therapy does not adversely affect cortical bone remodelling.

  4. Hyperspectral surface materials map of quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Factors influencing the composition of detrital heavy mineral suites in Holocene sands of the Apure River drainage basin, Venezuela

    USGS Publications Warehouse

    Morton, Andrew C.

    1993-01-01

    Heavy mineral assemblages in rivers in the Apure River drainage basin of Venezuela and Colombia closely reflect the nature of the source regions, which lie in the Andean orogenic terranes to the west and northwest. The Caribbean Mountains, largely composed of greenschist-facies pelites, phyllites, carbonates, and metavolcanics, supply assemblages dominated by epidote and calcic amphibole. Minor amounts of the high-pressure index minerals glaucophane and lawsonite indicate the presence of blueschistfacies rocks, reflecting the origin of the Caribbean Mountains by subduction-related tectonism. The northern Mérida Andes, which comprise basement gneisses and granites overlain by unmetamorphosed to low-grade metamorphosed clastics, supply two types of assemblage reflecting these two lithological types: garnet-sillimanite-staurolite-amphibole suites from the basement rocks, and epidote-amphibole suites from the overlying cover sequence. The southern Mérida Andes supply stable heavy mineral suites reflecting recycling from the extensive unmetamorphosed sandstones that occur at outcrop. By considering suites from different physiographical provinces, the effects of short-term alluvial storage in the Llanos on heavy mineral assemblages have been evaluated. Weathering during alluvial storage appears to be effective in modifying the apatite-tourmaline ratio, which shows a steady, marked decline with distance from the mountain front, resulting from the removal of apatite during weathering. Clinopyroxene and garnet may also show evidence of loss through weathering, although the trends are poorly constrained statistically. Epidote and amphibole proportions remain essentially constant, possibly through a balance between loss through weathering and continual resupply from the breakdown of rock fragments. In general, the heavy mineral assemblages are less affected than the bulk mineralogy by alluvial storage on the Llanos.

  6. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: Application of enhanced charged nanoparticles with iontophoresis.

    PubMed

    Takeuchi, Issei; Kobayashi, Shiori; Hida, Yukari; Makino, Kimiko

    2017-07-01

    Postmenopausal osteoporosis among older women, which occurs by an ovarian hormone deficiency, is one of the major public health problems. 17 β-estradiol (E2) is used to prevent and treat this disease as a drug of hormone replacement therapy. In oral administration, E2 is significantly affected by first-pass hepatic metabolism, and high dose administration must be needed to obtain drug efficacy. Therefore, alternative administration route is needed, and we have focused on the transdermal drug delivery system. In this study, we have prepared E2-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles for osteoporosis by using a combination of an antisolvent diffusion method with preferential solvation. The average particle diameter of the nanoparticles was 110.0±41.0nm and the surface charge number density was 82 times higher than that of conventional E2-loaded PLGA nanoparticles. Therapeutic evaluation of E2-loaded PLGA nanoparticles was carried out using ovariectomized female rats. Therapeutic efficacy was evaluated to measure bone mineral density of cancellous bone using an X-ray CT system. When the E2-loaded PLGA nanoparticles were administrated once a week, bone mineral density was significantly higher than that of the non-treated group at 60days after the start of treatment. Also, in the group administered this nanoparticle twice a week, the bone mineral density increased significantly at 45days after the start of treatment. From these results, it was revealed that E2-loaded PLGA nanoparticles with iontophoresis were useful to recover bone mineral density of cancellous bone, and it was also suggested that they extend the dosing interval of E2. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta.

    PubMed

    Albert, Carolyne; Jameson, John; Tarima, Sergey; Smith, Peter; Harris, Gerald

    2017-11-07

    Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32-65% lower in the OI group (p<0.001). Yield strain did not differ between groups (p≥0.197). In both groups, modulus and strength were lower in the transverse direction (p≤0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p<0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p=0.086). Volumetric bone mineral density was lower in the OI group (p<0.001), but volumetric tissue mineral density was not (p=0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p≤0.024) but not volumetric tissue mineral density (p≥0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bone Turnover Markers and Lean Mass in Pubescent Boys: Comparison Between Elite Soccer Players and Controls.

    PubMed

    Nebigh, Ammar; Abed, Mohamed Elfethi; Borji, Rihab; Sahli, Sonia; Sellami, Slaheddine; Tabka, Zouhair; Rebai, Haithem

    2017-11-01

    The aim of this study was to examine the relationship between bone mass and bone turnover markers with lean mass (LM) in pubescent soccer players. Two groups participated in this study, which included 65 elite young soccer players who trained for 6-8 hours per week and 60 controls. Bone mineral density; bone mineral content in the whole body, lower limbs, lumbar spine, and femoral neck; biochemical markers of osteocalcin; bone-specific alkaline phosphatase; C-telopeptide type I collagen; and total LM were assessed. Young soccer players showed higher bone mineral density and bone mineral content in the whole body and weight-bearing sites (P < .001). Indeed, the total LM correlated with whole-body bone mineral density and bone mineral content (P < .001). There were significant differences within the bone formation markers and osteocalcin (formation)/C-telopeptide type I collagen (resorption) ratio between young soccer players compared with the control group, but no significant difference in C-telopeptide type I collagen was observed between the 2 groups. This study showed a significant positive correlation among bone-specific alkaline phosphatase, osteocalcin, and total LM (r = .29; r = .31; P < .05) only for the young soccer players. Findings of this study highlight the importance of soccer practice for bone mineral parameters and bone turnover markers during the puberty stage.

  9. Effect of rotopositioning on the growth and maturation of mandibular bone in immobilized Rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Simmons, D. J.; Parvin, C.; Smith, K. C.; France, P.; Kazarian, L.

    1986-01-01

    The rates of bone formation and mineralization in the mandibular cortex of juvenile Rhesus monkeys exposed to immobilization/rotopositioning are evaluated. The monkeys were restrained in a supine position and rotated 90 deg every 30 minutes through a full 360 deg for 14 days. The microscopic distribution of mineral densities in osteonal bone and the porosity of cortical bone are studied using microradiographs, and osteon closure rates are assessed using tetracycline labeling; normal distributions of osteons of different mineral density and cortical bone porosity values are observed. It is concluded that 14 days of immobilization/rotopositioning did not cause abnormal changes in osteon mineralization, cortical porosity, and osteon closure rates.

  10. Difference in Bone Mineral Density between Young versus Midlife Women

    ERIC Educational Resources Information Center

    Sanderson, Sonya; Anderson, Pamela S.; Benton, Melissa J.

    2016-01-01

    Background: Older age is a risk factor for low bone mineral density (BMD). Older women have been found to have lower BMD than younger women. Recent trends for decreased calcium consumption and physical activity may place younger women at greater risk than previously anticipated. Purpose: The purpose of this study was to evaluate the effect of age…

  11. Exercise Effects on Fitness and Bone Mineral Density in Early Postmenopausal Women: 1-Year EFOPS Results.

    ERIC Educational Resources Information Center

    Kemmler, Wolfgang; Engelke, Klaus; Lauber, Dirk; Weineck, Juergen; Hensen, Johannes; Kalender, Willi A.

    2002-01-01

    Investigated the effect of intense exercise training on physical fitness, coronary heart disease, bone mineral density (BMD), and parameters related to quality of life in early postmenopausal women with osteopenia. Data on woman in control and exercise training groups indicated that the intense exercise training program was effective in improving…

  12. Associations of APOE gene polymorphisms with bone mineral density and fracture risk: a meta-analysis

    USDA-ARS?s Scientific Manuscript database

    Apolipoprotein E (APOE) has been studied for its potential role in osteoporosis risk. It is hypothesized that genetic variation at common APOE loci, known as E2, E3, and E4, may modulate bone mineral density (BMD) through its effects on lipoproteins and vitamin K transport. To determine the associa...

  13. People with Mental Retardation Have an Increased Prevalence of Osteoporosis: A Population Study.

    ERIC Educational Resources Information Center

    Center, Jacqueline; Beange, Helen; McElduff, Aidan

    1998-01-01

    Prevalence of and risk factors for osteoporosis in 94 young adults with mental retardation was examined. Results showed they had lower bone mineral density when compared to controls. Factors associated with low bone mineral density included small body size, hypgonadism, and Down syndrome. Low vitamin D levels were common. (Author/CR)

  14. Aromatization of androgens is important for skeletal maintenance of aged male rats.

    PubMed

    Vanderschueren, D; Van Herck, E; De Coster, R; Bouillon, R

    1996-09-01

    A nonsteroidal aromatase inhibitor vorozole (VOR) was administered to aged (12 months old) male Wistar rats and its effect was compared with the effect of androgen deficiency. The rats were either sham-operated (SHAM) or orchidectomized (ORCH) and treated with or without VOR. Thus, four experimental groups were created (SHAM, ORCH, SHAM + VOR, ORCH + VOR). The follow-up period was 4 months. At the end of the experimental period, bone mineral density (BMD) of the first four lumbar vertebrae and right femur was measured ex vivo with dual-energy X-ray absorptiometry, bone formation was evaluated by serum osteocalcin, and bone resorption by urinary excretion of (deoxy)pyridinoline. Orchidectomy increased bone resorption 2- to 3-fold whereas bone formation was only slightly increased. Treatment of intact male rats with VOR also increased bone resorption (+30% increase) whereas bone formation was not increased in this SHAM + VOR group. Their BMD was 7% lower in the femur (P < 0.01) and 6% lower in the lumbar vertebrae (P < 0.01) compared with the SHAM group that had not received VOR. Moreover, this decrease of bone mineral density was not significantly different from the expected decrease of bone density observed in the ORCH groups (6-10%). This was also reflected by a decrease of calcium content of the first four lumbar vertebrae of 15% (P < 0.001) in the SHAM + VOR group and 9-14% (P < 0.05) in the ORCH groups compared with the SHAM group, respectively. These data therefore suggest that inhibition of aromatization of androgens into estrogens increases bone resorption and bone loss similar to that observed after complete removal of androgens. Aromatization of androgens into estrogens may therefore, at least partly, explain the effects of androgens on skeletal maintenance.

  15. Rapidly Assessing Changes in Bone Mineral Balance Using Natural Stable Calcium Isotopes

    NASA Technical Reports Server (NTRS)

    Morgan, J. L. L.; Gordon, G. W.; Romaniello, S. J.; Skulan, J. L.; Smith, S. M.; Anbar, A. D.

    2011-01-01

    We demonstrate that variations in the Ca isotope ratios in urine rapidly and quantitatively reflect changes in bone mineral balance. This variation occurs because bone formation depletes soft tissue of light Ca isotopes, while bone resorption releases that isotopically light Ca back into soft tissue. In a study of 12 individuals confined to bed rest, a condition known to induce bone resorption, we show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker, while bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged. Ca isotopes can in principle be used to quantify net changes in bone mass. Ca isotopes indicate an average loss of 0.62 +/- 0.16 % in bone mass over the course of this 30-day study. The Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  16. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity.

  17. Zinc deficiency reduces bone mineral density in the spine of young adult rats: a pilot study.

    PubMed

    Ryz, Natasha R; Weiler, Hope A; Taylor, Carla G

    2009-01-01

    The objective of this study was to investigate the effects of zinc deficiency initiated during adolescence on skeletal densitometry, serum markers of bone metabolism, femur minerals and morphometry in young adult rats. Ten-week-old male rats were fed a <1-mg Zn/kg diet (9ZD), a 5-mg Zn/kg diet (9MZD) or a 30-mg Zn/kg diet (9CTL) for up to 9 weeks. Analyses included bone mineral density, serum osteocalcin and C-terminal peptides of type I collagen, serum zinc, femur zinc, calcium and phosphorus, and femur morphometry. Bone mineral density was 14% lower in the spine of 9ZD, but was not altered in the whole body, tibia or femur, or in any of the aforementioned sites in 9MZD, compared to 9CTL. When adjusted for size, spine bone mineral apparent density was still 8% lower in 9ZD than 9CTL. Serum osteocalcin, a marker for bone formation, was approximately 33% lower in 9ZD compared to both 9MZD and 9CTL. The 9ZD and 9MZD had 57% lower femur zinc and 56-88% lower serum zinc concentrations compared to 9CTL. These findings indicate that severe zinc deficiency initiated during adolescence may have important implications for future bone health, especially with regards to bone consolidation in the spine. 2009 S. Karger AG, Basel.

  18. Bone status and adipokine levels in children on vegetarian and omnivorous diets.

    PubMed

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata; Gajewska, Joanna

    2018-03-23

    Measurements of bone mineral density (BMD) reflect bone status but not the dynamics of bone turnover. Biochemical markers, which show global skeletal activity, were validated for the assessment of bone formation and resorption processes. Adipokines also play a significant role in the regulation of bone metabolism. To assess body composition, bone mineral density, bone turnover markers and adipokine levels in relation to vegetarian and omnivorous diets. The study included 53 vegetarian and 53 omnivorous prepubertal healthy children matched for age and sex (median age 7.0 years). Body composition and BMD were assessed by dual-energy X-ray absorptiometry. 25-hydroxyvitamin D and parathormone levels were measured by chemiluminescence method. Serum carboxy-terminal propeptide of type I collagen (CICP), total osteocalcin (OC) and its forms carboxylated (c-OC) and undercarboxylated (uc-OC), C-terminal cross-linking telopeptide of collagen type I (CTX), leptin and adiponectin levels were determined using immunoenzymatic assays. Both groups of children were comparable in terms of body composition, except for the percentage of fat mass, which was lower (19.24 vs. 21.77%, p = 0.018) in vegetarians. Mean values of total BMD z-score and lumbar spine BMD z-score were lower (-0.583 vs. -0.194, p = 0.009 and -0.877 vs. -0.496, p = 0.019, respectively) in vegetarians compared with omnivores. Serum leptin level was about 2-fold lower (1.39 vs. 2.94 ng/mL, p < 0.001) in vegetarians, however, adiponectin concentration was similar in both groups. Vegetarians had similar concentration of 25-hydroxyvitamin D, but higher parathormone (40.8 vs. 32.1 pg/mL, p = 0.015) and CTX (1.94 vs. 1.76 ng/mL, p = 0.077) levels than omnivores. Total osteocalcin and CICP concentrations were comparable in both groups, however, c-OC/uc-OC ratio was higher (1.43 vs. 1.04 ng/mL, p < 0.05) in vegetarians. We found positive correlation between c-OC and nutritional parameters adjusted for total energy intake (plant protein, phosphorus, magnesium and fiber intakes) in vegetarian children. Prepubertal children on a vegetarian diet had significantly lower total and lumbar spine BMD z-scores, but absolute values of bone mineral density did not differ. BMD z-scores did not correlate with bone metabolism markers and nutritional variables, but were positively associated with anthropometric parameters. Lower leptin levels in vegetarian children reflect lower body fat. Longitudinal studies are necessary to evaluate the impact of the observed association on bone health at adulthood. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Initial Lithologic Mapping Results Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data

    NASA Astrophysics Data System (ADS)

    Rowan, L. C.; Mars, J. C.

    2001-05-01

    Initial analysis of ASTER data of selected areas in the Western United States shows that many important lithologic units can be mapped on the basis of spectral reflectance and spectral emittance. ASTER's most important attributes are 9 bands which record reflected-solar energy with 15 meter- and 30 meter-resolution; 5 bands of emitted energy at 90 meter- resolution; 15 meter-resolution stereoscopic images; and repetitive coverage. Particularly useful 'on-demand' ASTER data products include surface reflectance and surface emissivity images, and digital elevation models (DEM). In the solar-reflected wavelength region (0.4 to 2.5 micrometers), clays, carbonates, hydrous sulphate, and iron-oxide minerals exhibit diagnostic absorption features, whereas the emitted wavelength region (8 to 14 micrometers) provides critical information about anhydrous rock-forming minerals, such as quartz and feldspars, which lack diagnostic absorption features in the solar-reflected region. The Mountain Pass, Calf., Goldfield, Nev., and Virginia Range, Nev. study areas comprise a wide range of lithologic types for evaluating ASTER data. Calibration of the 3 bands recorded in the 0.52 to 0.86 micrometer wavelength region and the 6 bands in the 1.60 to 2.43 micrometer region was improved beyond the 'on-demand' surface reflectance standard product by using in situ spectral reflectance measurements of homogeneous field sites. Validation of this calibration was based on comparisons with spectra from calibrated AVIRIS data, and with additional field measurements. Lithologic mapping based on ASTER bands 1-9 was conducted by using endmember spectra from the image as reference spectra in matched-filter processing. The results were thresholded to display the pixels with the best match for each endmember. The results in these study areas show that Muscovite Group minerals (muscovite, illite, kaolinite) can be mapped over broad reasonably well exposed areas, and that the most intense absorption features occur in hydrothermally altered rocks. In the Mountain Pass area a few exposures containing Fe-muscovite were distinguished from the more extensive Al-mucovite-bearing rocks and soils. Advanced-argillic alteration minerals (alunite, dickite) were detected in the Goldfield mining district and in the Virginia Range. Carbonate Group minerals (calcite, dolomite) were mapped in extensive exposures in the thrust belt of the Mountain Pass area, and well exposed dolomite was distinguished from limestone in several areas. Although skarn deposits consist mainly of calcite and dolomite, their spectral shape in ASTER bands 1-9 is significantly different than typical limestone and dolomite spectra because of the presence of epidote, garnet and chrysotile in the skarn deposits. Mg-OH-bearing minerals (chlorite, biotite, hornblende) proved to be more difficult to map, although generally they were not confused with minerals of the Carbonate Group. Ferric-iron Group minerals were mapped by using a band2/band1 ratio image. Analysis of the surface emissivity standard image products relied on identification of endmember-image spectra by using the pixel-purity index procedure in the ENVI software package, and matched-filter processing. Silica-rich rocks and silica-poor rocks were recognized readily in decorrelation-stretch images, as well as matched-filter endmember images, and 2 intermediate categories were distinguished in most areas.

  20. Bayesian Markov Chain Monte Carlo inversion for weak anisotropy parameters and fracture weaknesses using azimuthal elastic impedance

    NASA Astrophysics Data System (ADS)

    Chen, Huaizhen; Pan, Xinpeng; Ji, Yuxin; Zhang, Guangzhi

    2017-08-01

    A system of aligned vertical fractures and fine horizontal shale layers combine to form equivalent orthorhombic media. Weak anisotropy parameters and fracture weaknesses play an important role in the description of orthorhombic anisotropy (OA). We propose a novel approach of utilizing seismic reflection amplitudes to estimate weak anisotropy parameters and fracture weaknesses from observed seismic data, based on azimuthal elastic impedance (EI). We first propose perturbation in stiffness matrix in terms of weak anisotropy parameters and fracture weaknesses, and using the perturbation and scattering function, we derive PP-wave reflection coefficient and azimuthal EI for the case of an interface separating two OA media. Then we demonstrate an approach to first use a model constrained damped least-squares algorithm to estimate azimuthal EI from partially incidence-phase-angle-stack seismic reflection data at different azimuths, and then extract weak anisotropy parameters and fracture weaknesses from the estimated azimuthal EI using a Bayesian Markov Chain Monte Carlo inversion method. In addition, a new procedure to construct rock physics effective model is presented to estimate weak anisotropy parameters and fracture weaknesses from well log interpretation results (minerals and their volumes, porosity, saturation, fracture density, etc.). Tests on synthetic and real data indicate that unknown parameters including elastic properties (P- and S-wave impedances and density), weak anisotropy parameters and fracture weaknesses can be estimated stably in the case of seismic data containing a moderate noise, and our approach can make a reasonable estimation of anisotropy in a fractured shale reservoir.

  1. The peripheral quantitative computed tomographic and densitometric analysis of skeletal tissue in male Wistar rats after chromium sulfate treatment.

    PubMed

    Bieńko, Marek; Radzki, Radosław Piotr; Wolski, Dariusz

    2017-09-21

    This study evaluates the effects of three different doses of chromium sulphate on bone density and the tomographic parameters of skeletal tissue of rats. The experiment was performed on 40 male Wistar rats which received, by gavage, during 90 days, a chromium sulphate in either a daily dose of 400, 600 or 800 µg/kg BW. At the end of experiment, the rats were scanned using the densitometry method (DXA) to determine the bone mineral density, bone mineral content of total skeleton and vertebral column (L2-L4) and parameters of body composition (Lean Mass and Fat Mass). The isolated femora were scanned using peripheral a quantitative computed tomography method (pQCT) for a separate analysis of the trabecular and cortical bone tissue. The ultimate strength, work to ultimate and the Young modulus of femora was also investigated by the three-point bending test. The negative impact of chromium was observed in relation to bone tissue. All doses significantly decreased total skeleton density and mineral content, and also had impact upon the isolated femora and vertebral column. Trabecular volumetric bone mineral density and trabecular bone mineral content measured by pQCT in distal femur metaphysis were significantly lower in the experimental groups than in the control. Higher doses of chromium also significantly decreased values of ultimate strength and Young modulus in the investigated femora. The results of the experiment demonstrate that chromium sulphate is dose dependent, and exerts a disadvantageous effect on the skeleton, as it decreases bone density and resistance.

  2. Decrease in local volumetric bone mineral density (vBMD) in osteoarthritic joints is associated with the increase in cartilage damage: a pQCT study

    NASA Astrophysics Data System (ADS)

    Tamaddon, Maryam; Chen, Shen Mao; Vanaclocha, Leyre; Hart, Alister; El-Husseiny, Moataz; Henckel, Johann; Liu, Chaozong

    2017-11-01

    Osteoarthritis (OA) is the most common type of arthritis and a major cause of disability in the adult population. It affects both cartilage and subchondral bone in the joints. There has been some progress in understanding the changes in subchondral bone with progression of osteoarthritis. However, local changes in subchondral bone such as microstructure or volumetric bone mineral density in connection with the defect in cartilage are relatively unexplored. To develop an effective treatment for progression of OA, it is important to understand how the physical environment provided by the subchondral bone affects the overlying cartilage. In this study we examined the volumetric bone mineral density (vBMD) distribution in the osteoarthritic joint tissues obtained from total hip replacement surgeries due to osteoarthritis, using peripheral quantitative CT (pQCT). It was found that there is a significant decrease in volumetric bone mineral density, which co-localises with the damage in the overlying cartilage. This was not limited to the subchondral bone immediately adjacent to the cartilage defect but continued in the layers below. Bone resorption and cyst formation in the OA tissues were also detected. We observed that the bone surrounding subchondral bone cysts exhibited much higher volumetric bone mineral density than that of the surrounding bones. PQCT was able to detect significant changes in vBMD between OA and non-OA samples, as well as between areas of different cartilage degeneration, which points to its potential as a technique for detection of early OA.

  3. [Effect of high impact movements on body composition, strength and bone mineral density on women over 60 years].

    PubMed

    Ramírez-Villada, Jhon F; León-Ariza, Henry H; Argüello-Gutiérrez, Yenny P; Porras-Ramírez, Keyla A

    2016-01-01

    Osteoporosis is characterised by loss of bone mass and deterioration of bone tissue microarchitecture that leads to fragility related to the risk of fractures. The aim of the study is to analyse the effects of a training program based on explosive movements and impact, assessed in a swimming pool, on body composition, explosive strength and bone mineral density in women over 60 years old. A total of 35 healthy physically active women (60±4.19 years) were divided into a training pool group using multi jumps (JG) and a control group (CG). JG trained for 24 weeks, 3 times a week, an hour and a half per session. Body composition testing, explosive strength, and bone mineral density were assessed before and after the program. There were differences in the explosive force (JG vs CG=P<.05 to .001) and the estimated power (JG vs CG=P<.05 to .002) between JG vs CG, with significant increases in JG. There were no significant differences in the percentage of fat and lean mass, bone mineral density lumbar and femoral between groups, although slightly significant increases in bone mineral density lumbar and femoral could be seen in JG after program implementation (JG pre-test vs JG post- test=P<.05). The training program with impact and explosive movements assessed in a pool induces gains in muscle strength and power with slight adaptations in body mass index in women over 60 years. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.

  4. Association of Circulating Renin and Aldosterone With Osteocalcin and Bone Mineral Density in African Ancestry Families.

    PubMed

    Kuipers, Allison L; Kammerer, Candace M; Pratt, J Howard; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M

    2016-05-01

    Hypertension is associated with accelerated bone loss, and the renin-angiotensin-aldosterone system is a key regulator of blood pressure. Although components of this system are expressed in human bone cells, studies in humans are sparse. Thus, we studied the association of circulating renin and aldosterone with osteocalcin and bone mineral density. We recruited 373 African ancestry family members without regard to health status from 6 probands (mean family size: 62 and relative pairs: 1687). Participants underwent a clinical examination, dual-energy x-ray absorptiometry, and quantitative computed tomographic scans. Renin activity, aldosterone concentration, and osteocalcin were measured in fasting blood samples. Aldosterone/renin ratio was calculated as aldosterone concentration/renin activity. All models were analyzed using pedigree-based variance components methods. Full models included adjustment for age, sex, body composition, comorbidities, lifestyle factors, blood pressure, and antihypertensive medication. Higher renin activity was significantly associated with lower total osteocalcin and with higher trabecular bone mineral density (both P<0.01). There were also significant genetic correlations between renin activity and whole-body bone mineral density. There were no associations with aldosterone concentration in any model and results for aldosterone/renin ratio were similar to those for renin activity. This is the first study to report a significant association between renin activity and a marker of bone turnover and bone mineral density in generally healthy individuals. Also, there is evidence for significant genetic pleiotropy and, thus, there may be a shared biological mechanism underlying both the renin-angiotensin-aldosterone system and bone metabolism that is independent of hypertension. © 2016 American Heart Association, Inc.

  5. ASSOCIATION OF CIRCULATING RENIN AND ALDOSTERONE WITH OSTEOCALCIN AND BONE MINERAL DENSITY IN AFRICAN ANCESTRY FAMILIES

    PubMed Central

    Kuipers, Allison L; Kammerer, Candace M; Howard Pratt, J; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M

    2016-01-01

    Hypertension is associated with accelerated bone loss and the renin-angiotensin-aldosterone system is a key regulator of blood pressure. Although components of this system are expressed in human bone cells, studies in humans are sparse. Thus, we studied the association of circulating renin and aldosterone with osteocalcin and bone mineral density. We recruited 373 African ancestry family members without regard to health status from 6 probands (mean family size: 62; relative pairs: 1687). Participants underwent a clinical exam, dual energy x-ray absorptiometry, and quantitative computed tomography scans. Renin activity, aldosterone concentration, and osteocalcin were measured in fasting blood samples. Aldosterone to renin ratio was calculated as aldosterone concentration/renin activity. All models were analyzed using pedigree-based variance components methods. Full models included adjustment for age, sex, body composition, co-morbidities, lifestyle factors, blood pressure, and antihypertensive medication. Higher renin activity was significantly associated with lower total osteocalcin and with higher trabecular bone mineral density (both p<0.01). There were also significant genetic correlations between renin activity and whole body bone mineral density. There were no associations with aldosterone concentration in any model and results for aldosterone to renin ratio were similar to those for renin activity. This is the first study to report a significant association between renin activity and a marker of bone turnover and bone mineral density in generally healthy individuals. Also, there is evidence for significant genetic pleiotropy and, thus, there may be a shared biologic mechanism underlying both the renin-angiotensin-aldosterone system and bone metabolism that is independent of hypertension. PMID:26975710

  6. [Bone mineral density in overweight and obese adolescents].

    PubMed

    Cobayashi, Fernanda; Lopes, Luiz A; Taddei, José Augusto de A C

    2005-01-01

    To study bone density as a concomitant factor for obesity in post-pubertal adolescents, controlling for other variables that may interfere in such a relation. Study comprising 83 overweight and obese adolescents (BMI > or = P85) and 89 non obese ones (P5 < or = BMI < or = P85). Cases and controls were selected out of 1,420 students (aged 14-19) from a public school in the city of São Paulo. The bone mineral density of the lumbar spine (L2-L4 in g/cm2) was assessed by dual-energy x-ray absorptiometry (LUNARtrade mark DPX-L). The variable bone density was dichotomized using 1.194 g/cm2 as cutoff point. Bivariate analyses were conducted considering the prevalence of overweight and obesity followed by multivariate analysis (logistic regression) according to a hierarchical conceptual model. The prevalence of bone density above the median was twice more frequent among cases (69.3%) than among controls (32.1%). In the bivariate analysis such prevalence resulted in an odds ratio (OR) of 4.78. The logistic regression model showed that the association between obesity and mineral density is yet more intense with an OR of 6.65 after the control of variables related to sedentary lifestyle and intake of milk and dairy products. Obese and overweight adolescents in the final stages of sexual maturity presented higher bone mineral density in relation to their normal-weight counterparts; however, cohort studies will be necessary to evaluate the influence of such characteristic on bone resistance in adulthood and, consequently, on the incidence of osteopenia and osteoporosis at older ages.

  7. Estimating Surface Soil Moisture in Simulated AVIRIS Spectra

    NASA Technical Reports Server (NTRS)

    Whiting, Michael L.; Li, Lin; Ustin, Susan L.

    2004-01-01

    Soil albedo is influenced by many physical and chemical constituents, with moisture being the most influential on the spectra general shape and albedo (Stoner and Baumgardner, 1981). Without moisture, the intrinsic or matrix reflectance of dissimilar soils varies widely due to differences in surface roughness, particle and aggregate sizes, mineral types, including salts, and organic matter contents. The influence of moisture on soil reflectance can be isolated by comparing similar soils in a study of the effects that small differences in moisture content have on reflectance. However, without prior knowledge of the soil physical and chemical constituents within every pixel, it is nearly impossible to accurately attribute the reflectance variability in an image to moisture or to differences in the physical and chemical constituents in the soil. The effect of moisture on the spectra must be eliminated to use hyperspectral imagery for determining minerals and organic matter abundances of bare agricultural soils. Accurate soil mineral and organic matter abundance maps from air- and space-borne imagery can improve GIS models for precision farming prescription, and managing irrigation and salinity. Better models of soil moisture and reflectance will also improve the selection of soil endmembers for spectral mixture analysis.

  8. Sex differences in parameters of bone strength in new recruits: beyond bone density.

    PubMed

    Evans, Rachel K; Negus, Charles; Antczak, Amanda J; Yanovich, Ran; Israeli, Eran; Moran, Daniel S

    2008-11-01

    Stress fracture (SF) injuries in new recruits have long been attributed to low bone mineral density (BMD). Low areal BMD assessed using two-dimensional dual-energy x-ray absorptiometry imaging, however, reflects structural density and is affected by smaller measures of bone geometry. Recent studies support a relationship between bone size and SF and indicate that slender bones are more susceptible to damage under identical loading conditions. Peripheral quantitative computed tomography (pQCT) is a three-dimensional imaging tool that provides measures of tissue density and geometry parameters of the tibia, a common site of SF. To evaluate sex differences in parameters of volumetric BMD (vBMD), geometry, and strength of the tibia in new recruits using a novel pQCT image analysis procedure. pQCT images were obtained from 128 healthy men and women (20 male, 108 female, aged 18-21 yr) entering a 4-month gender-integrated combat training program in the Israeli Defense Forces. Tibial scans taken at sites 4% (trabecular bone), 38%, and 66% (cortical bone) from the distal end plate were analyzed using MATLAB to assess whole-bone and regional parameters. Measures included vBMD, geometry (diameter, area, cortical thickness, and canal radius), and strength (moments of inertia and bone strength and slenderness indices). With the exception of normalized canal radius, which did not differ between sexes, all measures of bone geometry (P < 0.0001) and strength (P < 0.0001 to P = 0.07) were greater in men. Women exhibited 2.7% to 3.0% greater cortical vBMD than men, whereas trabecular vBMD was 8.4% lower in women (P < 0.001). These differences remained significant after adjusting for body size. Sex differences in bone geometry and mineralization of the tibia may contribute to a decreased ability to withstand the demands imposed by novel, repetitive exercise in untrained individuals entering recruit training.

  9. Bone Mineral Density in Boys Diagnosed with Autism Spectrum Disorder: A Case-Control Study

    ERIC Educational Resources Information Center

    Barnhill, Kelly; Ramirez, Lucas; Gutierrez, Alan; Richardson, Wendy; Marti, C. Nathan; Potts, Amy; Shearer, Rebeca; Schutte, Claire; Hewitson, Laura

    2017-01-01

    This study compared bone mineral density (BMD) of the spine obtained by dual-energy X-ray absorptiometry (DEXA), nutritional status, biochemical markers, and gastrointestinal (GI) symptoms in 4-8 year old boys with Autism Spectrum Disorder (ASD) with a group of age-matched, healthy boys without ASD. Boys with ASD had significantly lower spine BMD…

  10. Bone Mineral Density in Adults With Down Syndrome, Intellectual Disability, and Nondisabled Adults

    ERIC Educational Resources Information Center

    Geijer, Justin R.; Stanish, Heidi I.; Draheim, Christopher C.; Dengel, Donald R.

    2014-01-01

    Individuals with intellectual disability (ID) or Down syndrome (DS) may be at greater risk of osteoporosis. The purpose of this study was to compare bone mineral density (BMD) of DS, ID, and non-intellectually disabled (NID) populations. In each group, 33 participants between the ages of 28 and 60 years were compared. BMD was measured with…

  11. Effects of Physical Training and Calcium Intake on Bone Mineral Density of Students with Mental Retardation

    ERIC Educational Resources Information Center

    Hemayattalab, Rasool

    2010-01-01

    The purpose of this study was to investigate the effects of physical training and calcium intake on bone mineral density (BMD) of students with mental retardation. Forty mentally retarded boys (age 7-10 years old) were randomly assigned to four groups (no differences in age, BMD, calcium intake and physical activity): training groups with or…

  12. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem.

    PubMed

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-03-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.

  13. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    PubMed Central

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  14. Total body composition by dual-photon (153Gd) absorptiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazess, R.B.; Peppler, W.W.; Gibbons, M.

    1984-10-01

    The lean-fat composition (%FATR) of soft tissue and the mineral mass of the skeleton were determined in vivo using dual-photon (153Gd) absorptiometry (dose under 2 mrem). A rectilinear raster scan was made over the entire body in 18 subjects (14 female, 4 male). Single-photon absorptiometry (125I) measured bone mineral content on the radius. Percentage fat (%FATD) was determined in the same subjects using body density (from underwater weighing with correction for residual lung volume). Lean body mass (LBM) was determined using both %FATR and %FATD. Percentage fat from absorptiometry and from underwater density were correlated (r . 0.87). The deviationmore » of %FATD from %FATR was due to the amount of skeletal mineral as a percentage of the LBM (r . 0.90). Therefore, skeletal variability, even in normal subjects, where mineral ranges only from 4 to 8% of the LBM, essentially precludes use of body density as a composition indicator unless skeletal mass is measured. Anthropometry (fatfolds and weight) predicted %FATR and LBM at least as well as did underwater density. The predictive error of %FATR from fatfolds was 5% while the predictive error in predicting LBM from anthropometry was 2 to 3 kg (3%).« less

  15. Speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance-Fourier transform-infrared imaging and quantitative energy-dispersive electron probe X-ray microanalysis techniques.

    PubMed

    Jung, Hae-Jin; Malek, Md Abdul; Ryu, JiYeon; Kim, BoWha; Song, Young-Chul; Kim, HyeKyeong; Ro, Chul-Un

    2010-07-15

    Our previous work demonstrated for the first time the potential of the combined use of two techniques, attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis, low-Z particle EPMA, for the characterization of individual aerosol particles. In this work, the speciation of mineral particles was performed on a single particle level for 24 mineral samples, including kaolinite, montmorillonite, vermiculite, talc, quartz, feldspar, calcite, gypsum, and apatite, by the combined use of ATR-FT-IR imaging and low-Z particle EPMA techniques. These two single particle analytical techniques provide complementary information, the ATR-FT-IR imaging on mineral types and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles. This work demonstrates that the combined use of the two single particle analytical techniques can powerfully characterize externally heterogeneous mineral particle samples in detail and has great potential for the characterization of airborne mineral dust particles.

  16. A spectral reflectance study (0.4-2.5 μm) of selected playa evaporite mineral deposits and related geochemical processes

    USGS Publications Warehouse

    Crowley, James K.

    1990-01-01

    Playa evaporite mineral deposits show major compositional variations related to differences in lithology, hydrology, and groundwater geochemistry. The use of visible and near-infrared (VNIR) spectral reflectance measurements as a technique for investigating the mineralogy of playa efflorescent crusts is examined. Samples of efflorescent crust were collected from 4 playa: Bristol Dry Lake, Saline Valley, Teels Marsh, and Rhodes Marsh--all located in eastern California and western Nevada. Laboratory and field spectral analyses coupled with X-ray diffraction analyses of the crusts yielded the following observations: VNIR spectra of unweathered salt crusts can be used to infer the general chemistry of near-surface brines; VNIR spectra are very sensitive for detecting minor hydrate mineral phases contained in mixtures with anhydrous, spectrally featureless, minerals such as halite (NaCl) and thernardite (Na2So4); borate minerals exhibit particularly strong VNIR spectral features that permit small amounts of borate to be detected in efflorescent salt crusts; remote sensing spectral measurements of playa efflorescent crusts may have applications in global studies of playa brines and minerals.

  17. [INVESTIGATION OF THE LEVEL OF MINERAL DENSITY OF SKELETAL OSSEOUS TISSUE IN PATIENTS WITH PERIODONTAL TISSUE DISEASES].

    PubMed

    Hodovana, O I

    2015-01-01

    Results of investigation of mineral density condition of skeletal osseous tissue in patients with inflammatory and dystrophic-inflammatory diseases of periodontal tissues with ultrasound densitometry method have been presented. Various changes of osseous tissue of skeletal bones have been detected: osteopenia, osteoporosis and osteosclerosis, which correlated with the severity of pathological process in periodontium. Analysis of the obtained results has been carried out depending on patients' sex as well as form and severity degree of the course of periodontal diseases. It has been established that the peak of detected impairments of mineral density in the skeleton is due to osteopenia, the degree of severity of which deteriorates with the severity of pathological process in periodontal tissues, especially in women.

  18. Soil gas studies along the Trans-Challis fault system near Idaho City, Boise County, Idaho

    USGS Publications Warehouse

    McCarthy, J.H.; Kiilsgaard, T.H.

    2001-01-01

    Soil gases were sampled along several traverses that cross the Trans-Challis fault system in central Idaho. Anomalous carbon dioxide, hydrogen, oxygen, hydrocarbon, and sulfur gas concentrations coincide with faults and known mineralized areas. Anomalies in areas not known to be mineralized may reflect undiscovered mineral deposits or concealed faults. Soil gases may be a useful exploration guide for mineral deposits in this terrane.

  19. Validation of cortical bone mineral density distribution using micro-computed tomography.

    PubMed

    Mashiatulla, Maleeha; Ross, Ryan D; Sumner, D Rick

    2017-06-01

    Changes in the bone mineral density distribution (BMDD), due to disease or drugs, can alter whole bone mechanical properties such as strength, stiffness and toughness. The methods currently available for assessing BMDD are destructive and two-dimensional. Micro-computed tomography (μCT) has been used extensively to quantify the three-dimensional geometry of bone and to measure the mean degree of mineralization, commonly called the tissue mineral density (TMD). The TMD measurement has been validated to ash density; however parameters describing the frequency distribution of TMD have not yet been validated. In the current study we tested the ability of μCT to estimate six BMDD parameters: mean, heterogeneity (assessed by the full-width-at-half-maximum (FWHM) and the coefficient of variation (CoV)), the upper and lower 5% cutoffs of the frequency distribution, and peak mineralization) in rat sized femoral cortical bone samples. We used backscatter scanning electron microscopy (bSEM) as the standard. Aluminum and hydroxyapatite phantoms were used to identify optimal scanner settings (70kVp, and 57μA, with a 1500ms integration time). When using hydroxyapatite samples that spanned a broad range of mineralization levels, high correlations were found between μCT and bSEM for all BMDD parameters (R 2 ≥0.92, p<0.010). When using cortical bone samples from rats and various species machined to mimic rat cortical bone geometry, significant correlations between μCT and bSEM were found for mean mineralization (R 2 =0.65, p<0.001), peak mineralization (R 2 =0.61, p<0.001) the lower 5% cutoff (R 2 =0.62, p<0.001) and the upper 5% cutoff (R 2 =0.33, p=0.021), but not for heterogeneity, measured by FWHM (R 2 =0.05, p=0.412) and CoV (R 2 =0.04, p=0.469). Thus, while mean mineralization and most parameters used to characterize the BMDD can be assessed with μCT in rat sized cortical bone samples, caution should be used when reporting the heterogeneity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Micro-Computed Tomography Assessment of Fracture Healing: Relationships among Callus Structure, Composition, and Mechanical Function

    PubMed Central

    Morgan, Elise F.; Mason, Zachary D.; Chien, Karen B.; Pfeiffer, Anthony J.; Barnes, George L.; Einhorn, Thomas A.; Gerstenfeld, Louis C.

    2009-01-01

    Non-invasive characterization of fracture callus structure and composition may facilitate development of surrogate measures of the regain of mechanical function. As such, quantitative computed tomography- (CT-) based analyses of fracture calluses could enable more reliable clinical assessments of bone healing. Although previous studies have used CT to quantify and predict fracture healing, it is unclear which of the many CT-derived metrics of callus structure and composition are the most predictive of callus mechanical properties. The goal of this study was to identify the changes in fracture callus structure and composition that occur over time and that are most closely related to the regain of mechanical function. Micro-computed tomography (μCT) imaging and torsion testing were performed on murine fracture calluses (n=188) at multiple post-fracture timepoints and under different experimental conditions that alter fracture healing. Total callus volume (TV), mineralized callus volume (BV), callus mineralized volume fraction (BV/TV), bone mineral content (BMC), tissue mineral density (TMD), standard deviation of mineral density (σTMD), effective polar moment of inertia (Jeff), torsional strength, and torsional rigidity were quantified. Multivariate statistical analyses, including multivariate analysis of variance, principal components analysis, and stepwise regression were used to identify differences in callus structure and composition among experimental groups and to determine which of the μCT outcome measures were the strongest predictors of mechanical properties. Although calluses varied greatly in the absolute and relative amounts of mineralized tissue (BV, BMC, and BV/TV), differences among timepoints were most strongly associated with changes in tissue mineral density. Torsional strength and rigidity were dependent on mineral density as well as the amount of mineralized tissue: TMD, BV, and σTMD explained 62% of the variation in torsional strength (p<0.001); and TMD, BMC, BV/TV, and σTMD explained 70% of the variation in torsional rigidity (p<0.001). These results indicate that fracture callus mechanical properties can be predicted by several μCT-derived measures of callus structure and composition. These findings form the basis for developing non-invasive assessments of fracture healing and for identifying biological and biomechanical mechanisms that lead to impaired or enhanced healing. PMID:19013264

  1. Hydrogen and oxygen stable isotope signatures of goethite hydration waters by thermogravimetry-enabled laser spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oerter, Erik; Singleton, Michael; Davisson, Lee

    The hydrogen and oxygen stable isotope composition (δ 2H and δ 18O values) of mineral hydration waters can give information on the environment of mineral formation. Here we present and validate an approach for the stable isotope analysis of mineral hydration waters based on coupling a thermogravimetric analyzer with a laser-based isotope ratio infrared spectroscopy instrument (Picarro L-2130i), which we abbreviate as TGA-IRIS. TGA-IRIS generates δ 2H and δ 18O values of liquid water samples with precision for δ 2H of ± 1.2‰, and for δ 18O of ± 0.17‰. For hydration waters in goethite, precision for δ 2H rangesmore » from ± 0.3‰ to 1.6‰, and for δ 18O ranges from ± 0.17‰ to 0.27‰. The ability of TGA-IRIS to generate detailed water yield data and δ 2H and δ 18O values of water at varying temperatures allows for the differentiation of water in varying states of binding on mineral surfaces and within the mineral matrix. TGA-IRIS analyses of hydrogen isotopes in goethite yields δ 2H values that reflect the hydrogen of the OH – phase in the mineral and are comparable to that made by IRMS and found in the literature. In contrast, δ 18O values on goethite reflect the oxygen in OH – groups bound to Fe (Fe-OH group), and not the oxygen bound only to Fe (Fe-O group) in the mineral crystal lattice, and may not be comparable to literature δ 18O values made by IRMS that reflect the total O in the mineral. TGA-IRIS presents the possibility to isotopically differentiate the various oxygen reservoirs in goethite, which may allow the mineral to be used as a single mineral geothermometer. As a result, TGA-IRIS measurements of hydration waters are likely to open new avenues and possibilities for research on hydrated minerals.« less

  2. Hydrogen and oxygen stable isotope signatures of goethite hydration waters by thermogravimetry-enabled laser spectroscopy

    DOE PAGES

    Oerter, Erik; Singleton, Michael; Davisson, Lee

    2017-10-22

    The hydrogen and oxygen stable isotope composition (δ 2H and δ 18O values) of mineral hydration waters can give information on the environment of mineral formation. Here we present and validate an approach for the stable isotope analysis of mineral hydration waters based on coupling a thermogravimetric analyzer with a laser-based isotope ratio infrared spectroscopy instrument (Picarro L-2130i), which we abbreviate as TGA-IRIS. TGA-IRIS generates δ 2H and δ 18O values of liquid water samples with precision for δ 2H of ± 1.2‰, and for δ 18O of ± 0.17‰. For hydration waters in goethite, precision for δ 2H rangesmore » from ± 0.3‰ to 1.6‰, and for δ 18O ranges from ± 0.17‰ to 0.27‰. The ability of TGA-IRIS to generate detailed water yield data and δ 2H and δ 18O values of water at varying temperatures allows for the differentiation of water in varying states of binding on mineral surfaces and within the mineral matrix. TGA-IRIS analyses of hydrogen isotopes in goethite yields δ 2H values that reflect the hydrogen of the OH – phase in the mineral and are comparable to that made by IRMS and found in the literature. In contrast, δ 18O values on goethite reflect the oxygen in OH – groups bound to Fe (Fe-OH group), and not the oxygen bound only to Fe (Fe-O group) in the mineral crystal lattice, and may not be comparable to literature δ 18O values made by IRMS that reflect the total O in the mineral. TGA-IRIS presents the possibility to isotopically differentiate the various oxygen reservoirs in goethite, which may allow the mineral to be used as a single mineral geothermometer. As a result, TGA-IRIS measurements of hydration waters are likely to open new avenues and possibilities for research on hydrated minerals.« less

  3. Development of a Food Group-Based Diet Score and Its Association with Bone Mineral Density in the Elderly: The Rotterdam Study.

    PubMed

    de Jonge, Ester A L; Kiefte-de Jong, Jessica C; de Groot, Lisette C P G M; Voortman, Trudy; Schoufour, Josje D; Zillikens, M Carola; Hofman, Albert; Uitterlinden, André G; Franco, Oscar H; Rivadeneira, Fernando

    2015-08-18

    No diet score exists that summarizes the features of a diet that is optimal for bone mineral density (BMD) in the elderly. Our aims were (a) to develop a BMD-Diet Score reflecting a diet that may be beneficial for BMD based on the existing literature, and (b) to examine the association of the BMD-Diet Score and the Healthy Diet Indicator, a score based on guidelines of the World Health Organization, with BMD in Dutch elderly participating in a prospective cohort study, the Rotterdam Study (n = 5144). Baseline dietary intake, assessed using a food frequency questionnaire, was categorized into food groups. Food groups that were consistently associated with BMD in the literature were included in the BMD-Diet Score. BMD was measured repeatedly and was assessed using dual energy X-ray absorptiometry. The BMD-Diet Score considered intake of vegetables, fruits, fish, whole grains, legumes/beans and dairy products as "high-BMD" components and meat and confectionary as "low-BMD" components. After adjustment, the BMD-Diet Score was positively associated with BMD (β (95% confidence interval) = 0.009 (0.005, 0.012) g/cm(2) per standard deviation). This effect size was approximately three times as large as has been observed for the Healthy Diet Indicator. The food groups included in our BMD-Diet Score could be considered in the development of future dietary guidelines for healthy ageing.

  4. Development of a Food Group-Based Diet Score and Its Association with Bone Mineral Density in the Elderly: The Rotterdam Study

    PubMed Central

    de Jonge, Ester A. L.; Kiefte-de Jong, Jessica C.; de Groot, Lisette C. P. G. M.; Voortman, Trudy; Schoufour, Josje D.; Zillikens, M. Carola; Hofman, Albert; Uitterlinden, André G.; Franco, Oscar H.; Rivadeneira, Fernando

    2015-01-01

    No diet score exists that summarizes the features of a diet that is optimal for bone mineral density (BMD) in the elderly. Our aims were (a) to develop a BMD-Diet Score reflecting a diet that may be beneficial for BMD based on the existing literature, and (b) to examine the association of the BMD-Diet Score and the Healthy Diet Indicator, a score based on guidelines of the World Health Organization, with BMD in Dutch elderly participating in a prospective cohort study, the Rotterdam Study (n = 5144). Baseline dietary intake, assessed using a food frequency questionnaire, was categorized into food groups. Food groups that were consistently associated with BMD in the literature were included in the BMD-Diet Score. BMD was measured repeatedly and was assessed using dual energy X-ray absorptiometry. The BMD-Diet Score considered intake of vegetables, fruits, fish, whole grains, legumes/beans and dairy products as “high-BMD” components and meat and confectionary as “low-BMD” components. After adjustment, the BMD-Diet Score was positively associated with BMD (β (95% confidence interval) = 0.009 (0.005, 0.012) g/cm2 per standard deviation). This effect size was approximately three times as large as has been observed for the Healthy Diet Indicator. The food groups included in our BMD-Diet Score could be considered in the development of future dietary guidelines for healthy ageing. PMID:26295256

  5. Imaginary refractive index and other microphysical properties of volcanic ash, Sarahan dust, and other mineral aerosols

    NASA Astrophysics Data System (ADS)

    Rocha Lima, A.; Martins, J.; Krotkov, N. A.; Artaxo, P.; Todd, M.; Ben Ami, Y.; Dolgos, G.; Espinosa, R.

    2013-12-01

    Aerosol properties are essential to support remote sensing measurements, atmospheric circulation and climate models. This research aims to improve the understanding of the optical and microphysical properties of different types of aerosols particles. Samples of volcanic ash, Saharan dust and other mineral aerosols particles were analyzed by different techniques. Ground samples were sieved down to 45um, de-agglomerated and resuspended in the laboratory using a Fluidized Bed Aerosol Generator (FBAG). Particles were collected on Nuclepore filters into PM10, PM2.5, or PM1.0. and analyzed by different techniques, such as Scanning Electron Microscopy (SEM) for determination of size distribution and shape, spectral reflectance for determination of the optical absorption properties as a function of the wavelength, material density, and X-Ray fluorescence for the elemental composition. The spectral imaginary part of refractive index from the UV to the short wave infrared (SWIR) wavelength was derived empirically from the measurements of the spectral mass absorption coefficient, size distribution and density of the material. Some selected samples were also analyzed with the Polarized Imaging Nephelometer (PI-Neph) instrument for the characterization of the aerosol polarized phase function. This work compares results of the spectral refractive index of different materials obtained by our methodology with those available in the literature. In some cases there are significant differences both in magnitude and spectral dependence of the imaginary refractive index. These differences are evaluated and discussed in this work.

  6. Hydrated Minerals on Asteroids: The Astronomical Record

    NASA Technical Reports Server (NTRS)

    Rivkin, A. S.; Howell, E. S.; Vilas, F.; Lebofsky, L. A.

    2002-01-01

    Knowledge of the hydrated mineral inventory on the asteroids is important for deducing the origin of Earth's water, interpreting the meteorite record, and unraveling the processes occurring during the earliest times in solar system history. Reflectance spectroscopy shows absorption features in both the 0.6-0.8 and 2.5-3.5 micrometers regions, which are diagnostic of or associated with hydrated minerals. Observations in those regions show that hydrated minerals are common in the mid-asteroid belt, and can be found in unexpected spectral groupings, as well. Asteroid groups formerly associated with mineralogies assumed to have high temperature formation, such as M- and E-class asteroids, have been observed to have hydration features in their reflectance spectra. Some asteroids have apparently been heated to several hundred degrees Celsius, enough to destroy some fraction of their phyllosilicates. Others have rotational variation suggesting that heating was uneven. We summarize this work, and present the astronomical evidence for water- and hydroxyl-bearing minerals on asteroids.

  7. Hydrated Minerals on Asteroids: The Astronomical Record

    NASA Technical Reports Server (NTRS)

    Rivkin, A. S.; Howell, E. S.; Vilas, F.; Lebofsky, L. A.

    2003-01-01

    Knowledge of the hydrated mineral inventory on the asteroids is important for deducing the origin of Earth's water, interpreting the meteorite record, and unraveling the processes occurring during the earliest times in solar system history. Reflectance spectroscopy shows absorption features in both the 0.6-0.8 and 2.5-3.5-micron regions, which are diagnostic of or associated with hydrated minerals. Observations in those regions show that hydrated minerals are common in the mid-asteroid belt, and can be found in unexpected spectral groupings as well. Asteroid groups formerly associated with mineralogies assumed to have high-temperature formation, such as M- and E-class steroids, have been observed to have hydration features in their reflectance spectra. Some asteroids have apparently been heated to several hundred degrees Celsius, enough to destroy some fraction of their phyllosilicates. Others have rotational variation suggesting that heating was uneven. We summarize this work, and present the astronomical evidence for water- and Hydroxl-bearing minerals on asteroids.

  8. Effects of ethnicity and vitamin D supplementation on vitamin D status and changes in bone mineral content in infants

    USDA-ARS?s Scientific Manuscript database

    To evaluate the effects on serum 25(OH)D and bone mineralization of supplementation of breast-fed Hispanic and non-Hispanic Caucasian infants with vitamin D in infants in Houston, Texas. We measured cord serum 25(OH)D levels, bone mineral content (BMC), bone mineral density (BMD) and their changes o...

  9. Antiphase domains and reverse thermoremanent magnetism in ilmenite-hematite minerals

    USGS Publications Warehouse

    Lawson, C.A.; Nord, G.L.; Dowty, Eric; Hargraves, R.B.

    1981-01-01

    Examination of synthetic ilmenite-hematite samples by transmission electron microscopy has for the first time revealed the presence of well-defined antiphase domains and antiphase domain boundaries in this mineral system. Samples quenched from 1300??C have a high density of domain boundaries, whereas samples quenched from 900??C have a much lower density. Only the high-temperature samples acquire reverse thermoremanent magnetism when cooled in an applied magnetic field. The presence of a high density of domain boundaries seems to be a necessary condition for the acquisition of reverse thermoremanent magnetism.

  10. Body composition, adipokines, bone mineral density and bone remodeling markers in relation to IGF-1 levels in adults with Prader-Willi syndrome.

    PubMed

    van Nieuwpoort, I Caroline; Twisk, Jos W R; Curfs, Leopold M G; Lips, Paul; Drent, Madeleine L

    2018-01-01

    In patients with Prader-Willi syndrome (PWS) body composition is abnormal and alterations in appetite regulating factors, bone mineral density and insulin-like growth factor-1 (IGF-1) levels have been described. Studies in PWS adults are limited. In this study, we investigated body composition, appetite regulating peptides, bone mineral density and markers of bone remodeling in an adult PWS population. Furthermore, we investigated the association between these different parameters and IGF-1 levels because of the described similarities with growth hormone deficient patients. In this cross-sectional observational cohort study in a university hospital setting we studied fifteen adult PWS patients. Anthropometric and metabolic parameters, IGF-1 levels, bone mineral density and bone metabolism were evaluated. The homeostasis model assessment of insulin resistance (HOMA2-IR) was calculated. Fourteen healthy siblings served as a control group for part of the measurements. In the adult PWS patients, height, fat free mass, IGF-1 and bone mineral content were significantly lower when compared to controls; body mass index (BMI), waist, waist-to-hip ratio and fat mass were higher. There was a high prevalence of osteopenia and osteoporosis in the PWS patients. Also, appetite regulating peptides and bone remodelling markers were aberrant when compared to reference values. Measurements of body composition were significantly correlated to appetite regulating peptides and high-sensitive C-reactive protein (hs-CRP), furthermore HOMA was correlated to BMI and adipokines. In adults with Prader-Willi syndrome alterations in body composition, adipokines, hs-CRP and bone mineral density were demonstrated but these were not associated with IGF-1 levels. Further investigations are warranted to gain more insight into the exact pathophysiology and the role of these alterations in the metabolic and cardiovascular complications seen in PWS, so these complications can be prevented or treated as early as possible.

  11. Low Bone Mineral Density Risk Factors and Testing Patterns in Institutionalized Adults with Intellectual and Developmental Disabilities

    ERIC Educational Resources Information Center

    Hess, Mailee; Campagna, Elizabeth J.; Jensen, Kristin M.

    2018-01-01

    Background: Adults with intellectual or developmental disability (ID/DD) have multiple risks for low bone mineral density (BMD) without formal guidelines to guide testing. We sought to identify risk factors and patterns of BMD testing among institutionalized adults with ID/DD. Methods: We evaluated risk factors for low BMD (Z-/T-score < -1) and…

  12. Vitamin D3 supplementation increases spine bone mineral density in adolescents and young adults with HIV infection being treated with tenofovir disoproxil fumarate: a randomized, placebo controlled trial

    USDA-ARS?s Scientific Manuscript database

    Background: Tenofovir disoproxil fumarate (TDF) decreases bone mineral density (BMD). We hypothesized vitamin D3 (VITD3) would increase BMD in adolescents/young adults receiving TDF. Methods: Randomized double-blind placebo-controlled trial of directly observed VITD3 50,000 IU vs. placebo every 4 ...

  13. DMPA's effect on bone mineral density: A particular concern for adolescents.

    PubMed

    Schrager, Sarina B

    2009-05-01

    Discuss the potential for decreased bone mineral density in using depot-medroxyprogesterone acetate (DMPA) with any woman who is thinking of it as a means of contraception. Recommend to women that they take 1300 mg of calcium and 400 IU of vitamin D when using DMPA. Consider prescribing estrogen replacement if DMPA is going to be used for more than 2 years.

  14. Effect of weightlessness on mineral saturation of bone tissue

    NASA Technical Reports Server (NTRS)

    Krasnykh, I. G.

    1975-01-01

    X-ray photometry of bone density established dynamic changes in mineral saturation of bone tissues for Soyuz spacecraft and Salyut orbital station crews. Calcaneus optical bone densities in all crew members fell below initial values; an increase in spacecrew exposure time to weightlessness conditions also increased the degree of decalcification. Demineralization under weightlessness conditions took place at a higher rate than under hypodynamia.

  15. Bone Mineral Density Accrual in Students with Autism Spectrum Disorders: Effects of Calcium Intake and Physical Training

    ERIC Educational Resources Information Center

    Goodarzi, Mahmood; Hemayattalab, Rasool

    2012-01-01

    The purpose of this study was to investigate the effects of weight bearing exercise and calcium intake on bone mineral density (BMD) of students with autism spectrum disorders. For this reason 60 boy students with autism disorder (age 8-10 years old) were assigned to four groups with no differences in age, BMD, calcium intake, and physical…

  16. Plasma phosphatidylcholine concentrations of polyunsaturated fatty acids are differentially associated with hop bone mineral density and hip fracture in older adults: The Framingham Osteoporosis Study

    USDA-ARS?s Scientific Manuscript database

    Polyunsaturated fatty acids (PUFA) may influence bone health. Our objective was to examine associations between plasma phosphatidylcholine (PC) PUFA concentrations and hip measures: 1) femoral neck bone mineral density (FN-BMD) (n=765); 2) 4-y change in FN-BMD (n=556); and 3) hip fracture risk (n=76...

  17. Bone Mineral Density and Respiratory Muscle Strength in Male Individuals with Mental Retardation (with and without Down Syndrome)

    ERIC Educational Resources Information Center

    da Silva, Vinicius Zacarias Maldaner; Barros, Jonatas de Franca; de Azevedo, Monique; de Godoy, Jose Roberto Pimenta; Arena, Ross; Cipriano, Gerson, Jr.

    2010-01-01

    The purpose of this study was to assess the respiratory muscle strength (RMS) in individuals with mental retardation (MR), with or without Down Syndrome (DS), and its association with bone mineral density (BMD). Forty-five male individuals (15 with DS, 15 with mental retardation (MR) and 15 apparently healthy controls), aged 20-35, participated in…

  18. Evaluation of bone mineral density in children receiving carbamazepine or valproate monotherapy.

    PubMed

    Chou, I-Jun; Lin, Kuang-Lin; Wang, Huei-Shyong; Wang, Chao-Jan

    2007-01-01

    Antiepileptic drugs have been shown to be associated with a lowering of bone mineral density in childhood and adolescence, which are critical periods of skeletal mineralization. A lower peak bone mass attained at the end of adolescence is associated with greater involutional osteoporosis and risk for fracture in the elderly. Our purpose was to evaluate the effects of carbamazepine and valproate monotherapy on bone mineral density in children in Taiwan. From November 1995 to April 2005, forty-two children with uncomplicated epilepsy, who were treated with either carbamazepine (n=21) or valproate (n=21) monotherapy for more than 6 months, were enrolled in this study. All subjects were 5 to 18 years of age, seizure-free for 5 months or more, with normal daily activity, and normal diet. Lumbar bone mineral density of L1 to L4 was measured by dual-energy X-ray absorptiometry. The mean serum levels of carbamazepine and valproate were 5.12 +/- 2.15 mcg/ml and 49.61 +/- 20.84 mcg/ml, respectively. Treatment durations were 37.05 +/- 31.11 months and 22.86 +/- 18.84 months, respectively. The serum levels of calcium and phosphate in both groups were within therapeutic range. The serum level of alkaline phosphatase was significantly higher in the carbamazepine group (264.71 +/- 66.91, U/L) than in the valproate group (179.48 +/- 79.37, U/L). Three patients (140%) had bone mineral density Z-score of -2.0 or lower in the carbamazepine-treated group, but none in the valproate-treated group (p=0.232). Comparing the Z-score in carbamazapine- and valproate-monotherapy children, 7 (33%) had Z-score of -1.5 or lower in the carbamazepine-treated group, and none in the valporate-treated group had Z-score of -1.5 or lower (p=0.009). Four (57%) patients in the 7 carbamazepine-treated children with Z-score of -1.5 or lower had serum drug level lower than therapeutic range. Children receiving carbarmazepine monotherapy had increased frequency of lower bone density than children receiving valproate monotherapy.

  19. Individualized Fracture Risk Feedback and Long-term Benefits After 10 Years.

    PubMed

    Wu, Feitong; Wills, Karen; Laslett, Laura L; Riley, Malcolm D; Oldenburg, Brian; Jones, Graeme; Winzenberg, Tania

    2018-02-01

    This study aimed to determine if beneficial effects of individualized feedback of fracture risk on osteoporosis preventive behaviors and bone mineral density observed in a 2-year trial were sustained long-term. This was a 10-year follow-up of a 2-year RCT in 470 premenopausal women aged 25-44 years, who were randomized to one of two educational interventions (the Osteoporosis Prevention and Self-Management Course [OPSMC] or an osteoporosis information leaflet) and received tailored feedback of their relative risk of fracture in later life (high versus normal risk groups). Bone mineral density of lumbar spine and femoral neck were measured by dual-energy X-ray absorptiometry. Physical activity, dietary calcium intake, calcium and vitamin D supplements, and smoking status were measured by questionnaires. From 2 to 12 years, the high-risk group had a smaller decrease in femoral neck bone mineral density (β=0.023, 95% CI=0.005, 0.041 g/cm 2 ) but similar lumbar spine bone mineral density change as the normal-risk group. They were more likely to use calcium (relative risk=1.66, 95% CI=1.22, 2.24) and vitamin D supplements (1.99, 95% CI=1.27, 3.11). The OPSMC had no effects on bone mineral density change. Both high-risk (versus normal-risk) and the OPSMC groups (versus leaflet) had a more favorable pattern of smoking behavior change (relative risk=1.85, 95% CI=0.70, 4.89 and relative risk=2.27, 95% CI=0.86, 6.01 for smoking cessation; relative risk=0.33, 95% CI=0.13, 0.80 and relative risk=0.28, 95% CI=0.10, 0.79 for commenced or persistent smoking). Feedback of high fracture risk to younger women was associated with long-term improvements in osteoporosis preventive behaviors and attenuated femoral neck bone mineral density loss. Therefore, this could be considered as a strategy to prevent osteoporosis. Australian New Zealand Clinical Trials Registry (ANZCTR) NCT00273260. Copyright © 2018 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Low serum and bone vitamin K status in patients with longstanding Crohn's disease: another pathogenetic factor of osteoporosis in Crohn's disease?

    PubMed Central

    Schoon, E; Muller, M; Vermeer, C; Schurgers, L; Brummer, R; Stockbrugger, R

    2001-01-01

    BACKGROUND—A high prevalence of osteoporosis is reported in Crohn's disease. The pathogenesis is not completely understood but is probably multifactorial. Longstanding Crohn's disease is associated with a deficiency of fat soluble vitamins, among them vitamin K. Vitamin K is a cofactor in the carboxylation of osteocalcin, a protein essential for calcium binding to bone. A high level of circulating uncarboxylated osteocalcin is a sensitive marker of vitamin K deficiency.
AIMS—To determine serum and bone vitamin K status in patients with Crohn's disease and to elucidate its relationship with bone mineral density.
METHODS—Bone mineral density was measured in 32 patients with longstanding Crohn's disease and small bowel involvement, currently in remission, and receiving less than 5 mg of prednisolone daily. Serum levels of vitamins D and K, triglycerides, and total immunoreactive osteocalcin, as well as uncarboxylated osteocalcin ("free" osteocalcin) were determined. The hydroxyapatite binding capacity of osteocalcin was calculated. Data were compared with an age and sex matched control population.
RESULTS—Serum vitamin K levels of CD patients were significantly decreased compared with normal controls (p<0.01). "Free" osteocalcin was higher and hydroxyapatite binding capacity of circulating osteocalcin was lower than in matched controls (p<0.05 and p<0.001, respectively), indicating a low bone vitamin K status in Crohn's disease. In patients, an inverse correlation was found between "free" osteocalcin and lumbar spine bone mineral density (r=−0.375, p<0.05) and between "free" osteocalcin and the z score of the lumbar spine (r=−0.381, p<0.05). Multiple linear regression analysis showed that "free" osteocalcin was an independent risk factor for low bone mineral density of the lumbar spine whereas serum vitamin D was not.
CONCLUSIONS—The finding that a poor vitamin K status is associated with low bone mineral density in longstanding Crohn's disease may have implications for the prevention and treatment of osteoporosis in this disorder.


Keywords: Crohn's disease; bone mineral density; vitamin K; osteocalcin PMID:11247890

  1. Mid-Infrared Spectroscopy Analysis of the Effects of Erbium, Chromium:Yattrium-Scandium-Gallium-Garnet (Er,Cr:YSGG) Laser Irradiation on Bone Mineral and Organic Components.

    PubMed

    Benetti, Carolina; Ana, Patricia Aparecida; Bachmann, Luciano; Zezell, Denise Maria

    2015-12-01

    The effects of varying the energy density of a high-intensity erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser on the mineral and organic components of bone tissue were evaluated using Fourier transform infrared spectroscopy. Bone samples obtained from the tibias of rabbits were irradiated with five energy densities (3, 6, 8, 12, and 15 J/cm(2)), and the effects on the carbonate to phosphate ratio and in the organic components were compared with those of nonirradiated samples. The increased temperature during the laser irradiation was also measured using infrared thermography to relate the observed spectral changes to the laser thermal effects. The analyses of the infrared spectra suggests that the irradiation with Er,Cr:YSGG promoted changes in bone tissue in both the mineral and organic components that depend on the laser energy density, pointing to the importance of using the proper energy density in clinical procedures.

  2. Assessment of dietary food and nutrient intake and bone density in children with eczema.

    PubMed

    Leung, T F; Wang, S S; Kwok, F Yy; Leung, L Ws; Chow, C M; Hon, K L

    2017-10-01

    Dietary restrictions are common among patients with eczema, and such practice may lead to diminished bone mineral density. This study investigated dietary intake and bone mineral density in Hong Kong Chinese children with eczema. This cross-sectional and observational study was conducted in a university-affiliated teaching hospital in Hong Kong. Chinese children aged below 18 years with physician-diagnosed eczema were recruited from our paediatric allergy and dermatology clinics over a 6-month period in 2012. Subjects with stable asthma and/or allergic rhinitis who were free of eczema and food allergy as well as non-allergic children were recruited from attendants at our out-patient clinics as a reference group. Intake of various foods and nutrients was recorded using a food frequency questionnaire that was analysed using Foodworks Professional software. Bone mineral density at the radius and the tibia was measured by quantitative ultrasound bone sonometry, and urinary cross-linked telopeptides were quantified by immunoassay and corrected for creatinine level. Overall, 114 children with eczema and 60 other children as reference group were recruited. Eczema severity of the patients was classified according to the objective SCORing Atopic Dermatitis score. Males had a higher daily energy intake than females (median, 7570 vs 6736 kJ; P=0.035), but intake of any single food item or nutrient did not differ between them. Compared with the reference group, children with eczema had a higher intake of soybeans and miscellaneous dairy products and lower intake of eggs, beef, and shellfish. Children with eczema also consumed less vitamin D, calcium, and iron. The mean (standard deviation) bone mineral density Z-score of children with eczema and those in the reference group were 0.52 (0.90) and 0.55 (1.12) over the radius (P=0.889), and 0.02 (1.03) and -0.01 (1.13) over the tibia (P=0.886), respectively. Urine telopeptide levels were similar between the groups. Calcium intake was associated with bone mineral density Z-score among children with eczema. Dietary restrictions are common among Chinese children with eczema in Hong Kong, who have a lower calcium, vitamin D, and iron intake. Nonetheless, such practice is not associated with changes to bone mineral density or bone resorptive biomarker.

  3. Discordance between the degree of osteopenia and the prevalence of spontaneous vertebral fractures in Crohn's disease.

    PubMed

    Stockbrügger, R W; Schoon, E J; Bollani, S; Mills, P R; Israeli, E; Landgraf, L; Felsenberg, D; Ljunghall, S; Nygard, G; Persson, T; Graffner, H; Bianchi Porro, G; Ferguson, A

    2002-08-01

    A high prevalence of osteoporosis has been noted in Crohn's disease, but data about fractures are scarce. The relationship between low bone mineral density and the prevalence of vertebral fractures was studied in 271 patients with ileo-caecal Crohn's disease in a large European/Israeli study. One hundred and eighty-one currently steroid-free patients with active Crohn's disease (98 completely steroid-naive) and 90 steroid-dependent patients with inactive or quiescent Crohn's disease were investigated by dual X-ray absorptiometry scan of the lumbar spine, a standardized posterior/anterior and lateral X-ray of the thoracic and lumbar spine, and an assessment of potential risk factors for osteoporosis. Thirty-nine asymptomatic fractures were seen in 25 of 179 steroid-free patients (14.0%; 27 wedge, 12 concavity), and 17 fractures were seen in 13 of 89 steroid-dependent patients (14.6%; 14 wedge, three concavity). The prevalence of fractures in steroid-naive patients was 12.4%. The average bone mineral density, expressed as the T-score, of patients with fractures was not significantly different from that of those without fractures (-0.759 vs. -0.837; P=0.73); 55% of patients with fractures had a normal T-score. The bone mineral density was negatively correlated with lifetime steroids, but not with previous bowel resection or current disease activity. The fracture rate was not correlated with the bone mineral density (P=0.73) or lifetime steroid dose (P=0.83); in women, but not in men, the fracture rate was correlated with age (P=0.009). The lack of correlation between the prevalence of fractures on the one hand and the bone mineral density and lifetime steroid dose on the other necessitates new hypotheses for the pathogenesis of the former.

  4. BsmI vitamin D receptor's polymorphism and bone mineral density in men and premenopausal women on long-term antiepileptic therapy.

    PubMed

    Lambrinoudaki, I; Kaparos, G; Armeni, E; Alexandrou, A; Damaskos, C; Logothetis, E; Creatsa, M; Antoniou, A; Kouskouni, E; Triantafyllou, N

    2011-01-01

    utilization of antiepileptic drugs (AEDs) has long been associated with bone deleterious effects. Furthermore, the BsmI restriction fragment polymorphism of the vitamin D receptor (VDR) has been associated with reduced bone mineral density (BMD), mostly in postmenopausal women. This study evaluates the association between bone metabolism of patients with epilepsy and the BsmI VDR's polymorphism in chronic users of AEDs. this study evaluated 73 long-term users of antiepileptic drug monotherapy, in a cross-sectional design. Fasting blood samples were obtained to estimate the circulating serum levels of calcium, magnesium, phosphorus, parathormone, 25 hydroxyvitamin D as well as the VDR's genotype. Bone mineral density at the lumbar spine was measured with Dual Energy X-Ray Absorptiometry. bone mineral density was significantly associated with the genotype of VDR (mean BMD: Bb genotype 1.056 ± 0.126 g/cm(2) ; BB genotype 1.059 ± 0.113 g/cm(2) ; bb genotype 1.179 ± 0.120 g/cm(2) ; P < 0.05). Additionally, the presence of at least one B allele was significantly associated with lower bone mineral density (B allele present: BMD = 1.057 ± 0.12 g/cm(2) , B allele absent: BMD = 1.179 ± 0.119 g/cm(2) ; P < 0.01). Patients with at least one B allele had lower serum levels of 25 hydroxyvitamin D when compared with bb patients (22.61 ng/ml vs. 33.27 ng/ml, P < 0.05), whilst they tended to have higher levels of parathyroid hormone. vitamin D receptor polymorphism is associated with lower bone mass in patients with epilepsy. This effect might be mediated through the vitamin D-parathormone pathway.

  5. Effects on bone mineral density of a monophasic combined oral contraceptive containing nomegestrol acetate/17β-estradiol in comparison to levonorgestrel/ethinylestradiol.

    PubMed

    Sørdal, Terje; Grob, Paul; Verhoeven, Carole

    2012-11-01

    To compare the effects of a monophasic combined oral contraceptive containing nomegestrol acetate/17β-estradiol (NOMAC/E2) on bone mineral density with a combined oral contraceptive containing levonorgestrel/ethinylestradiol (LNG/EE). Prospective, randomized, open-label, comparative clinical study. Gynecology center in Norway. One hundred and ten women (20-35 years old) actively seeking contraception. Methods. For 26 consecutive 28-day cycles, women received one of the following two treatments: NOMAC/E2 (2.5 mg/1.5 mg) in a 24/4-day regimen (n= 56); or LNG/EE (150 μg/30 μg) in a 21/7-day regimen (n= 54). Main outcome measures. Bone mineral density of the lumbar spine, femoral neck, hip and trochanter (measured by dual energy X-ray absorptiometry); associated z-scores of the lumbar spine and femoral neck. In NOMAC/E2 users, mean (±SD) z-score change from baseline for lumbar spine and femoral neck were 0.019 ± 0.242 and -0.007 ± 0.228, respectively, vs. 0.121 ± 0.269 and 0.044 ± 0.253 in LNG/EE users, respectively. Differences between treatment groups were not significant (p= 0.19 and p= 0.57, respectively). There were no significant differences between changes in hip and trochanter z-scores between NOMAC/E2 and LNG/EE treatments. After two years, NOMAC/E2 had no clinically relevant effect on bone mineral density. No significant difference in the effect on bone mineral density between NOMAC/E2 and LNG/EE was observed. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  6. The Relationship between 25 (OH) D Levels (Vitamin D) and Bone Mineral Density (BMD) in a Saudi Population in a Community-Based Setting.

    PubMed

    Alkhenizan, Abdullah; Mahmoud, Ahmed; Hussain, Aneela; Gabr, Alia; Alsoghayer, Suad; Eldali, Abdelmoneim

    2017-01-01

    Vitamin D deficiency has been linked to an increased risk of osteoporosis. Vitamin D deficiency has reached high levels in the Saudi population, but there is conflicting evidence both in the Saudi population, and worldwide, regarding the existence of a correlation between these low vitamin D levels and reduced BMD (bone mineral density), or osteoporosis. The objective of this study was primarily to determine whether there was a correlation between vitamin D deficiency and osteoporosis in the Saudi population. We aimed to investigate whether the high levels of vitamin D deficiency and insufficiency would translate to higher prevalence of osteoporosis, and whether there is a correlation between vitamin D levels and bone mineral density. This was a community based cross sectional study conducted in the Family Medicine Clinics at King Faisal Specialist Hospital and Research Centre in Riyadh, Saudi Arabia. Electronic records of 1723 patients were reviewed. Laboratory and radiology results were collected, including vitamin D levels, calcium levels, and bone mineral density scan results. Among the whole population, 61.5% had moderate to severe vitamin D deficiency with levels less than 50nmol/L. 9.1% of the population had osteoporosis, and 38.6% had osteopenia. Among the whole population, there was no significant correlation between spine or total femoral BMD and serum 25(OH) D. Vitamin D deficiency is prevalent in the Saudi population. However, no correlation has been found between vitamin D deficiency and reduced bone mineral density in any age group, in males or females, Saudis or Non-Saudis, in our population in Riyadh, Saudi Arabia.

  7. [EFFECTS IN BODY COMPOSITION AND BONE MINERAL DENSITY OF SIMULATE ALTITUDE PROGRAM IN TRIATHLETES].

    PubMed

    Ramos-Campo, Domingo Jesús; Rubio Arias, Jacobo Ángel; Jiménez Diaz, José Fernando

    2015-09-01

    body composition is an important factor to improve athletic performance. Futhermore, bone mineral density informs about the bone stiffness of the skeletal system. the aim of the present research was to analyze modifications on body composition and bone mineral density parameters after a seven week intermittent hypoxia training (IHT) program. eighteen male trained triathletes were divided in two groups: an intermittent hypoxia training group (GIHT: n: 9; 26.0 ± 6.7 years; 173.3 ± 5.9 cm; 66.4 ± 5.9 kg; VO2 max: 59.5 ± 5.0 ml/kg/min) that conducted a normoxic training plus an IHT and a control group (GC: n: 9; 29.3 ± 6.8 years; 174.9 ± 4.6 cm; 59.7 ± 6.8 kg; VO2 max: 58.9 ± 4.5 ml/kg/min) that performed only a normoxic training. Training process was standardized across the two groups. The IHT program consisted on two 60 minutes sessions per week at intensities over the anaerobic threshold and atmospheric conditions between 14.5 and 15% FiO2. Before and after the seven week training, body composition and bone mineral density were analyzed. After this training program, the GIHT showed lower values in free fat mass in upper limbs and fat mass in lower limbs (p < 0.05) than before the program. In terms of bone mineral density variables, between the two groups no changes were found. the addition of an IHT program to normoxic training caused an improvement in body composition parameters compared to similar training under normoxic conditions. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  8. Effect of cisplatin on bone transport osteogenesis in dogs.

    PubMed

    Ehrhart, Nicole; Eurell, Jo Ann C; Tommasini, Matteo; Constable, Peter D; Johnson, Ann L; Feretti, Antonio

    2002-05-01

    To document effects of cisplatin on regenerate bone formation during the distraction and consolidation phases of bone transport osteogenesis. 10 skeletally mature hounds. Bone transport osteogenesis was performed to reconstruct a 3-cm defect in the radius of each dog. Five dogs were randomly selected to receive cisplatin (70 mg/m2, IV, q 21 d for 4 cycles), and 5 were administered saline (0.9% NaCl) solution. Bone mineral density was measured by use of dual-energy x-ray absorptiometry (DEXA) on days 24, 55, and 90 after surgery. Dogs were euthanatized 90 days after surgery. Histomorphometry was performed on nondecalcified sections of regenerate bone. Bone mineral density and histomorphometric indices of newly formed bone were compared between groups. Densitometric differences in regenerate bone mineral density were not detected between groups at any time period. Cisplatin-treated dogs had decreased mineralized bone volume, decreased percentage of woven bone volume, decreased percentage of osteoblast-covered bone, increased porosity, and increased percentage of osteoblast-covered surfaces, compared with values for control dogs. Lamellar bone volume and osteoid volume did not differ significantly between groups. Regenerate bone will form and remodel during administration of cisplatin. Results of histomorphometric analysis suggest that bone formation and resorption may be uncoupled in cisplatin-treated regenerate bone as a result of increased osteoclast activity or delayed secondary bone formation during remodeling. These histomorphometric differences were modest in magnitude and did not result in clinically observable complications or decreased bone mineral density as measured by use of DEXA.

  9. [Nutritional status, body composition and bone mineral density in gastric bypass females: impact of socioeconomic level].

    PubMed

    de la Maza, María Pía; Leiva, Laura; Barrera, Gladys; Boggiano, Carolina; Herrera, Tomás; Pérez, Yanet; Gattás, Vivien; Bunout, Daniel; Hirsch, Sandra

    2008-11-01

    Roux-en-Y gastric bypass (RYGBP) has had a posilive impact on co-mobidities associated with obesity. However, in the long-term it can induce micronutrient deficiencies. To petform a complete nutritional assessment in a group of women previously operated of RYGBP from different socioeconomic levels (SEL). Thirtyy three women (19 high SEL and 14 low SEL), were assessed by dietary recalls, anthropometric measurements, muscle strength, bone mineral density, routine clinical laboratory, semm leeds of vitamin B12, 25OH-vitamin D, folate, calcium, ferritine ceruloplasmin and indicators of bone tutnoter (paratbohormone, osteocalcin and urinary pyridinolines). Their values were compared to those of 30 control women (18 high SEL and 12 low SEL). Low SEL operated women consumed fewer vitamin and mineral supplements compared with their high SEL pairs. No cases of vitamin B12, folic acid or copper deficiencies were detected. Frequency of iron deficiency was similar in patients and controls. Vitamin D insufficiency was higher among patients than in controls (p = 0.047), regardless SEL. Patients had also a higher frequency of high senum P771 and osteocakin and urinary pyridinoline levels. However, no differences in bone mineral density were obseived between operated women and controls. Vitamin and mineral deficiencies were lower than expected among operated women. However problems associated with vitamin D deficiency were highly prevalent among patients operated of RYGBP, irrespective SEL. These alterations were only detectable through specific markers at this stage, because they did not translate into lower bone mineral density (BMD) of sutgical patients, probably due to the higher pre-operative BMD of these moibid obese patients

  10. Intestinal absorption and renal reabsorption of calcium throughout postnatal development

    PubMed Central

    Beggs, Megan R

    2017-01-01

    Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving optimal bone mineral density in early adulthood, thereby lowering the lifetime risk of osteoporosis. PMID:28346014

  11. Correlation between the extent of catalytic activity and charge density of montmorillonites.

    PubMed

    Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-09-01

    The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH₃-(CH₂)(n)-NH₃](+), where n = 3-16 and 18, and then measuring d(₀₀₁), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed.

  12. Surface Material Analysis of the S-type Asteroids: Removing the Space Weathering Effect from Reflectance Spectrum

    NASA Technical Reports Server (NTRS)

    Ueda, Y.; Miyamoto, M.; Mikouchi, T.; Hiroi, T.

    2003-01-01

    Recent years, many researchers have been observing a lot of asteroid reflectance spectra in the UV, visible to NIR at wavelength region. Reflectance spectroscopy of asteroid at this range should bring us a lot of information about its surface materials. Pyroxene and olivine have characteristic absorption bands in this wavelength range. Low-Ca pyroxene has two absorption bands around 0.9 microns and 1.9 microns. The more Ca and Fe content, the longer both absorption band centers. On the other hand, reflectance spectrum of olivine has three complicated absorption bands around 1 m, and no absorption feature around 2 microns. In general, reflectance spectra of many asteroids that are considered to be silicate rich (i.e., S- and A type asteroids) show redder slope and more subdued absorption bands than those of terrestrial minerals and meteorites. These features are now believed to be caused by the space weathering effect, which is probably caused by micrometeorite bombardment and/or solar wind. This process causes nanophase reduced iron (npFe(sup 0)) particles near the surface of mineral grains, which leads the optical change. Therefore, the space weathering effect should be removed from asteroid reflectance spectra to compare with those of meteorite and terrestrial minerals. In this report, we will apply the expanded modified Gaussian model (MGM) to the reflectance spectra of S-type asteroids 7 Iris and 532 Herculina and compare them with those of meteorites.

  13. Veganism and osteoporosis: a review of the current literature.

    PubMed

    Smith, Annabelle M

    2006-10-01

    The purpose of this review is to examine the current literature regarding calcium and Vitamin D deficiencies in vegan diets and the possible relationship to low bone mineral density and incidence for fracture. Prominent databases were searched for original research publications providing data capable of answering these questions: (i) Do vegans have lower-than-recommended levels of calcium/Vitamin D? (ii) Do vegans have lower bone mineral density than their non-vegan counterparts? (iii) Are vegans at a greater risk for fractures than non-vegans? The findings gathered consistently support the hypothesis that vegans do have lower bone mineral density than their non-vegan counterparts. However, the evidence regarding calcium, Vitamin D and fracture incidence is inconclusive. More research is needed to definitively answer these questions and to address the effects of such deficiencies on the medical and socioeconomic aspects of life.

  14. A role for charcoal's physical properties in its carbon cycle fluxes

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Dugan, B.; Gao, X.; Pyle, L.; Sorrenti, G.; LaMere, L.; Liu, Z.; Zygourakis, K.

    2016-12-01

    The production of charcoal by fire generates a pool of soil carbon that is more biologically resistant to decomposition than many other forms of soil organic matter, and in some cases charcoal accumulates on the landscape. In other situations, however, charcoal does not accumulate, and is rapidly lost to rivers and eventually delivered to the ocean, where it can form a significant component of sedimentary organic carbon. The physical properties of charcoal form one basic dimension controlling whether charcoal is stored on the landscape or whether it moves to rivers and eventually marine sediments. It is simple to understand how charcoal density and porosity can play a crucial role in its mobility on the landscape: when charcoal pores are filled with air, the bulk density of charcoal can be as low as 0.25 g/cm3, and it will float and thus is easily transported with water runoff. As pores fill with water or soil minerals, the bulk density increases and can exceed 1 g/cm3, which will promote sinking and decrease mobility. For example, a charcoal with an internal porosity of 30% must have 90% of the pores saturated with water to achieve a bulk density greater than 1 g/cm3. Alternately for that same charcoal 20% of charcoal pores would need to infill with soil minerals (mineral density = 3.8 g/cm3) to achieve a density greater than 1 g/cm3. This mineral-infilling process has not been widely observed. Instead, early laboratory and field data suggest that the soil minerals partially block pores in charcoal and this process slows the rate of water transport into charcoal pores. If widespread, this process of partial pore throat occlusion may limit the rate of biochar saturation and thus help control the long-term landscape fate of charcoal.

  15. Relationship between serum albumin and bone mineral density in postmenopausal women and in patients with hypoalbuminemia.

    PubMed

    D'Erasmo, E; Pisani, D; Ragno, A; Raejntroph, N; Letizia, C; Acca, M

    1999-06-01

    Some discrepancies exist about the relationship between serum albumin level and the pathogenesis of osteoporosis; moreover, most of the studies available have especially concerned patients with osteoporosis, often associated with fractures. Our study, therefore, aims to investigate the presence of a relationship between serum albumin level and bone mineral density in a group of healthy women (n=650; mean age 59.0 +/- 7.4 years) who voluntarily underwent screening for osteoporosis only because they were menopausal (11.2 +/- 7.4 years since menopause) and, for comparison, in a group of outpatients (n = 44; mean age 57.6 +/- 7.0 years; 9.1 +/- 6.7 years since menopause) with hypoalbuminemia associated with diseases. The results show a lack of any relationship in healthy women between serum albumin value and bone mineral density; the lack of correlation was also shown when the postmenopausal women were down into normal, osteopenic and osteoporotic (WHO criteria) or in hypo, normal and hyperalbuminemic. The only significant parameters associated with lower bone mineral density, in fact, were age and years since menopause (p<0.0001 and p<0.0001 respectively at lumbar spine and p<0.02 and p<0.001 at femoral neck level). In the group of patients with hypoalbuminemia associated with diseases, on the other hand, a relationship between reduced bone mineral density and hypoalbuminemia was found (p<0.01 and p<0.05 respectively at lumbar spine and femoral neck). In conclusion, in healthy postmenopausal women the serum albumin level does not play a significant role in the pathogenesis of bone density reduction, which is mainly due to the number of years since menopause and advancing age. The hypoalbuminemia may be related to the reduction of bone mass only in the subjects affected by diseases associated with a significant albumin reduction.

  16. Impact of calcium and vitamin D insufficiencies on serum parathyroid hormone and bone mineral density: analysis of the 4th & 5th Korean National Health and Nutrition Examination Survey

    USDA-ARS?s Scientific Manuscript database

    The relative contributions of calcium and vitamin D to calcium metabolism and bone mineral density (BMD) have been examined previously, but not in a population with very low calcium intake. To determine the relative importance of dietary calcium intake and serum 25-hydroxyvitamin D [25(OH)D] concent...

  17. Bone Mineral Density Changes after Physical Training and Calcium Intake in Students with Attention Deficit and Hyper Activity Disorders

    ERIC Educational Resources Information Center

    Arab ameri, Elahe; Dehkhoda, Mohammad Reza; Hemayattalab, Rasool

    2012-01-01

    In this study we investigate the effects of weight bearing exercise and calcium intake on bone mineral density (BMD) of students with attention deficit and hyper activity (ADHD) disorder. For this reason 54 male students with ADHD (age 8-12 years old) were assigned to four groups with no differences in age, BMD, calcium intake, and physical…

  18. The recent prevalence of Osteoporosis and low bone mass in the United States based on bone mineral density at the Femoral Neck or Lumbar Spine

    USDA-ARS?s Scientific Manuscript database

    The goal of our study was to estimate the prevalence of osteoporosis and low bone mass based on bone mineral density (BMD) at the femoral neck and the lumbar spine in adults 50 years and older in the United States (US). We applied prevalence estimates of osteoporosis or low bone mass at the femoral ...

  19. Bone mass and vitamin D levels in Parkinson's disease: is there any difference between genders?

    PubMed

    Ozturk, Erhan Arif; Gundogdu, Ibrahim; Tonuk, Burak; Kocer, Bilge Gonenli; Tombak, Yasemin; Comoglu, Selcuk; Cakci, Aytul

    2016-08-01

    [Purpose] The aim of this study was to determine the bone mineral density, vitamin D level, and frequencies of osteopenia and osteoporosis in patients with Parkinson's disease and to compare male and female patients with the controls separately. [Subjects and Methods] One hundred fifteen Parkinson's disease patients (47 males, 68 females; age range: 55-85 years) and 117 age- and gender-matched controls (47 males, 70 females) were enrolled in the study. Bone mineral density measured by dual-energy X-ray absorptiometry and serum D vitamin levels of each participant were recorded. [Results] The mean lumbar spine, femur neck, and total femur bone mineral density levels, T-scores, and vitamin D levels were found to be significantly lower in Parkinson's disease patients in both genders. Furthermore, osteoporosis rates were found be significantly higher only in female Parkinson's disease patients compared with female controls. [Conclusion] Data from the present study revealed that while osteoporosis was significantly higher only in female Parkinson's disease patients, all Parkinson's disease patients had lower bone mineral density scores and vitamin D levels compared with the controls regardless of gender, suggesting that clinicians should pay attention to the osteoporosis risk in Parkinson's disease and that adequate preventive measures should be taken in order to limit the future risk due to osteoporotic fractures.

  20. Phytate (myo-inositol hexaphosphate) and risk factors for osteoporosis.

    PubMed

    López-González, A A; Grases, F; Roca, P; Mari, B; Vicente-Herrero, M T; Costa-Bauzá, A

    2008-12-01

    Several risk factors seem to play a role in the development of osteoporosis. Phytate is a naturally occurring compound that is ingested in significant amounts by those with diets rich in whole grains. The aim of this study was to evaluate phytate consumption as a risk factor in osteoporosis. In a first group of 1,473 volunteer subjects, bone mineral density was determined by means of dual radiological absorptiometry in the calcaneus. In a second group of 433 subjects (used for validation of results obtained for the first group), bone mineral density was determined in the lumbar column and the neck of the femur. Subjects were individually interviewed about selected osteoporosis risk factors. Dietary information related to phytate consumption was acquired by questionnaires conducted on two different occasions, the second between 2 and 3 months after performing the first one. One-way analysis of variance or Student's t test was used to determine statistical differences between groups. Bone mineral density increased with increasing phytate consumption. Multivariate linear regression analysis indicated that body weight and low phytate consumption were the risk factors with greatest influence on bone mineral density. Phytate consumption had a protective effect against osteoporosis, suggesting that low phytate consumption should be considered an osteoporosis risk factor.

  1. Effects of exercise on bone mineral density in calcium-replete postmenopausal women with and without hormone replacement therapy.

    PubMed

    Going, Scott; Lohman, Timothy; Houtkooper, Linda; Metcalfe, Lauve; Flint-Wagner, Hilary; Blew, Robert; Stanford, Vanessa; Cussler, Ellen; Martin, Jane; Teixeira, Pedro; Harris, Margaret; Milliken, Laura; Figueroa-Galvez, Arturo; Weber, Judith

    2003-08-01

    Osteoporosis is a major public health concern. The combination of exercise, hormone replacement therapy, and calcium supplementation may have added benefits for improving bone mineral density compared to a single intervention. To test this notion, 320 healthy, non-smoking postmenopausal women, who did or did not use hormone replacement therapy (HRT), were randomized within groups to exercise or no exercise and followed for 12 months. All women received 800 mg calcium citrate supplements daily. Women who exercised performed supervised aerobic, weight-bearing and weight-lifting exercise, three times per week in community-based exercise facilities. Regional bone mineral density (BMD) was assessed by dual energy X-ray absorptiometry. Women who used HRT, calcium, and exercised increased femoral neck, trochanteric and lumbar spine bone mineral density by approximately 1-2%. Trochanteric BMD was also significantly increased by approximately 1.0% in women who exercised and used calcium without HRT compared to a negligible change in women who used HRT and did not exercise. The results demonstrate that regional BMD can be improved with aerobic, weight-bearing activity combined with weight lifting at clinically relevant sites in postmenopausal women. The response was significant at more sites in women who used HRT, suggesting a greater benefit with hormone replacement and exercise compared to HRT alone.

  2. Interrelationships Between Morphometric, Densitometric, and Mechanical Properties of Teeth in 5-Month-Old Polish Merino Sheep.

    PubMed

    Tatara, Marcin R; Szabelska, Anna; Krupski, Witold; Tymczyna, Barbara; Łuszczewska-Sierakowska, Iwona; Bieniaś, Jarosław; Ostapiuk, Monika

    2018-06-01

    Interrelationships between morphological, densitometric, and mechanical properties of deciduous mandibular teeth (incisors, canine, second premolar) were investigated. To perform morphometric, densitometric, and mechanical analyses, teeth were obtained from 5-month-old sheep. Measurements of mean volumetric tooth mineral density and total tooth volume were performed using quantitative computed tomography. Microcomputed tomography was used to measure total enamel volume, volumetric enamel mineral density, total dentin volume, and volumetric dentin mineral density. Maximum elastic strength and ultimate force of teeth were determined using 3-point bending and compression tests. Pearson correlation coefficients were determined between all investigated variables. Mutual dependence was observed between morphological and mechanical properties of the investigated teeth. The highest number of positive correlations of the investigated parameters was stated in first incisor indicating its superior predictive value of tooth quality and masticatory organ function in sheep. Positive correlations of the volumetric dentin mineral density in second premolar with final body weight may indicate predictive value of this parameter in relation with growth rate in sheep. Evaluation of deciduous tooth properties may prove helpful for breeding selection and further reproduction of sheep possessing favorable traits of teeth and better masticatory organ function, leading to improved performance and economic efficiency of the flock.

  3. Mars analog minerals' spectral reflectance characteristics under Martian surface conditions

    NASA Astrophysics Data System (ADS)

    Poitras, J. T.; Cloutis, E. A.; Salvatore, M. R.; Mertzman, S. A.; Applin, D. M.; Mann, P.

    2018-05-01

    We investigated the spectral reflectance properties of minerals under a simulated Martian environment. Twenty-eight different hydrated or hydroxylated phases of carbonates, sulfates, and silica minerals were selected based on past detection on Mars through spectral remote sensing data. Samples were ground and dry sieved to <45 μm grain size and characterized by XRD before and after 133 days inside a simulated Martian surface environment (pressure 5 Torr and CO2 fed). Reflectance spectra from 0.35 to 4 μm were taken periodically through a sapphire (0.35-2.5 μm) and zinc selenide (2.5-4 μm) window over a 133-day period. Mineral stability on the Martian surface was assessed through changes in spectral characteristics. Results indicate that the hydrated carbonates studied would be stable on the surface of Mars, only losing adsorbed H2O while maintaining their diagnostic spectral features. Sulfates were less stable, often with shifts in the band position of the SO, Fe, and OH absorption features. Silicas displayed spectral shifts related to SiOH and hydration state of the mineral surface, while diagnostic bands for quartz were stable. Previous detection of carbonate minerals based on 2.3-2.5 μm and 3.4-3.9 μm features appears to be consistent with our results. Sulfate mineral detection is more questionable since there can be shifts in band position related to SO4. The loss of the 0.43 μm Fe3+ band in many of the sulfates indicate that there are fewer potential candidates for Fe3+ sulfates to permanently exist on the Martian surface based on this band. The gypsum sample changed phase to basanite during desiccation as demonstrated by both reflectance and XRD. Silica on Mars has been detected using band depth ratio at 1.91 and 1.96 μm and band minimum position of the 1.4 μm feature, and the properties are also used to determine their age. This technique continues to be useful for positive silica identifications, however, silica age appears to be less consistent with our laboratory data. These results will be useful in spectral libraries for characterizing Martian remote sensed data.

  4. Estimating soil zinc concentrations using reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Weichao; Zhang, Xia

    2017-06-01

    Soil contamination by heavy metals has been an increasingly severe threat to nature environment and human health. Efficiently investigation of contamination status is essential to soil protection and remediation. Visible and near-infrared reflectance spectroscopy (VNIRS) has been regarded as an alternative for monitoring soil contamination by heavy metals. Generally, the entire VNIR spectral bands are employed to estimate heavy metal concentration, which lacks interpretability and requires much calculation. In this study, 74 soil samples were collected from Hunan Province, China and their reflectance spectra were used to estimate zinc (Zn) concentration in soil. Organic matter and clay minerals have strong adsorption for Zn in soil. Spectral bands associated with organic matter and clay minerals were used for estimation with genetic algorithm based partial least square regression (GA-PLSR). The entire VNIR spectral bands, the bands associated with organic matter and the bands associated with clay minerals were incorporated as comparisons. Root mean square error of prediction, residual prediction deviation, and coefficient of determination (R2) for the model developed using combined bands of organic matter and clay minerals were 329.65 mg kg-1, 1.96 and 0.73, which is better than 341.88 mg kg-1, 1.89 and 0.71 for the entire VNIR spectral bands, 492.65 mg kg-1, 1.31 and 0.40 for the organic matter, and 430.26 mg kg-1, 1.50 and 0.54 for the clay minerals. Additionally, in consideration of atmospheric water vapor absorption in field spectra measurement, combined bands of organic matter and absorption around 2200 nm were used for estimation and achieved high prediction accuracy with R2 reached 0.640. The results indicate huge potential of soil reflectance spectroscopy in estimating Zn concentrations in soil.

  5. Orbital evidence for clay and acidic sulfate assemblages on Mars based on mineralogical analogs from Rio Tinto, Spain

    NASA Astrophysics Data System (ADS)

    Kaplan, Hannah H.; Milliken, Ralph E.; Fernández-Remolar, David; Amils, Ricardo; Robertson, Kevin; Knoll, Andrew H.

    2016-09-01

    Outcrops of hydrated minerals are widespread across the surface of Mars, with clay minerals and sulfates being commonly identified phases. Orbitally-based reflectance spectra are often used to classify these hydrated components in terms of a single mineralogy, although most surfaces likely contain multiple minerals that have the potential to record local geochemical conditions and processes. Reflectance spectra for previously identified deposits in Ius and Melas Chasma within the Valles Marineris, Mars, exhibit an enigmatic feature with two distinct absorptions between 2.2 and 2.3 μm. This spectral 'doublet' feature is proposed to result from a mixture of hydrated minerals, although the identity of the minerals has remained ambiguous. Here we demonstrate that similar spectral doublet features are observed in airborne, field, and laboratory reflectance spectra of rock and sediment samples from Rio Tinto, Spain. Combined visible-near infrared reflectance spectra and X-ray diffraction measurements of these samples reveal that the doublet feature arises from a mixture of Al-phyllosilicate (illite or muscovite) and jarosite. Analyses of orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows that the martian spectral equivalents are also consistent with mixtures of Al-phyllosilicates and jarosite, where the Al-phyllosilicate may also include kaolinite and/or halloysite. A case study for a region within Ius Chasma demonstrates that the relative proportions of the Al-phyllosilicate(s) and jarosite vary within one stratigraphic unit as well as between stratigraphic units. The former observation suggests that the jarosite may be a diagenetic (authigenic) product and thus indicative of local pH and redox conditions, whereas the latter observation may be consistent with variations in sediment flux and/or fluid chemistry during sediment deposition.

  6. Bisphosphonate therapy for osteogenesis imperfecta.

    PubMed

    Dwan, Kerry; Phillipi, Carrie A; Steiner, Robert D; Basel, Donald

    2016-10-19

    Osteogenesis imperfecta is caused by a genetic defect resulting in an abnormal type I collagen bone matrix which typically results in multiple fractures with little or no trauma. Bisphosphonates are used in an attempt to increase bone mineral density and reduce these fractures in people with osteogenesis imperfecta. This is an update of a previously published Cochrane Review. To assess the effectiveness and safety of bisphosphonates in increasing bone mineral density, reducing fractures and improving clinical function in people with osteogenesis imperfecta. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Inborn Errors of Metabolism Trials Register which comprises references identified from comprehensive electronic database searches, handsearches of journals and conference proceedings. We additionally searched PubMed and major conference proceedings.Date of the most recent search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Inborn Errors of Metabolism Register: 28 April 2016. Randomised and quasi-randomised controlled trials comparing bisphosphonates to placebo, no treatment, or comparator interventions in all types of osteogenesis imperfecta. Two authors independently extracted data and assessed the risk of bias of the included trials. Fourteen trials (819 participants) were included. Overall, the trials were mainly at a low risk of bias, although selective reporting was an issue in several of the trials. Data for oral bisphosphonates versus placebo could not be aggregated; a statistically significant difference favouring oral bisphosphonates in fracture risk reduction and number of fractures was noted in two trials. No differences were reported in the remaining three trials which commented on fracture incidence. Five trials reported data for spine bone mineral density; all found statistically significant increased lumbar spine density z scores for at least one time point studied. For intravenous bisphosphonates versus placebo, aggregated data from two trials showed no statistically significant difference for the number of participants with at least one fracture, risk ratio 0.56 (95% confidence interval 0.30 to 1.06). In the remaining trial no statistically significant difference was noted in fracture incidence. For spine bone mineral density, no statistically significant difference was noted in the aggregated data from two trials, mean difference 9.96 (95% confidence interval -2.51 to 22.43). In the remaining trial a statistically significant difference in mean per cent change in spine bone mineral density z score favoured intravenous bisphosphonates at six and 12 months. Data describing growth, bone pain, and functional outcomes after oral or intravenous bisphosphonate therapy, or both, as compared to placebo were incomplete among all studies, but do not show consistent improvements in these outcomes. Two studies compared different doses of bisphosphonates. No differences were found between doses when bone mineral density, fractures, and height or length z score were assessed. One trial compared oral versus intravenous bisphosphonates and found no differences in primary outcomes. Two studies compared the intravenous bisphosphonates zoledronic acid and pamidronate. There were no significant differences in primary outcome. However, the studies were at odds as to the relative benefit of zoledronic acid over pamidronate for lumbosacral bone mineral density at 12 months. Bisphophonates are commonly prescribed to individuals with osteogenesis imperfecta. Current evidence, albeit limited, demonstrates oral or intravenous bisphosphonates increase bone mineral density in children and adults with this condition. These were not shown to be different in their ability to increase bone mineral density. It is unclear whether oral or intravenous bisphosphonate treatment consistently decreases fractures, though multiple studies report this independently and no studies report an increased fracture rate with treatment. The studies included here do not show bisphosphonates conclusively improve clinical status (reduce pain; improve growth and functional mobility) in people with osteogenesis imperfecta. Given their current widespread and expected continued use, the optimal method, duration of therapy and long-term safety of bisphosphonate therapy require further investigation. In addition, attention should be given to long-term fracture reduction and improvement in quality of life indicators.

  7. Bisphosphonate therapy for osteogenesis imperfecta.

    PubMed

    Dwan, Kerry; Phillipi, Carrie A; Steiner, Robert D; Basel, Donald

    2014-07-23

    Osteogenesis imperfecta is caused by a genetic defect resulting in an abnormal type I collagen bone matrix which typically results in multiple fractures with little or no trauma. Bisphosphonates are used in an attempt to increase bone mineral density and reduce these fractures in people with osteogenesis imperfecta. To assess the effectiveness and safety of bisphosphonates in increasing bone mineral density, reducing fractures and improving clinical function in people with osteogenesis imperfecta. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Inborn Errors of Metabolism Trials Register which comprises references identified from comprehensive electronic database searches, handsearches of journals and conference proceedings. We additionally searched PubMed and major conference proceedings.Date of the most recent search: 07 April 2014. Randomised and quasi-randomised controlled trials comparing bisphosphonates to placebo, no treatment, or comparator interventions in all types of osteogenesis imperfecta. Two authors independently extracted data and assessed the risk of bias of the included trials. Fourteen trials (819 participants) were included. Overall, the trials were mainly at a low risk of bias, although selective reporting was an issue in several of the trials. Data for oral bisphosphonates versus placebo could not be aggregated; a statistically significant difference favouring oral bisphosphonates in fracture risk reduction and number of fractures was noted in two trials. No differences were reported in the remaining three trials which commented on fracture incidence. Five trials reported data for spine bone mineral density; all found statistically significant increased lumbar spine density z scores for at least one time point studied. For intravenous bisphosphonates versus placebo, aggregated data from two trials showed no statistically significant difference for the number of participants with at least one fracture, risk ratio 0.56 (95% confidence interval 0.30 to 1.06). In the remaining trial no statistically significant difference was noted in fracture incidence. For spine bone mineral density, no statistically significant difference was noted in the aggregated data from two trials, mean difference 9.96 (95% confidence interval -2.51 to 22.43). In the remaining trial a statistically significant difference in mean per cent change in spine bone mineral density z score favoured intravenous bisphosphonates at six and 12 months. Data describing growth, bone pain, and functional outcomes after oral or intravenous bisphosphonate therapy, or both, as compared to placebo were incomplete among all studies, but do not show consistent improvements in these outcomes. Two studies compared different doses of bisphosphonates. No differences were found between doses when bone mineral density, fractures, and height or length z score were assessed. One study compared oral versus intravenous bisphosphonates and found no differences in primary outcomes. Two studies compared the intravenous bisphosphonates zoledronic acid and pamidronate. There were no significant differences in primary outcome. However, the studies were at odds as to the relative benefit of zoledronic acid over pamidronate for lumbosacral bone mineral density at 12 months. Bisphophonates are commonly prescribed to individuals with osteogenesis imperfecta. Current evidence, albeit limited, demonstrates oral or intravenous bisphosphonates increase bone mineral density in children and adults with this condition. These were not shown to be different in their ability to increase bone mineral density. It is unclear whether oral or intravenous bisphosphonate treatment consistently decreases fractures, though multiple studies report this independently and no studies report an increased fracture rate with treatment. The studies included here do not show bisphosphonates conclusively improve clinical status (reduce pain; improve growth and functional mobility) in people with osteogenesis imperfecta. Given their current widespread and expected continued use, the optimal method, duration of therapy and long-term safety of bisphosphonate therapy require further investigation. In addition, attention should be given to long-term fracture reduction and improvement in quality of life indicators.

  8. Estimating the Mg# and AlVI content of biotite and chlorite from shortwave infrared reflectance spectroscopy: Predictive equations and recommendations for their use

    NASA Astrophysics Data System (ADS)

    Lypaczewski, Philip; Rivard, Benoit

    2018-06-01

    Shortwave infrared (SWIR, 1000-2500 nm) reflectance spectra of biotite and chlorite were investigated to establish quantitative relationships between spectral metrics and mineral chemistry, determined by electron microprobe analysis (EMPA). Samples spanning a broad range of mineral compositions were used to establish regression equations to Mg#, which can be estimated to ±3 and ±5 Mg#, and to AlVI content, which can be estimated to ±0.044 AlVI (11 O) and ±0.09 AlVI (14 O), respectively for biotite and chlorite. Both minerals have absorptions at common positions (1400, 2250, 2330 nm), and spectral interference may occur in mineral mixtures. For an equivalent Mg#, absorptions of chlorite are offset to 1-15 nm higher wavelengths relative to those of biotite. If the incorrect mineral is identified, errors in the estimation of composition may occur. Additionally, the 2250 nm absorption, which is related to Al(Mg,Fe)-OH in both minerals, is strongly affected by both the AlVI content and Mg#. This can lead to erroneous Mg# estimations in low AlVI samples. Recommendations to mitigate these issues are presented.

  9. Thermography Control of Heat Insulation and Tightness of Buildings,

    DTIC Science & Technology

    1980-11-01

    drawing, top to bottom: 100 + 50 mm mineral wool panels, bulk density 50 kg/m3 Vapor barrier of plastic foil 3/4" tongue and groove 13 mm gypsum panel...Horizontal steel bolts Horisontella Air leakage, in A Ireqlar Corrugated sheet metal 90 mm mineral wool (with sheathing paper) Ko"mir) emd 30 mm mineral ...bolt; Outward leakage of warm air from the room; Steel siding; 90 mm mineral wool (with wind protection); 30 mm mineral wool (with vapor barrier

  10. Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides

    NASA Technical Reports Server (NTRS)

    Singer, R. B.

    1981-01-01

    Near-infrared spectral reflectance data are presented for systematic variations in weight percent of two component mixtures of ferromagnesium and iron oxide minerals used to study the dark materials on Mars. Olivine spectral features are greatly reduced in contrast by admixture of other phases but remain distinctive even for low olivine contents. Clinopyroxene and orthopyroxene mixtures show resolved pyroxene absorptions near 2 microns. Limonite greatly modifies pyroxene and olivine reflectance, but does not fully eliminate distinctive spectral characteristics. Using only spectral data in the 1 micron region, it is difficult to differentiate orthopyroxene and limonite in a mixture. All composite mineral absorptions were either weaker than or intermediate in strength to the end-member absorptions and have bandwidths greater than or equal to those for the end members. In general, spectral properties in an intimate mixture combine in a complex, nonadditive manner, with features demonstrating a regular but usually nonlinear variation as a function of end-member phase proportions.

  11. A monoclinic, pseudo-orthorhombic Au-Hg mineral of potential economic significance in Pleistocene Snake River alluvial deposits of southeastern Idaho

    USGS Publications Warehouse

    Desborough, G.A.; Foord, E.E.

    1992-01-01

    A mineral with the approximate composition of Au94Hg6 - Au88Hg12 (atomic %) has been identified in Pleistocene Snake River alluvial deposits. The gold-mercury mineral occurs as very small grains or as polycrystalline masses composed of subhedral to nearly euhedral attached crystals. Vibratory cold-polishing techniques with 0.05-??m alumina abrasive for polished sections revealed a porous internal texture for most subhedral crystals after 48-72 hours of treatment. Thus, optical character (isotropic or anisotropic) could not be determined by reflected-light microscopy, and pore-free areas were too small for measurement of reflectance. X-ray-diffraction lines rather than individual reflections (spots), on powder camera X-ray films of unrotated spindles of single grains that morphologically appear to be single crystals, indicate that individual subhedral or euhedral crystals are composed of domains in random orientation. Thus, no material was found suitable for single-crystal X-ray diffraction studies. -from Authors

  12. Non-autoclaved aerated concrete with mineral additives

    NASA Astrophysics Data System (ADS)

    Il'ina, L. V.; Rakov, M. A.

    2016-01-01

    We investigated the effect of joint grinding of Portland cement clinker, silica and carbonate components and mineral additives to specific surface of 280 - 300 m2/kg on the properties (strength, average density and thermal conductivity) of non-autoclaved aerated concrete, and the porosity of the hardened cement paste produced from Portland cement clinker with mineral additives. The joint grinding of the Portland cement clinker with silica and carbonate components and mineral additives reduces the energy consumption of non-autoclaved aerated concrete production. The efficiency of mineral additives (diopside, wollastonite) is due to the closeness the composition, the type of chemical bonds, physical and chemical characteristics (specific enthalpy of formation, specific entropy) to anhydrous clinker minerals and their hydration products. Considering the influence of these additions on hydration of clinker minerals and formation of hardened cement paste structure, dispersed wollastonite and diopside should be used as mineral additives. The hardness and, consequently, the elastic modulus of diopside are higher than that of hardened cement paste. As a result, there is a redistribution of stresses in the hardened cement paste interporous partitions and hardening, both the partitions and aerated concrete on the whole. The mineral additives introduction allowed to obtain the non-autoclaved aerated concrete with average density 580 kg/m3, compressive strength of 3.3 MPa and thermal conductivity of 0.131 W/(m.°C).

  13. A summary of Selected Data: DSDP Legs 20-44,

    DTIC Science & Technology

    1980-09-01

    water X 100 minerals may be applied in the future density water when the mineralogy and attenuation wt. wate r \\+ wt r ed. + salIt coefficients...in the future when densities of some common minerals are the exact quantitative mineralogy and listed in Harms and Choquette (1965), attenuation...different attenuation coefficient than were used to get a " ball park" answer that of calcite. for a particular sediment type, or for drilling

  14. A mineral separation procedure using hot Clerici solution

    USGS Publications Warehouse

    Rosenblum, Sam

    1974-01-01

    Careful boiling of Clerici solution in a Pyrex test tube in an oil bath is used to float minerals with densities up to 5.0 in order to obtain purified concentrates of monazite (density 5.1) for analysis. The "sink" and "float" fractions are trapped in solidified Clerici salts on rapid chilling, and the fractions are washed into separate filter papers with warm water. The hazardous nature of Clerici solution requires unusual care in handling.

  15. Effect of a novel phytase on growth performance, apparent metabolizable energy, and the availability of minerals and amino acids in a low-phosphorus corn-soybean meal diet for broilers.

    PubMed

    Rutherfurd, S M; Chung, T K; Thomas, D V; Zou, M L; Moughan, P J

    2012-05-01

    The addition of microbial phytase to diets for broiler chickens has been shown to improve the availability of phytate P, total P, some other minerals, and amino acids. In this study, the effect of a novel microbial phytase expressed by synthetic genes in Aspergillus oryzae on amino acid and mineral availability was assessed. Phytase was incorporated (1,000 and 2,000 U/kg) into low-P corn-soybean meal-based diets for broilers. Broilers received the experimental diets for 3 wk, and excreta were collected from d 18 to 21 for the determination of AME and mineral retention. On the 22nd day, the broilers were killed and the left leg removed and ileal digesta collected. Ileal phytate P and total P absorption, ileal amino acid digestibility, as well as the bone mineral content and bone mineral density were determined. Ileal phytate P absorption and absorbed phytate P content of the low-P corn-soybean meal diet were significantly (P < 0.05) higher after dietary inclusion of the novel phytase (49-60% and 65-77% higher, respectively). Apparent ileal total P absorption and apparent total P retention was 12 to 16% and 14 to 19% higher (P < 0.05), respectively, after dietary inclusion of phytase. The bone mineral content and bone mineral density in the tibia were 32 to 35% and 19 to 21% higher (P < 0.05), respectively, after dietary phytase inclusion. The apparent ileal digestibility of threonine, tyrosine, and histidine increased significantly (P < 0.05) by 14, 9, and 7%, respectively, after dietary inclusion of microbial phytase. Overall, the inclusion of a novel microbial phytase into a low-P corn-soybean meal diet for broiler chickens greatly increased phytate P and total P absorption, bone mineral content and density, as well as the digestibility of some amino acids.

  16. Decline in bone mineral density with stress fractures in a woman on depot medroxyprogesterone acetate. A case report.

    PubMed

    Harkins, G J; Davis, G D; Dettori, J; Hibbert, M L; Hoyt, R A

    1999-03-01

    Depot medroxyprogesterone acetate is a popular contraceptive among young, physically active women. However, its administration has been linked to a relative decrease in estrogen levels. Since bone resorption is accelerated during hypoestrogenic states, there has been growing concern about the potential development of osteoporosis and fractures with the use of this contraceptive method. A physically active, 33-year-old woman demonstrated a 12.4% drop in femoral neck bone mineral density (BMD), 6.4% drop in lumbar BMD and 0.8% drop in total BMD with the subsequent development of a tibial stress fracture while on depot medroxyprogesterone acetate. Bone mineralization rapidly improved, and the stress fracture resolved with discontinuation of the medication. The long-term effects of depot medroxyprogesterone acetate on bone mineralization in physically active women should be evaluated more thoroughly.

  17. Correlation between longitudinal, circumferential, and radial moduli in cortical bone: effect of mineral content.

    PubMed

    Macione, J; Depaula, C A; Guzelsu, N; Kotha, S P

    2010-07-01

    Previous studies indicate that changes in the longitudinal elastic properties of bone due to changes in mineral content are related to the longitudinal strength of bone tissue. Changes in mineral content are expected to affect bone tissue mechanical properties along all directions, albeit to different extents. However, changes in tissue mechanical properties along the different directions are expected to be correlated to one another. In this study, we investigate if radial, circumferential, and longitudinal moduli are related in bone tissue with varying mineral content. Plexiform bovine femoral bone samples were treated in fluoride ion solutions for a period of 3 and 12 days to obtain bones with 20% and 32% lower effective mineral contents. Transmission ultrasound velocities were obtained in the radial, circumferential, and longitudinal axes of bone and combined with measured densities to obtain corresponding tensorial moduli. Results indicate that moduli decreased with fluoride ion treatments and were significantly correlated to one another (r(2) radial vs. longitudinal = 0.80, r(2) circumferential vs. longitudinal = 0.90, r(2) radial vs. circumferential = 0.85). Densities calculated from using ultrasound parameters, acoustic impedance and transmission velocities, were moderately correlated to those measured by the Archimedes principle (r(2)=0.54, p<0.01). These results suggest that radial and circumferential ultrasound measurements could be used to determine the longitudinal properties of bone and that ultrasound may not be able to predict in vitro densities of bones containing unbonded mineral. Published by Elsevier Ltd.

  18. Tandem transmission/reflection mode XRD instrument including XRF for in situ measurement of Martian rocks and soils

    NASA Astrophysics Data System (ADS)

    Delhez, Robert; Van der Gaast, S. J.; Wielders, Arno; de Boer, J. L.; Helmholdt, R. B.; van Mechelen, J.; Reiss, C.; Woning, L.; Schenk, H.

    2003-02-01

    The mineralogy of the surface material of Mars is the key to disclose its present and past life and climates. Clay mineral species, carbonates, and ice (water and CO2) are and/or contain their witnesses. X-ray powder diffraction (XRPD) is the most powerful analytical method to identify and quantitatively characterize minerals in complex mixtures. This paper discusses the development of a working model of an instrument consisting of a reflection mode diffractometer and a transmission mode CCD-XRPD instrument, combined with an XRF module. The CCD-XRD/XRF instrument is analogous to the instrument for Mars missions developed by Sarrazin et al. (1998). This part of the tandem instrument enables "quick and dirty" analysis of powdered (!) matter to monitor semi-quantitatively the presence of clay minerals as a group, carbonates, and ices and yields semi-quantitative chemical information from X-ray fluorescence (XRF). The reflection mode instrument (i) enables in-situ measurements of rocks and soils and quantitative information on the compounds identified, (ii) has a high resolution and reveals large spacings for accurate identification, in particular of clay mineral species, and (iii) the shape of the line profiles observed reveals the kind and approximate amounts of lattice imperfections present. It will be shown that the information obtained with the reflection mode diffractometer is crucial for finding signs of life and changes in the climate on Mars. Obviously this instrument can also be used for other extra-terrestrial research.

  19. Spectral Unmixing Based Construction of Lunar Mineral Abundance Maps

    NASA Astrophysics Data System (ADS)

    Bernhardt, V.; Grumpe, A.; Wöhler, C.

    2017-07-01

    In this study we apply a nonlinear spectral unmixing algorithm to a nearly global lunar spectral reflectance mosaic derived from hyper-spectral image data acquired by the Moon Mineralogy Mapper (M3) instrument. Corrections for topographic effects and for thermal emission were performed. A set of 19 laboratory-based reflectance spectra of lunar samples published by the Lunar Soil Characterization Consortium (LSCC) were used as a catalog of potential endmember spectra. For a given spectrum, the multi-population population-based incremental learning (MPBIL) algorithm was used to determine the subset of endmembers actually contained in it. However, as the MPBIL algorithm is computationally expensive, it cannot be applied to all pixels of the reflectance mosaic. Hence, the reflectance mosaic was clustered into a set of 64 prototype spectra, and the MPBIL algorithm was applied to each prototype spectrum. Each pixel of the mosaic was assigned to the most similar prototype, and the set of endmembers previously determined for that prototype was used for pixel-wise nonlinear spectral unmixing using the Hapke model, implemented as linear unmixing of the single-scattering albedo spectrum. This procedure yields maps of the fractional abundances of the 19 endmembers. Based on the known modal abundances of a variety of mineral species in the LSCC samples, a conversion from endmember abundances to mineral abundances was performed. We present maps of the fractional abundances of plagioclase, pyroxene and olivine and compare our results with previously published lunar mineral abundance maps.

  20. Rock Layers in Lower Mound in Gale Crater

    NASA Image and Video Library

    2011-07-22

    Mars scientists have several important hypotheses about how these minerals may reflect changes in the amount of water on the surface of Mars. The Mars Science Laboratory rover, Curiosity, will use its full suite of instruments to study these minerals.

  1. Bone density of the radius, spine, and proximal femur in osteoporosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazess, R.B.; Barden, H.; Ettinger, M.

    1988-02-01

    Bone mineral density (BMD) was measured in 140 normal young women (aged 20 to 39 years) and in 423 consecutive women over age 40 referred for evaluation of osteoporosis. Lumbar spine and proximal femur BMD was measured using dual-photon absorptiometry (/sup 153/Gd), whereas the radius shaft measurement used single-photon absorptiometry (/sup 125/I). There were 324 older women with no fractures, of which 278 aged 60 to 80 years served as age-matched controls. There were 99 women with fractures including 32 with vertebral and 22 with hip fractures. Subsequently, another 25 women with hip fractures had BMD measured in another laboratory;more » their mean BMD was within 2% of that of the original series. The mean age in both the nonfracture and fracture groups was 70 +/- 5 years. The BMD in the age-matched controls was 20% to 25% below that of normal young women for the radius, spine, and femur, but the Ward's triangle region of the femur showed even greater loss (35%). The mean BMD at all sites in the crush fracture cases was about 10% to 15% below that of age-matched controls. Spinal abnormality was best discriminated by spine and femoral measurements (Z score about 0.9). In women with hip fractures, the BMD was 10% below that of age-matched controls for the radius and the spine, and the BMD for the femoral sites was about 25% to 30% below that of age-matched control (Z score about 1.6). Femoral densities gave the best discrimination of hip fracture cases and even reflected spinal osteopenia. In contrast, neither the spine nor the radius reflected the full extent of femoral osteopenia in hip fracture.« less

  2. Bone mineral density of vegetarian and non-vegetarian adults in Taiwan.

    PubMed

    Wang, Yuh-Feng; Chiu, Jainn-Shiun; Chuang, Mei-Hua; Chiu, Jing-Er; Lin, Chin-Lon

    2008-01-01

    Diet is thought to be one of the leading causes of bone mineral loss in aging people. In this study, we explored the potential impact of a vegetarian diet on bone mineral density (BMD) in adult Taiwanese men and women. This was a cross-sectional study of the relationship between diet (vegetarian versus non-vegetarian) and BMD and the incidence of osteoporosis. Bone mineral density was determined in a cohort of 1865 adult male and female patients who underwent routine examination in a regional teaching hospital in Taiwan between February 2003 and February 2004. Subjects with definite vertebral problems, known osteopathy, or poor posture were excluded. Dual-energy X-ray absorptiometry (DEXA) was used to determine BMD, on the right hip in men and on lumbar vertebrae L2 to L4 in women. The subjects were grouped according to sex and diet, and were then stratified by age within each of the four groups. The outcome measures were the BMD value and the incidence of osteopenia or osteoporosis according to defined criteria. Bone mineral density gradually declined with increasing age in Taiwanese men, while Taiwanese women showed a precipitous decrease in BMD after the 5th decade. However, no statistical differences in BMD were observed between vegetarians and non-vegetarians of either sex. The proportion of subjects with osteopenia or osteoporosis also appeared comparable between vegetarians and non-vegetarians of either sex. BMD shows an age-related decline in Taiwanese men and women, and eating a vegetarian diet does not appear to affect this decline.

  3. Mercury's hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance

    NASA Astrophysics Data System (ADS)

    Blewett, David T.; Vaughan, William M.; Xiao, Zhiyong; Chabot, Nancy L.; Denevi, Brett W.; Ernst, Carolyn M.; Helbert, JöRn; D'Amore, Mario; Maturilli, Alessandro; Head, James W.; Solomon, Sean C.

    2013-05-01

    unique to Mercury, hollows are shallow, flat-floored irregular depressions notable for their relatively high reflectance and characteristic color. Here we document the range of geological settings in which hollows occur. Most are associated with impact structures (simple bowl-shaped craters to multiring basins, and ranging from Kuiperian to Calorian in age). Hollows are found in the low-reflectance material global color unit and in low-reflectance blue plains, but they appear to be absent from high-reflectance red plains. Hollows may occur preferentially on equator- or hot-pole-facing slopes, implying that their formation is linked to solar heating. Evidence suggests that hollows form because of loss of volatile material. We describe hypotheses for the origin of the volatiles and for how such loss proceeds. Intense space weathering and solar heating are likely contributors to the loss of volatiles; contact heating by melts could promote the formation of hollows in some locations. Lunar Ina-type depressions differ from hollows on Mercury in a number of characteristics, so it is unclear if they represent a good analog. We also use MESSENGER multispectral images to characterize a variety of surfaces on Mercury, including hollows, within a framework defined by laboratory spectra for analog minerals and lunar samples. Data from MESSENGER's X-Ray Spectrometer indicate that the planet's surface contains up to 4% sulfur. We conclude that nanophase or microphase sulfide minerals could contribute to the low reflectance of the low-reflectance material relative to average surface material. Hollows may owe their relatively high reflectance to destruction of the darkening agent (sulfides), the presence of alteration minerals, and/or physical differences in particle size, texture, or scattering behavior.

  4. Imaging the Material Properties of Bone Specimens using Reflection-Based Infrared Microspectroscopy

    PubMed Central

    Acerbo, Alvin S.; Carr, G. Lawrence; Judex, Stefan; Miller, Lisa M.

    2012-01-01

    Fourier Transform InfraRed Microspectroscopy (FTIRM) is a widely used method for mapping the material properties of bone and other mineralized tissues, including mineralization, crystallinity, carbonate substitution, and collagen cross-linking. This technique is traditionally performed in a transmission-based geometry, which requires the preparation of plastic-embedded thin sections, limiting its functionality. Here, we theoretically and empirically demonstrate the development of reflection-based FTIRM as an alternative to the widely adopted transmission-based FTIRM, which reduces specimen preparation time and broadens the range of specimens that can be imaged. In this study, mature mouse femurs were plastic-embedded and longitudinal sections were cut at a thickness of 4 μm for transmission-based FTIRM measurements. The remaining bone blocks were polished for specular reflectance-based FTIRM measurements on regions immediately adjacent to the transmission sections. Kramers-Kronig analysis of the reflectance data yielded the dielectric response from which the absorption coefficients were directly determined. The reflectance-derived absorbance was validated empirically using the transmission spectra from the thin sections. The spectral assignments for mineralization, carbonate substitution, and collagen cross-linking were indistinguishable in transmission and reflection geometries, while the stoichiometric/non-stoichiometric apatite crystallinity parameter shifted from 1032 / 1021 cm−1 in transmission-based to 1035 / 1025 cm−1 in reflection-based data. This theoretical demonstration and empirical validation of reflection-based FTIRM eliminates the need for thin sections of bone and more readily facilitates direct correlations with other methods such nanoindentation and quantitative backscatter electron imaging (qBSE) from the same specimen. It provides a unique framework for correlating bone’s material and mechanical properties. PMID:22455306

  5. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase.

    PubMed

    Armour, K E; Armour, K J; Gallagher, M E; Gödecke, A; Helfrich, M H; Reid, D M; Ralston, S H

    2001-02-01

    Nitric oxide (NO) is a pleiotropic signaling molecule that is produced by bone cells constitutively and in response to diverse stimuli such as proinflammatory cytokines, mechanical strain, and sex hormones. Endothelial nitric oxide synthase (eNOS) is the predominant NOS isoform expressed in bone, but its physiological role in regulating bone metabolism remains unclear. Here we studied various aspects of bone metabolism in female mice with targeted disruption of the eNOS gene. Mice with eNOS deficiency (eNOS KO) had reduced bone mineral density, and cortical thinning when compared with WT controls and histomorphometric analysis of bone revealed profound abnormalities of bone formation, with reduced osteoblast numbers, surfaces and mineral apposition rate. Studies in vitro showed that osteoblasts derived from eNOS KO mice had reduced rates of growth when compared with WT and were less well differentiated as reflected by lower levels of alkaline phosphatase activity. Mice with eNOS deficiency lost bone normally following ovariectomy but exhibited a significantly blunted anabolic response to high dose exogenous estrogen. We conclude that the eNOS pathway plays an essential role in regulating bone mass and bone turnover by modulating osteoblast function.

  6. Effects of host-plant population size and plant sex on a specialist leaf-miner

    NASA Astrophysics Data System (ADS)

    Bañuelos, María-José; Kollmann, Johannes

    2011-03-01

    Animal population density has been related to resource patch size through various hypotheses such as those derived from island biogeography and resource concentration theory. This theoretical framework can be also applied to plant-herbivore interactions, and it can be modified by the sex of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size was negatively related to leaf-miner prevalence, with larger egg and mine densities in small populations. Percentage of eggs hatching and developing into mines, and percentage of adult flies emerging from mines also differed among host populations, but were not related to population size or host cover. Feeding punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively correlated with emergence of the larvae. The inverse effects of host population size were not in line with predictions based on island biogeography and resource concentration theory. We discuss how a thorough knowledge of the immigration behaviour of this fly might help to understand the patterns found.

  7. Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.

    2013-01-01

    This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.

  8. Investigating Reflectance Properties of Mercury's Surface Material: Effect of Swift Heavy Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Carli, C.; Brunetto, R.; Strazzulla, G.; Serventi, G.; Poulet, F.; Capaccioni, F.; Langevin, Y.; Gardes, E.; Martinez, R.; Boduch, P.; Domaracka, A.; Rothard, H.

    2018-05-01

    Mercury’s surface is affected by space weathering processes, interesting mineral properties. Here, we present a spectral study of swift heavy ion irradiation of two minerals, olivine and nepheline, as a simulation of heavy ion irradiation at Mercury.

  9. A case report of osteomalacia unmasking primary biliary cirrhosis.

    PubMed

    Pawlowska, M; Kapeluto, J E; Kendler, D L

    2015-07-01

    Osteomalacia, a metabolic bone disease characterized by the inability to mineralize new osteoid, can be caused by vitamin D deficiency. We report a patient with symptomatic, biochemical, and imaging evidence of osteomalacia due to vitamin D deficiency, who as a result of work up for bone disease was diagnosed with early primary biliary cirrhosis. Osteomalacia was treated with high-dose vitamin D and serial bone density scans showed evidence of increasing bone mineral density suggesting osteoid mineralization in response to treatment. The diagnosis of cholestatic liver disease should be considered in all patients presenting with osteomalacia due to vitamin D deficiency, particularly if other cholestatic liver enzymes are elevated in addition to alkaline phosphatase.

  10. Vitamin D Status, Bone Mineral Density and Mental Health in Young Australian Women: The Safe-D Study.

    PubMed

    Callegari, Emma T; Reavley, Nicola; Garland, Suzanne M; Gorelik, Alexandra; Wark, John D

    2015-11-17

    Vitamin D deficiency has been associated with both poor bone health and mental ill-health. More recently, a number of studies have found individuals with depressive symptoms tend to have reduced bone mineral density. To explore the interrelationships between vitamin D status, bone mineral density and mental-ill health we are assessing a range of clinical, behavioural and lifestyle factors in young women (Part A of the Safe-D study). Part A of the Safe-D study is a cross-sectional study aiming to recruit 468 young females aged 16-25 years living in Victoria, Australia, through Facebook advertising. Participants are required to complete an extensive, online questionnaire, wear an ultra-violet dosimeter for 14 consecutive days and attend a study site visit. Outcome measures include areal bone mineral measures at the lumbar spine, total hip and whole body, as well as soft tissue composition using dual energy x-ray absorptiometry. Trabecular and cortical volumetric bone density at the tibia is measured using peripheral quantitative computed tomography. Other tests include serum 25-hydroxyvitamin D, serum biochemistry and a range of health markers. Details of mood disorder/s and depressive and anxiety symptoms are obtained by self-report. Cutaneous melanin density is measured by spectrophotometry. The findings of this cross-sectional study will have implications for health promotion in young women and for clinical care of those with vitamin D deficiency and/or mental ill-health. Optimising both vitamin D status and mental health may protect against poor bone health and fractures in later life. Significance for public healthVitamin D deficiency, depression and osteoporosis are all major public health issues. Vitamin D deficiency has been associated with both reduced bone mineral density and depressive symptoms. Moreover, cohort studies have found that subjects with depression have lower bone mineral density when compared to healthy controls. Early adulthood is a critical time in young woman's lives as their independence, behaviours and lifestyle choices are established. These choices made as a young adult lay down the foundation for future health trajectories for not only for themselves but also for their potential partners and families. Addressing vitamin D deficiency, poor bone health and mental ill-health at a younger age may ultimately improve their wellbeing, productivity and long-term health outcomes. This study is of particular significance as the interplay between vitamin D, depression and bone health is currently uncertain and such knowledge is crucial for understanding, prevention and treatment of these conditions.

  11. Recovery of Crystallographic Texture in Remineralized Dental Enamel

    PubMed Central

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain structural integrity. PMID:25360532

  12. Recovery of crystallographic texture in remineralized dental enamel.

    PubMed

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain structural integrity.

  13. Influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation with calcium oxalate and struvite in healthy cats.

    PubMed

    Bartges, Joseph W; Kirk, Claudia A; Cox, Sherry K; Moyers, Tamberlyn D

    2013-10-01

    To evaluate the influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation (URSS) with calcium oxalate and struvite in healthy cats. 6 castrated male and 6 spayed female cats. 3 groups of 4 cats each were fed diets for 12 months that differed only in acidifying or alkalinizing properties (alkalinizing, neutral, and acidifying). Body composition was estimated by use of dual energy x-ray absorptiometry, and 48-hour urine samples were collected for URSS determination. Urine pH differed significantly among diet groups, with the lowest urine pH values in the acidifying diet group and the highest values in the alkalinizing diet group. Differences were not observed in other variables except urinary ammonia excretion, which was significantly higher in the neutral diet group. Calcium oxalate URSS was highest in the acidifying diet group and lowest in the alkalinizing diet group; struvite URSS was not different among groups. Diet was not significantly associated with bone mineral content or density. Urinary undersaturation with calcium oxalate was achieved by inducing alkaluria. Feeding an alkalinizing diet was not associated with URSS with struvite. Bone mineral density and calcium content were not adversely affected by diet; therefore, release of calcium from bone caused by feeding an acidifying diet may not occur in healthy cats.

  14. Assessment and clinical management of bone disease in adults with eating disorders: a review.

    PubMed

    Drabkin, Anne; Rothman, Micol S; Wassenaar, Elizabeth; Mascolo, Margherita; Mehler, Philip S

    2017-01-01

    To review current medical literature regarding the causes and clinical management options for low bone mineral density (BMD) in adult patients with eating disorders. Low bone mineral density is a common complication of eating disorders with potentially lifelong debilitating consequences. Definitive, rigorous guidelines for screening, prevention and management are lacking. This article intends to provide a review of the literature to date and current options for prevention and treatment. Current, peer-reviewed literature was reviewed, interpreted and summarized. Any patient with lower than average BMD should weight restore and in premenopausal females, spontaneous menses should resume. Adequate vitamin D and calcium supplementation is important. Weight-bearing exercise should be avoided unless cautiously monitored by a treatment team in the setting of weight restoration. If a patient has a Z-score less than expected for age with a high fracture risk or likelihood of ongoing BMD loss, physiologic transdermal estrogen plus oral progesterone, bisphosphonates (alendronate or risedronate) or teriparatide could be considered. Other agents, such as denosumab and testosterone in men, have not been tested in eating-disordered populations and should only be trialed on an empiric basis if there is a high clinical concern for fractures or worsening bone mineral density. A rigorous peer-based approach to establish guidelines for evaluation and management of low bone mineral density is needed in this neglected subspecialty of eating disorders.

  15. The relationships of irisin with bone mineral density and body composition in PCOS patients.

    PubMed

    Gao, Shanshan; Cheng, Yan; Zhao, Lingling; Chen, Yuxin; Liu, Yu

    2016-05-01

    Our study aims to assay the irisin level and investigate the relationships of irisin level with body mass index (BMI), body composition and bone metabolism in the polycystic ovary syndrome (PCOS) and control women. Fifty two PCOS and 39 control women were recruited. Serum sex hormone, fasting insulin and C-peptide were tested. Fasting serum irisin and adiponectin were measured with enzyme-linked immunosorbent assay. Body composition and bone mineral density were assayed by dual energy X-ray absorptiometry. Polycystic ovary syndrome women showed different body compositions compared with controls. Serum irisin level of PCOS did not show significant difference compared with controls although it was decreased. The level of adiponectin in PCOS patients was significantly reduced. BMI had no correlation with irisin level. It indicated a positive correlation between serum irisin levels and bone mineral density in the control group and a negative correlation in the PCOS group after BMI and age adjusted. Furthermore, total lean mass has a significant effect on irisin concentration in the PCOS group. There are no correlations between adiponection and body compositions and bone mineral density in both groups. The abnormal body composition in PCOS may contribute to the circulation irisin. The crosstalk of irisin in different organs was found and may be related to disease development in PCOS. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Bone mass and vitamin D levels in Parkinson’s disease: is there any difference between genders?

    PubMed Central

    Ozturk, Erhan Arif; Gundogdu, Ibrahim; Tonuk, Burak; Kocer, Bilge Gonenli; Tombak, Yasemin; Comoglu, Selcuk; Cakci, Aytul

    2016-01-01

    [Purpose] The aim of this study was to determine the bone mineral density, vitamin D level, and frequencies of osteopenia and osteoporosis in patients with Parkinson’s disease and to compare male and female patients with the controls separately. [Subjects and Methods] One hundred fifteen Parkinson’s disease patients (47 males, 68 females; age range: 55–85 years) and 117 age- and gender-matched controls (47 males, 70 females) were enrolled in the study. Bone mineral density measured by dual-energy X-ray absorptiometry and serum D vitamin levels of each participant were recorded. [Results] The mean lumbar spine, femur neck, and total femur bone mineral density levels, T-scores, and vitamin D levels were found to be significantly lower in Parkinson’s disease patients in both genders. Furthermore, osteoporosis rates were found be significantly higher only in female Parkinson’s disease patients compared with female controls. [Conclusion] Data from the present study revealed that while osteoporosis was significantly higher only in female Parkinson’s disease patients, all Parkinson’s disease patients had lower bone mineral density scores and vitamin D levels compared with the controls regardless of gender, suggesting that clinicians should pay attention to the osteoporosis risk in Parkinson’s disease and that adequate preventive measures should be taken in order to limit the future risk due to osteoporotic fractures. PMID:27630398

  17. [Clinical usefulness of bone turnover markers in the management of osteoporosis].

    PubMed

    Yano, Shozo

    2013-09-01

    Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future.

  18. Association of urinary sodium/creatinine ratio with bone mineral density in postmenopausal women: KNHANES 2008-2011.

    PubMed

    Kim, Sung-Woo; Jeon, Jae-Han; Choi, Yeon-Kyung; Lee, Won-Kee; Hwang, In-Ryang; Kim, Jung-Guk; Lee, In-Kyu; Park, Keun-Gyu

    2015-08-01

    Accumulating evidence shows that high sodium chloride intake increases urinary calcium excretion and may be a risk factor for osteoporosis. However, the effect of oral sodium chloride intake on bone mineral density (BMD) and risk of osteoporosis has been inadequately researched. The aim of the present study was to determine whether urinary sodium excretion (reflecting oral sodium chloride intake) associates with BMD and prevalence of osteoporosis in postmenopausal women. This cross-sectional study involved a nationally representative sample consisting of 2,779 postmenopausal women who participated in the Korea National Health and Nutritional Examination Surveys in 2008-2011. The association of urinary sodium/creatinine ratio with BMD and other osteoporosis risk factors was assessed. In addition, the prevalence of osteoporosis was assessed in four groups with different urinary sodium/creatinine ratios. Participants with osteoporosis had significantly higher urinary sodium/creatinine ratios than the participants without osteoporosis. After adjusting for multiple confounding factors, urinary sodium/creatinine ratio correlated inversely with lumbar spine BMD (P = 0.001). Similarly, when participants were divided into quartile groups according to urinary sodium/creatinine ratio, the average BMD dropped as the urinary sodium/creatinine ratio increased. Multiple logistic regression analysis revealed that compared to quartile 1, quartile 4 had a significantly increased prevalence of lumbar spine osteoporosis (odds ratios 1.346, P for trend = 0.044). High urinary sodium excretion was significantly associated with low BMD and high prevalence of osteoporosis in lumbar spine. These results suggest that high sodium chloride intake decreases lumbar spine BMD and increases the risk of osteoporosis in postmenopausal women.

  19. Comparison of Bone Remodeling Between an Anatomic Short Stem and a Straight Stem in 1-Stage Bilateral Total Hip Arthroplasty.

    PubMed

    Koyano, Gaku; Jinno, Tetsuya; Koga, Daisuke; Yamauchi, Yuki; Muneta, Takeshi; Okawa, Atsushi

    2017-02-01

    Femurs of dysplastic hips exhibit specific abnormalities, and use of modular or specially designed components is recommended. An anatomic short stem was previously designed specifically for dysplastic hips using 3-dimensional data acquired from dysplastic patients. To investigate effects of stem geometry on bone remodeling, we undertook a prospective, randomized study of patients who had undergone 1-stage bilateral total hip arthroplasty (THA) with the anatomic short stem on one side and a conventional straight stem on the other. The study included 36 patients who underwent the above THA procedure. We assessed bone mineral density as well as the presence of cancellous condensation or bony atrophy due to stress shielding based on the analysis of Gruen's zones and newly defined equal-interval zones, at an average follow-up period of 9.2 years. All stems were bone ingrown stable. Cancellous condensation was observed more proximally, and areas of bone atrophy were narrower on the anatomic short stem side than on the straight stem side. Bone mineral density values reflected results of cancellous condensation and stress shielding and were higher in more proximal zones on the anatomic short stem side than on the straight stem side. Although radiographic results indicated good midterm outcomes of THA with both stems, the loading pattern differed. The anatomic short stem achieved its design purpose in terms of proximal fixation and load transfer and led to better preservation of the proximal femur. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals

    USGS Publications Warehouse

    Mars, J.C.; Rowan, L.C.

    2010-01-01

    ASTER reflectance spectra from Cuprite, Nevada, and Mountain Pass, California, were compared to spectra of field samples and to ASTER-resampled AVIRIS reflectance data to determine spectral accuracy and spectroscopic mapping potential of two new ASTER SWIR reflectance datasets: RefL1b and AST_07XT. RefL1b is a new reflectance dataset produced for this study using ASTER Level 1B data, crosstalk correction, radiance correction factors, and concurrently acquired level 2 MODIS water vapor data. The AST_07XT data product, available from EDC and ERSDAC, incorporates crosstalk correction and non-concurrently acquired MODIS water vapor data for atmospheric correction. Spectral accuracy was determined using difference values which were compiled from ASTER band 5/6 and 9/8 ratios of AST_07XT or RefL1b data subtracted from similar ratios calculated for field sample and AVIRIS reflectance data. In addition, Spectral Analyst, a statistical program that utilizes a Spectral Feature Fitting algorithm, was used to quantitatively assess spectral accuracy of AST_07XT and RefL1b data.Spectral Analyst matched more minerals correctly and had higher scores for the RefL1b data than for AST_07XT data. The radiance correction factors used in the RefL1b data corrected a low band 5 reflectance anomaly observed in the AST_07XT and AST_07 data but also produced anomalously high band 5 reflectance in RefL1b spectra with strong band 5 absorption for minerals, such as alunite. Thus, the band 5 anomaly seen in the RefL1b data cannot be corrected using additional gain adjustments. In addition, the use of concurrent MODIS water vapor data in the atmospheric correction of the RefL1b data produced datasets that had lower band 9 reflectance anomalies than the AST_07XT data. Although assessment of spectral data suggests that RefL1b data are more consistent and spectrally more correct than AST_07XT data, the Spectral Analyst results indicate that spectral discrimination between some minerals, such as alunite and kaolinite, are still not possible unless additional spectral calibration using site specific spectral data are performed. ?? 2010.

  1. Spectral properties and ASTER-based alteration mapping of Masahim volcano facies, SE Iran

    NASA Astrophysics Data System (ADS)

    Tayebi, Mohammad H.; Tangestani, Majid H.; Vincent, Robert K.; Neal, Devin

    2014-10-01

    This study applies Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and the Mixture Tuned Matched Filtering (MTMF) algorithm to map the sub-pixel distribution of alteration minerals associated with the Masahim volcano, SE Iran for understanding the spatial relationship between alteration minerals and volcano facies. Investigations of the alteration mineralogy were conducted using field-spectroscopy, X-ray diffraction (XRD) analysis and ASTER Short Wave Infrared (SWIR) spectral data. In order to spectrally characterize the stratovolcano deposits, lithological units and alteration minerals, the volcano was divided into three facies: the Central, Proximal, and Medial-distal facies. The reflectance spectra of rock samples show absorption features of a number of minerals including white mica, kaolinite, montmorillonite, illite, goethite, hematite, jarosite, opal, and chlorite. The end-members of key alteration minerals including sericite (phyllic zone), kaolinite (argillic zone) and chlorite (propylitic zone) were extracted from imagery using the Pixel Purity Index (PPI) method and were used to map alteration minerals. Accuracy assessment through field observations was used to verify the fraction maps. The results showed that most prominent altered rocks situated at the central facies of volcano. The alteration minerals were discriminated with the coefficient of determination (R2) of 0.74, 0.81, and 0.68 for kaolinite, sericite, and chlorite, respectively. The results of this study have the potential to refine the map of alteration zones in the Masahim volcano.

  2. Improvement in gold grade from iron-oxide mineral using reduction roasting and magnetic separation

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-soo; On, Hyun-sung; Lim, Dae-hack; Myung, Eun-ji; Park, Cheon-young

    2017-04-01

    Microwave has a wide range of applications in mineral technology, metallurgy, etc. It is an established fact that microwave energy has potential for the speedy and efficient heating of minerals and in a commercial context may provide savings in both time and energy. Microwave heating is being developed as a potential thermal pre-treatment process, because of its unique advantages over the differences of ore minerals in absorbing microwaves. The aim of this study was to investigate the improvement in Au grade from iron-oxide mineral using reduction roasting and magnetic separation. The characteristics of iron-oxide mineral were analyzed using chemical, XRD and reflected light microscopy. The reduction roasting using microwave and magnetic separation experiments were examined under various conditions (reducing agent and chemical additive). The results of XRD and reflected light microscopy showed that the iron-oxide mineral mainly composed of illite, quartz and hematite. The iron-oxide mineral had an Au, Ag, Fe contents of 6.4, 35.1 and 155,441.1 mg/kg, respectively. The results demonstrated that the improvement in Au by reduction roasting using microwave (frequency of 2.45GHz, intensity of 5kW) and magnetic separation (magnetic field intensity of 9,000 Gauss) were effective processes. The Au content in iron-oxide mineral from 6.4 mg/kg to 14.2 mg/kg was achieved within microwave exposure time of 10min (reducing agent(PAC) ratio = 50 : 50, 5% of chemical additive(Soda ash)). Acknowledgment : This subject is supported by Korea Ministry of Environment as "Advanced Technology Program for Environmental Industry"

  3. Dietary patterns explaining differences in bone mineral density and hip structure in the elderly: the Rotterdam Study.

    PubMed

    de Jonge, Ester Al; Kiefte-de Jong, Jessica C; Hofman, Albert; Uitterlinden, André G; Kieboom, Brenda Ct; Voortman, Trudy; Franco, Oscar H; Rivadeneira, Fernando

    2017-01-01

    Evidence on the association between dietary patterns, measures of hip bone geometry, and subsequent fracture risk are scarce. The objective of this study was to evaluate whether dietary patterns that explain most variation in bone mineral density (BMD) and hip bone geometry are associated with fracture risk. We included 4028 subjects aged ≥55 y from the Rotterdam study. Intake of 28 food groups was assessed with the use of food-frequency questionnaires. BMD, bone width, section modulus (SM; reflecting bending strength) and cortical buckling ratio (BR; reflecting bone instability) were measured with the use of dual-energy X-ray absorptiometry. BMD and geometry-specific dietary patterns were identified with the use of reduced rank regression. Fracture data were reported by general practitioners (median follow-up 14.8 y). We identified 4 dietary patterns. Of the 4, we named 2 patterns "fruit, vegetables, and dairy" and "sweets, animal fat, and low meat," respectively. These 2 patterns were used for further analysis. Independently of confounders, adherence to the fruit, vegetables, and dairy pattern was associated with high BMD, high SM, low BR, and low risk of fractures [HR (95% CI) for osteoporotic fractures: 0.90 (0.83, 0.96); for hip fractures: 0.85 (0.81, 0.89) per z score of dietary pattern adherence]. Adherence to the sweets, animal fat, and low meat pattern was associated with high bone width, high SM, high BR, and high risk of fractures [HR (95% CI) for osteoporotic fractures: 1.08 (1.00, 1.06); for hip fractures: 1.06 (1.02, 1.12) per z score]. The fruit, vegetables, and dairy pattern might be associated with lower fracture risk because of high BMD, high bending strength, and more stable bones. The sweets, animal fat, and low meat pattern might be associated with higher fracture risk because of widened, unstable bones, independently of BMD. Dietary recommendations associated with bone geometry in addition to BMD might influence risk of fractures. © 2017 American Society for Nutrition.

  4. Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: Predictions from hybrid density functional theory

    NASA Astrophysics Data System (ADS)

    Sherman, David M.

    2013-10-01

    Copper exists as two isotopes: 65Cu (∼30.85%) and 63Cu (∼69.15%). The isotopic composition of copper in secondary minerals, surface waters and oxic groundwaters is 1-12‰ heavier than that of copper in primary sulfides. Changes in oxidation state and complexation should yield substantial isotopic fractionation between copper species but it is unclear to what extent the observed Cu isotopic variations reflect equilibrium fractionation. Here, I calculate the reduced partition function ratios for chalcopyrite (CuFeS2), cuprite (Cu2O), tenorite (CuO) and aqueous Cu+, Cu+2 complexes using periodic and molecular hybrid density functional theory to predict the equilibrium isotopic fractionation of Cu resulting from oxidation of Cu+ to Cu+2 and by complexation of dissolved Cu. Among the various copper(II) complexes in aqueous environments, there is a significant (1.3‰) range in the reduced partition function ratios. Oxidation and congruent dissolution of chalcopyrite (CuFeS2) to dissolved Cu+2 (as Cu(H2O)5+2) yields 65-63δ(Cu+2-CuFeS2) = 3.1‰ at 25 °C; however, chalcopyrite oxidation/dissolution is incongruent so that the observed isotopic fractionation will be less. Secondary precipitation of cuprite (Cu2O) would yield further enrichment of dissolved 65Cu since 65-63δ(Cu+2-Cu2O) is 1.2‰ at 25 °C. However, precipitation of tenorite (CuO) will favor the heavy isotope by +1.0‰ making dissolved Cu isotopically lighter. These are upper-limit estimates for equilibrium fractionation. Therefore, the extremely large (9‰) fractionations between dissolved Cu+2 (or Cu+2 minerals) and primary Cu+ sulfides observed in supergene environments must reflect Rayleigh (open-system) or kinetic fractionation. Finally the previously proposed (Asael et al., 2009) use of δ65Cu in chalcopyrite to estimate the oxidation state of fluids that transported Cu in stratiform sediment-hosted copper deposits is refined.

  5. Physicochemical characterization of mineral deposits in human ligamenta flava.

    PubMed

    Orzechowska, Sylwia; Wróbel, Andrzej; Kozieł, Marcin; Łasocha, Wiesław; Rokita, Eugeniusz

    2018-05-01

    The aim of our study was the detailed characterization of calcium deposits in ligamenta flava. The use of microcomputed tomography allowed extending the routine medical investigations to characterize mineral grains in the microscopic scale. A possible connection between spinal stenosis and ligament mineralization was investigated. The studies were carried out on 24 surgically removed ligamentum flavum samples divided into control and stenosis groups. Physicochemical characterization of the inorganic material was performed using X-ray fluorescence, X-ray diffraction, and Fourier transform infrared spectroscopy. The minerals were present in 14 of 24 ligament samples, both in stenosis and control groups. The inorganic substance constitutes on average ~0.1% of the sample volume. The minerals are scattered in the soft tissue matrix without any regular pattern. It was confirmed that minerals possess an internal structure and consist of the organic material and small inorganic grains mixture. The physicochemical analyses show that the predominant crystalline phase was hydroxyapatite (HAP). In the stenosis group calcium pyrophosphate dehydrate (CPPD) was identified. Both structures were never present in a single sample. Two different crystal structures suggest two independent processes of mineralization. The formation of CPPD may be treated as a more intense process since CPPD minerals are characterized by bigger values of the structural parameters and higher density than HAP deposits. The formation of HAP minerals is a soft tissue degeneration process that begins, in some cases, at early age or may not occur at all. Various density and volume of mineral grains indicate that the mineralization process does not occur in a constant environment and proceeds with various speeds. The formation of minerals in ligamenta flava is not directly associated with diagnosed spinal canal stenosis.

  6. The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial.

    PubMed

    Atkinson, Charlotte; Compston, Juliet E; Day, Nicholas E; Dowsett, Mitch; Bingham, Sheila A

    2004-02-01

    Isoflavone phytoestrogen therapy has been proposed as a natural alternative to hormone replacement therapy (HRT). HRT has a beneficial effect on bone, but few trials in humans have investigated the effects of isoflavones on bone. The objective of the study was to determine the effect on bone density of a red clover-derived isoflavone supplement that provided a daily dose of 26 mg biochanin A, 16 mg formononetin, 1 mg genistein, and 0.5 mg daidzein for 1 y. Effects on biochemical markers of bone turnover and body composition were also studied. Women aged 49-65 y (n = 205) were enrolled in a double-blind, randomized, placebo-controlled trial; 177 completed the trial. Bone density, body composition, bone turnover markers, and diet were measured at baseline and after 12 mo. Loss of lumbar spine bone mineral content and bone mineral density was significantly (P = 0.04 and P = 0.03, respectively) lower in the women taking the isoflavone supplement than in those taking the placebo. There were no significant treatment effects on hip bone mineral content or bone mineral density, markers of bone resorption, or body composition, but bone formation markers were significantly increased (P = 0.04 and P = 0.01 for bone-specific alkaline phosphatase and N-propeptide of collagen type I, respectively) in the intervention group compared with placebo in postmenopausal women. Interactions between treatment group and menopausal status with respect to changes in other outcomes were not significant. These data suggest that, through attenuation of bone loss, isoflavones have a potentially protective effect on the lumbar spine in women.

  7. Comparison of Bone Grafts From Various Donor Sites in Human Bone Specimens.

    PubMed

    Kamal, Mohammad; Gremse, Felix; Rosenhain, Stefanie; Bartella, Alexander K; Hölzle, Frank; Kessler, Peter; Lethaus, Bernd

    2018-05-14

    The objective of the current study was to compare the three-dimensional (3D) morphometric microstructure in human cadaveric bone specimens taken from various commonly utilized donor sites for autogenous bone grafting. Autogenous bone grafts can be harvested from various anatomic sites and express heterogeneous bone quality with a specific 3D microstructure for each site. The long-term structural integrity and susceptibility to resorption of the graft depend on the selected donor bone. Micro-computed tomography generates high-resolution datasets of bone structures and calcifications making this modality versatile for microarchitecture analysis and quantification of the bone. Six bone specimens, 10 mm in length, where anatomically possible, were obtained from various anatomical sites from 10 human dentate cadavers (4 men, 6 women, mean age 69.5 years). Specimens were scanned using a micro-computed tomography device and volumetrically reconstructed. A virtual cylindrical inclusion was reconstructed to analyze the bone mineral density and structural morphometric analysis using bone indices: relative bone volume, surface density, trabecular thicknesses, and trabecular separation. Calvarial bone specimens showed the highest mineral density, followed by the chin, then mandibular ramus then the tibia, whereas iliac crest and maxillary tuberosity had lower bone mineral densities. The pairwise comparison revealed statistically significant differences in the bone mineral density and relative bone volume index in the calvaria, mandibular ramus, mandibular symphysis groups when compared with those in the iliac crest and maxillary tuberosity, suggesting higher bone quality in the former groups than in the latter; tibial specimens expressed variable results.

  8. Progranulin concentration in relation to bone mineral density among obese individuals.

    PubMed

    Milajerdi, Alireza; Maghbooli, Zhila; Mohammadi, Farzad; Hosseini, Banafsheh; Mirzaei, Khadijeh

    2018-01-01

    Adipose tissue, particularly visceral adipose tissue, secretes a variety of cytokines, among which progranulin is a glycoprotein related to the immune system. Along with other secreted proteins, progranulin may be associated with bone mineral density. The aim of this study was to find out whether there are associations between the progranulin and bone mineral density among obese people. This cross-sectional study was conducted on 244 obese participants (aged 22-52). Serum progranulin, high sensitive C-reactive protein, oxidised-low dencity lipoprotein, tumor necrosis factor-α, parathormone, vitamin D, and interleukins of 1 β, 4, 6, 10, 13, and 17 concentrations were measured. Anthropometric measurements, body composition and bone mineral density were also assessed. Serum progranulin was directly associated with interleukin-6 and interleukin-1β, while it had a negative association with interleukin-17 and tumor necrosis factor-α. We also observed a statistically significant direct association between progranulin concentration and visceral fat, abdominal fat, waist, abdominal and hip circumferences, hip T-score, and Z-score and T-score for the lumbar region. A partial correlation test has also shown a significant positive correlation regarding serum progranulin and the hip Z-score. Moreover, progranulin level is inversely associated with ospteopenia (P = 0.04 and CI: 0.17,0.96). Our study revealed that central obesity may be related to increased progranulin concentration. In addition, progranulin concentration was directly related to bone formation parameters, which indicates the protective effects of progranulin on bone density. Further studies are needed to clarify the exact mechanisms underlying these associations.

  9. Bone mineral content and bone mineral density in adolescent girls with anorexia nervosa--a longitudinal study.

    PubMed

    Jagielska, G; Wolańczyk, T; Komender, J; Tomaszewicz-Libudzic, C; Przedlacki, J; Ostrowski, K

    2001-08-01

    Total body and lumbar spine bone mineral density (BMD-TB, BMD-L) and total body bone mineral content (BMC-TB) were measured to establish the course of bone demineralization in anorexia nervosa and the clinical factors influencing BMC-TB and BMD changes during treatment. Forty-two girls with DSM III-R anorexia nervosa, age 14.7+/-2.4 years. BMC-TB, BMD-TB and BMD-L were measured in approximately 7-month intervals for 27.8+/-4.1 months using DXA. Despite nutritional improvement, there was an initial decrease of BMD-L, and no change in BMC-TB and BMD-TB. an increase in BMC-TB and BMD was observed after approx. 21 months from the beginning of the study. The improvement in BMC-TB and BMD was related to changes in nutritional status and was significantly marked in younger patients, with earlier anorexia onset and before menarche.

  10. Physical and thermal properties of mud-dominant sediment from the Joetsu Basin in the eastern margin of the Japan Sea

    NASA Astrophysics Data System (ADS)

    Goto, Shusaku; Yamano, Makoto; Morita, Sumito; Kanamatsu, Toshiya; Hachikubo, Akihiro; Kataoka, Satsuki; Tanahashi, Manabu; Matsumoto, Ryo

    2017-12-01

    Physical properties (bulk density and porosity) and thermal properties (thermal conductivity, heat capacity, specific heat, and thermal diffusivity) of sediment are crucial parameters for basin modeling. We measured these physical and thermal properties for mud-dominant sediment recovered from the Joetsu Basin, in the eastern margin of the Japan Sea. To determine thermal conductivity, heat capacity, and thermal diffusivity, the dual-needle probe method was applied. Grain density and grain thermal properties for the mud-dominant sediment were estimated from the measured physical and thermal properties by applying existing models of physical and thermal properties of sediment. We suggest that the grain density, grain thermal conductivity, and grain thermal diffusivity depend on the sediment mineral composition. Conversely, the grain heat capacity and grain specific heat showed hardly any dependency on the mineral composition. We propose empirical formulae for the relationships between: thermal diffusivity and thermal conductivity, and heat capacity and thermal conductivity for the sediment in the Joetsu Basin. These relationships are different from those for mud-dominant sediment in the eastern flank of the Juan de Fuca Ridge presented in previous work, suggesting a difference in mineral composition, probably mainly in the amount of quartz, between the sediments in that area and the Joetsu Basin. Similar studies in several areas of sediments with various mineral compositions would enhance knowledge of the influence of mineral composition.

  11. Global W`o'rming and Darwin Revisited: Quantifying Soil Mixing Rates by Non-native Earthworms in Fennoscandian Boreal and Arctic Ecosystems

    NASA Astrophysics Data System (ADS)

    Wackett, A. A.; Yoo, K.; Cameron, E. K.; Olid, C.; Klaminder, J.

    2017-12-01

    Fennoscandian boreal and arctic ecosystems represent some of the most pristine environments in Europe and store sizeable quantities of soil carbon. Both ecosystems may have evolved without native earthworms since the last glaciation, but are now increasingly subject to arrivals of novel geoengineering earthworm species due to human activities. As a result, invaded areas are devoid of the typical thick organic horizon present in earthworm free forest soils and instead contain carbon-rich mineral (A-horizon) soils at the surface. How rapidly this transition occurs and how it affects the fate of soil organic carbon (SOC) pools is not well known. In this study, we quantify the rates at which earthworm-mediated mixing of forest soils proceeds in these formerly glaciated landscapes. We infer soil mass fluxes using the vertical distribution of 210Pb in soils from Fennoscandia (N=4) and North America (N=1) and quantify annual mixing velocities as well as vertical fluxes of organic and mineral matter throughout the upper soil profiles. Across the sites, mixing velocities generally increase with increasing earthworm biomass and functional group diversity, and our annual mixing rates closely align with those predicted by Darwin for earthworm-engineered ecosystems in the UK 130 years earlier. Reduction of the O-horizon is concomitant with a decrease in surface SOC contents. However, we observe minimal changes to SOC inventories with earthworm invasion across the sites, reflecting the upward translocation of mineral soil and accompanying increase in soil bulk densities. Thus, the reduction or depletion of organic horizon by exotic earthworms does not necessarily involve loss of SOC via earthworm-accelerated decomposition, but is rather compensated for by physical mixing of organic matter and minerals, which may facilitate stabilizing organo-mineral interactions. This work constitutes an important step to elucidate how non-native earthworms impact SOC inventories and potentially carbon turnover time across the formerly glaciated worlds.

  12. Standard Practice for the Selection and Application of Marine Deck Coverings

    DTIC Science & Technology

    1992-07-01

    floors to reduce the transmission of noise and vibrations. These typically consist of layers of mineral wool or mineral wool panel sections with a...crew efficiency. Floating deck systems are generally composed of an insulating material such as mineral wool that are laid loose on the structural...Chapter II-2, Part A, Regulation 3(c). Sound Reduction Index - 44 dB Sound Insulation Index (Ia) - 47 dB Density of Mineral Wool - 10 pounds per

  13. A Film Depositional Model of Permeability for Mineral Reactions in Unsaturated Media.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Vicky L.; Saripalli, Prasad; Bacon, Diana H.

    2004-11-15

    A new modeling approach based on the biofilm models of Taylor et al. (1990, Water Resources Research, 26, 2153-2159) has been developed for modeling changes in porosity and permeability in saturated porous media and implemented in an inorganic reactive transport code. Application of the film depositional models to mineral precipitation and dissolution reactions requires that calculations of mineral films be dynamically changing as a function of time dependent reaction processes. Since calculations of film thicknesses do not consider mineral density, results show that the film porosity model does not adequately describe volumetric changes in the porous medium. These effects canmore » be included in permeability calculations by coupling the film permeability models (Mualem and Childs and Collis-George) to a volumetric model that incorporates both mineral density and reactive surface area. Model simulations demonstrate that an important difference between the biofilm and mineral film models is in the translation of changes in mineral radii to changes in pore space. Including the effect of tortuosity on pore radii changes improves the performance of the Mualem permeability model for both precipitation and dissolution. Results from simulation of simultaneous dissolution and secondary mineral precipitation provides reasonable estimates of porosity and permeability. Moreover, a comparison of experimental and simulated data show that the model yields qualitatively reasonable results for permeability changes due to solid-aqueous phase reactions.« less

  14. The effect of nutritional rickets on bone mineral density.

    PubMed

    Thacher, Tom D; Fischer, Philip R; Pettifor, John M

    2014-11-01

    Nutritional rickets is caused by impaired mineralization of growing bone. The effect of nutritional rickets on areal bone mineral density (aBMD) has not been established. Our objective was to determine if aBMD is lower in children with active rickets than in healthy control children. We expected that the reduction in aBMD would vary between the radial and ulnar metaphyses near the growth plates and the proximal diaphyses. Case-control study. Primary care outpatient department of a teaching hospital in Jos, Nigeria. Nigerian children with radiographically-confirmed rickets were compared with a reference group of control children without rickets from the same community. Forearm bone density measurements were performed in all children with pDXA. Age, sex, and height-adjusted bone density parameters were compared between children with rickets and control subjects. A total of 264 children with active rickets (ages 13-120 months) and 660 control children (ages 11-123 months) were included. In multivariate analyses controlling for height, age, and gender, rickets was associated with a 4% greater bone area and 7% lower aBMD of the radial and ulnar metaphyses compared with controls (P < .001). The effects of rickets on the diaphyses of the radius and ulna were more pronounced with an 11% greater bone area, 21% lower aBMD, and 24% lower bone mineral apparent density than controls (P < .001). In children with rickets, aBMD values were unrelated to dairy product intake or serum calcium, phosphorus, alkaline phosphatase, or 25-hydroxyvitamin D. Metaphyseal aBMD was positively associated with radiographic severity score, attributed to bone edge detection artifact by densitometry in active rickets. Rickets results in increased bone area and reduced aBMD, which are more pronounced in the diaphyseal than in the metaphyseal regions of the radius and ulna, consistent with secondary hyperparathyroidism, generalized osteoid expansion and impaired mineralization.

  15. Anorexia Nervosa: Analysis of Trabecular Texture with CT

    PubMed Central

    Tabari, Azadeh; Torriani, Martin; Miller, Karen K.; Klibanski, Anne; Kalra, Mannudeep K.

    2017-01-01

    Purpose To determine indexes of skeletal integrity by using computed tomographic (CT) trabecular texture analysis of the lumbar spine in patients with anorexia nervosa and normal-weight control subjects and to determine body composition predictors of trabecular texture. Materials and Methods This cross-sectional study was approved by the institutional review board and compliant with HIPAA. Written informed consent was obtained. The study included 30 women with anorexia nervosa (mean age ± standard deviation, 26 years ± 6) and 30 normal-weight age-matched women (control group). All participants underwent low-dose single-section quantitative CT of the L4 vertebral body with use of a calibration phantom. Trabecular texture analysis was performed by using software. Skewness (asymmetry of gray-level pixel distribution), kurtosis (pointiness of pixel distribution), entropy (inhomogeneity of pixel distribution), and mean value of positive pixels (MPP) were assessed. Bone mineral density and abdominal fat and paraspinal muscle areas were quantified with quantitative CT. Women with anorexia nervosa and normal-weight control subjects were compared by using the Student t test. Linear regression analyses were performed to determine associations between trabecular texture and body composition. Results Women with anorexia nervosa had higher skewness and kurtosis, lower MPP (P < .001), and a trend toward lower entropy (P = .07) compared with control subjects. Bone mineral density, abdominal fat area, and paraspinal muscle area were inversely associated with skewness and kurtosis and positively associated with MPP and entropy. Texture parameters, but not bone mineral density, were associated with lowest lifetime weight and duration of amenorrhea in anorexia nervosa. Conclusion Patients with anorexia nervosa had increased skewness and kurtosis and decreased entropy and MPP compared with normal-weight control subjects. These parameters were associated with lowest lifetime weight and duration of amenorrhea, but there were no such associations with bone mineral density. These findings suggest that trabecular texture analysis might contribute information about bone health in anorexia nervosa that is independent of that provided with bone mineral density. © RSNA, 2016 PMID:27797678

  16. Validity of height loss as a predictor for prevalent vertebral fractures, low bone mineral density, and vitamin D deficiency.

    PubMed

    Mikula, A L; Hetzel, S J; Binkley, N; Anderson, P A

    2017-05-01

    Many osteoporosis-related vertebral fractures are unappreciated but their detection is important as their presence increases future fracture risk. We found height loss is a useful tool in detecting patients with vertebral fractures, low bone mineral density, and vitamin D deficiency which may lead to improvements in patient care. This study aimed to determine if/how height loss can be used to identify patients with vertebral fractures, low bone mineral density, and vitamin D deficiency. A hospital database search in which four patient groups including those with a diagnosis of osteoporosis-related vertebral fracture, osteoporosis, osteopenia, or vitamin D deficiency and a control group were evaluated for chart-documented height loss over an average 3 1/2 to 4-year time period. Data was retrieved from 66,021 patients (25,792 men and 40,229 women). A height loss of 1, 2, 3, and 4 cm had a sensitivity of 42, 32, 19, and 14% in detecting vertebral fractures, respectively. Positive likelihood ratios for detecting vertebral fractures were 1.73, 2.35, and 2.89 at 2, 3, and 4 cm of height loss, respectively. Height loss had lower sensitivities and positive likelihood ratios for detecting low bone mineral density and vitamin D deficiency compared to vertebral fractures. Specificity of 1, 2, 3, and 4 cm of height loss was 70, 82, 92, and 95%, respectively. The odds ratios for a patient who loses 1 cm of height being in one of the four diagnostic groups compared to a patient who loses no height was higher for younger and male patients. This study demonstrated that prospective height loss is an effective tool to identify patients with vertebral fractures, low bone mineral density, and vitamin D deficiency although a lack of height loss does not rule out these diagnoses. If significant height loss is present, the high positive likelihood ratios support a further workup.

  17. Use of a case manager to improve osteoporosis treatment after hip fracture: results of a randomized controlled trial.

    PubMed

    Majumdar, Sumit R; Beaupre, Lauren A; Harley, Charles H; Hanley, David A; Lier, Douglas A; Juby, Angela G; Maksymowych, Walter P; Cinats, John G; Bell, Neil R; Morrish, Donald W

    2007-10-22

    Patients who survive hip fracture are at high risk of recurrent fractures, but rates of osteoporosis treatment 1 year after sustaining a fracture are less than 10% to 20%. We have developed an osteoporosis case manager intervention. The case manager educated patients, arranged bone mineral density tests, provided prescriptions, and communicated with primary care physicians. The intervention was compared with usual care in a randomized controlled trial. We recruited from all hospitals that participate in the Capital Health system (Alberta, Canada), including patients 50 years or older who had sustained a hip fracture and excluding those who were receiving osteoporosis treatment or who lived in a long-term care facility. Primary outcome was bisphosphonate therapy 6 months after fracture; secondary outcomes included bone mineral density testing, appropriate care (bone mineral density testing and treatment if bone mass was low), and intervention costs. We screened 2219 patients and allocated 220, as follows: 110 to the intervention group and 110 to the control group. Median age was 74 years, 60% were women, and 37% reported having had previous fractures. Six months after hip fracture, 56 patients in the intervention group (51%) were receiving bisphosphonate therapy compared with 24 patients in the control group (22%) (adjusted odds ratio, 4.7; 95% confidence interval, 2.4-8.9; P < .001). Bone mineral density tests were performed in 88 patients in the intervention group (80%) vs 32 patients in the control group (29%) (P < .001). Of the 120 patients who underwent bone mineral density testing, 25 (21%) had normal bone mass. Patients in the intervention group were more likely to receive appropriate care than were patients in the control group (67% vs 26%; P < .001). The average intervention cost was $50.00 per patient. For a modest cost, a case manager was able to substantially increase rates of osteoporosis treatment in a vulnerable elderly population at high risk of future fractures.

  18. Anorexia Nervosa: Analysis of Trabecular Texture with CT.

    PubMed

    Tabari, Azadeh; Torriani, Martin; Miller, Karen K; Klibanski, Anne; Kalra, Mannudeep K; Bredella, Miriam A

    2017-04-01

    Purpose To determine indexes of skeletal integrity by using computed tomographic (CT) trabecular texture analysis of the lumbar spine in patients with anorexia nervosa and normal-weight control subjects and to determine body composition predictors of trabecular texture. Materials and Methods This cross-sectional study was approved by the institutional review board and compliant with HIPAA. Written informed consent was obtained. The study included 30 women with anorexia nervosa (mean age ± standard deviation, 26 years ± 6) and 30 normal-weight age-matched women (control group). All participants underwent low-dose single-section quantitative CT of the L4 vertebral body with use of a calibration phantom. Trabecular texture analysis was performed by using software. Skewness (asymmetry of gray-level pixel distribution), kurtosis (pointiness of pixel distribution), entropy (inhomogeneity of pixel distribution), and mean value of positive pixels (MPP) were assessed. Bone mineral density and abdominal fat and paraspinal muscle areas were quantified with quantitative CT. Women with anorexia nervosa and normal-weight control subjects were compared by using the Student t test. Linear regression analyses were performed to determine associations between trabecular texture and body composition. Results Women with anorexia nervosa had higher skewness and kurtosis, lower MPP (P < .001), and a trend toward lower entropy (P = .07) compared with control subjects. Bone mineral density, abdominal fat area, and paraspinal muscle area were inversely associated with skewness and kurtosis and positively associated with MPP and entropy. Texture parameters, but not bone mineral density, were associated with lowest lifetime weight and duration of amenorrhea in anorexia nervosa. Conclusion Patients with anorexia nervosa had increased skewness and kurtosis and decreased entropy and MPP compared with normal-weight control subjects. These parameters were associated with lowest lifetime weight and duration of amenorrhea, but there were no such associations with bone mineral density. These findings suggest that trabecular texture analysis might contribute information about bone health in anorexia nervosa that is independent of that provided with bone mineral density. © RSNA, 2016.

  19. Pre-sarcopenia and bone mineral density in adults submitted to hematopoietic stem cell transplantation.

    PubMed

    Pereira, Cristiane Pavan; Amaral, Denise Johnsson Campos; Funke, Vaneuza Araujo Moreira; Borba, Victória Zeghbi Cochenski

    The aim of this study was to evaluate the prevalence of pre-sarcopenia and bone mineral density after hematopoietic stem cell transplantation. The study group consisted of over 18-year-old patients who had been submitted to allogeneic transplantation at least one year previously. Patients and healthy controls were matched by sex, ethnic background, age, and body mass index. Body composition and bone mineral density were measured by dual-energy X-ray absorptiometry. A 24-h food recall and food frequency survey were performed. The biochemical evaluation included calcium, parathormone and vitamin D. Eighty-seven patients (52 men; age: 37.2±12.7 years; body mass index: 25±4.5kg/m 2 ) were compared to 68 controls [31 men; age 35.4±15.5 years (p=0.467); body mass index 25.05±3.7kg/m 2 (p=0.927)]. There was no significant difference in the dietary intake between patients and controls. The mean levels of vitamin D were 23.5±10.3ng/mL; 29 patients (41.0%) had insufficient and 26 (37.14%) deficient levels. A higher prevalence of reduced bone mineral density was observed in 24 patients (25%) compared to 12 controls (19.1% - p<0.001). Pre-sarcopenia was diagnosed in 14 (14.4%) patients and none of the controls (p=0.05). There was a higher prevalence of pre-sarcopenia (66%) in patients with grades III and IV compared to those with grades 0-II graft-versus-host disease (10.9%) (p=0.004). patients submitted to transplantation had a higher prevalence of pre-sarcopenia and greater changes in bone mineral density compared to controls; the severity of graft-versus-host disease had an impact on the prevalence of pre-sarcopenia. Copyright © 2017 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.

  20. Density-lag anomaly patterns in backshore sands along a paraglacial barrier spit

    NASA Astrophysics Data System (ADS)

    Pupienis, Donatas; Buynevich, Ilya; Jarmalavičius, Darius; Fedorovič, Julija; Žilinskas, Gintautas; Ryabchuk, Daria; Kovaleva, Olga; Sergeev, Alexander; Cichon-Pupienis, Anna

    2016-04-01

    The Curonian Spit, located along the southeast Baltic Sea coast, is one of the longest paraglacial mega-barriers in the world (~100 km) and is characteried by microtidal sandy beaches and unbroken foredune ridge emplaced by human activities in historical times. Both are dominated by quartzo-feldpathic sand, with various fractions of heavy minerals that may be concentrated as density lag. Such heavy-mineral concentrations (HMCs) may be distributed weither randomly or regularly along the coast, depending on the geological framework, hydro-aeolian processes, and human activities (e.g., steel elements of coastal engineering structures, military installations, etc.). In this study, we focus on the longshore patterns in HMC distribution and relative magnitude (mainly the concentration of ferrimagnetic components). Along the entire Curonian Spit coast (Russia-Lithuania), a total of 184 surface sand samples were collected at 1 km interval from the berm and foredune toe (seaward base). HMCs were characterized in the laboratory using bulk low-field magnetic susceptibility (MS). The Wavelength and Lomb spectral analysis were used to assess the spatial rhythmicity of their longshore distribution. Generally, quartz sand is characterised by low MS values of ĸ<50 μSI, whereas higher values ĸ>150 μSI are typical for heavy mineral-rich sand. MS values on the berm and foredune toe range from 11.2-4977.9 μSI and from 9.2-3153.0 μSI, respectively. Density lag anomalies had MS values exceeding an average value by ≥3 times. Wavelength and Lomb spectral analysis allowed to identify several clusters of periodicities with wavelength varying from 2-12 km, with power spectra having statistically significant values (>95 % CI). Along the modern Curonian Spit coast, two scales of rhythmic pattern variation are evident: macroscale (≤12 km) and mesoscale (2-3 km). The former can be attributed to localized expressions of geological framework (iron-rich components) and engineering structures (especially within the southern part of the spit), whereas the mesoscale patterns reflect spatial distribution of short-term hydro-aeolian forcing (erosional-accretionary cells) that may shift temporally. This research was supported by Lithuanian Science Council (Grant No. MIP-039/2014), the Internationalization Program Award, Temple University and Russian Scientific Fund (Grant No. 14-37-00047).

  1. Revised Reference Curves for Bone Mineral Content and Areal Bone Mineral Density According to Age and Sex for Black and Non-Black Children: Results of the Bone Mineral Density in Childhood Study

    PubMed Central

    Kalkwarf, Heidi J.; Gilsanz, Vicente; Lappe, Joan M.; Oberfield, Sharon; Shepherd, John A.; Frederick, Margaret M.; Huang, Xiangke; Lu, Ming; Mahboubi, Soroosh; Hangartner, Thomas; Winer, Karen K.

    2011-01-01

    Context: Deficits in bone acquisition during growth may increase fracture risk. Assessment of bone health during childhood requires appropriate reference values relative to age, sex, and population ancestry to identify bone deficits. Objective: The objective of this study was to provide revised and extended reference curves for bone mineral content (BMC) and areal bone mineral density (aBMD) in children. Design: The Bone Mineral Density in Childhood Study was a multicenter longitudinal study with annual assessments for up to 7 yr. Setting: The study was conducted at five clinical centers in the United States. Participants: Two thousand fourteen healthy children (992 males, 22% African-Americans) aged 5–23 yr participated in the study. Intervention: There were no interventions. Main Outcome Measures: Reference percentiles for BMC and aBMD of the total body, lumbar spine, hip, and forearm were obtained using dual-energy x-ray absorptiometry for Black and non-Black children. Adjustment factors for height status were also calculated. Results: Extended reference curves for BMC and aBMD of the total body, total body less head, lumbar spine, total hip, femoral neck, and forearm for ages 5–20 yr were constructed relative to sex and age for Black and non-Black children. Curves are similar to those previously published for 7–17 year olds. BMC and aBMD values were greater for Black vs. non-Black children at all measurement sites. Conclusions: We provide here dual-energy x-ray absorptiometry reference data on a well-characterized cohort of 2012 children and adolescents. These reference curves provide the most robust reference values for the assessment and monitoring of bone health in children and adolescents in the literature to date. PMID:21917867

  2. Correlation Between Analytical and Thermodynamicaly Calculated Values of Density For Chloride-sodium Brines

    NASA Astrophysics Data System (ADS)

    Dudukalov, A.

    Leakage from pipe-lines, nonhermetic wells and other industrial equipment of highly mineralized chloride-sodium brines, incidentally produced during oil field exploitation is one of the main source of fresh groundwater contamination on the Arlan oil field. Thermodynamic calculation, aimed to define more exactly brines chemical composi- tion and density was carried out by FREZCHEM2 program (Mironenko M.V. et al. 1997). Five brines types with mineralization of 137.9, 181.2, 217.4, 243.7, 267.8 g/l and density of 1.176, 1.09, 1.135, 1.153, 1.167 g/cm3 correspondingly were used. It is necessary to note that preliminarily chemical compositions of two last brines were corrected according to their mineralization. During calculations it was determined the following density values of brines: 1.082, 1.114, 1.131, 1.146, 1.158 g/cm3 conse- quently. Obtained results demonstrate the significant discrepancy in experimental and model estimates. Significant excess of anions over cations in experimental data indicates a major prob- lem with the analytical measurements. During calculations it was analyzed the possi- bility of changes in brines density depending on editing to cations or deducting from anions requisite amount of agent for keeping charge balance equal to zero. Received results demonstrate that in this case brines density can change on 0.004-0.011 g/cm3.

  3. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    PubMed Central

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  4. The influence of birth weight and length on bone mineral density and content in adolescence: The Tromsø Study, Fit Futures.

    PubMed

    Christoffersen, Tore; Ahmed, Luai A; Daltveit, Anne Kjersti; Dennison, Elaine M; Evensen, Elin K; Furberg, Anne-Sofie; Gracia-Marco, Luis; Grimnes, Guri; Nilsen, Ole-Andreas; Schei, Berit; Tell, Grethe S; Vlachopoulos, Dimitris; Winther, Anne; Emaus, Nina

    2017-12-01

    The influence of birth weight and length on bone mineral parameters in adolescence is unclear. We found a positive association between birth size and bone mineral content, attenuated by lifestyle factors. This highlights the impact of environmental stimuli and lifestyle during growth. The influence of birth weight and length on bone mineral density and content later in life is unclear, especially in adolescence. This study evaluated the impact of birth weight and length on bone mineral density and content among adolescents. We included 961 participants from the population-based Fit Futures study (2010-2011). Dual-energy X-ray absorptiometry (DXA) was used to measure bone mineral density (BMD) and bone mineral content (BMC) at femoral neck (FN), total hip (TH) and total body (TB). BMD and BMC measures were linked with birth weight and length ascertained from the Medical Birth Registry of Norway. Linear regression models were used to investigate the influence of birth parameters on BMD and BMC. Birth weight was positively associated with BMD-TB and BMC at all sites among girls; standardized β coefficients [95% CI] were 0.11 [0.01, 0.20] for BMD-TB and 0.15 [0.06, 0.24], 0.18 [0.09, 0.28] and 0.29 [0.20, 0.38] for BMC-FN, TH and TB, respectively. In boys, birth weight was positively associated with BMC at all sites with estimates of 0.10 [0.01, 0.19], 0.12 [0.03, 0.21] and 0.15 [0.07, 0.24] for FN, TH and TB, respectively. Corresponding analyses using birth length as exposure gave significantly positive associations with BMC at all sites in both sexes. The significant positive association between birth weight and BMC-TB in girls, and birth length and BMC-TB in boys remained after multivariable adjustment. We found a positive association between birth size and BMC in adolescence. However, this association was attenuated after adjustment for weight, height and physical activity during adolescence.

  5. Disordered eating, menstrual disturbances, and low bone mineral density in dancers: a systematic review.

    PubMed

    Hincapié, Cesar A; Cassidy, J David

    2010-11-01

    To assemble and synthesize the best evidence on the epidemiology, diagnosis, prognosis, treatment, and prevention of disordered eating, menstrual disturbances, and low bone mineral density in dancers. Medline, CINAHL, PsycINFO, Embase, and other electronic databases were searched from 1966 to 2010 using key words such as "dance," "dancer," "dancing," "eating disorders," "menstruation disturbances," and "bone density." In addition, the reference lists of relevant studies were examined, specialized journals were hand-searched, and the websites of major dance associations were scanned for relevant information. Citations were screened for relevance using a priori criteria, and relevant studies were critically reviewed for scientific merit by the best evidence synthesis method. After 2748 abstracts were screened, 124 articles were reviewed, and 23 (18.5%) of these were accepted as scientifically admissible (representing 19 unique studies). Data from accepted studies were abstracted into evidence tables relating to prevalence and associated factors; incidence and risk factors; diagnosis; and prevention of disordered eating, menstrual disturbances, and/or low bone mineral density in dancers. The scientifically admissible studies consisted of 13 (68%) cross-sectional studies and 6 (32%) cohort studies. Disordered eating and menstrual disturbances are common in dancers. The lifetime prevalence of any eating disorder was 50% in professional dancers, while the point prevalence ranged between 13.6% and 26.5% in young student dancers. In their first year of intensive dance training, 32% of university-level dancers developed a menstrual disturbance. The incidence of disordered eating and low bone mineral density in dancers is unknown. Several potential risk factors are suggested by the literature, but there is little compelling evidence for any of these. There is preliminary evidence that multifaceted sociocultural prevention strategies may help decrease the incidence of disordered eating. The dance medicine literature is heterogeneous. The best available evidence suggests that disordered eating, menstrual disturbances, and low bone mineral density are important health issues for dancers at all skill levels. Future research would benefit from clear and relevant research questions being addressed with appropriate study designs and better reporting of studies in line with current scientific standards. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Hypermineralization and High Osteocyte Lacunar Density in Osteogenesis Imperfecta Type V Bone Indicate Exuberant Primary Bone Formation.

    PubMed

    Blouin, Stéphane; Fratzl-Zelman, Nadja; Glorieux, Francis H; Roschger, Paul; Klaushofer, Klaus; Marini, Joan C; Rauch, Frank

    2017-09-01

    In contrast to "classical" forms of osteogenesis imperfecta (OI) types I to IV, caused by a mutation in COL1A1/A2, OI type V is due to a gain-of-function mutation in the IFITM5 gene, encoding the interferon-induced transmembrane protein 5, or bone-restricted interferon-inducible transmembrane (IFITM)-like protein (BRIL). Its phenotype distinctly differs from OI types I to IV by absence of blue sclerae and dentinogenesis imperfecta, by the occurrence of ossification disorders such as hyperplastic callus and forearm interosseous membrane ossification. Little is known about the impact of the mutation on bone tissue/material level in untreated and bisphosphonate-treated patients. Therefore, investigations of transiliac bone biopsy samples from a cohort of OI type V children (n = 15, 8.7 ± 4 years old) untreated at baseline and a subset (n = 8) after pamidronate treatment (2.6 years in average) were performed. Quantitative backscattered electron imaging (qBEI) was used to determine bone mineralization density distribution (BMDD) as well as osteocyte lacunar density. The BMDD of type V OI bone was distinctly shifted toward a higher degree of mineralization. The most frequently occurring calcium concentration (CaPeak) in cortical (Ct) and cancellous (Cn) bone was markedly increased (+11.5%, +10.4%, respectively, p < 0.0001) compared to healthy reference values. Treatment with pamidronate resulted in only a slight enhancement of mineralization. The osteocyte lacunar density derived from sectioned bone area was elevated in OI type V Ct and Cn bone (+171%, p < 0.0001; +183.3%, p < 0.01; respectively) versus controls. The high osteocyte density was associated with an overall immature primary bone structure ("mesh-like") as visualized by polarized light microscopy. In summary, the bone material from OI type V patients is hypermineralized, similar to other forms of OI. The elevated osteocyte lacunar density in connection with lack of regular bone lamellation points to an exuberant primary bone formation and an alteration of the bone remodeling process in OI type V. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  7. Ferrorhodonite, CaMn3Fe[Si5O15], a new mineral species from Broken Hill, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Shchipalkina, Nadezhda V.; Chukanov, Nikita V.; Pekov, Igor V.; Aksenov, Sergey M.; McCammon, Catherine; Belakovskiy, Dmitry I.; Britvin, Sergey N.; Koshlyakova, Natalya N.; Schäfer, Christof; Scholz, Ricardo; Rastsvetaeva, Ramiza K.

    2017-05-01

    The new mineral ferrorhodonite, a Mn2+-Fe2+ ordered analogue of rhodonite with the idealized formula CaMn3Fe[Si5O15], was found in the manganese-rich metamorphic rocks of the Broken Hill Pb-Zn-Ag deposit, Yancowinna Co., New South Wales, Australia. Ferrorhodonite occurs as brownish red coarsely crystalline aggregates in association with galena, chalcopyrite, spessartine, and quartz. The mineral is brittle. Its Mohs hardness is 6. Cleavage is perfect on {201} and good on {021} and {210}. The measured and calculated values of density are 3.71 (2) and 3.701 g cm-3, respectively. Ferrorhodonite is optically biaxial positive, with α = 1.731 (4), β = 1.736 (4), γ = 1.745 (5) and 2 V (meas.) = 80 (10)°. The average chemical composition of ferrorhodonite is (electron-microprobe data, wt%): CaO 7.09, MgO 0.24, MnO 32.32, FeO 14.46, ZnO 0.36, SiO2 46.48, and total 100.95. The empirical formula calculated on 15 O apfu ( Z = 2) is Ca0.81Mn2.92Fe1.29Mg0.04Zn0.03Si4.96O15. The Mössbauer and IR spectra are reported. The strongest reflections in the powder X-ray diffraction pattern [( d, Å ( I, %) ( hkl)] are: 3.337 (32) (-1-13), 3.132 (54) (-210), 3.091 (41) (0-23), 2.968 (100) (-2-11), 2.770 (91) (022), 2.223 (34) (-204), 2.173 (30) (-310). Ferrorhodonite is isostructural with rhodonite. The crystal structure was solved based on single-crystal X-ray diffraction data and refined to R 1 = 4.02% [for 3114 reflections with I > 2 σ( I)]. The mineral is triclinic, space group P \\bar{1}, a = 6.6766 (5), b = 7.6754 (6), c = 11.803 (1) Å, α = 105.501 (1)°, β = 92.275 (1)°, γ = 93.919 (1)°; V = 580.44 (1). The crystal-chemical formula of ferrorhodonite inferred to be: M5(Ca0.81Mn0.19) M1-3(Mn2.52Fe0.48) M4(Fe 0.81 2+ Mn0.12Mg0.04Zn0.03) [Si5O15]..

  8. Geoinformatics and Data Fusion in the Southwestern Utah Mineral Belt

    NASA Astrophysics Data System (ADS)

    Kiesel, T.; Enright, R.

    2012-12-01

    Data Fusion is a technique in remote sensing that combines separate geophysical data sets from different platforms to yield the maximum information of each set. Data fusion was employed on multiple sources of data for the purposes of investigating an area of the Utah Mineral Belt known as the San Francisco Mining District. In the past many mineral deposits were expressed in or on the immediate surface and therefore relatively easy to locate. More modern methods of investigation look for evidence beyond the visible spectrum to find patterns that predict the presence of deeply buried mineral deposits. The methods used in this study employed measurements of reflectivity or emissivity features in the infrared portion of the electromagnetic spectrum for different materials, elevation data collected from the Shuttle Radar Topography Mission and indirect measurement of the magnetic or mass properties of deposits. The measurements were collected by various spaceborne remote sensing instruments like Landsat TM, ASTER and Hyperion and ground-based statewide geophysical surveys. ASTER's shortwave infrared bands, that have been calibrated to surface reflectance using the atmospheric correction tool FLAASH, can be used to identify products of hydrothermal alteration like kaolinite, alunite, limonite and pyrophyllite using image spectroscopy. The thermal infrared bands once calibrated to emissivity can be used to differentiate between felsic, mafic and carbonate rock units for the purposes of lithologic mapping. To validate results from the extracted spectral profiles existing geological reports were used for ground truth data. Measurements of electromagnetic spectra can only reveal the composition of surface features. Gravimetric and magnetic information were utilized to reveal subsurface features. Using Bouguer anomaly data provided by the USGS an interpreted geological cross section can be created that indicates the shape of local igneous intrusions and the depth of sedimentary basins. By comparing the digital elevation model with a satellite photo of the area a major high angle fault system was identified that had not been clearly evaluated in previous geologic mapping. For the investigation of the Frisco Mining District, gravity and magnetic data was fused to help differentiate igneous and sedimentary rocks that might have the same density. Data fusion allows for a more thorough analysis rather than viewing each data set separately with the accompanying improvement in ability to understand the complex geology of an area and can be applied to any remote sensing data set regardless of the type of instrument used.

  9. The Association of Fat and Lean Tissue With Whole Body and Spine Bone Mineral Density Is Modified by HIV Status and Sex in Children and Youth.

    PubMed

    Jacobson, Denise L; Lindsey, Jane C; Coull, Brent A; Mulligan, Kathleen; Bhagwat, Priya; Aldrovandi, Grace M

    2018-01-01

    HIV-infected (HIV-pos) male children/youth showed lower bone mineral density at sexual maturity than HIV-uninfected (HIV-neg) females. It is not known whether complications of HIV disease, including abnormal body fat distribution, contribute to lower bone accrual in male HIV-pos adolescents. In a cross-sectional study, we evaluated the relationship between body composition (fat and lean mass) and bone mass in HIV-pos and HIV-neg children/youth and determined if it is modified by HIV status and sex. We used generalized estimating equations to simultaneously model the effect of fat/lean mass on multiple bone outcomes, including total body bone mineral density and bone mineral content and spine bone mineral density. We evaluated effect modification by HIV and sex. The analysis cohort consisted of 143 HIV-neg and 236 HIV-pos, of whom 55% were black non-Hispanic and 53% were male. Ages ranged from 7 to < 25 years. Half of the children/youth were at Tanner stage 1 and 20% at Tanner 5. Fat mass was more strongly positively correlated with bone mass in HIV-neg than HIV-pos children/youth and these relationships were more evident for total body bone than spine outcomes. Within HIV strata, fat mass and bone were more correlated in female than male children/youth. The relationship between lean mass and bone varied by sex, but not by HIV status. HIV disease diminishes the positive relationship of greater fat mass on bone mass in children/youth. Disruptions in body fat distribution, which are common in HIV disease, may have an impact on bone accretion during pubertal development.

  10. [Bone diseases].

    PubMed

    Uebelhart, Brigitte; Rizzoli, René

    2016-01-13

    Calcium intake shows a small impact on bone mineral density and fracture risk. Denosumab is a more potent inhibitor of bone resorption than zoledronate. Abaloparatide, PTHrP analog, increases bone mineral density and decreases fracture incidence. Teriparatide could be delivered via a transdermic device. Romosozumab and odanacatib improve calculated bone strength. Sequential or combined treatments with denosumab and teriparatide could be of interest, but not denosumab followed by teriparatide. Fibrous dysplasia, Paget disease and hypophosphatasia are updated, as well as atypical femoral fracture and osteonecrosis of the jaw.

  11. Enhanced Androgen Signaling with Androgen Receptor Overexpression in the Osteoblast Lineage Controls Skeletal Turnover, Matrix Quality, and Bone Architecture

    DTIC Science & Technology

    2005-12-01

    the BMD of female-to-male transsexuals treated with ‘male’ levels of testosterone increased to normal male levels at cortical sites [35]. Finally, men...Testosterone increases bone mineral density in female-to- male transsexuals : a case series of 15 subjects.Clin Endocrinol (Oxf) 2004, 61:560-566. 35...Ruetsche A, Kneubuehl R, Birkhaeuser M, Lippuner K: Cortical and trabecular bone mineral density in transsexuals after long-term cross-sex hormonal treatment

  12. Opportunities for exercise during pullet rearing, Part II: Long-term effects on bone characteristics of adult laying hens at the end-of-lay.

    PubMed

    Casey-Trott, T M; Korver, D R; Guerin, M T; Sandilands, V; Torrey, S; Widowski, T M

    2017-08-01

    Osteoporosis in laying hens has been a production and welfare concern for several decades. The objective of this study was to determine whether differing opportunities for exercise during pullet rearing influences long-term bone quality characteristics in end-of-lay hens. A secondary objective was to assess whether differing opportunities for exercise in adult housing systems alters bone quality characteristics in end-of-lay hens. Four flock replicates of 588 Lohmann Selected Leghorn-Lite pullets were reared in either conventional cages (Conv) or an aviary rearing system (Avi) and placed into conventional cages (CC), 30-bird furnished cages (FC-S), or 60-bird furnished cages (FC-L) for adult housing. Wing and leg bones were collected at the end-of-lay to quantify bone composition and strength using quantitative computed tomography and bone breaking strength (BBS). At the end-of-lay, Avi hens had greater total and cortical cross-sectional area (P < 0.05) for the radius and tibia, greater total bone mineral content of the radius (P < 0.001), and greater tibial cortical bone mineral content (P = 0.029) than the Conv hens; however, total bone mineral density of the radius (P < 0.001) and cortical bone mineral density of the radius and tibia (P < 0.001) were greater in the Conv hens. Hens in the FC-L had greater total bone mineral density for the radius and tibia (P < 0.05) and greater trabecular bone mineral density for the radius (P = 0.027), compared to hens in the FC-S and CC. Total bone mineral content of the tibia (P = 0.030) and cortical bone mineral content of the radius (P = 0.030) and tibia (P = 0.013) were greater in the FC-L compared to the CC. The humerus of Conv hens had greater BBS than the Avi hens (P < 0.001), and the tibiae of FC-L and FC-S hens had greater BBS than CC hens (P = 0.006). Increased opportunities for exercise offered by the aviary rearing system provided improved bone quality characteristics lasting through to the end-of-lay. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  13. Bone mineral density and metabolic indices in hyperthyroidism.

    PubMed

    Al-Nuaim, A; El-Desouki, M; Sulimani, R; Mohammadiah, M

    1991-09-01

    Hyperthyroidism can alter bone metabolism by increasing both bone resorption and formation. The increase in bone resorption predominates, leading to a decrease in bone mass. To assess the effect of hyperthyroidism on bone and mineral metabolism, we measured bone density using single photon absorptiometry in 30 untreated hyperthyroid patients. Patients were categorized into three groups based on sex and alkaline phosphatase levels: 44 sex- and age-matched subjects were used as controls. Bone densities were significanlty lower in all patient groups compared with controls. Alkaline phosphatase was found to be a useful marker for assessing severity of bone disease in hyperthyroid patients as there is significant bone density among patients with higher alkaline phosphatase value. Hyperthyroidism should be considered in the differential diagnosis of unexplained alkaline phophatase activity.

  14. The Moon and Phobos: specific responses of two satellites moving off and nearer their respective planets

    NASA Astrophysics Data System (ADS)

    Kochemasov, Gennady Gregory

    2016-10-01

    Two enigmatic structural and petrologic features of two satellites are widely discussed: origin and global spreading of high-Ti lunar basalts and intercrossing ripples of Phobos. The rippling covers the whole surface of this small satellite constantly moving towards Mars, thus narrowing its orbit and increasing its orbital frequency and speed of rotation. The increasing speed of rotation means increasing angular momentum of Phobos and this must be compensated by diminishing radius. Very "fresh" overall rippling cutting majority of structural forms of Phobos is a trace of this global contracting process. Another trend is in the moving off Moon. Loosing its angular momentum due to slowing rotation a necessary compensation is fulfilled by sending dense basaltic lava into the crust. Varying density basalt flows (high, low, very low-Ti) reflect various stages of the slowing rotation process. Various contents of dense mineral component - ilmenite in basalts means various densities of the rock. Iron in basalts can be in less dense dark minerals and denser ilmenite thus influencing overall basalt densities corresponding to requirements of "healing" diminishing angular momentum. Spectral mapping of basalt types [3] indicate that for large parts of Oceanus Procellarum younger basalts are more titanium rich than the older basalts, thus somewhat reversing the trend found in the returned samples [2]. In some smaller basins spectral mapping also shows titanium richer basalts being older than titanium pure ones [1]. Thus, one may conclude that decreasing rotation rate of the Moon was not smooth but rather uneven. References: [1] H. Hiesinger, R. Jaumann, G.Neukum, J,W. Head, III. Ages of mare basalts on the lunar nearside // J.Geoph.Res., 2000, v.185, #E12, 29239-275. [2] H.Hiesinger and J.W. Head III. Ages of Oceanus Procellarum basalts and other nearside mare basalts //Workshop on New Views of the Moon II, 2016, abs.8030.[3] Pieters C.M.// Proc. Lunar Planet. Sci. Conf., 9th, 1978, 2825-2849.

  15. 78 FR 30198 - Amendments to ONRR's Remaining OMB-Approved Forms and Acronyms To Reflect Reorganization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ..., Geothermal energy, Government contracts, Indians--lands, Mineral royalties, Oil and gas exploration, Public..., Geothermal energy, Government contracts, Indians--lands, Mineral royalties, Oil and gas exploration, Public... recordkeeping requirements. 30 CFR Part 1210 Continental shelf, Geothermal energy, Government contracts, Indians...

  16. 30 CFR 828.2 - Objectives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Objectives. 828.2 Section 828.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM... performance, reclamation and design standards to reflect the nature of in situ processing. [44 FR 15455, Mar...

  17. Spectral data analysis of rock and mineral in Hatu Western Junggar Region, Xinjiang

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Zhou, Kefa; Zhang, Nannan; Wang, Jinlin

    2014-11-01

    Mineral resources are important material basis for the survival and development of human society. The development of hyperspectral remote sensing technology, which has made direct identification of minerals or mineral aggregates become possible, paves a new way for the application of remote sensing geology. The West Junggar region is located Xinjiang west verge of Junggar, with ore-forming geological conditions be richly endowed by nature and huge prospecting potentiality. The area has very good outcrop exposure with almost no vegetation cover, which is a natural test new method of remote sensing geological exploration. The characteristic of rock and mineral spectrum is not only the physical base of geological remote sensing technical application but also the base of the quantificational analysis of geological remote sensing, and the study of reflectance spectrum is the main content in the basic research of remote sensing. In this study, we collected the outdoor and indoor reflectance spectrum of rocks and minerals by using a spectroradiometer (ASD FieldSpec FR, ASD, USA), which band extent varied from 350 to 2,500 nm. Basin on a great deal of spectral data for different kinds of rocks and minerals, we have analyzed the spectrum characteristics and change of seven typical mineral rocks. According to the actual conditions, we analyzed the data noise characteristic of the spectrum and got rid of the noise. Meanwhile, continuum removed technology was used to remove the environmental background influence. Finally, in order to take full advantage of multi-spectrum data, ground information is absolutely necessary, and it is important to build a representative spectral library. We build the spectral library of rocks and minerals in Hatu, which can be used for features investigation, mineral classification, mineral mapping and geological prospecting in Hatu Western Junggar region by remote sensing. The result of this research will be significant to the research of accelerating Western Junggar mineral exploration.

  18. The Influence of Local Bone Density on the Outcome of One Hundred and Fifty Proximal Humeral Fractures Treated with a Locking Plate.

    PubMed

    Kralinger, Franz; Blauth, Michael; Goldhahn, Jörg; Käch, Kurt; Voigt, Christine; Platz, Andreas; Hanson, Beate

    2014-06-18

    There is biomechanical evidence that bone density predicts the mechanical failure of implants. The aim of this prospective study was to evaluate the influence of local bone mineral density on the rate of mechanical failure after locking plate fixation of proximal humeral fractures. We enrolled 150 patients who were from fifty to ninety years old with a closed, displaced proximal humeral fracture fixed with use of a locking plate from July 2007 to April 2010. There were 118 women and thirty-two men who had a mean age of sixty-nine years. Preoperative computed tomography (CT) scans were done to assess bone mineral density of the contralateral humerus, and dual x-ray absorptiometry of the distal end of the radius of the unaffected arm was conducted within the first six weeks postoperatively. At follow-up evaluations at six weeks, three months, and one year postoperatively, pain, shoulder mobility, strength, and multiple functional and quality-of-life outcome measures (Disabilities of the Arm, Shoulder and Hand [DASH] questionnaire; Shoulder Pain and Disability Index [SPADI]; Constant score; and EuroQuol-5D [EQ-5D]) were done and standard radiographs were made. We defined mechanical failure as all complications related to bone quality experienced within one year. After locking plate fixation, fifty-three (35%) of 150 patients had mechanical failure; loss of reduction and secondary screw loosening with perforation were common. CT assessments of local bone mineral density showed no difference between patients with and without mechanical failure (89.82 versus 91.51 mg/cm 3 , respectively; p = 0.670). One-year DASH, SPADI, and Constant scores were significantly better for patients without mechanical failure (p ≤ 0.05). We did not find evidence of an association between bone mineral density and the rate of mechanical failures, which may suggest that patients with normal bone mineral density are less prone to sustain a proximal humeral fracture. Future studies should target other discriminating factors between patients with and without mechanical failure. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.

  19. Batisivite, V8Ti6[Ba(Si2O)]O28, a new mineral species from the derbylite group

    NASA Astrophysics Data System (ADS)

    Reznitsky, L. Z.; Sklyarov, E. V.; Armbruster, T.; Galuskin, E. V.; Ushchapovskaya, Z. F.; Polekhovsky, Yu. S.; Karmanov, N. S.; Kashaev, A. A.; Barash, I. G.

    2008-12-01

    Batisivite has been found as an accessory mineral in the Cr-V-bearing quartz-diopside metamorphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. A new mineral was named after the major cations in its ideal formula (Ba, Ti, Si, V). Associated minerals are quartz, Cr-V-bearing diopside and tremolite; calcite; schreyerite; berdesinskiite; ankangite; V-bearing titanite; minerals of the chromite-coulsonite, eskolaite-karelianite, dravite-vanadiumdravite, and chernykhite-roscoelite series; uraninite; Cr-bearing goldmanite; albite; barite; zircon; and unnamed U-Ti-V-Cr phases. Batisivite occurs as anhedral grains up to 0.15-0.20 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black and opaque, with a black streak and resinous luster. Batisivite is white in reflected light. The microhardness (VHN) is 1220-1470 kg/mm2 (load is 30 g), the mean value is 1330 kg/mm2. The Mohs hardness is near 7. The calculated density is 4.62 g/cm3. The new mineral is weakly anisotropic and bireflected. The measured values of reflectance are as follows (λ, nm— R {max/'}/ R {min/'}): 440—17.5/17.0; 460—17.3/16.7; 480—17.1/16.5; 500—17.2/16.6; 520—17.3/16.7; 540—17.4/16.8; 560—17.5/16.8; 580—17.6/16.9; 600—17.7/17.1; 620—17.7/17.1; 640—17.8/17.1; 660—17.9/17.2; 680—18.0/17.3; 700—18.1/17.4. Batisivite is triclinic, space group P overline 1 ; the unit-cell dimensions are: a = 7.521(1) Å, b = 7.643(1) Å, c = 9.572(1) Å, α = 110.20°(1), β = 103.34°(1), γ = 98.28°(1), V = 487.14(7) Å3, Z = 1. The strongest reflections in the X-ray powder diffraction pattern [ d, Å ( I, %)( hkl)] are: 3.09(8)(12 overline 2 ); 2.84, 2.85(10)(021, 120); 2.64(8)(21 overline 3 ); 2.12(8)(31 overline 3 ); 1.785(8)(32 overline 4 ), 1.581(10)(24 overline 2 ); 1.432, 1.433(10)(322, 124). The chemical composition (electron microprobe, average of 237 point analyses, wt %) is: 0.26 Nb2O5, 6.16 SiO2, 31.76 TiO2, 1.81 Al2O3, 8.20 VO2, 26.27 V2O3, 12.29 Cr2O3, 1.48 Fe2O3, 0.08 MgO, 11.42 BaO; the total is 99.73. The VO2/V2O3 ratio has been calculated. The simplified empirical formula is (V{4.8/3+}Cr2.2V{0.7/4+}Fe0.3)8.0(Ti5.4V{0.6/4+})6.0[Ba(Si1.4Al0.5O0.9)]O28. An alternative to the title formula could be a variety (with the diorthogroup Si2O7) V8Ti6[Ba(Si2O7)]O22. Batisivite probably pertains to the V{8/3+}Ti{6/4+}[Ba(Si2O)]O28-Cr{8/3+}Ti{6/4+} [Ba(Si2O)]O28 solid solution series. The type material of batisivite has been deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.

  20. In Situ Identification of Pigment Composition and Particle Size on Wall Paintings Using Visible Spectroscopy as a Noninvasive Measurement Method.

    PubMed

    Li, Junfeng; Wan, Xiaoxia; Bu, Yajing; Li, Chan; Liang, Jinxing; Liu, Qiang

    2016-11-01

    Noninvasive examination methods of chemical composition and particle size are presented here based on visible spectroscopy to achieve the identification and recording of mineral pigments used on ancient wall paintings. The normalized spectral curve, slope and curvature extracted from visible spectral reflectance are combined with adjustable weighting coefficients to construct the identification feature space, and Euclid distances between spectral reflectance from wall paintings and a reference database are calculated in the feature space as the discriminant criterion to identify the chemical composition of mineral pigments. A parametric relationship between the integral quantity of spectral reflectance and logarithm of mean particle size is established using a quadratic polynomial to accomplish the noninvasive prediction of mineral pigment particle size used on ancient wall paintings. The feasibility of the proposed methods is validated by the in situ nondestructive identification of the wall paintings in the Mogao Grottoes at Dunhuang. Chinese painting styles and historical evolution are then analyzed according to the identification results of 16 different grottoes constructed from the Sixteen Kingdoms to the Yuan Dynasty. © The Author(s) 2016.

  1. Dynamic Determination of Some Optical and Electrical Properties of Galena Natural Mineral: Potassium Ethyl Xanthate Solution Interface

    NASA Astrophysics Data System (ADS)

    Todoran, D.; Todoran, R.; Anitas, E. M.; Szakacs, Zs.

    2017-12-01

    This paper presents results concerning optical and electrical properties of galena natural mineral and of the interface layer formed between it and the potassium ethyl xanthate solution. The applied experimental method was differential optical reflectance spectroscopy over the UV-Vis/NIR spectral domain. Computations were made using the Kramers-Kronig formalism. Spectral dependencies of the electron loss functions, determined from the reflectance data obtained from the polished mineral surface, display van Hove singularities, leading to the determination of its valence band gap and electron plasma energy. Time dependent measurement of the spectral dispersion of the relative reflectance of the film formed at the interface, using the same computational formalism, leads to the dynamical determination of the spectral variation of its optical and electrical properties. We computed behaviors of the dielectric constant (dielectric permittivity), the dielectric loss function, refractive index and extinction coefficient, effective valence number and of the electron loss functions. The measurements tend to stabilize when the dynamic adsorption-desorption equilibrium is reached at the interface level.

  2. High Resolution Mineral Mapping of the Oman Drilling Project Cores with Imaging Spectroscopy: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Greenberger, R. N.; Ehlmann, B. L.; Kelemen, P. B.; Manning, C. E.; Teagle, D. A. H.; Harris, M.; Michibayashi, K.; Takazawa, E.

    2017-12-01

    The Oman Drilling Project provides an unprecedented opportunity to study the formation and alteration of oceanic crust and peridotite. Key to answering the main questions of the project are a characterization of the primary and secondary minerals present within the drill core and their spatial relationships. To that end, we used the Caltech imaging spectrometer system to scan the entire 1.5-km archive half of the core from all four gabbro and listvenite boreholes (GT1A, GT2A, GT3A, and BT1B) at 250 µm/pixel aboard the JAMSTEC Drilling Vessel Chikyu during the ChikyuOman core description campaign. The instrument measures the visible and shortwave infrared reflectance spectra of the rocks as a function of wavelength from 0.4 to 2.6 µm. This wavelength range is sensitive to many mineral groups, including hydrated minerals (phyllosilicates, zeolites, amorphous silica polytypes), carbonates, sulfates, and transition metals, most commonly iron-bearing mineralogies. To complete the measurements, the core was illuminated with a halogen light source and moved below the spectrometer at 1 cm/s by the Chikyu's Geotek track. Data are corrected and processed to reflectance using measurements of dark current and a spectralon calibration panel. The data provide a unique view of the mineralogy at high spatial resolution. Analysis of the images for complete downhole trends is ongoing. Thus far, a variety of minerals have been identified within their petrologic contexts, including but not limited to magnesite, dolomite, calcite, quartz (through an Si-OH absorption due to minor H2O), serpentine, chlorite, epidote, zeolites, mica (fuchsite), kaolinite, prehnite, gypsum, amphibole, and iron oxides. Further analysis will likely identify more minerals. Results include rapidly distinguishing the cations present within carbonate minerals and identifying minerals of volumetrically-low abundance within the matrix and veins of core samples. This technique, for example, accurately identifies mm-thick dolomite or calcite veins among dense sets of magnesite veins in the listvenite, indicating cross-cutting relationships that reflect changing alteration conditions with time. It also highlights key zones for sampling and additional analyses. Further data processing will provide mineralogical maps of the full 1.5 km of core.

  3. Bone mineral density test

    MedlinePlus

    ... density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... most common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low- ...

  4. Release adiabat measurements on minerals: The effect of viscosity

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.; Ahrens, T. J.

    1979-01-01

    The current inversion of pressure-particle velocity data for release from a high pressure shock state to a pressure-density path is analyzed. It is assumed that the release process is isentropic. It was shown that for geological materials below stresses of 150 GPa, the effective viscosity must be 1000 kg/m/s in order that the viscous (irreversible) work carried out on the material in the shock state remains small compared to the mechanical work recovered upon adiabatic rarefaction. The available data pertaining to the offset of the Rayleigh line from the Hugoniot for minerals, the magnitude of the shear stress in the high pressure shock state for minerals, and the direct measurements of the viscosities of several engineering materials shocked to pressures below 150 GPa yield effective viscosities of 1000 kg/m/s or less. An inferance that this indicates that the conditions for isentropic release of minerals from shock states are achieved, and a conclusion that the application of the Riemann integral to obtain pressure-density states along the release adiabats of minerals in shock experiments is valid are made.

  5. Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Feldmesser, Howard S. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Magee, Thomas C. (Inventor)

    2004-01-01

    Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.

  6. Common allelic variants of the vitamin receptor D gene rs7975232 (ApaI) do not influence bone mineral density figures in postmenopausal osteoporotic women.

    PubMed

    Pedrera-Canal, Maria; Moran, Jose M; Vera, Vicente; Roncero-Martin, Raul; Lavado-Garcia, Jesus M; Aliaga, Ignacio; Pedrera-Zamorano, Juan D

    2015-01-01

    This study examined the association between bone mineral density (BMD) and the rs7975232 (ApaI) polymorphism of the vitamin receptor D (VDR) gene. The polymorphism was detected using the real-time PCR TaqMan method. The rs7975232 genotype was determined in 274 postmenopausal osteoporotic Spanish women who were 60.53±8.02 years old. The observed genotype frequencies were in agreement with Hardy-Weinberg equilibrium (χ(2)=1.85, P=0.1736). There were no significant differences in the rs7975232 genotype groups in our total sample of osteoporotic women regarding age, years since menopause, height, weight, and BMD at femoral neck, femoral trochanter and lumbar spine. Significant differences were found in menarche age (aa vs Aa; P=0.008) and BMI (aa vs AA; P=0.029). We conclude that the VDR gene rs7975232 polymorphism is not related to figures of bone mineral density in postmenopausal osteoporotic Spanish women.

  7. Genetics of osteoporosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urano, Tomohiko; Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp; Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655

    Highlights: • Single-nucleotide polymorphisms (SNPs) associated with osteoporosis were identified. • SNPs mapped close to or within VDR and ESR1 are associated with bone mineral density. • WNT signaling pathway plays a pivotal role in regulating bone mineral density. • Genetic studies will be useful for identification of new therapeutic targets. - Abstract: Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which increases susceptibility to fractures. BMD is a complex quantitative trait with normal distribution and seems to be genetically controlled (in 50–90% of the cases), according to studies onmore » twins and families. Over the last 20 years, candidate gene approach and genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with low BMD, osteoporosis, and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding nuclear receptors and WNT-β-catenin signaling proteins. Understanding the genetics of osteoporosis will help identify novel candidates for diagnostic and therapeutic targets.« less

  8. In situ mid-infrared spectroscopic titration of forsterite with water in supercritical CO2: Dependence of mineral carbonation on quantitative water speciation

    NASA Astrophysics Data System (ADS)

    Loring, J. S.; Thompson, C. J.; Wang, Z.; Schaef, H. T.; Martin, P.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.

    2011-12-01

    Geologic sequestration of carbon dioxide holds promise for helping mitigate CO2 emissions generated from the burning of fossil fuels. Supercritical CO2 (scCO2) plumes containing variable water concentrations (wet scCO2) will displace aqueous solution and dominate the pore space adjacent to caprocks. It is important to understand possible mineral reactions with wet scCO2 to better predict long-term caprock integrity. We introduce novel in situ instrumentation that enables quantitative titrations of reactant minerals with water in scCO2 at temperatures and pressures relevant to target geologic reservoirs. The system includes both transmission and attenuated total reflection mid-infrared optics. Transmission infrared spectroscopy is used to measure concentrations of water dissolved in the scCO2, adsorbed on mineral surfaces, and incorporated into precipitated carbonates. Single-reflection attenuated total reflection infrared spectroscopy is used to monitor water adsorption, mineral dissolution, and carbonate precipitation reactions. Results are presented for the infrared spectroscopic titration of forsterite (Mg2SiO4), a model divalent metal silicate, with water in scCO2 at 100 bar and at both 50 and 75°C. The spectral data demonstrate that the quantitative speciation of water as either dissolved or adsorbed is important for understanding the types, growth rates, and amounts of carbonate precipitates formed. Relationships between dissolved/adsorbed water, water concentrations, and the role of liquid-like adsorbed water are discussed. Our results unify previous in situ studies from our laboratory based on infrared spectroscopy, nuclear magnetic resonance spectroscopy and X-ray diffraction.

  9. Sorptive fractionation of organic matter and formation of organo-hydroxy-aluminum complexes during litter biodegradation in the presence of gibbsite

    NASA Astrophysics Data System (ADS)

    Heckman, K.; Grandy, A. S.; Gao, X.; Keiluweit, M.; Wickings, K.; Carpenter, K.; Chorover, J.; Rasmussen, C.

    2013-11-01

    Solid and aqueous phase Al species are recognized to affect organic matter (OM) stabilization in forest soils. However, little is known about the dynamics of formation, composition and dissolution of organo-Al hydroxide complexes in microbially-active soil systems, where plant litter is subject to microbial decomposition in close proximity to mineral weathering reactions. We incubated gibbsite-quartz mineral mixtures in the presence of forest floor material inoculated with a native microbial consortium for periods of 5, 60 and 154 days. At each time step, samples were density separated into light (<1.6 g cm-3), intermediate (1.6-2.0 g cm-3), and heavy (>2.0 g cm-3) fractions. The light fraction was mainly comprised of particulate organic matter, while the intermediate and heavy density fractions contained moderate and large amounts of Al-minerals, respectively. Multi-method interrogation of the fractions indicated the intermediate and heavy fractions differed both in mineral structure and organic compound composition. X-ray diffraction analysis and SEM/EDS of the mineral component of the intermediate fractions indicated some alteration of the original gibbsite structure into less crystalline Al hydroxide and possibly proto-imogolite species, whereas alteration of the gibbsite structure was not evident in the heavy fraction. DRIFT, Py-GC/MS and STXM/NEXAFS results all showed that intermediate fractions were composed mostly of lignin-derived compounds, phenolics, and polysaccharides. Heavy fraction organics were dominated by polysaccharides, and were enriched in proteins, N-bearing compounds, and lipids. The source of organics appeared to differ between the intermediate and heavy fractions. Heavy fractions were enriched in 13C with lower C/N ratios relative to intermediate fractions, suggesting a microbial origin. The observed differential fractionation of organics among hydroxy-Al mineral types suggests that microbial activity superimposed with abiotic mineral-surface-mediated fractionation leads to strong density differentiation of organo-mineral complex composition even over the short time scales probed in these incubation experiments. The data highlight the strong interdependency of mineral transformation, microbial community activity, and organic matter stabilization during biodegradation.

  10. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models.

    PubMed

    Cao, Haihui; Nazarian, Ara; Ackerman, Jerome L; Snyder, Brian D; Rosenberg, Andrew E; Nazarian, Rosalynn M; Hrovat, Mirko I; Dai, Guangping; Mintzopoulos, Dionyssios; Wu, Yaotang

    2010-06-01

    In this study, bone mineral density (BMD) of normal (CON), ovariectomized (OVX), and partially nephrectomized (NFR) rats was measured by (31)P NMR spectroscopy; bone matrix density was measured by (1)H water- and fat-suppressed projection imaging (WASPI); and the extent of bone mineralization (EBM) was obtained by the ratio of BMD/bone matrix density. The capability of these MR methods to distinguish the bone composition of the CON, OVX, and NFR groups was evaluated against chemical analysis (gravimetry). For cortical bone specimens, BMD of the CON and OVX groups was not significantly different; BMD of the NFR group was 22.1% (by (31)P NMR) and 17.5% (by gravimetry) lower than CON. For trabecular bone specimens, BMD of the OVX group was 40.5% (by (31)P NMR) and 24.6% (by gravimetry) lower than CON; BMD of the NFR group was 26.8% (by (31)P NMR) and 21.5% (by gravimetry) lower than CON. No significant change of cortical bone matrix density between CON and OVX was observed by WASPI or gravimetry; NFR cortical bone matrix density was 10.3% (by WASPI) and 13.9% (by gravimetry) lower than CON. OVX trabecular bone matrix density was 38.0% (by WASPI) and 30.8% (by gravimetry) lower than CON, while no significant change in NFR trabecular bone matrix density was observed by either method. The EBMs of OVX cortical and trabecular specimens were slightly higher than CON but not significantly different from CON. Importantly, EBMs of NFR cortical and trabecular specimens were 12.4% and 26.3% lower than CON by (31)P NMR/WASPI, respectively, and 4.0% and 11.9% lower by gravimetry. Histopathology showed evidence of osteoporosis in the OVX group and severe secondary hyperparathyroidism (renal osteodystrophy) in the NFR group. These results demonstrate that the combined (31)P NMR/WASPI method is capable of discerning the difference in EBM between animals with osteoporosis and those with impaired bone mineralization. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Vertebral fractures assessed with dual-energy X-ray absorptiometry in patients with Addison's disease on glucocorticoid and mineralocorticoid replacement therapy.

    PubMed

    Camozzi, Valentina; Betterle, Corrado; Frigo, Anna Chiara; Zaccariotto, Veronica; Zaninotto, Martina; De Caneva, Erica; Lucato, Paola; Gomiero, Walter; Garelli, Silvia; Sabbadin, Chiara; Salvà, Monica; Costa, Miriam Dalla; Boscaro, Marco; Luisetto, Giovanni

    2018-02-01

    to assess bone damage and metabolic abnormalities in patients with Addison's disease given replacement doses of glucocorticoids and mineralocorticoids. A total of 87 patients and 81 age-matched and sex-matched healthy controls were studied. The following parameters were measured: urinary cortisol, serum calcium, phosphorus, creatinine, 24-h urinary calcium excretion, bone alkaline phosphatase, parathyroid hormone, serum CrossLaps, 25 hydroxyvitamin D, and 1,25 dihydroxyvitamin D. Clear vertebral images were obtained with dual-energy X-ray absorptiometry in 61 Addison's disease patients and 47 controls and assessed using Genant's classification. Nineteen Addison's disease patients (31.1%) had at least one morphometric vertebral fracture, as opposed to six controls (12.8%, odds ratio 3.09, 95% confidence interval 1.12-8.52). There were no significant differences in bone mineral density parameters at any site between patients and controls. In Addison's disease patients, there was a positive correlation between urinary cortisol and urinary calcium excretion. Patients with fractures had a longer history of disease than those without fractures. Patients taking fludrocortisone had a higher bone mineral density than untreated patients at all sites except the lumbar spine. Addison's disease patients have more fragile bones irrespective of any decrease in bone mineral density. Supra-physiological doses of glucocorticoids and longer-standing disease (with a consequently higher glucocorticoid intake) might be the main causes behind patients' increased bone fragility. Associated mineralocorticoid treatment seems to have a protective effect on bone mineral density.

  12. Factors in daily physical activity related to calcaneal mineral density in men.

    PubMed

    Hutchinson, T M; Whalen, R T; Cleek, T M; Vogel, J M; Arnaud, S B

    1995-05-01

    To determine the factors in daily physical activity that influence the mineral density of the calcaneus, we recorded walking steps and the type and duration of exercise in 43 healthy 26-to 51-yr-old men. Areal (g.cm-2) calcaneal bone mineral density (CBMD) was measured by single energy x-ray densitometry (SXA, Osteon, Inc., Wahiawa, HI). Subjects walked a mean (+/- SD) of 7902 (+/- 2534) steps per day or approximately 3.9 (+/- 1.2) miles daily. Eight subjects reported no exercise activities. The remaining 35 subjects spent 143 (2-772) (median and range) min.wk-1 exercising. Twenty-eight men engaged in exercise activities that generate single leg peak vertical ground reaction forces (GRFz) of 2 or more body weights (high loaders, HL), and 15 reported exercise or daily activities that typically generate GRFz less than 1.5 body weights (low loaders, LL). CBMD was 12% higher in HL than LL (0.668 +/- 0.074 g.cm-2 vs 0.597 +/- 0.062 g.cm-2, P < 0.004). In the HL group, CBMD correlated to reported minutes of high load exercise (r = 0.41, P < 0.03). CBMD was not related to the number of daily walking steps (N = 43, r = 0.03, NS). The results of this study support the concept that the dominant factor in daily physical activity relating to bone mineral density is the participation in site specific high loading activities, i.e., for the calcaneus, high calcaneal loads.

  13. Factors in Daily Physical Activity Related to Calcaneal Mineral Density in Men

    NASA Technical Reports Server (NTRS)

    Hutchinson, Teresa M.; Whalen, Robert T.; Cleek, Tammy M.; Vogel, John M.; Arnaud, Sara B.

    1995-01-01

    To determine the factors in daily physical activity that influence the mineral density of the calcaneus, we recorded walking steps and the type and duration of exercise in 43 healthy 26-to 51-yr-old men. Areal (g/sq cm) calcaneal bone mineral density (CBMD) was measured by single energy x-ray densitometry. Subjects walked a mean (+/- SD) of 7902(+/-2534) steps per day or approximately 3.9(+/-1.2) miles daily. Eight subjects reported no exercise activities. The remaining 35 subjects spent 143(2-772) (median and range) min/wk exercising. Twenty-eight men engaged in exercise activities that generate single leg peak vertical ground reaction forces (GRF(sub z)) of 2 or more body weights (high loaders, HL), and 15 reported exercise or daily activities that typically generate GRF(sub z) less than 1.5 body weights (low loaders, LL). CBMD was 12% higher in HL than LL (0.668 +/- 0.074 g/sq cm vs 0.597 +/- 0.062 g/sq cm, P less than 0.004). In the HL group, CBMD correlated to reported minutes of high load exercise (r = 0.41, P less than 0.03). CBMD was not related to the number of daily walking steps (N = 43, r = 0.03, NS). The results of this study support the concept that the dominant factor in daily physical activity relating to bone mineral density is the participation in site specific high loading activities, i.e., for the calcaneus, high calcaneal loads.

  14. Exposure to cadmium and persistent organochlorine pollutants and its association with bone mineral density and markers of bone metabolism on postmenopausal women

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rignell-Hydbom, A., E-mail: anna.rignell-hydbom@med.lu.se; Skerfving, S.; Lundh, T.

    Environmental contaminants such as cadmium and persistent organochlorine pollutants have been proposed as risk factors of osteoporosis, and women may be at an increased risk. To assess associations between exposure to cadmium and two different POPs (2,2',4,4',5,5'-hexachlorobiphenyl CB-153, 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene p,p'-DDE), on one hand, and bone effects, on the other, in a population-based study among postmenopausal (60-70 years) Swedish women with biobanked blood samples. The study included 908 women and was designed to have a large contrast of bone mineral densities, measured with a single photon absorptiometry technique in the non-dominant forearm. Biochemical markers related to bone metabolism were analyzed inmore » serum. Exposure assessment was based on cadmium concentrations in erythrocytes and serum concentrations of CB-153 and p,p'-DDE. Cadmium was negatively associated with bone mineral density and parathyroid hormone, positively with the marker of bone resorption. However, this association disappeared after adjustment for smoking. The major DDT metabolite (p,p'-DDE) was positively associated with bone mineral density, an association which remained after adjustment for confounders, but the effect was weak. There was no evidence that the estrogenic congener (CB-153) was associated with any of the bone markers. In conclusion, no convincing associations were observed between cadmium and POPs, on one hand, and bone metabolism markers and BMD, on the other.« less

  15. Effect of a new physiotherapy concept on bone mineral density, muscle force and gross motor function in children with bilateral cerebral palsy.

    PubMed

    Stark, C; Nikopoulou-Smyrni, P; Stabrey, A; Semler, O; Schoenau, E

    2010-06-01

    The purpose of this study was to determine the effect of a new physiotherapy concept on bone density, muscle force and motor function in bilateral spastic cerebral palsy children. In a retrospective data analysis 78 children were analysed. The concept included whole body vibration, physiotherapy, resistance training and treadmill training. The concept is structured in two in-patient stays and two periods of three months home-based vibration training. Outcome measures were dual-energy x-ray absorption (DXA), Leonardo Tilt Table and a modified Gross Motor Function Measure before and after six months of training. Percent changes were highly significant for bone mineral density, -content, muscle mass and significant for angle of verticalisation, muscle force and modified Gross Motor Function Measure after six months training. The new physiotherapy concept had a significant effect on bone mineral density, muscle force and gross motor function in bilateral spastic cerebral palsy children. This implicates an amelioration in all International Classification of Functioning, Disability and Health levels. The study serves as a basis for future research on evidence based paediatric physiotherapy taking into account developmental implications.

  16. Interpretation of hip fracture patterns using areal bone mineral density in the proximal femur.

    PubMed

    Hey, Hwee Weng Dennis; Sng, Weizhong Jonathan; Lim, Joel Louis Zongwei; Tan, Chuen Seng; Gan, Alfred Tau Liang; Ng, Jun Han Charles; Kagda, Fareed H Y

    2015-12-01

    Bone mineral density scans are currently interpreted based on an average score of the entire proximal femur. Improvements in technology now allow us to measure bone density in specific regions of the proximal femur. The study attempts to explain the pathophysiology of neck of femur (NOF) and intertrochanteric/basi-cervical (IT) fractures by correlating areal BMD (aBMD) scores with fracture patterns, and explore possible predictors for these fracture patterns. This is a single institution retrospective study on all patients who underwent hip surgeries from June 2010 to August 2012. A total of 106 patients (44 IT/basi-cervical, 62 NOF fractures) were studied. The data retrieved include patient characteristics and aBMD scores measured at different regions of the contralateral hip within 1 month of the injury. Demographic and clinical characteristic differences between IT and NOF fractures were analyzed using Fisher's Exact test and two-sample t test. Relationship between aBMD scores and fracture patterns was assessed using multivariable regression modeling. After adjusted multivariable analysis, T-Troc and T-inter scores were significantly lower in intertrochanteric/basi-cervical fractures compared to neck of femur fractures (P = 0.022 and P = 0.026, respectively). Both intertrochanteric/basi-cervical fractures (mean T.Tot -1.99) and neck of femur fractures (mean T.Tot -1.64) were not found to be associated with a mean T.tot less than -2.5. However, the mean aBMD scores were consistently less than -2.5 for both intertrochanteric/basi-cervical fractures and neck of femur fractures. Gender and calcium intake at the time of injury were associated with specific hip fracture patterns (P = 0.002 and P = 0.011, respectively). Hip fracture patterns following low energy trauma may be influenced by the pattern of reduced bone density in different areas of the hip. Intertrochanteric/basi-cervical fractures were associated with significantly lower T-Troc and T-Inter scores compared to neck of femur fractures, suggesting that the fracture traversed through the areas with the lowest bone density in the proximal femur. In the absence of reduced T.Troc and T.Inter, neck of femur fractures occurred more commonly. T-Total scores may underestimate the severity of osteoporosis/osteopenia and measuring T-score at the neck of femur may better reflect the severity of osteoporosis and likelihood of a fragility fracture.

  17. Effect of microdose transdermal 17beta-estradiol compared with raloxifene in the prevention of bone loss in healthy postmenopausal women: a 2-year, randomized, double-blind trial.

    PubMed

    Schaefers, Matthias; Muysers, Christoph; Alexandersen, Peter; Christiansen, Claus

    2009-01-01

    Declining estrogen levels after menopause result in bone loss and increased fracture risk. This study investigated whether transdermal microdose 17beta-estradiol (E2) has efficacy and safety comparable to those of raloxifene, a selective estrogen-receptor modulator approved for the prevention and treatment of postmenopausal osteoporosis. This study involved a multicenter, randomized, double-blind, active-controlled, noninferiority trial in 500 osteopenic postmenopausal women comparing transdermal microdose E2 (0.014 mg/d) versus oral raloxifene (60 mg/d), administered for 2 years. Percent change from baseline in bone mineral density at the lumbar spine was measured after 2 years of treatment. Secondary endpoints included proportion of women with no loss of bone mineral density in lumbar spine, change in bone mineral density at hip, biochemical markers of bone turnover, and safety parameters. In the per protocol set, lumbar spine bone mineral density increased by 2.4% (95% CI, 1.9-2.9) with microdose E2 versus 3.0% (95% CI, 2.5-3.5) with raloxifene after 2 years; 77.3% of E2 recipients and 80.5% of those taking raloxifene had no bone loss in the lumbar spine. Both treatments were well tolerated. Most women (99% in the E2 group and 100% in the raloxifene group) showed no histological evidence of endometrial stimulation after 2 years. Mean dense area in breast mammograms was 19.8% in the E2 group versus 19.0% in the raloxifene group after 2 years. Transdermal microdose E2 was similarly effective as raloxifene in preventing bone loss at the lumbar spine. Both treatments were well tolerated, with no clinically significant effect on endometrium or breast density.

  18. Density and magnetic suseptibility values for rocks in the Talkeetna Mountains and adjacent region, south-central Alaska

    USGS Publications Warehouse

    Sanger, Elizabeth A.; Glen, Jonathan M.G.

    2003-01-01

    This report presents a compilation and statistical analysis of 306 density and 706 magnetic susceptibility measurements of rocks from south-central Alaska that were collected by U.S. Geological Survey (USGS) and Alaska Division of Geological and Geophysical Surveys (ADGGS) scientists between the summers of 1999 and 2002. This work is a product of the USGS Talkeetna Mountains Transect Project and was supported by USGS projects in the Talkeetna Mountains and Iron Creek region, and by Bureau of Land Management (BLM) projects in the Delta River Mining District that aim to characterize the subsurface structures of the region. These data were collected to constrain potential field models (i.e., gravity and magnetic) that are combined with other geophysical methods to identify and model major faults, terrane boundaries, and potential mineral resources of the study area. Because gravity and magnetic field anomalies reflect variations in the density and magnetic susceptibility of the underlying lithology, these rock properties are essential components of potential field modeling. In general, the average grain density of rocks in the study region increases from sedimentary, felsic, and intermediate igneous rocks, to mafic igneous and metamorphic rocks. Magnetic susceptibility measurements performed on rock outcrops and hand samples from the study area also reveal lower magnetic susceptibilities for sedimentary and felsic intrusive rocks, moderate susceptibility values for metamorphic, felsic extrusive, and intermediate igneous rocks, and higher susceptibility values for mafic igneous rocks. The density and magnetic properties of rocks in the study area are generally consistent with general trends expected for certain rock types.

  19. X-ray crystallographic data for minerals

    USGS Publications Warehouse

    Robie, Richard A.; Bethke, Philip M.; Toulmin, M.S.; Edwards, Jerry L.

    1963-01-01

    X-ray crystallographic data are of particular importance to the mineralogist. Beyond the considerations of structural chemistry they provide. one of the most accurate methods for phase and/or compositional determination and for obtaining _the molar volumes and densities of minerals {Robie and Bethke, 1962).

  20. Growth-Associated Changes in the Periodontal Bone and Molar Teeth of Male Rats

    PubMed Central

    García, María F; Moreno, Hilda; Rigalli, Alfredo; Puche, Rodolfo C

    2009-01-01

    Here we report quantitative data associating periodontal bone variables of young conventional rats with the growth process. The hemimandibles of male rats (IIM/Fm stock, 2 to 15 wk of age.) were excised and submitted to conventional morphologic, radiologic, and histologic evaluation. The length, area, or X-ray absorbance of various regions or structures was measured on digital images of radiographs by using an image-analysis program. The sum of periodontal bone areas undergoing resorption (interproximal + intraradicular) increased until 9 or 10 wk of age and decreased thereafter. Mineral accretion rates and mineral density asymptotes were not significantly different among molars. The mineral density of resorption areas in alveolar bone fitted sinusoidal kinetics, indicative of the ‘instability’ of the tissue due to its high metabolic activity. Mineral accretion rates and mineral density asymptotes were not significantly different among molars. The proportion of root length within alveolar bone exhibited a biphasic curve (minimum at 5 wk of age), due to differences in the growth rates of variables involved in its calculation (distance between the cementoenamel junction to the apex and height of the resorption areas). The distance between the cementoenamel junction and alveolar bone crest over time fitted a sigmoidal function with a point of inflection that did not differ significantly from that of body or mandible dry weight. In summary, the growth process appears to affect periodontal bone support and the distance between the cementoenamel junction and alveolar bone crest in male rats. PMID:19807966

  1. Aliphatic and aromatic plant biopolymer dynamics in soil particles isolated from sequential density fractionation

    NASA Astrophysics Data System (ADS)

    Caldwell, B.; Filley, T.; Sollins, P.; Lajtha, K.; Swanston, C.; Kleber, M.; Kramer, M.

    2007-12-01

    A recent multi-layer-based soil organic matter-mineral interaction mechanistic model to describe the nature of soil organic matter-mineral surface mechanism for soil organic matter stabilization predicts that proteinaceous and aliphatic materials establish the core of strong binding-interactions upon which other organic matter is layered. A key methodology providing data underpinning this hypothesis is sequential density fractionation where soil is partitioned into particles of increasing density with the assumption that a partial control on organic matter distribution through density series is the thickness of its layering. Four soils of varying mineralogy and texture were investigated for their biopolymer, isotopic, and mineralogical properties. Light fractions (<1.8 g/cm3), although dominanted by organic detritus, did not always contain the highest concentration of lignin and substituted fatty acids from cutin and suberin while heavier fractions, 1.8-2.6 g/cm3, exhibited a progressive decrease in concentration in plant derived biopolymers with density. Extractable lignin phenols exhibited a progressive oxidation state with density. The concentration of biopolymers roughly mirrored the C:N ratio of soil particles which dropped consistently with increasing particle density. Although, in all soils, both lignin phenols and SFA concentration generally decreased with increasing density the ratio SFA/lignin varied with density and depending upon the soil. All soils, except the oxisol, exhibited an increase in SFA with respect to lignin suggesting a selective stabilization of those material with respect to lignin. In the oxisol, which showed little variation in its hematite dominated mineralogy across density, SFA/lignin remained constant, potentially indicating a greater capacity to stabilize lignin in that system. Interestingly, the lignin oxidation state increased with density in the oxisol. Given the variation in soil character, the consistency in these trends it suggests a general phenomenon of progressive decay in plant derived material with thinness of mineral coating but an overall relative increase in aliphatic character-all consistent with the multi-layer model.

  2. Degradation of N-nitrosodimethylamine (NDMA) and its precursor dimethylamine (DMA) in mineral micropores induced by microwave irradiation.

    PubMed

    He, Yuanzhen; Cheng, Hefa

    2016-05-01

    Removal of N-nitrosodimethylamine (NDMA) in drinking water treatment poses a significant technical challenge due to its small molecular size, high polarity and water solubility, and poor biodegradability. Degradation of NDMA and its precursor, dimethylamine (DMA), was investigated by adsorbing them from aqueous solution using porous mineral sorbents, followed by destruction under microwave irradiation. Among the mineral sorbents evaluated, dealuminated ZSM-5 exhibited the highest sorption capacities for NDMA and DMA, which decreased with the density of surface cations present in the micropores. In contrast, the degradation rate of the sorbed NDMA increased with the density of surface cations under microwave irradiation. Evolutions of the degradation products and C/N ratio indicate that the sorbed NDMA and DMA could be eventually mineralized under continuous microwave irradiation. The degradation rate was strongly correlated with the bulk temperature of ZSM-5 and microwave power, which is consistent with the mechanism of pyrolysis caused by formation of micro-scale "hot spots" within the mineral micropores under microwave irradiation. Compared to existing treatment options for NDMA removal, microporous mineral sorption coupled with microwave-induced degradation has the unique advantages of being able to simultaneously remove NDMA and DMA and cause their full mineralization, and thus could serve as a promising alternative method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [Fundamental study on effect of high-mineral drinking water for osteogenesis in calciprivia ovariectomized rats].

    PubMed

    Ogata, Fumihiko; Nagai, Noriaki; Ito, Yoshimasa; Kawasaki, Naohito

    2014-01-01

    Since osteoporosis is a major public health problem in Japan, it is important to clarify the effect of high-mineral drinking water consumption on osteogenesis. Therefore, in this study, we investigated the relationship between high-mineral drinking water consumption and osteogenesis in ovariectomized rats that received a low-calcium diet and purified water (PW group) or a low-calcium diet and high-mineral drinking water (CR group). High-mineral drinking water affected the rats' body weight. After 3 months, the bone density of the CR group was higher than that of the PW group (p<0.05). Furthermore, the CR group showed a decrease in the amount of calcium in the bones after 3 months. These results suggest that high-mineral drinking water contributes to the maintenance of bone density and not to the amount of calcium in bone. On the other hand, serum alkaline phosphatase levels in the PW group at 3 months were higher than those in the CR group, which indicates that the blood concentration of calcium in the CR group was maintained. Moreover, the amount of magnesium in the bones and the blood concentration of magnesium in the CR group after 3 months were higher than the corresponding values in the PW group. These results suggest that consumption of high-mineral drinking water could be beneficial for osteogenesis (i.e., for maintaining bone quantity).

  4. Self-anti-reflective density-modulated thin films by HIPS technique

    NASA Astrophysics Data System (ADS)

    Keles, Filiz; Badradeen, Emad; Karabacak, Tansel

    2017-08-01

    A critical factor for an efficient light harvesting device is reduced reflectance in order to achieve high optical absorptance. In this regard, refractive index engineering becomes important to minimize reflectance. In this study, a new fabrication approach to obtain density-modulated CuIn x Ga(1-x)Se2 (CIGS) thin films with self-anti-reflective properties has been demonstrated. Density-modulated CIGS samples were fabricated by utilizing high pressure sputtering (HIPS) at Ar gas pressure of 2.75 × 10-2 mbar along with conventional low pressure sputtering (LPS) at Ar gas pressure of 3.0 × 10-3 mbar. LPS produces conventional high density thin films while HIPS produces low density thin films with approximate porosities of ˜15% due to a shadowing effect originating from the wide-spread angular atomic of HIPS. Higher pressure conditions lower the film density, which also leads to lower refractive index values. Density-modulated films that incorporate a HIPS layer at the side from which light enters demonstrate lower reflectance thus higher absorptance compared to conventional LPS films, although there is not any significant morphological difference between them. This result can be attributed to the self-anti-reflective property of the density-modulated samples, which was confirmed by the reduced refractive index calculated for HIPS layer via an envelope method. Therefore, HIPS, a simple and scalable approach, can provide enhanced optical absorptance in thin film materials and eliminate the need for conventional light trapping methods such as anti-reflective coatings of different materials or surface texturing.

  5. Site preparation effects on soil bulk density and pine seedling growth

    Treesearch

    John J. Stransky

    1981-01-01

    Soil bulk density was sampled the first and third growing seasons after site preparation and pine planting on three clearcut pine-hardwood forest sites in eastern Texas. Bulk density was measured 10 cm below the surface of mineral soil using a surface moisture-density probe. Plots that had been KG-bladed and chopped had significanlty higher bulk density than those that...

  6. Use of remote sensing, geographic information systems, and spatial statistics to assess spatio-temporal population dynamics of Heterodera glycines and soybean yield quantity and quality

    NASA Astrophysics Data System (ADS)

    Moreira, Antonio Jose De Araujo

    Soybean, Glycine max (L.) Merr., is an important source of oil and protein worldwide, and soybean cyst nematode (SCN), Heterodera glycines, is among the most important yield-limiting factors in soybean production worldwide. Early detection of SCN is difficult because soybean plants infected by SCN often do not exhibit visible symptoms. It was hypothesized, however, that reflectance data obtained by remote sensing from soybean canopies may be used to detect plant stress caused by SCN infection. Moreover, reflectance measurements may be related to soybean growth and yield. Two field experiments were conducted from 2000 to 2002 to study the relationships among reflectance data, quantity and quality of soybean yield, and SCN population densities. The best relationships between reflectance and the quantity of soybean grain yield occurred when reflectance data were obtained late August to early September. Similarly, reflectance was best related to seed oil and seed protein content and seed size when measured during late August/early September. Grain quality-reflectance relationships varied spatially and temporally. Reflectance measured early or late in the season had the best relationships with SCN population densities measured at planting. Soil properties likely affected reflectance measurements obtained at the beginning of the season and somehow may have been related to SCN population densities at planting. Reflectance data obtained at the end of the growing season likely was affected by early senescence of SCN-infected soybeans. Spatio-temporal aspects of SCN population densities in both experiments were assessed using spatial statistics and regression analyses. In the 2000 and 2001 growing seasons, spring-to-fall changes in SCN population densities were best related to SCN population densities at planting for both experiments. However, within-season changes in SCN population densities were best related to SCN population densities at harvest for both experiments in 2002. Variograms were fitted to the data to describe the spatial characteristics of SCN population densities in both fields at planting and at harvest from 2000 to 2003 and these parameters varied within seasons and during overwinter periods in both experiments. Distinct relationships between temporal and spatial changes in SCN population densities were not detected.

  7. Structure and Function in the Lunge Feeding Apparatus: Mechanical Properties of the Fin Whale Mandible.

    PubMed

    Shadwick, Robert E; Goldbogen, Jeremy A; Pyenson, Nicholas D; Whale, James C A

    2017-11-01

    The mandibles of rorqual whales are highly modified to support loads associated with lunge-feeding, a dynamic filter feeding mechanism that is characterized by rapid changes in gape angle and acceleration. Although these structures are the largest ossified elements in animals and an important part of the rorqual engulfment apparatus, details of internal structure are limited and no direct measurements of mechanical properties exist. Likewise, the forces that are sustained by the mandibles are unknown. Here we report on the structure and mechanical behavior of the mandible of an adult fin whale. A series of transverse sections were cut at locations along the entire length of a 3.6-m left mandible recovered post-mortem from a 16-m fin whale, and CT scanned to make density maps. Cored samples 6-8 mm in diameter were tested in compression to determine the Young's modulus and strength. In addition, wet density, dry density and mineral density were measured. Dense cortical bone occupies only a relatively narrow peripheral layer while much less dense and oil-filled trabecular bone occupies the rest. Mineral density of both types is strongly correlated with dry density and CT Hounsfield units. Compressive strength is strongly correlated with Young's modulus, while strength and stiffness are both correlated with mineral density. It appears that the superficial compact layer is the main load bearing element, and that the mandible is reinforced against dorso-vental flexion that would occur during the peak loads while feeding. Anat Rec, 300:1953-1962, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Evaluation of potential site for mineral processing plant

    NASA Astrophysics Data System (ADS)

    Izwan Ishak, Muhamad Noor; Sipaun, Susan Maria; Mustapha, Ismail; Fahmi Engku Chik, Engku Mohd; Abdullah, Nurliyana; Affandi Mahmood, Airwan

    2018-01-01

    Nuclear moisture-density gauge is a type of instrument for measuring density and moisture of the material in a relatively thin zone beneath a surface of the material by using low activity of neutron and gamma radiation source. Density and moisture content data of the compacted layers are needed to determine the degree of compaction of soils, aggregate, concrete, asphalt or other materials used in civil engineering works. A gamma radiation source is mounted inside gauge housing with the source rod vertically extended to various depth positions. Direct transmission gamma radiation technique is used to obtain the count reading for the number of photons emitted before it is converted into density reading by microprocessor. This paper presents the inspection technique and results for the measurement of soil moisture and density carried out at potential site for mineral processing plant, Malaysian Nuclear Agency. Primarily, the experiment was conducted to ensure the compaction of ground is suitable for the plant construction. From the calculation, the percentages of soil wet density compaction (%WD Compact) are within acceptable limits with respect to the standard compacted wet soil density measured in the laboratory.

  9. Clinical utility of bone turnover markers in the management of common metabolic bone diseases in adults.

    PubMed

    Glendenning, Paul; Chubb, S A Paul; Vasikaran, Samuel

    2018-06-01

    Bone turnover marker (BTMs) concentrations in blood and urine reflect bone-remodelling activity, and may be useful adjuncts in the diagnosis and management of metabolic bone diseases. Newer biomarkers, mainly bone regulatory proteins, are currently being investigated to elucidate their role in bone metabolism and disease and may in future be useful in clinical diagnosis and management of metabolic bone disease. BTM concentrations increase around menopause in women, and at a population level the degree of increase in BTMs reflect bone loss. However, lack of adequate data precludes their use in individual patients for fracture risk assessment in clinical practice. The rapid and large changes in BTMs following anti-resorptive and anabolic therapies for osteoporosis treatment indicate they may be useful for monitoring therapy in clinical practice. The offset of drug effect on BTMs could be helpful for adjudicating the duration of bisphosphonate drug holidays. BTMs may offer useful additional data in skeletal diseases that are typically characterised by increased bone remodelling: chronic kidney disease (CKD), primary hyperparathyroidism (PHPT) and Paget's disease. In CKD, bone specific alkaline phosphatase (bAP) is currently endorsed for use for the assessment of mineral bone disease. The role of BTMsin predicting the bone mineral density response to successful parathyroidectomy in PHPT shows some utility but the data are not consistent and studies are limited in size and/or duration. In Paget's disease of bone, BTMs are used to confirm diagnosis, evaluate extent of disease or degree of activity and for monitoring the response to bisphosphonate treatment. Whilst BTMs are currently used in specific clinical practice instances when investigating or managing metabolic bone disease, further data are needed to consolidate their clinical use where evidence of utility is limited. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health.

    PubMed

    Black, Ruth E; Williams, Sheila M; Jones, Ianthe E; Goulding, Ailsa

    2002-09-01

    Information concerning the adequacy of bone mineralization in children who customarily avoid drinking cow milk is sparse. The objective was to evaluate dietary calcium intakes, anthropometric measures, and bone health in prepubertal children with a history of long-term milk avoidance. We recruited 50 milk avoiders (30 girls, 20 boys) aged 3-10 y by advertisement. We measured current dietary calcium intakes with a food-frequency questionnaire and body composition and bone mineral density with dual-energy X-ray absorptiometry and compared the results with those of 200 milk-drinking control children. The reasons for milk avoidance were intolerance (40%), bad taste (42%), and lifestyle choice (18%). Dietary calcium intakes were low (443 +/- 230 mg Ca/d), and few children consumed substitute calcium-rich drinks or mineral supplements. Although 9 children (18%) were obese, the milk avoiders were shorter (P < 0.01), had smaller skeletons (P < 0.01), had a lower total-body bone mineral content (P < 0.01), and had lower z scores (P < 0.05) for areal bone mineral density at the femoral neck, hip trochanter, lumbar spine, ultradistal radius, and 33% radius than did control children of the same age and sex from the same community. The z scores for volumetric (size-adjusted) bone mineral density (g/cm(3)) were -0.72 +/- 1.17 for the lumbar spine and -0.72 +/- 1.35 for the 33% radius (P < 0.001). Twelve children (24%) had previously broken bones. In growing children, long-term avoidance of cow milk is associated with small stature and poor bone health. This is a major concern that warrants further study.

  11. Integrated Spectroscopic Studies of Hydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Dyar, M. D.; Lane, M. D.; Bishop, J. L.; OConnor, V.; Cloutis, E.; Hiroi, T.

    2005-01-01

    Sulfate minerals have been identified in Martian meteorites and on Mars using a suite of instruments aboard the MER rovers. These results have confirmed previous groundbased observations and orbital measurements that suggested their presence. The orbiting OMEGA instrument on Mars Express is also finding evidence for sulfate. In order to better interpret remote-sensing data, we present here the results of a coordinated visible/near infrared (VNIR) reflectance, Moussbauer (MB), and thermal emittance study of wellcharacterized hydrous sulfate minerals.

  12. Reflectance spectroscopy (0.35-8 μm) of ammonium-bearing minerals and qualitative comparison to Ceres-like asteroids

    NASA Astrophysics Data System (ADS)

    Berg, Breanne L.; Cloutis, Edward A.; Beck, Pierre; Vernazza, Pierre; Bishop, Janice L.; Takir, Driss; Reddy, Vishnu; Applin, Daniel; Mann, Paul

    2016-02-01

    Ammonium-bearing minerals have been suggested to be present on Mars, Ceres, and various asteroids and comets. We undertook a systematic study of the spectral reflectance properties of ammonium-bearing minerals and compounds that have possible planetary relevance (i.e., ammonium carbonates, chlorides, nitrates, oxalates, phosphates, silicates, and sulfates). Various synthetic and natural NH4+-bearing minerals were analyzed using reflectance spectroscopy in the long-wave ultraviolet, visible, near-infrared, and mid-infrared regions (0.35-8 μm) in order to identify spectral features characteristic of the NH4+ molecule, and to evaluate if and how these features vary among different species. Mineral phases were confirmed through structural and compositional analyses using X-ray diffraction, X-ray fluorescence, and elemental combustion analysis. Characteristic absorption features associated with NH4 can be seen in the reflectance spectra at wavelengths as short as ∼1 μm. In the near-infrared region, the most prominent absorption bands are located near 1.6, 2.0, and 2.2 μm. Absorption features characteristic of NH4+ occurred at slightly longer wavelengths in the mineral-bound NH4+ spectra than for free NH4+ for most of the samples. Differences in wavelength position are attributable to various factors, including differences in the type and polarizability of the anion(s) attached to the NH4+, degree and type of hydrogen bonding, molecule symmetry, and cation substitutions. Multiple absorption features, usually three absorption bands, in the mid-infrared region between ∼2.8 and 3.8 μm were seen in all but the most NH4-poor sample spectra, and are attributed to fundamentals, combinations, and overtones of stretching and bending vibrations of the NH4+ molecule. These features appear even in reflectance spectra of water-rich samples which exhibit a strong 3 μm region water absorption feature. While many of the samples examined in this study have NH4 absorption bands at unique wavelength positions, in order to discriminate between different NH4+-bearing phases, absorption features corresponding to molecules other than NH4+ should be included in spectral analysis. A qualitative comparison of the laboratory results to telescopic spectra of Asteroids 1 Ceres, 10 Hygiea, and 324 Bamberga for the 3 μm region demonstrates that a number of NH4-bearing phases are consistent with the observational data in terms of exhibiting an absorption band in the 3.07 μm region.

  13. Reflectance spectroscopy (0.35–8 μm) of ammonium-bearing minerals and qualitative comparison to Ceres-like asteroids

    USGS Publications Warehouse

    Berg, Breanne L.; Cloutis, Edward A.; Beck, P.; Vernazza, P.; Bishop, Janice L; Takir, Driss; Reddy, V.; Applin, D.; Mann, Paul

    2016-01-01

    Ammonium-bearing minerals have been suggested to be present on Mars, Ceres, and various asteroids and comets. We undertook a systematic study of the spectral reflectance properties of ammonium-bearing minerals and compounds that have possible planetary relevance (i.e., ammonium carbonates, chlorides, nitrates, oxalates, phosphates, silicates, and sulfates). Various synthetic and natural NH4+-bearing minerals were analyzed using reflectance spectroscopy in the long-wave ultraviolet, visible, near-infrared, and mid-infrared regions (0.35–8 μm) in order to identify spectral features characteristic of the NH4+ molecule, and to evaluate if and how these features vary among different species. Mineral phases were confirmed through structural and compositional analyses using X-ray diffraction, X-ray fluorescence, and elemental combustion analysis. Characteristic absorption features associated with NH4 can be seen in the reflectance spectra at wavelengths as short as ∼1 μm. In the near-infrared region, the most prominent absorption bands are located near 1.6, 2.0, and 2.2 μm. Absorption features characteristic of NH4+ occurred at slightly longer wavelengths in the mineral-bound NH4+ spectra than for free NH4+ for most of the samples. Differences in wavelength position are attributable to various factors, including differences in the type and polarizability of the anion(s) attached to the NH4+, degree and type of hydrogen bonding, molecule symmetry, and cation substitutions. Multiple absorption features, usually three absorption bands, in the mid-infrared region between ∼2.8 and 3.8 μm were seen in all but the most NH4-poor sample spectra, and are attributed to fundamentals, combinations, and overtones of stretching and bending vibrations of the NH4+ molecule. These features appear even in reflectance spectra of water-rich samples which exhibit a strong 3 μm region water absorption feature. While many of the samples examined in this study have NH4 absorption bands at unique wavelength positions, in order to discriminate between different NH4+-bearing phases, absorption features corresponding to molecules other than NH4+ should be included in spectral analysis. A qualitative comparison of the laboratory results to telescopic spectra of Asteroids 1 Ceres, 10 Hygiea, and 324 Bamberga for the 3 μm region demonstrates that a number of NH4-bearing phases are consistent with the observational data in terms of exhibiting an absorption band in the 3.07 μm region.

  14. Turnover and storage of C and N in five density fractions from California annual grassland surface soils

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.; Amundson, R.; Cook, A. C.; Brenner, D. L.

    2002-12-01

    We measured 14C/12C in density fractions from soils collected before and after atmospheric thermonuclear weapons testing to examine soil organic matter (SOM) dynamics along a 3 million year California soil chronosequence. The mineral-free particulate organic matter (FPOM; <1.6 g cm-3) mainly contains recognizable plant material, fungal hyphae, and charcoal. Mineral-associated light fractions (1.6-2.2 g cm-3) display partially or completely humified fine POM, while the dense fraction (>2.2 g cm-3) consists of relatively OM-free sand and OM-rich clays. Three indicators of decomposition (C:N, δ13C, and δ15N) all suggest increasing SOM decomposition with increasing fraction density. The Δ14C-derived SOM turnover rates suggest that ≥90% of FPOM turns over in <10 years. The four mineral-associated fractions contain 69-86% "stabilized" (decadal) SOM with the remainder assumed to be "passive" (millenial) SOM. Within each soil, the four mineral-associated fractions display approximately the same residence time (34-42 years in 200 kyr soil, 29-37 years in 600 kyr soil, and 18-26 years in 1-3 Myr soils), indicating that a single stabilized SOM "pool" exists in these soils and may turn over primarily as a result of soil disruption.

  15. Mineral content of complementary foods.

    PubMed

    Jani, Rati; Udipi, S A; Ghugre, P S

    2009-01-01

    To document mineral contents iron, zinc, calcium, energy contents and nutrient densities in complementary foods commonly given to young urban slum children. Information on dietary intake was collected from 892 mothers of children aged 13-24 months, using 24 hour dietary recall and standardized measures. Three variations of 27 most commonly prepared recipes were analyzed and their energy (Kcal/g) and nutrient densities (mg/100 Kcal) were calculated. Considerable variations were observed in preparation of all items fed to the children. Cereal-based items predominated their diets with only small amount of vegetables/fruits. Fenugreek was the only leafy vegetable included, but was given to only 1-2% of children. Iron, calcium, zinc contents of staple complementary foods ranged from: 0.33 mg to 3.73 mg, 4 mg to 64 mg, and 0.35 mg to 2.99 mg/100 respectively. Recipes diluted with less water and containing vegetables, spices had higher mineral content. Minerals densities were higher for dals, fenugreek vegetable, khichdi and chapatti. Using the median amounts of the various recipes fed to children, intakes of all nutrients examined especially calcium and iron was low. There is an urgent need to educate mothers about consistency, dilution, quantity, frequency, method of preparation, inclusion of micronutrient-rich foods, energy-dense complementary foods and gender equality.

  16. A Study of Oil Viscosity Mental Model

    NASA Astrophysics Data System (ADS)

    Albaiti; Liliasari; Sumarna, Omay; Abdulkadir Martoprawiro, Muhamad

    2017-02-01

    There is no study regarding on how to learn viscosity of the liquid (e.g. oil) by interconnecting macroscopic, sub-microscopic and symbolic levels. Therefore, the purpose of this research was to study the mental model of the oil viscosity. Intermolecular attractive force of oil constituent on the sub-microscopic level is depicted in the form of mental models. In this research, the viscosity data for some types of oil was measured by using Hoppler method. Viscosity of mineral oil SAE 20W-50, mineral oil SAE 15W-40 and synthetic oil SAE 10W-40 were 1.75, 1.31, and 1.03 Pa s, and the densities of these oils were 908.64, 885.04, and 877.02 kg/m3, respectively. The results showed that the greater density of the mineral oil that is assumed to be composed of linear chains of hydrocarbons, the longer the chain of hydrocarbon linear. Consequently, there are stronger the London force and greater the oil viscosity. The density and viscosity of synthetic oil are lower than that of both mineral oils. Synthetic oil structurally forms polymers with large branching. This structure affects a lower synthetic oil viscosity. This study contributes to construct a mental model of pre-service chemistry teachers.

  17. Cartilage Degeneration, Subchondral Mineral and Meniscal Mineral Densities in Hartley and Strain 13 Guinea Pigs

    PubMed Central

    Sun, Yubo; Scannell, Brian P; Honeycutt, Patrick R; Mauerhan, David R; H, James Norton; Hanley Jr, Edward N

    2015-01-01

    Osteoarthritis is a joint disease involved in articular cartilage, subchondral bone, meniscus and synovial membrane. This study sought to examine cartilage degeneration, subchondral bone mineral density (BMD) and meniscal mineral density (MD) in male Hartley, female Hartley and female strain 13 guinea pigs to determine the association of cartilage degeneration with subchondral BMD and meniscal MD. Cartilage degeneration, subchondral BMD and meniscal MD in 12 months old guinea pigs were examined with histochemistry, X-ray densitometry and calcium analysis. We found that male Hartley guinea pigs had more severe cartilage degeneration, subchondral BMD and meniscal MD than female Hartley guinea pigs, but not female strain 13 guinea pigs. Female strain 13 guinea pigs had more severe cartilage degeneration and higher subchondral BMD, but not meniscal MD, than female Hartley guinea pigs. These findings indicate that higher subchondral BMD, not meniscal MD, is associated with more severe cartilage degeneration in the guinea pigs and suggest that abnormal subchondral BMD may be a therapeutic target for OA treatment. These findings also indicate that the pathogenesis of OA in the male guinea pigs and female guinea pigs are different. Female strain 13 guinea pig may be used to study female gender-specific pathogenesis of OA. PMID:26401159

  18. Bone mineral density in children with idiopathic nephrotic syndrome.

    PubMed

    El-Mashad, Ghada Mohamed; El-Hawy, Mahmoud Ahmed; El-Hefnawy, Sally Mohamed; Mohamed, Sanaa Mansour

    To assess bone mineral density (BMD) in children with idiopathic nephrotic syndrome (NS) and normal glomerular filtration rate (GFR). Cross-sectional case-control study carried out on 50 children: 25 cases of NS (16 steroid-sensitive [SSNS] and nine steroid-resistant [SRNS] under follow up in the pediatric nephrology unit of Menoufia University Hospital, which is tertiary care center, were compared to 25 healthy controls with matched age and sex. All of the participants were subjected to complete history taking, thorough clinical examination, laboratory investigations (serum creatinine, blood urea nitrogen [BUN], phosphorus [P], total and ionized calcium [Ca], parathyroid hormone [PTH], and alkaline phosphatase [ALP]). Bone mineral density was measured at the lumbar spinal region (L2-L4) in patients group using dual-energy X-ray absorptiometry (DXA). Total and ionized Ca were significantly lower while, serum P, ALP, and PTH were higher in SSNS and SRNS cases than the controls. Osteopenia was documented by DXA scan in 11 patients (44%) and osteoporosis in two patients (8%). Fracture risk was mild in six (24%), moderate in two (8%), and marked in three (12%) of patients. Bone mineralization was negatively affected by steroid treatment in children with NS. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  19. Assessment of bone turnover markers and bone mineral density in normal short boys.

    PubMed

    Gayretli Aydin, Zeynep Gökçe; Bideci, Aysun; Emeksiz, Hamdi C; Çelik, Nurullah; Döğer, Esra; Bukan, Neslihan; Yildiz, Ummügülsüm; Camurdan, Orhun M; Cinaz, Peyami

    2015-11-01

    To investigate whether there is a change in bone turnover-related biochemical markers and bone mineral density of children with constitutional delay of growth and puberty (CDGP) in the prepubertal period. We measured serum calcium, phosphorus, alkaline phosphatase, parathormone, 25-OH vitamin D, osteocalcin, osteoprotogerin and urinary deoxypyridinoline levels (D-pyd), and bone mineral density (BMD) in 31 prepubertal boys with CDGP. These children were compared with 22 prepubertal boys with familial short stature (FSS) and 27 normal prepubertal boys. Urinary D-pyd was significantly high in CDGP group as compared to control group (p=0.010). Volumetric BMD did not significantly differ between CDGP, FSS, and control groups (p=0.450). Volumetric BMD and urinary D-pyd levels of FSS and control groups were similar. Mean or median levels of calcium, phosphorus, alkaline phosphatase, parathormone, and osteoprotegerin did not significantly differ between CDGP, FSS, and control groups. Our data suggest that prepubertal boys with CDPG have normal bone turnover. However, their significantly higher urinary D-pyd levels relative to those of FSS and control groups might be an indicator of later development of osteoporosis. Therefore, long-term follow-up studies monitoring bone mineral status of prepubertal boys with CDPG from prepuberty to adulthood are needed to better understand bone metabolism of these patients.

  20. Copernicus crater central peak: lunar mountain of unique composition.

    PubMed

    Pieters, C M

    1982-01-01

    Olivine is identified as the major mafic mineral in a central peak of Copernicus crater. Information on the mineral assemblages of such unsampled lunar surface material is provided by near infrared reflectance spectra (0.7 to 2.5 micrometers) obtained with Earth-based telescopes. The composition of the deep-seated material comprising the Copernicus central peak is unique among measured areas. Other lunar terra areas and the wall of Copernicus exhibit spectral characteristics of mineral assemblages comparable to the feldspathic breccias returned by the Apollo missions, with low-calcium orthopyroxene being the major mafic mineral.

  1. Copernicus crater central peak - Lunar mountain of unique composition

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.

    1982-01-01

    Olivine is identified as the major mafic mineral in a central peak of Copernicus crater. Information on the mineral assemblages of such unsampled lunar surface material is provided by near infrared reflectance spectra (0.7 to 2.5 micrometers) obtained with earth-based telescopes. The composition of the deep-seated material comprising the Copernicus central peak is unique among measured areas. Other lunar terra areas and the wall of Copernicus exhibit spectral characteristics of mineral assemblages comparable to the feldspathic breccias returned by the Apollo missions, with low-calcium orthopyroxene being the major mafic mineral.

  2. Hand grip strength and maximum peak expiratory flow: determinants of bone mineral density of adolescent students.

    PubMed

    Cossio-Bolaños, Marco; Lee-Andruske, Cynthia; de Arruda, Miguel; Luarte-Rocha, Cristian; Almonacid-Fierro, Alejandro; Gómez-Campos, Rossana

    2018-03-02

    Maintaining and building healthy bones during the lifetime requires a complicated interaction between a number of physiological and lifestyle factors. Our goal of this study was to analyze the association between hand grip strength and the maximum peak expiratory flow with bone mineral density and content in adolescent students. The research team studied 1427 adolescent students of both sexes (750 males and 677 females) between the ages of 11.0 and 18.9 years in the Maule Region of Talca (Chile). Weight, standing height, sitting height, hand grip strength (HGS), and maximum peak expiratory flow (PEF) were measured. Furthermore, bone mineral density (BMD) and total body bone mineral content (BMC) were determined by using the Dual-Energy X-Ray Absorptiometry (DXA). Hand grip strength and PEF were categorized in tertiles (lowest, middle, and highest). Linear regression was performed in steps to analyze the relationship between the variables. Differences between categories were determined through ANOVA. In males, the hand grip strength explained 18-19% of the BMD and 20-23% of the BMC. For the females, the percentage of variation occurred between 12 and 13% of the BMD and 17-18% of the BMC. The variation of PEF for the males was observed as 33% of the BMD and 36% of the BMC. For the females, both the BMD and BMC showed a variation of 19%. The HGS and PEF were divided into three categories (lowest, middle, and highest). In both cases, significant differences occurred in bone density health between the three categories. In conclusion, the HGS and the PEF related positively to the bone density health of both sexes of adolescent students. The adolescents with poor values for hand grip strength and expiratory flow showed reduced values of BMD and BMC for the total body. Furthermore, the PEF had a greater influence on bone density health with respect to the HGS of the adolescents of both sexes.

  3. Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women.

    PubMed

    Kim, Kyong-Chol; Shin, Dong-Hyuk; Lee, Sei-Young; Im, Jee-Aee; Lee, Duk-Chul

    2010-11-01

    The traditional belief that obesity is protective against osteoporosis has been questioned. Recent epidemiologic studies show that body fat itself may be a risk factor for osteoporosis and bone fractures. Accumulating evidence suggests that metabolic syndrome and the individual components of metabolic syndrome such as hypertension, increased triglycerides, and reduced high-density lipoprotein cholesterol are also risk factors for low bone mineral density. Using a cross sectional study design, we evaluated the associations between obesity or metabolic syndrome and bone mineral density (BMD) or vertebral fracture. A total of 907 postmenopausal healthy female subjects, aged 60-79 years, were recruited from woman hospitals in Seoul, South Korea. BMD, vetebral fracture, bone markers, and body composition including body weight, body mass index (BMI), percentage body fat, and waist circumference were measured. After adjusting for age, smoking status, alcohol consumption, total calcium intake, and total energy intake, waist circumference was negatively related to BMD of all sites (lumbar BMD p = 0.037, all sites of femur BMD p < 0.001) whereas body weight was still positively related to BMD of all sites (p < 0.001). Percentage body fat and waist circumference were much higher in the fracture group than the non-fracture group (p = 0.0383, 0.082 respectively). Serum glucose levels were positively correlated to lumbar BMD (p = 0.016), femoral neck BMD (p = 0.0335), and femoral trochanter BMD (p = 0.0082). Serum high density lipoprotein cholesterol (HDLC) was positively related to femoral trochanter BMD (p = 0.0366) and was lower in the control group than the fracture group (p = 0.011). In contrast to the effect favorable body weight on bone mineral density, high percentage body fat and waist circumference are related to low BMD and a vertebral fracture. Some components of metabolic syndrome were related to BMD and a vertebral fracture.

  4. Connective Tissue Mineralization in Abcc6−/− Mice, a Model for Pseudoxanthoma Elasticum

    PubMed Central

    Kavukcuoglu, N. Beril; Li, Qiaoli; Pleshko, Nancy; Uitto, Jouni

    2012-01-01

    Pseudoxanthoma elasticum (PXE) is a heritable multisystem disorder characterized by ectopic mineralization. However, the structure of the mineral deposits, their interactions with the connective tissue matrix, and the details of the progressive maturation of the mineral crystals are currently unknown. In this study, we examined the mineralization processes in Abcc6−/− mice, a model system for PXE, by energy dispersive X-ray, and Fourier transform infrared imaging spectroscopy (FT-IRIS). The results indicated that the principal components of the mineral deposits were calcium and phosphate which co-localized within the histologically demonstrable lesions determined by topographic mapping. The Ca/P ratio increased in samples with progressive mineralization reaching the value comparable to that in endochondral bone. A progressive increase in mineralization was also reflected by increased mineral-to-matrix ratio determined by FT-IRIS. Determination of the mineral phases by FT-IRIS suggested progressive maturation of the mineral deposits from amorphous calcium phosphate to hydroxyapatite. These results provide critical information of the mechanisms of mineralization in PXE, with potential pharmacologic implications. PMID:22421595

  5. Microscale soil structure development after glacial retreat - using machine-learning based segmentation of elemental distributions obtained by NanoSIMS

    NASA Astrophysics Data System (ADS)

    Schweizer, Steffen; Schlueter, Steffen; Hoeschen, Carmen; Koegel-Knabner, Ingrid; Mueller, Carsten W.

    2017-04-01

    Soil organic matter (SOM) is distributed on mineral surfaces depending on physicochemical soil properties that vary at the submicron scale. Nanoscale secondary ion mass spectrometry (NanoSIMS) can be used to visualize the spatial distribution of up to seven elements simultaneously at a lateral resolution of approximately 100 nm from which patterns of SOM coatings can be derived. Existing computational methods are mostly confined to visualization and lack spatial quantification measures of coverage and connectivity of organic matter coatings. This study proposes a methodology for the spatial analysis of SOM coatings based on supervised pixel classification and automatic image analysis of the 12C, 12C14N (indicative for SOM) and 16O (indicative for mineral surfaces) secondary ion distributions. The image segmentation of the secondary ion distributions into mineral particle surface and organic coating was done with a machine learning algorithm, which accounts for multiple features like size, color, intensity, edge and texture in all three ion distributions simultaneously. Our workflow allowed the spatial analysis of differences in the SOM coverage during soil development in the Damma glacier forefield (Switzerland) based on NanoSIMS measurements (n=121; containing ca. 4000 particles). The Damma chronosequence comprises several stages of soil development with increasing ice-free period (from ca. 15 to >700 years). To investigate mineral-associated SOM in the developing soil we obtained clay fractions (<2 μm) from two density fractions: light mineral (1.6 to 2.2 g cm3) and heavy mineral (>2.2 g cm3). We found increased coverage and a simultaneous development from patchy-distributed organic coatings to more connected coatings with increasing time after glacial retreat. The normalized N:C ratio (12C14N: (12C14N + 12C)) on the organic matter coatings was higher in the medium-aged soils than in the young and mature ones in both heavy and light mineral fraction. This reflects the sequential accumulation of proteinaceous SOM in the medium-aged soils and C-rich compounds in the mature soils. The results of our microscale image analysis correlated well with the SOM concentration of the fractions measured by elemental analyzer. Image analysis in combination with secondary ion distributions provides a powerful tool at the required microscale and enhances our mechanistic understanding of SOM stabilization in soil.

  6. Mineral resource of the month: vermiculite

    USGS Publications Warehouse

    Potter, M.J.

    2008-01-01

    Vermiculite, a hydrated magnesium-aluminum-iron silicate mineral, has a range of uses that take advantage of its fire resistance, good insulating properties, high liquid absorption capacity, inertness and low density. Most applications for vermiculite use an exfoliated (heat-expanded) form of the mineral. In general, coarser grades of vermiculite are used as loose fill insulation and in horticulture. Finer grades are used in wallboard and plasters and for animal feeds and fertilizers.

  7. Biomedical Results of ISS Expeditions 1-12

    NASA Technical Reports Server (NTRS)

    Fogarty, Jennifer; Sams, Clarence F.

    2007-01-01

    A viewgraph presentation on biomedical data from International Space Station (ISS) Expeditions 1-12 is shown. The topics include: 1) ISS Expeditions 1-12; 2) Biomedical Data; 3) Physiological Assessments; 4) Bone Mineral Density; 5) Bone Mineral Density Recovery; 6) Orthostatic Tolerance; 7) Postural Stability Set of Sensory Organ Test 6; 8) Performance Assessment; 9) Aerobic Capacity of the Astronaut Corps; 10) Pre-flight Aerobic Fitness of ISS Astronauts; 11) In-flight and Post-flight Aerobic Capacity of the Astronaut Corps; and 12) ISS Functional Fitness Expeditions 1-12.

  8. FTIR reflectance of selected minerals and their mixtures: implications for ground temperature-sensor monitoring on Mars surface environment (NASA/MSL-Rover Environmental Monitoring Station).

    PubMed

    Martín-Redondo, M Paz; Martínez, Eduardo Sebastian; Sampedro, M Teresa Fernández; Armiens, Carlos; Gómez-Elvira, Javier; Martinez-Frias, Jesus

    2009-07-01

    The Rover Environmental Monitoring Station (REMS) is one of NASA/MSL's instruments, which has been designed for measuring ambient pressure, humidity, wind speed and direction, UV radiation, and air and ground temperature (GT). The GT-sensor is dedicated to measure the real temperature of the Martian surface, integrating the IR energy coming from the ground. The existing IR spectral data of Martian dust, rocks and sediments allow for comparing the Martian spectra with the spectra of different terrestrial minerals and lithologies, and those of their alteration and weathering products. The FTIR reflectance of a set of selected astrobiologically significant minerals (including oxides, oxi/hydroxides, sulfates, chlorides, opal and clays) and basalt (as the main and most widespread volcanic Martian rock) was measured, considering different mixing amounts, and covering the specific working wavelength range of the REMS' GT-sensor. The results obtained show important percentage increases or decreases of reflectance in the entire wavelength range (e.g. basalt-hematite vs. basalt-magnetite) and specific variations limited to some spectral bands (e.g. basalt-smectite vs. basalt-jasper). The basalt reflectance percentage increases or decreases, even up to 100%, depending on the mixing of the different minerals. This unequivocally confirms the need for considering the chemical-mineralogical assemblages (and their textures) for any investigation and interpretation of Mars surface environment. Some complementary applications of this research on our planet, either in relation to the specific performances and characteristics of the GT-sensor autonomous recalibration system, or those oriented to carrying out similar studies on different types of terrestrial environmental settings, are also described.

  9. Silicon: A Review of Its Potential Role in the Prevention and Treatment of Postmenopausal Osteoporosis

    PubMed Central

    Price, Charles T.; Koval, Kenneth J.; Langford, Joshua R.

    2013-01-01

    Physicians are aware of the benefits of calcium and vitamin D supplementation. However, additional nutritional components may also be important for bone health. There is a growing body of the scientific literature which recognizes that silicon plays an essential role in bone formation and maintenance. Silicon improves bone matrix quality and facilitates bone mineralization. Increased intake of bioavailable silicon has been associated with increased bone mineral density. Silicon supplementation in animals and humans has been shown to increase bone mineral density and improve bone strength. Dietary sources of bioavailable silicon include whole grains, cereals, beer, and some vegetables such as green beans. Silicon in the form of silica, or silicon dioxide (SiO2), is a common food additive but has limited intestinal absorption. More attention to this important mineral by the academic community may lead to improved nutrition, dietary supplements, and better understanding of the role of silicon in the management of postmenopausal osteoporosis. PMID:23762049

  10. Low Reflection Absorbers for Electromagnetic Waves (Reflexionsarme Absorber Fuer Elektromagnetische Wellen)

    DTIC Science & Technology

    1960-11-01

    should be briefly recalled. They consist of air sound, as a rule, of porous substances, mineral wool , glass wool, and similar substances, whose...nonreflecting room, then small particles of graphite will -17- pi m u . I be inserted into the pores of the porous glass wool or mineral wool . Such wedges

  11. Near-infrared reflectance spectra of mixtures of kaolin-group minerals: Use in clay mineral studies

    USGS Publications Warehouse

    Crowley, James K.; Vergo, Norma

    1988-01-01

    Near-infrared (NIR) reflectance spectra for mixtures of ordered kaolinite and ordered dickite have been found to simulate the spectral response of disordered kaolinite. The amount of octahedral vacancy disorder in nine disordered kaolinite samples was estimated by comparing the sample spectra to the spectra of reference mixtures. The resulting estimates are consistent with previously published estimates of vacancy disorder for similar kaolin minerals that were modeled from calculated X-ray diffraction patterns. The ordered kaolinite and dickite samples used in the reference mixtures were carefully selected to avoid undesirable particle size effects that could bias the spectral results.NIR spectra were also recorded for laboratory mixtures of ordered kaolinite and halloysite to assess whether the spectra could be potentially useful for determining mineral proportions in natural physical mixtures of these two clays. Although the kaolinite-halloysite proportions could only be roughly estimated from the mixture spectra, the halloysite component was evident even when halloysite was present in only minor amounts. A similar approach using NIR spectra for laboratory mixtures may have applications in other studies of natural clay mixtures.

  12. Effect of endodontic cement on bone mineral density using serial dual-energy x-ray absorptiometry.

    PubMed

    Saghiri, Mohammad Ali; Orangi, Jafar; Tanideh, Nader; Janghorban, Kamal; Sheibani, Nader

    2014-05-01

    Materials with new compositions were tested in order to develop dental materials with better properties. Calcium silicate-based cements, including white mineral trioxide aggregate (WMTA), may improve osteopromotion because of their composition. Nano-modified cements may help researchers produce ideal root-end filling materials. Serial dual-energy x-ray absorptiometry measurement was used to evaluate the effects of particle size and the addition of tricalcium aluminate (C3A) to a type of mineral trioxide aggregate-based cement on bone mineral density and the surrounding tissues in the mandible of rabbits. Forty mature male rabbits (N = 40) were anesthetized, and a bone defect measuring 7 × 1 × 1 mm was created on the semimandible. The rabbits were divided into 2 groups, which were subdivided into 5 subgroups with 4 animals each based on the defect filled by the following: Nano-WMTA (patent application #13/211.880), WMTA (as standard), WMTA without C3A, Nano-WMTA + 2% Nano-C3A (Fujindonjnan Industrial Co, Ltd, Fujindonjnan Xiamen, China), and a control group. Twenty and forty days postoperatively, the animals were sacrificed, and the semimandibles were removed for DXA measurement. The Kruskal-Wallis test followed by the Mann-Whitney U test showed significant differences between the groups at a significance level of P < .05. P values calculated by the Kruskal-Wallis test were .002 for bone mineral density at both intervals and P20 day = .004 and P40 day = .005 for bone mineral content. This study showed that bone regeneration was enhanced by reducing the particle size (nano-modified) and C3A mixture. This may relate to the existence of an external supply of minerals and a larger surface area of nano-modified material, which may lead to faster release rate of Ca(2+), inducing bone formation. Adding Nano-C3A to Nano-WMTA may improve bone regeneration properties. Copyright © 2014 American Association of Endodontists. All rights reserved.

  13. Performance of clinical referral criteria for bone densitometry in patients under 65 years of age assessed by spine bone mineral density

    PubMed Central

    Kayan, K; de Takats, D; Ashford, R; Kanis, J; McCloskey, E

    2003-01-01

    Background: A case finding strategy based on a number of established risk factors has been suggested by Royal College of Physicians' (RCP) guidelines to optimise bone densitometry referrals for assessment of osteoporosis. Objective: The performance of clinical referral criteria was examined in women and men aged <65 years referred for bone mineral density (BMD) assessment. Study design: Cross sectional observational study over six months. Results: Though BMD tended to be lower in patients with multiple criteria for referral, differences from those referred with a single criterion were not statistically significant. The overall prevalence of osteoporosis was higher than expected in both sexes, 11.6% in women and 27.5% in men (expected prevalences were 8% and <1% respectively). BMD was significantly lower in patients referred with a single criterion compatible with the RCP guidelines than in age matched controls or in those patients referred with non-RCP criteria (mean (SD) Z score –0.47(1.38) v 0.35(1.41), p<0.001). Low body mass index was also significantly associated with a lower than expected BMD. In contrast, spine BMD was higher than expected in those with self reported back pain, loss of height, or spinal curvature (p = NS). Conclusion: Most of the criteria recommended by the RCP performed well in identifying relatively younger patients with low BMD and osteoporosis. However, prior fractures and corticosteroid use did not reach statistical significance probably due to inclusion of all energy fractures, and current or past steroid use of unspecified dose or duration. Criteria like loss of height and/or spine curvature perform relatively poorly, reflecting the need for further investigation to better identify those needing BMD assessment. PMID:14612601

  14. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro.

    PubMed

    Blair, Harry C; Larrouture, Quitterie C; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S; Robinson, Lisa J; Schlesinger, Paul H; Nelson, Deborah J

    2017-06-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors.

  15. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro

    PubMed Central

    Larrouture, Quitterie C.; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S.; Robinson, Lisa J.; Schlesinger, Paul H.; Nelson, Deborah J.

    2017-01-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors. PMID:27846781

  16. Evaluation of bone mineral density and related parameters in patients with haemophilia: a single center cross-sectional study

    PubMed Central

    Kiper Unal, Hatice Demet; Comert Ozkan, Melda; Atilla, Fatos Dilan; Demirci, Zuhal; Soyer, Nur; Yildirim Simsir, Ilgin; Omur, Ozgur; Capaci, Kazim; Saydam, Guray; Sahin, Fahri

    2017-01-01

    Haemophilia has been associated with low bone mineral density (BMD) probably due to some predisposing factors. The aim of this study was to evaluate the relationship between BMD and potential clinical predictors in adult haemophilic patients. Fortynine patients with moderate and severe haemophilia were enrolled. BMD was measured by Dual Energy X-Ray Absorptiometry (DXA) and blood tests were performed for vitamin D, calcium, phosphore, alkaline phosphatase and parathormone levels. Functional Independence Score in Haemophilia (FISH) and Haemophilia Joint Health Score (HJHS) were used to assess musculoskeletal functions. Body mass index (BMI), Hepatitis C virus (HCV)/Human immunodeficiency virus (HIV) seropositivity and smoking status were also recorded. BMD was found lower than expected for reference age in 34.8% of patients of less than 50 years old. In patients older than 50 years, 66.6% of them had osteoporosis and 33.3% of them had normal BMD. FISH score was statistically significant correlated with BMD of total hip (TH) and femur neck (FN) but not with lumbar spine (LS). In eligible patients, there was also a statistically significant correlation between BMD of TH and HJHS. Vitamine D deficiency was common and found in 77.5% of patients, although there was no significant correlation with BMD. Also no correlation was found between BMD and blood tests, HCV/HIV status, BMI and smoking. This study confirmed that patients with haemophilia have an increased prevelance of low BMD even in younger group. Our results showed that there are significant correlations between FISH score and BMD of TH and FN and also between HJHS score and BMD of TH. Thus, using scoring systems may be beneficial as a simple predictors of BMD to reflect the severity of haemophilic arthropathy. PMID:29181264

  17. The Influence of Cement Morphology Parameters on the Strength of the Cement-Bone Interface in Tibial Tray Fixation.

    PubMed

    Nagel, Katrin; Bishop, Nicholas E; Schlegel, Ulf J; Püschel, Klaus; Morlock, Michael M

    2017-02-01

    The strength of the cement-bone interface in tibial component fixation depends on the morphology of the cement mantle. The purpose of this study was to identify thresholds of cement morphology parameters to maximize fixation strength using a minimum amount of cement. Twenty-three cadaveric tibiae were analyzed that had been implanted with tibial trays in previous studies and for which the pull-out strength of the tray had been measured. Specimens were separated into a group failing at the cement-bone interface (INTERFACE) and one failing in the bulk bone (BULK). Maximum pull-out strength corresponds to the ultimate strength of the bulk bone if the cement-bone interface is sufficiently strong. 3D models of the cement mantle in situ were reconstructed from computed tomography scans. The influences of bone mineral density and 6 cement morphology parameters (reflecting cement penetration, bone-cement interface, cement volume) on pull-out strength of the BULK group were determined using multiple regression analysis. The threshold of each parameter for classification of the specimens into either group was determined using receiver operating characteristic analysis. Cement penetration exceeding a mean of 1.1 mm or with a maximum of 5.6 mm exclusively categorized all BULK bone failure specimens. Failure strength of BULK failure specimens increased with bone mineral density (R 2  = 0.67, P < .001) but was independent of the cement morphology parameters. To maximize fixation strength, a mean cement penetration depth of at least 1.1 mm should be achieved during tibial tray cementing. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Outcome of bone mineral density in anorexia nervosa patients 11.7 years after first admission.

    PubMed

    Herzog, W; Minne, H; Deter, C; Leidig, G; Schellberg, D; Wüster, C; Gronwald, R; Sarembe, E; Kröger, F; Bergmann, G

    1993-05-01

    Osteopenia is a typical finding in patients suffering from anorexia nervosa. Unfortunately, available longitudinal studies are limited by a relatively short follow-up period. Therefore cross-sectional long-term followup studies may help to determine both the outcome of this bone lesion and variables that influence its subsequent development. Of an initial 66 consecutive patients with anorexia nervosa, 51 (77.3%) could be further evaluated. After an average of 11.7 years following first admission, cross-sectional measurements of lumbar and proximal radial bone mineral density (BMD) were performed. The ability to predict BMD using variables obtained from anamnestic and clinical data was then determined by multiple-regression analysis. The BMD of both radial and lumbar bone in anorexic patients with poor disease outcome (as defined by the Morgan-Russell general outcome categories) deviated by -2.18 and -1.73 SD (Z score), respectively. In patients with a good disease outcome lumbar BMD was significantly less reduced compared with radial BMD (-0.26 versus -0.68 SD). Variables reflecting estrogen deficiency and nutritional status in the course of the disease, that is, relative estrogen exposure (for lumbar BMD) and years of anorexia nervosa (for radial BMD), allowed the best prediction of BMD. A marked reduction in cortical and trabecular BMD in anorexic patients with poor disease outcome suggests a higher risk of fractures in these patients. Furthermore, the finding of a persistently reduced cortical and a slightly reduced trabecular BMD, even in patients with good disease outcome, suggests that a recovery of trabecular BMD might be possible, at least in part. Recovery of cortical bone, if possible at all, seems to proceed more slowly.

  19. Evaluation of bone mineral density and related parameters in patients with haemophilia: a single center cross-sectional study.

    PubMed

    Kiper Unal, Hatice Demet; Comert Ozkan, Melda; Atilla, Fatos Dilan; Demirci, Zuhal; Soyer, Nur; Yildirim Simsir, Ilgin; Omur, Ozgur; Capaci, Kazim; Saydam, Guray; Sahin, Fahri

    2017-01-01

    Haemophilia has been associated with low bone mineral density (BMD) probably due to some predisposing factors. The aim of this study was to evaluate the relationship between BMD and potential clinical predictors in adult haemophilic patients. Fortynine patients with moderate and severe haemophilia were enrolled. BMD was measured by Dual Energy X-Ray Absorptiometry (DXA) and blood tests were performed for vitamin D, calcium, phosphore, alkaline phosphatase and parathormone levels. Functional Independence Score in Haemophilia (FISH) and Haemophilia Joint Health Score (HJHS) were used to assess musculoskeletal functions. Body mass index (BMI), Hepatitis C virus (HCV)/Human immunodeficiency virus (HIV) seropositivity and smoking status were also recorded. BMD was found lower than expected for reference age in 34.8% of patients of less than 50 years old. In patients older than 50 years, 66.6% of them had osteoporosis and 33.3% of them had normal BMD. FISH score was statistically significant correlated with BMD of total hip (TH) and femur neck (FN) but not with lumbar spine (LS). In eligible patients, there was also a statistically significant correlation between BMD of TH and HJHS. Vitamine D deficiency was common and found in 77.5% of patients, although there was no significant correlation with BMD. Also no correlation was found between BMD and blood tests, HCV/HIV status, BMI and smoking. This study confirmed that patients with haemophilia have an increased prevelance of low BMD even in younger group. Our results showed that there are significant correlations between FISH score and BMD of TH and FN and also between HJHS score and BMD of TH. Thus, using scoring systems may be beneficial as a simple predictors of BMD to reflect the severity of haemophilic arthropathy.

  20. Portable instant display and analysis reflectance spectrometer

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H. (Inventor)

    1985-01-01

    A portable analysis spectrometer (10) for field mineral identification is coupled to a microprocessor (11) and memory (12) through a bus (13) and A/D converter (14) to display (16) a spectrum of reflected radiation in a band selected by an adjustable band spectrometer (20) and filter (23). A detector array (21) provides output signals at spaced frequencies within the selected spectrometer band which are simultaneously converted to digital form for display. The spectrum displayed is compared with a collection of spectra for known minerals. That collection is stored in memory and selectively displayed with the measured spectrum, or stored in a separate portfolio. In either case, visual comparison is made. Alternatively, the microprocessor may use an algorithm to make the comparisons in search for the best match of the measured spectrum with one of the stored spectra to identify the mineral in the target area.

  1. Spectroscopy and DFT studies of uranyl carbonate, rutherfordine, UO2CO3: a model for uranium transport, carbon dioxide sequestration, and seawater species

    NASA Astrophysics Data System (ADS)

    Kalashnyk, N.; Perry, D. L.; Massuyeau, F.; Faulques, E.

    2017-12-01

    Several optical microprobe experiments of the anhydrous uranium carbonate—rutherfordine—are presented in this work and compared to periodic density functional theory results. Rutherfordine is the simplest uranyl carbonate and constitutes an ideal model system for the study of the rich uranium carbonate family relevant for environmental sustainability. Micro-Raman, micro-reflectance, and micro-photoluminescence (PL) spectroscopy studies have been carried out in situ on native, micrometer-sized crystals. The sensitivity of these techniques is sufficient to analyze minute amounts of samples in natural environments without using x-ray analysis. In addition, very intense micro-PL and micro-reflectance spectra that were not reported before add new results on the ground and excited states of this mineral. The optical gap value determined experimentally is found at about 2.6-2.8 eV. Optimized geometry, band structure, and phonon spectra have been calculated. The main vibrational lines are identified and predicted by this theoretical study. This work is pertinent for optical spectroscopy, for identification of uranyl species in various environmental settings, and for nuclear forensic analysis.

  2. The role of the collaborative functions of the composite structure of organic and inorganic constituents and their influence on the electrical properties of human bone.

    PubMed

    Kohata, Kazuhiro; Itoh, Soichiro; Horiuchi, Naohiro; Yoshioka, Taro; Yamashita, Kimihiro

    2016-08-12

    The electrical potential, which is generated in bone by collagen displacement, has been well documented. However, the role of mineral crystals in bone piezoelectricity has not yet been elucidated. We examined the mechanism that the composite structure of organic and inorganic constituents and their collaborative functions play an important role in the electrical properties of human bone. The electrical potential and bone structure were evaluated using thermally stimulated depolarized current (TSDC) and micro computed tomography, respectively. After electrical polarization of bone specimens, the stored electrical charge was calculated using TSDC measurements. The CO3/PO4 peak ratio was calculated using attenuated total reflection to compare the content of carbonate ion in the bone specimens. The TSDC curve contained 3 peaks at 100, 300 and 500°C, which were classified into 4 patterns. The CO3/PO4 peak ratio positively correlated with the stored charges at approximately 300°C in the polarized bone. There was a positive correlation between the stored bone charge and the bone mineral density only. It is suggested that the peak at 300°C is attributed to carbonate apatite and the total bone mass of human bone, not the three-dimensional structure, affects the stored charge.

  3. Objectively measured physical activity and bone strength in 9-year-old boys and girls.

    PubMed

    Sardinha, Luís B; Baptista, Fátima; Ekelund, Ulf

    2008-09-01

    The purpose of this work was to analyze the relationship between intensity and duration of physical activity and composite indices of femoral neck strength and bone-mineral content of the femoral neck, lumbar spine, and total body. Physical activity was assessed by accelerometry in 143 girls and 150 boys (mean age: 9.7 years). Measurement of bone-mineral content, femoral neck bone-mineral density, femoral neck width, hip axis length, and total body fat-free mass was performed with dual-energy radiograph absorptiometry. Compressive [(bone-mineral density x femoral neck width/weight)] and bending strength [(bone-mineral density x femoral neck width(2))/(hip axis length x weight)] express the forces that the femoral neck has to withstand in weight bearing, whereas impact strength [(bone-mineral density x femoral neck width x hip axis length)/(height x weight)] expresses the energy that the femoral neck has to absorb in an impact from standing height. Analysis of covariance (fat-free mass and age adjusted) showed differences between boys and girls of approximately 9% for compressive, 10% for bending, and 9% for impact strength. Stepwise regression analysis using time spent at sedentary, light, moderate, and vigorous physical activity as predictors revealed that vigorous physical activity explained 5% to 9% of femoral neck strength variable variance in both genders, except for bending strength in boys, and approximately 1% to 3% of total body and femoral neck bone-mineral content variance. Vigorous physical activity was then used to categorize boys and girls into quartiles. Pairwise comparison indicated that boys in the third and fourth quartiles (accumulation of >26 minutes/day) demonstrated higher compressive (11%-12%), bending (10%), and impact (14%) strength than boys in the first quartile. In girls, comparison revealed a difference between the fourth (accumulation of >25 minutes/day) and first quartiles for bending strength (11%). We did not observe any relationship between physical activity and lumbar spine strength. Femoral neck strength is higher in boys than girls. Vigorous intensity emerged as the main physical activity predictor of femoral neck strength but did not explain gender differences. Daily vigorous physical activity for at least approximately 25 minutes seems to improve femoral neck bone health in children.

  4. Bisphosphonate Treatment for Children With Disabling Conditions

    PubMed Central

    Boyce, Alison M.; Tosi, Laura L.; Paul, Scott M.

    2014-01-01

    Fractures are a frequent source of morbidity in children with disabling conditions. The assessment of bone density in this population is challenging, because densitometry is influenced by dynamic forces affecting the growing skeleton and may be further confounded by positioning difficulties and surgical hardware. First-line treatment for pediatric osteoporosis involves conservative measures, including optimizing the management of underlying conditions, maintaining appropriate calcium and vitamin D intake, encouraging weight-bearing physical activity, and monitoring measurements of bone mineral density. Bisphosphonates are a class of medications that increase bone mineral density by inhibiting bone resorption. Although bisphosphonates are commonly prescribed for treatment of adult osteoporosis, their use in pediatric patients is controversial because of the lack of long-term safety and efficacy data. PMID:24368091

  5. The US Geological Survey, digital spectral reflectance library: version 1: 0.2 to 3.0 microns

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.; King, Trude V. V.; Gallagher, Andrea J.; Calvin, Wendy M.

    1993-01-01

    We have developed a digital reflectance spectral library, with management and spectral analysis software. The library includes 500 spectra of 447 samples (some samples include a series of grain sizes) measured from approximately 0.2 to 3.0 microns. The spectral resolution (Full Width Half Maximum) of the reflectance data is less than or equal to 4 nm in the visible (0.2-0.8 microns) and less than or equal 10 nm in the NIR (0.8-2.35 microns). All spectra were corrected to absolute reflectance using an NBS Halon standard. Library management software lets users search on parameters (e.g. chemical formulae, chemical analyses, purity of samples, mineral groups, etc.) as well as spectral features. Minerals from sulfide, oxide, hydroxide, halide, carbonate, nitrate, borate, phosphate, and silicate groups are represented. X-ray and chemical analyses are tabulated for many of the entries, and all samples have been evaluated for spectral purity. The library also contains end and intermediate members for the olivine, garnet, scapolite, montmorillonite, muscovite, jarosite, and alunite solid-solution series. We have included representative spectra of H2O ice, kerogen, ammonium-bearing minerals, rare-earth oxides, desert varnish coatings, kaolinite crystallinity series, kaolinite-smectite series, zeolite series, and an extensive evaporite series. Because of the importance of vegetation to climate-change studies we have include 17 spectra of tree leaves, bushes, and grasses.

  6. Ionic and Covalent Stabilization of Intermediates and Transition States in Catalysis by Solid Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshlahra, Prashant; Carr, Robert T.; Iglesia, Enrique

    Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess how charge reorganization (covalency) and electrostatic interactions determine DPE and how such interactions are recovered when intermediates and transition states interact with the conjugate anion in W and Mo polyoxometalate (POM) clusters and gaseous mineral acids. Turnover rates are lower and kinetically relevant species are less stable on Mo than W POMmore » clusters with similar acid strength, and such species are more stable on mineral acids than that predicted from W-POM DPE–reactivity trends, indicating that DPE and acid strength are essential but incomplete reactivity descriptors. Born–Haber thermochemical cycles indicate that these differences reflect more effective charge reorganization upon deprotonation of Mo than W POM clusters and the much weaker reorganization in mineral acids. Such covalency is disrupted upon deprotonation but cannot be recovered fully upon formation of ion pairs at transition states. Predictive descriptors of reactivity for general classes of acids thus require separate assessments of the covalent and ionic DPE components. Here, we describe methods to estimate electrostatic interactions, which, taken together with energies derived from density functional theory, give the covalent and ionic energy components of protons, intermediates, and transition states. In doing so, we provide a framework to predict the reactive properties of protons for chemical reactions mediated by ion-pair transition states.« less

  7. Vegetation composition, nutrient, and sediment dynamics along a floodplain landscape

    USGS Publications Warehouse

    Rybicki, Nancy B.; Noe, Gregory; Hupp, Cliff R.; Robinson, Myles

    2015-01-01

    Forested floodplains are important landscape features for retaining river nutrients and sediment loads but there is uncertainty in how vegetation influences nutrient and sediment retention. In order to understand the role of vegetation in nutrient and sediment trapping, we quantified species composition and the uptake of nutrients in plant material relative to landscape position and ecosystem attributes in an urban, Piedmont watershed in Virginia, USA. We investigated in situ interactions among vegetative composition, abundance, carbon (C), nitrogen (N) and phosphorus (P) fluxes and ecosystem attributes such as water level, shading, soil nutrient mineralization, and sediment deposition. This study revealed strong associations between vegetation and nutrient and sediment cycling processes at the plot scale and in the longitudinal dimension, but there were few strong patterns between these aspects at the scale of geomorphic features (levee, backswamp, and toe-slope). Patterns reflected the nature of the valley setting rather than a simple downstream continuum. Plant nutrient uptake and sediment trapping were greatest at downstream sites with the widest floodplain and lowest gradient where the hydrologic connection between the floodplain and stream is greater. Sediment trapping increased in association with higher herbaceous plant coverage and lower tree canopy density that, in turn, was associated with a more water tolerant tree community found in the lower watershed but not at the most downstream site in the watershed. Despite urbanization effects on the hydrology, this floodplain functioned as an efficient nutrient trap. N and P flux rates of herbaceous biomass and total litterfall more than accounted for the N and P mineralization flux rate, indicating that vegetation incorporated nearly all mineralized nutrients into biomass.

  8. Bone mineral density in children with acute leukemia and its associated factors in Iran: a case-control study.

    PubMed

    Bordbar, Mohammad Reza; Haghpanah, Sezaneh; Dabbaghmanesh, Mohammad Hossein; Omrani, Gholamhossein Ranjbar; Saki, Forough

    2016-12-01

    Acute leukemia is the most common malignancy in children. We showed that low bone mass is prevalent among children with leukemia, especially in femur. Serum calcium, exercise, chemotherapy protocol, and radiotherapy are the main contributing factors. We suggest that early diagnosis and treatment of this problem could improve bone health in them. Acute leukemia is the most common malignancy in children and has been reported to be associated with low bone mass. Due to lack of sufficient data about the bone mineral density of children with leukemia in the Middle East, and inconsistencies between possible associated factors contributing to decreasing bone density in these children, we aimed to conduct a case-control study in Iran. This case-control study was conducted on 60 children with acute leukemia and 60 age- and sex-matched healthy controls. Anthropometric data, sun exposure, puberty, physical activity, and mineral biochemical parameters were assessed. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DEXA). Data analysis was done by SPSS software v. 21. Serum calcium was higher in the control group (P = 0.012) while serum phosphorous, alkaline phosphatase, and serum 25(OH)D 3 were higher in children with leukemia with P values of 0.04, 0.002, and 0.036, respectively. Sun exposure and physical activity were more in healthy controls (P values <0.001 and 0.003, respectively). Prevalence of vitamin D deficiency in case and control groups was 57.8 and 79.4 %, respectively. This prevalence was higher in healthy controls (P value = 0.007). Both lumbar and femoral neck bone mineral apparent density (BMAD) were higher in the control group (P value <0.001). Serum calcium, physical activity, and radiotherapy were the most relevant factors associated with lumbar BMAD. Femoral neck BMAD was associated with chemotherapy protocol. Low bone mass for chronological age is prevalent among children with leukemia, especially in the femoral neck. Serum calcium, physical activity, chemotherapy protocol, and radiotherapy are the main contributing factors.

  9. Bone mineral density and risk of type 2 diabetes and coronary heart disease: A Mendelian randomization study.

    PubMed

    Gan, Wei; Clarke, Robert J; Mahajan, Anubha; Kulohoma, Benard; Kitajima, Hidetoshi; Robertson, Neil R; Rayner, N William; Walters, Robin G; Holmes, Michael V; Chen, Zhengming; McCarthy, Mark I

    2017-01-01

    Background: Observational studies have demonstrated that increased bone mineral density is associated with a higher risk of type 2 diabetes (T2D), but the relationship with risk of coronary heart disease (CHD) is less clear. Moreover, substantial uncertainty remains about the causal relevance of increased bone mineral density for T2D and CHD, which can be assessed by Mendelian randomisation studies.  Methods: We identified 235 independent single nucleotide polymorphisms (SNPs) associated at p <5×10 -8 with estimated heel bone mineral density (eBMD) in 116,501 individuals from the UK Biobank study, accounting for 13.9% of eBMD variance. For each eBMD-associated SNP, we extracted effect estimates from the largest available GWAS studies for T2D (DIAGRAM: n=26,676 T2D cases and 132,532 controls) and CHD (CARDIoGRAMplusC4D: n=60,801 CHD cases and 123,504 controls). A two-sample design using several Mendelian randomization approaches was used to investigate the causal relevance of eBMD for risk of T2D and CHD. In addition, we explored the relationship of eBMD, instrumented by the 235 SNPs, on 12 cardiovascular and metabolic risk factors. Finally, we conducted Mendelian randomization analysis in the reverse direction to investigate reverse causality. Results: Each one standard deviation increase in genetically instrumented eBMD (equivalent to 0.14 g/cm 2 ) was associated with an 8% higher risk of T2D (odds ratio [OR] 1.08; 95% confidence interval [CI]: 1.02 to 1.14; p =0.012) and 5% higher risk of CHD (OR 1.05; 95%CI: 1.00 to 1.10; p =0.034). Consistent results were obtained in sensitivity analyses using several different Mendelian randomization approaches. Equivalent increases in eBMD were also associated with lower plasma levels of HDL-cholesterol and increased insulin resistance. Mendelian randomization in the reverse direction using 94 T2D SNPs or 52 CHD SNPs showed no evidence of reverse causality with eBMD. Conclusions: These findings suggest a causal relationship between elevated bone mineral density with risks of both T2D and CHD.

  10. Bone Metabolism on ISS Missions

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.

    2014-01-01

    Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those that existed before space flight. Studies to assess bone strength after flight are underway at NASA, to better understand the results of bone remodeling. Studies are also underway to evaluate optimized exercise protocols and nutritional countermeasures. Regardless, there is clear evidence of progress being made to protect bone during spaceflight.

  11. Bone mineral density is decreased in fibromyalgia syndrome: a systematic review and meta-analysis.

    PubMed

    Upala, Sikarin; Yong, Wai Chung; Sanguankeo, Anawin

    2017-04-01

    Previous studies have shown that fibromyalgia syndrome (FMS) is associated with low level of physical activity and exercise, which may lead to an increased risk of osteoporosis. However, studies of bone mineral density (BMD) in fibromyalgia have shown conflicting results. Thus, we conducted a systematic review and meta-analysis to better characterize the association between FMS and BMD. A comprehensive search of the databases MEDLINE and EMBASE was performed from inception through May 2016. The inclusion criterion was the observational studies' assessment of the association between fibromyalgia and bone mineral density in adult subjects. Fibromyalgia was diagnosed in accordance with the American College of Rheumatology criteria for the diagnosis of fibromyalgia syndrome. BMD was measured at the lumbar spine and femoral neck by dual-energy X-ray absorptiometry. Pooled mean difference (MD) of BMD at each site and 95% confidence interval (CI) were calculated using a random-effect, generic inverse variance method. The between-study heterogeneity of effect size was quantified using the Q statistic and I 2 . Data were extracted from four observational studies involving 680 subjects. At lumbar spine (L2-L4), BMD is significantly decreased in patients with FMS compared with controls with pooled MD of -0.02 (95% CI -0.03 to -0.01, P value = 0.003, I 2  = 0%) (Fig. 1). At femoral neck, BMD is not significantly decreased in patients with FMS compared with controls with pooled MD of 0.01 (95% CI -0.02 to 0.01, P value = 0.23, I 2  = 0%) (Fig. 2). In this meta-analysis, we observe that BMD at lumbar spine is decreased in FMS compared with normal individuals. Patients with FMS should be assessed for risk of osteoporosis. Fig. 1 Forest plot of bone mineral density at the lumbar spine, for patients with and without fibromyalgia syndrome. CI-confidence interval Fig. 2 Forest plot of bone mineral density at the femoral neck, for patients with and without fibromyalgia syndrome. CI-confidence interval.

  12. The association between high plasma homocysteine levels and lower bone mineral density in Slovak women: the impact of vegetarian diet.

    PubMed

    Krivosíková, Zora; Krajcovicová-Kudlácková, Marica; Spustová, Viera; Stefíková, Kornélia; Valachovicová, Martina; Blazícek, Pavel; Nĕmcová, Tatiana

    2010-04-01

    A long-term vegetarian diet is generally poor in vitamin B group. The lack of vitamin B(12) together with vitamin B(6) and folate deficiency is closely related to homocysteine metabolism. Hyperhomocysteinemia was found to be associated with increased bone turnover markers and increased fracture risk. Thus, hyperhomocysteinemia, vitamin B(12) and folate deficiency may be regarded as novel risk factors for micronutrient deficiency-related osteoporosis. To assess the possible impact of a vegetarian diet on bone mineral density in cohort of Slovak vegetarian women. Fasting serum glucose, albumin, calcium, phosphorous and creatinine as well as bone markers, serum vitamin B(12), folate and plasma levels of total homocysteine were assessed in two nutritional groups (vegetarians vs. nonvegetarians) of apparently healthy women (age range 20-70 years). Bone mineral density of the femoral neck, trochanter, total femur and lumbar spine was measured in all subjects. Vegetarians had a significantly lower weight (p < 0.05), higher PTH (p < 0.01) and homocysteine (p < 0.001). Vitamin B(12) was significantly higher in nonvegetarians (p < 0.001). No differences were observed in folate levels. Univariate analysis showed significant association between homocysteine and B(12) (p < 0.01), folate (p < 0.001), creatinine (p < 0.001), total proteins (p < 0.049), age (p < 0.001) and vegetarian food intake (p < 0.001). Vegetarians had a significantly lower TrFBMD (p < 0.05) and ToFBMD (p < 0.05). Age and CTx were significant predictors in all sites of measured BMD and PTH. A strong correlation between homocysteine and FNBMD (r = -0.2009, p < 0.002), TrFBMD (r = -0.1810, p < 0.004) and ToFBMD (r = -0.2225, p < 0.001) was found in all subjects. Homocysteine is one of the predictors of bone mineral density, and hyperhomocysteinemia is associated with lower bone mineral density. In healthy adults, homocysteine levels are dependent on age as well as on nutritional habits. Thus, elderly women on a vegetarian diet seem to be at higher risk of osteoporosis development than nonvegetarian women.

  13. Quantitative calcaneal ultrasound parameters and bone mineral density at final height in girls treated with depot gonadotrophin-releasing hormone agonist for central precocious puberty or idiopathic short stature.

    PubMed

    Kapteijns-van Kordelaar, Simone; Noordam, Kees; Otten, Barto; van den Bergh, Joop

    2003-11-01

    To evaluate the effect of gonadotrophin-releasing hormone (GnRH) agonist treatment on bone quality at final height, we studied girls with central precocious puberty (CPP) and with idiopathic short stature (ISS). A total of 25 Caucasian girls were included: group A (n=14) with idiopathic CPP (mean age at start 7.4 years) and group B (n=11) with ISS (mean age at start 11.7 years). Treatment duration was 3.8 and 1.7 years respectively. The quantitative ultrasound parameters (QUS) broadband ultrasound attenuation (BUA) and speed of sound (SOS) were measured at the calcaneus (UBIS 3000 device). Lumbar spine bone mineral density (BMD; L2-L4) was measured by dual energy X-ray absorptiometry (DXA) (Hologic QDR1000). Measurements were performed at final height and expressed as Z-scores corrected for bone age. Mean Z-scores of QUS parameters, areal BMD and volumetric BMD (BMDvol) were above -1 in both groups (group A: BUA Z-score -0.21, SOS Z-score -0.29, BMD Z-score 0.02, BMDvol Z-score 0.05, group B: BUA Z-score -0.93, SOS Z-score -0.40, BMD Z-score -0.86, BMDvol Z-score -0.68), although mean Z-scores of BUA and areal BMD in group B were significantly different from zero (P=0.03 and P=0.02 respectively). Mean Z-score BMDvol was not significantly different from zero (P=0.05), we found no significant difference between the groups for BMDvol (P=0.13). Although quantitative ultrasound parameters parameters and bone mineral density were normal in girls with central precocious puberty at final height after gonadotrophin-releasing hormone agonist treatment, mean Z-score for broadband ultrasound attenuation and areal bone mineral density were significantly different from zero and mean Z-score for volumetric bone mineral density was (just) not significantly different from zero in idiopathic short stature girls with normal puberty treated with gonadotrophin-releasing hormone agonists. Therefore we cannot say that this treatment is safe in these girls with regard to bone health.

  14. Evaluation of mineral oil as an acoustic coupling medium in clinical MRgFUS.

    PubMed

    Gorny, K R; Hangiandreou, N J; Hesley, G K; Felmlee, J P

    2007-01-07

    We empirically evaluate mineral oil as an alternative to the mixture of de-gassed water and ultrasound gel, which is currently used as an acoustic coupling medium in clinical magnetic resonance guided focused ultrasound (MRgFUS) treatments. The tests were performed on an ExAblate 2000 MRgFUS system (InSightec Inc., Haifa, Israel) using a clinical patient set-up. Acoustic reflections, treatment temperatures, sonication spot dimensions and position with respect to target location were measured, using both coupling media, in repeated sonications in a tissue mimicking gel phantom. In comparison with the water-gel mix, strengths of acoustic reflections from coupling layers prepared with mineral oil were on average 39% lower and the difference was found to be statistically significant (p = 3.3 x 10(-8)). The treatment temperatures were found to be statistically equivalent for both coupling media, although temperatures corresponding to mineral oil tended to be somewhat higher (on average 1.9 degrees C) and their standard deviations were reduced by about 1 degrees C. Measurements of sonication spot dimensions and positions with respect to target location did not reveal systematic differences. We conclude that mineral oil may be used as an effective non-evaporating acoustic coupling medium for clinical MRgFUS treatments.

  15. Water circulation and global mantle dynamics: Insight from numerical modeling

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Nakakuki, Tomoeki; Iwamori, Hikaru

    2015-05-01

    We investigate water circulation and its dynamical effects on global-scale mantle dynamics in numerical thermochemical mantle convection simulations. Both dehydration-hydration processes and dehydration melting are included. We also assume the rheological properties of hydrous minerals and density reduction caused by hydrous minerals. Heat transfer due to mantle convection seems to be enhanced more effectively than water cycling in the mantle convection system when reasonable water dependence of viscosity is assumed, due to effective slab dehydration at shallow depths. Water still affects significantly the global dynamics by weakening the near-surface oceanic crust and lithosphere, enhancing the activity of surface plate motion compared to dry mantle case. As a result, including hydrous minerals, the more viscous mantle is expected with several orders of magnitude compared to the dry mantle. The average water content in the whole mantle is regulated by the dehydration-hydration process. The large-scale thermochemical anomalies, as is observed in the deep mantle, is found when a large density contrast between basaltic material and ambient mantle is assumed (4-5%), comparable to mineral physics measurements. Through this study, the effects of hydrous minerals in mantle dynamics are very important for interpreting the observational constraints on mantle convection.

  16. Altered auditory and vestibular functioning in individuals with low bone mineral density: a systematic review.

    PubMed

    Singh, Niraj Kumar; Jha, Raghav Hira; Gargeshwari, Aditi; Kumar, Prawin

    2018-01-01

    Alteration in the process of bone remodelling is associated with falls and fractures due to increased bone fragility and altered calcium functioning. The auditory system consists of skeletal structures and is, therefore, prone to getting affected by altered bone remodelling. In addition, the vestibule consists of huge volumes of calcium (CaCO3) in the form of otoconia crystals and alteration in functioning calcium levels could, therefore, result in vestibular symptoms. Thus, the present study aimed at compiling information from various studies on assessment of auditory or vestibular systems in individuals with reduced bone mineral density (BMD). A total of 1977 articles were searched using various databases and 19 full-length articles which reported auditory and vestibular outcomes in persons with low BMD were reviewed. An intricate relationship between altered BMD and audio-vestibular function was evident from the studies; nonetheless, how one aspect of hearing or balance affects the other is not clear. Significant effect of reduced bone mineral density could probably be due to the metabolic changes at the level of cochlea, secondary to alterations in BMD. One could also conclude that sympathetic remodelling is associated with vestibular problems in individual; however, whether vestibular problems lead to altered BMD cannot be ascertained with confidence. The studies reviewed in the article provide an evidence of possible involvement of hearing and vestibular system abnormalities in individuals with reduced bone mineral density. Hence, the assessment protocol for these individuals must include hearing and balance evaluation as mandatory for planning appropriate management.

  17. Serum myostatin in central south Chinese postmenopausal women: Relationship with body composition, lipids and bone mineral density.

    PubMed

    Ma, Yulin; Li, Xianping; Zhang, Hongbin; Ou, Yangna; Zhang, Zhimin; Li, Shuang; Wu, Feng; Sheng, Zhifeng; Liao, Eryuan

    2016-08-01

    Previous data suggest that myostatin has direct effects on the proliferation and differentiation of osteoprogenitor cells. The relationships between serum myostatin, body composition lipids and bone mineral density in postmenopausal women remain unclear. The aim of this study is to elucidate the relationships between serum myostatin, body composition, lipids and bone mineral density in central south Chinese postmenopausal women. A cross-sectional study was conducted in 175 healthy postmenopausal women, aged 51-75 years old. Bone mineral density (BMD) and body composition were measured by double energy X-ray absorptiometry (DXA). Serum myostatin, 25-dihydroxyvitamin D(25OH-D), parathyroid hormone (PTH), bone alkaline phosphatase (BAP) and carboxy-terminal telopeptide of type I collagen (CTX) were measured by enzyme-linked immunoabsorbent assay (ELISA). In contrast to the osteoporotic women, the women without osteoporosis had higher BMI, fat mass and lean mass (P<0.01). The osteoporotic women were older than women without osteoporosis (P<0.01). There were no differences between two groups with regard to serum BAP, CTX, (25OH-D), PTH, lipids and myostatin after adjusted by age. BMD at each site was positively correlated with age at menopause, fat mass and lean mass, and also negatively correlated with age and serum BAP. Serum myostatin was positively correlated with tryglicerides, not correlated with either body composition or BMD at each site. Our data indicated that serum myostatin concentration did not correlate with muscle and bone mass. Further studies are needed to demonstrate the role of myostatin in regulating the bone metabolism.

  18. [The risk factor for low bone mineral density in patients with inflammatory bowel disease].

    PubMed

    Liu, Jian-bin; Gao, Xiang; Zhang, Fang-bin; Yang, Li; Xiao, Ying-lian; Zhang, Rui-dong; Li, Zi-ping; Hu, Pin-jin; Chen, Min-hu

    2009-10-01

    To evaluate the prevalence of low bone mineral density in patients with inflammatory bowel disease (IBD)and to identify its risk factors. A cross-sectional survey was carried out in IBD patients. Anthropometric measures, biochemical markers of nutrition and bone mineral density measurement were completed for these patients as well as healthy control subjects. Seventy-seven Crohn's disease (CD) and 43 ulcerative colitis (UC) patients were enrolled, and 37 healthy volunteers were recruited as healthy controls (HC). The T value of CD patients, UC patients and HC was -1.72 +/- 1.20, -1.26 +/- 1.12 and -0.62 +/- 0.87 respectively and the T value of CD patients was significantly lower than that of HC (P = 0.000). The prevalence of osteoporosis in CD, UC and HC was 23.3%, 14.0% and 0 respectively. The prevalence of osteoporosis in CD was higher than that in HC (P = 0.003). Logistic regression analysis indicated that low BMI (BMI < or = 18.4 kg/m(2)) was an independent risk factor for osteoporosis both in CD (OR = 11.25, 95%CI 3.198 - 39.580, P = 0.000) and in UC (OR = 14.50, 95%CI 1.058 - 88.200, P = 0.045) patients. Age, disease duration, clinical activity active index (CDAI), oral steroid therapy, immunosuppressant treatment and serum vitamin D concentration were not found to be correlated with osteoporosis in IBD patients. Low bone mineral density is common in both CD and UC patients and low BMI is an independent risk factor for osteoporosis in IBD patients.

  19. Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin, Improves Trabecular Bone Mineral Density and Microstructure in Obese, Insulin-Resistant, Pre-diabetic Rats.

    PubMed

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Teerapornpuntakit, Jarinthorn; Aeimlapa, Ratchaneevan; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2018-02-02

    Obese insulin resistance and type 2 diabetes mellitus profoundly impair bone mechanical properties and bone quality. However, because several antidiabetes drugs, especially thiazolidinediones, further aggravate bone loss in individuals with diabetes, diabetic osteopathy should not be treated by using simply any glucose-lowering agents. Recently, incretins have been reported to affect osteoblast function positively. The present study aimed to investigate the effects of vildagliptin, an inhibitor of dipeptidyl peptidase-4, on bone of rats with high-fat-diet-induced prediabetes. Male rats were fed a high-fat diet for 12 weeks to induce obese insulin resistance and then treated with vildagliptin for 4 weeks. The effects of the drug on bone were determined by microcomputed tomography and bone histomorphometry. Vildagliptin markedly improved insulin resistance in these obese insulin-resistant rats. It also significantly increased volumetric bone mineral density. Specifically, vildagliptin-treated obese insulin-resistant rats exhibited higher trabecular volumetric bone mineral density than vehicle-treated obese insulin-resistant rats, whereas cortical volumetric bone mineral density, cortical thickness and area were not changed. Bone histomorphometric analysis in a trabecular-rich area (i.e. tibial metaphysis) revealed greater trabecular bone volume and number and less trabecular separation without change in trabecular thickness, osteocyte lacunar area or cortical thickness in the vildagliptin-treated group. Vildagliptin had a beneficial effect on the bone of obese insulin-resistant rats with prediabetes, particularly at the trabecular site. Such benefit probably results from enhanced bone formation rather than from suppressed bone resorption. Copyright © 2018 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  20. Caries-removal effectiveness of a papain-based chemo-mechanical agent: A quantitative micro-CT study.

    PubMed

    Neves, Aline A; Lourenço, Roseane A; Alves, Haimon D; Lopes, Ricardo T; Primo, Laura G

    2015-01-01

    The aim of this study was to access the effectiveness and specificity of a papain-based chemo-mechanical caries-removal agent in providing minimum residual caries after cavity preparation. In order to do it, extracted carious molars were selected and scanned in a micro-CT before and after caries-removal procedures with the papain-based gel. Similar parameters for acquisition and reconstruction of the image stacks were used between the scans. After classification of the dentin substrate based on mineral density intervals and establishment of a carious tissue threshold, volumetric parameters related to effectiveness (mineral density of removed dentin volume and residual dentin tissue) and specificity (relation between carious dentin in removed volume and initial caries) of this caries-removal agent were obtained. In general, removed dentin volume was similar or higher than the initial carious volume, indicating that the method was able to effectively remove dentin tissue. Samples with an almost perfect accuracy in carious dentin removal also showed an increased removal of caries-affected tissue. On the contrary, less or no affected dentin was removed in samples where some carious tissue was left in residual dentin. Mineral density values in residual dentin were always higher or similar to the threshold for mineral density values in carious dentin. In conclusion, the papain-based gel was effective in removing carious dentin up to a conservative in vitro threshold. Lesion characteristics, such as activity and morphology of enamel lesion, may also influence caries-removal properties of the method. © Wiley Periodicals, Inc.

Top