Kiilsgaard, Thor H.
1998-01-01
Introduction This report and accompanying map (Plate 1) presents information on the Defense Minerals Administration (DMA), Defense Minerals Exploration Administration (DMEA), and Office of Minerals Exploration (OME) mineral exploration programs in Washington. Under these programs, the federal government participated in the exploration costs for certain strategic and critical minerals. Federal funds for mineral exploration under the programs were available from 1950 to 1974, although limited funds for OME administrative work were continued until 1979. The report reviews the three programs, associated regulations, administrative procedures, and operational techniques. It also describes the various types of informative reports generated by the programs, lists mining properties in Washington that were involved in the exploration programs, and advises on location of compiled exploration information that resulted from the work.
Kiilsgaard, Thor H.
1998-01-01
Introduction This report and accompanying map (Plate 1) presents information on the Defense Minerals Administration (DMA), Defense Minerals Exploration Administration (DMEA), and Office of Minerals Exploration (OME) mineral exploration programs in Oregon. Under these programs, the federal government participated in the exploration costs for certain strategic and critical minerals. Federal funds for mineral exploration under the programs were available from 1950 to 1974, although limited funds for OME administrative work were continued until 1979. The report reviews the three programs, associated regulations, administrative procedures, and operational techniques. It also describes the various types of informative reports on individual mining properties generated by the programs, lists properties in Oregon that were involved in the different exploration programs, and advises on the location of compiled information that resulted from the work.
Kiilsgaard, Thor H.
1996-01-01
Introduction This report and accompanying map (plate 1) presents information on the Defense Minerals Administration (DMA), Defense Minerals Exploration Administration (DMEA), and Office of Minerals Exploration (OME) mineral exploration programs in Montana. Under these programs, the federal government participated in the exploration costs for certain strategic and critical minerals. Federal funds for mineral exploration under the programs were available from 1950 to 1974, although limited funds for OME administrative work were continued until 1979. Federal consideration for exploration at a particular property was initiated by submittal of an application for financial assistance by the owner or operator of the property. Each application received was assigned a docket number and all subsequent correspondence and information resulting from the application was filed under that docket number. The report reviews the three programs and some of the associated regulations and procedures. It also describes the various types of information generated by the programs, presents information on mining properties in Montana that were involved in the exploration programs, and advises on location of compiled mineral exploration information that resulted from the work.
Historical files from Federal Government mineral exploration-assistance programs, 1950 to 1974
Frank, David G.
2016-06-16
The Defense Minerals Administration (DMA), Defense Minerals Exploration Administration (DMEA), and Office of Minerals Exploration (OME) mineral exploration programs were active over the period 1950–1974. Under these programs, the Federal Government contributed financial assistance in the exploration for certain strategic and critical minerals. The information about a mining property that was collected under these programs was placed in files called dockets. A docket is a collection of material (application, contract, correspondence, maps, reports, results) about a property for which an individual applied for exploration assistance from the Federal Government. Information found in dockets describe where mineral deposits were examined, what was found, and whether it was mined. As such, they provide very useful information to private industry regarding potential and non-potential prospect areas, provide the U.S. Geological Survey with useful information on mineral occurrences that are used in national assessments for particular mineral deposits, and provide other U.S. Federal agencies (Bureau of Indian Affairs, Bureau of Land Management, and Environmental Protection Agency) information relevant to land management, permitting, and leasing.
Wilburn, D.R.; Vasil, R.L.; Nolting, A.
2011-01-01
This summary of international mineral exploration activities for the year 2010 draws upon available information from industry sources, published literature and U.S. Geological Survey (USGS) specialists. The summary provides data on exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry and presents analyses of exploration activities performed by the mineral industry.
Design of exploration and minerals-data-collection programs in developing areas
Attanasi, E.D.
1981-01-01
This paper considers the practical problem of applying economic analysis to designing minerals exploration and data collection strategies for developing countries. Formal decision rules for the design of government exploration and minerals-data-collection programs are derived by using a minerals-industry planning model that has been extended to include an exploration function. Rules derived are applicable to centrally planned minerals industries as well as market-oriented minerals sectors. They pertain to the spatial allocation of exploration effort and to the allocation of activities between government and private concerns for market-oriented economies. Programs characterized by uniform expenditures, uniform information coverage across regions, or uniform-density grid drilling progrmas are shown to be inferior to the strategy derived. Moreover, for market-oriented economies, the economically optimal mix in exploration activities between private and government data collection would require that only private firms assess local sites and that government agencies carry out regional surveys. ?? 1981.
MINEXP, A Computer-Simulated Mineral Exploration Program
ERIC Educational Resources Information Center
Smith, Michael J.; And Others
1978-01-01
This computer simulation is designed to put students into a realistic decision making situation in mineral exploration. This program can be used with different exploration situations such as ore deposits, petroleum, ground water, etc. (MR)
Wilburn, D.R.
1997-01-01
This summary of international nonfuel mineral exploration activities for 1996 uses available data from literature, industry, and US Geological Survey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on minerals industry direction are drawn from these data.
Wilburn, D.R.; Porter, K.E.
1999-01-01
This summary of international nonfuel mineral exploration activities for 1998 draws on available data from literature, industry and US Geological Survey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on mineral industry direction are drawn from these data and discussions.
Wilburn, D.R.
1998-01-01
This summary of international nonfuel mineral exploration activities for 1997 draws upon available data from literature, industry and US Geological Sulvey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on mineral industry direction are drawn from these data and discussions.
Wilburn, D.R.
2000-01-01
This summary of international nonfuel mineral exploration activities for 1999 draws upon available data from literature, industry and US Geological Survey (USGS) specialists. The report documents data on exploration budgets by region and commodity and identifies significant mineral discoveries and exploration target areas. It also discusses government programs affecting the mineral exploration industry. And it presents inferences and observations on mineral industry direction based on these data and discussions.
Wilburn, D.R.; Rapstine, T.D.; Lee, E.C.
2012-01-01
This summary of international mineral exploration activities for the year 2011 draws upon available information from industry sources, published literature and U.S. Geological Survey (USGS) specialists. This summary provides data on exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry and presents surveys returned by companies primarily focused on precious (gold, platinum-group metals and silver) and base (copper, lead, nickel and zinc) metals.
77 FR 40586 - Coastal Programs Division
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... approval of extension of deep sea hard mineral exploration licenses and amended exploration plan. SUMMARY... FR 12245 on the request of Lockheed Martin Corp. to extend the deep seabed hard mineral exploration licenses USA-1 and USA-4 issued under the Deep Seabed Hard Mineral Resources Act (DSHMRA; 30 U.S.C. 1401...
Wilburn, D.R.; Stanley, K.A.
2013-01-01
This summary of international mineral exploration activities for 2012 draws upon information from industry sources, published literature and U.S. Geological Survey (USGS) specialists. The summary provides data on exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry and presents analyses of exploration activities performed by the mineral industry. Three sources of information are reported and analyzed in this annual review of international exploration for 2012: 1) budgetary statistics expressed in U.S. nominal dollars provided by SNL Metals Economics Group (MEG) of Halifax, Nova Scotia; 2) regional and site-specific exploration activities that took place in 2012 as compiled by the USGS and 3) regional events including economic, social and political conditions that affected exploration activities, which were derived from published sources and unpublished discussions with USGS and industry specialists.
30 CFR 900.13 - Federal programs and Federal coal exploration programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...
30 CFR 900.13 - Federal programs and Federal coal exploration programs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...
30 CFR 900.13 - Federal programs and Federal coal exploration programs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...
30 CFR 900.13 - Federal programs and Federal coal exploration programs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...
30 CFR 900.13 - Federal programs and Federal coal exploration programs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...
30 CFR 750.15 - Coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal exploration. 750.15 Section 750.15 Mineral... PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.15 Coal exploration. Coal exploration operations on Indian lands shall be conducted in accordance with 25 CFR part 216...
30 CFR 750.15 - Coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal exploration. 750.15 Section 750.15 Mineral... PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.15 Coal exploration. Coal exploration operations on Indian lands shall be conducted in accordance with 25 CFR part 216...
30 CFR 750.15 - Coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal exploration. 750.15 Section 750.15 Mineral... PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.15 Coal exploration. Coal exploration operations on Indian lands shall be conducted in accordance with 25 CFR part 216...
30 CFR 750.15 - Coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal exploration. 750.15 Section 750.15 Mineral... PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.15 Coal exploration. Coal exploration operations on Indian lands shall be conducted in accordance with 25 CFR part 216...
30 CFR 750.15 - Coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal exploration. 750.15 Section 750.15 Mineral... PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.15 Coal exploration. Coal exploration operations on Indian lands shall be conducted in accordance with 25 CFR part 216...
Implementation plan for Bolivian Mineral Exploration Fund
Kirkemo, Harold
1978-01-01
Bolivia ranks second among world producers of tin and antimony, and first in bismuth production. Mineral exports in 1975 were valued at $314.2 million, nearly 60 percent of the value of all exports, and petroleum product exports totalled nearly $157 million, or 30 percent of the total. Tin accounted for 58 percent of the total value of metallic mineral exports. The central government derived about 19 percent of its total tax revenues in 1975 from the mining sector. The mining sector consists of the large, medium, and small mining subsectors, a classification established by the government. Individual operations are referred to as large, medium, or small depending upon the subsector into which they are classified. All large mining enterprises are owned and operated by a government corporation, COMIBOL; the medium and small operations are privately owned. COMIBOL's exports in 1975 were valued at $171.8 million or 70 percent of the total mineral exports; the medium mines accounted for $55.5 million or 23 percent, and the small mines for $17.5 million or 7 percent of the total. The combination of high operating costs, low productivity, inadequate ore reserves, and insufficient risk capital for exploration and development has led to the realization that there is an urgent need to improve the situation for mining in Bolivia. Proposals are being studied to revise the tax code, a program is underway to evaluate selected mineral deposits for possible exploration and development, and programs are under consideration to encourage minerals exploration. A minerals exploration plan is proposed which would offer technical and financial aid to various segments in the minerals field. A program, estimated to cost between $2 million and $2.5 million annually, and to be operated by a new agency in the Ministry of Mining and Metallurgy, is outlined.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Scope. 777.1 Section 777.1 Mineral Resources... RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS GENERAL CONTENT... general content for permit applications under a State or Federal program. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Scope. 777.1 Section 777.1 Mineral Resources... RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS GENERAL CONTENT... general content for permit applications under a State or Federal program. ...
30 CFR 815.15 - Performance standards for coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...
30 CFR 815.15 - Performance standards for coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...
30 CFR 815.15 - Performance standards for coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...
30 CFR 815.15 - Performance standards for coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...
30 CFR 815.15 - Performance standards for coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangster, P.J.
1998-10-01
This report reviews activities in the Southeastern and Southwestern Ontario Resident Geologist districts for the year, including mining and exploration activity, mineral property examinations, recommendations for exploration, and Ontario Geological Survey activities and research by others. It also reviews activities at the Ontario Geological Survey Mines and Minerals Information Centre and exploration and development activity in the province`s oil and gas sector.
NASA Technical Reports Server (NTRS)
Yost, E.
1975-01-01
Selected band multispectral photography was evaluated as a mineral exploration tool by detecting stress on trees caused by underground mineralization. Ground truth consisted of two test sites in the Prescott National Forest within which the mineralization had been established by a drilling program. Species of trees were categorized as background, intermediate, and anomalous based upon where they grew with respect to this underlying mineralization. Soil geochemistry and the metal content of ashed samples of the trees were studied in relation to the inferred locus of mineralization. Computer analysis of the reflectance spectra of mineralized trees confirmed that the relative percent reflectance differences of trees growing in anomalous areas was less than that of the same tree species growing in background areas.
30 CFR 921.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 921.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 937.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 933.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 933.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 937.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 921.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 921.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 903.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-Coal exploration. 903.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, applies to any person who conducts coal exploration. ...
30 CFR 933.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 933.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 921.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 921.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 903.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-Coal exploration. 903.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, applies to any person who conducts coal exploration. ...
30 CFR 922.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 922.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 941.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 941.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 941.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 941.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 905.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-Coal exploration. 905.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...
30 CFR 912.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 912.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 910.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 910.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 903.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-Coal exploration. 903.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, applies to any person who conducts coal exploration. ...
30 CFR 939.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 939.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 910.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 910.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 922.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 922.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 933.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 933.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 939.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 939.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 905.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-Coal exploration. 905.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...
30 CFR 922.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 922.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 912.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 912.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 933.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 933.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 939.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 939.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 921.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 921.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 921.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 921.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 903.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-Coal exploration. 903.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, applies to any person who conducts coal exploration. ...
30 CFR 937.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 933.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 933.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 937.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 905.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-Coal exploration. 905.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...
30 CFR 942.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-Coal exploration. 942.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...
30 CFR 903.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-Coal exploration. 903.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, applies to any person who conducts coal exploration. ...
30 CFR 905.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-Coal exploration. 905.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...
30 CFR 912.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 912.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 942.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-Coal exploration. 942.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...
30 CFR 922.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 922.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 910.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 910.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 905.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-Coal exploration. 905.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...
30 CFR 910.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 910.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 942.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-Coal exploration. 942.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...
30 CFR 912.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 912.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 942.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-Coal exploration. 942.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...
30 CFR 942.815 - Performance standards-Coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-Coal exploration. 942.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...
30 CFR 922.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 922.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 937.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 910.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 910.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 941.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 941.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 939.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 939.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 912.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 912.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 941.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 941.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 941.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 941.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 939.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 939.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...
30 CFR 772.13 - Coal exploration compliance duties.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...
30 CFR 772.13 - Coal exploration compliance duties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...
30 CFR 772.13 - Coal exploration compliance duties.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...
30 CFR 772.13 - Coal exploration compliance duties.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...
30 CFR 772.13 - Coal exploration compliance duties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...
Three archives of the U. S. Geological Survey's Western Mineral Resources Team
Bolm, Karen Sue; Frank, David G.; Schneider, Jill L.
2000-01-01
The Western Mineral Resources Team of the U.S. Geological Survey (USGS) has three archives, which hold unpublished or difficult-to-obtain records and literature. The Technical Data Unit in Anchorage, Alaska, holds maps, field notes, and other records of the USGS work in Alaska. The USGS Field Office in Spokane, Washington, houses the more than 5,000 files from Federal government exploration programs that contracted to fund exploration for some commodities from 1950 until 1974. The Latin American Archive in Tucson, Arizona, holds material on Latin American mineral resources collected by the Center for Inter-American MineralResources Investigations.
30 CFR 947.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 947.815... Performance standards—coal exploration. (a) Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. (b) Any person who...
30 CFR 947.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 947.815... Performance standards—coal exploration. (a) Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. (b) Any person who...
30 CFR 947.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 947.815... Performance standards—coal exploration. (a) Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. (b) Any person who...
30 CFR 947.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 947.815... Performance standards—coal exploration. (a) Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. (b) Any person who...
30 CFR 947.815 - Performance standards-coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 947.815... Performance standards—coal exploration. (a) Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. (b) Any person who...
Comparative study of Canadian-United States resources programs
DeYoung,, John H.
1975-01-01
Chapter A: Report of the resource endowment, infrastructure development, tax incentives and exploration financing. Chapter B: Recent changes in Canadian tax laws affecting the mineral industries. Chapter C: The impact of recent changes in Canadian tax laws on the mineral industries.
STANSBURY ROADLESS AREAS, UTAH.
Sorensen, Martin L.; Kness, Richard F.
1984-01-01
A mineral-resource survey of the Stansbury Roadless Areas, Utah was conducted and showed that there is little likelihood for the occurrence of metallic mineral resources in the areas. Limestone and dolomite underlie approximately 50 acres in the roadless areas and constitute a nonmetallic mineral resource of undetermined value. The oil and gas potential is not known and cannot be assessed without exploratory geophysical and drilling programs. There are no known geothermal resources. An extensive program of geophysical exploration and exploratory drilling would be necessary to determine the potential for oil and gas in the Stansbury Roadless Areas.
Characteristic analysis-1981: Final program and a possible discovery
McCammon, R.B.; Botbol, J.M.; Sinding-Larsen, R.; Bowen, R.W.
1983-01-01
The latest ornewest version of thecharacteristicanalysis (NCHARAN)computer program offers the exploration geologist a wide variety of options for integrating regionalized multivariate data. The options include the selection of regional cells for characterizing deposit models, the selection of variables that constitute the models, and the choice of logical combinations of variables that best represent these models. Moreover, the program provides for the display of results which, in turn, makes possible review, reselection, and refinement of a model. Most important, the performance of the above-mentioned steps in an interactive computing mode can result in a timely and meaningful interpretation of the data available to the exploration geologist. The most recent application of characteristic analysis has resulted in the possible discovery of economic sulfide mineralization in the Grong area in central Norway. Exploration data for 27 geophysical, geological, and geochemical variables were used to construct a mineralized and a lithogeochemical model for an area that contained a known massive sulfide deposit. The models were applied to exploration data collected from the Gjersvik area in the Grong mining district and resulted in the identification of two localities of possible mineralization. Detailed field examination revealed the presence of a sulfide vein system and a partially inverted stratigraphic sequence indicating the possible presence of a massive sulfide deposit at depth. ?? 1983 Plenum Publishing Corporation.
New efforts using helicopter-borne and ground based electromagnetics for mineral exploration
NASA Astrophysics Data System (ADS)
Meyer, U.; Siemon, B.; Noell, U.; Gutzmer, J.; Spitzer, K.; Becken, M.
2014-12-01
Throughout the last decades mineral resources, especially rare earth elements, gained a steadily growing importance in industry and therefore as well in exploration. New targets for mineral investigations came into focus and known sources have been and will be revisited. Since most of the mining for mineral resources in the past took place in the upper hundred metres below surface new techniques made deeper mining economically feasible. Consequently, mining engineers need the best possible knowledge about the full spatial extent of prospective geological structures, including their maximum depths. Especially in Germany and Europe, politics changed in terms not to rely only on the global mineral trade market but on national resources, if available. BGR and partners therefore started research programs on different levels to evaluate and develop new technologies on environmental friendly, non-invasive spatial exploration using airborne and partly ground-based electromagnetic methods. Mining waste heaps have been explored for valuable residual minerals (research project ROBEHA), a promising tin bearing ore body is being explored by airborne electromagnetics (research project E3) and a new airborne technology is aimed at to be able to reach investigation depths of about 1 km (research project DESMEX). First results of the projects ROBEHA and E3 will be presented and the project layout of DESMEX will be discussed.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Road systems. 780.37 Section 780.37 Mineral... MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.37 Road systems...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Road systems. 784.24 Section 784.24 Mineral... MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS... systems. (a) Plans and drawings. Each applicant for an underground coal mining and reclamation permit...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Road systems. 780.37 Section 780.37 Mineral... MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.37 Road systems...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Road systems. 784.24 Section 784.24 Mineral... MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS... systems. (a) Plans and drawings. Each applicant for an underground coal mining and reclamation permit...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Road systems. 780.37 Section 780.37 Mineral... MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.37 Road systems...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Road systems. 784.24 Section 784.24 Mineral... MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS... systems. (a) Plans and drawings. Each applicant for an underground coal mining and reclamation permit...
30 CFR 785.15 - Steep slope mining.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS...
30 CFR 785.15 - Steep slope mining.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS...
Historical files from Federal government mineral exploration-assistance programs, 1950 to 1974
Frank, David G.
2010-01-01
Congress enacted the Defense Production Act in 1950 to provide funding and support for the exploration and development of critical mineral resources. From 1950 to 1974, three Department of the Interior agencies carried out this mission. Contracts with mine owners provided financial assistance for mineral exploration on a joint-participation basis. These contracts are documented in more than 5,000 'dockets' now archived online by the U.S. Geological Survey. This archive provides access to unique and difficult to recreate information, such as drill logs, assay results, and underground geologic maps, that is invaluable to land and resource management organizations and the minerals industry. An effort to preserve the data began in 2009, and the entire collection of dockets was electronically scanned. The scanning process used optical character recognition (OCR) when possible, and files were converted into Portable Document Format (.pdf) files, which require Adobe Reader or similar software for viewing. In 2010, the scans were placed online (http://minerals.usgs.gov/dockets/) and are available to download free of charge.
30 CFR 777.11 - Format and contents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Format and contents. 777.11 Section 777.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS GENERAL CONTENT REQUIREMENTS FOR PERMIT...
ERTS-A: a new apogee for mineral finding
Carter, William D.
1971-01-01
The EROS Program will continue investigations to select or develop optimum, economical airborne and space systems that will expand man's ability to observe and profit from natural resources. It is to be hoped that several of these systems will eventually prove useful supplements to current and developing mineral exploration technology.
Summaries of the thematic conferences on remote sensing for exploration geology
NASA Technical Reports Server (NTRS)
1989-01-01
The Thematic Conference series was initiated to address the need for concentrated discussion of particular remote sensing applications. The program is primarily concerned with the application of remote sensing to mineral and hydrocarbon exploration, with special emphasis on data integration, methodologies, and practical solutions for geologists. Some fifty invited papers are scheduled for eleven plenary sessions, formulated to address such important topics as basement tectonics and their surface expressions, spectral geology, applications for hydrocarbon exploration, and radar applications and future systems. Other invited presentations will discuss geobotanical remote sensing, mineral exploration, engineering and environmental applications, advanced image processing, and integration and mapping.
Application of natural analog studies to exploration for ore deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, D.L.
1995-09-01
Natural analogs are viewed as similarities in nature and are routinely utilized by exploration geologists in their search for economic mineral deposits. Ore deposit modeling is undertaken by geologists to direct their exploration activities toward favorable geologic environments and, therefore, successful programs. Two types of modeling are presented: (i) empirical model development based on the study of known ore deposit characteristics, and (ii) concept model development based on theoretical considerations and field observations that suggest a new deposit type, not known to exist in nature, may exist and justifies an exploration program. Key elements that are important in empirical modelmore » development are described, and examples of successful applications of these natural analogs to exploration are presented. A classical example of successful concept model development, the discovery of the McLaughlin gold mine in California, is presented. The utilization of natural analogs is an important facet of mineral exploration. Natural analogs guide explorationists in their search for new discoveries, increase the probability of success, and may decrease overall exploration expenditure.« less
Geological applications of LANDSAT-1 imagery to the Great Salt Lake area
NASA Technical Reports Server (NTRS)
Anderson, A. T.; Smith, A. F.
1975-01-01
The ERTS program has been designed as a research and development tool to demonstrate that remote sensing from orbital altitudes is a feasible and practical approach to efficient management of earth resources. From this synoptic view and repetitive coverage provided by ERTS imagery of the Great Salt Lake area, large geological and structural features, trends, and patterns have been identified and mapped. A comparative analysis of lineaments observed in September and December data was conducted, existing mineral locations were plotted, and areas considered prospective for mineralization based on apparent structure-mineralization relationships were defined. The additional information obtained using ERTS data provides an added source of information to aid in the development of more effective mineral exploration programs.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... any existing mineral exploration information, and a description of any environmental or cultural... that meet the goals of the EMDP and the purposes for which Congress provides the appropriations. Once a... which Congress provides the appropriation. Upon acceptance of an application, a tribe must then submit...
30 CFR 900.15 - Federal lands program cooperative agreements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... INTRODUCTION § 900.15 Federal lands program cooperative agreements. The full text of any State and Federal cooperative agreement for the regulation of coal exploration and mining on Federal lands is published below... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Federal lands program cooperative agreements...
30 CFR 900.15 - Federal lands program cooperative agreements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTRODUCTION § 900.15 Federal lands program cooperative agreements. The full text of any State and Federal cooperative agreement for the regulation of coal exploration and mining on Federal lands is published below... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Federal lands program cooperative agreements...
30 CFR 900.15 - Federal lands program cooperative agreements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... INTRODUCTION § 900.15 Federal lands program cooperative agreements. The full text of any State and Federal cooperative agreement for the regulation of coal exploration and mining on Federal lands is published below... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Federal lands program cooperative agreements...
30 CFR 900.15 - Federal lands program cooperative agreements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... INTRODUCTION § 900.15 Federal lands program cooperative agreements. The full text of any State and Federal cooperative agreement for the regulation of coal exploration and mining on Federal lands is published below... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Federal lands program cooperative agreements...
EnGeoMAP - geological applications within the EnMAP hyperspectral satellite science program
NASA Astrophysics Data System (ADS)
Boesche, N. K.; Mielke, C.; Rogass, C.; Guanter, L.
2016-12-01
Hyperspectral investigations from near field to space substantially contribute to geological exploration and mining monitoring of raw material and mineral deposits. Due to their spectral characteristics, large mineral occurrences and minefields can be identified from space and the spatial distribution of distinct proxy minerals be mapped. In the frame of the EnMAP hyperspectral satellite science program a mineral and elemental mapping tool was developed - the EnGeoMAP. It contains a basic mineral mapping and a rare earth element mapping approach. This study shows the performance of EnGeoMAP based on simulated EnMAP data of the rare earth element bearing Mountain Pass Carbonatite Complex, USA, and the Rodalquilar and Lomilla Calderas, Spain, which host the economically relevant gold-silver, lead-zinc-silver-gold and alunite deposits. The mountain pass image data was simulated on the basis of AVIRIS Next Generation images, while the Rodalquilar data is based on HyMap images. The EnGeoMAP - Base approach was applied to both images, while the mountain pass image data were additionally analysed using the EnGeoMAP - REE software tool. The results are mineral and elemental maps that serve as proxies for the regional lithology and deposit types. The validation of the maps is based on chemical analyses of field samples. Current airborne sensors meet the spatial and spectral requirements for detailed mineral mapping and future hyperspectral space borne missions will additionally provide a large coverage. For those hyperspectral missions, EnGeoMAP is a rapid data analysis tool that is provided to spectral geologists working in mineral exploration.
30 CFR 732.15 - Criteria for approval or disapproval of State programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... programs. 732.15 Section 732.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... laws and regulations pertaining to coal exploration and surface coal mining and reclamation operations... system consistent with the regulations of subchapter G of this chapter and prohibit surface coal mining...
30 CFR 922.700 - Michigan Federal program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... centum of the tonnage of minerals removed for purposes of commercial use or sale; or coal explorations... and Open Space Preservation Act, MCL section 554.701, pertaining to land use restrictions including... commercial use or sale; or coal explorations subject to section 512 of the Act (30 U.S.C. 1262); or where the...
30 CFR 922.700 - Michigan Federal program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... centum of the tonnage of minerals removed for purposes of commercial use or sale; or coal explorations... and Open Space Preservation Act, MCL section 554.701, pertaining to land use restrictions including... commercial use or sale; or coal explorations subject to section 512 of the Act (30 U.S.C. 1262); or where the...
30 CFR 922.700 - Michigan Federal program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... centum of the tonnage of minerals removed for purposes of commercial use or sale; or coal explorations... and Open Space Preservation Act, MCL section 554.701, pertaining to land use restrictions including... commercial use or sale; or coal explorations subject to section 512 of the Act (30 U.S.C. 1262); or where the...
30 CFR 922.700 - Michigan Federal program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... centum of the tonnage of minerals removed for purposes of commercial use or sale; or coal explorations... and Open Space Preservation Act, MCL section 554.701, pertaining to land use restrictions including... commercial use or sale; or coal explorations subject to section 512 of the Act (30 U.S.C. 1262); or where the...
43 CFR 3802.4-3 - Multiple-use conflicts.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINING CLAIMS UNDER THE GENERAL MINING LAWS Exploration and Mining, Wilderness Review Program § 3802.4-3 Multiple-use conflicts. In the event that uses...
NASA Astrophysics Data System (ADS)
Payler, Samuel J.; Biddle, Jennifer F.; Coates, Andrew J.; Cousins, Claire R.; Cross, Rachel E.; Cullen, David C.; Downs, Michael T.; Direito, Susana O. L.; Edwards, Thomas; Gray, Amber L.; Genis, Jac; Gunn, Matthew; Hansford, Graeme M.; Harkness, Patrick; Holt, John; Josset, Jean-Luc; Li, Xuan; Lees, David S.; Lim, Darlene S. S.; McHugh, Melissa; McLuckie, David; Meehan, Emma; Paling, Sean M.; Souchon, Audrey; Yeoman, Louise; Cockell, Charles S.
2017-04-01
The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research - MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining.
Increasing Diversity in the Geosciences: Recruitment Programs and Student Self-Efficacy
ERIC Educational Resources Information Center
Baber, Lorenzo D.; Pifer, Meghan J.; Colbeck, Carol; Furman, Tanya
2010-01-01
Using a conceptual framework constructed around self-efficacy, this study explores specific recruitment programs that may contribute to the development of self-efficacy for students of color in the geosciences. This mixed methods study of geoscience education includes quantitative analysis of the Summer Experience in Earth and Mineral Science…
An Inexpensive Way of Teaching Uncertainty and Mineral Exploration Drilling in the Classroom
NASA Astrophysics Data System (ADS)
Aquino, J. S.
2014-12-01
This presentation is all about inexpensive ways of teaching uncertainty and mineral exploration drilling in the classroom. These labs were developed as an off-shoot of my years of mineral industry experience before I transitioned to geoscience education. I have developed several classroom lab exercises that relate to the role of modeling, uncertainty and prediction in mineral exploration. These lessons are mostly less expensive ($<5/group) hands-on activities that can be differentiated across grade levels. Early in the semester, modeling is explored through the cube and toilet paper roll puzzle lab. This is then immediately followed by the penny experiment that gives a physical meaning to the concept of uncertainty. However, it is the end-of-semester shoebox drilling lab that serves as the culminating activity for modeling, uncertainty and prediction. An object (orebody) is hidden inside a shoebox and the students are challenged to design a drilling program to predict the location and topology of a "mineral deposit". The students' decision on the location of the first few drill holes will be based on how they analyze, synthesize and evaluate simple surface topographic, geologic and geochemical +/- geophysical data overlain on top of the box. Before drilling, students are required to construct several geologic sections that will "model" the shape of the hidden orebody. Using bamboo skewers as their drilling equipment, students then commence their drilling and along the way learn the importance of drill spacing in decreasing uncertainty or increasing confidence. Lastly, the mineral separation lab gives them an opportunity to design another experiment that mimics mineral processing and learns a valuable lesson on the difficulties in recovery and how it relates to entropy (no such thing as 100% recoverability). The last two labs can be further enhanced with economic analysis through incorporation of drilling and processing costs. Students further appreciate the world of of mineral exploration with several YouTube videos on the use of 3D and 4D GIS mine modeling softwares. However at the same time, I forewarn them about the dangers on the dependence to these visually attractive computer-generated products without field verification or the fidelity to the ground-based and drillcore-based observations.
Geochemical Exploration Techniques Applicable in the Search for Copper Deposits
Chaffee, Maurice A.
1975-01-01
Geochemical exploration is an important part of copper-resource evaluation. A large number of geochemical exploration techniques, both proved and untried, are available to the geochemist to use in the search for new copper deposits. Analyses of whole-rock samples have been used in both regional and local geochemical exploration surveys in the search for copper. Analyses of mineral separates, such as biotite, magnetite, and sulfides, have also been used. Analyses of soil samples are widely used in geochemical exploration, especially for localized surveys. It is important to distinguish between residual and transported soil types. Orientation studies should always be conducted prior to a geochemical investigation in a given area in order to determine the best soil horizon and the best size of soil material for sampling in that area. Silty frost boils, caliche, and desert varnish are specialized types of soil samples that might be useful sampling media. Soil gas is a new and potentially valuable geochemical sampling medium, especially in exploring for buried mineral deposits in arid regions. Gaseous products in samples of soil may be related to base-metal deposits and include mercury vapor, sulfur dioxide, hydrogen sulfide, carbon oxysulfide, carbon dioxide, hydrogen, oxygen, nitrogen, the noble gases, the halogens, and many hydrocarbon compounds. Transported materials that have been used in geochemical sampling programs include glacial float boulders, glacial till, esker gravels, stream sediments, stream-sediment concentrates, and lake sediments. Stream-sediment sampling is probably the most widely used and most successful geochemical exploration technique. Hydrogeochemical exploration programs have utilized hot- and cold-spring waters and their precipitates as well as waters from lakes, streams, and wells. Organic gel found in lakes and at stream mouths is an unproved sampling medium. Suspended material and dissolved gases in any type of water may also be useful media. Samples of ice and snow have been used for limited geochemical surveys. Both geobotanical and biogeochemical surveys have been successful in locating copper deposits in many parts of the world. Micro-organisms, including bacteria and algae, are other unproved media that should be studied. Animals can be used in geochemical-prospecting programs. Dogs have been used quite successfully to sniff out hidden and exposed sulfide minerals. Tennite mounds are commonly composed of subsurface material, but have not as yet proved to be useful in locating buried mineral deposits. Animal tissue and waste products are essentially unproved but potentially valuable sampling media. Knowledge of the location of areas where trace-element-associated diseases in animals and man are endemic as well as a better understanding of these diseases, may aid in identifying regions that are enriched in or depleted of various elements, including copper. Results of analyses of gases in the atmosphere are proving valuable in mineral-exploration surveys. Studies involving metallic compounds exhaled by plants into the atmosphere, and of particulate matter suspended in the atmosphere are reviewed these methods may become important in the future. Remote-sensing techniques are useful for making indirect measurements of geochemical responses. Two techniques applicable to geochemical exploration are neutron-activation analysis and gamma-ray spectrometry. Aerial photography is especially useful in vegetation surveys. Radar imagery is an unproved but potentially valuable method for use in studies of vegetation in perpetually clouded regions. With the advent of modern computers, many new techniques, such as correlation analysis, regression analysis, discriminant analysis, factor analysis, cluster analysis, trend-surface analysis, and moving-average analysis can be applied to geochemical data sets. Selective use of these techniques can provide new insights into the interpretatio
30 CFR 784.20 - Subsidence control plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS UNDERGROUND MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 784.20... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Subsidence control plan. 784.20 Section 784.20...
30 CFR 736.22 - Contents of a Federal program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 736.22 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE..., the Director shall— (1) Consider the nature of that State's soils, topography, climate, and biological... of coal exploration and surface coal mining and reclamation operations more stringent than those...
30 CFR 778.13 - Providing property interest information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED...) Each legal or equitable owner(s) of record of the surface and mineral. (2) The holder(s) of record of...
NASA Astrophysics Data System (ADS)
Abbud-Madrid, A.
2017-10-01
For eighteen years, SRR has brought together interested individuals from the space exploration community, the mining and minerals industries, and the financial sector to discuss issues related to the ISRU of lunar, asteroidal, and martian resources.
NASA Astrophysics Data System (ADS)
Rock, Nicholas M. S.
This review covers rock, mineral and isotope geochemistry, mineralogy, igneous and metamorphic petrology, and volcanology. Crystallography, exploration geochemistry, and mineral exploration are excluded. Fairly extended comments on software availability, and on computerization of the publication process and of specimen collection indexes, may interest a wider audience. A proliferation of both published and commercial software in the past 3 years indicates increasing interest in what traditionally has been a rather reluctant sphere of geoscience computer activity. However, much of this software duplicates the same old functions (Harker and triangular plots, mineral recalculations, etc.). It usually is more efficient nowadays to use someone else's program, or to employ the command language in one of many general-purpose spreadsheet or statistical packages available, than to program a specialist operation from scratch in, say, FORTRAN. Greatest activity has been in mineralogy, where several journals specifically encourage publication of computer-related activities, and IMA and MSA Working Groups on microcomputers have been convened. In petrology and geochemistry, large national databases of rock and mineral analyses continue to multiply, whereas the international database IGBA grows slowly; some form of integration is necessary to make these disparate systems of lasting value to the global "hard-rock" community. Total merging or separate addressing via an intelligent "front-end" are both possibilities. In volcanology, the BBC's videodisk Volcanoes and the Smithsonian Institution's Global Volcanism Project use the most up-to-date computer technology in an exciting and innovative way, to promote public education.
United States Geological Survey Yearbook, fiscal year 1977
,
1978-01-01
Fiscal 1977 marked the 98th year the U.S. Geological Survey has endeavored in the unceasing task of providing information about the Earth and its physical resources, and regulating the activities of lessees engaged in extracting petroleum and other minerals from the public domain. The past year also marked the beginning of a third and challenging mission, drawing upon the Survey's scientific talents, to explore and assess the petroleum potential of a vast 37,000 square miles expanse of Alaska's North Slope known as the National Petroleum Reserve in Alaska. The first two missions require detailed and continuing investigations of the location, character, and extent of the Nation's land, water, mineral, and energy resources; a continuing National Topographic Mapping Program; the classification of Federal lands for mineral and waterpower potential; and a continuing program of technical review, safety inspection and royalty auditing of the operations of private parties engaged in mineral development on Federal lands to assure standards of safety, environmental protection, resource conservation, and a fair market return to the public for the development of their resources.
43 CFR 3802.6 - Public availability of information.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Interior covering the public disclosure of data and information contained in Department of the Interior records. Certain mineral information not protected from public disclosure under part 2 may of this title... Exploration and Mining, Wilderness Review Program § 3802.6 Public availability of information. (a) All data...
43 CFR 3802.6 - Public availability of information.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Interior covering the public disclosure of data and information contained in Department of the Interior records. Certain mineral information not protected from public disclosure under part 2 may of this title... Exploration and Mining, Wilderness Review Program § 3802.6 Public availability of information. (a) All data...
43 CFR 3802.6 - Public availability of information.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Interior covering the public disclosure of data and information contained in Department of the Interior records. Certain mineral information not protected from public disclosure under part 2 may of this title... Exploration and Mining, Wilderness Review Program § 3802.6 Public availability of information. (a) All data...
AuScope research infrastructure - supporting Australian mineral discovery
NASA Astrophysics Data System (ADS)
McInnes, B.; Rawling, T.
2016-12-01
Earth and geospatial scientists are heavy users of data products. When industry geologists access spatial data from the field and the exploration office they require data products that are discoverable, searchable, interoperable and attributed with robust metadata. Over the last decade AuScope has utilised NCRIS funding to provide a variety of data products including geophysical data (reflection and passive seismic, magnetotellurics and gravity), GIS layers from state and national geological survey organisations, hyperspectral core logging (National Virtual Core Library) and time-series geospatial data from GNSS and VLBI instruments - all delivered using AuScope GRID technologies based on the Spatial Information Services Stack (SiSS). Perhaps one of the best examples of collaboration to deliver data products to industry users is the National Mineral Library. Working with researchers at Curtin Universities John de Laeter Centre and ANDS, AuScope has also supported the development of a Laboratory Information Management System (LIMS). The project has produced an entirely new workflow, based around a TESCAN TIMA field emission scanning electron microscope, that allows metadata to be collected and recorded from the sample collection and preparation right through to data delivery and publication. This process has facilitated the scanning of a large stockpile of mineral samples from across Western Australia that will produce a state-wide Mineral Library, allowing mineral explorers to better understand the composition of critical rock outcrop samples from all over the state. This new NCRIS supported initiative provides a dataset that underpins both academic and applied research programs and is important for the economic future of Australia. Mining companies do a lot of heavy mineral analysis in research and development but, because there isn't a baseline for mineralogy across each state, it is difficult to have full confidence in the heavy mineral data. This creates an issue for pinpointing where the next major mineral deposits are. Having solid baseline data will help improve targeting, which in turn reduces the costs associated with exploration and supports new discovery.
Dissolution Rates and Mineral Lifetimes of Phosphate Containing Minerals and Implications for Mars
NASA Astrophysics Data System (ADS)
Adcock, C. T.; Hausrath, E.
2011-12-01
The objectives of NASA's Mars Exploration Program include exploring the planet's habitability and the possibility of past, present, or future life. This includes investigating "possible supplies of bioessential elements" [1]. Phosphate is one such bioessential element for life as we understand it. Phosphate is also abundant on Mars [2], and the phosphate rich minerals chlorapatite, fluorapatite, and merrillite have been observed in Martian meteorites [3]. Surface rock analyses from the MER Spirit also show the loss of a phosphate rich mineral from the rocks Wishstone and Watchtower at Gusev Crater [4,5], implying mineral dissolution. Dissolution rates of phosphate containing minerals are therefore important for characterizing phosphate mobility and bioavailability on Mars. Previous studies have measured dissolution rates of fluorapatite [6-8]. However, chlorapatite and merrillite (a non-terrestrial mineral similar to whitlockite) are more common phosphate minerals found in Martian meteorites [3], and few dissolution data exist for these minerals. We have begun batch dissolution experiments on chlorapatite, synthesized using methods of [9], and whitlockite, synthesized using a method modified from [10]. Additionally, we are dissolving Durango fluorapatite to compare to dissolution rates in literature, and natural Palermo whitlockite to compare to dissolution rates of our synthesized whitlockite. Batch dissolution experiments were performed after [8], using a 0.01 molar KNO3 solution with 0.1500g-0.3000g mineral powders and starting solution volumes of 180ml in LDPE reaction vessels. HNO3 or KOH were used to adjust initial pH as required. Dissolution rates are calculated from the rate of change of elemental concentration in solution as a function of time, and normalized to the mineral surface area as measured by BET. Resulting rates will be used to calculate mineral lifetimes for the different phosphate minerals under potential Mars-like aqueous conditions, and in future reactive transport modeling.
30 CFR 730.12 - Requirements for regulatory programs in States.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 730.12 Section 730.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... each State in which coal exploration and surface coal mining and reclamation operations are or may be... the issuance of an injunction by any court of competent jurisdiction shall not result in the...
30 CFR 732.17 - State program amendments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR... the number or size of coal exploration or surface coal mining and reclamation operations in the State... amendment(s) is being reviewed by the Director and will include the following: (i) The text or a summary of...
Elliott, James E.; Trautwein, C.M.; Wallace, C.A.; Lee, G.K.; Rowan, L.C.; Hanna, W.F.
1993-01-01
The Butte 1?x2 ? quadrangle in west-central Montana was investigated as part of the U.S. Geological Survey's Conterminous United States Mineral Assessment Program (CUSMAP). These investigations included geologic mapping, geochemical surveys, gravity and aeromagnetic surveys, examinations of mineral deposits, and specialized geochronologic and remote-sensing studies. The data collected during these studies were compiled, combined with available published and unpublished data, analyzed, and used in a mineral-resource assessment of the quadrangle. The results, including data, interpretations, and mineral-resource assessments for nine types of mineral deposits, are published separately as a folio of maps. These maps are accompanied by figures, tables, and explanatory text. This circular provides background information on the Butte quadrangle, summarizes the studies and published maps, and lists a selected bibliography of references pertinent to the geology, geochemistry, geophysics, and mineral resources of the quadrangle. The Butte quadrangle, which includes the world-famous Butte mining district, has a long history of mineral production. Many mining districts within the quadrangle have produced large quantities of many commodities; the most important in dollar value of production were copper, gold, silver, lead, zinc, manganese, molybdenum, and phosphate. At present, mines at several locations produce copper, molybdenum, gold, silver, lead, zinc, and phosphate. Exploration, mainly for gold, has indicated the presence of other mineral deposits that may be exploited in the future. The results of the investigations by the U.S. Geological Survey indicate that many areas of the quadrangle are highly favorable for the occurrence of additional undiscovered resources of gold, silver, copper, molybdenum, tungsten, and other metals in several deposit types.
The Expanding Marketplace for Applied Geophysics
NASA Astrophysics Data System (ADS)
Carlson, N.; Sirles, P.
2012-12-01
While the image of geophysics for the proverbial "layman" often seems limited to volcanoes and earthquakes, and to the geoscientist this image enlarges to include oil or minerals exploration and whole earth studies, there has been a steady increase in the application of geophysics into the realm of "daily life", such as real estate deals, highway infrastructure, and flood protection. This expansion of applications can be attributed to the improved economics from advances in equipment and interpretation. Traditional geophysical methods that at one time often only fit within the budgets of oil, gas, and minerals exploration programs can now be economically applied to much smaller scale needs like contaminant mapping, landfill delineation, and levee investigations. A real-world, economic example of this expanding marketplace is our company, which began very small and was aimed almost exclusively at the minerals exploration market. Most of our growth has been in the last 10 years, when we have expanded to five offices and a staff with almost 40 geoscientist degrees (21 in geophysics); much of this growth has been in the non-oil, non-minerals arenas. While much of our work still includes minerals exploration, other projects this year include wind-farm foundation studies, cavity detection above underground nuclear tests, landfill studies, acid mine drainage problems, and leaks in evaporation ponds. A methodology example of this expanding market is the induced polarization (IP) survey, once primarily used for minerals exploration, particularly large porphyry copper deposits, but now efficient enough to also use in environmental studies. The IP method has been particularly useful in delineating and characterizing old, poorly documented landfills, and recent research suggests it may also be useful in monitoring the accelerated biodegradation processes used in some cases to rehabilitate the sites. Compared to temperature monitoring systems, IP may be more useful in providing a better image of the subsurface to locate areas that are not being properly decomposed due to poor fluid flow or inefficient air circulation.Raw IP data in traditional pseudosection format, prior to modeling, showing the change in IP effects after four years of accelerated biodegradation of an old, buried, municipal solid waste landfill. Posted values are chargeability in milliseconds.
Prospector II: Towards a knowledge base for mineral deposits
McCammon, R.B.
1994-01-01
What began in the mid-seventies as a research effort in designing an expert system to aid geologists in exploring for hidden mineral deposits has in the late eighties become a full-sized knowledge-based system to aid geologists in conducting regional mineral resource assessments. Prospector II, the successor to Prospector, is interactive-graphics oriented, flexible in its representation of mineral deposit models, and suited to regional mineral resource assessment. In Prospector II, the geologist enters the findings for an area, selects the deposit models or examples of mineral deposits for consideration, and the program compares the findings with the models or the examples selected, noting the similarities, differences, and missing information. The models or the examples selected are ranked according to scores that are based on the comparisons with the findings. Findings can be reassessed and the process repeated if necessary. The results provide the geologist with a rationale for identifying those mineral deposit types that the geology of an area permits. In future, Prospector II can assist in the creation of new models used in regional mineral resource assessment and in striving toward an ultimate classification of mineral deposits. ?? 1994 International Association for Mathematical Geology.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-19
... Collection Activities: Comment Request for the Mine, Development, and Mineral Exploration Supplement (1 Form..., Development, and Mineral Exploration Supplement. This collection consists of one form and this notice provides... with domestic production, exploration, and mine development data for nonfuel mineral commodities. This...
Global nonfuel mineral exploration trends 2001-2015
Karl, Nick; Wilburn, David R.
2017-01-01
The mission of the U.S. Geological Survey (USGS) National Minerals Information Center (NMIC) is to collect, analyze and disseminate information on the domestic and international supply of and demand for minerals and mineral materials essential to the U.S. economy and national security. Understanding mineral exploration activities and trends assists government policy makers, minerals industry decision makers and research entities in identifying where future sources of mineral supply are likely to be discovered, the amount and type of these resources and factors that may affect exploration and development.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of silver in the nonmagnetic fraction of heavy-mineral concentrates of drainage-sediment samples. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle shows the regional distribution of copper in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle shows the regional distribution of barium in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
NASA Technical Reports Server (NTRS)
Saunders, D. F.; Thomas, G. E.
1973-01-01
Five areas in North America (North Slope-Alaska, Superior Province-Canada, Williston Basin-Montana, Colorado and New Mexico-West Texas) are being studied for discernibility of geological evidence on ERTS-1 imagery, Evidence mapped is compared with known mineral/hydrocarbon accumulations to determine the value of the imagery in commercial exploration programs. Evaluation has proceeded in the New Mexico-West Texas area while awaiting imagery in the other areas. To date, results have been better than expected. Clearly discernible structural lineaments in New Mexico-West Texas are evident on the photographs. Comparison of this evidence with known major mining localities in New Mexico indicates a clear pattern of coincidence between the lineaments and mining localities. In West Texas, lineament and geomorphological evidence obtainable from the photographs define the petroleum-productive Central Basin Platform. Based on evaluation results in the New Mexico-West Texas area and on cursory results in the other four areas of North America, ERTS-1 imagery will be extremely valuable in defining the regional and local structure in any commercial exploration program.
United States Geological Survey Annual Report, Fiscal Year 1975
,
1976-01-01
The Survey resumes the practice of annually summarizing the progress it has made in identifying the Nation's land, water, energy, and mineral resources, classifying federally owned mineral lands and waterpower sites, and in supervising the exploration and development of energy and mineral resources on Federal and Indian lands. The Annual Report for 1975 consists of five parts: * The Year in Review - a review of the issues and events which affected Survey programs and highlights of program accomplishments. * Perspectives - several short papers which address major resource issues and summarize recent advances in the earth sciences. * A description of the Survey's budget, programs, and accomplishments. * A set of statistical tables and related information which documents program trends, workloads, and accomplishments. * A compendium of Survey publications and information services available to the public. One purpose of this report is to increase public awareness and understanding of the Geological Survey's programs and, more generally, of the role of earth sciences information in helping to resolve many of the natural resource conflicts that face our society now and in the years ahead. To be useful, however, information must be available and readily accessible to those responsible for natural resource policy at the time that the decisions are made. This report emphasizes the types of information products and services provided by the Survey and tells how to obtain additional information.
Spectral analysis for automated exploration and sample acquisition
NASA Technical Reports Server (NTRS)
Eberlein, Susan; Yates, Gigi
1992-01-01
Future space exploration missions will rely heavily on the use of complex instrument data for determining the geologic, chemical, and elemental character of planetary surfaces. One important instrument is the imaging spectrometer, which collects complete images in multiple discrete wavelengths in the visible and infrared regions of the spectrum. Extensive computational effort is required to extract information from such high-dimensional data. A hierarchical classification scheme allows multispectral data to be analyzed for purposes of mineral classification while limiting the overall computational requirements. The hierarchical classifier exploits the tunability of a new type of imaging spectrometer which is based on an acousto-optic tunable filter. This spectrometer collects a complete image in each wavelength passband without spatial scanning. It may be programmed to scan through a range of wavelengths or to collect only specific bands for data analysis. Spectral classification activities employ artificial neural networks, trained to recognize a number of mineral classes. Analysis of the trained networks has proven useful in determining which subsets of spectral bands should be employed at each step of the hierarchical classifier. The network classifiers are capable of recognizing all mineral types which were included in the training set. In addition, the major components of many mineral mixtures can also be recognized. This capability may prove useful for a system designed to evaluate data in a strange environment where details of the mineral composition are not known in advance.
Unusual Reactivity of the Martian Soil: Oxygen Release Upon Humidification
NASA Technical Reports Server (NTRS)
Yen, A. S.
2002-01-01
Recent lab results show that oxygen evolves from superoxide-coated mineral grains upon exposure to water vapor. This observation is additional support of the hypothesis that UV-generated O2 is responsible for the reactivity of the martian soil. Discussion of current NASA research opportunities, status of various programs within the Solar System Exploration Division, and employment opportunities within NASA Headquarters to support these programs. Additional information is contained in the original extended abstract.
Tourmaline as a recorder of ore-forming processes
Slack, John F.; Trumbull, Robert B.
2011-01-01
Tourmaline occurs in diverse types of hydrothermal mineral deposits and can be used to constrain the nature and evolution of ore-forming fl uids. Because of its broad range in composition and retention of chemical and isotopic signatures, tourmaline may be the only robust recorder of original mineralizing processes in some deposits. Microtextures and in situ analysis of compositional and isotopic variations in ore-related tourmaline provide valuable insights into hydrothermal systems in seafl oor, sedimentary, magmatic, and metamorphic environments. Deciphering the hydrothermal record in tourmaline also holds promise for aiding exploration programs in the search for new ore deposits.
Exploration for fossil and nuclear fuels from orbital altitudes
NASA Technical Reports Server (NTRS)
Short, N. M.
1975-01-01
A review of satellite-based photographic (optical and infrared) and microwave exploration and large-area mapping of the earth's surface in the ERTS program. Synoptic cloud-free coverage of large areas has been achieved with planimetric vertical views of the earth's surface useful in compiling close-to-orthographic mosaics. Radar penetration of cloud cover and infrared penetration of forest cover have been successful to some extent. Geological applications include map editing (with corrections in scale and computer processing of images), landforms analysis, structural geology studies, lithological identification, and exploration for minerals and fuels. Limitations of the method are noted.
Field Integration of Worldview-3 as new Frontier of Mineral Exploration for Tropical Zone
NASA Astrophysics Data System (ADS)
Mahanta, P.; Maiti, S.
2017-12-01
Worldview-3 (WV-3) is a newly launched satellite program (2014) with total of 8 VNIR bands and 8 SWIR bands covering all possible absorption features of alteration minerals. Therefore integration of WV-3 dataset with conventional geological studies can be new frontier for mineral exploration. In the present study, we successfully accomplished that by identifying alteration mineral assemblage, field investigation, XRD, XRF and microscopic study etc. The chosen study area SPSZ, 120km long and 4-5km width corridor of highly sheared and deformed rock masses is unexplored in comparison to adjacent Singhbhum Shear Zone (SSZ). It demarcates the boundary between Proterozoic Chottanagpur Granite Gneissic Complex (CGGC) in north and Paleo proterozoic North Singhbhum Mobile belt (NSMB) in south. Discrete local studies indicated the presence of U, REE, Clay, Fe & Mn along with some Au and other polymetallic deposits of low concentration. Earlier attempts of remote sensing studies were hindered due to coarse spatial resolution, similarity between spectra of vegetation and alteration group of minerals like clay and mica, and lack of ground truthing with field spectra and laboratory analysis. Here involving WV-3, we identified and mapped alteration minerals kaolinite, montmorillonite, pyrophyllite, white mica, sericite, goethite, lemonite, hematite and quartz with better resolution and accuracy (78%). Further, field spectra and XRD analyses supports these results and confirm the presence of alterations. XRF analysis identified the presence of Cu (0.06±0.03), Ti (1.7±1), and V (0.03±0.02) anomaly pointing towards possible mineralization. Occurrences of alteration as vertically dipping and alternating with iron (red and black) and mica rich (white and gray) zones in hills as well as microscopic evidences of chloritization and sericitization of feldspars were collectively pointing towards their hydrothermal origin. Finally, we conclude that WV-3 will add a new direction to mineral exploration, as it have the potential to map complex alteration pattern with small spatial occurrence and frequent variation of individual more precisely even for vegetated and unexplored vicinity.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of cadmium and antimony in the nonmagnetic fraction of drainage-sediment samples. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
BOREHOLE NEUTRON ACTIVATION: THE RARE EARTHS.
Mikesell, J.L.; Senftle, F.E.
1987-01-01
Neutron-induced borehole gamma-ray spectroscopy has been widely used as a geophysical exploration technique by the petroleum industry, but its use for mineral exploration is not as common. Nuclear methods can be applied to mineral exploration, for determining stratigraphy and bed correlations, for mapping ore deposits, and for studying mineral concentration gradients. High-resolution detectors are essential for mineral exploration, and by using them an analysis of the major element concentrations in a borehole can usually be made. A number of economically important elements can be detected at typical ore-grade concentrations using this method. Because of the application of the rare-earth elements to high-temperature superconductors, these elements are examined in detail as an example of how nuclear techniques can be applied to mineral exploration.
30 CFR 773.25 - Who may challenge ownership or control listings and findings.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Who may challenge ownership or control listings... EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR PERMITS AND PERMIT PROCESSING § 773.25 Who may challenge ownership or control listings and findings. You may challenge a listing or finding of ownership or...
Applications review for a Space Program Imaging Radar (SPIR)
NASA Technical Reports Server (NTRS)
Simonett, D. S.
1976-01-01
The needs, applications, user support, research, and theoretical studies of imaging radar are reviewed. The applications of radar in water resources, minerals and petroleum exploration, vegetation resources, ocean radar imaging, and cartography are discussed. The advantages of space imaging radar are presented, and it is recommended that imaging radar be placed on the space shuttle.
Economics of Lunar Mineral Exploration
NASA Astrophysics Data System (ADS)
Blair, Brad R.
1999-01-01
Exploration of space is increasingly being rationalized by the potential for long-term commercial payoffs. The commercial use of lunar resources is gaining relevance as technology and infrastructure increase, and will depend on an adequate foundation of geological information. While past lunar exploration has provided detailed knowledge about the composition, geologic history and structural characteristics of the lunar surface at six locations, the rest of the Moon remains largely unexplored. The purpose of this paper is to describe traditional methods and decision criteria used in the mineral exploration business. Rationale for terrestrial mineral exploration is firmly entrenched within the context of economic gain, with asset valuation forming the primary feedback to decision making. The paper presents a summary of relevant knowledge from the field of exploration economics, applying it to the case of space mineral development. It includes a description of the current paradigm of both space exploration and terrestrial mineral exploration, as each pertains to setting priorities and decision making. It briefly examines issues related to space resource demand, extraction and transportation to establish its relevance.
Zhdanov,; Michael, S [Salt Lake City, UT
2008-01-29
Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.
3&4D Geomodeling Applied to Mineral Resources Exploration - A New Tool for Targeting Deposits.
NASA Astrophysics Data System (ADS)
Royer, Jean-Jacques; Mejia, Pablo; Caumon, Guillaume; Collon-Drouaillet, Pauline
2013-04-01
3 & 4D geomodeling, a computer method for reconstituting the past deformation history of geological formations, has been used in oil and gas exploration for more than a decade for reconstituting fluid migration. It begins nowadays to be applied for exploring with new eyes old mature mining fields and new prospects. We describe shortly the 3&4D geomodeling basic notions, concepts, and methodology when applied to mineral resources assessment and modeling ore deposits, pointing out the advantages, recommendations and limitations, together with new challenges they rise. Several 3D GeoModels of mining explorations selected across Europe will be presented as illustrative case studies which have been achieved during the EU FP7 ProMine research project. It includes: (i) the Cu-Au porphyry deposits in the Hellenic Belt (Greece); (ii) the VMS in the Iberian Pyrite Belt including the Neves Corvo deposit (Portugal) and (iii) the sediment-hosted polymetallic Cu-Ag (Au, PGE) Kupferschiefer ore deposit in the Foresudetic Belt (Poland). In each case full 3D models using surfaces and regular grid (Sgrid) were built from all dataset available from exploration and exploitation including geological primary maps, 2D seismic cross-sections, and boreholes. The level of knowledge may differ from one site to another however those 3D resulting models were used to pilot additional field and exploration works. In the case of the Kupferschiefer, a sequential restoration-decompaction (4D geomodeling) from the Upper Permian to Cenozoic was conducted in the Lubin- Sieroszowice district of Poland. The results help in better understanding the various superimposed mineralization events which occurred through time in this copper deposit. A hydro-fracturing index was then calculated from the estimated overpressures during a Late Cretaceous-Early Paleocene up-lifting, and seems to correlate with the copper content distribution in the ore-series. These results are in agreement with an Early Paleocene paleomagnetic dating in the Germany part of the Kupferschiefer ore, and which perhaps represents the last mineralizing stages. Last, we discuss perspectives and make recommendations on applying 3&4 geomodeling in mineral resources appraisal. The above research received funding from the European Union's Seventh Framework Program under grant agreement 228559 (ProMine project).
A geologic and mineral exploration spatial database for the Stillwater Complex, Montana
Zientek, Michael L.; Parks, Heather L.
2014-01-01
This report provides essential spatially referenced datasets based on geologic mapping and mineral exploration activities conducted from the 1920s to the 1990s. This information will facilitate research on the complex and provide background material needed to explore for mineral resources and to develop sound land-management policy.
NASA Technical Reports Server (NTRS)
Saunders, D. F. (Principal Investigator); Thomas, G. L.; Kinsman, F. E.
1973-01-01
The author has identified the following significant results. Five areas in North America (North Slope-Alaska, Superior Province-Canada, Williston Basin-Montana, Colorado, and New Mexico-West Texas) are being studied for discernibility of geological evidence on ERTS-1 imagery. Evidence mapped is compared with known mineral/hydrocarbon accumulations to determine the value of the imagery in commercial exploration programs. Evaluation has proceeded in the New Mexico-Texas area, and to date, results have been better than expected. Clearly discernible structural lineaments in this area are evident on the photographs. Comparison of this evidence with known major mining localities in New Mexico indicates a clear pattern of coincidence between the lineaments and mining localities. In West Texas, lineament and geomorphological evidence obtainable from the photographs define the petroleum-productive Central Basin Platform. Based on evaluation of results in the New Mexico-West Texas area and on cursory results in the other four areas of North America, it is concluded that ERTS-1 imagery will be extremely valuable in defining the regional and local structure in any commercial exploration program.
Effect of tax laws on mineral exploration in Canada
DeYoung, J.H.
1977-01-01
Changes since 1972 in Canadian federal and provincial tax laws have eliminated many of the prior tax incentives offered to the mining industry. These changes provide an opportunity to study the effect of tax laws on a country's mineral resource development by comparing trends in mineral exploration in various provinces with adjoining regions, and by comparing these results with firm behaviour that would be expected from microeconomic analysis. Mineral producers have sought higher, more stable returns, resulting in shifts of exploration into political regions with more favourable and less changeable tax policies. Future supplies of mineral raw materials from a political region are dependent on current exploration effort, which is in turn influenced by the region's tax laws. ?? 1977.
Miller, W.R.; Motooka, J.M.; McHugh, J.B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of gold in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the Selected References of this report. The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of thorium in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of zinc in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of lead in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of molybdenum in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle shows the regional distribution of bismuth and cadimum in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of silver in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of tin in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Miller, William R.; Motooka, Jerry M.; McHugh, John B.
1990-01-01
This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of uranium in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral-resource potential for this quadrangle. Reconnaissance geochemical surveys are valuable tools in mineral exploration, especially when used in conjunction with data obtained from other earth science disciplines. Identifying specific exploration targets generally involves additional, more detailed investigations.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... SECURITIES AND EXCHANGE COMMISSION [ File No. 500-1] In the Matter of Heritage Worldwide, Inc., Impala Mineral Exploration Corp., Klondike Star Mineral Corporation, MIV Therapeutics Inc., Most Home... concerning the securities of Klondike Star Mineral Corporation because it has not filed any periodic reports...
NASA Astrophysics Data System (ADS)
Gao, Bangfei; Xie, Hui
The stated-owned exploration companies (SOEC), of state-owned enterprises background, go for profits as well as national and social responsibility. The SOEC play significant roles in commercial mineral exploration by taking advantage of their brands, strong financial backing and operation capability to integrate the capital and technology. Since the disadvantage of backwardness, the SOEC have to deal with multiple problems, such as high costs of mineral rights acquisition, multi-cooperation project management, and the criterions for traditional techniques can not adapt the rapid commercial mineral exploration and evaluation. Under the new situation, the SOEC should be careful to make investment decisions, strengthen project management, introduce venture capital funds, and cooperate with the government and the state-owned exploration institution (SOEI). It's suggested to carry out small-scale assembled explorations to reduce the exploration risks and costs, and to increase the exploration success rate.
The CELSS research program - A brief review of recent activities
NASA Technical Reports Server (NTRS)
Macelroy, R. D.; Tremor, J.; Bubenheim, D. L.; Gale, J.
1989-01-01
The history of the Controlled Ecological Life Support System program, initiated by NASA in the late 1970s to explore the use of bioregenerative methods of life support, is reviewed. The project focused on examining the process involved in converting inorganic minerals and gases into life support materials using sunlight as the primary energy source. The research, planning, and technological development required by the CELSS program and conducted at NASA field centers, at various universities, and by commercial organizations are reviewed. Research activities at universities have focused upon exploring methods of reducing the size of the system, reducing system power requirements, understanding issues that are associated with its long-term stability, and identifying new technologies that might be useful in improving its efficiency. Research activities at Ames research center have focused on the use of common duckweed as a high biomass-producing plant, which is high in protein and on waste processing.
Prolific Nevada discovery draws interest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, K.
1984-01-01
The Nevada Minerals Dept. reports an increase in requests for state operating regulations, and is encouraged by area operator plans to forge ahead with exploration programs. Acreage near recent successes is expected to attract the majority of activity in the state. The successful wildcat's production rate consistently averages more than 1000 bo/d. Preliminary indications are that Amoco Production Co. will be one of the most active operators this year.
76 FR 76612 - Amendments to OMB Control Numbers and Certain Forms
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-08
..., Geothermal energy, Government contracts, Indians--lands, Mineral royalties, Oil and gas exploration, Public..., Geothermal energy, Government contracts, Indians--lands, Mineral royalties, Oil and gas exploration, Public... shelf, Electronic funds transfers, Geothermal energy, Indians--lands, Mineral royalties, Oil and gas...
Kiilsgaard, Thor H.
1970-01-01
The Samrah mine, near Ad Dawadimi, Kingdom of Saudi Arabia, has been explored by 18 diamond drill holes, aggregating 3,624.3 meters in length. The holes demonstrate that the Samrah vein zone follows premineral andesitic dikes. Smaller veins split away from the main Samrmh vein zone, The Samrah vein zone is known to be mineralized at the surface for at least 400 meters and to a depth of a of the least 220 meters below the surface. Within this mineralized part of the vein zone diamond drilling has indicated ore reserves of approximately 204,000 metric tons, the average value of which is estimated at $57 per ton.
Carbonatites of the World, Explored Deposits of Nb and REE - Database and Grade and Tonnage Models
Berger, Vladimir I.; Singer, Donald A.; Orris, Greta J.
2009-01-01
This report is based on published tonnage and grade data on 58 Nb- and rare-earth-element (REE)-bearing carbonatite deposits that are mostly well explored and are partially mined or contain resources of these elements. The deposits represent only a part of the known 527 carbonatites around the world, but they are characterized by reliable quantitative data on ore tonnages and grades of niobium and REE. Grade and tonnage models are an important component of mineral resource assessments. Carbonatites present one of the main natural sources of niobium and rare-earth elements, the economic importance of which grows consistently. A purpose of this report is to update earlier publications. New information about known deposits, as well as data on new deposits published during the last decade, are incorporated in the present paper. The compiled database (appendix 1; linked to right) contains 60 explored Nb- and REE-bearing carbonatite deposits - resources of 55 of these deposits are taken from publications. In the present updated grade-tonnage model we have added 24 deposits comparing with the previous model of Singer (1998). Resources of most deposits are residuum ores in the upper part of carbonatite bodies. Mineral-deposit models are important in exploration planning and quantitative resource assessments for two reasons: (1) grades and tonnages among deposit types vary significantly, and (2) deposits of different types are present in distinct geologic settings that can be identified from geologic maps. Mineral-deposit models combine the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Globally based deposit models allow recognition of important features and demonstrate how common different features are. Well-designed deposit models allow geologists to deduce possible mineral-deposit types in a given geologic environment, and the grade and tonnage models allow economists to estimate the possible economic viability of these resources. Thus, mineral-deposit models play a central role in presenting geoscience information in a useful form to policy makers. The foundation of mineral-deposit models is information about known deposits. This publication presents the latest geologic information and newly developed grade and tonnage models for Nb- and REE-carbonatite deposits in digital form. The publication contains computer files with information on deposits from around the world. It also contains a text file allowing locations of all deposits to be plotted in geographic information system (GIS) programs. The data are presented in FileMaker Pro as well as in .xls and text files to make the information available to a broadly based audience. The value of this information and any derived analyses depends critically on the consistent manner of data gathering. For this reason, we first discuss the rules used in this compilation. Next, the fields of the database are explained. Finally, we provide new grade and tonnage models and analysis of the information in the file.
NASA Astrophysics Data System (ADS)
Clark, D.
2012-12-01
Magnetics is the most widely used geophysical method in hard rock exploration and magnetic surveys are an integral part of exploration programs for many types of mineral deposit, including porphyry Cu, intrusive-related gold, volcanic-hosted epithermal Au, IOCG, VMS, and Ni sulfide deposits. However, the magnetic signatures of ore deposits and their associated mineralized systems are extremely variable and exploration that is based simply on searching for signatures that resemble those of known deposits and systems is rarely successful. Predictive magnetic exploration models are based upon well-established geological models, combined with magnetic property measurements and geological information from well-studied deposits, and guided by magnetic petrological understanding of the processes that create, destroy and modify magnetic minerals in rocks. These models are designed to guide exploration by predicting magnetic signatures that are appropriate to specific geological settings, taking into account factors such as tectonic province; protolith composition; post-formation tilting/faulting/ burial/ exhumation and partial erosion; and metamorphism. Patterns of zoned hydrothermal alteration are important indicators of potentially mineralized systems and, if properly interpreted, can provided vectors to ore. Magnetic signatures associated with these patterns at a range of scales can provide valuable information on prospectivity and can guide drilling, provided they are correctly interpreted in geological terms. This presentation reviews effects of the important types of hydrothermal alteration on magnetic properties within mineralized systems, with particular reference to porphyry copper and IOCG deposits. For example, an unmodified gold-rich porphyry copper system, emplaced into mafic-intermediate volcanic host rocks (such as Bajo de la Alumbrera, Argentina) exhibits an inner potassic zone that is strongly mineralized and magnetite-rich, which is surrounded by an outer potassic zone that contains less abundant, but still significant, magnetite. The inner potassic zone represents relatively intense development of qtz-mt-Kfsp veins, whereas the outer potassic zone corresponds to bio-Kfsp-qtz-mt alteration. A shell of magnetite-destructive phyllic alteration with very low susceptibility envelops the potassic zones. The phyllic zone is surrounded by a zone of intense propylitic alteration, which is partially magnetite-destructive, which passes out into weak propylitic alteration and then into unaltered, moderately magnetic volcanics. For such a system, emplaced into magnetic intermediate-mafic igneous host rocks and exposed after removal by erosion of ~ 1 km of overburden, a strong central RTP high is surrounded by a relatively weak annular low over the phyllic zone, gradually returning to background levels over the propylitic zone (an "archery target" signature). For a completely buried system, however, the signature is basically an alteration low due to the large volume of magnetite-destructive alteration surrounding the deeply buried magnetic core.
Mineral exploration, Mahd adh Dhahab District, Kingdom of Saudi Arabia
Worl, Ronald G.
1978-01-01
Mahd adh Dhahab is the largest of numerous ancient gold mines scattered through the Precambrian shield of Saudi Arabia and the only one with recent production. During the period 1939-54, 765,768 fine ounces of gold and 1,002,029 ounces of silver were produced from the mines by the Saudi Arabian Mining Syndicate. Ore minerals at Mahd adh Dhahab include free gold and silver, tellurides, sphalerite, and chalcopyrite in and associated with a system of north-trending quartz veins and quartz veinlet stockworks. Pyrite is a common sulfide gangue mineral. Country rocks are a north dipping sequence of pyroclastic and transported pyroclastic rocks of the Hulayfah Group that are locally highly silicified and potassium-feldspathized. The prime target for this exploration program was a north-trending zone of quartz veins and breccias, faults, alteration, and metalization approximately 400 m wide and 1000 m long. The ancient and recent mine workings are located in the northern part of this zone. Although the quartz veins and alteration cut all lithologies, the major metalization is confined to the intersection of veins and agglomerate. Ten holes were diamond drilled to explore geochemical, geological, and geophysical targets in the area. A significant new zone of metalization was discovered 700 m south of the ancient and recent mine workings and within the same major zone of quartz veins, alteration, and faults. Metalization in this southern mineralized zone is at the intersection of the quartz veins and a distinctive and highly altered agglomerate. The total zone of vein and agglomerate intercept is potentially metalized and comprises a block of ground 40 m thick and 400 m wide along the strike of the agglomerate and projected downdip 250 m. Tonnage of this block is 17.2 million tons. The explored zone, approximately 25 percent of the potentially metalized rock, has a potential resource of 1.1 million tons containing 27 g/t gold and 73 g/t silver.
Foose, M.P.; Rossman, D.L.
1982-01-01
A mission sponsored by the Trade and Development Program (TDP) of the International Development Cooperation Agency (IDCA) went to Morocco to evaluate the possibility of finding additional sources of cobalt in that country, as well as other types of mineralization. Information obtained during this trip shows Morocco to be a country for which much geologic information is available and in which there are many favorable target areas for future exploration. Work in the Bou Azzer district (Morocco's principal cobalt district) shows that much excellent geologic work has been done in searching for additional deposits. However, a number of useful approaches to locate cobalt have not been tried, and their use might be successful. The potential for undiscovered deposits in the Bou Azzer region seems very high. The cobalt mineralization in the Siroua uplift is different from that in the Bou Azzer district. However, geologic similarities between the two areas suggest that a genetic link may exist between the two types of mineralization. This further indicates that cobalt deposits of the Bou Azzer types might be present in the Siroua region. Examination of the Bleida copper mine shows it to be a well-exposed volcanic hosted stratabound copper deposit. Large unexplored areas containing similar rocks occur near this deposit and may contain as yet undiscovered copper mineralization.
Wilburn, D.R.
2004-01-01
The worldwide budget for nonfuel mineral exploration was expected to increase by 27 percent in 2003 from the 2002 budget, according to the Metals Economics Group (MEG) of Halifax, Nova Scotia. The increase comes after five years of declining spending for mineral exploration.
Short Course Introduction to Quantitative Mineral Resource Assessments
Singer, Donald A.
2007-01-01
This is an abbreviated text supplementing the content of three sets of slides used in a short course that has been presented by the author at several workshops. The slides should be viewed in the order of (1) Introduction and models, (2) Delineation and estimation, and (3) Combining estimates and summary. References cited in the slides are listed at the end of this text. The purpose of the three-part form of mineral resource assessments discussed in the accompanying slides is to make unbiased quantitative assessments in a format needed in decision-support systems so that consequences of alternative courses of action can be examined. The three-part form of mineral resource assessments was developed to assist policy makers evaluate the consequences of alternative courses of action with respect to land use and mineral-resource development. The audience for three-part assessments is a governmental or industrial policy maker, a manager of exploration, a planner of regional development, or similar decision-maker. Some of the tools and models presented here will be useful for selection of exploration sites, but that is a side benefit, not the goal. To provide unbiased information, we recommend the three-part form of mineral resource assessments where general locations of undiscovered deposits are delineated from a deposit type's geologic setting, frequency distributions of tonnages and grades of well-explored deposits serve as models of grades and tonnages of undiscovered deposits, and number of undiscovered deposits are estimated probabilistically by type. The internally consistent descriptive, grade and tonnage, deposit density, and economic models used in the design of the three-part form of assessments reduce the chances of biased estimates of the undiscovered resources. What and why quantitative resource assessments: The kind of assessment recommended here is founded in decision analysis in order to provide a framework for making decisions concerning mineral resources under conditions of uncertainty. What this means is that we start with the question of what kinds of questions is the decision maker trying to resolve and what forms of information would aid in resolving these questions. Some applications of mineral resource assessments: To plan and guide exploration programs, to assist in land use planning, to plan the location of infrastructure, to estimate mineral endowment, and to identify deposits that present special environmental challenges. Why not just rank prospects / areas? Need for financial analysis, need for comparison with other land uses, need for comparison with distant tracts of land, need to know how uncertain the estimates are, need for consideration of economic and environmental consequences of possible development. Our goal is to provide unbiased information useful to decision-makers.
Berg, Henry C.
1982-01-01
The Ketchikan and Prince Rupert 1-degree by 2-degree quadrangles, which encompass about 16,000 km2 at the south tip of southeastern Alaska, have been investigated by integrated field and laboratory studies in the disciplines of geology, geochemistry, geophysics, and Landsat data interpretation to determine their mineral-resource potential. Mineral deposits in the study area have been mined or prospected intermittently since about 1900, and production of small tonnages of ores containing gold, silver, copper, lead, zinc, and tungsten has been recorded. Extensive exploration and development currently (1981) is underway at a molybdenum prospect about 65 km east of Ketchikan. Our mineral-resource assessment indicates that the area contains potentially significant amounts of those metallic commodities, as well as of molybdenum, iron, antimony, and barite. The results of these studies have been published in a folio of maps accompanied by descriptive texts, diagrams, tables, and pertinent references. The present report serves as a guide to these investigations, provides relevant background information, and integrates the component maps and reports. It also describes revisions to the geology based on studies completed since the folio was published and includes a list of specific and general references on the geology and mineral deposits of the study area.
Publications - SR 67 | Alaska Division of Geological & Geophysical Surveys
DGGS SR 67 Publication Details Title: Alaska's mineral industry 2011 - exploration activity Authors the mineral industry. Please take time to fill out the current mining and mineral activity - exploration activity: Alaska Division of Geological & Geophysical Surveys Special Report 67, 10 p. http
Wilkins, Aleeza M.; Doebrich, Jeff L.
2016-09-19
The USGS Mineral Resources Program (MRP) delivers unbiased science and information to increase understanding of mineral resource potential, production, and consumption, and how mineral resources interact with the environment. The MRP is the Federal Government’s sole source for this mineral resource science and information. Program goals are to (1) increase understanding of mineral resource formation, (2) provide mineral resource inventories and assessments, (3) broaden knowledge of the effects of mineral resources on the environment and society, and (4) provide analysis on the availability and reliability of mineral supplies.
Wilburn, D.R.
2002-01-01
Exploration budgets fell for a fourth successive year in 2001. These decreases reflected low mineral commodity prices, mineral-market investment reluctance, company failures and a continued trend of company mergers and takeovers.
NASA Astrophysics Data System (ADS)
Lafrenière-Bérubé, Charles; Chouteau, Michel; Shamsipour, Pejman; Olivo, Gema R.
2016-04-01
Spectral induced polarization (SIP) parameters can be extracted from field or laboratory complex resistivity measurements, and even airborne or ground frequency domain electromagnetic data. With the growing interest in application of complex resistivity measurements to environmental and mineral exploration problems, there is a need for accurate and easy-to-use inversion tools to estimate SIP parameters. These parameters, which often include chargeability and relaxation time may then be studied and related to other rock attributes such as porosity or metallic grain content, in the case of mineral exploration. We present an open source program, available both as a standalone application or Python module, to estimate SIP parameters using Markov-chain Monte Carlo (MCMC) sampling. The Python language is a high level, open source language that is now widely used in scientific computing. Our program allows the user to choose between the more common Cole-Cole (Pelton), Dias, or Debye decomposition models. Simple circuits composed of resistances and constant phase elements may also be used to represent SIP data. Initial guesses are required when using more classic inversion techniques such as the least-squares formulation, and wrong estimates are often the cause of bad curve fitting. In stochastic optimization using MCMC, the effect of the starting values disappears as the simulation proceeds. Our program is then optimized to do batch inversion over large data sets with as little user-interaction as possible. Additionally, the Bayesian formulation allows the user to do quality control by fully propagating the measurement errors in the inversion process, providing an estimation of the SIP parameters uncertainty. This information is valuable when trying to relate chargeability or relaxation time to other physical properties. We test the inversion program on complex resistivity measurements of 12 core samples from the world-class gold deposit of Canadian Malartic. Results show that the Cole-Cole and Debye decomposition models converge quickly to a solution and often provide the best fit with experimental data. The Dias model requires the least amount of iterations to fully converge, but we note a small discrepancy between experimental data and mathematical model for most samples. Using petrographic analysis we test possible relationships between porosity, sulfur content and grain size with parameters obtained from the different models, and note that sulfur content influences both the chargeability and frequency dependence of the Cole-Cole model. Finally, we use our program to compare the different definitions of chargeability and relaxation time given by the three models. We note that these parameters tend to be correlated from one model to another. However, they have different electrochemical definitions and a single sample may possess different chargeability or relaxation time values depending on the model used. In the near future, the program will be used on a more extensive collection of samples from the Canadian Malartic gold deposit, the Highland Valley copper deposit, and the Millennium-McArthur uranium deposits. CMIC-NSERC Exploration Footprints Network Contribution 082
The deep structure of a sea-floor hydrothermal deposit
Zierenberg, R.A.; Fouquet, Y.; Miller, D.J.; Bahr, J.M.; Baker, P.A.; Bjerkgard, T.; Brunner, C.A.; Duckworth, R.C.; Gable, R.; Gieskes, J.; Goodfellow, W.D.; Groschel-Becker, H. M.; Guerin, G.; Ishibashi, J.; Iturrino, G.; James, R.H.; Lackschewitz, K.S.; Marquez, L.L.; Nehlig, P.; Peter, J.M.; Rigsby, C.A.; Schultheiss, P.; Shanks, Wayne C.; Simoneit, B.R.T.; Summit, M.; Teagle, D.A.H.; Urbat, M.; Zuffa, G.G.
1998-01-01
Hydrothermal circulation at the crests of mid-ocean ridges plays an important role in transferring heat from the interior of the Earth. A consequence of this hydrothermal circulation is the formation of metallic ore bodies known as volcanic-associated massive sulphide deposits. Such deposits, preserved on land, were important sources of copper for ancient civilizations and continue to provide a significant source of base metals (for example, copper and zinc). Here we present results from Ocean Drilling Program Leg 169, which drilled through a massive sulphide deposit on the northern Juan de Fuca spreading centre and penetrated the hydrothermal feeder zone through which the metal-rich fluids reached the sea floor. We found that the style of feeder-zone mineralization changes with depth in response to changes in the pore pressure of the hydrothermal fluids and discovered a stratified zone of high-grade copper-rich replacement mineralization below the massive sulphide deposit. This copper-rich zone represents a type of mineralization not previously observed below sea-floor deposits, and may provide new targets for land-based mineral exploration.
CellMiner Companion: an interactive web application to explore CellMiner NCI-60 data.
Wang, Sufang; Gribskov, Michael; Hazbun, Tony R; Pascuzzi, Pete E
2016-08-01
The NCI-60 human tumor cell line panel is an invaluable resource for cancer researchers, providing drug sensitivity, molecular and phenotypic data for a range of cancer types. CellMiner is a web resource that provides tools for the acquisition and analysis of quality-controlled NCI-60 data. CellMiner supports queries of up to 150 drugs or genes, but the output is an Excel file for each drug or gene. This output format makes it difficult for researchers to explore the data from large queries. CellMiner Companion is a web application that facilitates the exploration and visualization of output from CellMiner, further increasing the accessibility of NCI-60 data. The web application is freely accessible at https://pul-bioinformatics.shinyapps.io/CellMinerCompanion The R source code can be downloaded at https://github.com/pepascuzzi/CellMinerCompanion.git ppascuzz@purdue.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Marsh, Erin E.; Anderson, Eric D.
2011-01-01
Nickel-cobalt (Ni-Co) laterite deposits are an important source of nickel (Ni). Currently, there is a decline in magmatic Ni-bearing sulfide lode deposit resources. New efforts to develop an alternative source of Ni, particularly with improved metallurgy processes, make the Ni-Co laterites an important exploration target in anticipation of the future demand for Ni. This deposit model provides a general description of the geology and mineralogy of Ni-Co laterite deposits, and contains discussion of the influences of climate, geomorphology (relief), drainage, tectonism, structure, and protolith on the development of favorable weathering profiles. This model of Ni-Co laterite deposits represents part of the U.S. Geological Survey Mineral Resources Program's effort to update the existing models to be used for an upcoming national mineral resource assessment.
Smith, D.B.; Berger, B.R.; Tosdal, R.M.
1987-01-01
The U.S. Geological Survey has conducted geochemical studies in the Indian Pass (CDCA-355), 124 km2, and Picacho Peak (CDCA-355A), 23 km2, Wilderness Study Areas (WSA's) as part of a program to evaluate the mineral resource potential of designated areas in the California Desert Conservation Area. These two WSA's are of particular interest because they lie within a region which has intermittently produced significant quantities of Au since the mid-1800's, and is currently the site of much exploration activity for additional Au resources. Within a 15-km radius of the WSA's, there is one actively producing gold mine, a major deposit which began production in 1986, and one recently announced discovery. In the reconnaissance geochemical surveys of the two WSA's - 177 ??m (-80 mesh) stream sediments, heavy-mineral concentrates from stream sediments, and rocks were prepared and analyzed. Four areas of possible exploration interest were identified within the WSA's. The first area is characterized by anomalous W and Bi in nonmagnetic heavy-mineral concentrates, and is underlain primarily by the Mesozoic Orocopia Schist which has been intruded by monzogranite of Oligocene age. Alteration and mineralization appear to be localized near the intrusive contact. The mineralized rock at the surface contains secondary Cu and Fe minerals where the monzogranite intrudes the metabasite horizons of the Orocopia Schist and scheelite where the monzogranite intrudes marble within the Orocopia Schist. The second area is characterized by anomalous As, Sb, Ba, B, and Sr in nonmagnetic heavy-mineral concentrates and by anomalous As in - 177 ??m stream sediments. Geologically, this area is underlain by metasedimentary and metavolcanic rocks of Jurassic(?) age; a biotite monzogranite of Jurassic(?) age; and Tertiary volcanic and hypabyssal rocks composed of flows, domes, and tuffs of intermediate to silicic composition. All these rock types are cut by a set of north-south-striking normal faults. The anomalies in the heavy-mineral concentrates are believed to be related to silica-clay alteration observed in the vicinity of some of these faults. ?? 1987.
The Spinel Explorer--Interactive Visual Analysis of Spinel Group Minerals.
Luján Ganuza, María; Ferracutti, Gabriela; Gargiulo, María Florencia; Castro, Silvia Mabel; Bjerg, Ernesto; Gröller, Eduard; Matković, Krešimir
2014-12-01
Geologists usually deal with rocks that are up to several thousand million years old. They try to reconstruct the tectonic settings where these rocks were formed and the history of events that affected them through the geological time. The spinel group minerals provide useful information regarding the geological environment in which the host rocks were formed. They constitute excellent indicators of geological environments (tectonic settings) and are of invaluable help in the search for mineral deposits of economic interest. The current workflow requires the scientists to work with different applications to analyze spine data. They do use specific diagrams, but these are usually not interactive. The current workflow hinders domain experts to fully exploit the potentials of tediously and expensively collected data. In this paper, we introduce the Spinel Explorer-an interactive visual analysis application for spinel group minerals. The design of the Spinel Explorer and of the newly introduced interactions is a result of a careful study of geologists' tasks. The Spinel Explorer includes most of the diagrams commonly used for analyzing spinel group minerals, including 2D binary plots, ternary plots, and 3D Spinel prism plots. Besides specific plots, conventional information visualization views are also integrated in the Spinel Explorer. All views are interactive and linked. The Spinel Explorer supports conventional statistics commonly used in spinel minerals exploration. The statistics views and different data derivation techniques are fully integrated in the system. Besides the Spinel Explorer as newly proposed interactive exploration system, we also describe the identified analysis tasks, and propose a new workflow. We evaluate the Spinel Explorer using real-life data from two locations in Argentina: the Frontal Cordillera in Central Andes and Patagonia. We describe the new findings of the geologists which would have been much more difficult to achieve using the current workflow only. Very positive feedback from geologists confirms the usefulness of the Spinel Explorer.
1987-12-01
mineralogy and igneous petrology . Consultant to Shield Energy. Inc.; performed mudlogging and well site geology duties on 4,670’ wildcat weil in...Taylor County, Texas. Evaluated prospects for hydrocarbon potential. Prepared geologic reports for drilling prospectus. Geologist, Wold Minerals...Exploration Company; conducted geologic and geophysi- cal mapping in Precambrian metamorphic terrain of West Texas for talc depos- its. Supervised the drilling
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What criteria must the Exploration Plan (EP... Section 250.202 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND... stipulations, and other Federal laws; (b) Is safe; (c) Conforms to sound conservation practices and protects...
30 CFR 250.182 - When may the Secretary cancel a lease at the exploration stage?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false When may the Secretary cancel a lease at the exploration stage? 250.182 Section 250.182 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION... mineral deposits, the national security or defense, or to the marine, coastal, or human environment, and...
Torkington, Amanda May; Larkins, Sarah; Gupta, Tarun Sen
2011-06-01
To explore how fly-in fly-out (FIFO) and drive-in drive-out (DIDO) mining affects the psychosocial well-being of miners resident in a rural north Queensland town as well as the sources of support miners identify and use in managing these effects. A descriptive qualitative study, using semistructured interviews. Charters Towers, a rural town in north Queensland, and a remote north-western Queensland mine. Eleven people, resident in or near Charters Towers, currently or formerly employed in FIFO or DIDO mining. Self-reported effects on psychosocial well-being and sources of support. Participants reported positive and negative psychosocial impacts across domains including family life, relationships, social life, work satisfaction, mood, sleep and financial situation. Concerns about the impact on participants' partners were described. Awareness of onsite support, such as Employee Assistance Programs, varied. Other supports included administration staff and nurses or medics. Trusted friends or colleagues at the mine site were considered a preferred means of support. Some, but not most, had experienced coworkers discussing problems with them. A reluctance to seek support was described, with a number of barriers identified. Those having problems might not recognise their own stress and thus not seek support. This study identifies numerous psychosocial impacts on FIFO/DIDO miners and their partners, and provides insights into preferences regarding support. Employee Assistance Programs cannot be relied upon as the sole means of support. Further studies exploring the impact upon and supports for FIFO/DIDO workers and their partners will assist in better understanding these issues. © 2011 The Authors. Australian Journal of Rural Health © National Rural Health Alliance Inc.
NASA Technical Reports Server (NTRS)
Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.
2016-01-01
NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.
Gough, Larry P.; Day, Warren C.
2010-01-01
This report presents summary papers of work conducted between 2002 and 2007 under a 5-year project effort funded by the U.S. Geological Survey Mineral Resources Program, formerly entitled 'Tintina Metallogenic Province: Integrated Studies on Geologic Framework, Mineral Resources, and Environmental Signatures.' As the project progressed, the informal title changed from 'Tintina Metallogenic Province' project to 'Tintina Gold Province' project, the latter being more closely aligned with the terminology used by the mineral industry. As Goldfarb and others explain in the first chapter of this report, the Tintina Gold Province is a convenient term used by the mineral exploration community for a 'region of very varied geology, gold deposit types, and resource potential'. The Tintina Gold Province encompasses roughly 150,000 square kilometers, bounded by the Kaltag-Tintina fault system on the north and the Farewell-Denali fault system on the south. It extends westward in a broad arc, some 200 km wide, from northernmost British Columbia, through the Yukon, through southeastern and central Alaska, to southwestern Alaska. The climate is subarctic and, in Alaska, includes major physiographic delineations and ecoregions such as the Yukon-Tanana Upland, Tanana-Kuskokwim Lowlands, Yukon River Lowlands, and the Kuskokwim Mountains. Although the Tintina Gold Province is historically important for some of the very first placer and lode gold discoveries in northern North America, it has recently seen resurgence in mineral exploration, development, and mining activity. This resurgence is due to both new discoveries (for example, Pogo and Donlin Creek) and to the application of modern extraction methods to previously known, but economically restrictive, low-grade, bulk-tonnage gold resources (for example, Fort Knox, Clear Creek, and Scheelite Dome). In addition, the Tintina Gold Province hosts numerous other mineral deposit types, possessing both high and low sulfide content, which are not currently in development.
NASA Astrophysics Data System (ADS)
Morrison, S. M.; Downs, R. T.; Golden, J. J.; Pires, A.; Fox, P. A.; Ma, X.; Zednik, S.; Eleish, A.; Prabhu, A.; Hummer, D. R.; Liu, C.; Meyer, M.; Ralph, J.; Hystad, G.; Hazen, R. M.
2016-12-01
We have developed a comprehensive database of copper (Cu) mineral characteristics. These data include crystallographic, paragenetic, chemical, locality, age, structural complexity, and physical property information for the 689 Cu mineral species approved by the International Mineralogical Association (rruff.info/ima). Synthesis of this large, varied dataset allows for in-depth exploration of statistical trends and visualization techniques. With social network analysis (SNA) and cluster analysis of minerals, we create sociograms and chord diagrams. SNA visualizations illustrate the relationships and connectivity between mineral species, which often form cliques associated with rock type and/or geochemistry. Using mineral ecology statistics, we analyze mineral-locality frequency distribution and predict the number of missing mineral species, visualized with accumulation curves. By assembly of 2-dimensional KLEE diagrams of co-existing elements in minerals, we illustrate geochemical trends within a mineral system. To explore mineral age and chemical oxidation state, we create skyline diagrams and compare trends with varying chemistry. These trends illustrate mineral redox changes through geologic time and correlate with significant geologic occurrences, such as the Great Oxidation Event (GOE) or Wilson Cycles.
Low-Impact Exploration for Gold in the Scottish Caledonides.
NASA Astrophysics Data System (ADS)
Rice, Samuel; Cuthbert, Simon; Hursthouse, Andrew; Broetto, Gabriele
2017-04-01
The Caledonian orogenic belt of the northern British Isles hosts some significant gold deposits. However, gold mineralization in the region is underexplored. Some of the most prospective areas identified by rich alluvial gold anomalies are environmentally and culturally sensitive. Traditional mineral exploration methods can have a range of negative environmental, social and economic impacts. The regional tourism economy is dependent on outdoor activities, landscape quality, wildlife and industrial heritage and has the potential to be disrupted by mineral resource developments. Low-cost, low-impact exploration strategies are therefore, key to sustainably developing the mineral resource potential. Research currently in progress in part of the Scottish Caledonides aims to develop protocols for more sustainable exploration. We are using a range of geoscience techniques to characterize the mineral system, improve exploration targeting and reduce negative impacts. To do this we targeted an area with a large preexisting dataset (e.g. stream sediment geochemistry, geomorphology, structural geology, petrology, geophysics, mine data) that can be synthesized and analyzed in a GIS. Part of the work aims to develop and test a model for gold dispersion in the surface environment that accounts for climatic and anthropogenic influences in order to locate bedrock sources. This multidisciplinary approach aims to reduce the target areas for subsequent exploration activities such as soil sampling, excavation and drilling.
Using Spreadsheets and Internally Consistent Databases to Explore Thermodynamics
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Chakraborty, S.
2003-12-01
Much common wisdom has been handed down to generations of petrology students in words - a non-exhaustive list may include (a) do not mix data from two different thermodynamic databases, (b) use of different heat capacity functions or extrapolation beyond the P-T range of fit can have disastrous results, (c) consideration of errors in thermodynamic calculations is crucial, (d) consideration of non-ideality, interaction parameters etc. are important in some cases, but not in others. Actual calculations to demonstrate these effects were either too laborious, tedious, time consuming or involved elaborate computer programming beyond the reaches of the average undergraduate. We have produced "Live" thermodynamic tables in the form of ExcelTM spreadsheets based on standard internally consistent thermodynamic databases (e.g. Berman, Holland and Powell) that allow quick, easy and most importantly, transparent manipulation of thermodynamic data to calculate mineral stabilities and to explore the role of different parameters. We have intentionally avoided the use of advanced tools such as macros, and have set up columns of data that are easy to relate to thermodynamic relationships to enhance transparency. The approach consists of the following basic steps: (i) use a simple supporting spreadsheet to enter mineral compositions (in formula units) to obtain a balanced reaction by matrix inversion. (ii) enter the stoichiometry of this reaction in a designated space and a P and T to get the delta G of the reaction (iii) vary P and or T to locate equilibrium through a change of sign of delta G. These results can be collected to explore practically any problem of chemical equilibrium and mineral stability. Some of our favorites include (a) hierarchical addition of complexity to equilibrium calculations - start with a simple end member reaction ignoring heat capacity and volume derivatives, add the effects of these, followed by addition of compositional effects in the form of ideal solutions, add non-ideality next and finally, explore the role of varying parameters in simple models of non-ideality. (b) Arbitrarily change (i.e. simulate error) or mix data from different sources to see the consequences directly. More traditional exercises such as exploration of slopes of reaction in P-T space are trivial, and other thermodynamic tidbits such as "bigger the mineral formula, greater its thermodynamic weight" become apparent to undergraduates early on through such direct handling of data. The overall outcome is a far more quantitative appreciation of mineral stabilities and thermodynamic variables without actually doing any Math!
Laboratory manual: mineral X-ray diffraction data retrieval/plot computer program
Hauff, Phoebe L.; VanTrump, George
1976-01-01
The Mineral X-Ray Diffraction Data Retrieval/Plot Computer Program--XRDPLT (VanTrump and Hauff, 1976a) is used to retrieve and plot mineral X-ray diffraction data. The program operates on a file of mineral powder diffraction data (VanTrump and Hauff, 1976b) which contains two-theta or 'd' values, and intensities, chemical formula, mineral name, identification number, and mineral group code. XRDPLT is a machine-independent Fortran program which operates in time-sharing mode on a DEC System i0 computer and the Gerber plotter (Evenden, 1974). The program prompts the user to respond from a time-sharing terminal in a conversational format with the required input information. The program offers two major options: retrieval only; retrieval and plot. The first option retrieves mineral names, formulas, and groups from the file by identification number, by the mineral group code (a classification by chemistry or structure), or by searches based on the formula components. For example, it enables the user to search for minerals by major groups (i.e., feldspars, micas, amphiboles, oxides, phosphates, carbonates) by elemental composition (i.e., Fe, Cu, AI, Zn), or by a combination of these (i.e., all copper-bearing arsenates). The second option retrieves as the first, but also plots the retrieved 2-theta and intensity values as diagrammatic X-ray powder patterns on mylar sheets or overlays. These plots can be made using scale combinations compatible with chart recorder diffractograms and 114.59 mm powder camera films. The overlays are then used to separate or sieve out unrelated minerals until unknowns are matched and identified.
Eberl, D.D.
2003-01-01
RockJock is a computer program that determines quantitative mineralogy in powdered samples by comparing the integrated X-ray diffraction (XRD) intensities of individual minerals in complex mixtures to the intensities of an internal standard. Analysis without an internal standard (standardless analysis) also is an option. This manual discusses how to prepare and X-ray samples and mineral standards for these types of analyses and describes the operation of the program. Carefully weighed samples containing an internal standard (zincite) are ground in a McCrone mill. Randomly oriented preparations then are X-rayed, and the X-ray data are entered into the RockJock program. Minerals likely to be present in the sample are chosen from a list of standards, and the calculation is begun. The program then automatically fits the sum of stored XRD patterns of pure standard minerals (the calculated pattern) to the measured pattern by varying the fraction of each mineral standard pattern, using the Solver function in Microsoft Excel to minimize a degree of fit parameter between the calculated and measured pattern. The calculation analyzes the pattern (usually 20 to 65 degrees two-theta) to find integrated intensities for the minerals. Integrated intensities for each mineral then are determined from the proportion of each mineral standard pattern required to give the best fit. These integrated intensities then are compared to the integrated intensity of the internal standard, and the weight percentages of the minerals are calculated. The results are presented as a list of minerals with their corresponding weight percent. To some extent, the quality of the analysis can be checked because each mineral is analyzed independently, and, therefore, the sum of the analysis should approach 100 percent. Also, the method has been shown to give good results with artificial mixtures. The program is easy to use, but does require an understanding of mineralogy, of X-ray diffraction practice, and an elementary knowledge of the Excel program.
Exploration risks and mineral taxation: how fiscal regimes affect exploration incentives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauffer, T.R.; Gault, J.C.
1985-01-01
This paper investigates the effects of taxation on exploration risk and establishes certain criteria for an optimal tax on mineral resources, such as oil and gas, where exploration risk (i.e., geological risk) is a key decision variable. The optimization is considered in the context of government ownership of the resource rights, but with an eye to the after-tax incentives perceived by private-sector explorationists. Any government that relies on the private sector for discovery and development must recognize those effects. Taxation affects not only the expected returns from mineral exploration ventures but also the riskiness of such ventures. The potential formore » misdesign is great. The authors show, however, that it is possible, in realistic cases, simultaneously to increase government revenues, improve the explorationist's return, and reduce exploration risk. The opportunity for such improvements arises because most common mineral tax schemes skew the tax burdens across fields of different sizes or qualities. A key consideration in optimizing a tax regime is designing the tax to assign the appropriate burdens to different classes of discoveries. 7 tables.« less
A Fortran Program to Aid in Mineral Identification Using Optical Properties.
ERIC Educational Resources Information Center
Blanchard, Frank N.
1980-01-01
Describes a search and match computer program which retreives from a user-generated mineral file those minerals which are not incompatible with the observed or measured optical properties of an unknown. Careful selection of input lists make it unlikely that the program will fail when reasonably accurate observations are recorded. (Author/JN)
Berger, B.R.; King, T.V.V.; Morath, L.C.; Phillips, J.D.
2003-01-01
Synoptic views of hydrothermal alteration assemblages are of considerable utility in regional-scale minerals exploration. Recent advances in data acquisition and analysis technologies have greatly enhanced the usefulness of remotely sensed imaging spectroscopy for reliable alteration mineral assemblages mapping. Using NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensor, this study mapped large areas of advanced argillic and phyllic-argillic alteration assemblages in the southeastern Santa Rita and northern Patagonia mountains, Arizona. Two concealed porphyry copper deposits have been identified during past exploration, the Red Mountain and Sunnyside deposits, and related published hydrothermal alteration zoning studies allow the comparison of the results obtained from AVIRIS data to the more traditional field mapping approaches. The AVIRIS mapping compares favorably with field-based studies. An analysis of iron-bearing oxide minerals above a concealed supergene chalcocite deposit at Red Mountain also indicates that remotely sensed data can be of value in the interpretation of leached caps above porphyry copper deposits. In conjunction with other types of geophysical data, AVIRIS mineral maps can be used to discriminate different exploration targets within a region.
Reconnaissance geochemical exploration for gold in the Ad Darb area, Kingdom of Saudi Arabia
Samater, R.M.; Christian, R.P.; Johnson, P.R.; Bookstrom, A.A.
1990-01-01
Overall, metal values in the wadi-sediment samples are low. The known kyanite mineral occurrence is marked by anomalous gold and tin in three minus-80-mesh samples. The low values of the metals do not justify further exploration for the sought deposit type in the immediate vicinity, although the signature of anomalous elements in the wider region is comparable to the signature known in the Carolina Slate Belt, and is permissive of the interpretation that a diffuse hydrothermal system operated in the region during the late Proterozoic. A large concentration of polymetallic anomalies (gold, arsenic, copper, antimony, tin, tungsten, and lead) is outlined in the northeastern part of the survey area on the basis of panned-concentrate samples. The source of the concentration is unknown, and further investigations are recommended. Recommended low-priority investigation of the source of lead and zinc anomalies in the western part of the survey area would be justified as part of a larger program designed to evaluate the mineral potential of the entire belt of Sabya formation rock.
User's Guide to Handlens - A Computer Program that Calculates the Chemistry of Minerals in Mixtures
Eberl, D.D.
2008-01-01
HandLens is a computer program, written in Excel macro language, that calculates the chemistry of minerals in mineral mixtures (for example, in rocks, soils and sediments) for related samples from inputs of quantitative mineralogy and chemistry. For best results, the related samples should contain minerals having the same chemical compositions; that is, the samples should differ only in the proportions of minerals present. This manual describes how to use the program, discusses the theory behind its operation, and presents test results of the program's accuracy. Required input for HandLens includes quantitative mineralogical data, obtained, for example, by RockJock analysis of X-ray diffraction (XRD) patterns, and quantitative chemical data, obtained, for example, by X-ray florescence (XRF) analysis of the same samples. Other quantitative data, such as sample depth, temperature, surface area, also can be entered. The minerals present in the samples are selected from a list, and the program is started. The results of the calculation include: (1) a table of linear coefficients of determination (r2's) which relate pairs of input data (for example, Si versus quartz weight percents); (2) a utility for plotting all input data, either as pairs of variables, or as sums of up to eight variables; (3) a table that presents the calculated chemical formulae for minerals in the samples; (4) a table that lists the calculated concentrations of major, minor, and trace elements in the various minerals; and (5) a table that presents chemical formulae for the minerals that have been corrected for possible systematic errors in the mineralogical and/or chemical analyses. In addition, the program contains a method for testing the assumption of constant chemistry of the minerals within a sample set.
43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID MINERALS (OTHER THAN COAL) EXPLORATION AND...
Applying satellite technology to energy and mineral exploration
Carter, William D.; Rowan, Lawrence C.
1978-01-01
IGCP Project 143 ("Remote Sensing and Mineral Exploration"), is a worldwide research project designed to make satellite data an operational geological tool along with the geologic pick, hand lens, topographic map, aerial photo and geophysical instruments and data that comprise the exploration package. While remote sensing data will not replace field exploration and mapping, careful study of such data prior to field work should make the effort more efficient.
Wilburn, D.R.
2005-01-01
The worldwide budget for nonferrous, nonfuel mineral exploration was expected to increase by 58 percent in 2004 from the 2003 budget, according to Metals Economics Group (MEG) of Halifax, Nova Scotia. The increase comes two years after a five-year period of declining spending for mineral exploration (1998 to 2002). Figures suggest a subsequent 27 percent increase in budgeted expenditures from 2002 to 2003. For the second consecutive year, all regional exploration budget estimates were anticipated to increase.
30 CFR 77.1704 - First aid training program; availability of instruction to all miners.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First aid training program; availability of... WORK AREAS OF UNDERGROUND COAL MINES Miscellaneous § 77.1704 First aid training program; availability... shall make available to all miners employed in the mine a course of instruction in first aid conducted...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Mineral Leasing Act and Mineral Leasing... 2—Mineral Leasing Act and Mineral Leasing Act for Acquired Lands—Special Rules (a) Definitions. As... conduct coal exploration operations on land subject to the Mineral Leasing Act, under 30 U.S.C. 201(b), or...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Mineral Leasing Act and Mineral Leasing... 2—Mineral Leasing Act and Mineral Leasing Act for Acquired Lands—Special Rules (a) Definitions. As... conduct coal exploration operations on land subject to the Mineral Leasing Act, under 30 U.S.C. 201(b), or...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Mineral Leasing Act and Mineral Leasing... 2—Mineral Leasing Act and Mineral Leasing Act for Acquired Lands—Special Rules (a) Definitions. As... conduct coal exploration operations on land subject to the Mineral Leasing Act, under 30 U.S.C. 201(b), or...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Mineral Leasing Act and Mineral Leasing... 2—Mineral Leasing Act and Mineral Leasing Act for Acquired Lands—Special Rules (a) Definitions. As... conduct coal exploration operations on land subject to the Mineral Leasing Act, under 30 U.S.C. 201(b), or...
Idaho and Montana non-fuel exploration database 1980-1997
Buckingham, David A.; DiFrancesco, Carl A.; Porter, Kenneth E.; Bleiwas, Donald I.; Causey, J. Douglas; Ferguson, William B.
2006-01-01
This report describes a relational database containing information about mineral exploration projects in the States of Idaho and Montana for the years 1980 through 1997 and a spatial (geographic) database constructed using data from the relational database. The focus of this project was to collect information on exploration for mineral commodities with the exception of sand, gravel, coal, geothermal, oil, and gas. The associate databases supplied with this report are prototypes that can be used or modified as needed. The following sources were used to create the databases-serial mining periodicals; annual mineral publications; mining company reports; U.S. Bureau of Mines (USBM) and U.S. Geological Survey (USGS) publications; an Idaho mineral property data base developed by Dave Boleneus, USGS, Spokane, Washington; Montana state publications; and discussions with representatives of Montana, principally the Montana Bureau of Mines and Geology and the Department of Environmental Quality. Fifty commodity groups were reported between the 596 exploration projects identified in this study. Precious metals (gold, silver, or platinum group elements) were the primary targets for about 67 percent of the exploration projects. Information on 17 of the projects did not include commodities. No location could be determined for 51 projects, all in Idaho. During the time period evaluated, some mineral properties were developed into large mining operations (for example Beal Mountain Mine, Stillwater Mine, Troy Mine, Montana Tunnels Mine) and six properties were reclaimed. Environmental Impact Statements were done on four properties. Some operating mines either closed or went through one or more shutdowns and re-openings. Other properties, where significant resources were delineated by recent exploration during this time frame, await the outcome of important factors for development such as defining additional reserves, higher metal prices, and the permitting process. Many of these projects examined relatively minor mineral occurrences. Approximately half of the exploration projects are located on Federal lands and about 40 percent were on lands managed by the U.S. Forest Service. More than 75 percent of the exploration occurred in areas with significant previous mineral activity.
ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.
Beiranvand Pour, Amin; Hashim, Mazlan
2014-01-01
This paper provides a review of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and Hyperion data and applications of the data as a tool for ore minerals exploration, lithological and structural mapping. Spectral information extraction from ASTER, ALI, and Hyperion data has great ability to assist geologists in all disciplines to map the distribution and detect the rock units exposed at the earth's surface. The near coincidence of Earth Observing System (EOS)/Terra and Earth Observing One (EO-1) platforms allows acquiring ASTER, ALI, and Hyperion imagery of the same ground areas, resulting accurate information for geological mapping applications especially in the reconnaissance stages of hydrothermal copper and gold exploration, chromite, magnetite, massive sulfide and uranium ore deposits, mineral components of soils and structural interpretation at both regional and district scales. Shortwave length infrared and thermal infrared bands of ASTER have sufficient spectral resolution to map fundamental absorptions of hydroxyl mineral groups and silica and carbonate minerals for regional mapping purposes. Ferric-iron bearing minerals can be discriminated using six unique wavelength bands of ALI spanning the visible and near infrared. Hyperion visible and near infrared bands (0.4 to 1.0 μm) and shortwave infrared bands (0.9 to 2.5 μm) allowed to produce image maps of iron oxide minerals, hydroxyl-bearing minerals, sulfates and carbonates in association with hydrothermal alteration assemblages, respectively. The techniques and achievements reviewed in the present paper can further introduce the efficacy of ASTER, ALI, and Hyperion data for future mineral and lithological mapping and exploration of the porphyry copper, epithermal gold, chromite, magnetite, massive sulfide and uranium ore deposits especially in arid and semi-arid territory.
A Computer Program which Uses an Expert Systems Approach to Identifying Minerals.
ERIC Educational Resources Information Center
Hart, Allan Bruce; And Others
1988-01-01
Described is a mineral identification program which uses a shell system for creating expert systems of a classification nature. Discusses identification of minerals in hand specimens, thin sections, and polished sections of rocks. (Author/CW)
Yellow Cat revisited: a review of Helen Cannon's selenium indicator plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arp, G.K.
1983-03-01
In the late 1940s, Helen Cannon of the USGS conducted her famous studies on the association of plants to selenium. She used this association for detection of sedimentary uranium deposits on the Colorado plateau. Cannon demonstrated that locoweeds (Astragalus) from the Yellow Cat area of the Thompson district in eastern Utah did reflect the presence of selenium-rich uranium deposits by their colonization of the soils over the deposits. During the subsequent 30 years, Cannon's work has repeatedly been cited as a classic example of the use of indicator geobotany in mineral exploration. During the same 30-year period, geobotanical techniques havemore » not found wide utilization as an exploration tool. Further, Cannon's work has not been demonstrated elsewhere to any extent. In 1980, the author returned to Yellow Cat to see what changes, if any, may have transpired at the site. The author also wanted to gather insight into why geobotanical methods have not gained wider acceptance and perhaps determine why subsequent work is so rare. Results of this study support Cannon's basic work. The results also suggest that the methods are ecologically sound and have applicability to modern mineral exploration programs. Limitations to the method are also discussed, along with some speculation as to why geobotanical methods have not seen wider application.« less
Mineral exploration with ERTS imagery. [Colorado
NASA Technical Reports Server (NTRS)
Nicolais, S. M.
1974-01-01
Ten potential target areas for metallic mineral exploration were selected on the basis of a photo-lineament interpretation of the ERTS image 1172-17141 in central Colorado. An evaluation of bias indicated that prior geologic knowledge of the region had little, if any, effect on target selection. In addition, a contoured plot of the frequency of photo-lineament intersections was made to determine what relationships exist between the photo-lineaments and mineral districts. Comparison of this plot with a plot of the mineral districts indicates that areas with a high frequency of intersections commonly coincide with known mineral districts. The results of this experiment suggest that photo-lineaments are fractures or fracture-controlled features, and their distribution may be a guide to metallic mineral deposits in Colorado, and probably other areas as well.
30 CFR 75.1713-4 - First-aid training program; availability of instruction to all miners.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First-aid training program; availability of... Miscellaneous § 75.1713-4 First-aid training program; availability of instruction to all miners. On or before... the mine a course of instruction in first-aid conducted by the operator or under the auspices of the...
SinoProbe - A Multidisciplinary Research Program of Earth Sciences in China (Invited)
NASA Astrophysics Data System (ADS)
Dong, S.; Li, T.
2010-12-01
China occupies a large region of central and eastern Asia and holds keys to resolving several first-order problems in Earth Sciences. Besides the importance in Earth Science research, the rapid growth of Chinese economy also demands a comprehensive and systematic evaluation of its natural resources and the impacts of geohazards on its societal development. In order to address the above issues, the Chinese government had initiated a new multidisciplinary research project in Earth Sciences - the SinoProbe Program. Its fundamental goal is to determine the three-dimensional structure, composition distribution, and geological evolution of the Chinese continental lithosphere. The results of the SinoProbe Program are expected to have broad impacts on the Chinese society and economy. In particular, the program will greatly enhance our current understanding on (1) the forming and distribution of mineral resources in the nation, (2) the locations and recurrence histories of major active fault zones capable of generating large earthquakes in highly populated regions, and (3) the distribution of major hazard-prone regions induced by geological processes. In 2009, more than 720 investigators and 70 engineers from Chinese institutions are currently involved with the research program. Sinoprobe hope that the joint forces by Chinese and international researchers will bring in modern approaches, new analytical tools, and advanced exploration technology into the successful operation of the program. In past year, 1,960km long seismic reflection profiling with broadband seismological studies and MT surveys separated from 6 profiles in China continent have completed. MT array coved the North China craton by 1°×1° network and 3-D exploration in larger ore deposits in selected area were carried out. A scientific drilling area operated in Tibet. We started to establish a geochemical reference framework for the values of 76 elements in a grid network with data-point spacing of 160 km in China. Some stress monitoring were centered in the Beijing and the southeastern margin of the Qinghai-Tibet Plateau regions. Also, SinoProbe begin to establish a high-performance calculation platform that will consider coupling processes between deformation and thermal evolution in the lithosphere. Meanwhile, data integration and data dissemination is going to stored. Finally, SinoProbe will also devote to develop new technologies, innovative methods, data integration platforms, and modern equipments for deep Earth and mineral-deposit explorations. In summary, SinoProbe is a multi-year and multidisciplinary research program to be carried in China with 9 projects and 49 sub-projects. It will integrate geological, geophysical, geochemical, and modern exploration technology to examine the deep Earth structures and their evolution in China. The results will undoubtedly contribute to the improvement of our current understanding of the Eurasia continent in particular and the Earth in general.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Mineral Leasing Act and Mineral Leasing Act...—Mineral Leasing Act and Mineral Leasing Act for Acquired Lands—Special Rules (a) Definitions. As used in... conduct coal exploration operations on land subject to the Mineral Leasing Act, under 30 U.S.C. 201(b), or...
75 FR 61051 - Reorganization of Title 30, Code of Federal Regulations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
..., Geothermal energy, Government contracts, Indians--lands, Mineral royalties, Oil and gas exploration, Public..., Royalty relief. 30 CFR Part 206 Coal, Continental shelf, Geothermal energy, Government contracts, Indians..., Geothermal energy, Government contracts, Indians--lands, Mineral royalties, Oil and gas exploration, Public...
Lead isotope determinations from sulfide mineral occurrences--Russian Far East
Church, Stan E.; Goryachev, Nikolai A.; Shpikerman, Vladimir I.
2013-01-01
The lead isotope database for sulfide deposits and occurrences in the Russian Far East was funded by the Mineral Resources Program, U.S. Geological Survey (USGS) in conjunction with the collaborative studies of mineral resources by the Russian Academy of Sciences and the U. S. Geological Survey (Nokleberg and others, 1996). Comparisons of these data with similar lead isotope data from Alaska published in Church, Delevaux, and others (1987) and Gaccetta and Church (1989) provide a basis for the following three-fold project objectives: 1. To utilize lead isotope signatures, in conjunction with regional mapping, to assess the relative ages and to categorize the types of mineral deposits studied, 2. To relate the lead isotope and trace-element geochemical signatures of specific deposits and occurrences to ore-forming processes, and 3. To use the lead isotope data to correlate lithotectonic terranes within the northern Cordillera (Alaska, Yukon Territories and British Columbia in Canada, and the western Cordillera of the United States). The report by Church, Gray, and others (1987) shows how this fingerprinting methodology can be applied to trace the offset of lithotectonic (or lithostratigraphic as labeled by some authors) terranes.The lead isotope data presented in table 1 represent the work completed on sulfide mineral deposits located in the Russian Far East from 1993 to 1995, when this study was terminated due to lack of funding. The lead isotope data are reported here for use by investigators who may find them of value in mineral exploration. No attempt is made to summarize the voluminous literature on these mineral deposits.
,
1997-01-01
Data bases are essential for modern scientific research. The new and exciting work being done in the Mineral Resource Program in the U.S. Geological Survey (USGS) usually begins with the question, "Where are the known deposits?" A mineral-resource data base containing this type of information and more can be useful not just to USGS scientists, but to anyone who needs such data. Users of the data bases from outside the USGS include mining and exploration companies, environmental groups, academia, other Federal Agencies, and the general public. At present, the USGS has two large mineral-resource data bases, MRDS (Mineral Resource Data System) and MAS (Minerals Availability System). MRDS was built and is mamtained by the USGS, and MAS was built and maintained by the Bureau of Mines. In 1996, after the Bureau was abolished, MAS was transferred to the USGS. The two data bases were compiled for different purposes and contain very different mformation. For instance, MAS contains information on costs, details of mining methods, and feasibility studies. MRDS has mineralogical and geologic data that are not contained in MAS. Because they are both mineral-resource data bases, however, they contain some information in common, such as location, name(s) of sites, and commodities present. Both data bases are international in scope, and both are quite large. MRDS contains over 110,000 records, while MAS has over 220,000. One reason that MAS has more records is that it contains information on smelters, mill sites, and fossil fuel sites, as well as mineral- resource sites. The USGS is working to combine the information in both data bases. This is a large undertaking that will require some years to complete. In the interim, information from both data bases will still be available
Remote sensing of geologic mineral occurrences for the Colorado mineral belt using LANDSAT data
NASA Technical Reports Server (NTRS)
Carpenter, R. H. (Principal Investigator); Trexler, D. W.
1976-01-01
The author has identified the following significant results. LANDSAT imagery was examined as a practical and productive tool for mineral exploration along the Colorado Mineral Belt. An attempt was made to identify all large, active and/or abandoned mining districts on the imagery which initially were discovered by surface manifestations. A number of strong photolinements, circular features, and color anomalies were identified. Some of these form a part of the structural and igneous volcanic framework in which mineral deposits occur. No specific mineral deposits such as veins or porphyries were identified. Promising linear and concentric features were field checked at several locations. Some proved to be fault zones and calderas; others were strictly topographic features related to stream or glacial entrenchment. The Silverton Caldera region and the Idaho Springs-Central City district were chosen and studied as case histories to evaluate the application of LANDSAT imagery to mineral exploration. Evidence of specific mineralization related to ore deposits in these two areas were observed only on low level photography.
USGS Mineral Resources Program--Supporting Stewardship of America's Natural Resources
Kropschot, Susan J.
2006-01-01
The USGS Mineral Resources Program continues a tradition of Federal leadership in the science of mineral resources that extends back before the beginning of the bureau. The need for information on metallic mineral resources helped lead to the creation of the USGS in 1879. In response to the need to assess large areas of Federal lands in the 20th century, Program scientists developed, tested, and refined tools to support managers making land-use decisions on Federal lands. The refinement of the tools and techniques that have established the USGS as a leader in the world in our ability to conduct mineral resource assessments extends into the 21st century.
Bernknopf, R.L.; Wein, A.M.; St-Onge, M. R.; Lucas, S.B.
2007-01-01
This bulletin/professional paper focuses on the value of geoscientific information and knowledge, as provided in published government bedrock geological maps, to the mineral exploration sector. An economic model is developed that uses an attribute- ranking approach to convert geological maps into domains of mineral favourability. Information about known deposits in these (or analogous) favourability domains allow the calculation of exploration search statistics that provide input into measures of exploration efficiency, productivity, effectiveness, risk, and cost stemming from the use of the published geological maps. Two case studies, the Flin Flon Belt (Manitoba and Saskatchewan) and the south Baffin Island area (Nunavut), demonstrate that updated, finer resolution maps can be used to identify more exploration campaign options, and campaigns thats are more efficient, more effective, and less risky than old, coarser resolution maps when used as a guide for mineral exploration. The Flin Flon Belt study illustrates that an updated, coarser resolution bedrock map enables improved mineral exploration efficiency, productivity, and effectiveness by locating 60% more targets and supporting an exploration campaign that is 44% more efficient. Refining the map resolution provides an additional 17% reduction in search effort across all favourable domains and a 55% reduction in search effort in the most favourable domain. The south Baffin Island case study projects a 40% increase in expected targets and a 27% reduction in search effort when the updated, finer resolution map is used in lieu of the old, coarser resolution map. On southern Baffin Island, the economic value of the up dated map ranges from CAN$2.28 million to CAN$15.21 million, which can be compared to the CAN$1.86 million that it cost to produce the map (a multiplier effect of up to eight).
43 CFR 3930.10 - General performance standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.10 General performance standards... drill holes that could adversely affect the recovery of shale oil or other minerals producible under an...
43 CFR 3930.10 - General performance standards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.10 General performance standards... drill holes that could adversely affect the recovery of shale oil or other minerals producible under an...
43 CFR 3930.10 - General performance standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.10 General performance standards... drill holes that could adversely affect the recovery of shale oil or other minerals producible under an...
30 CFR 402.13 - Program management.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Program management. 402.13 Section 402.13 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE... these programs. (c) Contracts. Administrative requirements for performance of research contracts will be...
30 CFR 402.13 - Program management.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Program management. 402.13 Section 402.13 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE... these programs. (c) Contracts. Administrative requirements for performance of research contracts will be...
30 CFR 402.13 - Program management.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Program management. 402.13 Section 402.13 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE... these programs. (c) Contracts. Administrative requirements for performance of research contracts will be...
30 CFR 402.13 - Program management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Program management. 402.13 Section 402.13 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE... these programs. (c) Contracts. Administrative requirements for performance of research contracts will be...
30 CFR 402.13 - Program management.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Program management. 402.13 Section 402.13 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE... these programs. (c) Contracts. Administrative requirements for performance of research contracts will be...
Klimasauskas, Edward P.; Miller, Marti L.; Bradley, Dwight C.; Karl, Sue M.; Baichtal, James F.; Blodgett, Robert B.
2006-01-01
The Kuskokwim mineral belt of Bundtzen and Miller (1997) forms an important metallogenic region in southwestern Alaska that has yielded more than 3.22 million ounces of gold and 400,000 ounces of silver. Precious-metal and related deposits in this region associated with Late Cretaceous to early Tertiary igneous complexes extend into the Taylor Mountains 1:250,000-scale quadrangle. The U.S. Geological Survey is conducting geologic mapping and a mineral resource assessment of this area that will provide a better understanding of the geologic framework, regional geochemistry, and may provide targets for mineral exploration and development. During the 2004 field season 137 rock samples were collected for a variety of purposes. The 4 digital files accompanying this report reflect the type of analysis performed and its intended purpose and are available for download as an Excel workbook, comma delimited format (*.csv), dBase 4 files (*.dbf) or as point coverages in ArcInfo interchange format (*.e00). Data values are provided in percent, pct (1gram per 100grams), or parts per million, ppm (1gram per 1,000,000grams) per the column heading in the table. All samples were analyzed for a suite of 42 trace-elements (icp42.*) to provide data for use in geochemical exploration as well as some baseline data. Selected samples were analyzed by additional methods; 104 targeted geochemical exploration samples were analyzed for gold, arsenic, and mercury (auashg.*); 21 of these samples were also analyzed to obtain concentrations of 10 loosely bound metals (icp10.*); 33 rock samples were analyzed for major element oxides to support the regional mapping program (reg.*), of which 28 sedimentary rock samples were also analyzed for total carbon, and carbonate carbon.
ASTER spectral sensitivity of carbonate rocks - Study in Sultanate of Oman
NASA Astrophysics Data System (ADS)
Rajendran, Sankaran; Nasir, Sobhi
2014-02-01
Remote sensing satellite data plays a vital role and capable in detecting minerals and discriminating rock types for explorations of mineral resources and geological studies. Study of spectral absorption characters of remotely sensed data are under consideration by the exploration and mining companies, and demonstrating the spectral absorption characters of carbonates on the cost-effective multispectral image (rather than the hyperspectral, Lidar image) for easy understanding of all geologists and exploration communities of carbonates is very much important. The present work is an integrated study and an outcome of recently published works on the economic important carbonate rocks, includes limestone, marl, listwaenites and carbonatites occurred in parts of the Sultanate of Oman. It demonstrates the spectral sensitivity of such rocks for simple interpretation over satellite data and describes and distinguishes them based on the absorptions of carbonate minerals in the spectral bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) for mapping and exploration studies. The study results that the ASTER spectral band 8 discriminates the carbonate rocks due to the presence of predominantly occurred carbonate minerals; the ASTER band 5 distinguishes the limestones and marls (more hydroxyl clay minerals) from listwaenite (hydrothermally altered rock) due to the presence of altered minerals and the ASTER band 4 detects carbonatites (ultramafic intrusive alkaline rocks) which contain relatively more silicates. The study on the intensity of the total absorptions against the reflections of these rocks shows that the limestones and marls have low intensity in absorptions (and high reflection values) due to the presence of carbonate minerals (calcite and dolomite) occurred in different proportions. The listwaenites and carbonatites have high intensity of absorptions (low reflection values) due to the occurrence of Mn-oxide in listwaenites and carbonates in carbonatites apart the influence of major carbonate minerals that occurred predominantly in these rocks. The study of ASTER thermal infrared (TIR) spectral bands distinguished the marls have low emissivity of energy due to the presence of hydroxyl bearing alumina-silicate minerals from the other rocks such as limestones, listwaenites and carbonatites which have high emissivity due to the absence of hydroxyl bearing alumina-silicate minerals and the presence of carbonate minerals and carbonates. Further, the study demonstrates and confirms the spectral sensitivity of marls and carbonatites. Marls have high reflectivity in ASTER visible near infrared (VNIR) and shortwave infrared (SWIR) spectral bands and low emissivity of energy in ASTER TIR spectral bands due to the presence of hydroxyl bearing alumina-silicate minerals. Carbonatites have low reflectivity in ASTER VNIR-SWIR spectral bands and high emissivity in ASTER TIR spectral bands due to the absence of hydroxyl bearing alumina-silicate minerals and the presence of the carbonate minerals and carbonates. These have been discussed by providing the grey scale color image of 14 ASTER spectral bands of the study sites. The study is based on the interpretation of image spectra of multispectral image conducted to map such economic valuable carbonate rocks. It provides a simple methods and basic knowledge, which are of great help to the geology and exploration communities. It is recommended to the geologists, industrialists, exploration communities of carbonates and mine owners to take up the knowledge for economic exploration of such deposits. Further, the study has proved that the technique is time and cost effective in mapping of such deposits and can be used to the areas which have extremely rugged topography occurred in similar arid region, where difficult to do exhaustive sampling and not reachable for conventional geological mapping.
30 CFR 402.7 - Water-Resources Technology Development Program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...
30 CFR 401.12 - Program management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Program management. 401.12 Section 401.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Application and Management Procedures § 401.12 Program management. (a) Upon approval of each fiscal year's...
30 CFR 402.7 - Water-Resources Technology Development Program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...
30 CFR 401.12 - Program management.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Program management. 401.12 Section 401.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Application and Management Procedures § 401.12 Program management. (a) Upon approval of each fiscal year's...
30 CFR 401.12 - Program management.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Program management. 401.12 Section 401.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Application and Management Procedures § 401.12 Program management. (a) Upon approval of each fiscal year's...
30 CFR 402.7 - Water-Resources Technology Development Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...
30 CFR 401.12 - Program management.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Program management. 401.12 Section 401.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Application and Management Procedures § 401.12 Program management. (a) Upon approval of each fiscal year's...
30 CFR 401.12 - Program management.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Program management. 401.12 Section 401.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Application and Management Procedures § 401.12 Program management. (a) Upon approval of each fiscal year's...
30 CFR 402.7 - Water-Resources Technology Development Program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...
30 CFR 402.7 - Water-Resources Technology Development Program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...
Imaging near surface mineral targets with ambient seismic noise
NASA Astrophysics Data System (ADS)
Dales, P.; Audet, P.; Olivier, G.
2017-12-01
To keep up with global metal and mineral demand, new ore-deposits have to be discovered on a regular basis. This task is becoming increasingly difficult, since easily accessible deposits have been exhausted to a large degree. The typical procedure for mineral exploration begins with geophysical surveys followed by a drilling program to investigate potential targets. Since the retrieved drill core samples are one-dimensional observations, the many holes needed to interpolate and interpret potential deposits can lead to very high costs. To reduce the amount of drilling, active seismic imaging is sometimes used as an intermediary, however the active sources (e.g. large vibrating trucks or explosive shots) are expensive and unsuitable for operation in remote or environmentally sensitive areas. In recent years, passive seismic imaging using ambient noise has emerged as a novel, low-cost and environmentally sensitive approach for exploring the sub-surface. This technique dispels with active seismic sources and instead uses ambient seismic noise such as ocean waves, traffic or minor earthquakes. Unfortunately at this point, passive surveys are not capable of reaching the required resolution to image the vast majority of the ore-bodies that are being explored. In this presentation, we will show the results of an experiment where ambient seismic noise recorded on 60 seismic stations was used to image a near-mine target. The target consists of a known ore-body that has been partially exhausted by mining efforts roughly 100 years ago. The experiment examined whether ambient seismic noise interferometry can be used to image the intact and exhausted ore deposit. A drilling campaign was also conducted near the target which offers the opportunity to compare the two methods. If the accuracy and resolution of passive seismic imaging can be improved to that of active surveys (and beyond), this method could become an inexpensive intermediary step in the exploration process and result in a large decrease in the amount of drilling required to investigate and identify high-grade ore deposits.
Exploring the Mineralogy of the Moon with M3
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Boardman, J.; Buratti, B.; Clark, R.; Green, R.; Head, J. W. III; McCord, T. B.; Mustard, J.; Runyon, C.; Staid, M.
2006-01-01
From the initial era or lunar exploration, we have learned that many processes active on the early Moon are common to most terrestrial planets, including the record of early and late impact bombardment. Since most major geologic activity ceased on the Moon approx. 3 Gy ago, the Moon's surface provides a record of the earliest era of terrestrial planet evolution. The type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing. Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes. Specifically, the distribution and concentration of specific minerals is closely tied to magma ocean products, lenses of intruded or remelted plutons, basaltic volcanism and fire-fountaining, and any process (e.g. cratering) that might redistribute or transform primary and secondary lunar crustal materials. The Moon Mineralogy Mapper (M3, or "m-cube") is a state-of-the-art imaging spectrometer that will fly on Chandrayaan-1, the Indian Space Research Organization (ISRO) mission to be launched late 2007 to early 2008. M3 is one of several foreign instruments chosen by ISRO to be flown on Chandrayaan-1 to complement the strong ISRO payload package. M3 was selected through a peer-review process as part of NASA s Discovery Program. It is under the oversight of PI Carle Pieters at Brown University and is being built by an experienced team at the Jet Propulsion Laboratory. Data analysis and calibration are carried out by a highly qualified and knowledgeable Science Team. To characterize diagnostic properties of lunar minerals, M3 acquires high spectral resolution reflectance data from 700 to 3000 nm (optional to 430 nm). M3 operates as a pushbroom spectrometer with a slit oriented orthogonal to the S/C orbital motion. Measurements are obtained simultaneously for 640 cross track spatial elements and 261 spectral elements. This translates to 70 m/pixel spatial resolution from a nominal 100 km polar orbit for Chandrayaan-1 . The primary science goal of M3 is to characterize and map lunar surface mineralogy in the context of its geologic evolution as outlined above. This translates into several sub-topics that focus on exploring the mineral character of the highland crust, characterizing the diversity basaltic volcanism, and identifying potential volatile concentrations near the poles. The primary exploration goal is to assess and map lunar mineral resources at high spatial resolution to support planning for future, targeted missions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
..., Geothermal energy, Government contracts, Indians--lands, Mineral royalties, Oil and gas exploration, Public..., Geothermal energy, Government contracts, Indians--lands, Mineral royalties, Oil and gas exploration, Public... recordkeeping requirements. 30 CFR Part 1210 Continental shelf, Geothermal energy, Government contracts, Indians...
Evaluation of Mineral Assets: Interconnection of Financial and Managerial Aspects
ERIC Educational Resources Information Center
Sergeev, Igor B.; Lebedeva, Olesia Y.
2016-01-01
Mining business makes no sense without mineral assets comprising mineral rights, exploration and evaluation expenditures, development costs, ore reserves and resources. The paper is aimed at investigation of how mineral reserves and resources are evaluated and represented in financial statements of mining companies, and what kind of influence do…
Briskey, Joseph A.; Schulz, Klaus J.
2007-01-01
The world's use of nonfuel mineral resources continues to increase to support a growing population and increasing standards of living. The ability to meet this increasing demand is affected especially by concerns about possible environmental degradation associated with minerals production and by competing land uses. What information does the world need to support global minerals development in a sustainable way?Informed planning and decisions concerning sustainability and future mineral resource supply require a long–term perspective and an integrated approach to resource, land use, economic, and environmental management worldwide. Such perspective and approach require unbiased information on the global distribution of identified and especially undiscovered resources, the economic and political factors influencing their development, and the potential environmental consequences of their exploitation.The U.S. Geological Survey and the former Deposit Modeling Program of the International Union of Geological Sciences (IUGS) of the United Nations Educational, Scientific and Cultural Organization (UNESCO) sponsored a workshop on "Deposit Modeling, Mineral Resource Assessment, and Their Role in Sustainable Development" at the 31st International Geological Congress (IGC) in Rio de Janeiro, Brazil, on August 18–19, 2000. The purpose of the workshop was to review the state-of-the-art in mineral deposit modeling and resource assessment and to examine the role of global assessments of nonfuel mineral resources in sustainable development.The workshop addressed questions such as the following: Which of the available mineral deposit models and assessment methods are best suited for predicting the locations, deposit types, and amounts of undiscovered nonfuel mineral resources remaining in the world? What is the availability of global geologic, mineral deposit, and mineral exploration information? How can mineral resource assessments be used to address economic and environmental issues? Presentations included overviews of assessment methods applied in previous national and other small-scale assessments of large regions and of the resulting assessment products and their uses.Twenty-seven people from Canada, China, Finland, Germany, Japan, Peru, Slovenia, South Africa, United States, and Venezuela participated in the 2-day post-Congress workshop. The attendees represented academia, government, environmental organizations, and the mining industry.
Rye, Robert O.; Johnson, Craig A.; Landis, Gary P.; Hofstra, Albert H.; Emsbo, Poul; Stricker, Craig A.; Hunt, Andrew G.; Rusk, Brian G.
2010-01-01
Principal functions of the U.S. Geological Survey (USGS) Mineral Resources Program are providing assessments of the location, quantity, and quality of undiscovered mineral deposits, and predicting the environmental impacts of exploration and mine development. The mineral and environmental assessments of domestic deposits are used by planners and decisionmakers to improve the stewardship of public lands and public resources. Assessments of undiscovered mineral deposits on a global scale reveal the potential availability of minerals to the United States and other countries that manufacture goods imported to the United States. These resources are of fundamental relevance to national and international economic and security policy in our globalized world economy. Performing mineral and environmental assessments requires that predictions be made of the likelihood of undiscovered deposits. The predictions are based on geologic and geoenvironmental models that are constructed for the diverse types of mineral deposits from detailed descriptions of actual deposits and detailed understanding of the processes that formed them. Over the past three decades the understanding of ore-forming processes has benefited greatly from the integration of laboratory-based geochemical tools with field observations and other data sources. Under the aegis of the Evolution of Ore Deposits and Technology Transfer Project (referred to hereinafter as the Project), a 5-year effort that terminated in 2008, the Mineral Resources Program provided state-of-the-art analytical capabilities to support applications of several related geochemical tools to ore-deposit-related studies. The analytical capabilities and scientific approaches developed within the Project have wide applicability within Earth-system science. For this reason the Project Laboratories represent a valuable catalyst for interdisciplinary collaborations of the type that should be formed in the coming years for the United States to meet its natural-resources and natural-science needs. This circular presents an overview of the Project. Descriptions of the Project laboratories are given first including descriptions of the types of chemical or isotopic analyses that are made and the utility of the measurements. This is followed by summaries of select measurements that were carried out by the Project scientists. The studies are grouped by science direction. Virtually all of them were collaborations with USGS colleagues or with scientists from other governmental agencies, academia, or the private sector.
30 CFR 402.6 - Water-Resources Research Program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...
30 CFR 402.6 - Water-Resources Research Program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...
30 CFR 402.6 - Water-Resources Research Program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...
30 CFR 402.6 - Water-Resources Research Program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...
30 CFR 402.6 - Water-Resources Research Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...
Miller, W.R.; Ficklin, W.H.; McHugh, J.B.
1992-01-01
Water was used as a medium for geochemical exploration to detect copper-nickel mineralization along the basal zone of the Duluth Complex. Ni2+ is the most important pathfinder for the detection of the mineralized rocks, followed by Cu2+ and SO42- and to a lesser extent Mg2+ and SiO2. A normalized sum plot using these species defines the mineralization more consistently than a single-element plot, mainly because the absence of one variable does not significantly influence the normalized sum value. A hydrogeochemical survey was conducted in an area of known copper-nickel mineralization in the cool-humid climate of northeastern Minnesota. The area is covered with glacial drift, and wetlands are abundant. Modeling of the chemistry of waters indicates that the waters are oxidizing and have a pH of 7 or less. The most important pathfinder species in the waters, Cu2+, Ni2+, and SO42-, are derived from the simple weathering of sulfide minerals and are mobile in the waters in this environment. Plots of Cu and Ni concentrations in soils show that Cu followed by Ni are the most useful indicator elements for delineating copper-nickel mineralization. The ability of soils and water to delineate the mineralization supports the use of both media for geochemical exploration in this cool-humid environment. In the wetlands, abundant water is available and soils are scarce or absent; where soils are abundant, waters are generally scarce or absent. The use of both media is recommended for geochemical exploration in this environment. ?? 1992.
A study to examine the feasibility of using surface penetrators for mineral exploration
NASA Technical Reports Server (NTRS)
Davis, A. S.; Anderson, D. W.
1978-01-01
The feasibility of using penetrators in earth applications is examined. Penetrator applications in exploration for mineral resources only is summarized. Instrumentation for future penetrators is described. Portions of this report are incorporated into a more extensive report examining other penetrator applications in exploration for fossil fuels, geothermal resources, and in environmental and engineering problems, which is to be published as a NASA technical publication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hepworth, J.C.; Foss, M.M.
The fifth Energy and Minerals Field Institute program for Washington, D.C. Congressional and Executive Aides was held during August 15-21, 1982. The five-and-one-half day program was conducted through Wyoming, Colorado and Utah and consisted of visits to: an R and D tertiary petroleum production facility; an historic oil field entering secondary production; a surface uranium mine; a petroleum exploration drilling rig; a surface coal mine; an air cooled, coal-fired power plant; an oil shale site; a geothermal-electrical generating facility; and open pit copper mine and associated smelter and refinery; a petroleum refinery and an oil shale semi-works retort. During themore » field program, participants had opportunities to view communities affected by these activities, such as Wright City and Gillette, Wyoming, Parachute, Colorado and Milford and Cedar City, Utah. Throughout the program, aides met with local, state and industry officials and citizen leaders during bus rides, meals and site visits.« less
30 CFR 75.1702-1 - Smoking programs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Smoking programs. 75.1702-1 Section 75.1702-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1702-1 Smoking programs. Programs...
30 CFR 75.1702-1 - Smoking programs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Smoking programs. 75.1702-1 Section 75.1702-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1702-1 Smoking programs. Programs...
30 CFR 75.1702-1 - Smoking programs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Smoking programs. 75.1702-1 Section 75.1702-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1702-1 Smoking programs. Programs...
30 CFR 75.1702-1 - Smoking programs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Smoking programs. 75.1702-1 Section 75.1702-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1702-1 Smoking programs. Programs...
30 CFR 75.1702-1 - Smoking programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking programs. 75.1702-1 Section 75.1702-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1702-1 Smoking programs. Programs...
30 CFR 906.16 - Required program amendments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Required program amendments. 906.16 Section 906.16 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE COLORADO § 906.16 Required program...
Eppinger, Robert G.; Kelley, Karen D.; Fey, David L.; Giles, Stuart A.; Minsley, Burke J.; Smith, Steven M.
2010-01-01
From 2007 through 2010, scientists in the U.S. Geological Survey (USGS) have been conducting exploration-oriented geochemical and geophysical studies in the region surrounding the giant Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska. The Cretaceous Pebble deposit is concealed under tundra, glacial till, and Tertiary cover rocks, and is undisturbed except for numerous exploration drill holes. These USGS studies are part of a nation-wide research project on evaluating and detecting concealed mineral resources. This report focuses on exploration geochemistry and comprises illustrations and associated notes that were presented as a case study in a workshop on this topic. The workshop, organized by L.G. Closs and R. Glanzman, is called 'Geochemistry in Mineral Exploration and Development,' presented by the Society of Economic Geologists at a technical conference entitled 'The Challenge of Finding New Mineral Resources: Global Metallogeny, Integrative Exploration and New Discoveries,' held at Keystone, Colorado, October 2-5, 2010.
Effects of Exercise on Bone Mineral Content in Postmenopausal Women.
ERIC Educational Resources Information Center
Rikli, Roberta E.; McManis, Beth G.
1990-01-01
Study tested the effect of exercise programs on bone mineral content (BMC) and BMC/bone width in 31 postmenopausal women. Subjects were placed in groups with aerobic exercise, aerobics plus upper-body weight training, or no exercise. Results indicate that regular exercise programs positively affect bone mineral maintenance in postmenopausal women.…
NASA Astrophysics Data System (ADS)
Scafutto, Rebecca Del'Papa Moreira; de Souza Filho, Carlos Roberto; de Oliveira, Wilson José
2017-06-01
Remote detection and mapping of hydrocarbons (PHCs) in situ in continental areas is still an operational challenge due to the small scale of the occurrences and the mix of spectral signatures of PHCs and mineral substrates in imagery pixels. Despite the increasing development of new technologies, the use of hyperspectral remote sensing data as a complementary tool for both oil exploration and environmental monitoring is not standard in the oil industry, despite its potential. The high spectral resolution of hyperspectral images allows the direct identification of PHCs on the surface and provides valuable information regarding the location and spread of oil spills that can assist in containment and cleanup operations. Combining the spectral information with statistical techniques also offers the potential to improve exploration programs focused on the discovery of new exploration fields through the qualitative and quantitative characterization of oil occurrences in onshore areas. In this scenario, the aim of this work was to develop methods that can assist the detection of continental areas affected by natural oil seeps or leaks (crude oils and fuels). A field experiment was designed by impregnating several mineral substrates with crude oils and fuels in varying concentrations. Simultaneous measurements of soil-PHC combinations were taken using both a hand-held spectrometer and an airborne hyperspectral imager. Classification algorithms were used to directly map the PHCs on the surface. Spectral information was submitted to a PLS (partial least square regression) to create a prediction model for the estimation of the concentrations of PHCs in soils. The developed model was able to detect three impregnation levels (low, intermediate, high), predicting values close to the concentrations used in the experiment. Given the quality of the results in controlled experiments, the methods developed in this research show the potential to support the oil industry in the discovery of new oil plays and reservoirs and to define the contamination stage and spread of oil/fuel in areas affected by accidental leaks, improving both exploration and environmental monitoring.
NASA Astrophysics Data System (ADS)
Cramer, Timothy F.
The Desert National Wildlife Refuge in southern Nevada has been selected for remote sensing analysis as part of a mineral assessment required for renewal of mineral withdrawal. The area of interest is nearly 3,000 km2 and covers portions of 5 different ranges with little to no infrastructure. Assessing such a large area using traditional field methods is very time intensive and expensive. The study described here serves as a pilot study, testing the capability of Landsat ETM+ and ASTER satellite imagery to remotely identify areas of potentially mineralized lithologies. This is done by generating a number of band ratio, band index, and mineral likelihood maps identifying 5 key mineral classes (silica, clay, iron oxide, dolomite and calcite), which commonly have patterned zonation around ore deposits. When compiled with available geologic and geochemical data sets, these intermediate products can provide guidance for targeted field evaluation and exploration. Field observations and spectral data collected in the laboratory can then be integrated with ASTER imagery to guide a Spectral Angle Mapper algorithm to generate a distribution map of the five mineral classes. The methods presented found the ASTER platform to be capable of remotely assessing the distribution of various lithologies and the mineral potential of large, remote areas. Furthermore areas of both high and low potential for ore deposits can be identified and used to guide field evaluation and exploration. Remote sensing studies of this caliber can be performed relatively quickly and inexpensively resulting in datasets, which can result in more accurate mapping and the identification of both lithologic boundaries and previously unidentified alteration associated with mineralization. Future mineral assessments and exploration activity should consider similar studies prior to field work.
Earth and water resources and hazards in Central America
Cunningham, Charles G.; Fary, R.W.; Guffanti, Marianne; Laura, Della; Lee, M.P.; Masters, C.D.; Miller, R.L.; Quinones-Marques, Ferdinand; Peebles, R.W.; Reinemund, J.A.; Russ, D.P.
1984-01-01
Long-range economic development in Central America will depend in large part on production of indigenous mineral, energy, and water resources and on mitigation of the disastrous effects of geologic and hydrologic hazards such as landslides, earthquakes, volcanic eruptions, and floods. The region has six world-class metal mines at present as well as additional evidence of widespread mineralization. Systematic investigations using modern mineral exploration techniques should reveal more mineral deposits suitable for development. Widespread evidence of lignite and geothermal resources suggests that intensive studies could identify producible energy sources in most Central American countries. Water supply and water quality vary greatly from country to country. Local problems of ground- and surface-water availability and of contamination create a need for systematic programs to provide better hydrologic data, capital improvements, and management. Disastrous earthquakes have destroyed or severely damaged many cities in Central America. Volcanic eruptions, landslides, mudflows, and floods have devastated most of the Pacific side of Central America at one time or another. A regional approach to earthquake, volcano, and flood-risk analysis and monitoring, using modern technology and concepts, would provide the facilities and means for acquiring knowledge necessary to reduce future losses. All Central American countries need to strengthen institutions and programs dealing with earth and water resources and natural hazards. Some of these needs may be satisfied through existing or pending projects and technical and economic assistance from U.S. or other sources. The need for a comprehensive study of the natural resources of Central America and the requirements for their development is evident. The U.S. Caribbean Basin Initiative offers both an excellent opportunity for a regional approach to these pervasive problems and an opportunity for international cooperation.
Meteoritic Sulfur Isotopic Analysis
NASA Technical Reports Server (NTRS)
Thiemens, Mark H.
1996-01-01
Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.
Taxation of unmined minerals; Current developments in the Commonwealth of Kentucky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bremberg, B.P.
1989-01-01
This paper reports on the Kentucky Revenue Cabinet which began implementing its controversial unmined minerals tax program. The Revenue Cabinet should complete its first annual assessment under this program in December, 1989. The Revenue Cabinet's initial efforts to collect basic data concerning the Commonwealth's coal bearing lands has yielded data coverage for 5 million of Kentucky's 10 million acres of coal lands. Approximately 1000 detailed information returns have been filed. The returns will be used to help create an undeveloped mineral reserves inventory, determine mineral ownership, and value mineral reserves. This new program is run by the Revenue Cabinet's Mineralmore » Valuation Section, under the Division of Technical Support, Department of Property Taxation. It has been in business since September of 1988.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Oil and gas data and information to be provided for use in the OCS Oil and Gas Information Program. 252.3 Section 252.3 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OUTER CONTINENTAL SHELF (OCS) OIL AND GAS INFORMATION PROGRAM § 252.3 Oil and gas data and...
Micron to Mine: Synchrotron Science for Mineral Exploration, Production, and Remediation
NASA Astrophysics Data System (ADS)
Banerjee, N.; Van Loon, L.; Flynn, T.
2017-12-01
Synchrotron science for mineral exploration, production, and remediation studies is a powerful tool that provides industry with relevant micron to macro geochemical information. Synchrotron micro X-ray fluorescence (SR-µXRF) offers a direct, high-resolution, rapid, and cost-effective chemical analysis while preserving the context of the sample by mapping ore minerals with ppm detection limits. Speciation of trace and deleterious elements can then be probed using X-ray absorption near-edge structure (XANES) spectroscopy. Large-scale (tens of cm) µXRF mapping and XANES analysis of samples collected at various mine locations have been undertaken to address questions regarding mineralization history to develop novel trace element exploration vectors. This information provides integral insights into trace element associations with ore minerals, local redox conditions responsible for mineralization, and mineralizing mechanisms. Gold is commonly intimately associated with sulfide mineralization (e.g., pyrite, arsenopyrite, etc.) and is present both as inclusions and filling fractures in sulfide grains. Gold may also occur as nanoparticles and/or in the sulfide mineral crystal lattice, known as "invisible gold". Understanding the nature and distribution of invisible gold in ore is integral to processing efficiency. The high flux and energy of a synchrotron light source allows for the detection of invisible gold by µXRF, and can probe its nature (metallic Au0 vs. lattice bound Au1+) using XANES spectroscopy. The long-term containment and management of arsenic is necessary to protect the health of both humans and the environment. Understanding the relationship of arsenic mineralization to gold deposits can lead to more sophisticated planning for mineral processing and the eventual storage of gangue materials. µXANES spectroscopy is an excellent tool for determining arsenic speciation within the context of the sample. Mineral phases such as arsenopyrite, scorodite, and arsenic trioxide can be accurately identified as well as relative amounts determined. With this information the oxidation-reduction of arsenic-bearing compounds can be monitored to optimize management practices for the long-term capture of arsenic contaminants.
NASA Astrophysics Data System (ADS)
Najafi, Ali; Karimpour, Mohammad Hassan; Ghaderi, Majid
2014-12-01
Using fuzzy analytical hierarchy process (AHP) technique, we propose a method for mineral prospectivity mapping (MPM) which is commonly used for exploration of mineral deposits. The fuzzy AHP is a popular technique which has been applied for multi-criteria decision-making (MCDM) problems. In this paper we used fuzzy AHP and geospatial information system (GIS) to generate prospectivity model for Iron Oxide Copper-Gold (IOCG) mineralization on the basis of its conceptual model and geo-evidence layers derived from geological, geochemical, and geophysical data in Taherabad area, eastern Iran. The FuzzyAHP was used to determine the weights belonging to each criterion. Three geoscientists knowledge on exploration of IOCG-type mineralization have been applied to assign weights to evidence layers in fuzzy AHP MPM approach. After assigning normalized weights to all evidential layers, fuzzy operator was applied to integrate weighted evidence layers. Finally for evaluating the ability of the applied approach to delineate reliable target areas, locations of known mineral deposits in the study area were used. The results demonstrate the acceptable outcomes for IOCG exploration.
43 CFR 3400.0-5 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... explore for coal on unleased Federal lands. (m) Exploration plan has the meaning set forth in § 3480.0-5(a... a Federal lease, issued under the coal leasing provisions of the mineral leasing laws, which grants... Federal leases for minerals other than coal, the term Federal coal lease may apply. (s) Lease bond means...
Van Gosen, Bradley S.; Ellefsen, Karl J.
2018-04-16
This study examined titanium distribution in the Atlantic Coastal Plain of the southeastern United States; the titanium is found in heavy-mineral sands that include the minerals ilmenite (Fe2+TiO3), rutile (TiO2), or leucoxene (an alteration product of ilmenite). Deposits of heavy-mineral sands in ancient and modern coastal plains are a significant feedstock source for the titanium dioxide pigments industry. Currently, two heavy-mineral sands mining and processing operations are active in the southeast United States producing concentrates of ilmenite-leucoxene, rutile, and zircon. The results of this study indicate the potential for similar deposits in many areas of the Atlantic Coastal Plain.This study used the titanium analyses of 3,457 stream sediment samples that were analyzed as part of the U.S. Geological Survey’s National Geochemical Survey program. This data set was analyzed by an integrated spatial modeling technique known as Bayesian hierarchical modeling to map the regional-scale, spatial distribution of titanium concentrations. In particular, clusters of anomalous concentrations of titanium occur: (1) along the Fall Zone, from Virginia to Alabama, where metamorphic and igneous rocks of the Piedmont region contact younger sediments of the Coastal Plain; (2) a paleovalley near the South Carolina and North Carolina border; (3) the upper and middle Atlantic Coastal Plain of North Carolina; (4) the majority of the Atlantic Coastal Plain of Virginia; and (5) barrier islands and stretches of the modern shoreline from South Carolina to northeast Florida. The areas mapped by this study could help mining companies delimit areas for exploration.
Exploration of geo-mineral compounds in granite mining soils using XRD pattern data analysis
NASA Astrophysics Data System (ADS)
Koteswara Reddy, G.; Yarakkula, Kiran
2017-11-01
The purpose of the study was to investigate the major minerals present in granite mining waste and agricultural soils near and away from mining areas. The mineral exploration of representative sub-soil samples are identified by X-Ray Diffractometer (XRD) pattern data analysis. The morphological features and quantitative elementary analysis was performed by Scanning Electron Microscopy-Energy Dispersed Spectroscopy (SEM-EDS).The XRD pattern data revealed that the major minerals are identified as Quartz, Albite, Anorthite, K-Feldspars, Muscovite, Annite, Lepidolite, Illite, Enstatite and Ferrosilite in granite waste. However, in case of agricultural farm soils the major minerals are identified as Gypsum, Calcite, Magnetite, Hematite, Muscovite, K-Feldspars and Quartz. Moreover, the agricultural soils neighbouring mining areas, the minerals are found that, the enriched Mica group minerals (Lepidolite and Illite) the enriched Orthopyroxene group minerals (Ferrosilite and Enstatite). It is observed that the Mica and Orthopyroxene group minerals are present in agricultural farm soils neighbouring mining areas and absent in agricultural farm soils away from mining areas. The study demonstrated that the chemical migration takes place at agricultural farm lands in the vicinity of the granite mining areas.
NASA Astrophysics Data System (ADS)
Huang, Z.; Zheng, J.
2018-04-01
Hydrothermal alteration is an important content in the study of epithermal deposit, and its deep part is often accompanied by porphyry mineralization. The objective of research is to mapping the alteration minerals for mineral exploration using mixture tuned matched filtering (MTMF) approach based on airborne hyperspectral data CASI and SASI in Wuyi metallogenic belt, China, which has complex geological structure and excellent mineralization conditions and high regional forest coverage rate. Gold mineralization is closely related to the Yanshan period epithermal intrusive rocks, and often exists in external contact zone of allgovite, monzomite porphyrite, granite porphyry, quarz porphyry, et al.. The main mineral alteration types include silicification (quartz), sericitization (sericite, illite), pyritization (pyrite), chloritization (chlorite), and partial calcitization (calcite). The alteration minerals extraction based on integrated CASI_SASI reflectance data were processed by MTMF algorithm with the input imagery which was pre-processed by MNF and the input endmember spectra measured by SVC spectrometer to performs MF and add an infeasibility image. The MTMF results provide an estimate to mineral subpixel fractions leading to the abundances of alteration minerals at each pixel and alteration minerals distribution. The accuracy of alteration mineral extraction refers to the extent which it agrees with a set of reference data measured in the field reconnaissance. So the CASI_SASI airborne hyperspectral image provides the efficient way to map the detailed alteration minerals distribution for mineral exploration in high forest coverage area.
Reflectance spectroscopy in planetary science: Review and strategy for the future
NASA Technical Reports Server (NTRS)
Mccord, Thomas B. (Editor)
1987-01-01
Reflectance spectroscopy is a remote sensing technique used to study the surfaces and atmospheres of solar system bodies. It provides first-order information on the presence and amounts of certain ions, molecules, and minerals on a surface or in an atmosphere. Reflectance spectroscopy has become one of the most important investigations conducted on most current and planned NASA Solar System Exploration Program space missions. This book reviews the field of reflectance spectroscopy, including information on the scientific technique, contributions, present conditions, and future directions and needs.
Use of communications. [satellite communication
NASA Technical Reports Server (NTRS)
1975-01-01
Progress in the field of satellite communications is reviewed, and useful services which may be provided by future satellite communications systems are considered. Recommendations are made with regard to mobile communications for use on land and at sea, position determination, mineral and energy exploration, the possibility of using electronic means to assist in main delivery, education and health-care experiments, and the use of satellite telecommunications to enhance the quality of life in rural areas by making available a full range of educational and entertainment programs. The needs of the amateur radio community are also considered.
Continental geodynamics and mineral exploration - the Western Australian perspective
NASA Astrophysics Data System (ADS)
Gessner, Klaus; Murdie, Ruth; Yuan, Huaiyu; Brisbout, Lucy; Sippl, Christian; Tyler, Ian; Kirkland, Chris; Wingate, Michael; Johnson, Simon; Spaggiari, Catherine; Smithies, Hugh; Lu, Yongjun; Gonzalez, Chris; Jessell, Mark; Holden, Eun-Jung; Gorczyk, Weronika; Occhipinti, Sandra
2017-04-01
The exploration for mineral resources and their extraction has been a fundamental human activity since the dawn of civilisation: Geology is everywhere - ore deposits are rare. Most deposits were found at or near Earth's surface, often by chance or serendipity. To meet the challenge of future demand, successful exploration requires the use of advanced technology and scientific methods to identify targets at depth. Whereas the use and development of high-tech exploration, extraction and processing methods is of great significance, understanding how, when and where dynamic Earth systems become ore-forming systems is a difficult scientific challenge. Ore deposits often form by a complex interplay of coupled physical processes with evolving geological structure. The mineral systems approach states that understanding the geodynamic and tectonic context of crustal scale hydrothermal fluid flow and magmatism can help constrain the spatial extent of heat and mass transport and therefore improve targeting success in mineral exploration. Tasked with promoting the geological assets of one of the World's largest and most resource-rich jurisdictions, the Geological Survey of Western Australia is breaking new ground by systematically collecting and integrating geophysical, geological and geochemical data with the objective to reveal critical ties between lithospheric evolution and mineral deposits. We present examples where this approach has led to fundamental reinterpretations of Archean and Proterozoic geodynamics and the nature of tectonic domains and their boundaries, including cases where geodynamic modelling has played an important role in testing hypotheses of crustal evolution.
United States Geological Survey Yearbook, fiscal year 1978
,
1979-01-01
Fiscal year 1978 saw the U.S. Geological Survey continuing to perform its basic historical missions of collecting, analyzing, and disseminating information about the Earth, its processes, and its water and mineral resources. Classifying Federal lands and supervising lessee mineral extraction operations on those lands were also major Survey concerns during the year. In addition, substantial progress was made in the exploration and assessment of the petroleum potential of the National Petroleum Reserve in Alaska, a recently assigned mission. These basic missions found expression in a wide range of program activities and interests as diverse as the sands of Mars and the volcanoes of Hawaii. Programs included assessment of numerous potential energy and mineral resources, study of earthquakes and other geologic hazards, appraisal of the magnitude and quality of the Nation's water resources, and supervision of lease operations on Federal lands. The Survey also was involved in developing data on land use and producing topographic, geologic, and hydrologic maps for public and private use. In cooperation with other Federal agencies, the Survey participated in studies under the U.S. Climate Program and continued its analysis of data received from the two Viking landers on the surface of Mars. On April 3, 1978, Dr. H. William Menard became the 10th Director of the U.S. Geological Survey. Dr. Menard, who, until his appointment, was Professor of Geology at the Scripps Institution of Oceanography, San Diego, Calif., brings to the Director's post the experience gained in a long and successful career as a marine geologist and oceanographer. He succeeds Dr. Vincent E. McKelvey, who continues with the Survey as a senior research scientist.
GHGRP Minerals Sector Industrial Profile
EPA's Greenhouse Gas Reporting Program periodically produces detailed profiles of the various industries that report under the program. The profiles available for download below contain detailed analyses for the Minerals industry.
75 FR 55678 - Minerals Management: Adjustment of Cost Recovery Fees
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-14
... text to the general cost recovery fee table so that mineral cost recovery fees can be found in one... Coal and Oil Shale) Program's lease renewal fee will increase from $480 to $485; (C) The Mining Law... $2,840; and (D) The Mining Law Administration Program's fee for mineral patent adjudication of 10 or...
Fary, Raymond W.
1967-01-01
The statement that a new era in exploration is opening will almost surely bring to mind the venturing of man into space and the ever more imminent exploration of the moon. The reference here, however, is to exploration of earth itself and to the unique capabilities for study of the earth that space technology will provide. Demands for water, minerals, energy, food, and for working, living and recreational space are outrunning our ability to meet them by traditional methods. In order to satisfy these demands, it is necessary now, just as it has been in the past, to look to the activities, the instruments, and the technologies that in part create the pressures for aid in meeting them. Studies being made at the U.S. Geological Survey and elsewhere of the potential applications of remote sensors in space to earth resources research indicate that now, at last, it will be possible to approach solutions on a regional or global basis. This paper discusses the plans for an Earth Resources Observational Satellites Program which will be designed for that purpose.
Bodine, M.W.
1987-01-01
The FORTRAN 77 computer program CLAYFORM apportions the constituents of a conventional chemical analysis of a silicate mineral into a user-selected structure formula. If requested, such as for a clay mineral or other phyllosilicate, the program distributes the structural formula components into appropriate default or user-specified structural sites (tetrahedral, octahedral, interlayer, hydroxyl, and molecular water sites), and for phyllosilicates calculates the layer (tetrahedral, octahedral, and interlayer) charge distribution. The program also creates data files of entered analyses for subsequent reuse. ?? 1987.
Matti, Jonathan C.; Cox, Brett F.; Rodriguez, Eduardo A.; Obi, Curtis M.; Powell, Robert E.; Hinkle, Margaret E.; Griscom, Andrew; Sabine, Charles; Cwick, Gary J.
1982-01-01
Geological, geochemical, and geophysical evidence, together with a review of historical mining and prospecting activities, suggests that most of the Bighorn Mountains Wilderness Study Area has low potential for the discovery of all types of mineral and energy resources-including precious and base metals, building stone and aggregate, fossil fuels, radioactive-mineral resources, and geothermal resources. Low-grade mineralization has been documented in one small area near Rattlesnake Canyon, and this area has low to moderate potential for future small-scale exploration and development of precious and base metals. Thorium and uranium enrichment have been documented in two small areas in the eastern part of the wilderness study area; these two areas have low to moderate potential for future small-scale exploration and development of radioactive-mineral resources.
Ground Runup Noise Suppression Program. Part 3. Dry Suppressor Technology Base.
1982-06-20
ref 7) used mineral wool to fill the bays. A facing of corrugated metal liner supports the mineral wool . During operation two types of problems...1978 52 tube. The hot jet velocity exhaust flow shifted/decinerated the mineral wool and caused the metal liner to crack/break off. Programs were...PREDICTED) 0 MINERAL WOOL FIBROUS LINER 315 630 1250 2500 5000 10000 20000 1/15 SCALE FREQUENCY Figure 2-30. Noise attenuation of liners in augmenter. K
Wilson, Frederic H.; White, Willis H.; Detterman, Robert L.
1988-01-01
Geologic mapping of the Port Moller, Stepovak Bay, and Simeonof Island quadrangles was begun under the auspices of the Alaska Mineral Resource Assessment Program (AMRAP) in 1983 . Two important mineral deposits are located in the Port Moller quadrangle; the Pyramid prospect is the largest copper porphyry system in the Aleutian Arc, and the Apollo Mine is the only gold mine to reach production status in the Aleutian Arc.
Electrostatic Beneficiation of Lunar Regolith: Applications in In-Situ Resource Utilization
NASA Technical Reports Server (NTRS)
Trigwell, Steve; Captain, James; Weis, Kyle; Quinn, Jacqueline
2011-01-01
Upon returning to the moon, or further a field such as Mars, presents enormous challenges in sustaining life for extended periods of time far beyond the few days the astronauts experienced on the moon during the Apollo missions. A stay on Mars is envisioned to last several months, and it would be cost prohibitive to take all the requirements for such a stay from earth. Therefore, future exploration missions will be required to be self-sufficient and utilize the resources available at the mission site to sustain human occupation. Such an exercise is currently the focus of intense research at NASA under the In-situ Resource Utilization (ISRU) program. As well as oxygen and water necessary for human life, resources for providing building materials for habitats, radiation protection, and landing/launch pads are required. All these materials can be provided by the regolith present on the surface as it contains sufficient minerals and metals oxides to meet the requirements. However, before processing, it would be cost effective if the regolith could be enriched in the mineral(s) of interest. This can be achieved by electrostatic beneficiation in which tribocharged mineral particles are separated out and the feedstock enriched or depleted as required. The results of electrostatic beneficiation of lunar simulants and actual Apollo regolith, in lunar high vacuum are reported in which various degrees of efficient particle separation and mineral enrichment up to a few hundred percent were achieved.
STATEMAP - Program information | Alaska Division of Geological &
Observatory (AVO) Mineral Resources Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements critical Earth science problems. STATEMAP products Alaska benefits of NCGMP's STATEMAP program Summary map
Digging into Minnesota Minerals.
ERIC Educational Resources Information Center
Minnesota State Dept. of Natural Resources, St. Paul.
This publication presents students with facts about geology and several learning activities. Topics covered include rocks and minerals, volcanoes and earthquakes, fossils, exploration geology, mining in Minnesota, environmental issues related to mining, mineral uses, mining history, and the geology of Minnesota's state parks. A geologic timetable…
NASA Astrophysics Data System (ADS)
Bell, Peter M.
Artificial intelligence techniques are being used for the first time to evaluate geophysical, geochemical, and geologic data and theory in order to locate ore deposits. After several years of development, an intelligent computer code has been formulated and applied to the Mount Tolman area in Washington state. In a project funded by the United States Geological Survey and the National Science Foundation a set of computer programs, under the general title Prospector, was used successfully to locate a previously unknown ore-grade porphyry molybdenum deposit in the vicinity of Mount Tolman (Science, Sept. 3, 1982).The general area of the deposit had been known to contain exposures of porphyry mineralization. Between 1964 and 1978, exploration surveys had been run by the Bear Creek Mining Company, and later exploration was done in the area by the Amax Corporation. Some of the geophysical data and geochemical and other prospecting surveys were incorporated into the programs, and mine exploration specialists contributed to a set of rules for Prospector. The rules were encoded as ‘inference networks’ to form the ‘expert system’ on which the artificial intelligence codes were based. The molybdenum ore deposit discovered by the test is large, located subsurface, and has an areal extent of more than 18 km2.
30 CFR 550.182 - When may the Secretary cancel a lease at the exploration stage?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false When may the Secretary cancel a lease at the exploration stage? 550.182 Section 550.182 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF..., the National security or defense, or to the marine, coastal, or human environment, and that the...
30 CFR 550.182 - When may the Secretary cancel a lease at the exploration stage?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false When may the Secretary cancel a lease at the exploration stage? 550.182 Section 550.182 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF..., the National security or defense, or to the marine, coastal, or human environment, and that the...
30 CFR 550.182 - When may the Secretary cancel a lease at the exploration stage?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false When may the Secretary cancel a lease at the exploration stage? 550.182 Section 550.182 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF..., the National security or defense, or to the marine, coastal, or human environment, and that the...
ERIC Educational Resources Information Center
Bopegedera, A. M. R. P.
2016-01-01
General chemistry and introductory chemistry students were presented with a laboratory exploration for the determination of the mass percent of copper in rock and mineral samples. They worked independently in the laboratory, which involved multiple lab (pipetting, preparing standard solutions by quantitative dilution, recording visible spectra…
Mineral deposits in western Saudi Arabia; a preliminary report
Roberts, Ralph Jackson; Greenwood, William R.; Worl, Ronald G.; Dodge, F.C.W.; Kiilsgaard, Thor H.
1975-01-01
In order to effectively carry on a search for new mineral deposits, the belts should be mapped in detail, with emphasis on the delineation of stratigraphic and structural features that control metallization. In addition, geochemical and geophysical studies should be made of promising areas to outline exploration targets. These targets could then be systematically explored.
30 CFR 402.2 - Delegation of authority.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Delegation of authority. 402.2 Section 402.2 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE...-Resources Research Program and the Water-Resources Technology Development Program, as authorized by sections...
30 CFR 402.2 - Delegation of authority.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Delegation of authority. 402.2 Section 402.2 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE...-Resources Research Program and the Water-Resources Technology Development Program, as authorized by sections...
30 CFR 402.2 - Delegation of authority.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Delegation of authority. 402.2 Section 402.2 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE...-Resources Research Program and the Water-Resources Technology Development Program, as authorized by sections...
30 CFR 402.2 - Delegation of authority.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Delegation of authority. 402.2 Section 402.2 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE...-Resources Research Program and the Water-Resources Technology Development Program, as authorized by sections...
30 CFR 402.2 - Delegation of authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Delegation of authority. 402.2 Section 402.2 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE...-Resources Research Program and the Water-Resources Technology Development Program, as authorized by sections...
NASA Astrophysics Data System (ADS)
Gonçalves, Mario A.
2015-04-01
It has been 20 years since the pioneering work of Cheng et al (1994) first proposed a quantitative relationship for the areas enclosing concentration values of an element above given thresholds and their distribution in the field, known as concentration-area (CA) method, which is based in multifractal theory. The method allows the definition of geochemical anomalies in wide set of geological backgrounds but it took nearly 15 years before it became a widely used methodology for mineral exploration. The method was also extended to 1D and 3D data sets. It is worth noting the variety of methods that spanned from the theory of fractals. Building on previous models, including multiplicative cascades and size-grade relationships, increasing evidence points to the powerful tools of fractal theory to describe and model ore deposit distribution and formation. However, while much of these approaches become complex and not easy to use, the CA method is remarkable for its utter simplicity and disarming results obtained when confronted with the geological reality in the field. This is most valued by companies and professionals undertaking geochemical exploration surveys for the characterization or refining of potential ore targets or known mineralized areas. Several approaches have combined the CA method with geostatistic modeling and simulation and other established statistical techniques in order to enhance anomalous threshold identification. Examples are not restricted to geochemical exploration alone, other applications being studies on environmental change. Some of these examples will be addressed as they have been applied to different regions in the world, but particular emphasis will be put on geochemical exploration surveys in different geotectonic units of the Variscan basement in the Iberian Peninsula. These include quartz-vein gold mineralization in Northern Portugal and several surveys for base metals over two wide areas, which served to re-evaluate much of the scattered geochemical data sets that have been accumulating for decades of mining exploration in Southern Portugal. The studied zones include: the tectonic controlled quartz-vein Au-Sb mineralizations, the gabbroic and ultramafic complex of the southern border of the Ossa-Morena Zone, and the rocks belonging to the World-class massive sulfide province, the Iberian Pyrite Belt (IPB). The methodology used the CA method but also variogram analysis and modelling to outline and classify different sets of mineral deposits before confirmation in the field. This diversity of geologic contexts serves to show how effective and powerful the CA method can be, since it not only enhances already known mineralizations, it allowed the screening and identification of several new mineralized spots that have been previously overlooked. This has been of particularly economic importance because a major re-analysis of data and new exploration campaigns are currently under way for the next years in the IPB, with the potential for opening a new paradigm in the exploration for massive sulfide deposits in the region. Cheng et al, 1994, J. Geochem. Explor., 51, 109.
Automated Rock Identification for Future Mars Exploration Missions
NASA Technical Reports Server (NTRS)
Gulick, V. C.; Morris, R. L.; Gazis, P.; Bishop, J. L.; Alena, R.; Hart, S. D.; Horton, A.
2003-01-01
A key task for human or robotic explorers on the surface of Mars is choosing which particular rock or mineral samples should be selected for more intensive study. The usual challenges of such a task are compounded by the lack of sensory input available to a suited astronaut or the limited downlink bandwidth available to a rover. Additional challenges facing a human mission include limited surface time and the similarities in appearance of important minerals (e.g. carbonates, silicates, salts). Yet the choice of which sample to collect is critical. To address this challenge we are developing science analysis algorithms to interface with a Geologist's Field Assistant (GFA) device that will allow robotic or human remote explorers to better sense and explore their surroundings during limited surface excursions. We aim for our algorithms to interpret spectral and imaging data obtained by various sensors. The algorithms, for example, will identify key minerals, rocks, and sediments from mid-IR, Raman, and visible/near-IR spectra as well as from high resolution and microscopic images to help interpret data and to provide high-level advice to the remote explorer. A top-level system will consider multiple inputs from raw sensor data output by imagers and spectrometers (visible/near-IR, mid-IR, and Raman) as well as human opinion to identify rock and mineral samples.
30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?
Code of Federal Regulations, 2010 CFR
2010-07-01
... a project management timeline, Gantt Chart, that depicts when interim and final reports required by... 30 Mineral Resources 2 2010-07-01 2010-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources MINERALS MANAGEMENT SERVICE...
Fostering Minerals Workforce Skills of Tomorrow through Education and Training Partnerships
NASA Astrophysics Data System (ADS)
Lind, Gavin
The Minerals Council of Australia (MCA), through its Minerals Tertiary Education Council (MTEC), builds capacity in higher education in the core disciplines of mining engineering, metallurgy and minerals geoscience. Over the past fourteen years, this all-of-industry approach in securing the long-term supply of these critical skills (which remain a chronic skills shortage for the Australian minerals industry) through nationally collaborative programs across sixteen Australian universities delivers spectacular and sustainable results for the industry. These unique, world-first programs are built on a healthy platform of dedicated industry funding and in-kind support and forms part of the MCA's broader uninterrupted, sustainable education and training pathway to increase workforce participation, workforce diversity and workforce skills, regardless of the business cycle in the industry. This paper will highlight the origins, iterations and current successful programs of MTEC, including its future vision, and presents a mechanism for industry and academia to collaborate to address future professional skills needs in the minerals industry globally.
Yeoman, K. M.; Halldin, C. N.; Wood, J.; Storey, E.; Johns, D.; Laney, A. S.
2016-01-01
ABSTRACT Little is known about the current health status of US metal and nonmetal (MNM) miners, in part because no health surveillance systems exist for this population. The National Institute for Occupational Safety and Health (NIOSH) is developing a program to characterize burden of disease among MNM miners. This report discusses current knowledge and potential data sources of MNM miner health. Recent national surveys were analyzed, and literature specific to MNM miner health status was reviewed. No robust estimates of disease prevalence were identified, and national surveys did not provide information specific to MNM miners. Because substantial gaps exist in the understanding of MNM miners' current health status, NIOSH plans to develop a health surveillance program for this population to guide intervention efforts to reduce occupational and personal risks for chronic illness. PMID:25658684
Seafloor Topographic Analysis in Staged Ocean Resource Exploration
NASA Astrophysics Data System (ADS)
Ikeda, M.; Okawa, M.; Osawa, K.; Kadoshima, K.; Asakawa, E.; Sumi, T.
2017-12-01
J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-expense and high-efficiency exploration system for seafloor hydrothermal massive sulfide deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We designed a method to focus mineral deposit prospective area in multi-stages (the regional survey, semi-detail survey and detail survey) by extracted topographic features of some well-known seafloor massive sulfide deposits from seafloor topographic analysis using seafloor topographic data acquired by the bathymetric survey. We applied this procedure to an area of interest more than 100km x 100km over Okinawa Trough, including some known seafloor massive sulfide deposits. In Addition, we tried to create a three-dimensional model of seafloor topography by SfM (Structure from Motion) technique using multiple image data of Chimney distributed around well-known seafloor massive sulfide deposit taken with Hi-Vision camera mounted on ROV in detail survey such as geophysical exploration. Topographic features of Chimney was extracted by measuring created three-dimensional model. As the result, it was possible to estimate shape of seafloor sulfide such as Chimney to be mined by three-dimensional model created from image data taken with camera mounted on ROV. In this presentation, we will discuss about focusing mineral deposit prospective area in multi-stages by seafloor topographic analysis using seafloor topographic data in exploration system for seafloor massive sulfide deposit and also discuss about three-dimensional model of seafloor topography created from seafloor image data taken with ROV.
NASA Technical Reports Server (NTRS)
Lattman, L. H. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Standard photogeologic techniques were applied to LANDSAT imagery of the basin and range province of Utah and Nevada to relate linear, tonal, textural, drainage, and geomorphic features to known mineralized areas in an attempt to develop criteria for the location of mineral deposits. No consistent correlation was found between lineaments, mapped according to specified criteria, and locations of mines, mining districts, or intrusive outcrops. Tonal and textural patterns were more closely related to geologic outcrop patterns than to mineralization. A statistical study of drainage azimuths of various length classes as measured on LANDSAT showed significant correlation with mineralized districts in the length class of 3-6 km. Alignments of outcrops of basalt, a rock type highly visible on LANDSAT imagery, appear to be colinear with acidic and intermediate intrusive centers in some areas and may assist on the recognition of regional fracture systems for mineral exploration.
U.S. Geological Survey Mineral Resources Program - Science Supporting Mineral Resource Stewardship
Kropschot, S.J.
2007-01-01
The United States is the world's largest user of mineral resources. We use them to build our homes and cities, fertilize our food crops, and create wealth that allows us to buy goods and services. Individuals rarely use nonfuel mineral resources in their natural state - we buy light bulbs, not the silica, soda ash, lime, coal, salt, tungsten, copper, nickel, molybdenum, iron, manganese, aluminum, and zinc used to convert electricity into light. The USGS Mineral Resources Program (MRP) is the sole Federal source of scientific information and unbiased research on nonfuel mineral potential, production, and consumption, as well as on the environmental effects of minerals. The MRP also provides baseline geochemical, geophysical, and mineral-deposit data used to understand environmental issues related to extraction and use of mineral resources. Understanding how minerals, water, plants, and organisms interact contributes to our understanding of the environment, which is essential for maintaining human and ecosystem health. To support creation of economic and national security policies in a global context, MRP collects and analyzes data on essential mineral commodities from around the world.
30 CFR 942.795 - Small operator assistance program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Small operator assistance program. 942.795 Section 942.795 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE TENNESSEE § 942.795 Small...
30 CFR 903.795 - Small operator assistance program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Small operator assistance program. 903.795 Section 903.795 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE ARIZONA § 903.795 Small...
30 CFR 905.795 - Small operator assistance program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Small operator assistance program. 905.795 Section 905.795 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE CALIFORNIA § 905.795 Small...
75 FR 15725 - Termination of Royalty-in-Kind (RIK) Eligible Refiner Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... DEPARTMENT OF THE INTERIOR Minerals Management Service [Docket No. MMS-2009-MRM-0014] Termination of Royalty-in-Kind (RIK) Eligible Refiner Program AGENCY: Minerals Management Service, Interior. ACTION: Advance notice for the termination of the RIK Eligible Refiner Program. SUMMARY: On behalf of the...
30 CFR 250.1614 - Mud program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Mud program. 250.1614 Section 250.1614 Mineral... OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1614 Mud program. (a) The quantities, characteristics, use, and testing of drilling mud and the related drilling procedures shall be designed and...
30 CFR 402.8-402.9 - [Reserved
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false [Reserved] 402.8-402.9 Section 402.8-402.9 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs §§ 402.8-402.9...
30 CFR 402.8-402.9 - [Reserved
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false [Reserved] 402.8-402.9 Section 402.8-402.9 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs §§ 402.8-402.9...
30 CFR 402.8-402.9 - [Reserved
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false [Reserved] 402.8-402.9 Section 402.8-402.9 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs §§ 402.8-402.9...
30 CFR 402.8-402.9 - [Reserved
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false [Reserved] 402.8-402.9 Section 402.8-402.9 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs §§ 402.8-402.9...
30 CFR 402.8-402.9 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false [Reserved] 402.8-402.9 Section 402.8-402.9 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs §§ 402.8-402.9...
30 CFR 906.15 - Approval of Colorado regulatory program amendments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Colorado regulatory program amendments. 906.15 Section 906.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE COLORADO...
NASA Astrophysics Data System (ADS)
Carrino, Thais Andressa; Crósta, Alvaro Penteado; Toledo, Catarina Labouré Bemfica; Silva, Adalene Moreira
2018-02-01
Remote sensing is a strategic key tool for mineral exploration, due to its capacity of detecting hydrothermal alteration minerals or alteration mineral zones associated with different types of mineralization systems. A case study of an epithermal system located in southern Peru is presented, aimed at the characterization of mineral assemblies for discriminating potential high sulfidation epithermal targets, using hyperspectral imagery integrated with petrography, XRD and magnetic data. HyMap images were processed using the Mixture Tuned Matched Filtering (MTMF) technique for producing alteration map in the Chapi Chiara epithermal gold prospect. Extensive areas marked by advanced argillic alteration (alunite-kaolinite-dickite ± topaz) were mapped in detail, as well as limited argillic (illite-smectite) and propylitic (chlorite spectral domain) alteration. The magmatic-hydrothermal processes responsible for the formation of hypogene minerals were also related to the destruction of ferrimagnetic minerals (e.g., magnetite) of host rocks such as andesite, and the remobilization/formation of paramagnetic Fe-Ti oxides (e.g., rutile, anatase). The large alteration zones of advanced argillic alteration are controlled by structures related to a regional NW-SE trend, and also by local NE-SW and ENE-WSW ones.
An X-ray diffraction method for semiquantitative mineralogical analysis of Chilean nitrate ore
Jackson, J.C.; Ericksent, G.E.
1997-01-01
Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.
An x-ray diffraction method for semiquantitative mineralogical analysis of chilean nitrate ore
John, C.; George, J.; Ericksen, E.
1997-01-01
Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.
Version 3.0 of EMINERS - Economic Mineral Resource Simulator
Duval, Joseph S.
2012-01-01
Quantitative mineral resource assessment, as developed by the U.S. Geological Survey (USGS), consists of three parts: (1) development of grade and tonnage mineral deposit models; (2) delineation of tracts permissive for each deposit type; and (3) probabilistic estimation of the numbers of undiscovered deposits for each deposit type. The estimate of the number of undiscovered deposits at different levels of probability is the input to the EMINERS (Economic Mineral Resource Simulator) program. EMINERS uses a Monte Carlo statistical process to combine probabilistic estimates of undiscovered mineral deposits with models of mineral deposit grade and tonnage to estimate mineral resources. Version 3.0 of the EMINERS program is available as this USGS Open-File Report 2004-1344. Changes from version 2.0 include updating 87 grade and tonnage models, designing new templates to produce graphs showing cumulative distribution and summary tables, and disabling economic filters. The economic filters were disabled because embedded data for costs of labor and materials, mining techniques, and beneficiation methods are out of date. However, the cost algorithms used in the disabled economic filters are still in the program and available for reference for mining methods and milling techniques. The release notes included with this report give more details on changes in EMINERS over the years. EMINERS is written in C++ and depends upon the Microsoft Visual C++ 6.0 programming environment. The code depends heavily on the use of Microsoft Foundation Classes (MFC) for implementation of the Windows interface. The program works only on Microsoft Windows XP or newer personal computers. It does not work on Macintosh computers. For help in using the program in this report, see the "Quick-Start Guide for Version 3.0 of EMINERS-Economic Mineral Resource Simulator" (W.J. Bawiec and G.T. Spanski, 2012, USGS Open-File Report 2009-1057, linked at right). It demonstrates how to execute EMINERS software using default settings and existing deposit models.
Alteration minerals in impact-generated hydrothermal systems - Exploring host rock variability
NASA Astrophysics Data System (ADS)
Schwenzer, Susanne P.; Kring, David A.
2013-09-01
Impact-generated hydrothermal systems have been previously linked to the alteration of Mars’ crust and the production of secondary mineral assemblages seen from orbit. The sensitivity of the resultant assemblages has not yet been evaluated as a function of precursor primary rock compositions. In this work, we use thermochemical modeling to explore the variety of minerals that could be produced by altering several known lithologies based on martian meteorite compositions. For a basaltic host rock lithology (Dhofar 378, Humphrey) the main alteration phases are feldspar, zeolite, pyroxene, chlorite, clay (nontronite, kaolinite), and hematite; for a lherzolithic host rock lithology (LEW 88516) the main alteration phases are amphibole, serpentine, chlorite, clay (nontronite, kaolinite), and hematite; and for an ultramafic host rock lithology (Chassigny) the main minerals are secondary olivine, serpentine, magnetite, quartz, and hematite. These assemblages and proportions of phases in each of those cases depend on W/R and temperature. Integrating geologic, hydrologic and alteration mineral evidence, we have developed a model to illustrate the distribution of alteration assemblages that occur in different levels of an impact structure. At the surface, hot, hydrous alteration affects the ejecta and melt sheet producing clay and chlorite. Deeper in the subsurface and depending on the permeability of the rock, a variety of minerals - smectite, chlorite, serpentine, amphiboles and hematite - are produced in a circulating hydrothermal system. These modeled mineral distributions should assist with interpretation of orbital observations and help guide surface exploration by rovers and sample return assets.
NASA Astrophysics Data System (ADS)
Kaabeche, Hamza; Chabou, Moulley Charaf; Bendaoud, Abderrahmane; Bodinier, Jean-Louis; Lobry, Olivier; Retif, Fabien
2016-06-01
Rising economic value of a large number of metals as a result of their importance for new technologies and industrial development has renewed worldwide interest for mineral exploration and detailed studies of ore deposits. The Dill's (2010) "chessboard" classification of mineral deposits is the most recent attempt to provide an exhaustive overview of all mineral deposits known to date. However, the voluminous Dills review paper is accessible only in print or as PDF file. In this article, we present MetClass, software that provides advanced solutions to perform efficient research and statistics using Dill's classification and the related database. MetClass allows to assemble all results relevant to a given ore deposit on a user-friendly interface. This software is therefore a valuable tool for mineral exploration and research on ore deposits, as well as an educational solution for students in metallogeny.
NASA Technical Reports Server (NTRS)
Viljoen, R. P.
1974-01-01
A number of base metal finds have recently focussed attention on the North Western Cape Province of South Africa as an area of great potential mineral wealth. From the point of view of competitive mineral exploration it was essential that an insight into the regional geological controls of the base metal mineralization of the area be obtained as rapidly as possible. Conventional methods of producing a suitable regional geological map were considered to be too time-consuming and ERTS-1 imagery was consequently examined. This imagery has made a significant contribution in the compilation of a suitable map on which to base further mineral exploration programmes. The time involved in the compilation of maps of this nature was found to be only a fraction of the time necessary for the production of similar maps using other methods. ERTS imagery is therefore considered to be valuable in producing accurate regional maps in areas where little or no geological data are available, or in areas of poor access. Furthermore, these images have great potential for rapidly defining the regional extent of metallogenic provinces.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First-aid training program; retraining of...-UNDERGROUND COAL MINES Miscellaneous § 75.1713-5 First-aid training program; retraining of supervisory... shall conduct refresher first-aid training courses each calendar year for all selected supervisory...
30 CFR 250.1916 - What criteria for mechanical integrity must my SEMS program meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What criteria for mechanical integrity must my SEMS program meet? 250.1916 Section 250.1916 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... mechanical integrity must my SEMS program meet? You must develop and implement written procedures that...
Disadvantaged Former Miners' Perspectives on Smoking Cessation: A Qualitative Study
ERIC Educational Resources Information Center
White, Simon; Baird, Wendy
2013-01-01
Objective: To explore disadvantaged former miners' perspectives in north Derbyshire, United Kingdom (UK) on smoking and smoking cessation. Methods: In-depth, audiotaped interviews with 16 disadvantaged former miners who smoked or had stopped smoking within six months. Results: Perceptions of being able to stop smoking with minimal difficulty and…
ERIC Educational Resources Information Center
Davis, Donald W.
1990-01-01
Compares differences in resource exploitation and energy development in Louisiana and western mineral-producing states. Identifies socioeconomic impacts of Louisiana's offshore drilling and western coal, oil, and natural gas mining, noting the boom and bust cycles and "hyperurbanization" that attends both. Stresses the necessity of…
30 CFR 250.228 - What administrative information must accompany the EP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What administrative information must accompany the EP? 250.228 Section 250.228 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Contents of Exploration Plans (ep) § 250.228 What administrative information must accompany the EP? The...
ERIC Educational Resources Information Center
Kaplan, Bonnie J.; Crawford, Susan G.; Field, Catherine J.; Simpson, J. Steven A.
2007-01-01
In this article, the authors explore the breadth and depth of published research linking dietary vitamins and minerals (micronutrients) to mood. Since the 1920s, there have been many studies on individual vitamins (especially B vitamins and Vitamins C, D, and E), minerals (calcium, chromium, iron, magnesium, zinc, and selenium), and vitamin-like…
The Continental Margins Program in Georgia
Cocker, M.D.; Shapiro, E.A.
1999-01-01
From 1984 to 1993, the Georgia Geologic Survey (GGS) participated in the Minerals Management Service-funded Continental Margins Program. Geological and geophysical data acquisition focused on offshore stratigraphic framework studies, phosphate-bearing Miocene-age strata, distribution of heavy minerals, near-surface alternative sources of groundwater, and development of a PC-based Coastal Geographic Information System (GIS). Seven GGS publications document results of those investigations. In addition to those publications, direct benefits of the GGS's participation include an impetus to the GGS's investigations of economic minerals on the Georgia coast, establishment of a GIS that includes computer hardware and software, and seeds for additional investigations through the information and training acquired as a result of the Continental Margins Program. These addtional investigations are quite varied in scope, and many were made possible because of GIS expertise gained as a result of the Continental Margins Program. Future investigations will also reap the benefits of the Continental Margins Program.From 1984 to 1993, the Georgia Geologic Survey (GGS) participated in the Minerals Management Service-funded Continental Margins Program. Geological and geophysical data acquisition focused on offshore stratigraphic framework studies, phosphate-bearing Miocene-age strata, distribution of heavy minerals, near-surface alternative sources of groundwater, and development of a PC-based Coastal Geographic Information System (GIS). Seven GGS publications document results of those investigations. In addition to those publications, direct benefits of the GGS's participation include an impetus to the GGS's investigations of economic minerals on the Georgia coast, establishment of a GIS that includes computer hardware and software, and seeds for additional investigations through the information and training acquired as a result of the Continental Margins Program. These additional investigations are quite varied in scope, and many were made possible because of GIS expertise gained as a result of the Continental Margins Program. Future investigations will also reap the benefits of the Continental Margins Program.
Research of seafloor topographic analyses for a staged mineral exploration
NASA Astrophysics Data System (ADS)
Ikeda, M.; Kadoshima, K.; Koizumi, Y.; Yamakawa, T.; Asakawa, E.; Sumi, T.; Kose, M.
2016-12-01
J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-cost and high-efficiency exploration system for seafloor hydrothermal massive sulfide (SMS) deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We proposed the multi-stage approach, which is designed from the regional scaled to the detail scaled survey stages through semi-detail scaled, focusing a prospective area by seafloor topographic analyses. We applied this method to the area of more than 100km x 100km around Okinawa Trough, including some well-known mineralized deposits. In the regional scale survey, we assume survey areas are more than 100 km x 100km. Then the spatial resolution of topography data should be bigger than 100m. The 500 m resolution data which is interpolated into 250 m resolution was used for extracting depression and performing principal component analysis (PCA) by the wavelength obtained from frequency analysis. As the result, we have successfully extracted the areas having the topographic features quite similar to well-known mineralized deposits. In the semi-local survey stage, we use the topography data obtained by bathymetric survey using multi-narrow beam echo-sounder. The 30m-resolution data was used for extracting depression, relative-large mounds, hills, lineaments as fault, and also for performing frequency analysis. As the result, wavelength as principal component constituting in the target area was extracted by PCA of wavelength obtained from frequency analysis. Therefore, color image was composited by using the second principal component (PC2) to the forth principal component (PC4) in which the continuity of specific wavelength was observed, and consistent with extracted lineaments. In addition, well-known mineralized deposits were discriminated in the same clusters by using clustering from PC2 to PC4.We applied the results described above to a new area, and successfully extract the quite similar area in vicinity to one of the well-known mineralized deposits. So we are going to verify the extracted areas by using geophysical methods, such as vertical cable seismic and time-domain EM survey, developed in this SIP project.
Gray, J.E.; Goldfarb, R.J.; Detra, D.E.; Slaughter, K.E.
1991-01-01
Cinnabar- and stibnite-bearing epithermal vein deposits are found throughout the Kuskokwim River region of southwestern Alaska. A geochemical orientation survey was carried out around several of these epithermal lodes to obtain information for planning regional geochemical surveys and to develop procedures which maximize the anomaly: threshold contrast of the deposits. Stream sediment, heavy-mineral concentrate, stream water, and vegetation samples were collected in drainages surrounding the Red Devil, Cinnabar Creek, White Mountain, Rhyolite, and Mountain Top deposits. Three sediment size fractions; nonmagnetic, paramagnetic and magnetic splits of the concentrate samples; stream waters; and the vegetation samples were analyzed for multi-element suites by a number of different chemical procedures. Nonmagnetic, heavy-mineral concentrates were also examined microscopically to identify their mineralogy. Results confirm Hg, Sb and As concentrations in minus-80-mesh stream sediments as effective pathfinder elements in exploration for epithermal cinnabar and stibnite deposits. Coarser-grained sediments are much less effective in the exploration for these deposits. Concentrations greater than 3 ppm Hg, 1 ppm Sb, and 15 ppm As in the minus-80-mesh stream sediment, regardless of the host lithology, are indicative of upstream cinnabar-stibnite deposits. Gold, Ag and base metals in the stream sediments are ineffective pathfinders for this epithermal deposit type. Collection of heavy-mineral concentrates provides little advantage in the exploration for these mineral deposits. Antimony and As dispersion patterns downstream from mineralized areas are generally more restricted in the concentrates than those in the stream sediments. Anomalous placer cinnabar observed in the concentrates has a similar spatial distribution pattern as anomalous Hg and Sb in corresponding sediments. Stream waters are less effective than the stream sediments or heavy-mineral concentrates, and vegetation is an ineffective geochemical sample medium in exploration for this deposit type. ?? 1991.
Dust Spectra from Above and Below
NASA Technical Reports Server (NTRS)
2004-01-01
Spectra of martian dust taken by the Mars Exploration Rover Spirit's mini-thermal emission spectrometer are compared to that of the orbital Mars Global Surveyor's thermal emission spectrometer. The graph shows that the two instruments are in excellent agreement.
Rover Senses Carbon Dioxide [figure removed for brevity, see original site] Click on image for larger view This graph, consisting of data acquired on Mars from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of carbon dioxide. Carbon dioxide makes up the bulk of the thin martian atmosphere. Rover Senses Silicates [figure removed for brevity, see original site] Click on image for larger view This graph, consisting of data acquired on Mars by the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of silicates - a group of minerals that form the majority of Earth's crust. Minerals called feldspars and zeolites are likely candidates responsible for this feature. Rover Senses Bound Water [figure removed for brevity, see original site] Click on image for larger view This graph, consisting of data acquired on Mars from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of an as-of-yet unidentified mineral that contains bound water in its crystal structure. Minerals such as gypsum and zeolites are possible candidates. Rover Senses Carbonates [figure removed for brevity, see original site] Click on image for larger view This graph, consisting of data from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signatures of carbonates - minerals common to Earth that form only in water. The detection of trace amounts of carbonates on Mars may be due to an interaction between the water vapor in the atmosphere and minerals on the surface.NASA Technical Reports Server (NTRS)
Morris, R. V.; deSouza, P. A.; Morris, R. V.; Klingelhoefer, G.
2003-01-01
The exploration of the planet Mars is one of the major goals within the Solar system exploration programs of the US-American space agency NASA and the European Space Agency ESA. In particular the search for water and life and understanding of the history of the surface and atmosphere will be the major tasks of the upcoming space missions to Mars. The miniaturized Moessbauer spectrometer MIMOS II has been selected for the NASA Mars-Exploration-Rover twin-mission to Mars in 2003 and the ESA 2003 Mars-Express Beagle 2 mission. Reduced in size and weight, in comparison to ordinary laboratory setup, the sensor head just weights approximately 400 g, with a volume of (50x50x90) cu mm, and holds two gamma-ray sources: the stronger for experiments and the weaker for calibrations. The collimator (in sample direction) also shields the primary radiation off the detectors. Around the drive four detectors are mounted. The detectors are made of Si-PIN-photodiodes in chip form (100 sq mm, thickness of 0.5 mm). The control unit is located in a separate electronics board. This board is responsible for the power supply, generation of the drive's velocity reference signal, read of the detector pulses to record the spectrum, data storage and communication with the host computer. After more than four decades from the discovery of the Moessbauer effect, more than 400 minerals were studied at different temperatures. Their Moessbauer parameters were reported in the literature, and have been recently collected in a data bank. Previous Mars-missions, namely Viking and Mars Pathfinder, revealed Si, Al, Fe, Mg, Ca, K, Ti, S and Cl to be the major constituents in soil and rock elemental composition of the red planet. More than 200 minerals already studied by Moessbauer spectroscopy contain significant amounts of these elements. A considerable number of Moessbauer studies were also carried out on meteorites and on Moon samples. Looking backward in the studies of the whole Moessbauer community, we have built a specific library containing Moessbauer parameters of those possible Mars minerals. The selected minerals, their Moessbauer parameter values (min. max. s.d and number of available data), main site substitution, behavior as a function of temperature and a ranking as expected to be found on Mars were organized. Mars-analogue Fe-bearing minerals not studied by Moessbauer spectroscopy are being collected and investigated. In addition, it an identification system based on Artificial Neural Networks (ANN) was implemented which enables fast and precise mineral identification from the experimental Moessbauer parameters at a given temperature.
USGS Mineral Resources Program; national maps and datasets for research and land planning
Nicholson, S.W.; Stoeser, D.B.; Ludington, S.D.; Wilson, Frederic H.
2001-01-01
The U.S. Geological Survey, the Nation’s leader in producing and maintaining earth science data, serves as an advisor to Congress, the Department of the Interior, and many other Federal and State agencies. Nationwide datasets that are easily available and of high quality are critical for addressing a wide range of land-planning, resource, and environmental issues. Four types of digital databases (geological, geophysical, geochemical, and mineral occurrence) are being compiled and upgraded by the Mineral Resources Program on regional and national scales to meet these needs. Where existing data are incomplete, new data are being collected to ensure national coverage. Maps and analyses produced from these databases provide basic information essential for mineral resource assessments and environmental studies, as well as fundamental information for regional and national land-use studies. Maps and analyses produced from the databases are instrumental to ongoing basic research, such as the identification of mineral deposit origins, determination of regional background values of chemical elements with known environmental impact, and study of the relationships between toxic elements or mining practices to human health. As datasets are completed or revised, the information is made available through a variety of media, including the Internet. Much of the available information is the result of cooperative activities with State and other Federal agencies. The upgraded Mineral Resources Program datasets make geologic, geophysical, geochemical, and mineral occurrence information at the state, regional, and national scales available to members of Congress, State and Federal government agencies, researchers in academia, and the general public. The status of the Mineral Resources Program datasets is outlined below.
Review of selected global mineral industries in 2011 and an outlook to 2017
Menzie, W. David; Soto-Viruet, Yadira; Bermúdez-Lugo, Omayra; Mobbs, Philip M.; Perez, Alberto Alexander; Taib, Mowafa; Wacaster, Susan; ,
2013-01-01
This report reviews the world production of selected mineral commodities in 2011 and includes output projections (based on planned capacity expansions) through 2017. It also includes brief discussions of several issues that are of importance to the mineral sector, including the world economy, the availability of strategic minerals, significant company mergers and acquisitions in 2011, exploration investment made during the year, and the moves towards resource nationalization and expropriation of mineral assets by national Governments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false [Reserved] 402.5 Section 402.5 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM General § 402.5 [Reserved] ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false [Reserved] 402.5 Section 402.5 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM General § 402.5 [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false [Reserved] 402.5 Section 402.5 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM General § 402.5 [Reserved] ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false [Reserved] 402.5 Section 402.5 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM General § 402.5 [Reserved] ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false [Reserved] 402.5 Section 402.5 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM General § 402.5 [Reserved] ...
NASA Astrophysics Data System (ADS)
Zhang, Gang; Lü, Qing-Tian; Zhang, Gui-Bin; Lin, Ping-Rong; Jia, Zheng-Yuan; Suo, Kui
2018-03-01
The integrated interpretation of data from various technologies has the potential to obtain a more accurate estimate of subterranean earth properties. In this paper, we implement the joint interpretation of geological and geophysical data for mineral exploration in the northeastern region of Inner Mongolia, China. The joint application of several methodologies reduces the exploration risk. We first determined an approximate and large potential area for mineral exploration with geological data and magnetic data interpretation in Gaoerqi. Results from the two types of data analysis show that the ore deposit strikes roughly east in the northern part of the Gaoerqi mining area. Next, we employed the audio-magnetotelluric (AMT) method to study the subterranean electrical resistivity distribution and divide the earth into four layers. Inverted resistivity sections from the AMT data illustrate that the ore deposits are likely developed in the low-resistivity zone of the survey area from the land surface to 300-m depth. Finally, the high-resolution borehole-to-surface electrical resistivity tomography (ERT) method was employed for further investigation of the location and attitude of the potential ore deposits. Inverted resistivity sections from the ERT data show that two prospective areas for mineral exploration were observed in the west of the survey area and that the eastern portion of the survey area warrants further investigation.
Mineral resources of the Atlantic Exclusive Economic Zone
Dillon, William P.
1984-01-01
Potential mineral resources of the Atlantic Exclusive Economic Zone (including the Gulf of Mexico and US Caribbean areas) include petroleum, sand and gravel, phosphorite, placer deposits of heavy mineral sands, ferromanganese nodules, and fresh water. Although major efforts have been made to search for petroleum, the oil and gas resources of the region are well known only in the western Gulf Shelf and more exploration is under way. Heavy-mineral placer deposits, which may be sources of titanium, gold, rare earths, etc. , have been sampled, but the extent and, therefore, economic value of the deposits have not been identified. Sand and gravel, phosphorite, and ferromanganese nodules all are represented by fairly well established deposits, and only modified market conditions would be necessary to cause detailed exploration and mining.
Mihalasky, Mark J.; Ludington, Stephen; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Briggs, Deborah A.; Hammarstrom, Jane M.; Wallis, John C.; Bookstrom, Arthur A.; Panteleyev, Andre
2015-01-01
The database of known deposits, significant prospects, and prospects includes an inventory of mineral resources in two known porphyry copper deposits, as well as key characteristics derived from available exploration reports for 70 significant porphyry copper prospects and 86 other prospects. Resource and exploration and development activity are updated with information current through February 2013.
78 FR 23134 - Training and Retraining of Miners
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-18
... follows: Sec. 48.3 Training plans; time of submission; where filed; information required; time for... approved plan containing programs for training new miners, training experienced miners, training miners for... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Part 48 Training and Retraining...
DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.
Jones, John Edwin; Kover, Allan N.
1985-01-01
The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.
Soil gas studies along the Trans-Challis fault system near Idaho City, Boise County, Idaho
McCarthy, J.H.; Kiilsgaard, T.H.
2001-01-01
Soil gases were sampled along several traverses that cross the Trans-Challis fault system in central Idaho. Anomalous carbon dioxide, hydrogen, oxygen, hydrocarbon, and sulfur gas concentrations coincide with faults and known mineralized areas. Anomalies in areas not known to be mineralized may reflect undiscovered mineral deposits or concealed faults. Soil gases may be a useful exploration guide for mineral deposits in this terrane.
Geospatial analysis identifies critical mineral-resource potential in Alaska
Karl, Susan M.; Labay, Keith A.; Jacques, Katherine; Landowski, Claire
2017-03-03
Alaska consists of more than 663,000 square miles (1,717,000 square kilometers) of land—more than a sixth of the total area of the United States—and large tracts of it have not been systematically studied or sampled for mineral-resource potential. Many regions of the State are known to have significant mineral-resource potential, and there are currently six operating mines in the State along with numerous active mineral exploration projects. The U.S. Geological Survey and the Alaska Division of Geological & Geophysical Surveys have developed a new geospatial tool that integrates and analyzes publicly available databases of geologic information and estimates the mineral-resource potential for critical minerals, which was recently used to evaluate Alaska. The results of the analyses highlight areas that have known mineral deposits and also reveal areas that were not previously considered to be prospective for these deposit types. These results will inform land management decisions by Federal, State, and private landholders, and will also help guide future exploration activities and scientific investigations in Alaska.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First aid training program; retraining of..., SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Miscellaneous § 77.1705 First aid..., 1972, each operator of a surface coal mine shall conduct refresher first aid training programs each...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolivar, S.
This manual describes field procedures for the collection of stream-sediment and rock samples as part of the Mineral Resource Assessment of Costa Rica. It provides guidelines to be followed by personnel collecting, treating, or otherwise handling samples taken as part of this program. The objectives of the manual are to ensure that all samples are collected uniformly and consistent techniques are employed throughout the program. If this is done, the data from this study can be used to identify areas with potential for mineralization. This manual can also be used as a guideline for future geochemical sampling programs in Costamore » Rica.« less
NASA Astrophysics Data System (ADS)
Wakila, M. H.; Saepuloh, A.; Heriawan, M. N.; Susanto, A.
2016-09-01
Geothermal explorations and productions are currently being intensively conducted at certain areas in Indonesia such as Wayang Windu Geothermal Field (WWGF) in West Java, Indonesia. The WWGF is located at wide area covering about 40 km2. An accurate method to map the distribution of heterogeneity minerals is necessary for wide areas such as WWGF. Mineral mapping is an important method in geothermal explorations to determine the distribution of minerals which indicate the surface manifestations of geothermal system. This study is aimed to determine the most precise and accurate methods for minerals mapping at geothermal field. Field measurements were performed to assess the accuracy of three proposed methods: 1) Minimum Noise Fraction (MNF), utilizing the linear transformation method to eliminate the correlation among the spectra bands and to reduce the noise in the data, 2) Pixel Purity Index (PPI), a designed method to find the most extreme spectrum pixels and their characteristics due to end-members mixing, 3) Spectral Angle Mapper (SAM), an image classification technique by measuring the spectral similarity between an unknown object with spectral reference in n- dimension. The output of those methods were mineral distribution occurrence. The performance of each mapping method was analyzed based on the ground truth data. Among the three proposed method, the SAM classification method is the most appropriate and accurate for mineral mapping related to spatial distribution of alteration minerals.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false [Reserved] 402.14 Section 402.14 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and Management Procedures § 402.14...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false [Reserved] 402.14 Section 402.14 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and Management Procedures § 402.14...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false [Reserved] 402.14 Section 402.14 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and Management Procedures § 402.14...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false [Reserved] 402.14 Section 402.14 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and Management Procedures § 402.14...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false [Reserved] 402.14 Section 402.14 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and Management Procedures § 402.14...
Cunningham, Charles G.; Steven, Thomas A.; Campbell, David L.; Naeser, Charles W.; Pitkin, James A.; Duval, Joseph S.
1984-01-01
The report outlines the complex history of igneous activity and associated alteration and mineralization in the western Tushar Mountains, Utah and pointss out implciations for minerals exploration. The area has been subjected to recurrent episodes of igneous intrusion, hydrothermal alteration, and mineralization, and the mineral-resource potential of the different mineralized areas is directly related to local geologic history. The mineral commodities to be expected vary from one hydrothermal system to another, and from one depth to another within any given system. Uranium and molybdenum seem likely to have the greatest economic potential, although significant concentrations of gold may also exist.
30 CFR 250.226 - What Coastal Zone Management Act (CZMA) information must accompany the EP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What Coastal Zone Management Act (CZMA) information must accompany the EP? 250.226 Section 250.226 Mineral Resources MINERALS MANAGEMENT SERVICE... and Information Contents of Exploration Plans (ep) § 250.226 What Coastal Zone Management Act (CZMA...
30 CFR 250.219 - What oil and hazardous substance spills information must accompany the EP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What oil and hazardous substance spills information must accompany the EP? 250.219 Section 250.219 Mineral Resources MINERALS MANAGEMENT SERVICE... and Information Contents of Exploration Plans (ep) § 250.219 What oil and hazardous substance spills...
30 CFR 250.223 - What mitigation measures information must accompany the EP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What mitigation measures information must accompany the EP? 250.223 Section 250.223 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Contents of Exploration Plans (ep) § 250.223 What mitigation measures information must accompany the EP? (a...
30 CFR 250.222 - What lease stipulations information must accompany the EP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What lease stipulations information must accompany the EP? 250.222 Section 250.222 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Contents of Exploration Plans (ep) § 250.222 What lease stipulations information must accompany the EP? A...
30 CFR 250.227 - What environmental impact analysis (EIA) information must accompany the EP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... and Information Contents of Exploration Plans (ep) § 250.227 What environmental impact analysis (EIA... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What environmental impact analysis (EIA) information must accompany the EP? 250.227 Section 250.227 Mineral Resources MINERALS MANAGEMENT SERVICE...
Mineral Plot from Esperance Target
2014-01-23
This plot segregates various minerals examined by NASA Mars Exploration Rover Opportunity according to their different compositions; for example, those with more iron and magnesium oxides are located in the lower right corner.
50 CFR 29.32 - Mineral rights reserved and excepted.
Code of Federal Regulations, 2013 CFR
2013-10-01
... practicable, conduct all exploration, development, and production operations in such a manner as to prevent... to the minimum space compatible with the conduct of efficient mineral operations. Persons conducting...
50 CFR 29.32 - Mineral rights reserved and excepted.
Code of Federal Regulations, 2010 CFR
2010-10-01
... practicable, conduct all exploration, development, and production operations in such a manner as to prevent... to the minimum space compatible with the conduct of efficient mineral operations. Persons conducting...
50 CFR 29.32 - Mineral rights reserved and excepted.
Code of Federal Regulations, 2014 CFR
2014-10-01
... practicable, conduct all exploration, development, and production operations in such a manner as to prevent... to the minimum space compatible with the conduct of efficient mineral operations. Persons conducting...
50 CFR 29.32 - Mineral rights reserved and excepted.
Code of Federal Regulations, 2011 CFR
2011-10-01
... practicable, conduct all exploration, development, and production operations in such a manner as to prevent... to the minimum space compatible with the conduct of efficient mineral operations. Persons conducting...
50 CFR 29.32 - Mineral rights reserved and excepted.
Code of Federal Regulations, 2012 CFR
2012-10-01
... practicable, conduct all exploration, development, and production operations in such a manner as to prevent... to the minimum space compatible with the conduct of efficient mineral operations. Persons conducting...
Dynamic Dust Accumulation and Dust Removal Observed on the Mars Exploration Rover Magnets
NASA Technical Reports Server (NTRS)
Bertelsen, P.; Bell, J. F., III; Goetz, W.; Gunnlaugsson, H. P.; Herkenhoff, K. E.; Hviid, S. F.; Johnson, J. R.; Kinch, K. M.; Knudsen, J. M.; Madsen, M. B.
2005-01-01
The Mars Exploration Rovers each carry a set of Magnetic Properties Experiments designed to investigate the properties of the airborne dust in the Martian atmosphere. It is a preferred interpretation of previous experiments that the airborne dust in the Martian atmosphere is primarily composed by composite silicate particles containing one or more highly magnetic minerals as a minor constituent. The ultimate goal of the magnetic properties experiments on the Mars Exploration Rover mission is to provide some information/ constraints on whether the dust is formed by volcanic, meteoritic, aqueous, or other processes. The first problem is to identify the magnetic mineral(s) in the airborne dust on Mars. While the overall results of the magnetic properties experiments are presented in, this abstract will focus on dust deposition and dust removal on some of the magnets.
NASA Astrophysics Data System (ADS)
Miller, J. D.; Hudak, G. J.; Peterson, D.
2011-12-01
Since 2007, the central program of the Precambrian Research Center (PRC) at the University of Minnesota Duluth has been a six-week geology field camp focused on the Precambrian geology of the Canadian Shield. This field camp has two main purposes. First and foremost is to teach students specialized field skills and field mapping techniques that can be utilized to map and interpret Precambrian shield terranes characterized by sparse outcrop and abundant glacial cover. In addition to teaching basic outcrop mapping technique , students are introduced to geophysical surveying (gravity, magnetics), glacial drift prospecting, and drill core logging techniques in several of our geological mapping exercises. These mapping methodologies are particularly applicable to minerals exploration in shield terranes. The second and equally important goal of the PRC field camp is to teach students modern map-making and map production skills. During the fifth and sixth weeks of field camp, students conduct "capstone" mapping projects. These projects encompass one week of detailed bedrock mapping in remote regions of northern Minnesota that have not been mapped in detail (e.g. scales greater than 1:24,000) and a second week of map-making and map generation utilizing geographic information systems (currently ArcGIS10), graphics software packages (Adobe Illustrator CS4), and various imaging software for geophysical and topographic data. Over the past five years, PRC students and faculty have collaboratively published 21 geologic maps through the Precambrian Research Center Map Series. These maps are currently being utilized in a variety of ways by industry, academia, and government for mineral exploration programs, development of undergraduate, graduate, and faculty research projects, and for planning, archeological studies, and public education programs in Minnesota's state parks. Acquisition of specialized Precambrian geological mapping skills and geologic map-making proficiencies has enabled our students to be highly sought after for employment and/or subsequent graduate studies.
Remote sensing as a mineral prospecting technique
NASA Technical Reports Server (NTRS)
Meneses, P. R. (Principal Investigator)
1984-01-01
Remote sensing and its application as an alternative technique to mineral resource exploration are reviewed. Emphasis is given here to the analysis of the three basic attributes of remote sensing, i.e., spatial attributes related to regional structural mapping, spectral attributes related to rock discrimination and seasonal attributes related to geobotanic anomalies mapping, all of which are employed in mineral exploration. Special emphasis is given to new developments of the Thematic Mapper of the LANDSAT-5, principally with reference to the application of the bands 1.6 and 2.2 microns to map hydrothermally altered rocks and the band of red and blue shift to geobotanical anomalies mapping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Authority. 810.3 Section 810.3 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM... operations performance standards and design requirements applicable under regulatory programs which are at...
30 CFR 402.4 - Information collection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Information collection. 402.4 Section 402.4 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM General § 402.4 Information collection. The information...
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
30 CFR 402.4 - Information collection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Information collection. 402.4 Section 402.4 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM General § 402.4 Information collection. The information...
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
30 CFR 402.4 - Information collection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Information collection. 402.4 Section 402.4 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM General § 402.4 Information collection. The information...
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
30 CFR 816.79 - Protection of underground mining.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Protection of underground mining. 816.79 Section 816.79 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING...
30 CFR 816.79 - Protection of underground mining.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Protection of underground mining. 816.79 Section 816.79 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING...
Some thorium prospects, Lemhi Pass area, Beaverhead County, Montana
Armstrong, Frank C.
1955-01-01
The Last Chance group> Brown Bear and Shady Tree claims in Beaverhead County, Mont., were explored for thorium under a Defense Minerals Exploration Administration Contract in 1951 and 1952. The project was undertaken to explore northwest-trending moderately to steep dipping, thorite-bearing quartz-barite-hematite veins. The veins are wall-rock replacements and fissure fillings in faults and shears that cut rocks of the Precambrian Belt series. Recurrent movement along the faults has intense fractured the veins. Quartz iron-oxide minerals, and thorite have been deposited in these fractures. The iron oxides and thorite are intimately associated and were among the last minerals deposited. Because no rare earth or uranium minerals have been found in the veins, it is thought that the small amounts of these elements reported in the analyses must substitute for thorium in the thorite. Under the D. M. E. A. contract the Last Chance vein was traced on surface for a distance of about 1,300 feet; the thickness ranges from about 35 feet to a few inches. Two diamond drill holes cut the vein 240 and 290 feet below the outcrop.
NASA Technical Reports Server (NTRS)
Vogel, J. M.; Rambaut, P. C.; Smith, M. C., Jr.
1974-01-01
Loss of mineral from bone during periods of immobilization, recumbency, or weightlessness is examined. This report describes the instrumentation, technique, and bone mineral changes observed preflight and postflight for the Apollo 14, 15, and 16 missions. The bone mineral changes documented during the Apollo Program are reviewed, and their relevance to future missions is discussed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Training. 62.180 Section 62.180 Mineral... OCCUPATIONAL NOISE EXPOSURE § 62.180 Training. (a) The mine operator must, within 30 days of a miner's enrollment into a hearing conservation program, provide the miner with training. The mine operator must give...
Geoscience for Alaska's D-1 Lands: A preliminary report
Schmidt, Jeanine M.; Gamble, B.M.; Labay, Keith A.
2007-01-01
Purpose of This Report This interim report follows from the June 2006 recommendations to Congress by the BLM concerning disposition of the d-1 lands. That report recommended lifting of a significant number of d-1 PLOs, through the ongoing land management process within the BLM (e.g. resource management planning areas), or through Congressional action. The strategic actions outlined in this document refer only to Federal lands under US Bureau of Land Management (BLM) jurisdiction that 1) are affected by temporary withdrawals from mineral entry and mineral leasing by PLOs made pursuant to the Section 17(d)(1) of the ANCSA; 2) have been identified by the BLM as candidates for possible lifting of these PLOs and restrictions (U.S. Bureau of Land Management, 2006); and 3) lie outside of current Federal parks, preserves, monuments, refuges, reserves, wilderness areas and military installations that are closed to mineral entry, because within those areas the potential lifting of the d-1 restrictions has no practical effect. The resulting lands discussed here comprise approximately 121,000 km2 (29.9 million acres) of Alaska (Table 1) that, pending final resolution of Native and State land claims, will or may remain under Federal (BLM) control, and could be opened to mineral entry. For the purposes of this report, only these 29.9 million acres will hereafter be referred to as 'd-1' lands. This report gives a brief overview of the spatial distribution and physiographic setting, mineral occurrences, and mineral resource potential of the d-1lands. It outlines further geoscience information which could be compiled, collected, and evaluated in order to make a more accurate and comprehensive examination of the potential for undiscovered, locatable mineral resources on these Federal lands. This information is intended to provide guidance to USGS program managers and Federal land managers on matters of future exploration, access needs, and consequences of land status changes.
30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF Platforms and Structures Platform Verification Program § 250.911 If my platform is subject...
30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF Platforms and Structures Platform Verification Program § 250.911 If my platform is subject...
30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF Platforms and Structures Platform Verification Program § 250.911 If my platform is subject...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarrow, M.N.
1982-01-01
This study explores how working-class people apprehend and analyze the class dynamics of their social world. As an exploratory empirical study of the structure and dynamics of working-class consciousness, it seeks to develop the theory of actual class consciousness by bringing previous theories into dialogue with the articulated analyses of coal miners in central Appalachia. Although changing conditions are shown to have a powerful effect on class consciousness, the respondents were found to respond differently to the changing context and to remain loyal to important elements of their earlier perspectives. Suggestions are made for how the theory could be developedmore » further. The data for the study are flexibly structured interviews which were conducted with active, retired, and disabled miners in southern West Virginia and western Virginia. A dozen miners were interviewed during the 1978 strike and again the following summer; during the summer of 1978, nineteen additional miners were interviewed.« less
Fission-track dating applied to mineral exploration
Naeser, C.W.
1984-01-01
The partial to total resetting of fission-track ages of minerals in country rock near a mineralized area can be used to (1) locate a thermal anomaly, and (2) date the mineralizing event. Two mining districts in Colorado have been studied - Rico and Gilman. Rico is a precious- and base-metal mining district. Initial fission-track dating of a sill located about 6 km from the center of the district gave ages of 20 Myr and 65 Myr for apatite and zircon, respectively. The Eagle Mine in the Gilman District is the largest producer of zinc in the state of Colorado. Fission-track dating of zircon from a 70 Myr-old sill shows partial resetting of the zircon (45 Myr). The thermal anomaly identified by fission-track dating is seen in both districts far outside the area affected by obvious alteration. Based on the results of these two pilot studies, fission-track dating can be a useful exploration method for thermal anomalies associated with buried or otherwise poorly expressed mineral deposits.
A Compact Instrument for Remote Raman and Fluorescence Measurements to a Radial Distance of 100 m
NASA Technical Reports Server (NTRS)
Sharma, S. K.; Misra, A. K.; Lucey, P. g.; McKay, C. P.
2005-01-01
Compact remote spectroscopic instruments that could provide detailed information about mineralogy, organic and biomaterials on a planetary surface over a relatively large area are desirable for NASA s planetary exploration program. Ability to explore a large area on the planetary surfaces as well as in impact craters from a fixed location of a rover or lander will enhance the probability of selecting target rocks of high scientific contents as well as desirable sites in search of organic compounds and biomarkers on Mars and other planetary bodies. We have developed a combined remote inelastic scattering (Raman) and laser-induced fluorescence emission (LIFE) compact instrument capable of providing accurate information about minerals, organic and biogenic materials to a radial distance of 100 m. Here we present the Raman and LIFE (R-LIFE) data set.
Tidball, Ronald R.; Bartsch-Winkler, S. B.
1995-01-01
This Compact Disc-Read Only Memory (CD-ROM) contains a program illustrating the geology and mineral and energy resources of the Roswell Resource Area, an administrative unit of the U.S. Bureau of Land Management in east-central New Mexico. The program enables the user to access information on the geology, geochemistry, geophysics, mining history, metallic and industrial mineral commodities, hydrocarbons, and assessments of the area. The program was created with the display software, SuperCard, version 1.5, by Aldus. The program will run only on a Macintosh personal computer. This CD-ROM was produced in accordance with Macintosh HFS standards. The program was developed on a Macintosh II-series computer with system 7.0.1. The program is a compiled, executable form that is nonproprietary and does not require the presence of the SuperCard software.
Information system of mineral deposits in Slovenia
NASA Astrophysics Data System (ADS)
Hribernik, K.; Rokavec, D.; Šinigioj, J.; Šolar, S.
2010-03-01
At the Geologic Survey of Slovenia the need for complex overview and control of the deposits of available non-metallic mineral raw materials and of their exploitations became urgent. In the framework of the Geologic Information System we established the Database of non-metallic mineral deposits comprising all important data of deposits and concessionars. Relational database is built with program package MS Access, but in year 2008 we plan to transfer it on SQL server. In the evidence there is 272 deposits and 200 concessionars. The mineral resources information system of Slovenia, which was started back in 2002, consists of two integrated parts, mentioned relational database of mineral deposits, which relates information in tabular way so that rules of relational algebra can be applied, and geographic information system (GIS), which relates spatial information of deposits. . The complex relationships between objects and the concepts of normalized data structures, lead to the practical informative and useful data model, transparent to the user and to better decision-making by allowing future scenarios to be developed and inspected. Computerized storage, and display system is as already said, developed and managed under the support of Geological Survey of Slovenia, which conducts research on the occurrence, quality, quantity, and availability of mineral resources in order to help the Nation make informed decisions using earth-science information. Information about deposit is stored in records in approximately hundred data fields. A numeric record number uniquely identifies each site. The data fields are grouped under principal categories. Each record comprise elementary data of deposit (name, type, location, prospect, rock), administrative data (concessionar, number of decree in official paper, object of decree, number of contract and its duration) and data of mineral resource produced amount and size of exploration area). The data can also be searched, sorted and printed using any of these fields. New records are being added annually, and existing records updated or upgraded. Relational database is connected with scanned exploration/exploitation areas of deposits, defined on the base of digital ortofoto. Register of those areas is indispensable because of spatial planning and spatial municipal and regional strategy development. Database is also part of internet application for quick search and review of data and part of web page of mineral resources of Slovenia. The technology chosen for internet application is ESRI's ArcIMS Internet Map Server. ArcIMS allows users to readily and easily display, analyze, and interpret spatial data from desktop using a Web browser connected to the Internet. We believe that there is an opportunity for cooperation within this activity. We can offer a single location where users can come to browse relatively simply for geoscience-related digital data sets.
NASA Astrophysics Data System (ADS)
Lambert, I. B.
2012-04-01
Dr Ian Lambert, Geoscience Australia and Secretary General 34th International Geological Congress Australia has comparative advantages in production of mineral commodities compared to most other countries. These stem from its rich and diverse mineral endowment; availability of regional scale (pre-competitive) geoscience information to lower the risks of exploration; advances in exploration, mining and processing technologies; skilled work force; generally benign physical conditions; and low population density. Building on these strengths, Australia is a major producer and exporter of a wide range of mineral and energy commodities to global markets. Given that demand for most major commodities is likely to continue, and that there will be growing markets for some other commodities, Australia needs to have a strategic view of what is likely to be available for mining. Further, Australia (and the world) needs to be attuned to issues that need to be faced in meeting international demand for commodities in the long term. This presentation outlines how Australia's national minerals inventory is compiled. It discusses trends for Australia's identified mineral resources for major commodities, and how these compare with other major mining nations. It then considers some significant issues in relation to sustaining a strong mining sector - in the medium to long term this requires a strategic approach to achieve goals such as more effective/lower risk exploration particularly in greenfields regions; well-Informed decisions on mining proposals; ongoing significant improvements in efficiencies of energy, water and land use.
Nome Offshore Mining Information
Lands Coal Regulatory Program Large Mine Permits Mineral Property and Rights Mining Index Land potential safety concerns, prevent overcrowding, and provide for efficient processing of the permits and Regulatory Program Large Mine Permitting Mineral Property Management Mining Fact Sheets Mining Forms APMA
30 CFR 402.15 - Reporting procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Reporting procedures. 402.15 Section 402.15 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Reporting § 402.15 Reporting procedures. (a) Grantees or...
30 CFR 401.8-401.10 - [Reserved
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false [Reserved] 401.8-401.10 Section 401.8-401.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Designation of Institutes; Institute Programs §§ 401.8-401.10 [Reserved] ...
30 CFR 402.15 - Reporting procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Reporting procedures. 402.15 Section 402.15 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Reporting § 402.15 Reporting procedures. (a) Grantees or...
30 CFR 401.8-401.10 - [Reserved
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false [Reserved] 401.8-401.10 Section 401.8-401.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Designation of Institutes; Institute Programs §§ 401.8-401.10 [Reserved] ...
30 CFR 401.8-401.10 - [Reserved
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false [Reserved] 401.8-401.10 Section 401.8-401.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Designation of Institutes; Institute Programs §§ 401.8-401.10 [Reserved] ...
30 CFR 401.8-401.10 - [Reserved
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false [Reserved] 401.8-401.10 Section 401.8-401.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Designation of Institutes; Institute Programs §§ 401.8-401.10 [Reserved] ...
30 CFR 402.15 - Reporting procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Reporting procedures. 402.15 Section 402.15 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Reporting § 402.15 Reporting procedures. (a) Grantees or...
30 CFR 402.15 - Reporting procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Reporting procedures. 402.15 Section 402.15 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Reporting § 402.15 Reporting procedures. (a) Grantees or...
30 CFR 402.15 - Reporting procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Reporting procedures. 402.15 Section 402.15 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Reporting § 402.15 Reporting procedures. (a) Grantees or...
30 CFR 401.8-401.10 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false [Reserved] 401.8-401.10 Section 401.8-401.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR STATE WATER RESEARCH INSTITUTE PROGRAM Designation of Institutes; Institute Programs §§ 401.8-401.10 [Reserved] ...
30 CFR 819.11 - Auger mining: General.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: General. 819.11 Section 819.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS SPECIAL PERMANENT PROGRAM PERFORMANCE STANDARDS-AUGER MINING § 819...
30 CFR 819.11 - Auger mining: General.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Auger mining: General. 819.11 Section 819.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS SPECIAL PERMANENT PROGRAM PERFORMANCE STANDARDS-AUGER MINING § 819...
Mineral deposit densities for estimating mineral resources
Singer, Donald A.
2008-01-01
Estimates of numbers of mineral deposits are fundamental to assessing undiscovered mineral resources. Just as frequencies of grades and tonnages of well-explored deposits can be used to represent the grades and tonnages of undiscovered deposits, the density of deposits (deposits/area) in well-explored control areas can serve to represent the number of deposits. Empirical evidence presented here indicates that the processes affecting the number and quantity of resources in geological settings are very general across many types of mineral deposits. For podiform chromite, porphyry copper, and volcanogenic massive sulfide deposit types, the size of tract that geologically could contain the deposits is an excellent predictor of the total number of deposits. The number of mineral deposits is also proportional to the type’s size. The total amount of mineralized rock is also proportional to size of the permissive area and the median deposit type’s size. Regressions using these variables provide a means to estimate the density of deposits and the total amount of mineralization. These powerful estimators are based on analysis of ten different types of mineral deposits (Climax Mo, Cuban Mn, Cyprus massive sulfide, Franciscan Mn, kuroko massive sulfide, low-sulfide quartz-Au vein, placer Au, podiform Cr, porphyry Cu, and W vein) from 108 permissive control tracts around the world therefore generalizing across deposit types. Despite the diverse and complex geological settings of deposit types studied here, the relationships observed indicate universal controls on the accumulation and preservation of mineral resources that operate across all scales. The strength of the relationships (R 2=0.91 for density and 0.95 for mineralized rock) argues for their broad use. Deposit densities can now be used to provide a guideline for expert judgment or used directly for estimating the number of most kinds of mineral deposits.
The response of vegetation to geochemical conditions
NASA Technical Reports Server (NTRS)
Mouat, D. A.
1983-01-01
An understanding of the factors of vegetation response to changes in the geochemistry of the environment may give exploration geologists and other researchers an additional and effective tool for rock type discrimination. The factors of vegetation response can be grouped into three principal categories: structural or morphological factors, taxonomic factors which include indicator flora as well as vegetation assemblages, and spectral factors which represent the manner in which the vegetation interacts with electromagnetic radiation. The response of these factors over areas of anomalous mineralization is often unique and may be due to nutrient deficiencies and/or imbalances, toxicity and stress caused by anomalous mineral concentrations in the soil, low water retention, and plant competition. The successful use of geobotanical techniques results from the integration of the geobotanical observations with other techniques. The use of remote sensing in such a program must be predicated on those factors which can be discriminated within the constraints of the spatial, spectral, radiometric, and temporal resolutions of the sensing system and with appropriate analytical techniques.
Mineral commodity summaries 2017
Ober, Joyce A.
2017-01-31
This report is the earliest Government publication to furnish estimates covering 2016 nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for more than 90 individual minerals and materials.
Nikitina, Nataliya
2014-01-01
It is noted that over the last few years the implementation of several mineral exploration, development and mining projects has been suspended and even completely stopped due to resistance from local communities. The key concerns of local residents typically include perceived or real impact of mining enterprises on the environment, unfair distribution of profits from mining and exploration activities, insufficient contributions to local government budgets and lack of transparency regarding ultimate ownership of companies conducting exploration and mining. The article looks at social conflicts of this kind and suggests some alternative solutions that could prevent such conflicts at the stage of granting exploration and mining rights. PMID:25158138
Publications - GMC 215 | Alaska Division of Geological & Geophysical
DGGS GMC 215 Publication Details Title: U.S. Minerals Management Service 1992 Lower Cook Inlet Mesozoic Field Program, Shelikof Strait, Alaska Authors: U.S. Minerals Management Service, and ARCO Publication Reference U.S. Minerals Management Service, and ARCO, 1993, U.S. Minerals Management Service 1992 Lower Cook
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Action level. 62.120 Section 62.120 Mineral... OCCUPATIONAL NOISE EXPOSURE § 62.120 Action level. If during any work shift a miner's noise exposure equals or exceeds the action level the mine operator must enroll the miner in a hearing conservation program that...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Action level. 62.120 Section 62.120 Mineral... OCCUPATIONAL NOISE EXPOSURE § 62.120 Action level. If during any work shift a miner's noise exposure equals or exceeds the action level the mine operator must enroll the miner in a hearing conservation program that...
Porphyry Copper Deposits of the World: Database and Grade and Tonnage Models, 2008
Singer, Donald A.; Berger, Vladimir I.; Moring, Barry C.
2008-01-01
This report is an update of earlier publications about porphyry copper deposits (Singer, Berger, and Moring, 2002; Singer, D.A., Berger, V.I., and Moring, B.C., 2005). The update was necessary because of new information about substantial increases in resources in some deposits and because we revised locations of some deposits so that they are consistent with images in GoogleEarth. In this report we have added new porphyry copper deposits and removed a few incorrectly classed deposits. In addition, some errors have been corrected and a number of deposits have had some information, such as grades, tonnages, locations, or ages revised. Colleagues have helped identify places where improvements were needed. Mineral deposit models are important in exploration planning and quantitative resource assessments for a number of reasons including: (1) grades and tonnages among deposit types are significantly different, and (2) many types occur in different geologic settings that can be identified from geologic maps. Mineral deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables or for robust estimation of undiscovered deposits?thus we need mineral-deposit models. Globally based deposit models allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral deposit models play the central role in transforming geoscience information to a form useful to policy makers. The foundation of mineral deposit models is information about known deposits. The purpose of this publication is to make this kind of information available in digital form for porphyry copper deposits. The consistently defined deposits in this file provide the foundation for grade and tonnage models included here and for mineral deposit density models (Singer and others, 2005: Singer, 2008).
Sediment-Hosted Zinc-Lead Deposits of the World - Database and Grade and Tonnage Models
Singer, Donald A.; Berger, Vladimir I.; Moring, Barry C.
2009-01-01
This report provides information on sediment-hosted zinc-lead mineral deposits based on the geologic settings that are observed on regional geologic maps. The foundation of mineral-deposit models is information about known deposits. The purpose of this publication is to make this kind of information available in digital form for sediment-hosted zinc-lead deposits. Mineral-deposit models are important in exploration planning and quantitative resource assessments: Grades and tonnages among deposit types are significantly different, and many types occur in different geologic settings that can be identified from geologic maps. Mineral-deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables, or for robust estimation of undiscovered deposits - thus, we need mineral-deposit models. Globally based deposit models allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral-deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral-deposit models play the central role in transforming geoscience information to a form useful to policy makers. This publication contains a computer file of information on sediment-hosted zinc-lead deposits from around the world. It also presents new grade and tonnage models for nine types of these deposits and a file allowing locations of all deposits to be plotted in Google Earth. The data are presented in FileMaker Pro, Excel and text files to make the information available to as many as possible. The value of this information and any derived analyses depends critically on the consistent manner of data gathering. For this reason, we first discuss the rules applied in this compilation. Next, the fields of the data file are considered. Finally, we provide new grade and tonnage models that are, for the most part, based on a classification of deposits using observable geologic units from regional-scaled maps.
Earth Observation in Environmental and Societal Impacts of Mineral Resources Exploitation
NASA Astrophysics Data System (ADS)
Chevrel, Stephane
Several national and international initiatives, both from the private or the institutional sectors, arised to address the sustainable development of the extractive industry and the reduction of its environmental footprint. Meanwhile, the extractive industry is facing increasing environmental and societal pressures, being regulatory or not, during all phases of a project, from exploration to exploitation and closure. The social acceptability of a project is among the major key issues to be dealt with. The EO-MINERS project (Earth Observation for Monitoring and Observing Environmental and Societal Impacts of Mineral Resources Exploration and Exploitation) is a newly EU funded Research and Technological Development project started in February 2010. EO-MINERS scientific and technical objectives are to: i) assess policy requirements at macro (public) and micro (mining companies) levels and define environmental, socio-economic, societal and sustainable development criteria and indicators to be possibly dealt using EO (Earth Observation); ii) use existing EO knowledge and carry out new developments on demonstration sites to further demonstrate the capabilities of integrated EO-based methods and tools in monitoring, managing and contributing reducing the environmental and societal footprints of the extractive industry during all phases of a mining project, from the exploration to the exploitation and closure stages; iii) contribute making reliable and objective information about affected ecosystems, populations and societies, to serve as a basis for a sound "trialogue" between industrialists, governmental organisations and stakeholders. EO-MINERS also is designed to embed the outcomes of the project firmly in the GEO process through a review the existing GEO Tasks covering the 9 societal benefit and 5 transverse areas defined by GEO work plan 2007-2009. This analysis will be used to identify synergies and gaps between EO-MINERS and GEO, with the aim of mapping mining and environmental observa-tion systems into the 9 GEOSS Societal Benefit Areas, identifying EO-MINERS contributions to existing GEOSS targets and defining new, EO-MINERS activities in support of GEOSS. EO-MINERS will run a minerals workshop with GEO members and/or the GEO Secretariat.
NASA Astrophysics Data System (ADS)
Pour, Amin Beiranvnd; Hashim, Mazlan
2011-11-01
The NW-SE trending Central Iranian Volcanic Belt hosts many well-known porphyry copper deposits in Iran. It becomes an interesting area for remote sensing investigations to explore the new prospects of porphyry copper and vein type epithermal gold mineralization. Two copper mining districts in southeastern segment of the volcanic belt, including Meiduk and Sarcheshmeh have been selected in the present study. The performance of Principal Component Analysis, band ratio and Minimum Noise Fraction transformation has been evaluated for the visible and near infrared (VNIR) and, shortwave infrared (SWIR) subsystems of ASTER data. The image processing techniques indicated the distribution of iron oxides and vegetation in the VNIR subsystem. Hydrothermal alteration mineral zones associated with porphyry copper mineralization identified and discriminated based on distinctive shortwave infrared (SWIR) properties of the ASTER data in a regional scale. These techniques identified new prospects of porphyry copper mineralization in the study areas. The spatial distribution of hydrothermal alteration zones has been verified by in situ inspection, X-ray diffraction (XRD) analysis, and spectral reflectance measurements. Results indicated that the integration of the image processing techniques has a great ability to obtain significant and comprehensive information for the reconnaissance stages of porphyry copper exploration in a regional scale. The results of this research can assist exploration geologists to find new prospects of porphyry copper and gold deposits in the other virgin regions before costly detailed ground investigations. Consequently, the introduced image processing techniques can create an optimum idea about possible location of the new prospects.
30 CFR 795.8 - Application approval and notice.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Application approval and notice. 795.8 Section 795.8 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SMALL OPERATOR ASSISTANCE PERMANENT REGULATORY PROGRAM-SMALL OPERATOR ASSISTANCE PROGRAM § 795.8...
30 CFR 250.1614 - Mud program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Mud program. 250.1614 Section 250.1614 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS... requirements concerning mud control, mud test and monitoring equipment, mud quantities, and safety precautions...
30 CFR 250.1614 - Mud program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Mud program. 250.1614 Section 250.1614 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS... requirements concerning mud control, mud test and monitoring equipment, mud quantities, and safety precautions...
30 CFR 250.1614 - Mud program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Mud program. 250.1614 Section 250.1614 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS... requirements concerning mud control, mud test and monitoring equipment, mud quantities, and safety precautions...
Natural Resources Technologies: A Suggested Post High School Program Development Guide.
ERIC Educational Resources Information Center
Soles, Robert L.
This post high school program development guide considers the following natural resources technological areas: air pollution control, forest, rangeland, minerals and mineral fuels, geological, outdoor recreation, soil, urban-regional planning, landscape, water, wastewater, oceanography, wildlife, fish, and marine life. Within each area, the…
30 CFR 402.12 - Evaluation of applications for grants and contracts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Evaluation of applications for grants and contracts. 402.12 Section 402.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation...
30 CFR 402.12 - Evaluation of applications for grants and contracts.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Evaluation of applications for grants and contracts. 402.12 Section 402.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation...
30 CFR 402.12 - Evaluation of applications for grants and contracts.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Evaluation of applications for grants and contracts. 402.12 Section 402.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation...
30 CFR 402.12 - Evaluation of applications for grants and contracts.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Evaluation of applications for grants and contracts. 402.12 Section 402.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation...
30 CFR 402.12 - Evaluation of applications for grants and contracts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Evaluation of applications for grants and contracts. 402.12 Section 402.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation...
77 FR 30350 - Airport Improvement Program (AIP) Use of Mineral Revenue at Certain Airports
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration [Docket No. FAA-2012-0547] Airport Improvement Program (AIP) Use of Mineral Revenue at Certain Airports AGENCY: Federal Aviation Administration... Administrator of the Federal Aviation Administration (FAA) to declare certain revenue derived from or generated...
ERIC Educational Resources Information Center
Al-Dosary, Adel S.; Raziuddin, Mohammed
2001-01-01
Surveyed students and faculty at Saudi Arabia's King Fahd University of Petroleum and Minerals about the school's summer program. Found that the program should not offer courses that require a long time to develop skills, but rather should function as a supplementary semester for students needing more help with regular course work. (EV)
Volcanogenic Massive Sulfide Deposits of the World - Database and Grade and Tonnage Models
Mosier, Dan L.; Berger, Vladimir I.; Singer, Donald A.
2009-01-01
Grade and tonnage models are useful in quantitative mineral-resource assessments. The models and database presented in this report are an update of earlier publications about volcanogenic massive sulfide (VMS) deposits. These VMS deposits include what were formerly classified as kuroko, Cyprus, and Besshi deposits. The update was necessary because of new information about some deposits, changes in information in some deposits, such as grades, tonnages, or ages, revised locations of some deposits, and reclassification of subtypes. In this report we have added new VMS deposits and removed a few incorrectly classified deposits. This global compilation of VMS deposits contains 1,090 deposits; however, it was not our intent to include every known deposit in the world. The data was recently used for mineral-deposit density models (Mosier and others, 2007; Singer, 2008). In this paper, 867 deposits were used to construct revised grade and tonnage models. Our new models are based on a reclassification of deposits based on host lithologies: Felsic, Bimodal-Mafic, and Mafic volcanogenic massive sulfide deposits. Mineral-deposit models are important in exploration planning and quantitative resource assessments for two reasons: (1) grades and tonnages among deposit types vary significantly, and (2) deposits of different types occur in distinct geologic settings that can be identified from geologic maps. Mineral-deposit models combine the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Globally based deposit models allow recognition of important features and demonstrate how common different features are. Well-designed deposit models allow geologists to deduce possible mineral-deposit types in a given geologic environment and economists to determine the possible economic viability of these resources. Thus, mineral-deposit models play a central role in presenting geoscience information in a useful form to policy makers. The foundation of mineral-deposit models is information about known deposits. The purpose of this publication is to present the latest geologic information and newly developed grade and tonnage models for VMS deposits in digital form. This publication contains computer files with information on VMS deposits from around the world. It also presents new grade and tonnage models for three subtypes of VMS deposits and a text file allowing locations of all deposits to be plotted in geographic information system (GIS) programs. The data are presented in FileMaker Pro and text files to make the information available to a wider audience. The value of this information and any derived analyses depends critically on the consistent manner of data gathering. For this reason, we first discuss the rules used in this compilation. Next, we provide new grade and tonnage models and analysis of the information in the file. Finally, the fields of the data file are explained. Appendix A gives the summary statistics for the new grade-tonnage models and Appendix B displays the country codes used in the database.
US nonfuel mineral exploration: Selected findings for 1995-2009 from the USGS
Wilburn, David R.; Bleiwas, Donald I.
2012-01-01
The U.S. Geological Survey (USGS) has been systematically monitoring global nonfuel mineral exploration activities to anticipate the location and quantity of future nonfuel minerals supply for about 100 commodities, with an emphasis on precious and base metals. Since 1995, the USGS has developed an annual list of 100 noteworthy prospects that were considered to have a high level of potential for near-term development based on such criteria as intensity of drilling, level of capital investment, and size of resource. This study reviews the status of the U.S. sites included on these lists as of July 2011 and addresses domestic prospects not included on the lists that have come into production since 1995.
30 CFR 75.400-2 - Cleanup program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Cleanup program. 75.400-2 Section 75.400-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.400-2 Cleanup...
30 CFR 75.400-2 - Cleanup program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Cleanup program. 75.400-2 Section 75.400-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.400-2 Cleanup...
30 CFR 75.400-2 - Cleanup program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Cleanup program. 75.400-2 Section 75.400-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.400-2 Cleanup...
30 CFR 75.400-2 - Cleanup program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Cleanup program. 75.400-2 Section 75.400-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.400-2 Cleanup...
30 CFR 75.400-2 - Cleanup program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Cleanup program. 75.400-2 Section 75.400-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.400-2 Cleanup...
30 CFR 902.10 - State regulatory program approval.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false State regulatory program approval. 902.10 Section 902.10 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE..., Technical Library, 1999 Broadway, Suite 3320, Denver, Colorado 80202-5733. [60 FR 33724, June 29, 1995, as...
Federal Funds: Fuel Conservation Fellowship Program
ERIC Educational Resources Information Center
Bobowski, Rita Cipalla
1977-01-01
To train individuals who might design and implement plans for developing alternative sources of energy like solar or geothermal power, the Office of Education supports graduate fellowships in mining, mineral, and mineral fuel conservation. Describes three projects funded by the fellowship program during the 1976-77 academic year. (Author/RK)
30 CFR 250.215 - What hydrogen sulfide (H2S) information must accompany the EP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What hydrogen sulfide (H2S) information must accompany the EP? 250.215 Section 250.215 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Contents of Exploration Plans (ep) § 250.215 What hydrogen sulfide (H2S) information must accompany the EP...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What information on the onshore support facilities you will use must accompany the EP? 250.225 Section 250.225 Mineral Resources MINERALS MANAGEMENT... SHELF Plans and Information Contents of Exploration Plans (ep) § 250.225 What information on the onshore...
Schwalfenberg, Gerry K.; Genuis, Stephen J.
2015-01-01
In clinical medicine, increasing attention is being directed towards the important areas of nutritional biochemistry and toxicant bioaccumulation as they relate to human health and chronic disease. Optimal nutritional status, including healthy levels of vitamin D and essential minerals, is requisite for proper physiological function; conversely, accrual of toxic elements has the potential to impair normal physiology. It is evident that vitamin D intake can facilitate the absorption and assimilation of essential inorganic elements (such as calcium, magnesium, copper, zinc, iron, and selenium) but also the uptake of toxic elements (such as lead, arsenic, aluminum, cobalt, and strontium). Furthermore, sufficiency of essential minerals appears to resist the uptake of toxic metals. This paper explores the literature to determine a suitable clinical approach with regard to vitamin D and essential mineral intake to achieve optimal biological function and to avoid harm in order to prevent and overcome illness. It appears preferable to secure essential mineral status in conjunction with adequate vitamin D, as intake of vitamin D in the absence of mineral sufficiency may result in facilitation of toxic element absorption with potential adverse clinical outcomes. PMID:26347061
Mineral Detected from Orbit Found in Dark Veneers
2014-01-23
Researchers used NASA Mars Exploration Rover Opportunity to find a water-related mineral on the ground that had been detected from orbit, and found it in the dark veneer of rocks on the rim of Endeavour Crater.
Close-up View of Homestake Vein
2011-12-07
This close-up view of a mineral vein called Homestake comes from the microscopic imager on NASA Mars Exploration Rover Opportunity; the vein is found to be rich in calcium and sulfur, possibly the calcium-sulfate mineral gypsum.
Benefit-cost assessment programs: Costa Rica case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, A.L.; Trocki, L.K.
An assessment of mineral potential, in terms of types and numbers of deposits, approximate location and associated tonnage and grades, is a valuable input to a nation's economic planning and mineral policy development. This study provides a methodology for applying benefit-cost analysis to mineral resource assessment programs, both to determine the cost effectiveness of resource assessments and to ascertain future benefits to the nation. In a case study of Costa Rica, the benefit-cost ratio of a resource assessment program was computed to be a minimum of 4:1 ($10.6 million to $2.5 million), not including the economic benefits accuring from themore » creation of 800 mining sector and 1,200 support services jobs. The benefit-cost ratio would be considerably higher if presently proposed revisions of mineral policy were implemented and benefits could be defined for Costa Rica.« less
30 CFR 905.772 - Requirements for coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Requirements for coal exploration. 905.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts coal exploration. For applications where § 772.12 applies, the...
30 CFR 941.772 - Requirements for coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Requirements for coal exploration. 941.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 921.772 - Requirements for coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Requirements for coal exploration. 921.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 933.772 - Requirements for coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Requirements for coal exploration. 933.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 941.772 - Requirements for coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Requirements for coal exploration. 941.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 939.772 - Requirements for coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Requirements for coal exploration. 939.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 910.772 - Requirements for coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Requirements for coal exploration. 910.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 937.772 - Requirements for coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Requirements for coal exploration. 937.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 905.772 - Requirements for coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Requirements for coal exploration. 905.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts coal exploration. For applications where § 772.12 applies, the...
30 CFR 933.772 - Requirements for coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Requirements for coal exploration. 933.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 921.772 - Requirements for coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Requirements for coal exploration. 921.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 941.772 - Requirements for coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Requirements for coal exploration. 941.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 942.772 - Requirements for coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Requirements for coal exploration. 942.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 922.772 - Requirements for coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Requirements for coal exploration. 922.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 941.772 - Requirements for coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Requirements for coal exploration. 941.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 937.772 - Requirements for coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Requirements for coal exploration. 937.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 905.772 - Requirements for coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Requirements for coal exploration. 905.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts coal exploration. For applications where § 772.12 applies, the...
30 CFR 912.772 - Requirements for coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Requirements for coal exploration. 912.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 947.772 - Requirements for coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Requirements for coal exploration. 947.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 937.772 - Requirements for coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Requirements for coal exploration. 937.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 939.772 - Requirements for coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Requirements for coal exploration. 939.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 947.772 - Requirements for coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Requirements for coal exploration. 947.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 947.772 - Requirements for coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Requirements for coal exploration. 947.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 910.772 - Requirements for coal exploration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Requirements for coal exploration. 910.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 921.772 - Requirements for coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Requirements for coal exploration. 921.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 947.772 - Requirements for coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Requirements for coal exploration. 947.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 933.772 - Requirements for coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Requirements for coal exploration. 933.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 921.772 - Requirements for coal exploration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Requirements for coal exploration. 921.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 910.772 - Requirements for coal exploration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Requirements for coal exploration. 910.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 922.772 - Requirements for coal exploration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Requirements for coal exploration. 922.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...
30 CFR 939.772 - Requirements for coal exploration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Requirements for coal exploration. 939.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...