Science.gov

Sample records for mineral oil hydrocarbons

  1. Microbial degradation of crude oil hydrocarbons on organoclay minerals.

    PubMed

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-11-01

    The role of organoclays in hydrocarbon removal during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The clays used for this study were Na-montmorillonite and saponite. These two clays were treated with didecyldimethylammonium bromide to produce organoclays which were used in this study. The study indicated that clays with high cation exchange capacity (CEC) such as Na-montmorillonite produced an organomontmorillonite that was inhibitory to biodegradation of the crude oil hydrocarbons. Extensive hydrophobic interaction between the organic phase of the organoclay and the crude oil hydrocarbons is suggested to render the hydrocarbons unavailable for biodegradation. However, untreated Na-montmorillonite was stimulatory to biodegradation of the hydrocarbons and is believed to have done so because of its high surface area for the accumulation of microbes and nutrients making it easy for the microbes to access the nutrients. This study indicates that unlike unmodified montmorillonites, organomontmorillonite may not serve any useful purpose in the bioremediation of crude oil spill sites where hydrocarbon removal by biodegradation is desired within a rapid time period.

  2. Estrogenic Activity of Mineral Oil Aromatic Hydrocarbons Used in Printing Inks

    PubMed Central

    Tarnow, Patrick; Hutzler, Christoph; Grabiger, Stefan; Schön, Karsten; Tralau, Tewes; Luch, Andreas

    2016-01-01

    The majority of printing inks are based on mineral oils (MOs) which contain complex mixtures of saturated and aromatic hydrocarbons. Consumer exposure to these oils occurs either through direct skin contacts or, more frequently, as a result of MO migration into the contents of food packaging that was made from recycled newspaper. Despite this ubiquitous and frequent exposure little is known about the potential toxicological effects, particularly with regard to the aromatic MO fractions. From a toxicological point of view the huge amount of alkylated and unsubstituted compounds therein is reason for concern as they can harbor genotoxicants as well as potential endocrine disruptors. The aim of this study was to assess both the genotoxic and estrogenic potential of MOs used in printing inks. Mineral oils with various aromatic hydrocarbon contents were tested using a battery of in vitro assays selected to address various endpoints such as estrogen-dependent cell proliferation, activation of estrogen receptor α or transcriptional induction of estrogenic target genes. In addition, the comet assay has been applied to test for genotoxicity. Out of 15 MOs tested, 10 were found to potentially act as xenoestrogens. For most of the oils the effects were clearly triggered by constituents of the aromatic hydrocarbon fraction. From 5 oils tested in the comet assay, 2 showed slight genotoxicity. Altogether it appears that MOs used in printing inks are potential endocrine disruptors and should thus be assessed carefully to what extent they might contribute to the total estrogenic burden in humans. PMID:26771904

  3. Comprehensive two-dimensional gas chromatography for characterizing mineral oils in foods and distinguishing them from synthetic hydrocarbons.

    PubMed

    Biedermann, Maurus; Grob, Koni

    2015-01-01

    Many foods are contaminated by hydrocarbons of mineral oil or synthetic origin. High performance liquid chromatography on-line coupled with gas chromatography and flame ionization detection (HPLC-GC-FID) is a powerful tool for the quantitative determination, but it would often be desirable to obtain more information about the type of hydrocarbons in order to identify the source of the contamination and specify pertinent legislation. Comprehensive two-dimensional gas chromatography (GC×GC) is shown to produce plots distinguishing mineral oil saturated hydrocarbons (MOSH) from polymer oligomeric saturated hydrocarbons (POSH) and characterizing the degree of raffination of a mineral oil. The first dimension separation occurred on a phenyl methyl polysiloxane, the second on a dimethyl polysiloxane. Mass spectrometry (MS) was used for identification, FID for quantitative determination. This shows the substantial advances in chromatography to characterize complex hydrocarbon mixtures even as contaminants in food.

  4. Improvement of mineral oil saturated and aromatic hydrocarbons determination in edible oil by liquid-liquid-gas chromatography with dual detection.

    PubMed

    Zoccali, Mariosimone; Barp, Laura; Beccaria, Marco; Sciarrone, Danilo; Purcaro, Giorgia; Mondello, Luigi

    2016-02-01

    Mineral oils, which are mainly composed of saturated hydrocarbons and aromatic hydrocarbons, are widespread food contaminants. Liquid chromatography coupled to gas chromatography with flame ionization detection represents the method of choice to determine these two families. However, despite the high selectivity of this technique, the presence of olefins (particularly squalene and its isomers) in some samples as in olive oils, does not allow the correct quantification of the mineral oil aromatic hydrocarbons fraction, requiring additional off-line tools to eliminate them. In the present research, a novel on-line liquid chromatography coupled to gas chromatography method is described for the determination of hydrocarbon contamination in edible oils. Two different liquid chromatography columns, namely a silica one (to retain the bulk of the matrix) and a silver-ion one (which better retains the olefins), were coupled in series to obtain the mineral oil aromatic hydrocarbons hump free of interfering peaks. Furthermore, the use of a simultaneous dual detection, flame ionization detector and triple quadrupole mass spectrometer allowed us not only to quantify the mineral oil contamination, but also to evaluate the presence of specific markers (i.e. hopanes) to confirm the petrogenic origin of the contamination.

  5. Improvement of mineral oil saturated and aromatic hydrocarbons determination in edible oil by liquid-liquid-gas chromatography with dual detection.

    PubMed

    Zoccali, Mariosimone; Barp, Laura; Beccaria, Marco; Sciarrone, Danilo; Purcaro, Giorgia; Mondello, Luigi

    2016-02-01

    Mineral oils, which are mainly composed of saturated hydrocarbons and aromatic hydrocarbons, are widespread food contaminants. Liquid chromatography coupled to gas chromatography with flame ionization detection represents the method of choice to determine these two families. However, despite the high selectivity of this technique, the presence of olefins (particularly squalene and its isomers) in some samples as in olive oils, does not allow the correct quantification of the mineral oil aromatic hydrocarbons fraction, requiring additional off-line tools to eliminate them. In the present research, a novel on-line liquid chromatography coupled to gas chromatography method is described for the determination of hydrocarbon contamination in edible oils. Two different liquid chromatography columns, namely a silica one (to retain the bulk of the matrix) and a silver-ion one (which better retains the olefins), were coupled in series to obtain the mineral oil aromatic hydrocarbons hump free of interfering peaks. Furthermore, the use of a simultaneous dual detection, flame ionization detector and triple quadrupole mass spectrometer allowed us not only to quantify the mineral oil contamination, but also to evaluate the presence of specific markers (i.e. hopanes) to confirm the petrogenic origin of the contamination. PMID:26614690

  6. Migration kinetics of mineral oil hydrocarbons from recycled paperboard to dry food: monitoring of two real cases.

    PubMed

    Lorenzini, R; Biedermann, M; Grob, K; Garbini, D; Barbanera, M; Braschi, I

    2013-01-01

    Mineral oil hydrocarbons present in printing inks and recycled paper migrate from paper-based food packaging to foods primarily through the gas phase. Migration from two commercial products packed in recycled paperboard, i.e. muesli and egg pasta, was monitored up to the end of their shelf life (1 year) to study the influence of time, storage conditions, food packaging structure and temperature. Mineral oil saturated and aromatic hydrocarbons (MOSH and MOAH, respectively), and diisopropyl naphthalenes (DIPN) were monitored using online HPLC-GC/FID. Storage conditions were: free standing, shelved, and packed in transport boxes of corrugated board, to represent domestic, supermarket and warehouse storage, respectively. Migration to food whose packs were kept in transport boxes was the highest, especially after prolonged storage, followed by shelved and free-standing packs. Tested temperatures were representative of refrigeration, room temperature, storage in summer months and accelerated migration testing. Migration was strongly influenced by temperature: for egg pasta directly packed in paperboard, around 30 mg kg⁻¹ of MOSH migrated in 8 months at 20°C, but in only 1 week at 40°C. Muesli was contained into an internal polyethylene bag, which firstly adsorbed hydrocarbons and later released them partly towards the food. Differently, the external polypropylene bag, containing pasta and recycled paper tray, strongly limited the migration towards the atmosphere and gave rise to the highest level of food contamination. Tests at increased temperatures not only accelerated migration, but also widened the migration of hydrocarbons to higher molecular masses, highlighting thus a difficult interpretation of data from accelerated simulation.

  7. Hydrocarbon mineralization potentials and microbial populations in marine sediments following the Exxon Valdez oil spill. Subtidal study number 1b. Exxon Valdez oil spill state/federal natural resource damage assessment final report

    SciTech Connect

    Braddock, J.F.; Rasley, B.T.; Yeager, T.R.; Lindstrom, J.E.; Brown, E.J.

    1992-06-01

    Following the Exxon Valdez oil spill in 1989, the authors measured numbers of hydrocarbon-degrading microoganisms and hydrocarbon mineralization potentials of microorganisms in oiled and unoiled surface sediments from the shore through 100 m depth offshore. The authors found both temporal and spatial variations in numbers and activity of hydrocarbon-degrading microorganisms with significant higher values at the oiled sites than at reference sites. The microbial data indicate mobilization between 1989 and 1990 of oil from the intertidal to surface sediments at 20, 40 and 100 m depths offshore.

  8. Theory and application of landfarming to remediate polycyclic aromatic hydrocarbons and mineral oil-contaminated sediments; beneficial reuse.

    PubMed

    Harmsen, J; Rulkens, W H; Sims, R C; Rijtema, P E; Zweers, A J

    2007-01-01

    When applying landfarming for the remediation of contaminated soil and sediment, a fraction of the soil-bound contaminant is rapidly degraded; however, a residual concentration may remain, which slowly degrades. Degradation of polycyclic aromatic hydrocarbons (PAHs) and mineral oil can be described using a multi-compartment model and first-order kinetics, in which three degradable fractions are distinguished; (1) rapid, (2) slowly, and (3) very slowly degradable. Using this model populated with data from long-term experiments (initiated in 1990), it is shown that time frames from years to decades can be necessary to clean the soil or sediment to obtain a target below regulatory guidelines. In passive landfarms without active management, three principal potentially limiting factors can be identified: (1) availability of appropriate microorganisms, (2) supply of oxygen for the biodegradation process, and (3) bioavailability of the pollutants to the microorganisms. Bioavailable PAHs and mineral oil are readily biodegradable contaminants under aerobic conditions, and presence and activity of microorganisms are not problems. The other two factors can be limiting and are theoretically described. Using these descriptions, which are in agreement with field experiments of 10 to 15 yr, it is shown if and when optimization of the biodegradation process is an option. Because a long time period is necessary to degrade the slowly and very slowly degradable fractions, passive landfarming should be combined with beneficial use of the land area. Examples include the development of natural environments, use in constructions, growing of biomass for energy production, including biofuels, and use as cover for landfills.

  9. Migration of mineral hydrocarbons into foods. 5. Miscellaneous applications of mineral hydrocarbons in food contact materials.

    PubMed

    Jickells, S M; Nichol, J; Castle, L

    1994-01-01

    Polystyrene and acrylonitrile/butadiene/styrenes (ABS) containers for individual serving portions (80 samples of milk, cream, butter, margarine and spreads) used in the catering industry were found to contain 1-4% mineral oil. Levels of mineral oil migrating into the foods were generally low (< 5-15 mg/kg) except in one instance where levels of 45-85 mg/kg were detected in a low fat spread, and this was attributed to mineral hydrocarbon transfer from an adhesive used in the lidding. Analysis of wine bottle corks (105 samples from 11 different countries) indicated that 50% had been treated with mineral wax or mineral oil, although in all cases mineral hydrocarbon contamination of the wine was < 0.2 mg/l. Waxed paper discs sold for home-use for covering the surface of jams and preserves were found to be coated with 100 mg/dm2 of mineral hydrocarbons. However, in experiments with a variety of jams and preserves levels of migration were not significant, ranging from 0.15 to 1.2 mg/kg.

  10. Saturated and aromatic mineral oil hydrocarbons from paperboard food packaging: estimation of long-term migration from contents in the paperboard and data on boxes from the market.

    PubMed

    Lorenzini, R; Fiselier, K; Biedermann, M; Barbanera, M; Braschi, I; Grob, K

    2010-12-01

    In the absence of a functional barrier, mineral oil hydrocarbons from printing inks and recycled fibres tend to migrate from paper-based food-packaging materials through the gas phase into dry food. Concentrations easily far exceed the limit derived from the acceptable daily intake (ADI) of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Since the estimation of long-term migration into the food by testing at 40°C for 10 days is difficult, it seems preferable (and easier) to use the mineral oil content in the paperboard. Evaporation experiments showed that hydrocarbons eluted up to about n-C₂₄ are sufficiently volatile for relevant migration into dry food: in worst-case situations, about 80% migrate into the packed food. The extraction of the paperboard was optimised to give good recovery of the relevant hydrocarbons, but to discriminate against those of high molecular mass which tend to disturb gas chromatographic analysis in on-line coupled normal phase HPLC-GC-FID. Even though some of the relevant hydrocarbons had already evaporated, the average concentration of < C₂₄ mineral oil saturated hydrocarbons (MOSH) in the paperboard boxes of 102 products from the Swiss and Italian market was 626 mg kg⁻¹. Nearly 15% of investigated boxes still contained more than 1000 mg kg⁻¹ < C₂₄ MOSH up to over 3000 mg kg⁻¹ (maximum = 3500 mg kg⁻¹). This amount of MOSH in the board have the potential of contaminating the packed food at a level exceeding the limit, derived from the JECFA ADI, hundreds of times. PMID:20967663

  11. Mineral oil soluble borate compositions

    SciTech Connect

    Dulat, J.

    1981-09-15

    Alkali metal borates are reacted with fatty acids or oils in the presence of a low hlb value surfactant to give a stable mineral oil-soluble product. Mineral oil containing the borate can be used as a cutting fluid.

  12. Cometabolic mineralization of benzo[a]pyrene caused by hydrocarbon additions to soil

    SciTech Connect

    Kanaly, R.A.; Bartha, R.

    1999-10-01

    The mineralization of [7-{sup 14}C]benzo[a]pyrene (BaP) in soil was investigated in response to additions of individual hydrocarbons, defined hydrocarbon mixtures, crude oil, and crude oil fractions. Neither substantial BaP mineralization nor enrichment of BaP degraders occurred in BaP-spiked soil in the absence of a suitable hydrocarbon supplement. Crude oil, the saturated and aromatic class components of crude oil, the distillates heating oil, jet fuel, and diesel fuel supported up to 60% mineralization of 80 {micro}g [7-{sup 14}C]BaP per gram of soil in 40 d. Neither single hydrocarbons nor defined hydrocarbon mixtures containing normal and branched alkanes, alicyclics, and aromatics supported comparable BaP mineralization. Evolution of {sup 14}CO{sub 2} occurred after lag periods characteristic to specific petroleum products and their concentrations. Time required for microbial proliferation, hydrocarbon toxicity, and competitive inhibition might have contributed to these lag periods, but the complete inhibition of BaP mineralization by diesel-fuel vapors pointed to a dominant role of competitive inhibition. A lack of radiocarbon incorporation into soil biomass from [7-{sup 14}C]BaP indicated that at least the initial steps of BaP biodegradation in soil were cometabolic in nature. Suitable hydrocarbon mixtures not only supported BaP mineralization by serving as primary substrates, but also enhanced BaP bioavailability by dissolving this hydrophobic solid.

  13. Characterization of used mineral oil condition by spectroscopic techniques.

    PubMed

    Vanhanen, Jarmo; Rinkiö, Marcus; Aumanen, Jukka; Korppi-Tommola, Jouko; Kolehmainen, Erkki; Kerkkänen, Tuula; Törmä, Päivi

    2004-08-20

    Optical absorption, fluorescence, and quantitative 13C NMR spectroscopy have been used to study the degradation of mineral gearbox oil. Samples of used oil were collected from field service. Measured absorption, fluorescence, and quantitative 13C NMR spectra of used oils show characteristic changes from the spectra of a fresh oil sample. A clearly observable, approximately 20-nm blueshift of the fluorescence emission occurs during the early stages of oil use and correlates with changes in intensity of some specific 13C NMR resonance lines. These changes correlate with oil age because of the connection between the blueshift and breaking of the larger conjugated hydrocarbons of oil as a result of use.

  14. 21 CFR 573.680 - Mineral oil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Mineral oil. 573.680 Section 573.680 Food and... Listing § 573.680 Mineral oil. Mineral oil may be safely used in animal feed, subject to the provisions of this section. (a) Mineral oil, for the purpose of this section, is that complying with the...

  15. 21 CFR 573.680 - Mineral oil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Mineral oil. 573.680 Section 573.680 Food and... Listing § 573.680 Mineral oil. Mineral oil may be safely used in animal feed, subject to the provisions of this section. (a) Mineral oil, for the purpose of this section, is that complying with the...

  16. 21 CFR 573.680 - Mineral oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Mineral oil. 573.680 Section 573.680 Food and... Listing § 573.680 Mineral oil. Mineral oil may be safely used in animal feed, subject to the provisions of this section. (a) Mineral oil, for the purpose of this section, is that complying with the...

  17. 21 CFR 573.680 - Mineral oil.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Mineral oil. 573.680 Section 573.680 Food and... Listing § 573.680 Mineral oil. Mineral oil may be safely used in animal feed, subject to the provisions of this section. (a) Mineral oil, for the purpose of this section, is that complying with the...

  18. 21 CFR 573.680 - Mineral oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Mineral oil. 573.680 Section 573.680 Food and... Listing § 573.680 Mineral oil. Mineral oil may be safely used in animal feed, subject to the provisions of this section. (a) Mineral oil, for the purpose of this section, is that complying with the...

  19. Volatile hydrocarbons inhibit methanogenic crude oil degradation

    PubMed Central

    Sherry, Angela; Grant, Russell J.; Aitken, Carolyn M.; Jones, D. Martin; Head, Ian M.; Gray, Neil D.

    2014-01-01

    Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5–nC10, methylcyclohexane, benzene, toluene, and xylenes) were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12–nC34) and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene) were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales) were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 μmol CH4/g sediment/day) with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12–nC34). For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 μmol CH4/g sediment/day). This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers. PMID:24765087

  20. Effect of mineral oil, sunflower oil, and coconut oil on prevention of hair damage.

    PubMed

    Rele, Aarti S; Mohile, R B

    2003-01-01

    Previously published results showed that both in vitro and in vivo coconut oil (CNO) treatments prevented combing damage of various hair types. Using the same methodology, an attempt was made to study the properties of mineral oil and sunflower oil on hair. Mineral oil (MO) was selected because it is extensively used in hair oil formulations in India, because it is non-greasy in nature, and because it is cheaper than vegetable oils like coconut and sunflower oils. The study was extended to sunflower oil (SFO) because it is the second most utilized base oil in the hair oil industry on account of its non-freezing property and its odorlessness at ambient temperature. As the aim was to cover different treatments, and the effect of these treatments on various hair types using the above oils, the number of experiments to be conducted was a very high number and a technique termed as the Taguchi Design of Experimentation was used. The findings clearly indicate the strong impact that coconut oil application has to hair as compared to application of both sunflower and mineral oils. Among three oils, coconut oil was the only oil found to reduce the protein loss remarkably for both undamaged and damaged hair when used as a pre-wash and post-wash grooming product. Both sunflower and mineral oils do not help at all in reducing the protein loss from hair. This difference in results could arise from the composition of each of these oils. Coconut oil, being a triglyceride of lauric acid (principal fatty acid), has a high affinity for hair proteins and, because of its low molecular weight and straight linear chain, is able to penetrate inside the hair shaft. Mineral oil, being a hydrocarbon, has no affinity for proteins and therefore is not able to penetrate and yield better results. In the case of sunflower oil, although it is a triglyceride of linoleic acid, because of its bulky structure due to the presence of double bonds, it does not penetrate the fiber, consequently resulting

  1. Effect of mineral oil, sunflower oil, and coconut oil on prevention of hair damage.

    PubMed

    Rele, Aarti S; Mohile, R B

    2003-01-01

    Previously published results showed that both in vitro and in vivo coconut oil (CNO) treatments prevented combing damage of various hair types. Using the same methodology, an attempt was made to study the properties of mineral oil and sunflower oil on hair. Mineral oil (MO) was selected because it is extensively used in hair oil formulations in India, because it is non-greasy in nature, and because it is cheaper than vegetable oils like coconut and sunflower oils. The study was extended to sunflower oil (SFO) because it is the second most utilized base oil in the hair oil industry on account of its non-freezing property and its odorlessness at ambient temperature. As the aim was to cover different treatments, and the effect of these treatments on various hair types using the above oils, the number of experiments to be conducted was a very high number and a technique termed as the Taguchi Design of Experimentation was used. The findings clearly indicate the strong impact that coconut oil application has to hair as compared to application of both sunflower and mineral oils. Among three oils, coconut oil was the only oil found to reduce the protein loss remarkably for both undamaged and damaged hair when used as a pre-wash and post-wash grooming product. Both sunflower and mineral oils do not help at all in reducing the protein loss from hair. This difference in results could arise from the composition of each of these oils. Coconut oil, being a triglyceride of lauric acid (principal fatty acid), has a high affinity for hair proteins and, because of its low molecular weight and straight linear chain, is able to penetrate inside the hair shaft. Mineral oil, being a hydrocarbon, has no affinity for proteins and therefore is not able to penetrate and yield better results. In the case of sunflower oil, although it is a triglyceride of linoleic acid, because of its bulky structure due to the presence of double bonds, it does not penetrate the fiber, consequently resulting

  2. Recovery of hydrocarbon oil from filter cakes

    SciTech Connect

    Tyson, W. H.; Stuart, F. A.

    1985-10-01

    A process for recovering hydrocarbon oils and hydrocarbon oils containing dissolved additives from filter cakes produced by filtering such oils using a siliceous filter aid. A small amount of a release agent, up to 2 cc per gram of filter cake, is slowly added to the filter cake with agitation to prevent formation of a release agent phase and then a further quantity of release agent is added to the resultant mixture with gentle stirring and the final mixture is then held quiescent at elevated temperature until an oil phase separates. The oil phase is removed and the remainder of the mixture is filtered to separate a release agent filtrate and a filter cake consisting mainly of filter aid.

  3. Used lubricating oil recycling using hydrocarbon solvents.

    PubMed

    Hamad, Ahmad; Al-Zubaidy, Essam; Fayed, Muhammad E

    2005-01-01

    A solvent extraction process using new hydrocarbon solvents was employed to treat used lubricant oil. The solvents used were liquefied petroleum gas (LPG) condensate and stabilized condensate. A demulsifier was used to enhance the treatment process. The extraction process using stabilized condensate demonstrated characteristics that make it competitive with existing used oil treatment technologies. The process is able to reduce the asphaltene content of the treated lubricating oil to 0.106% (w/w), the ash content to 0.108%, and the carbon residue to 0.315% with very low levels of contaminant metals. The overall yield of oil is 79%. The treated used oil can be recycled as base lubricating oil. The major disadvantage of this work is the high temperature of solvent recovery. Experimental work and results are presented in detail. PMID:15627468

  4. UAF radiorespirometric protocol for assessing hydrocarbon mineralization potential in environmental samples.

    PubMed

    Brown, E J; Resnick, S M; Rebstock, C; Luong, H V; Lindstrom, J

    1991-01-01

    Following the EXXON Valdez oil spill, a radiorespirometric protocol was developed at the University of Alaska Fairbanks (UAF) to assess the potential for microorganisms in coastal waters and sediments to degrade hydrocarbons. The use of bioremediation to assist in oil spill cleanup operations required microbial bioassays to establish that addition of nitrogen and phosphorus would enhance biodegradation. A technique assessing 1-14C-n-hexadecane mineralization in seawater or nutrient rich sediment suspensions was used for both of these measurements. Hydrocarbon-degradation potentials were determined by measuring mineralization associated with sediment microorganisms in sediment suspended in sterilized seawater and/or marine Bushnell-Haas broth. Production of 14CO2 and CO2 was easily detectable during the first 48 hours with added hexadecane levels ranging from 10 to 500 mg/l of suspension and dependent on the biomass of hydrocarbon degraders, the hydrocarbon-oxidation potential of the biomass and nutrient availability. In addition to assessment of the hydrocarbon-degrading potential of environmental samples, the radiorespirometric procedure, and concomitant measurement of microbial biomass, has utility as an indicator of hydrocarbon contamination of soils, aqueous sediments and water, and can also be used to evaluate the effectiveness of bioremediation treatments. PMID:1368153

  5. Migration of mineral hydrocarbons into foods. 3. Cheese coatings and temporary casings for skinless sausages.

    PubMed

    Castle, L; Kelly, M; Gilbert, J

    1993-01-01

    Levels of mineral hydrocarbons which have migrated from wax coatings into cheese have been determined for 20 retail samples using a gas chromatographic procedure. Contamination was limited to the outermost 2 mm of cheese in direct contact with the wax where levels of hydrocarbons were found to range from 10 to 150 mg/kg. On a whole cheese weight basis these amounted to < 1 to 27 mg/kg (< 0.2 to 3 mg/dm2 contact area). Components attributed to hydrocarbons in cheese samples remote from the waxed surface (background levels) were typically 3-5 mg/kg. Background levels were subtracted from the results for surface samples to obtain migration values. There was evidence that the surface contamination of cheese with mineral hydrocarbons occurred by a combination of diffusion into the cheese and adhesion of wax components onto its surface. Mineral hydrocarbons are used in the manufacture of the temporary casings used to mould skinless sausages. Of 33 retail products examined, including skinless sausages, hot-dog sausages and frankfurters, 25 (75%) contained levels of mineral hydrocarbons from 10 to 105 mg/kg. These hydrocarbons were shown to be present principally at the surface of the food and so could be attributed to migration. Nine other minced meat products were examined for comparison, including minced beef, pâté, sausage meat and sausages with skins. Levels of mineral oil in these products were insignificant by comparison, typically below the limit of detection of ca 4 mg/kg, indicating insignificant adventitious contamination from routes other than migration.

  6. Mineral Oil Aspiration Related Juvenile Idiopathic Arthritis

    PubMed Central

    Nelson, Andrew D.; Fischer, Philip R.; Reed, Ann M.; Wylam, Mark E.

    2015-01-01

    We describe the development of rheumatoid factor-positive migratory polyarthritis in a 5-year-old male who had been administered bidaily oral mineral oil as a laxative since birth. Minor respiratory symptoms, radiographic and bronchoscopic findings were consistent with chronic lipoid pneumonia. We speculate that immune sensitization to mineral oil promoted the clinical syndrome of juvenile idiopathic arthritis. PMID:26171269

  7. Hydrocarbon Mineralization in Sediments and Plasmid Incidence in Sediment Bacteria from the Campeche Bank

    PubMed Central

    Leahy, Joseph G.; Somerville, Charles C.; Cunningham, Kelly A.; Adamantiades, Grammenos A.; Byrd, Jeffrey J.; Colwell, Rita R.

    1990-01-01

    Rates of degradation of radiolabeled hydrocarbons and incidence of bacterial plasmid DNA were investigated in sediment samples collected from the Campeche Bank, Gulf of Mexico, site of an offshore oil field containing several petroleum platforms. Overall rates of mineralization of [14C]hexadecane and [14C]phenanthrene measured for sediments were negligible; <1% of the substrate was converted to CO2 in all cases. Low mineralization rates are ascribed to nutrient limitations and to lack of adaptation by microbial communities to hydrocarbon contaminants. Plasmid frequency data for sediment bacteria similarly showed no correlation with proximity to the oil field, but, instead, showed correlation with water column depth at each sampling site. Significant differences between sites were observed for proportion of isolates carrying single or multiple plasmids and mean number of plasmids per isolate, each of which increased as a function of depth. PMID:16348204

  8. Isolation and characterization of ancient hydrocarbon biomarkers from crystalline minerals

    NASA Astrophysics Data System (ADS)

    Summons, R. E.; Carrasquillo, A.; Hallmann, C.; Sherman, L. S.; Waldbauer, J. R.

    2008-12-01

    Hydrocarbon biomarker analysis is conventionally conducted on bitumen (soluble fossilized organic matter) extracted from sedimentary rocks using organic solvents. Biomarkers can also be generated by pyrolysis of kerogen (insoluble organic matter) in the same rocks. These approaches have met with much success where the organic matter has not seen significant levels of thermal metamorphism but more limited success when applied to thermally mature Archean rocks. Biomarkers have also been isolated from fluid inclusions of crystalline minerals and this approach has found wide application in petroleum exploration because of the capability of minerals that form crystals in reservoir rocks to trap organics from different episodes of fluid migration. Lastly, biogenic crystalline minerals are well known to trap organics including amino acids, fatty acids or hydrocarbons from those organisms that laid down the minerals. In fact, recent observations suggest that hydrocarbon biomarkers can be abundantly preserved in crystalline minerals where they may be protected over long periods of time and also distinguished from more recent generations of organics from endolithic organisms (modern) or anthropogenic (fossil hydrocarbon) contaminants. Here we report analyses of biomarker lipids trapped in fluid inclusions or otherwise having a "tight association" with the minerals in sedimentary rocks from Neoarchean and Paleoproterozoic successions in Australia and Southern Africa. In particular, cores recovered from the Agouron Griqualand Drilling Project contain over 2500m of well-preserved late Archean Transvaal Supergroup sediments, dating from ca. 2.67 to 2.46Ga. Bitumen extracts of samples from these strata were obtained using clean drilling, sampling and handling protocols and without overprinting with contaminant hydrocarbons. Dissolution of the mineral matrix of extracted sediments, followed by another solvent extraction, yielded a second bitumen that comprised hydrocarbons that

  9. Measurement of Microbially Induced Transformation of Magnetic Iron Minerals in Soils Allows Localization of Hydrocarbon Contamination

    NASA Astrophysics Data System (ADS)

    Kappler, A.; Porsch, K.; Rijal, M.; Appel, E.

    2007-12-01

    Soil contamination by crude oil and other hydrocarbons represents a severe environmental problem, but often the location and extent of contamination is not known. Hydrocarbons, or their degradation products, can stimulate iron-metabolizing microorganisms, leading to the formation or dissolution of (magnetic) iron minerals and an associated change of soil magnetic properties. Therefore, the screening of soil magnetic properties has the potential to serve as an efficient and inexpensive tool to localize such contaminations. In order to identify the influence of different biogeochemical factors on the microbially influenced changes of magnetic iron minerals after hydrocarbon contamination, oil spills were simulated in laboratory batch experiments. The parameters tested in these experiments included soils with different bedrocks, type and amount of added hydrocarbon, and microbiological parameters (sterile and autochthonous microorganisms). In order to follow the changes of the soil magnetic properties, the magnetic susceptibility of the samples was measured weekly. First results show that changes in the magnetic mineralogy are caused by microbial activity, as sterile samples showed no changes. In the microbially active set-ups, the magnetic susceptibility increased or decreased up to 10% in comparison to the initial magnetic susceptibility within a few weeks. In one iron-rich soil even a decrease of the magnetic susceptibility of ~40% was observed. Although the amount and type of hydrocarbons did not effect the changes in magnetic susceptibility, DGGE fingerprints revealed that they influenced microbial communities. These results show that the magnetic susceptibility changes in the presence of hydrocarbons and that this change is microbially induced. This suggests that the screening of soil magnetic properties can be applied to localize and assess hydrocarbon contamination. In order to understand the biogeochemical processes better, the change of the iron mineralogy

  10. Irresolvable complex mixture of hydrocarbons in soybean oil deodorizer distillate.

    PubMed

    Ju, Yi-Hsu; Huynh, Lien-Huong; Gunawan, Setiyo; Chern, Yaw-Terng; Kasim, Novy S

    2012-01-01

    Aliphatic hydrocarbons (HCs) can be used as a fingerprint of a given seed oil. Only by characterization of aliphatic HCs could contamination by mineral oil in that seed oil be confirmed. During the isolation of squalene from soybean oil deodorizer distillate, a significant amount of unknown HCs, ca. 44 wt%, was obtained. These seemingly-easy-to-identify HCs turned out to be much more difficult to elucidate due to the presence of an irresolvable complex mixture (ICM). The objective of this study was to purify and identify the unknown ICM of aliphatic HCs from soybean oil deodorizer distillate. Purification of the ICM was successfully achieved by using modified Soxhlet extraction, followed by modified preparative column chromatography, and finally by classical preparative column chromatography. FT-IR, TLC, elemental analysis, GC/FID, NMR and GC-MS analyses were then performed on the purified HCs. The GC chromatogram detected the presence of ICM peaks comprising two major peaks and a number of minor peaks. Validation methods such as IR and NMR justified that the unknowns are saturated HCs. This work succeeded in tentatively identifying the two major peaks in the ICM as cycloalkane derivatives. PMID:22162261

  11. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation

    NASA Astrophysics Data System (ADS)

    Wu, Lin Mei; Zhou, Chun Hui; Keeling, John; Tong, Dong Shen; Yu, Wei Hua

    2012-12-01

    This article reviews progress in the understanding of the role of clay minerals in crude oil formation, migration and accumulation. Clay minerals are involved in the formation of kerogen, catalytic cracking of kerogen into petroleum hydrocarbon, the migration of crude oil, and the continued change to hydrocarbon composition in underground petroleum reservoirs. In kerogen formation, clay minerals act as catalysts and sorbents to immobilize organic matter through ligand exchange, hydrophobic interactions and cation bridges by the mechanisms of Maillard reactions, polyphenol theory, selective preservation and sorptive protection. Clay minerals also serve as catalysts in acid-catalyzed cracking of kerogen into petroleum hydrocarbon through Lewis and Brønsted acid sites on the clay surface. The amount and type of clay mineral affect the composition of the petroleum. Brønsted acidity of clay minerals is affected by the presence and state of interlayer water, and displacement of this water is a probable driver in crude oil migration from source rocks. During crude oil migration and accumulation in reservoirs, the composition of petroleum is continually modified by interaction with clay minerals. The clays continue to function as sorbents and catalysts even while they are being transformed by diagenetic processes. The detail of chemical interactions and reaction mechanisms between clay minerals and crude oil formation remains to be fully explained but promises to provide insights with broader application, including catalytic conversion of biomass as a source of sustainable energy into the future.

  12. Process for solvent deasphalting of residual hydrocarbon oils

    SciTech Connect

    Auboir, P.; Bonnefond, P.; Mank, L.

    1983-07-26

    An asphaltene-containing residual hydrocarbon oil is deasphalted by means of a light hydrocarbon solvent. Heating of the resultant asphaltic phase for solvent removal is effected by heat exchange with the deasphalted oil previously subjected to sufficient heating in a furnace heated by flame. Fouling of the plant is thus avoided.

  13. Hydrocarbon crystallization of life (conception of mineral organismobiosis)

    NASA Astrophysics Data System (ADS)

    Yushkin, N.

    Mineral world coexists in nature with the structurally ordered hydrocarbons. In spite of the fact that study of supermolecular ordering in solid hydrocarbons is at its dawn, nonbiogenic hydrocarbon organism-like forms have been found in many earthly and space objects. One prominent example is fibrous kerite crystals from crystallisation voids in pegmatites. Kerite crystals show fibrous and cylindrical habits, often with spheres at the ends and an internal axial channel. Spiral-like individuals twisted in one direction (left or right; chiral selection is carried out according to the epitaxial mechanism). The elemental composition of fibrous kerite crystals is almost identical to that of protein. They contain all chemical elements and all elements-catalysts. Heating the crystals in the range from twenty to six hundred Celsius resulted in release of a variety of hydrocarbon gases to the inner channels and environment. The crystals are distinguished by anomalously high contents of all "protein" amino acids, which are synthesized from abiogenic components during crystallisation. Protein self-assembly and evolution of some organismic functions described as biological ones are possible. We relied on fibrous kerite crystals to develop a model of a protobiological organism, genetic predecessor of biological life forms and to propose a concept of hydrocarbon crystallisation of life. That is structural-functional development of ordered molecular systems as protoorganisms that possess structural and functional elements of a protocell, a protogen, contain structural components of a protoprotein in the biological organisms. Life originated and evolved as a single whole, an integral sequence of crystallisation processes occurring in complex hydrocarbon systems, not as a result of random events and combination of genetically different components. Both minerals and organisms evolve governed by common ontogenetic laws.

  14. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  15. [Mineral oil drinking water pollution accident in Slavonski Brod, Croatia].

    PubMed

    Medverec Knežević, Zvonimira; Nadih, Martina; Josipović, Renata; Grgić, Ivanka; Cvitković, Ante

    2011-12-01

    On 21 September 2008, heavy oil penetrated the drinking water supply in Slavonski Brod, Croatia. The accident was caused by the damage of heat exchange units in hot water supply. The system was polluted until the beginning of November, when the pipeline was treated with BIS O 2700 detergent and rinsed with water. Meanwhile, water samples were taken for chemical analysis using spectrometric and titrimetric methods and for microbiological analysis using membrane filtration and total plate count. Mineral oils were determined with infrared spectroscopy. Of the 192 samples taken for mineral oil analysis, 55 were above the maximally allowed concentration (MAC). Five samples were taken for polycyclic aromatic hydrocarbon (PAH), benzene, toluene, ethylbenzene, and xylene analysis (BTEX), but none was above MAC. Epidemiologists conducted a survey about health symptoms among the residents affected by the accident. Thirty-six complained of symptoms such as diarrhoea, stomach cramps, vomiting, rash, eye burning, chills, and gastric disorders.This is the first reported case of drinking water pollution with mineral oil in Slavonski Brod and the accident has raised a number of issues, starting from poor water supply maintenance to glitches in the management of emergencies such as this.

  16. Characterizing hydrocarbon sulfonates and utilization of hydrocarbon sulfonates in oil recovery

    SciTech Connect

    Glinsmann, G.R.; Hedges, J.H.

    1982-05-18

    A method for determining the average equivalent weight of hydrocarbon sulfonates and the optimal salinity and unique salinity of surfactant systems containing such hydrocarbon sulfonates is based on the discovery that the average equivalent weights of hydrocarbon sulfonates vary inversely and linearly as the optimal salinities and unique salinities of surfactant systems containing such hydrocarbon sulfonates vary. Methods of preparing surfactant systems for the displacement of oil from subterranean reservoirs and for the displacement of oil from subterranean reservoirs, based on the above-mentioned relationships, are also disclosed.

  17. 21 CFR 178.3620 - Mineral oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... in 40 CFR 180.34(f); unshelled and shelled nuts (including peanuts); and dry animal feed. The....3 300 to 329 2.3 330 to 350 0.8 Technical white mineral oil containing antioxidants shall meet the specified ultraviolet absorbance limits after correction for any absorbance due to the antioxidants....

  18. [Isolation of hydrocarbon-oxidizing psychrophilic bacteria from oil-polluted soils].

    PubMed

    Khomiakova, D V; Botvinko, I V; Netrusov, A I

    2003-01-01

    Microorganisms growing on a mineral medium with crude oil and its light fractions as only carbon and energy sources have been isolated from samples of oil-polluted soils collected in the Usa District (Komi Republic, Russia). For the first time, hydrocarbon-oxidizing psychrophilic bacteria of the genus Cytophaga have been found that are clearly capable of consuming crude oil hydrocarbons. A method for cultivating microorganisms on porous plastic is proposed. The data from the literature on the response of soil microbiota to oil pollution indicate that the pollution can activate or suppress the growth of various physiological groups of microorganisms [1]. Different soil and climatic conditions and pollution levels can give rise to different microbial cenoses, which include different associations and predominant microbial species.

  19. Control methods for mineral oil mists.

    PubMed

    Leith, David; Volckens, John; Boundy, Maryanne G; Hands, David

    2003-11-01

    Effective mist collection is important, but it is not the only determinant of mist concentration in plant air. Oil-based metalworking fluids such as straight and soluble oils contain semivolatile hydrocarbons. When these fluids form a mist, their semivolatile components partition between the vapor and mist phases depending on the makeup of the mist and on local conditions. This article addresses the relationship between the concentrations of semivolatile hydrocarbons in the vapor and mist phases using theory for partitioning developed in the field of atmospheric chemistry. Mist can be removed effectively in a collector that uses a HEPA filter as its final collection stage. Acceptable HEPA lifetime requires effective upstream stages that reduce mist loading to the HEPA; furthermore, acceptable HEPA performance requires that it be installed and maintained properly. Collectors designed to remove mist do not remove vapor, and as collector exhaust mixes into cooler plant air that already contains some mist, vapor from the collector can repartition to increase the mist concentration in the plant. Assessing the effect of vapor-to-mist repartitioning is complicated; however, repartitioning may be important for many of the compounds contained in oil-based metalworking fluids. Conditions that minimize vapor-to-mist repartitioning, such as ventilating the plant with clean outdoor air, increasing plant temperature, or controlling the release of vapor, may also be expensive, uncomfortable to plant occupants, or impractical from an engineering standpoint. As a result, very low mist concentrations in plant air may be difficult to attain. PMID:14555441

  20. Nitrogen isotope geochemistry of organic matter and minerals during diagenesis and hydrocarbon migration

    NASA Astrophysics Data System (ADS)

    Williams, Lynda B.; Ferrell, Ray E., Jr.; Hutcheon, Ian; Bakel, Allen J.; Walsh, Maud M.; Krouse, H. Roy

    1995-02-01

    The magnitude of isotopic variations between organic and inorganic nitrogen was examined in samples from three stacked hydrocarbon reservoirs in the Fordoche Field (Louisiana Gulf Coast Basin, USA). Measurements were made of δ 15N in kerogen, bitumen, oil, formation water, and fixed-NH 4 extracted from mudstones, nonproductive sandstones, and productive sandstones. Nitrogen isotope fractionation occurs because 14N is released preferentially to 15N from organic molecules during thermal maturation. Released 14N goes into solution, or may be adsorbed by minerals, leaving crude oil enriched in 15N. Diagenetic clay minerals (e.g., illite) commonly form in the temperature range of hydrocarbon generation, and NH 4+ may be fixed in clay interlayers with an isotopic ratio similar to that of the migrating fluids. Results indicate that the influence of organic matter on mineral δ 15N depends on the timing of authigenic mineral formation relative to fluid migration. The average δ 15N of kerogen (3.2 ± 0.3‰) and fixed-NH 4 from mudstones (3.0 ± 1.4) is similar, while bitumen increases from +3.5 to +5.1‰ with depth. In deep reservoir sandstones (>100°C), the δ 15N of crude oil averages +5.2 ± 0.4‰, similar to the δ 15N of bitumen in the proposed source rocks. Formation waters are 14N-enriched with an average δ 15N of -2.2 ± 2.6‰. Fixed-NH 4 δ 15N values lie between that of the oil and water. The average δ 15N of fixed-NH 4 is 3.0 ± 1.2‰ in productive sandstones, and 0.2 ± 2.4‰ innonproductive sandstones. In the shallower reservoir sandstones (<90°C) fixed-NH 4 is apparently not influenced by the presently associated fluids. Productive and nonproductive sandstones have distinctly low average δ 15N values (-1.2 ± 0.8‰), yet crude oil (+11.1 ± 0.3‰) and water (+3.8 ± 0.1‰) have been 15N-enriched by ˜6‰ relative to the deeper reservoirs. This suggests that the present fluids migrated into the reservoir after authigenic illite had formed

  1. Preservation of hydrocarbons and biomarkers in oil trapped inside fluid inclusions for >2 billion years

    NASA Astrophysics Data System (ADS)

    George, Simon C.; Volk, Herbert; Dutkiewicz, Adriana; Ridley, John; Buick, Roger

    2008-02-01

    Oil-bearing fluid inclusions occur in a ca. 2.45 Ga fluvial metaconglomerate of the Matinenda Formation at Elliot Lake, Canada. The oil, most likely derived from the conformably overlying deltaic McKim Formation, was trapped in quartz and feldspar during diagenesis and early metamorphism of the host rock, probably before ca. 2.2 Ga. Molecular geochemical analyses of the oil reveal a wide range of compounds, including CH 4, CO 2, n-alkanes, isoprenoids, monomethylalkanes, aromatic hydrocarbons, low molecular weight cyclic hydrocarbons, and trace amounts of complex multi-ring biomarkers. Maturity ratios show that the oil was generated in the oil window, with no evidence of extensive thermal cracking. This is remarkable, given that the oils were exposed to upper prehnite-pumpellyite facies metamorphism (280-350 °C) either during migration or after entrapment. The fluid inclusions are closed systems, with high fluid pressures, and contain no clays or other minerals or metals that might catalyse oil-to-gas cracking. These three attributes may all contribute to the thermal stability of the included oil and enable survival of biomarkers and molecular ratios over billions of years. The biomarker geochemistry of the oil in the Matinenda Formation fluid inclusions enables inferences about the organisms that contributed to the organic matter deposited in the Palaeoproterozoic source rocks from which the analysed oil was generated and expelled. The presence of biomarkers produced by cyanobacteria and eukaryotes that are derived from and trapped in rocks deposited before ca. 2.2 Ga is consistent with an earlier evolution of oxygenic photosynthesis and suggests that some aquatic settings had become sufficiently oxygenated for sterol biosynthesis by this time. The extraction of biomarker molecules from Palaeoproterozoic oil-bearing fluid inclusions thus establishes a new method, using low detection limits and system blank levels, to trace evolution through Earth's early history

  2. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill.

    PubMed

    Lindstrom, J E; Prince, R C; Clark, J C; Grossman, M J; Yeager, T R; Braddock, J F; Brown, E J

    1991-09-01

    The effort of clean up the T/V Exxon Valdez oil spill in Prince William Sound, Alaska, included the use of fertilizers to accelerate natural microbial degradation of stranded oil. A program to monitor various environmental parameters associated with this technique took place during the summer of 1990. Microbiological assays for numbers of heterotrophic and oil-degrading microbes and their hydrocarbon mineralization potentials were performed in support of this program. Fertilizer addition resulted in higher hexadecane and phenanthrene mineralization potentials on treated plots than on untreated reference plots. Microbial numbers in treated and reference surface sediments were not significantly different immediately after the first nutrient application in May 1990. However, subsurface sediments from treated plots had higher numbers of hydrocarbon degraders than did reference sediments shortly after treatment. The second application of fertilizer, later in summer, resulted in surface and subsurface increases in numbers of hydrocarbon degraders with respect to reference sediments at two of the three study sites. Elevated mineralization potentials, coupled with increased numbers of hydrocarbon degraders, indicated that natural hydrocarbon biodegradation was enhanced. However, these microbiological measurements alone are not sufficient to determine in situ rates of crude oil biodegradation. PMID:1662935

  3. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill

    SciTech Connect

    Lindstrom, J.E.; Yeager, T.R.; Braddock, J.F.; Brown, E.J. ); Prince, R.C.; Grossman, M.J. ); Clark, J.C. )

    1991-09-01

    The effort to clean up the T/V Exxon Valdez oil spill in Prince William Sound, Alaska, included the use of fertilizers to accelerate natural microbial degradation of stranded oil. A program to monitor various environmental parameter associated with this technique took place during the summer of 1990. Microbiological assays for numbers of heterotrophic and oil-degrading microbes and their hydrocarbon mineralization potentials were performed in support of this program. Fertilizer addition resulted in higher hexadecane and phenanthrene mineralization potentials on treated plots than on untreated reference plots. Microbial numbers in treated and reference surface sediments were not significantly different immediately after the first nutrient application in May 1990. However, subsurface sediments different immediately after the first nutrient application in May 1990. However, subsurface sediments from treated plots had higher numbers of hydrocarbon degraders than did reference sediments shortly after treatment. The second application of fertilizer, later in summer, resulted in surface and subsurface increases in numbers of hydrocarbon degraders with respect to reference sediments at two of three study sites. Elevated mineralization potentials, coupled with increased numbers of hydrocarbon degraders, indicated that natural hydrocarbon biodegradation was enhanced. However, these microbiological measurements alone are not sufficient to determine in situ rates of crude oil biodegradation.

  4. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill.

    PubMed

    Lindstrom, J E; Prince, R C; Clark, J C; Grossman, M J; Yeager, T R; Braddock, J F; Brown, E J

    1991-09-01

    The effort of clean up the T/V Exxon Valdez oil spill in Prince William Sound, Alaska, included the use of fertilizers to accelerate natural microbial degradation of stranded oil. A program to monitor various environmental parameters associated with this technique took place during the summer of 1990. Microbiological assays for numbers of heterotrophic and oil-degrading microbes and their hydrocarbon mineralization potentials were performed in support of this program. Fertilizer addition resulted in higher hexadecane and phenanthrene mineralization potentials on treated plots than on untreated reference plots. Microbial numbers in treated and reference surface sediments were not significantly different immediately after the first nutrient application in May 1990. However, subsurface sediments from treated plots had higher numbers of hydrocarbon degraders than did reference sediments shortly after treatment. The second application of fertilizer, later in summer, resulted in surface and subsurface increases in numbers of hydrocarbon degraders with respect to reference sediments at two of the three study sites. Elevated mineralization potentials, coupled with increased numbers of hydrocarbon degraders, indicated that natural hydrocarbon biodegradation was enhanced. However, these microbiological measurements alone are not sufficient to determine in situ rates of crude oil biodegradation.

  5. Effects of oil and dispersant on formation of marine oil snow and transport of oil hydrocarbons.

    PubMed

    Fu, Jie; Gong, Yanyan; Zhao, Xiao; O'Reilly, S E; Zhao, Dongye

    2014-12-16

    This work explored the formation mechanism of marine oil snow (MOS) and the associated transport of oil hydrocarbons in the presence of a stereotype oil dispersant, Corexit EC9500A. Roller table experiments were carried out to simulate natural marine processes that lead to formation of marine snow. We found that both oil and the dispersant greatly promoted the formation of MOS, and MOS flocs as large as 1.6-2.1 mm (mean diameter) were developed within 3-6 days. Natural suspended solids and indigenous microorganisms play critical roles in the MOS formation. The addition of oil and the dispersant greatly enhanced the bacterial growth and extracellular polymeric substance (EPS) content, resulting in increased flocculation and formation of MOS. The dispersant not only enhanced dissolution of n-alkanes (C9-C40) from oil slicks into the aqueous phase, but facilitated sorption of more oil components onto MOS. The incorporation of oil droplets in MOS resulted in a two-way (rising and sinking) transport of the MOS particles. More lower-molecular-weight (LMW) n-alkanes (C9-C18) were partitioned in MOS than in the aqueous phase in the presence of the dispersant. The information can aid in our understanding of dispersant effects on MOS formation and oil transport following an oil spill event. PMID:25420231

  6. Effects of oil and dispersant on formation of marine oil snow and transport of oil hydrocarbons.

    PubMed

    Fu, Jie; Gong, Yanyan; Zhao, Xiao; O'Reilly, S E; Zhao, Dongye

    2014-12-16

    This work explored the formation mechanism of marine oil snow (MOS) and the associated transport of oil hydrocarbons in the presence of a stereotype oil dispersant, Corexit EC9500A. Roller table experiments were carried out to simulate natural marine processes that lead to formation of marine snow. We found that both oil and the dispersant greatly promoted the formation of MOS, and MOS flocs as large as 1.6-2.1 mm (mean diameter) were developed within 3-6 days. Natural suspended solids and indigenous microorganisms play critical roles in the MOS formation. The addition of oil and the dispersant greatly enhanced the bacterial growth and extracellular polymeric substance (EPS) content, resulting in increased flocculation and formation of MOS. The dispersant not only enhanced dissolution of n-alkanes (C9-C40) from oil slicks into the aqueous phase, but facilitated sorption of more oil components onto MOS. The incorporation of oil droplets in MOS resulted in a two-way (rising and sinking) transport of the MOS particles. More lower-molecular-weight (LMW) n-alkanes (C9-C18) were partitioned in MOS than in the aqueous phase in the presence of the dispersant. The information can aid in our understanding of dispersant effects on MOS formation and oil transport following an oil spill event.

  7. Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity.

    PubMed

    Lee, Sang-Hwan; Oh, Bang-Il; Kim, Jeong-gyu

    2008-05-01

    To examine the effects of amendments on the degradation of heavy mineral oil, we conducted a pilot-scale experiment in the field for 105 days. During the experiment, soil samples were collected and analyzed periodically to determine the amount of residual hydrocarbons and evaluate the effects of the amendments on microbial activity. After 105 days, the initial level of contamination (7490+/-480 mg hydrocarbon kg(-1) soil) was reduced by 18-40% in amended soils, whereas it was only reduced by 9% in nonamended soil. Heavy mineral oil degradation was much faster and more complete in compost-amended soil than in hay-, sawdust-, and mineral nutrient-amended soils. The enhanced degradation of heavy mineral oil in compost-amended soil may be a result of the significantly higher microbial activity in this soil. Among the studied microbial parameters, soil dehydrogenase, lipase, and urease activities were strongly and negatively correlated with heavy mineral oil biodegradation (P<0.01) in compost-amended soil.

  8. Mineralization of a Malaysian crude oil by Pseudomonas sp. and Achromabacter sp. isolated from coastal waters

    SciTech Connect

    Ahmad, J.; Ahmad, M.F.

    1995-12-31

    Regarded as being a potentially effective tool to combat oil pollution, bioremediation involves mineralization, i.e., the conversion of complex hydrocarbons into harmless CO{sub 2} and water by action of microorganisms. Therefore, in achieving optimum effectiveness from the application of these products on crude oil in local environments, the capability of the bacteria to mineralize hydrocarbons was evaluated. The microbial laboratory testing of mineralization on local oil degraders involved, first, isolation of bacteria found at a port located on the west coast of Peninsular Malaysia. Subsequently, these bacteria were identified by means of Biomereux`s API 20E and 20 NE systems and later screened by their growth on a Malaysian crude oil. Selected strains of Pseudomonas sp. and Achromabacter sp. were then exposed individually to a similar crude oil in a mineralization unit and monitored for 16 days for release of CO{sub 2}. Pseudomonas paucimobilis was found to produce more CO{sub 2} than Achromobacter sp. When tested under similar conditions, mixed populations of these two taxa produced more CO{sub 2} than that produced by any individual strain. Effective bioremediation of local crude in Malaysian waters can therefore be achieved from biochemically developed Pseudomonas sp. strains.

  9. Microbial degradation of crude oil and some model hydrocarbons

    USGS Publications Warehouse

    Chang, Fu-Hsian; Noben, N.N.; Brand, Danny; Hult, Marc F.

    1988-01-01

    Research on microbial degradation of crude oil in the shallow subsurface at a spill site near Bemidji, Minn. (fig. C-l), began in 1983 (Hull, 1984; Chang and Ehrlich, 1984). The rate and extent of crude oil and model hydrocarbon biodegradation by the indigenous microbial community was measured in the laboratory at several concentrations of inorganic nutrients, conditions of oxygen availability, incubation temperatures, and incubation time.

  10. Removing haze from hydrocarbon oil mixture boiling in the lubricating oil range

    SciTech Connect

    Ryan, D.G.; Ackerman, S.

    1987-10-27

    A method of removing wax and ice crystals from a hydrocarbon oil mixture boiling in the lubricating oil range is described, wherein at least one individual collector element consists solely of one material. The material is selected from the group consisting of hydrocarbonaceous material and water in the solid state but being distinct from the wax and ice crystals in the hydrocarbon oil mixture. It is positioned in a separation region in a separator vessel. Free charge, which is net unipolar, is introduced into the hydrocarbon oil mixture in such manner as to cause the hydrocarbon oil mixture to act as a medium through which volumetric distribution of the introduced charge takes place by free movement of charge through the hydrocarbon oil mixture, and the charged hydrocarbon oil mixture is passed into the separation region and into contact with at least one collector element. There is a sufficient excess of free charge introduced such that the volumetric charge distribution causes wax and ice crystals to be driven to and deposited on at least one collector element.

  11. Physical and chemical properties of industrial mineral oils affecting lubrication

    SciTech Connect

    Godfrey, D.; Herguth, W.R.

    1996-02-01

    The lubricating properties of mineral oils, and contaminants which affect those properties, are discussed. A contaminant is any material not in the original fresh oil, whether it is generated within the system or ingested. 5 refs.

  12. Loss of volatile hydrocarbons from an LNAPL oil source

    NASA Astrophysics Data System (ADS)

    Baedecker, Mary Jo; Eganhouse, Robert P.; Bekins, Barbara A.; Delin, Geoffrey N.

    2011-11-01

    The light nonaqueous phase liquid (LNAPL) oil pool in an aquifer that resulted from a pipeline spill near Bemidji, Minnesota, was analyzed for volatile hydrocarbons (VHCs) to determine if the composition of the oil remains constant over time. Oil samples were obtained from wells at five locations in the oil pool in an anaerobic part of the glacial outwash aquifer. Samples covering a 21-year period were analyzed for 25 VHCs. Compared to the composition of oil from the pipeline source, VHCs identified in oil from wells sampled in 2008 were 13 to 64% depleted. The magnitude of loss for the VHCs analyzed was toluene ≫ o-xylene, benzene, C 6 and C 10-12n-alkanes > C 7-C 9n-alkanes > m-xylene, cyclohexane, and 1- and 2-methylnaphthalene > 1,2,4-trimethylbenzene and ethylbenzene. Other VHCs including p-xylene, 1,3,5- and 1,2,3-trimethylbenzenes, the tetramethylbenzenes, methyl- and ethyl-cyclohexane, and naphthalene were not depleted during the time of the study. Water-oil and air-water batch equilibration simulations indicate that volatilization and biodegradation is most important for the C 6-C 9n-alkanes and cyclohexanes; dissolution and biodegradation is important for most of the other hydrocarbons. Depletion of the hydrocarbons in the oil pool is controlled by: the lack of oxygen and nutrients, differing rates of recharge, and the spatial distribution of oil in the aquifer. The mass loss of these VHCs in the 5 wells is between 1.6 and 7.4% in 29 years or an average annual loss of 0.06-0.26%/year. The present study shows that the composition of LNAPL changes over time and that these changes are spatially variable. This highlights the importance of characterizing the temporal and spatial variabilities of the source term in solute-transport models.

  13. Loss of volatile hydrocarbons from an LNAPL oil source.

    PubMed

    Baedecker, Mary Jo; Eganhouse, Robert P; Bekins, Barbara A; Delin, Geoffrey N

    2011-11-01

    The light nonaqueous phase liquid (LNAPL) oil pool in an aquifer that resulted from a pipeline spill near Bemidji, Minnesota, was analyzed for volatile hydrocarbons (VHCs) to determine if the composition of the oil remains constant over time. Oil samples were obtained from wells at five locations in the oil pool in an anaerobic part of the glacial outwash aquifer. Samples covering a 21-year period were analyzed for 25 VHCs. Compared to the composition of oil from the pipeline source, VHCs identified in oil from wells sampled in 2008 were 13 to 64% depleted. The magnitude of loss for the VHCs analyzed was toluene≫o-xylene, benzene, C(6) and C(10-12)n-alkanes>C(7)-C(9)n-alkanes>m-xylene, cyclohexane, and 1- and 2-methylnaphthalene>1,2,4-trimethylbenzene and ethylbenzene. Other VHCs including p-xylene, 1,3,5- and 1,2,3-trimethylbenzenes, the tetramethylbenzenes, methyl- and ethyl-cyclohexane, and naphthalene were not depleted during the time of the study. Water-oil and air-water batch equilibration simulations indicate that volatilization and biodegradation is most important for the C(6)-C(9)n-alkanes and cyclohexanes; dissolution and biodegradation is important for most of the other hydrocarbons. Depletion of the hydrocarbons in the oil pool is controlled by: the lack of oxygen and nutrients, differing rates of recharge, and the spatial distribution of oil in the aquifer. The mass loss of these VHCs in the 5 wells is between 1.6 and 7.4% in 29years or an average annual loss of 0.06-0.26%/year. The present study shows that the composition of LNAPL changes over time and that these changes are spatially variable. This highlights the importance of characterizing the temporal and spatial variabilities of the source term in solute-transport models.

  14. Loss of volatile hydrocarbons from an LNAPL oil source

    USGS Publications Warehouse

    Baedecker, M.J.; Eganhouse, R.P.; Bekins, B.A.; Delin, G.N.

    2011-01-01

    The light nonaqueous phase liquid (LNAPL) oil pool in an aquifer that resulted from a pipeline spill near Bemidji, Minnesota, was analyzed for volatile hydrocarbons (VHCs) to determine if the composition of the oil remains constant over time. Oil samples were obtained from wells at five locations in the oil pool in an anaerobic part of the glacial outwash aquifer. Samples covering a 21-year period were analyzed for 25 VHCs. Compared to the composition of oil from the pipeline source, VHCs identified in oil from wells sampled in 2008 were 13 to 64% depleted. The magnitude of loss for the VHCs analyzed was toluene ≫ o-xylene, benzene, C6 and C10–12n-alkanes > C7–C9n-alkanes > m-xylene, cyclohexane, and 1- and 2-methylnaphthalene > 1,2,4-trimethylbenzene and ethylbenzene. Other VHCs including p-xylene, 1,3,5- and 1,2,3-trimethylbenzenes, the tetramethylbenzenes, methyl- and ethyl-cyclohexane, and naphthalene were not depleted during the time of the study. Water–oil and air–water batch equilibration simulations indicate that volatilization and biodegradation is most important for the C6–C9n-alkanes and cyclohexanes; dissolution and biodegradation is important for most of the other hydrocarbons. Depletion of the hydrocarbons in the oil pool is controlled by: the lack of oxygen and nutrients, differing rates of recharge, and the spatial distribution of oil in the aquifer. The mass loss of these VHCs in the 5 wells is between 1.6 and 7.4% in 29 years or an average annual loss of 0.06–0.26%/year. The present study shows that the composition of LNAPL changes over time and that these changes are spatially variable. This highlights the importance of characterizing the temporal and spatial variabilities of the source term in solute-transport models.

  15. Sedimentation Of Oil-MIneral Aggregates For Remediation Of Vegetable Oil Spills

    EPA Science Inventory

    A response alternative for floating vegetable oil spills based on sedimentation of negatively buoyant oil-mineral aggregrates followed by anaerobic biodegradation in the sediments is under investigation. Sedimentation of floating canola oil by interaction with montmorillonite wa...

  16. The quantum matrix and information from the hydrocarbon oil molecule

    NASA Astrophysics Data System (ADS)

    Seyful-Mulyukov, R. B.

    2016-03-01

    The quantum matrix of the hydrocarbon (HC) molecule is substantiated. On the basis of its properties and behavior, the genesis of oil is explained as a process of self-evolution of oil and preservation of molecules of different composition and generation time. Individual HC molecules are generated in nanoseconds, and the period of the genesis of oil is comparable with that of migration of the HC fluid from the mantle to the deposit. A model of subatomic abiogenic genesis of oil is presented. Hydrocarbon (HC) molecules of various structure and composition are formed due to interaction of the valency electron orbitals of C and H atoms, the elemental particles of which are quantum objects and carriers of information. On the basis of this, the term quantum matrix of the HC molecule, the properties and behavior of which explain the genesis of oil as a process of its self-evolution and preservation of the molecules of various composition and the period of generation of oil, is substantiated. It is proved that individual HC molecules are generated within nanoseconds and the period of origin of the entire assemblage of more than 500 molecules of oil of various types is comparable with the period of migration of the HC fluid from the mantle to the deposit.

  17. Granulomas in the livers of humans and Fischer rats associated with the ingestion of mineral hydrocarbons: a comparison.

    PubMed

    Fleming, K A; Zimmerman, H; Shubik, P

    1998-02-01

    Ninety-day feeding studies were conducted in Fischer 344 rats using a series of highly refined mineral hydrocarbons which included mineral oils and waxes representative of those used in consumer products and food applications. The series included materials which had been refined by oleum or hydrogenation. The materials tested were representative of the range of carbon chain lengths, molecular weights, and viscosities which are currently in use. Findings revealed the presence of granulomatous lesions in the liver and histiocytosis in the lymph nodes. Some mineral hydrocarbons did not induce any lesions; others induced relatively minor effects; and a low melting point wax induced the largest lesions in both liver and mesenteric lymph nodes, with inflammation and areas of focal necrosis in the livers. The majority of lesions reported were associated with the highest dose levels used. These studies are in contrast to studies in Sprague-Dawley rats in which comparable doses did not induce similar lesions, indicating marked strain variability. Lipogranulomas associated with the ingestion of mineral oil have been reported in humans. The comparative morphology of the lesions seen in the Fischer rat study and those observed in the human are discussed and differences are highlighted. The lesions in the human are not believed to progress to lesions of clinical significance. The pathogenesis of the lesions induced in Fischer rats and in humans is discussed and it is concluded that the majority, if not all of the lesions, in the rats are of no significance for humans. The possibility that a small proportion of cases of granulomatous hepatitis in humans may represent an atypical response to mineral hydrocarbons may need further investigation.

  18. My education in mineral (especially oil) economics

    SciTech Connect

    Adelman, M.A.

    1997-12-31

    The crude oil and natural gas markets have a long colorful history. To understand them, one needs some economic theory. The dominant view, of a fixed mineral stock, implies that a unit produced today means one less in the future. As mankind approaches the limit, it must exert ever more effort per unit recovered. This concept is false, whether stated as common sense or as elegant theory. Under competition, the price results from endless struggle between depletion and increasing knowledge. But sellers may try to control the market in order to offer less and charge more. The political results may feed back upon market behavior. These factors--depletion, knowledge, monopoly, and politics--must be analyzed separately before being put together to capture a slice of a changing history. 68 refs., 1 fig., 1 tab.

  19. Hydrocarbon- and ore-bearing basinal fluids: a possible link between gold mineralization and hydrocarbon accumulation in the Youjiang basin, South China

    NASA Astrophysics Data System (ADS)

    Gu, X. X.; Zhang, Y. M.; Li, B. H.; Dong, S. Y.; Xue, C. J.; Fu, S. H.

    2012-08-01

    The Youjiang basin, which flanks the southwest edge of the Yangtze craton in South China, contains many Carlin-type gold deposits and abundant paleo-oil reservoirs. The gold deposits and paleo-oil reservoirs are restricted to the same tectonic units, commonly at the basinal margins and within the intrabasinal isolated platforms and/or bioherms. The gold deposits are hosted by Permian to Triassic carbonate and siliciclastic rocks that typically contain high contents of organic carbon. Paragenetic relationships indicate that most of the deposits exhibit an early stage of barren quartz ± pyrite (stage I), a main stage of auriferous quartz + arsenian pyrite + arsenopyrite + marcasite (stage II), and a late stage of quartz + calcite + realgar ± orpiment ± native arsenic ± stibnite ± cinnabar ± dolomite (stage III). Bitumen in the gold deposits is commonly present as a migrated hydrocarbon product in mineralized host rocks, particularly close to high grade ores, but is absent in barren sedimentary rocks. Bitumen dispersed in the mineralized rocks is closely associated and/or intergrown with the main stage jasperoidal quartz, arsenian pyrite, and arsenopyrite. Bitumen occurring in hydrothermal veins and veinlets is paragenetically associated with stages II and III mineral assemblages. These observations suggest an intimate relationship between bitumen precipitation and gold mineralization. In the paleo-petroleum reservoirs that typically occur in Permian reef limestones, bitumen is most commonly observed in open spaces, either alone or associated with calcite. Where bitumen occurs with calcite, it is typically concentrated along pore/vein centers as well as along the wall of pores and fractures, indicating approximately coeval precipitation. In the gold deposits, aqueous fluid inclusions are dominant in the early stage barren quartz veins (stage I), with a homogenization temperature range typically of 230°C to 270°C and a salinity range of 2.6 to 7.2 wt% NaCl eq

  20. The usage, occurrence and dietary intakes of white mineral oils and waxes in Europe.

    PubMed

    Tennant, D R

    2004-03-01

    Dietary exposures to mineral hydrocarbons were estimated from information about patterns of usage, concentrations in foods and quantities of foods consumed. An industry survey showed that the largest usage of food-grade white mineral oils was in plastics manufacture although the majority are used in non-food applications. The largest volumes of wax usage were in packaging. Conservative estimates indicated that daily intakes of white mineral oils ranged from 0.39 to 0.91 mg/kg bw/day for adults and from 0.75 to 1.77 mg/kg bw/day for children (mean and 97.5th percentiles). Total wax intakes ranged from 0.08 to 0.19 mg/kg bw/day for adults and 0.23 to 0.64 mg/kg bw/day for pre-school children. When usage factors were applied, estimates of chronic intakes of white oils were reduced to 0.09-0.20 mg/kg bw/day for adults and to 0.17-0.39 mg/kg bw/day for children. Total wax intakes were reduced to 0.01-0.02 mg/kg bw/day for adults and to 0.02-0.06 mg/kg bw/day for children. For white mineral oils the principal source of exposure for most consumers was imported de-dusted grain. The principal source of potential wax exposure was from glazing agents on confectionery. There was no evidence of intakes exceeding SCF ADIs for microcrystalline waxes or certain white mineral oils and levels of exposure were similar to those of naturally-occurring mineral hydrocarbons in foods.

  1. An evaluation of petrogenic hydrocarbons in northern Gulf of Alaska continental shelf sediments - The role of coastal oil seep inputs

    USGS Publications Warehouse

    Short, J.W.; Kolak, J.J.; Payne, J.R.; Van Kooten, G. K.

    2007-01-01

    We compared hydrocarbons in water, suspended particulate matter (SPM), and riparian sediment collected from coastal watersheds along the Yakataga foreland with corresponding hydrocarbons in Gulf of Alaska benthic sediments. This comparison allows an evaluation of hydrocarbon contributions to marine sediments from natural oil seeps, coal and organic matter (e.g., kerogen) associated with eroding siliciclastic rocks. The samples from oil seeps show extensive loss of low-molecular weight n-alkanes (hydrocarbon fingerprints on the SPM and riparian sediment samples collected upstream from the oil seeps. After entering the fluvial systems, hydrocarbons from seep oils are rapidly diluted, and associate with the SPM phase as oil-mineral-aggregates (OMA). Johnston Creek, the watershed containing the most prolific seep, conveys detectable seep-derived hydrocarbons to the Gulf of Alaska, but overall seep inputs are largely attenuated by the (non-seep) petrogenic hydrocarbon content of the high SPM loads. In contrast to the geochemical signature of seep oil, Gulf of Alaska benthic sediments are characterized by abundant alkylated naphthalene homologues, relatively smooth n-alkane envelopes (n-C9 through n-C34, but with elevated levels of n-C27, n-C29, and n-C31), and small UCMs. Further, hydrocarbons in benthic sediments are highly intercorrelated. Taken together, these characteristics indicate that seep oil is a negligible petrogenic hydrocarbon source to the Gulf of Alaska continental shelf. Coaly material separated from the benthic sediment samples using a dense liquid (???2.00 g cm-3) also accounted for a minor portion of the total PAH (1-6%) and total n-alkanes (0.4-2%) in the benthic samples. Most of the hydrocarbon burden in the sediments is found in the denser sediment fraction and likely derives from organic matter contributed by denudation of siliciclastic formations in

  2. Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: some experimental constraints.

    PubMed

    Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity.

  3. Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: some experimental constraints.

    PubMed

    Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity. PMID:23864952

  4. Bioremediating Oil Spills in Nutrient Poor Ocean Waters Using Fertilized Clay Mineral Flakes: Some Experimental Constraints

    PubMed Central

    Warr, Laurence N.; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J.; Basirico, Laura M.; Olson, Gregory M.

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity. PMID:23864952

  5. Remote Sensing Detecting for Hydrocarbon Microseepage and Relationship with the Uranium Mineralization in Dongsheng Area, Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Liu, D.; Gao, Y.

    2005-12-01

    The Ordos Basin is located at the central area of northern China with an area of about 250,000 km2. It is well known "a basin of energy resources" of China for its large reserves of coal, oil and gas. A large-scale sandstone-type uranium metallogenic belt has been found recently in Zhiluo Formation of middle Jurassic in Dongsheng area in the northeastern part of the basin. The ore-forming mechanism remains unsolved so far. There is a hypothesis that the uranium precipitation was related to a hydrocarbon migration from the central basin. In order to explore the evidences of ever existed hydrocarbon microseepage and migration in this area, several indices such as the Iron Oxide Index, Ferrous Index, Clay Mineral Index, Mineral Composite Index, and Ferrous Transfer Percentage Index have been derived. Thorium Normalization of aeroradiometric data and fusion of aeroradiometric and TM data have been carried out as well. Therefore, the subaerial oxide and reduced area, uranium outmigrated and immigrated area, and ancient recharge and discharge of groundwater are thus delineated. As a result, two hydrocarbon microseepage belts in Dongsheng area have been extracted by combining the methods mentioned above. One is in the northern of Dongsheng along a nearly east-westward fault zone and the other one is in the southern of Dongsheng uranium mineralization belt along a nearly northwestward fault zone. The study suggests that the subaerial reduced area was related to hydrocarbon microseepage and the hydrocarbon migration along the fault and fracture zone or penetrable strata played an important role for uranium deposition in Zhiluo Formation near the northwestward fault zone.

  6. Hydrocarbon group analysis of Arabian crude oils TBP-fractions

    SciTech Connect

    Beg, S.A.; Mahmud, F.; AlHarbi, D.K. )

    1990-02-01

    The authors present experimental studies carried out on hydrocarbon group analysis of commercial Arabian crude oil fractions corresponding to the true boiling point ranges of 200-400{sup 0}F, 400-500{sup 0}F, 500-650{sup 0}F, 650-850{sup 0}F and 850{sup 0}F+. The crude oils included Arab heavy (API{sup 0} = 28.0), Arab medium (API{sup 0} = 30.0), Arab light (API{sup 0} = 33.3), and Arab Berry extra light (API{sup 0} = 36.9). Waters Hydrocarbon Group Analyzer (HGA) system interfaced with model 730 Data Module has been used to obtain the compositional analysis in terms of saturates, neutral aromatics, polar aromatics and asphaltenes.

  7. Solvent dewaxing waxy hydrocarbon oils using dewaxing aid

    SciTech Connect

    Komine, K.; Naito, T.; Ohashi, F.; Onodera, T.

    1982-02-16

    In a solvent dewaxing process wherein a waxy hydrocarbon oil is mixed with a dewaxing aid and dewaxing solvent and chilled to form a slurry comprising solid particles of wax and a mixture of dewaxed oil and solvent, the improvement which comprises using a polymeric dewaxing aid comprising a condensation product of naphthalene and chlorinated wax having an average molecular weight ranging from about 20,000 to 500,000 and a molecular weight distribution exceeding the range of from about 10,000 to 1 ,000,000.

  8. Production of valuable hydrocarbons by flash pyrolysis of oil shale

    DOEpatents

    Steinberg, M.; Fallon, P.T.

    1985-04-01

    A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

  9. Hydrocarbon emissions in the Bakken oil field in North Dakota

    NASA Astrophysics Data System (ADS)

    Mielke-Maday, I.; Petron, G.; Miller, B.; Frost, G. J.; Peischl, J.; Kort, E. A.; Smith, M. L.; Karion, A.; Dlugokencky, E. J.; Montzka, S. A.; Sweeney, C.; Ryerson, T. B.; Tans, P. P.; Schnell, R. C.

    2014-12-01

    Within the past five years, the production of oil and natural gas in the United States from tight formations has increased rapidly due to advances in technology, such as horizontal drilling and hydraulic fracturing. With the expansion of oil and natural gas extraction operations comes the need to better quantify their emissions and potential impacts on climate forcing and air quality. The Bakken formation within the Williston Basin in North Dakota has emerged as a large contributor to the recent growth in oil production and accounts for over 10% of domestic production. Close to 30% of associated gas co-produced with the oil is flared. Very little independent information is currently available to assess the oil and gas industry emissions and their impacts on regional air quality. In May 2014, an airborne field campaign was conducted by the National Oceanic and Atmospheric Administration's (NOAA) Earth System Research Laboratory and the University of Michigan to investigate hydrocarbon emissions from operations in the oil field. Here, we present results from the analysis for methane, several non-methane hydrocarbons and combustion tracers in 72 discrete air samples collected by the aircraft on nine different flights. Samples were obtained in the boundary layer upwind and downwind of the operations and in the free troposphere. We will show results of a multiple species analysis and compare them with field campaign data from other U.S. oil and gas fields, measurements from NOAA's Global Monitoring Division long-term observing network, and available bottom-up information on emissions from oil and gas operations.

  10. Monitoring crude oil mineralization in salt marshes: Use of stable carbon isotope ratios

    SciTech Connect

    Jackson, A.W.; Pardue, J.H.; Araujo, R.

    1996-04-01

    In laboratory microcosms using salt marsh soils and in field trials, it was possible to monitor and quantify crude oil mineralization by measuring changes in CO{sub 2} {delta}{sup 13}C signatures and the rate of CO{sub 2} production. These values are easy to obtain and can be combined with simple isotope mass balance equations to determine the rate of mineralization from both the crude oil and indigenous carbon pool. Hydrocarbon degradation was confirmed by simultaneous decreases in alkane-, isoprenoid-, and PAH-hopane ratios. Additionally, the pseudo-first-order rate constants of alkane degradation (0.087 day{sup -1}) and CO{sub 2} production (0.082 day{sup -1}) from oil predicted by the {delta}{sup 13}C signatures were statistically indistinguishable. The addition of inorganic nitrogen and phosphate increased the rate of mineralization of crude oil in aerated microcosms but had no clear effect on in situ studies. This procedure appears to offer a means of definitively quantifying crude oil mineralization in a sensitive, inexpensive, and simple manner in environments with appropriate background {delta}{sup 13}C signatures. 23 refs., 5 figs., 1 tab.

  11. Triassic oils and related hydrocarbon kitchens in the Adriatic basin

    SciTech Connect

    Novelli, L.; Demaison, G. )

    1988-08-01

    Without exception, the oils from both the Abruzzi basin and Albanian foredeep are of lower Liassic to Upper Triassic origin. This is demonstrated by biological marker-based correlations between the oils and stratigraphically controlled, carbonate-rich source rocks. The biomarker studies also provided proof to conclude that many of the oils possess low API gravities and high sulfur contents because they are immature rather than biodegraded. Following the geochemical investigations, a computer-aided, basinwise maturation simulation of the hydrocarbon kitchens was carried out, with backstripping in geologic time. The simulations, performed with the Tissot-Espitalie kinetic model, used basin-specific kerogen activation energies obtained by the optimum method. These simulated values were calibrated with observed values in deep wells. Two characteristics diverge from normal petroleum basin situations (e.g., the North Sea basin): sulfur-rich kerogens in the source rocks, featuring relatively low activation energy distributions, and low geothermal gradients in the subsurface. The geographic outlines of simulated Triassic-lower Liassic hydrocarbon kitchens closely coincide with the zones of petroleum occurrence and production in the Adriatic basin. Furthermore, API gravities of the oils are broadly predicted by the mathematical simulations. This methodology has once again shown its ability to rationally high-grade the petroleum-rich sectors of sedimentary basin while identifying those areas where chances of success are extremely low regardless of the presence of structures.

  12. Catalytic deoxygenation of microalgae oil to green hydrocarbons

    SciTech Connect

    Zhao, Chen; Bruck, Thomas; Lercher, Johannes A.

    2013-05-14

    Microalgae are high potential raw biomass material for triglyceride feedstock, due to their high oil content and rapid growth rate, and because algae cultivation does not compete with edible food on arable land. This review addresses first the microalgae cultivation with an overview of the productivity and growth of microalgae, the recovery of lipids from the microalgae, and chemical compositions of microalgae biomass and microalgal oil. Second, three basic approaches are discussed to downstream processing for the production of green gasoline and diesel hydrocarbons from microalgae oil, including cracking with zeolite, hydrotreating with supported sulfided catalysts and hydrodeoxygenation with non-sulfide metal catalysts. For the triglyceride derived bio-fuels, only “drop-in” gasoline and diesel range components are discussed in this review.

  13. Hydrocarbon status of soils under different ages of oil contamination

    NASA Astrophysics Data System (ADS)

    Gennadiev, A. N.; Pikovskii, Yu. I.; Kovach, R. G.; Koshovskii, T. S.; Khlynina, N. I.

    2016-05-01

    Modifications of the hydrocarbon status (HCS) of soils at the stages of the injection input of oil pollutants and the subsequent self-purification of the soil layer from technogenesis products have been revealed in studies conducted on an oil field. Comparison with the HCS of background soils has been performed. Changes in the composition and concentration of bitumoids, polycyclic aromatic hydrocarbons (PAHs), and hydrocarbon gases have been established. The HCS of a freshly contaminated soil is characterized by the predominance of butane (the highest component) in the gaseous phase, an abrupt increase in the concentration of second-kind bitumoids, and a 100-fold increase in the content of PAHs compared to the background soil. In the old contaminated soil, free and fixed methane becomes the predominant gas; the content of bitumoids in the upper soil horizons is lower than in the freshly contaminated soils by two orders of magnitude but higher than in the background soil by an order of magnitude; the PAH composition in the soil with old residual contamination remains slightly more diverse than in the background soil.

  14. 21 CFR 172.878 - White mineral oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ultraviolet absorbance for any absorbance due to added antioxidants. Copies of the material incorporated by..._locations.html. (b) White mineral oil may contain any antioxidant permitted in food by regulations issued...

  15. Discrimination of fish oil and mineral oil slicks on sea water

    NASA Technical Reports Server (NTRS)

    Mac Dowall, J.

    1969-01-01

    Fish oil and mineral oil slicks on sea water can be discriminated by their different spreading characteristics and by their reflectivities and color variations over a range of wavelengths. Reflectivities of oil and oil films are determined using a duel beam reflectance apparatus.

  16. Formulation and analysis of food-grade mineral hydrocarbons in toxicology studies.

    PubMed

    Walters, D G; Sherrington, K V; Worrell, N; Riley, R A

    1994-06-01

    Methods are presented for the formulation and rapid determination of mineral hydrocarbons (MHCs) in animal diet and tissue. Food grade white oils and low melting point waxes are mixed as liquids with powdered diet. Higher melting point waxes are first powdered using a novel atomization technique before dry mixing with diet. MHCs sufficiently soluble in carbon tetrachloride (CCl4) are determined in diet by ultrasonic solvent extraction, adsorption of polar material on Florisil and analysis of the residue by quantitative Fourier Transform Infra Red (FT-IR) spectroscopy. Quantification in tissue is achieved by aqueous saponification, followed by extraction, clean-up and FT-IR analysis as for diet samples. A 10-fold increase in sensitivity over previous methods is achieved, below 0.002% (w/w) in diet and 0.1 mg/g in tissue. Over 80% of the CCl4 used can be recovered and recycled. Control diet seems to contain approximately 0.003% (w/w) background MHC. The method was modified for one powdered wax, only sparingly soluble in CCl4, high concentrations being extracted from diet by flotation in aqueous cetrimide and determined gravimetrically with a limit of detection of 0.1% (w/w) in diet. Application of these methods to 90-day feeding studies is described, and future developments due to the phasing out of CCl4 are discussed.

  17. Fate of oil hydrocarbons in fish and shrimp after major oil spills in the Arabian Gulf

    SciTech Connect

    Fayad, N.M.; El-Mubarak, A.H.; Edora, R.L.

    1996-03-01

    Pollution of the marine environment with crude oil represents one of the most serious environmental problems that confront Saudi Arabia and other Gulf states. Oil pollution in the Arabian Gulf environment may affect the inhabitants through (1) human health hazard resulting from the consumption of contaminated sea food, (2) loss of food due to alteration of species productivity or elimination of some species, and (3) deterioration of recreation areas. Moreover, the problem of oil spill may be more severe in this part of the world. This is mainly because the source of drinking water in various Gulf states depends largely on sea water from which desalinated water is produced. Contamination of sea water with crude oil may adversely affect the quality of desalinated water and may badly damage desalination plants. During the last twelve years, the Arabian Gulf has been affected by two major oil spills. The first spill occurred on February 4, 1983 during the Iraq-Iran War, and the second major oil spill occured during the 1991 Gulf War. There is limited information about the level of oil hydrocarbons in edible fish, but two studies were carried out after both spills. This paper summarized the results of both studies carried out to assess the extent of contamination of various fish species of commercial value from the Arabian Gulf with oil hydrocarbons.

  18. Effect of vegetable oil (Brazil nut oil) and mineral oil (liquid petrolatum) on dental biofilm control.

    PubMed

    Filogônio, Cíntia de Fátima Buldrini; Soares, Rodrigo Villamarim; Horta, Martinho Campolina Rebello; Penido, Cláudia Valéria de Sousa Resende; Cruz, Roberval de Almeida

    2011-01-01

    Dental biofilm control represents a basic procedure to prevent caries and the occurrence of periodontal diseases. Currently, toothbrushes and dentifrices are used almost universally, and the employment of good oral hygiene allows for appropriate biofilm removal by both mechanical and chemical control. The aim of this study was to evaluate the effectiveness of adding vegetable or mineral oil to a commercially available dentifrice in dental biofilm control. A comparison using the Oral Hygiene Index Simplified (OHI-S) was performed in 30 individuals who were randomly divided into three groups. Group 1 (G1) received a commercially available dentifrice; the composition of this dentifrice was modified by addition of mineral oil (Nujol®) for group 2 (G2) or a vegetable oil (Alpha Care®) for group 3 (G3) at 10% of the total volume, respectively. The two-way repeated-measures analysis of variance (two-way ANOVA) was used to test the effect of group (G1, G2 and G3) or time (baseline, 45 days and 90 days) on the OHI-S index scores. Statistical analysis revealed a significant reduction in the OHI-S at day 90 in G2 (p < 0.05) and G3 (p < 0.0001) in comparison to G1. Therefore, the addition of a vegetable or a mineral oil to a commercially available dentifrice improved dental biofilm control, suggesting that these oils may aid in the prevention and/or control of caries and periodontal disease.

  19. Process for separating and/or recovering hydrocarbon oils from water using biodegradable absorbent sponges

    SciTech Connect

    Mueller, M.B.; Mareau, K.J.

    1991-08-13

    This patent describes an improved process for absorbing oils selected from the group consisting of hydrocarbon oils and hydrocarbon fuels. It comprises the step of contacting the oils with an absorbent oleophilic biodegradable sponge material comprised of at least one essentially fat free, foamed, biodegradable natural product selected from the group consisting of animal proteins and plant polymaccharides, which material is capable of absorbing at least about thirty times its weight of oils.

  20. Biodegradation of hydrocarbon cuts used for diesel oil formulation.

    PubMed

    Penet, Sophie; Marchal, Rémy; Sghir, Abdelghani; Monot, Frédéric

    2004-11-01

    The biodegradability of various types of diesel oil (DO), such as straight-run DO, light-cycle DO, hydrocracking DO, Fischer-Tropsch DO and commercial DO, was investigated in biodegradation tests performed in closed-batch systems using two microflorae. The first microflora was an activated sludge from an urban wastewater treatment plant as commonly used in biodegradability tests of commercial products and the second was a microflora from a hydrocarbon-polluted soil with possible specific capacities for hydrocarbon degradation. Kinetics of CO(2) production and extent of DO biodegradation were obtained by chromatographic procedures. Under optimised conditions, the polluted-soil microflora was found to extensively degrade all the DO types tested, the degradation efficiencies being higher than 88%. For all the DOs tested, the biodegradation capacities of the soil microflora were significantly higher than those of the activated sludge. Using both microflora, the extent of biodegradation was highly dependent upon the type of DO used, especially its hydrocarbon composition. Linear alkanes were completely degraded in each test, whereas identifiable branched alkanes such as farnesane, pristane or phytane were degraded to variable extents. Among the aromatics, substituted mono-aromatics were also variably biodegraded.

  1. Polycyclic aromatic hydrocarbons in olive oils on the Italian market.

    PubMed

    Menichini, E; Bocca, A; Merli, F; Ianni, D; Monfredini, F

    1991-01-01

    The six olive oils and seven virgin olive oils which are most consumed in Italy were analysed for 28 polycyclic aromatic hydrocarbons (PAHs). The aim was to evaluate whether a carcinogenic hazard for the general population can derive from the dietary intake of this food, which is consumed particularly highly in the Mediterranean area. The analytical method involved extraction by liquid-liquid partition, filtration on silica gel, clean-up by thin-layer chromatography on silica gel, and analysis by high-resolution gas chromatography with a flame ionization detector. The 3- and 4-ring PAHs which are most abundant in the environment were found in all samples, at individual levels up to ca. 40 micrograms/kg (for phenanthrene); no important difference was observed between olive oils and virgin olive oils. PAHs which are most suspected of being carcinogenic for humans were not detected (limit of detection, ca. 3 micrograms/kg). The average yearly intake of the detected PAHs through this food was estimated at ca. 0.56 mg per capita. PMID:1778272

  2. Polycyclic aromatic hydrocarbons in Italian preserved food products in oil.

    PubMed

    Sannino, Anna

    2016-06-01

    A method based on gas chromatography/ tandem mass spectrometry was used to assess levels of 16 EU priority polycyclic aromatic hydrocarbons (PAHs) in 48 preserved food products in oil including foods such as vegetables in oil, fish in oil and oil-based sauces obtained from the Italian market. The benzo[a]pyrene concentrations ranged from <0.04 to 0.40 µg kg(-1), and 72.9% of the samples showed detectable levels of this compound. The highest contamination level was observed for chrysene with three additional PAHs (benzo[a]anthracene, benzo[b]fluoranthene and benzo[c]fluorene) giving mean values higher than the mean value for benzo[a]pyrene. Chrysene was detected in all the samples at concentrations ranging from 0.07 to 1.80 µg kg(-1) (median 0.31 µg kg(-1)). The contamination expressed as PAH4 (sum of benzo(a)pyrene, chrysene, benzo(a)anthracene and benzo(b)fluoranthene), for which the maximum tolerable limit has been set by Commission Regulation (EU) No. 835/2011, varied between 0.10 and 2.94 µg kg(-1). PMID:26886159

  3. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination

    PubMed Central

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants. PMID:27252685

  4. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination.

    PubMed

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants. PMID:27252685

  5. 25 CFR 213.6 - Leases for minerals other than oil and gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Leases for minerals other than oil and gas. 213.6 Section 213.6 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF... Leases for minerals other than oil and gas. Uncontested mining leases for minerals other than oil and...

  6. 25 CFR 213.6 - Leases for minerals other than oil and gas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Leases for minerals other than oil and gas. 213.6 Section 213.6 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF... Leases for minerals other than oil and gas. Uncontested mining leases for minerals other than oil and...

  7. Tri- and tetraterpenoid hydrocarbons in the Messel oil shale

    NASA Technical Reports Server (NTRS)

    Kimble, B. J.; Maxwell, J. R.; Philp, R. P.; Eglinton, G.; Albrecht, P.; Ensminger, A.; Arpino, P.; Ourisson, G.

    1974-01-01

    The high-molecular-weight constituents of the branched and cyclic hydrocarbon fraction of the Messel oil shale (Eocene) have been examined by high-resolution gas chromatography and combined gas chromatography/mass spectrometry. The following compounds are present: perhydrolycopene, together with one or more unsaturated analogs with the same skeleton; a series of 4-methylsteranes in higher abundance than their 4-desmethyl analogs; two series of pentacyclic triterpanes, one series based on the hopane structure, and the other based on the 17 alpha-H hopane structure; and an intact triterpene hop-17(21)-ene. Only two additional triterpanes were detected in minor concentrations - namely, 30-normoretane and a C31 triterpane based on the hopane/lupane-type skeleton. The presence of these compounds suggests a significant microbial contribution to the forming sediment.

  8. Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters.

    PubMed

    Spier, Chelsea; Stringfellow, William T; Hazen, Terry C; Conrad, Mark

    2013-02-01

    The explosion of the Deepwater Horizon oil platform on April 20th, 2010 resulted in the second largest oil spill in history. The distribution and chemical composition of hydrocarbons within a 45 km radius of the blowout was investigated. All available certified hydrocarbon data were acquired from NOAA and BP. The distribution of hydrocarbons was found to be dispersed over a wider area in subsurface waters than previously predicted or reported. A deepwater hydrocarbon plume predicted by models was verified and additional plumes were identified. Because the samples were not collected systematically, there is still some question about the presence and persistence of an 865 m depth plume predicted by models. Water soluble compounds were extracted from the rising oil in deepwater, and were found at potentially toxic levels outside of areas previously reported to contain hydrocarbons. Application of subsurface dispersants was found to increase hydrocarbon concentration in subsurface waters. PMID:23202654

  9. Ultrasonic desorption of petroleum hydrocarbons from crude oil contaminated soils.

    PubMed

    Li, Jianbing; Song, Xinyuan; Hu, Guangji; Thring, Ronald Wallen

    2013-01-01

    Ultrasonic irradiation was applied to improve the desorption of petroleum hydrocarbons (PHC) in crude oil from three types of soil. Soil A was an Ottawa sand, while soil B and soil C were fine soils that contained 27.6% and 55.3% of silt and clay contents, respectively. It was found that the ultrasonic desorption was highly related to soil types, with the highest and the lowest desorption occurring in coarse soil (i.e., soil A) and finer soil (i.e., soil C), respectively. Under the experimental conditions, the maximum ultrasonic desorption enhancement of the total petroleum hydrocarbons (TPH) reached 22% for soil A, 61% for soil B, and 49% for soil C, respectively. The maximum enhancement on the F2 (n-C10 to n-C16), F3 (n-C16 to n-C34), and F4 (n-C34 to n-C50) fractions of PHC reached 91, 44, and 51% for soil B, and 90, 38, and 31% for soil C, respectively. The desorption enhancement also illustrated an increasing trend with initial soil TPH concentration. PMID:23705614

  10. Petroleum mineral oil refining and evaluation of cancer hazard.

    PubMed

    Mackerer, Carl R; Griffis, Larry C; Grabowski Jr, John S; Reitman, Fred A

    2003-11-01

    Petroleum base oils (petroleum mineral oils) are manufactured from crude oils by vacuum distillation to produce several distillates and a residual oil that are then further refined. Aromatics including alkylated polycyclic aromatic compounds (PAC) are undesirable constituents of base oils because they are deleterious to product performance and are potentially carcinogenic. In modern base oil refining, aromatics are reduced by solvent extraction, catalytic hydrotreating, or hydrocracking. Chronic exposure to poorly refined base oils has the potential to cause skin cancer. A chronic mouse dermal bioassay has been the standard test for estimating carcinogenic potential of mineral oils. The level of alkylated 3-7-ring PAC in raw streams from the vacuum tower must be greatly reduced to render the base oil noncarcinogenic. The processes that can reduce PAC levels are known, but the operating conditions for the processing units (e.g., temperature, pressure, catalyst type, residence time in the unit, unit engineering design, etc.) needed to achieve adequate PAC reduction are refinery specific. Chronic dermal bioassays provide information about whether conditions applied can make a noncarcinogenic oil, but cannot be used to monitor current production for quality control or for conducting research or developing new processes since this test takes at least 78 weeks to conduct. Three short-term, non-animal assays all involving extraction of oil with dimethylsulfoxide (DMSO) have been validated for predicting potential carcinogenic activity of petroleum base oils: a modified Ames assay of a DMSO extract, a gravimetric assay (IP 346) for wt. percent of oil extracted into DMSO, and a GC-FID assay measuring 3-7-ring PAC content in a DMSO extract of oil, expressed as percent of the oil. Extraction with DMSO concentrates PAC in a manner that mimics the extraction method used in the solvent refining of noncarcinogenic oils. The three assays are described, data demonstrating the

  11. Hydrocarbon-Degrading Bacteria Exhibit a Species-Specific Response to Dispersed Oil while Moderating Ecotoxicity.

    PubMed

    Overholt, Will A; Marks, Kala P; Romero, Isabel C; Hollander, David J; Snell, Terry W; Kostka, Joel E

    2015-11-06

    The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration.

  12. Surface roughness effects with solid lubricants dispersed in mineral oils

    NASA Technical Reports Server (NTRS)

    Cusano, C.; Goglia, P. R.; Sliney, H. E.

    1983-01-01

    The lubricating effectiveness of solid-lubricant dispersions are investigated in both point and line contacts using surfaces with both random and directional roughness characteristics. Friction and wear data obtained at relatively low speeds and at room temperature, indicate that the existence of solid lubricants such as graphite, MoS2, and PTFE in a plain mineral oil generally will not improve the effectiveness of the oil as a lubricant for such surfaces. Under boundary lubrication conditions, the friction force, as a function of time, initially depends upon the directional roughness properties of the contacting surfaces irrespective of whether the base oil or dispersions are used as lubricants.

  13. Development of a manual method for the determination of mineral oil in foods and paperboard.

    PubMed

    Fiselier, Katell; Grundböck, Florian; Schön, Karsten; Kappenstein, Oliver; Pfaff, Karla; Hutzler, Christoph; Luch, Andreas; Grob, Koni

    2013-01-01

    So far the majority of the measurements of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) were obtained from on-line high performance liquid chromatography-gas chromatography-flame ionization detection (on-line HPLC-GC-FID). Since this technique is not available in many laboratories, an alternative method with more easily available tools has been developed. Preseparation on a small conventional liquid chromatographic column was optimized to achieve robust separation between the MOSH and the MOAH, but also to keep out the wax esters from the MOAH fraction. This was achieved by mixing a small portion of silica gel with silver nitrate into highly activated silica gel and by adding toluene into the eluent for the MOAH. Toluene was also added to the MOSH fraction to facilitate reconcentration and to serve as a keeper preventing loss of volatiles during solvent evaporation. A 50 μl volume was injected on-column into GC-FID to achieve a detection limit for MOSH and MOAH below 1 mg/kg in most foods.

  14. The effect of mineral species on oil shale char combustion

    SciTech Connect

    Cavalieri, R.P.; Thompson, W.J.

    1983-02-01

    In order to increase the energy efficiency of above-ground oil shale processes, the carbonaceous residue (''char'') remaining on retorted oil shale (''spent'' shale) will either be combusted or gasified. Although there is no great difficulty in combusting the char, it is important that combustion be carried out in a controlled fashion. Failure to do so can result in high temperatures (>900/sup 0/K) and the decomposition of mineral carbonates. These decomposition reactions are not only endothermic but some of the products have the potential to cause environmental disposal problems. Control of oil shale char combustion is more easily managed if there is a knowledge of how the rate of combustion depends on O/sub 2/ concentration and temperature. This motivation led to an earlier study of the combustion kinetics of spent shale from the Parachute Creek Member in western Colorado. That study provided evidence that one or more of the mineral species present in the shale acted as an oxidation catalyst. Consequently it was decided to follow up on that investigation by examining the combustion activity of other oil shales; specifically those with differing elemental and/or mineral compositions. Six oil shale samples were selected for evaluation and comparison: one from the Parachute Creek Member (PCM), one from a deep core sample in the C-a tract (C-a), two from the saline zone in western Colorado (S-A and S-B), one from the Geokinetics site in eastern Utah (GEOK) and one sample of Antrim shale from Michigan (ANT). On the basis of the studies conducted here, it is readily apparent that the presence of minerals can drastically alter the reactivity of the residual char on spent oil shale. More detailed quantitative studies are necessary in order to be able to assess their importance under typical oil shale processing conditions and will be the subject of future manuscripts from this laboratory.

  15. Role of methylotrophs in the degradation of hydrocarbons during the Deepwater Horizon oil spill.

    PubMed

    Gutierrez, Tony; Aitken, Michael D

    2014-12-01

    The role of methylotrophic bacteria in the fate of the oil and gas released into the Gulf of Mexico during the Deepwater Horizon oil spill has been controversial, particularly in relation to whether organisms such as Methylophaga had contributed to the consumption of methane. Whereas methanotrophy remains unqualified in these organisms, recent work by our group using DNA-based stable-isotope probing coupled with cultivation-based methods has uncovered hydrocarbon-degrading Methylophaga. Recent findings have also shown that methylotrophs, including Methylophaga, were in a heightened state of metabolic activity within oil plume waters during the active phase of the spill. Taken collectively, these findings suggest that members of this group may have participated in the degradation of high-molecular-weight hydrocarbons in plume waters. The discovery of hydrocarbon-degrading Methylophaga also highlights the importance of considering these organisms in playing a role to the fate of oil hydrocarbons at oil-impacted sites.

  16. Promising ozone-inert refrigerants compatible with mineral oils

    SciTech Connect

    Koroteev, A.S.; Barabanov, V.G.; Zotikov, V.S.

    1995-07-10

    The outcome of tests on mixed nonexplosive refrigerant compatible with KhF 12-16 mineral oil is presented. In its thermodynamic properties and performance, this refrigerant corresponds to Freon-12 and is intended preferentially for cost-effective servicing of household refrigerators.

  17. Mineral oil lubricants cause rapid deterioration of latex condoms.

    PubMed

    Voeller, B; Coulson, A H; Bernstein, G S; Nakamura, R M

    1989-01-01

    As little as sixty seconds' exposure of commercial latex condoms to mineral oil, a common component of hand lotions and other lubricants used during sexual intercourse, caused approximately 90% decrease in the strength of the condoms, as measured by their burst volumes in the standard ISO (International Standards Organization) Air Burst Test. Burst pressures were also reduced, although less dramatically. Lubricants such as Vaseline Intensive Care and Johnson's Baby Oil, each containing mineral oil, also affected condom integrity. Five min. exposure of condoms to glycerol, a frequent component of hand lotions and 'personal lubricants', did not significantly affect burst volume or pressure. Aqueous nonoxynol-9 spermicide did not affect either burst index. The implications of these results for contraception and protection from sexually transmitted diseases, including AIDS, are discussed.

  18. Development of mineral oil free offset printing ink using vegetable oil esters.

    PubMed

    Roy, Ananda Sankar; Bhattacharjee, Moumita; Mondal, Rabindranath; Ghosh, Santinath

    2007-01-01

    Until the middle of this century, fats and oils are the major raw material source for paints, coating and lubricating applications. These markets are completely taken over by petroleum based stocks due to their abundance and versatility. However, recent public awareness to use environmentally acceptable products that minimize pollution, are compatible to human health and readily biodegradable created opportunities for vegetable oils for application in paints and printing inks. The formulation of vegetable oil methyl ester based 'green' offset printing ink that reduces the volatile organic compounds (VOC) has been discussed in the present study. Methyl esters of rapeseed, soybean, rice bran and palm oil have been prepared and their physical properties have been measured and compared with standard petroleum feed stock. Varnishes were prepared with these esters and their properties are also compared with that of the petroleum based products. Rheological properties of the inks are also evaluated and compared with standard printing ink using petroleum based solvent. In general performance of the ester-based printing inks are comparable with that of the mineral oil based product. On the basis of tack stability and gloss, ester based inks are much superior than the mineral oil based products. In conclusion, a new non-volatile diluent for printing ink has been developed. The diluent is made from common vegetable oils like rapeseed, soybean, rice bran and palm oil, a renewable source that is environmental friendly. Vegetable oil esters offer a cost effective solution for mineral oil based printing ink to meet VOCs regulations.

  19. European hazard classification advice for crude oil-derived lubricant base oils compared with the proposed mineral oil mist TLV.

    PubMed

    Urbanus, Jan H; Lobo, Rupert C; Riley, Anthony J

    2003-11-01

    The notice of intended change for the threshold limit value (TLV) for mineral oil mist contains a notation for human carcinogenicity. A description is provided of the current European regulatory approach used to distinguish between carcinogenic and non-carcinogenic mineral base oils on the basis of oil refining process and chemical marker information. This approach has proven effective in creating a market situation in the countries of the European Union where many customers require severely refined, non-carcinogenic oils. It is recommended that ACGIH consolidate the distinction between poorly and severely refined base oils in the recommended TLV for mineral oil mist and use different toxicological considerations to derive exposure control guidelines.

  20. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    PubMed

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems.

  1. Oil shale, shale oil, shale gas and non-conventional hydrocarbons

    NASA Astrophysics Data System (ADS)

    Clerici, A.; Alimonti, G.

    2015-08-01

    In recent years there has been a world "revolution" in the field of unconventional hydrocarbon reserves, which goes by the name of "shale gas", gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also "oil shales" (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil), extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  2. 25 CFR 213.23 - Royalty rates for minerals other than oil and gas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Royalty rates for minerals other than oil and gas. 213.23... Royalty rates for minerals other than oil and gas. Unless otherwise authorized by the Commissioner of Indian Affairs, the minimum rates for minerals other than oil and gas shall be as follows: (a)...

  3. Mineral-catalyzed dehydrogenation of C6 cyclic hydrocarbons: results from experimental studies under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Venturi, S.; Tassi, F.; Gould, I.; Shock, E.; Lorance, E. D.; Bockisch, C.; Fecteau, K.

    2015-12-01

    Volatile organic compounds (VOCs) are ubiquitously present in volcanic and hydrothermal gases. Their relative abundances have been demonstrated to be sensitive to physical and chemical parameters, suggesting VOCs as potential tools for evaluating deep reservoir conditions. Nevertheless, reaction pathways for VOC production at hydrothermal conditions are still poorly understood. Reversible catalytic reforming may be responsible for the high abundance of benzene observed in hydrothermal gases relative to saturated hydrocarbons. The dehydrogenation of n-hexane to benzene could proceed with C6 cyclic hydrocarbons as intermediates, as suggested by the relative enrichment in cyclic hydrocarbons observed in gases originating at T <150 °C. In this study, laboratory experiments were carried out to investigate the production of benzene from cyclic hydrocarbons at 300°C and 85 bar. At these conditions in pure water, negligible benzene is produced from cyclohexane after 10 days. The presence of a mineral phase, especially sphalerite, favored the formation of both benzene and cyclohexene. The efficiency of dehydroaromatization reaction increased at increasing mineral/cyclohexane ratio, pointing to a surface catalyzed reaction. The catalytic action of sphalerite on the C-H bonds was confirmed by the large abundance of deuterated cyclohexane resulted in D2O experiments. The same experiment carried out using cyclohexene in pure water mainly produced methyl-cyclopentenes (via isomerization) and cyclohexanol (via oxygenation). In presence of sphalerite, the production of significant amounts of benzene confirmed the critical role of this mineral for the aromatization of cyclic compounds under hydrothermal conditions. Contrarily, products from cyclohexene solution phase oxidation using Cu(II) mainly consisted of oxygenated VOCs.

  4. Osage oil: Mineral law, murder, mayhem, and manipulation

    SciTech Connect

    Strickland, R.

    1995-12-31

    The greatest of the 20th century Osage chiefs, Fred Lookout, feared what the rich oil bonanza under tribal lands would do to his people. He forsaw that oil wealth could turn into a curse as well as a blessing, and it was both. The story of Osage oil is a case history in the failure of law, the failure of Indian policy and the struggle for survival of the indomitable spirit of a great Native people force to deal with both the curse and the blessing of black gold. This article examines law and policy as seen in Osage oil regulation, outlining the legal controls of the land and mineral regulatory system and briefly exploring the breakdowns of the system.

  5. Distribution of heavy metals and hydrocarbon contents in an alfisol contaminated with waste-lubricating oil amended with organic wastes.

    PubMed

    Adesodun, J K; Mbagwu, J S C

    2008-05-01

    Contamination of soil and groundwater with mineral oil-based products is among the most common sources of pollution in Nigeria. This study evaluated the distribution of some heavy metals and hydrocarbon content in soil contaminated with waste-lubricating oil (spent oil), and the effectiveness of some abundantly available organic wastes from animal source as remediation alternative to the expensive chemical and physical methods. The main-plot treatments include control (C), cow dung (CD), poultry manure (PM) and pig waste (PW) applied at 10Mg/ha each; while the sub-plot treatments were control (0%), 0.5%, 2.5% and 5% spent oil (SP) applied at 10, 50 and 100 Mg/ha, respectively arranged in a split-plot in Randomized Complete Block Design (RCBD) with four replications. These treatments were applied once each year for two consecutive years. Soil samples (0-20 cm) were collected at 3, 6 and 12 months each year and analyzed for Cr, Ni, Pb and Zn, while the residual total hydrocarbon content (THC) was determined at the end of the 2 years study. Results show significant (p<0.05) accumulation of these metals with spent oil pollution following the sequence 5%SP>2.5%SP>0.5%SP, indicating higher metal pollution with increase in oil pollution. General distribution of Cr, Ni, Pb and Zn, relative to sampling periods, followed 3 months>6 months>12 months in the 1st year indicating reduction in metal levels with time. The trend for 2nd year indicated higher accumulation of Cr and Ni in 12 months, while Pb and Zn decreased with time of sampling. The results further showed higher accumulation of Cr followed by Zn, relative to other metals, with oil pollution. However, addition of organic wastes to the oil polluted soils significantly (p<0.05) led to reduction in the levels of the metals and THC following the order PM>PW>CD.

  6. Dewaxing waxy hydrocarbon oils using di-alkyl fumarate-vinyl laurate copolymer dewaxing aids

    SciTech Connect

    Achia, B.U.; DeKraker, A.R.; Rossi, A.

    1986-06-10

    A method is described for dewaxing waxy hydrocarbon oils comprising mixing the waxy hydrocarbon oil feedstock with a dewaxing solvent and a dewaxing aid, the dewaxing aid comprising (A) a dialkyl fumarate-vinyl laurate copolymer having a number average molecular weight of about 30,000 or more, as determined by gel permeation chromatography; and (B) a second component selected from a wax-naphthalene condensation copolymer, dialkyl fumarate-vinyl acetate copolymer or an ethylene-vinyl acetate copolymer, components (A) and (B) being used in a ratio of (A) to (B) of 2/1 to 1/1, chilling the waxy hydrocarbon oil/dewaxing solvent/dewaxing aid combination to precipitate solid particles of wax therefrom, producing a slurry of wax/dewaxed oil dewaxing solvent/dewaxing aid, and separating the wax from the slurry and recovering a dewaxed oil.

  7. Chemical dispersion of oil with mineral fines in a low temperature environment.

    PubMed

    Wang, Weizhi; Zheng, Ying; Lee, Kenneth

    2013-07-15

    The increasing risks of potential oil spills in the arctic regions, which are characterized by low temperatures, are a big challenge. The traditional dispersant method has shown limited effectiveness in oil cleanup. This work studied the role of mineral fines in the formation of oil-mineral aggregates (OMAs) at low temperature (0-4 °C) environment. The loading amount of minerals and dispersant with different dispersant and oil types were investigated under a full factorial design. The shapes and sizes of OMAs were analyzed. Results showed that the behavior of OMA formation differs when dispersant and mineral fines are used individually or together. Both the experimental and microscopic results also showed the existence of optimal dispersant to oil ratios and mineral to oil ratios. In general, poor oil removal performance was observed for more viscous oil. Corexit 9500 performed better than Corexit 9527 with various oils, in terms of oil dispersion and OMA formation.

  8. Processes affecting the fate of monoaromatic hydrocarbons in an aquifer contaminated by crude oil

    USGS Publications Warehouse

    Eganhouse, R.P.; Dorsey, T.F.; Phinney, C.S.; Westcott, A.M.

    1996-01-01

    Crude oil spilled from a subsurface pipeline in north-central Minnesota has dissolved in the groundwater, resulting in the formation of a plume of aliphatic, aromatic, and alicyclic hydrocarbons. Comparison of paired oil and groundwater samples collected along the central axis of the residual oil body shows that the trailing edge of the oil is depleted in the more soluble aromatic hydrocarbons (e.g., benzene, toluene, etc.) when compared with the leading edge. At the same time, concentrations of monoaromatic hydrocarbons in groundwater beneath the oil increase as the water moves toward the leading edge of the oil. Immediately downgradient from the leading edge of the oil body, certain aromatic hydrocarbons (e.g., benzene) are found at concentrations near those expected of a system at equilibrium, and the concentrations exhibit little variation over time (???8-20%). Other compounds (e.g., toluene) appear to be undersaturated, and their concentrations show considerably more temporal variation (???20-130%). The former are persistent within the anoxic zone downgradient from the oil, whereas concentrations of the latter decrease rapidly. Together, these observations suggest that the volatile hydrocarbon composition of the anoxic groundwater near the oil body is controlled by a balance between dissolution and removal rates with only the most persistent compounds reaching saturation. Examination of the distributions of homologous series and isomeric assemblages of alkylbenzenes reveals that microbial degradation is the dominant process controlling the fate of these compounds once groundwater moves away from the oil. For all but the most persistent compounds, the distal boundary of the plume at the water table extends no more than 10-15 m down-gradient from the oxic/anoxic transition zone. Thus, transport of the monoaromatic hydrocarbons is limited by redox conditions that are tightly coupled to biological degradation processes.

  9. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, E.G.; Elliott, D.C.

    1993-01-19

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  10. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, Eddie G.; Elliott, Douglas C.

    1993-01-01

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  11. Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons.

    PubMed

    Laczi, Krisztián; Kis, Ágnes; Horváth, Balázs; Maróti, Gergely; Hegedüs, Botond; Perei, Katalin; Rákhely, Gábor

    2015-11-01

    Rhodococcus erythropolis PR4 is able to degrade diesel oil, normal-, iso- and cycloparaffins and aromatic compounds. The complete DNA content of the strain was previously sequenced and numerous oxygenase genes were identified. In order to identify the key elements participating in biodegradation of various hydrocarbons, we performed a comparative whole transcriptome analysis of cells grown on hexadecane, diesel oil and acetate. The transcriptomic data for the most prominent genes were validated by RT-qPCR. The expression of two genes coding for alkane-1-monooxygenase enzymes was highly upregulated in the presence of hydrocarbon substrates. The transcription of eight phylogenetically diverse cytochrome P450 (cyp) genes was upregulated in the presence of diesel oil. The transcript levels of various oxygenase genes were determined in cells grown in an artificial mixture, containing hexadecane, cycloparaffin and aromatic compounds and six cyp genes were induced by this hydrocarbon mixture. Five of them were not upregulated by linear and branched hydrocarbons. The expression of fatty acid synthase I genes was downregulated by hydrocarbon substrates, indicating the utilization of external alkanes for fatty acid synthesis. Moreover, the transcription of genes involved in siderophore synthesis, iron transport and exopolysaccharide biosynthesis was also upregulated, indicating their important role in hydrocarbon metabolism. Based on the results, complex metabolic response profiles were established for cells grown on various hydrocarbons. Our results represent a functional annotation of a rhodococcal genome, provide deeper insight into molecular events in diesel/hydrocarbon utilization and suggest novel target genes for environmental monitoring projects.

  12. Remediation of hydrocarbons in crude oil-contaminated soils using Fenton's reagent.

    PubMed

    Ojinnaka, Chukwunonye; Osuji, Leo; Achugasim, Ozioma

    2012-11-01

    Sandy soil samples spiked with Bonny light crude oil were subsequently treated with Fenton's reagent at acidic, neutral, and basic pH ranges. Oil extracts from these samples including an untreated one were analyzed 1 week later with a gas chromatograph to provide evidence of hydrocarbon depletion by the oxidant. The reduction of three broad hydrocarbon groups-total petroleum hydrocarbon (TPH); benzene, toluene, ethylbenzene, and xylene (BTEX); and polycyclic aromatic hydrocarbon (PAH) were investigated at various pHs. Hydrocarbon removal was efficient, with treatment at the acidic pH giving the highest removal of about 96% for PAH, 99% for BTEX, and some TPH components experiencing complete disappearance. The four-ringed PAHs were depleted more than their three-ringed counterparts at the studied pH ranges.

  13. Rapid analytical procedure for determination of mineral oils in edible oil by GC-FID.

    PubMed

    Wrona, Magdalena; Pezo, Davinson; Nerin, Cristina

    2013-12-15

    A procedure for the determination of mineral oils in edible oil has been fully developed. The procedure consists of using a sulphuric acid-impregnated silica gel (SAISG) glass column to eliminate the fat matter. A chemical combustion of the fatty acids takes place, while the mineral oils are not affected by the sulphuric acid. The column is eluted with hexane using a vacuum pump and the final extract is concentrated and analysed by gas chromatography (GC) with flame ionisation detector (FID). The detection limit (LOD) and the quantification limit (LOQ) in hexane were 0.07 and 0.21 μg g(-1) respectively and the LOQ in vegetable oil was 1 μg g(-1). Only a few minutes were necessary for sample treatment to have a clean extract. The efficiency of the process, measured through the recoveries from spiked samples of edible oil was higher than 95%. The procedure has been applied to determine mineral oil in olive oil from the retailed market.

  14. Rapid analytical procedure for determination of mineral oils in edible oil by GC-FID.

    PubMed

    Wrona, Magdalena; Pezo, Davinson; Nerin, Cristina

    2013-12-15

    A procedure for the determination of mineral oils in edible oil has been fully developed. The procedure consists of using a sulphuric acid-impregnated silica gel (SAISG) glass column to eliminate the fat matter. A chemical combustion of the fatty acids takes place, while the mineral oils are not affected by the sulphuric acid. The column is eluted with hexane using a vacuum pump and the final extract is concentrated and analysed by gas chromatography (GC) with flame ionisation detector (FID). The detection limit (LOD) and the quantification limit (LOQ) in hexane were 0.07 and 0.21 μg g(-1) respectively and the LOQ in vegetable oil was 1 μg g(-1). Only a few minutes were necessary for sample treatment to have a clean extract. The efficiency of the process, measured through the recoveries from spiked samples of edible oil was higher than 95%. The procedure has been applied to determine mineral oil in olive oil from the retailed market. PMID:23993576

  15. Hydrocarbon-Degrading Bacteria Exhibit a Species-Specific Response to Dispersed Oil while Moderating Ecotoxicity

    PubMed Central

    Overholt, Will A.; Marks, Kala P.; Romero, Isabel C.; Hollander, David J.; Snell, Terry W.

    2015-01-01

    The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration. PMID:26546426

  16. Hydrocarbon-Degrading Bacteria Exhibit a Species-Specific Response to Dispersed Oil while Moderating Ecotoxicity.

    PubMed

    Overholt, Will A; Marks, Kala P; Romero, Isabel C; Hollander, David J; Snell, Terry W; Kostka, Joel E

    2016-01-01

    The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration. PMID:26546426

  17. Comparative toxicokinetics of low-viscosity mineral oil in Fischer 344 rats, Sprague-Dawley rats, and humans--implications for an Acceptable Daily Intake (ADI).

    PubMed

    Boogaard, Peter J; Goyak, Katy O; Biles, Robert W; van Stee, Leo L P; Miller, Matthew S; Miller, Mary Jo

    2012-06-01

    Oral repeated-dose studies with low-viscosity mineral oils showed distinct species and strain differences, which are hypothesized to be due to differences in bioavailability, with Fischer 344 rats being more susceptible than Sprague-Dawley rats or dogs. Sensitive analytical methodology was developed for accurate measurement of low levels of mineral hydrocarbons and applied in single-dose toxicokinetics studies in rats and humans. Fischer 344 rats showed a 4-fold higher AUC(0-∞) and consistently higher blood and liver concentrations were found than Sprague-Dawley rats. Hepatic mineral hydrocarbon concentration tracked the blood concentration in both strains, indicating that blood concentrations can serve as functional surrogate measure for hepatic concentrations. In human volunteers receiving 1mg/kg body weight of low-viscosity white oil, all blood concentrations of mineral hydrocarbons were below the detection limit. Comparison with threshold blood concentrations associated with NOAELs in both rat strains, indicate that the margin-of-exposure is at least 37-fold. Using an internal dose metric rather than applied dose reduces the uncertainty around the temporary ADI considerably since it intrinsically accounts for intra- and inter-species differences. The current data support replacement of the temporary ADI of 0.01 mg/kg/day by a (permanent) ADI of at least 1.0mg/kg/day for low- and medium-viscosity mineral oils.

  18. Hydrocarbon charging histories of the Ordovician reservoir in the Tahe oil field, Tarim Basin, China.

    PubMed

    Li, Chun-Quan; Chen, Hong-Han; Li, Si-Tian; Zhang, Xi-Ming; Chen, Han-Lin

    2004-08-01

    The Ordovician reservoir of the Tahe oil field went through many tectonic reconstructions, and was characterized by multiple hydrocarbon chargings. The aim of this study was to unravel the complex charging histories. Systematic analysis of fluid inclusions was employed to complete the investigation. Fluorescence observation of oil inclusions under UV light, and microthermometry of both oil and aqueous inclusions in 105 core samples taken from the Ordovician reservoir indicated that the Ordovician reservoir underwent four oil chargings and a gas charging. The hydrocarbon chargings occurred at the late Hercynian, the Indo-Sinian and Yanshan, the early Himalaya, the middle Himalaya, and the late Himalaya, respectively. The critical hydrocarbon charging time was at the late Hercynian.

  19. Influence of mineral oil and additives on microhardness and surface chemistry of magnesium oxide (001) surface

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Shigaki, H.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted with cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved into specimens along the /001/ surface, and indentations were made on the cleaved surface in laboratory air, in nitrogen gas, or in degassed mineral oil with and without an additive while not exposing specimen surface to any other environment. The various additives examined contained sulfur, phosphorus, chlorine, or oleic acid. The sulfur-containing additive exhibited the highest hardness and smallest dislocation patterns evidencing plastic deformation; the chlorine-containing additive exhibited the lowest hardness and largest dislocation patterns evidencing plastic deformation. Hydrocarbon and chloride (MgCl2) films formed on the magnesium oxide surface. A chloride film was responsible for the lowest measured hardness.

  20. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill.

    PubMed

    Dombrowski, Nina; Donaho, John A; Gutierrez, Tony; Seitz, Kiley W; Teske, Andreas P; Baker, Brett J

    2016-01-01

    The Deepwater Horizon blowout in the Gulf of Mexico in 2010, one of the largest marine oil spills(1), changed bacterial communities in the water column and sediment as they responded to complex hydrocarbon mixtures(2-4). Shifts in community composition have been correlated to the microbial degradation and use of hydrocarbons(2,5,6), but the full genetic potential and taxon-specific metabolisms of bacterial hydrocarbon degraders remain unresolved. Here, we have reconstructed draft genomes of marine bacteria enriched from sea surface and deep plume waters of the spill that assimilate alkane and polycyclic aromatic hydrocarbons during stable-isotope probing experiments, and we identify genes of hydrocarbon degradation pathways. Alkane degradation genes were ubiquitous in the assembled genomes. Marinobacter was enriched with n-hexadecane, and uncultured Alpha- and Gammaproteobacteria populations were enriched in the polycyclic-aromatic-hydrocarbon-degrading communities and contained a broad gene set for degrading phenanthrene and naphthalene. The repertoire of polycyclic aromatic hydrocarbon use varied among different bacterial taxa and the combined capabilities of the microbial community exceeded those of its individual components, indicating that the degradation of complex hydrocarbon mixtures requires the non-redundant capabilities of a complex oil-degrading community. PMID:27572965

  1. 25 CFR 213.23 - Royalty rates for minerals other than oil and gas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Royalty rates for minerals other than oil and gas. 213.23 Section 213.23 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF... Royalty rates for minerals other than oil and gas. Unless otherwise authorized by the Commissioner...

  2. 25 CFR 227.10 - Minerals other than oil and gas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Minerals other than oil and gas. 227.10 Section 227.10 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS... Minerals other than oil and gas. Unreserved, unwithdrawn, and unallotted lands which have not been...

  3. 25 CFR 227.10 - Minerals other than oil and gas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Minerals other than oil and gas. 227.10 Section 227.10 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS... Minerals other than oil and gas. Unreserved, unwithdrawn, and unallotted lands which have not been...

  4. 25 CFR 213.23 - Royalty rates for minerals other than oil and gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Royalty rates for minerals other than oil and gas. 213.23 Section 213.23 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF... Royalty rates for minerals other than oil and gas. Unless otherwise authorized by the Commissioner...

  5. On the Mineral and Vegetal Oils Used as Electroinsulation in Transformers

    NASA Astrophysics Data System (ADS)

    Şerban, Mariana; Sângeorzan, Livia; Helerea, Elena

    Due to the relatively large availability and reduced price, the mineral transformer oils are widely used as electrical insulating liquids. However, mineral oil drastically degrades over time in service. New efforts were made to improve mineral oils characteristics, and other types of liquids like vegetal oils are proposed. This paper deals with new comparative tests on mineral and vegetal oils using as indicator the electric strength. The samples of non-additive mineral oil type TR 30 and vegetal oils of rape, sunflower and corn have been tested with increasing voltage of 60 Hz using different electrodes. The obtained data have been statistical processed. The analyze shows different average values of electrical strength for the different type of sample. New method of testing through electrical breakdown is proposed. Experimental data confirms that it is possible to use as electroinsulation organic vegetal oils in power transformers.

  6. Adsorption of hydrocarbons on organo-clays--implications for oil spill remediation.

    PubMed

    Carmody, Onuma; Frost, Ray; Xi, Yunfei; Kokot, Serge

    2007-01-01

    Organo-clays synthesised by the ion exchange of sodium in Wyoming Na-montmorillonite (SWy-2-MMT) with three surfactants: (a) octadecyltrimethylammonium bromide (ODTMA), formula C(21)H(46)NBr; (b) dodecyldimethylammonium bromide (DDDMA), formula C(22)H(48)BrN; and (c) di(hydrogenated tallow)dimethylammonium chloride were tested for hydrocarbon adsorption. Using diesel, hydraulic oil, and engine oil an evaluation was made of the effectiveness of the sorbent materials for a range of hydrocarbon products that are likely to be involved in land-based oil spills. It was found that the hydrocarbon sorption capacity of the organo-clays depended upon the materials and surfactants used in the organo-clay synthesis. Greater adsorption was obtained if the surfactant contained two or more hydrocarbon long chains. Extensive utilisation of chemometrics principally with the aid of MCDM methods, produced models which consistently ranked the organo-clays well above any of the competitors including commercial benchmark materials. Thus, the use of organo-clays for cleaning up oil spills is feasible due to its many desirable properties such as high hydrocarbon sorption and retention capacities, hydrophobicity. The negative effects of the use of organo-clays for oil-spill cleanup are the cost, the biodegradability, and recyclability of the organo-clays.

  7. Method and apparatus for separating wax/water from hydrocarbon oil mixture boiling in the lubricating oil range

    SciTech Connect

    Chimenti, R.J.L.; Cerkanowicz, A.E.; Ryan, D.G.

    1986-11-11

    A method is described of enhancing separation of wax particles and/or water droplets from hydrocarbon oil mixture boiling in the lubricating oil range. In the oil mixture the wax/water forms a dispersion, in which the wax particles and/or water droplets are grown in size, before being separated from the oil mixture. This done by introducing free excess electric charge which is net unipolar into a body of the wax/water-containing oil mixture which is devoid of any collector surfaces disposed inside the body of oil mixture, and by allowing the introduced charge to induce the growth in size of wax particles and/or water droplets within the body of oil mixture.

  8. Hydrocarbon-water interactions during brine migration: Evidence from hydrocarbon inclusions in calcite cements from Danish North Sea oil fields

    USGS Publications Warehouse

    Jensenius, J.; Burruss, R.C.

    1990-01-01

    Crude oils in primary and secondary fluid inclusions in calcite from fractures in seven offshore oil fields associated with diapiric salt structures in the Danish sector of the North Sea were analyzed by capillary column gas chromatography and compared with crude oils produced from the same reservoirs. Oils from fluid inclusions in all fields show evidence of biodegradation (decreased n-C17/pristane and n-C18/phytane ratios and loss of n-C7, 2-methyl hexane, and 3-methyl hexane relative to methyl cyclohexane) and water washing (absence of benzene and depletion of toluene). Some oils in inclusions are extremely enriched in C6 and C7 cyclic alkanes suggesting that these samples contain hydrocarbons exsolved from ascending, hotter formation waters. Compared to inclusion oils the produced oils are less biodegraded, but are water washed, indicating that both types of oil interacted with large volumes of formation water. The carbon isotopic composition of the calcite host of the fluid inclusions in the Dagmar and Skjold fields is as light as -16.5%. PDB and the sulfur isotopic composition of pyrite in and adjacent to the calcite veins in the Skjold field is as light as -39.6%. CDT, indicating that biodegradation of the oils was a source of some of the carbon in the calcite and sulfate reduction was the source of sulfur for the pyrite. The evidence for microbial degradation of petroleum is consistent with present-day reservoir temperatures (65??-96??C) but is not consistent with previous estimates of the temperatures of calcite vein filling (95??-130??C) which are much higher than the temperatures of known occurrences of biodegraded oil. ?? 1990.

  9. Evidence of hydrocarbon contamination from the Burgan oil field, Kuwait: interpretations from thermal remote sensing data.

    PubMed

    ud Din, Saif; Al Dousari, Ahmad; Literathy, Peter

    2008-03-01

    The paper presents the application of thermal remote sensing for mapping hydrocarbon polluted sites. This has been achieved by mono-window algorithm for land surface temperature (LST) measurements, using multi-date band 6 data of Landsat Thematic Mapper (TM). The emissivity, transmittance and mean atmospheric temperature were used as critical factors to estimate LST. The changes in the surface emissivity due to oil pollution alter the apparent temperature, which was used as a recognition element to map out oil polluted surfaces. The LST contrast was successfully used to map spatial distribution of hydrocarbon pollution in the Burgan Oil field area of Kuwait. The methodology can be positively used to detect waste dumping, oil spills in oceans and ports, besides environmental management of oil pollution at or near the land surface.

  10. Forensic source differentiation of petrogenic, pyrogenic, and biogenic hydrocarbons in Canadian oil sands environmental samples.

    PubMed

    Wang, Zhendi; Yang, C; Parrott, J L; Frank, R A; Yang, Z; Brown, C E; Hollebone, B P; Landriault, M; Fieldhouse, B; Liu, Y; Zhang, G; Hewitt, L M

    2014-04-30

    To facilitate monitoring efforts, a forensic chemical fingerprinting methodology has been applied to characterize and differentiate pyrogenic (combustion derived) and biogenic (organism derived) hydrocarbons from petrogenic (petroleum derived) hydrocarbons in environmental samples from the Canadian oil sands region. Between 2009 and 2012, hundreds of oil sands environmental samples including water (snowmelt water, river water, and tailings pond water) and sediments (from river beds and tailings ponds) have been analyzed. These samples were taken from sites where assessments of wild fish health, invertebrate communities, toxicology and detailed chemistry are being conducted as part of the Canada-Alberta Joint Oil Sands Monitoring Plan (JOSMP). This study describes the distribution patterns and potential sources of PAHs from these integrated JOSMP study sites, and findings will be linked to responses in laboratory bioassays and in wild organisms collected from these same sites. It was determined that hydrocarbons in Athabasca River sediments and waters were most likely from four sources: (1) petrogenic heavy oil sands bitumen; (2) biogenic compounds; (3) petrogenic hydrocarbons of other lighter fuel oils; and (4) pyrogenic PAHs. PAHs and biomarkers detected in snowmelt water samples collected near mining operations imply that these materials are derived from oil sands particulates (from open pit mines, stacks and coke piles).

  11. Natural (Mineral, Vegetable, Coconut, Essential) Oils and Contact Dermatitis.

    PubMed

    Verallo-Rowell, Vermén M; Katalbas, Stephanie S; Pangasinan, Julia P

    2016-07-01

    Natural oils include mineral oil with emollient, occlusive, and humectant properties and the plant-derived essential, coconut, and other vegetable oils, composed of triglycerides that microbiota lipases hydrolyze into glycerin, a potent humectant, and fatty acids (FAs) with varying physico-chemical properties. Unsaturated FAs have high linoleic acid used for synthesis of ceramide-I linoleate, a barrier lipid, but more pro-inflammatory omega-6:-3 ratios above 10:1, and their double bonds form less occlusive palisades. VCO FAs have a low linoleic acid content but shorter and saturated FAs that form a more compact palisade, more anti-inflammatory omega-6:-3 ratio of 2:1, close to 7:1 of olive oil, which disrupts the skin barrier, otherwise useful as a penetration enhancer. Updates on the stratum corneum illustrate how this review on the contrasting actions of NOs provide information on which to avoid and which to select for barrier repair and to lower inflammation in contact dermatitis genesis.

  12. Natural (Mineral, Vegetable, Coconut, Essential) Oils and Contact Dermatitis.

    PubMed

    Verallo-Rowell, Vermén M; Katalbas, Stephanie S; Pangasinan, Julia P

    2016-07-01

    Natural oils include mineral oil with emollient, occlusive, and humectant properties and the plant-derived essential, coconut, and other vegetable oils, composed of triglycerides that microbiota lipases hydrolyze into glycerin, a potent humectant, and fatty acids (FAs) with varying physico-chemical properties. Unsaturated FAs have high linoleic acid used for synthesis of ceramide-I linoleate, a barrier lipid, but more pro-inflammatory omega-6:-3 ratios above 10:1, and their double bonds form less occlusive palisades. VCO FAs have a low linoleic acid content but shorter and saturated FAs that form a more compact palisade, more anti-inflammatory omega-6:-3 ratio of 2:1, close to 7:1 of olive oil, which disrupts the skin barrier, otherwise useful as a penetration enhancer. Updates on the stratum corneum illustrate how this review on the contrasting actions of NOs provide information on which to avoid and which to select for barrier repair and to lower inflammation in contact dermatitis genesis. PMID:27373890

  13. Atmospheric concentrations of saturated and aromatic hydrocarbons around a Greek oil refinery

    NASA Astrophysics Data System (ADS)

    Kalabokas, P. D.; Hatzianestis, J.; Bartzis, J. G.; Papagiannakopoulos, P.

    Petroleum refineries are large industrial installations that are responsible for the emission of several pollutants into the atmosphere. Hydrocarbons are among the most important air pollutants that are emitted by petroleum refineries, since they are involved in almost every refinery process. The ambient air concentrations of many saturated and aromatic hydrocarbons were measured in several sites around an oil refinery, near the city of Corinth in Greece, during 1997. At the same time several meteorological parameters were also recorded. The seasonal, diurnal and spatial variations of the ambient air concentrations of these hydrocarbons were investigated and analyzed. An estimation of the contribution of the refinery to the measured atmospheric levels of hydrocarbons was also performed. The ambient air mixing ratios of the saturated and aromatic hydrocarbons in a large area outside the refinery were generally low, in ppbv range, much lower than the ambient air quality standards or the ambient air concentrations in the two largest urban centers in Greece, Athens and Thessaloniki.

  14. Alternative to heavy fuel oil firing - emulsified hydrocarbon fuel conversion considerations

    SciTech Connect

    Cirillo, A.J.; Wiggins, D.S.

    1995-12-31

    With numerous emulsified hydrocarbon fuel-based conversion projects completed in the past five years and an even greater number being considered in the near future, this bitumen-based fuel is gaining world-wide popularity. The emergence of this fuel in the international market place holds promise for restoring heavy fuel oil-based boiler units to economic service. This paper will discuss the design modifications and considerations necessary to convert heavy fuel oil fired/co-fired boiler units to emulsified hydrocarbon fuel. Included will be a discussion on the boiler, fuels handling and emission/environmental control systems. An overview of the current use/application of emulsified fuel will be provided along with a comparative listing of the emulsified hydrocarbon fuel`s chemical and physical characteristics relative to that of heavy fuel oil.

  15. Comparative Study on Accelerated Thermal Ageing of Vegetable Insulating Oil-paperboard and Mineral Oil-paperboard

    NASA Astrophysics Data System (ADS)

    Zhou, Zhu-Jun; Hu, Ting; Cheng, Lin; Tian, Kai; Yang, Jun; Wang, Xuan; Fang, Fu-Xin; Kong, Hai-Yang; Qian, Hang

    2016-05-01

    To comparatively study the insulation ageing life of vegetable insulating oil-paperboard and mineral oil-paperboard, we conducted accelerated thermal ageing experiments at 170°C. Then according to the temperature rise of vegetable insulating oil transformer, we conducted accelerated thermal ageing experiments at 150°C for vegetable insulating oil-paperboard and at 140°C for mineral oil-paperboard. The appearance, polymerization degree, and SEM microstructure of the paperboard after different ageing experiments were comparative analyzed. The results show that after the oil-paperboard system is accelerated ageing for 1 000 h at 170°C, that is equivalent to 20 years natural ageing, the structure of paperboard in vegetable insulating oil is damaged severely, which indicates that the lifetime of transformer are in the late stage; while the structure of paperboard in mineral oil maintain complete, and the polymerization degree is still above 500, which indicate that the lifetime of transformer are in the middle stage. The accelerated ageing rate of the vegetable insulating oil-paperboard system at 150°C is slower than that of the mineral oil-paperboard system, which indicates that the lifetime of the vegetable insulating oil-paperboard is longer than that of the mineral oil-paperboard.

  16. Enhancement of oil degradation by co-culture of hydrocarbon degrading and biosurfactant producing bacteria.

    PubMed

    Kumar, Manoj; Leon, Vladimir; Materano, Angela De Sisto; Ilzins, Olaf A

    2006-01-01

    In this study the biodegradation of oil by hydrocarbon degrading Pseudomonas putida in the presence of a biosurfactant-producing bacterium was investigated. The co-culture of test organisms exhibited improved degradation capacities, in a reproducible fashion, in aqueous and soil matrix in comparison to the individual bacterium culture. Results indicate that the in situ biosurfactant production not only resulted in increased emulsification of the oil but also change the adhesion of the hydrocarbon to cell surface of other bacterium. The understanding of interactions beetwen microbes may provide opportunities to further enhancement of contaminants biodegradation by making a suitable blend for bioaugmentation.

  17. Process for separating a fluid feed mixture containing hydrocarbon oil and an organic solvent

    SciTech Connect

    Bitter, J.G.A.; Haan, J.P.

    1989-03-07

    This patent describes a process for separating a fluid feed mixture containing a hydrocarbon lubricating base oil and an organic solvent selected from furfural and mixture of toluene and methyl ethyl ketone which process comprises subjecting the fluid feed mixture to reverse osmosis in a reverse osmosis zone with a membrane comprising a layer of a silicone polymer. The process provides a retentate stream having an organic solvent content higher than the feed mixture, and a permeate stream having an organic solvent content less than the amount of solvent in the feed mixture, and permits recovering hydrocarbon oil from the permeate stream.

  18. DSA Analysis of IRM Curves for Hydrocarbon Microseepage Characterization in Oil Fields From Eastern and Western Venezuela

    NASA Astrophysics Data System (ADS)

    Aldana, M.; Costanzo-Alvarez, V.; Gonzalez, C.; Gomez, L.

    2009-05-01

    During the last few years we have performed surface reservoir characterization at some Venezuelan oil fields using rock magnetic properties. We have tried to identify, at shallow levels, the "oil magnetic signature" of subjacent reservoirs. Recent data obtained from eastern Venezuela (San Juan field) emphasizes the differences between rock magnetic data from eastern and western oil fields. These results support the hypothesis of different authigenic processes. To better characterize hydrocarbon microseepage in both cases, we apply a new method to analyze IRM curves in order to find out the main magnetic phases responsible for the observed magnetic susceptibility (MS) anomalies. This alternative method is based on a Direct Signal Analysis (DSA) of the IRM in order to identify the number and type of magnetic components. According to this method, the IRM curve is decomposed as the sum of N elementary curves (modeled using the expression proposed by Robertson and France, 1994) whose mean coercivities vary in the interval of the measured magnetic field. The result is an adjusted spectral histogram from which the number of main contributions, their widths and mean coercivities, associated with the number and type of magnetic minerals, can be obtained. This analysis indicates that in western fields the main magnetic mineralogy is magnetite. Conversely in eastern fields, the MS anomalies are mainly caused by the presence of Fe sulphides (i.e. greigite). These results support the hypothesis of two different processes. In western fields a net electron transfer from the organic matter, degraded by hydrocarbon gas leakage, should occur precipitating Fe(II) magnetic minerals (e.g. magnetite). On the other hand, high concentrations of H2S at shallow depth levels, might allow the formation of secondary Fe-sulphides in eastern fields.

  19. Residues of petroleum hydrocarbons in tissues of sea turtles exposed to the IXTOC I oil spill

    USGS Publications Warehouse

    Hall, R.J.; Belisle, A.A.; Sileo, L.

    1983-01-01

    Sea turtles found dead when the Ixtoc I oil spill reached Texas waters were necropsied and tissues were analyzed for residues of petroleum hydrocarbons. Two of the three turtles were in poor flesh, but had no apparent oil-caused lesions. There was evidence of oil in all tissues examined and indications that the exposure had been chronic. Comparisons with results of studies done on birds indicate consumption of 50,000 ppm or more of oil in the diet. Some possible mechanisms of mortality are suggested.

  20. Residues of petroleum hydrocarbons in tissues of sea turtles exposed to the Ixtoc I oil spill

    SciTech Connect

    Hall, R.J.; Belisle, A.A.; Sileo, L.

    1983-04-01

    Sea turtles found dead when the Ixtoc I oil spill reached Texas waters were necropsied and tissues were analyzed for residues of petroleum hydrocarbons. Two of three turtles were in poor flesh, but had no apparent oil-caused lesions. There was evidence of oil in all tissues examined and indications that the exposure had been chronic. Comparisons with results of studies done on birds indicate consumption of 50,000 ppm or more of oil in the diet. Some possible mechanisms of mortality are suggested.

  1. Hydrocarbon accumulation on rifted Continental Margin - examples of oil migration pathways, west African salt basins

    SciTech Connect

    Blackwelder, B.W.

    1989-03-01

    Examination of the oil fields in the Gabon, Lower Congo, and Cuanza basins allows modeling of oil migration and a more accurate ranking of prospects using geologic risk factors. Oil accumulations in these basins are in strata deposited during Cretaceous rift and drift phases, thus providing a diversity of geologic settings to examine. Oil accumulations in rift deposits are located on large faulted anticlines or in truncated units atop horst features. Many of these oil fields were sourced from adjacent organic shales along short direct migration paths. In Areas where source rock is more remote to fields or to prospective structures, faulting and continuity of reservoir rock are important to the migration of hydrocarbons. Because Aptian salts separate rift-related deposits from those of the drift stage, salt evacuation and faulting of the salt residuum are necessary for oil migration from the pre-salt sequences into the post-salt section. Oil migration within post-salt strata is complicated by the presence of salt walls and faulted carbonate platforms. Hydrocarbon shows in wells drilled throughout this area provide critical data for evaluating hydrocarbon migration pathways. Such evaluation in combination with modeling and mapping of the organic-rich units, maturation, reservoir facies, structural configurations, and seals in existing fields allows assessment of different plays. Based on this information, new play types and prospective structures can be ranked with respect to geologic risk.

  2. Quantitative characterization of crude oils and fuels in mineral substrates using reflectance spectroscopy: Implications for remote sensing

    NASA Astrophysics Data System (ADS)

    Scafutto, Rebecca Del'Papa Moreira; Souza Filho, Carlos Roberto de

    2016-08-01

    The near and shortwave infrared spectral reflectance properties of several mineral substrates impregnated with crude oils (°APIs 19.2, 27.5 and 43.2), diesel, gasoline and ethanol were measured and assembled in a spectral library. These data were examined using Principal Component Analysis (PCA) and Partial Least Squares (PLS) Regression. Unique and characteristic absorption features were identified in the mixtures, besides variations of the spectral signatures related to the compositional difference of the crude oils and fuels. These features were used for qualitative and quantitative determination of the contaminant impregnated in the substrates. Specific wavelengths, where key absorption bands occur, were used for the individual characterization of oils and fuels. The intensity of these features can be correlated to the abundance of the contaminant in the mixtures. Grain size and composition of the impregnated substrate directly influence the variation of the spectral signatures. PCA models applied to the spectral library proved able to differentiate the type and density of the hydrocarbons. The calibration models generated by PLS are robust, of high quality and can also be used to predict the concentration of oils and fuels in mixtures with mineral substrates. Such data and models are employable as a reference for classifying unknown samples of contaminated substrates. The results of this study have important implications for onshore exploration and environmental monitoring of oil and fuels leaks using proximal and far range multispectral, hyperspectral and ultraespectral remote sensing.

  3. Carbazole angular dioxygenation and mineralization by bacteria isolated from hydrocarbon-contaminated tropical African soil.

    PubMed

    Salam, L B; Ilori, M O; Amund, O O; Numata, M; Horisaki, T; Nojiri, H

    2014-01-01

    Four bacterial strains isolated from hydrocarbon-contaminated soils in Lagos, Nigeria, displayed extensive degradation abilities on carbazole, an N-heterocyclic aromatic hydrocarbon. Physicochemical analyses of the sampling sites (ACPP, MWO, NESU) indicate gross pollution of the soils with a high hydrocarbon content (157,067.9 mg/kg) and presence of heavy metals. Phylogenetic analysis of the four strains indicated that they were identified as Achromobacter sp. strain SL1, Pseudomonas sp. strain SL4, Microbacterium esteraromaticum strain SL6, and Stenotrophomonas maltophilia strain BA. The rates of degradation of carbazole by the four isolates during 30 days of incubation were 0.057, 0.062, 0.036, and 0.050 mg L(-1) h(-1) for strains SL1, SL4, SL6, and BA. Gas chromatographic (GC) analyses of residual carbazole after 30 days of incubation revealed that 81.3, 85, 64.4, and 76 % of 50 mg l(-1) carbazole were degraded by strains SL1, SL4, SL6, and BA, respectively. GC-mass spectrometry and high-performance liquid chromatographic analyses of the extracts from the growing and resting cells of strains SL1, SL4, and SL6 cultured on carbazole showed detection of anthranilic acid and catechol while these metabolites were not detected in strain BA under the same conditions. This study has established for the first time carbazole angular dioxygenation and mineralization by isolates from African environment.

  4. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers.

    PubMed

    Tuomi, Pirjo M; Salminen, Jani M; Jørgensen, Kirsten S

    2004-12-27

    In this study, we evaluated whether the abundance of the functional gene nahAc reflects aerobic naphthalene degradation potential in subsurface and surface samples taken from three petroleum hydrocarbon contaminated sites in southern Finland. The type of the contamination at the sites varied from lightweight diesel oil to high molecular weight residuals of crude oil. Samples were collected from both oxic and anoxic soil layers. The naphthalene dioxygenase gene nahAc was quantified using a replicate limiting dilution-polymerase chain reaction (RLD-PCR) method with a degenerate primer pair. In the non-contaminated samples nahAc genes were not detected. In the petroleum hydrocarbon-contaminated oxic soil samples nahAc gene abundance [range 3 x 10(1)-9 x 10(4) copies (g dry wt soil)(-1)] was correlated (Kendall non-parametric correlation r2=0.459, p<0.01) with the aerobic 14C-naphthalene mineralization potential (range 1 x 10(-5)-0.1 d(-1)) measured in microcosms at in situ temperatures (8 degrees C for subsurface and 20 degrees C for surface soil samples). In these samples nahAc gene abundance was also correlated with total microbial cell counts (r2=0.471, p<0.01), respiration rate (r2=0.401, p<0.01) and organic matter content (r2=0.341, p<0.05). NahAc genes were amplified from anoxic soil layers indicating that, although involved in aerobic biodegradation of naphthalene, these genes or related sequences were also present in the anoxic subsurface. In the samples taken from the anoxic layers, the aerobic 14C-naphthalene mineralization rates were not correlated with nahAc gene abundance. In conclusion, current sequence information provides the basis for a robust tool to estimate the naphthalene degradation potential at oxic zones of different petroleum hydrocarbon-contaminated sites undergoing in situ bioremediation. PMID:16329859

  5. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    PubMed

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. PMID:20602990

  6. Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons.

    PubMed

    Isaacman, Gabriel; Chan, Arthur W H; Nah, Theodora; Worton, David R; Ruehl, Chris R; Wilson, Kevin R; Goldstein, Allen H

    2012-10-01

    Motor oil serves as a useful model system for atmospheric oxidation of hydrocarbon mixtures typical of anthropogenic atmospheric particulate matter, but its complexity often prevents comprehensive chemical speciation. In this work we fully characterize this formerly "unresolved complex mixture" at the molecular level using recently developed soft ionization gas chromatography techniques. Nucleated motor oil particles are oxidized in a flow tube reactor to investigate the relative reaction rates of observed hydrocarbon classes: alkanes, cycloalkanes, bicycloalkanes, tricycloalkanes, and steranes. Oxidation of hydrocarbons in a complex aerosol is found to be efficient, with approximately three-quarters (0.72 ± 0.06) of OH collisions yielding a reaction. Reaction rates of individual hydrocarbons are structurally dependent: compared to normal alkanes, reaction rates increased by 20-50% with branching, while rates decreased ∼20% per nonaromatic ring present. These differences in rates are expected to alter particle composition as a function of oxidation, with depletion of branched and enrichment of cyclic hydrocarbons. Due to this expected shift toward ring-opening reactions heterogeneous oxidation of the unreacted hydrocarbon mixture is less likely to proceed through fragmentation pathways in more oxidized particles. Based on the observed oxidation-induced changes in composition, isomer-resolved analysis has potential utility for determining the photochemical age of atmospheric particulate matter with respect to heterogeneous oxidation.

  7. Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances.

    PubMed

    Pinedo, J; Ibáñez, R; Lijzen, J P A; Irabien, Á

    2013-11-30

    Different oil products like gasoline, diesel or heavy oils can cause soil contamination. The assessment of soils exposed to oil products can be conducted through the comparison between a measured concentration and an intervention value (IV). Several national policies include the IV based on the so called total petroleum hydrocarbons (TPH) measure. However, the TPH assessment does not indicate the individual substances that may produce contamination. The soil quality assessment can be improved by including common hazardous compounds as polycyclic aromatic hydrocarbons (PAHs) and aromatic volatile hydrocarbons like benzene, toluene, ethylbenzene and xylenes (BTEX). This study, focused on 62 samples collected from different sites throughout The Netherlands, evaluates TPH, PAH and BTEX concentrations in soils. Several indices of pollution are defined for the assessment of individual variables (TPH, PAH, B, T, E, and X) and multivariables (MV, BTEX), allowing us to group the pollutants and simplify the methodology. TPH and PAH concentrations above the IV are mainly found in medium and heavy oil products such as diesel and heavy oil. On the other hand, unacceptable BTEX concentrations are reached in soils contaminated with gasoline and kerosene. The TPH assessment suggests the need for further action to include lighter products. The application of multivariable indices allows us to include these products in the soil quality assessment without changing the IV for TPH. This work provides useful information about the soil quality assessment methodology of oil products in soils, focussing the analysis into the substances that mainly cause the risk.

  8. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    SciTech Connect

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  9. Migration of mineral hydrocarbons into foods. 4. Waxed paper for packaging dry goods including bread, confectionery and for domestic use including microwave cooking.

    PubMed

    Castle, L; Nichol, J; Gilbert, J

    1994-01-01

    Retail samples of dry goods (bread, biscuits and breakfast cereals) packaged in waxed paper were examined for the presence of mineral hydrocarbon wax. Bread loaves contained up to 50 mg/kg of the wax (associated with the outer surfaces) and crackers up to 185 mg/kg. Mineral oil was found in bread samples, at up to 550 mg/kg and was dispersed throughout indicating its use in food processing machinery as the likely source. Retail confectionery products wrapped in waxed paper (containing 12-44% w/w) gave rise to levels of 12-1300 mg/kg mineral hydrocarbon in the individually wrapped sweets. Migration into boiled sweets was lowest at 10-130 mg/kg, whilst soft chews and toffee products contained 110-1300 mg/kg. The distribution of wax hydrocarbons (principally n-alkanes) in the confectionery coincided exactly with that for the paper wrapping, with a range of C23 to C33 (95% material) centred around C26. This indicated that the transfer to the food occurred largely by adhesion rather than by diffusion since the latter would be expected to favour preferential migration of the low molecular weight components. In simulated home-use experiments with waxed bags sold in the United States for domestic use, migration into sandwiches and cake amounted to 40 mg/kg (1% transfer of wax). Use of these waxed bags in the microwave oven (as recommended) gave rise to contamination of foods from 210 to 1650 mg/kg (up to 60% transfer of wax).

  10. Influence of mineral matter on pyrolysis of palm oil wastes

    SciTech Connect

    Yang, Haiping; Chen, Hanping; Zheng, Chuguang; Yan, Rong; Lee, Dong Ho; Liang, David Tee

    2006-09-15

    The influence of mineral matter on pyrolysis of biomass (including pure biomass components, synthesized biomass, and natural biomass) was investigated using a thermogravimetric analyzer (TGA). First, the mineral matter, KCl, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, CaMg(CO{sub 3}){sub 2}, Fe{sub 2}O{sub 3}, and Al{sub 2}O{sub 3}, was mixed respectively with the three main biomass components (hemicellulose, cellulose, and lignin) at a weight ratio (C/W) of 0.1 and its pyrolysis characteristics were investigated. Most of these mineral additives, except for K{sub 2}CO{sub 3}, demonstrated negligible influence. Adding K{sub 2}CO{sub 3} inhibited the pyrolysis of hemicellulose by lowering its mass loss rate by 0.3 wt%/{sup o}C, while it enhanced the pyrolysis of cellulose by shifting the pyrolysis to a lower temperature. With increased K{sub 2}CO{sub 3} added, the weight loss of cellulose in the lower temperature zone (200-315 {sup o}C) increased greatly, and the activation energies of hemicellulose and cellulose pyrolysis decreased notably from 204 to 42 kJ/mol. Second, studies on the synthetic biomass of hemicellulose, cellulose, lignin, and K{sub 2}CO{sub 3} (as a representative of minerals) indicated that peaks of cellulose and hemicellulose pyrolysis became overlapped with addition of K{sub 2}CO{sub 3} (at C/W=0.05-0.1), due to the catalytic effect of K{sub 2}CO{sub 3} lowering cellulose pyrolysis to a lower temperature. Finally, a local representative biomass--palm oil waste (in the forms of original material and material pretreated through water washing or K{sub 2}CO{sub 3} addition)--was studied. Water washing shifted pyrolysis of palm oil waste to a higher temperature by 20 {sup o}C, while K{sub 2}CO{sub 3} addition lowered the peak temperature of pyrolysis by {approx}50{sup o}C. It was therefore concluded that the obvious catalytic effect of adding K{sub 2}CO{sub 3} might be attributed to certain fundamental changes in terms of chemical structure of

  11. Detection of polycyclic aromatic hydrocarbons (PAHs) in raw menhaden fish oil using fluorescence spectroscopy: Method development.

    PubMed

    Pena, Edwin A; Ridley, Lauren M; Murphy, Wyatt R; Sowa, John R; Bentivegna, Carolyn S

    2015-09-01

    Raw menhaden fish oil was developed for biomonitoring polycyclic aromatic hydrocarbons (PAHs) using fluorescence spectroscopy. Menhaden (Genus Brevoortia) were collected in 2010 and/or 2011 from Delaware Bay, New Jersey, USA; James River, Virginia, USA; Vermillion Bay, Louisiana, USA (VBLA); and Barataria Bay, Louisiana, USA (BBLA). Barataria Bay, Louisiana received heavy oiling from the Deepwater Horizon oil spill. Method development included determining optimal wavelengths for PAH detection, fish oil matrix interferences, and influence of solvent concentration on extraction. Results showed that some fish oils contained high molecular weight PAH-like compounds in addition to other fluorescent compounds such as albumin and vitamin A and vitamin E. None of these naturally occurring compounds interfered with detection of high molecular weight PAHs. However, data suggested that the lipid component of fish oil was altering fluorescence spectra by supporting the formation of PAH excimers. For example, the most intense excitation wavelength for hydroxypyrene shifted from Ex285/Em430 to Ex340/Em430. Comparison of Deepwater Horizon crude oil and fish oil spectra indicated that some fish oils contained crude oil-like PAHs. Using wavelengths of Ex360/Em430, fish oil concentrations were calculated as 3.92 μg/g, 0.61 μg/g, and 0.14 μg/g for a Delaware Bay sample, BBLA 2011, and VBLA 2011, respectively. Overall, these results supported using menhaden fish oil to track PAH exposures spatially and temporally.

  12. Detection of polycyclic aromatic hydrocarbons (PAHs) in raw menhaden fish oil using fluorescence spectroscopy: Method development.

    PubMed

    Pena, Edwin A; Ridley, Lauren M; Murphy, Wyatt R; Sowa, John R; Bentivegna, Carolyn S

    2015-09-01

    Raw menhaden fish oil was developed for biomonitoring polycyclic aromatic hydrocarbons (PAHs) using fluorescence spectroscopy. Menhaden (Genus Brevoortia) were collected in 2010 and/or 2011 from Delaware Bay, New Jersey, USA; James River, Virginia, USA; Vermillion Bay, Louisiana, USA (VBLA); and Barataria Bay, Louisiana, USA (BBLA). Barataria Bay, Louisiana received heavy oiling from the Deepwater Horizon oil spill. Method development included determining optimal wavelengths for PAH detection, fish oil matrix interferences, and influence of solvent concentration on extraction. Results showed that some fish oils contained high molecular weight PAH-like compounds in addition to other fluorescent compounds such as albumin and vitamin A and vitamin E. None of these naturally occurring compounds interfered with detection of high molecular weight PAHs. However, data suggested that the lipid component of fish oil was altering fluorescence spectra by supporting the formation of PAH excimers. For example, the most intense excitation wavelength for hydroxypyrene shifted from Ex285/Em430 to Ex340/Em430. Comparison of Deepwater Horizon crude oil and fish oil spectra indicated that some fish oils contained crude oil-like PAHs. Using wavelengths of Ex360/Em430, fish oil concentrations were calculated as 3.92 μg/g, 0.61 μg/g, and 0.14 μg/g for a Delaware Bay sample, BBLA 2011, and VBLA 2011, respectively. Overall, these results supported using menhaden fish oil to track PAH exposures spatially and temporally. PMID:25867932

  13. Microbial communities involved in methane production from hydrocarbons in oil sands tailings.

    PubMed

    Siddique, Tariq; Penner, Tara; Klassen, Jonathan; Nesbø, Camilla; Foght, Julia M

    2012-09-01

    Microbial metabolism of residual hydrocarbons, primarily short-chain n-alkanes and certain monoaromatic hydrocarbons, in oil sands tailings ponds produces large volumes of CH(4) in situ. We characterized the microbial communities involved in methanogenic biodegradation of whole naphtha (a bitumen extraction solvent) and its short-chain n-alkane (C(6)-C(10)) and BTEX (benzene, toluene, ethylbenzene, and xylenes) components using primary enrichment cultures derived from oil sands tailings. Clone libraries of bacterial 16S rRNA genes amplified from these enrichments showed increased proportions of two orders of Bacteria: Clostridiales and Syntrophobacterales, with Desulfotomaculum and Syntrophus/Smithella as the closest named relatives, respectively. In parallel archaeal clone libraries, sequences affiliated with cultivated acetoclastic methanogens (Methanosaetaceae) were enriched in cultures amended with n-alkanes, whereas hydrogenotrophic methanogens (Methanomicrobiales) were enriched with BTEX. Naphtha-amended cultures harbored a blend of these two archaeal communities. The results imply syntrophic oxidation of hydrocarbons in oil sands tailings, with the activities of different carbon flow pathways to CH(4) being influenced by the primary hydrocarbon substrate. These results have implications for predicting greenhouse gas emissions from oil sands tailings repositories.

  14. EARLY WARNING MARINE WATER SUPPLY PROTECTION STRATEGY: THE THREAT OF OIL SPILL (PETROLEUM HYDROCARBON) CONTAMINATION

    EPA Science Inventory

    Oil spills resulting from the twice-grounded freighter New Carissa on the Central Oregon coast in the spring of 1999 caused substantial concern regarding potential petroleum hydrocarbon (PHC) contamination of Coos Bay, Alsea Bay and Yaquina Bay estuaries and resident seawater fac...

  15. Removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay mineral: Bentonite.

    PubMed

    Karaca, Gizem; Baskaya, Hüseyin S; Tasdemir, Yücel

    2016-01-01

    There has been limited study of the removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay minerals. Determining the amount of PAH removal is important in predicting their environmental fate. This study was carried out to the degradation and evaporation of PAHs from bentonite, which is an inorganic clay mineral. UV apparatus was designed specifically for the experiments. The impacts of temperature, UV, titanium dioxide (TiO2), and diethylamine (DEA) on PAH removal were determined. After 24 h, 75 and 44 % of ∑12 PAH in the bentonite were removed with and without UV rays, respectively. DEA was more effective as a photocatalyst than TiO2 during UV application. The ∑12 PAH removal ratio reached 88 % with the addition of DEA to the bentonite. It was concluded that PAHs were photodegraded at high ratios when the bentonite samples were exposed to UV radiation in the presence of a photocatalyst. At the end of all the PAH removal applications, higher evaporation ratios were obtained for 3-ring compounds than for heavier ones. More than 60 % of the amount of ∑12 PAH evaporated consisted of 3-ring compounds.

  16. First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water.

    PubMed

    Gros, Jonas; Nabi, Deedar; Würz, Birgit; Wick, Lukas Y; Brussaard, Corina P D; Huisman, Johannes; van der Meer, Jan R; Reddy, Christopher M; Arey, J Samuel

    2014-08-19

    During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.

  17. Hydrocarbons in oil residues on beaches of islands of Prince William Sound, Alaska

    USGS Publications Warehouse

    Kvenvolden, K.A.; Hostettler, F.D.; Rapp, J.B.; Carlson, P.R.

    1993-01-01

    Aliphatic and aromatic hydrocarbons were measured on oil residues from beaches on six islands in Prince William Sound, Alaska. In addition to altered products from the Exxon Valdez oil spill of 1989, we also found, at two widely separated locations, residues that are similar to each other but chemically distinct from the spilled oil. Terpanes, steranes, monoaromatic steranes, and carbon isotopic compositions of total extracts were most useful in correlating the altered products of the spilled oil. These same parameters revealed that the two non-Valdez samples are likely residues of oil originally produced in California. The results indicate that oil residues currently on the beaches of this estuary have at least two quite different origins.

  18. Restoration and source identification of polycyclic aromatic hydrocarbons after the Wu Yi San oil spill, Korea.

    PubMed

    Jang, Yu Lee; Lee, Hyo Jin; Jeong, He Jin; Park, Shin Yeong; Yang, Won Ho; Kim, Heung-Yun; Kim, Gi Beum

    2016-10-15

    On January 31, 2014, an oil spill accident occurred in Yeosu, South Korea. A total 800-899kl of oil from the pipeline was spilled into the sea. After the oil spill, the KIOST (Korea Institute of Ocean Science & Technology) researched PAHs (polycyclic aromatic hydrocarbons) in various media, but sedimentary PAHs were not analyzed despite their longer persistency than in other media. Therefore, this study examined PAH levels in intertidal sediments around Gwangyang Bay and identified PAH sources using oil fingerprinting. PAH residual levels showed a dramatic decrease during the four months after the accident and then remained at a relatively constant level. Analysis through regression equations indicate that this study area is likely to be restored to the PAH levels prior to the accident. Furthermore, the source analysis and oil fingerprinting analysis showed that PAH contamination in this study was unlikely to have originated from the spilled oil.

  19. Weathering and toxicity of marine sediments contaminated with oils and polycyclic aromatic hydrocarbons.

    PubMed

    Jonker, Michiel T O; Brils, Jos M; Sinke, Anja J C; Murk, Albertinka J; Koelmans, Albert A

    2006-05-01

    Many sediments are contaminated with mixtures of oil residues and polycyclic aromatic hydrocarbons (PAHs), but little is known about the toxicity of such mixtures to sediment-dwelling organisms and the change in toxicity on weathering. In the present study, we investigated the effects of a seminatural, two-year weathering period on PAH/oil chemistry and toxicity in a marine sediment that had been spiked with three different oils (a gas oil, a lubricating oil, and a crude oil; all tested at five concentrations). Toxicity of bioavailable, pore water-accommodated oil/PAH fractions was quantified using a bacterial (Vibrio fischeri) assay and the in vitro chemical-activated luciferase expression assay (DR-CALUX; using conditions to detect PAHs). Results of chemical analyses pointed to (microbial) degradation of all three oils: Sediment oxygen demand during weathering increased with increasing oil concentration, total oil concentrations decreased to between 17 and 29% of initial levels, and resolved n-alkanes were depleted in weathered oil fractions. Furthermore, a shift in the relative importance of different boiling-point fraction ranges of the oils was observed on weathering. Generally, the lowest fraction range (C10-C16) disappeared, whereas the relative proportion of the highest (C28-C40) fraction range increased considerably. Remarkably, for the gas oil, this fraction shift was dependent on the oil concentration in sediment. Similarly, degradation of PAHs was strongly affected by the sedimentary oil content, indicating that the presence of oil stimulated PAH degradation. This phenomenon applied to both low- and high-molecular-weight PAHs, although the first group (3- and 4-ring PAHs) was degraded most. Results from the V. fischeri and DR-CALUX assay showed that in most cases, pore-water toxicity decreased on weathering. Combining the assay responses with chemical data indicated that the observed toxicity probably was not caused by the analyzed PAHs but, rather, by

  20. Effectiveness of various organometallics as antiwear additives in mineral oil

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    Sliding friction experiments were conducted with 1045 steel contacting 302 stainless steel and lubricated with various organometallics in mineral oil. Auger emission spectroscopy was used to determine the element present in the wear contact zone. The results indicate that there are organometallics which are as effective an antiwear additives as the commonly used zinc dialkyl dithiophosphate. These include dimethyl cadmium, triphenyl lead thiomethoxide, and triphenyl tin chloride. The additives were examined in concentrations to 1 weight percent. With dimethyl cadmium at concentrations of 0.5 weight percent and above, cadmium was detected in the contact zone. Coincident with the detection of cadmium, a marked decrease in the friction coefficient was observed. All additives examined reduced friction, but only the aforementioned reduced wear to a level comparable to that observed with zinc dialkyl dithiophosphate.

  1. 25 CFR 227.10 - Minerals other than oil and gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Minerals other than oil and gas. 227.10 Section 227.10 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING How to Acquire Leases §...

  2. 25 CFR 227.10 - Minerals other than oil and gas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Minerals other than oil and gas. 227.10 Section 227.10 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING How to Acquire Leases §...

  3. 25 CFR 227.10 - Minerals other than oil and gas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Minerals other than oil and gas. 227.10 Section 227.10 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING How to Acquire Leases §...

  4. Cavitation pitting and erosion of Al 6061-T6 in mineral oil and water

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1983-01-01

    The authors are currently carrying out a study of the cavitation erosion of different bearing metals and alloys in mineral oils were studied. The variations of weight loss, the pit diameter and depth due to cavitation erosion on Al 6061-T6 in mineral oil and water are presented.

  5. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    PubMed

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation. PMID:24532465

  6. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    PubMed

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

  7. Polycyclic aromatic hydrocarbons in spanish olive oils: relationship between benzo(a)pyrene and total polycyclic aromatic hydrocarbon content.

    PubMed

    Rodríguez-Acuña, Rafael; del Carmen Pérez-Camino, María; Cert, Arturo; Moreda, Wenceslao

    2008-11-12

    Samples of Spanish virgin olive oils (VOOs) from different categories, origins, varieties, and commercial brands were analyzed by HPLC with a programmable fluorescence detector to determine the content of nine heavy polycyclic aromatic hydrocarbons (PAHs): benzo(a)anthracene, chrysene, benzo(e)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perilene, and indeno(1,2,3-c,d)pyrene. Samples of olive pomace and crude olive pomace oils were also investigated. Benzo(a)pyrene concentrations were below the allowed limit in the European Union (2 microg/kg) in 97% of the VOO samples. Only those samples coming from contaminated olive fruits or obtained in oil mills with highly polluted environments exceeded this value. High correlation coefficients (<0.99) were obtained between the contents of benzo(a)pyrene and the sum of the nine PAHs for all of the analyzed categories, suggesting that benzo(a)pyrene could be used as a marker of the content of these nine PAHs in olive oils.

  8. Interactions between Zooplankton and Crude Oil: Toxic Effects and Bioaccumulation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Almeda, Rodrigo; Wambaugh, Zoe; Wang, Zucheng; Hyatt, Cammie; Liu, Zhanfei; Buskey, Edward J.

    2013-01-01

    We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1) the effects of crude oil (Louisiana light sweet oil) on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in mesozooplankton communities, (2) the lethal effects of dispersant (Corexit 9500A) and dispersant-treated oil on mesozooplankton, (3) the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4) the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L−1 in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20), dispersant (0.25 µl L−1) and dispersant- treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L−1) to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments. PMID:23840628

  9. Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons.

    PubMed

    Almeda, Rodrigo; Wambaugh, Zoe; Wang, Zucheng; Hyatt, Cammie; Liu, Zhanfei; Buskey, Edward J

    2013-01-01

    We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1) the effects of crude oil (Louisiana light sweet oil) on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in mesozooplankton communities, (2) the lethal effects of dispersant (Corexit 9500A) and dispersant-treated oil on mesozooplankton, (3) the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4) the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L(-1) in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20), dispersant (0.25 µl L(-1)) and dispersant-treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L(-1)) to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments. PMID:23840628

  10. Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons.

    PubMed

    Almeda, Rodrigo; Wambaugh, Zoe; Wang, Zucheng; Hyatt, Cammie; Liu, Zhanfei; Buskey, Edward J

    2013-01-01

    We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1) the effects of crude oil (Louisiana light sweet oil) on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in mesozooplankton communities, (2) the lethal effects of dispersant (Corexit 9500A) and dispersant-treated oil on mesozooplankton, (3) the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4) the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L(-1) in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20), dispersant (0.25 µl L(-1)) and dispersant-treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L(-1)) to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments.

  11. Separating wax from hydrocarbon mixture boiling in the lubricating oil range

    SciTech Connect

    Ryan, D.G.; Cerkanowicz, A.E.; Chimenti, R.J.L.; Mintz, D.J.

    1986-12-09

    A method is described of pretreating a hydrocarbon oil mixture bailing in the lubricating oil range and containing dissolved wax, comprising the steps of reducing the solubility for the wax so as to cause dissolved wax in the oil to form a dispersion of wax particles in the oil mixture and introducing free excess charge which is net unipolar into the oil mixture, whereby wax particle agglomeration and particle size growth occurs. A method is also described wherein a first oil solvent liquid is added to the waxy oil mixture to form an admixture, the admixture is cooled to the cloud point of the admixture in the absence of any introduced free excess charge. Then a second oil solvent liquid is added to the admixture. The second oil solvent liquid a lower solubility for wax than for the admixture, so as to cause the wax to precipitate as wax particles. The free excess charge is introduced into the admixture of waxy oil mixture and first and second oil solvents, to bring about agglomeration and growth of the precipitated wax particles.

  12. [Rapid quantitative analysis of hydrocarbon composition of furfural extract oils using attenuated total reflection infrared spectroscopy].

    PubMed

    Li, Na; Yuan, Hong-Fu; Hu, Ai-Qin; Liu, Wei; Song, Chun-Feng; Li, Xiao-Yu; Song, Yi-Chang; He, Qi-Jun; Liu, Sha; Xu, Xiao-Xuan

    2014-07-01

    A set of rapid analysis system for hydrocarbon composition of heavy oils was designed using attenuated total reflection FTIR spectrometer and chemometrics to determine the hydrocarbon composition of furfural extract oils. Sixty two extract oil samples were collected and their saturates and aromatics content data were determined according to the standard NB/SH/T0509-2010, then the total contents of resins plus asphaltenes were calculated by the subtraction method in the percentage of weight. Based on the partial least squares (PLS), calibration models for saturates, aromatics, and resin+asphaltene contents were established using attenuated total reflection FTIR spectroscopy, with their SEC, 1.43%, 0.91% and 1.61%, SEP, 1.56%, 1.24% and 1.81%, respectively, meeting the accuracy and repeatability required for the standard. Compared to the present standard method, the efficiency of hydrocarbon composition analysis for furfural extract oils is significantly improved by the new method which is rapid and simple. The system could also be used for other heavy oil analysis, with excellent extension and application foreground.

  13. 25 CFR 212.43 - Royalty rates for minerals other than oil and gas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Royalty rates for minerals other than oil and gas. 212.43 Section 212.43 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations, and Appeals § 212.43 Royalty...

  14. 25 CFR 212.43 - Royalty rates for minerals other than oil and gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Royalty rates for minerals other than oil and gas. 212.43 Section 212.43 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations, and Appeals § 212.43 Royalty...

  15. Influence of crude oil cracking on distribution of hydrocarbons in the Earth's interior (experimental data)

    NASA Astrophysics Data System (ADS)

    Balitsky, V. S.; Balitskaya, L. V.; Penteley, S. V.; Novikova, M. A.

    2012-02-01

    The compositions and phase conditions of water-hydrocarbon fluids in synthetic quartz inclusions were studied by the methods of microthermometry, local IR spectroscopy, and gas-liquid chromatography. Synthetic quartz was grown in near-neutral fluoride, low-alkali bicarbonate, and alkali carbonate solutions with crude oil and its major fractions. The crystals with fluid inclusions were grown under thermal gradient conditions at relatively low temperatures (240-280°C) and pressures (6-45 MPa). After the study, the inclusions of grown crystals were subject to thermal processing in autoclaves at 350-380°C and 80-125 MPa. As a result, the initial water-hydrocarbon inclusions underwent significant changes. Hydrocarbon gases, largely methane and residual solid bitumens, appeared in their composition; the gasoline-kerosene fraction content increased substantially in liquid hydrocarbons (HCs). These changes are caused, first of all, by crude oil cracking, which is manifested already at 330°C and attains its maximum activity at 350-500°C (pressure of saturated vapor and higher). In natural conditions with increase in depths and, thus, the thermobaric parameters, this process is inevitable. According to the obtained experimental data, this very phenomenon and the existence of real thermal and baric gradients in the Earth's interior provide for the formation of vertical zoning in the distribution of hydrocarbon deposits of different types.

  16. Bioaccumulation of petroleum hydrocarbons in arctic amphipods in the oil development area of the Alaskan Beaufort Sea.

    PubMed

    Neff, Jerry M; Durell, Gregory S

    2012-04-01

    An objective of a multiyear monitoring program, sponsored by the US Department of the Interior, Bureau of Ocean Energy Management was to examine temporal and spatial changes in chemical and biological characteristics of the Arctic marine environment resulting from offshore oil exploration and development activities in the development area of the Alaskan Beaufort Sea. To determine if petroleum hydrocarbons from offshore oil operations are entering the Beaufort Sea food web, we measured concentrations of hydrocarbons in tissues of amphipods, Anonyx nugax, sediments, Northstar crude oil, and coastal peat, collected between 1999 and 2006 throughout the development area. Mean concentrations of polycyclic aromatic hydrocarbons (PAH), saturated hydrocarbons (SHC), and sterane and triterpane petroleum biomarkers (StTr) were not significantly different in amphipods near the Northstar oil production facility, before and after it came on line in 2001, and in amphipods from elsewhere in the study area. Forensic analysis of the profiles (relative composition and concentrations) of the 3 hydrocarbon classes revealed that hydrocarbon compositions were different in amphipods, surface sediments where the amphipods were collected, Northstar crude oil, and peat from the deltas of 4 North Slope rivers. Amphipods and sediments contained a mixture of petrogenic, pyrogenic, and biogenic PAH. The SHC in amphipods were dominated by pristane derived from zooplankton, indicating that the SHC were primarily from the amphipod diet of zooplankton detritus. The petroleum biomarker StTr profiles did not resemble those in Northstar crude oil. The forensic analysis revealed that hydrocarbons in amphipod tissues were not from oil production at Northstar. Hydrocarbons in amphipod tissues were primarily from their diet and from river runoff and coastal erosion of natural diagenic and fossil terrestrial materials, including seep oils, kerogens, and peat. Offshore oil and gas exploration and development

  17. Expelling of hydrocarbon in undercompacted oil-source rocks

    SciTech Connect

    Zhou, Guojun ); Chen, Fajing )

    1994-08-01

    The clay of source rocks below a certain depth is generally undercompacted. Historical analysis of undercompacted EK2 mudstone in the Huang Hua depression, North China basin, has shown that the peak of the undercompacted zone decreases under a certain depth, mainly due to development of a microfracture caused by abnormally high pressure. Based on the compaction history of mudstones and the hydraulic fracturing condition in this area, the depth of the microfracture developed in the EK2 undercompacted zone is calculated at 2900 m, which is also verified by fluorescence data. Geochemical evidence has also shown that many hydrocarbons are expelled under 2900 m.

  18. Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Isaacman, G.; Chan, A. W.; Nah, T.; Worton, D. R.; Ruehl, C.; Kolesar, K. R.; Cappa, C. D.; Wilson, K. R.; Goldstein, A. H.

    2012-12-01

    Motor oil serves as a useful model system for atmospheric oxidation of hydrocarbon mixtures typical of anthropogenic atmospheric particulate matter, but its complexity often prevents comprehensive chemical speciation. In this work we fully characterize this formerly "unresolved complex mixture" at the molecular level using two-dimensional gas chromatography with vacuum-ultraviolet ionization and high resolution time-of-flight mass spectrometry (GCxGC/VUV-HRTOFMS). This "soft" ionization technique allows us to classify compounds by carbon number, cyclization, and branching, resolving 80-90% of hydrocarbon mass in petroleum fuels. Nucleated motor oil (15W-40) particles were oxidized by OH radicals in a flow tube reactor and the oxidative decay and transformations of straight, branched, cyclic, and polycyclic alkanes were measured using high resolution analysis. Oxidation of hydrocarbons in a complex aerosol is found to be efficient and steady, with approximately three-quarters (0.72 ± 0.06) of OH collisions yielding a reaction. Reaction rates of individual hydrocarbons are structurally dependent: compared to normal alkanes, reaction rates increased by 20-50% with branching, while rates decreased ~20% per non-aromatic ring present. These differences in rates will alter particle composition as a function of oxidation, with depletion of branched and enrichment of cyclic hydrocarbons. Compositional changes in turn influence oxidation pathways, since functionalization reactions are more prevalent with cyclic compounds. The GCxGC plane provides separation by parameters typically used in current models (volatility and polarity) so is used to explore changes in oxidation mechanisms of motor oil. Estimates of fragmentation and functionalization of this complex hydrocarbon mixture are compared to simple model compounds based on movement in the chromatographic plane.

  19. Photo-assisted removal of fuel oil hydrocarbons from wood and concrete.

    PubMed

    Popova, Inna E; Kozliak, Evguenii I

    2008-08-01

    A novel photo-treatment to decontaminate building structural elements polluted with fuel oil hydrocarbons as a result of spillage and/or a catastrophic flood was examined. A proof-of-concept study evaluating the photocatalytic removal of hydrocarbons (n-hexadecane and fuel oil #2) from contaminated wood (southern yellow pine) and concrete was conducted using scintillation counting (with (14)C-labeled n-hexadecane) and gas chromatography. Contaminated samples were irradiated by UV or fluorescent light in the absence or presence of a photocatalyst, TiO(2). As a result of the treatment, under various scenarios, up to 80-98% of the originally applied n-hexadecane was removed, within a wide range of contaminant concentrations (4-250 mg/g wood). The essential treatment time increased from 1-7 days for low concentrations to several weeks for high concentrations. Mass balance experiments showed that the only product formed from (14)C-labeled n-hexadecane in detectable amounts was (14)CO(2). For low amounts of applied hydrocarbon (4-20 mg/g wood), the overall process rate was limited by the contaminant transport/mobility whereas for high n-hexadecane concentrations (150-250 mg/g, corresponding to 50-80% filling of wood pores), the key factor was the photochemical reaction. Photodegradation experiments conducted with standard heating fuel oil #2 (a representative real-world contaminant) resulted in a significant (up to 80%) photochemical removal of mid-size hydrocarbons (C(13)-C(17)) in 3 weeks whereas heavier hydrocarbons (> C(17)) were not affected; light hydrocarbons (< C(12)) were removed by evaporation. These results point toward a promising technique to reclaim wooden and concrete structures contaminated with semi-volatile chemicals. PMID:18584429

  20. Recurrent oil sheens at the deepwater horizon disaster site fingerprinted with synthetic hydrocarbon drilling fluids.

    PubMed

    Aeppli, Christoph; Reddy, Christopher M; Nelson, Robert K; Kellermann, Matthias Y; Valentine, David L

    2013-08-01

    We used alkenes commonly found in synthetic drilling-fluids to identify sources of oil sheens that were first observed in September 2012 close to the Deepwater Horizon (DWH) disaster site, more than two years after the Macondo well (MW) was sealed. While explorations of the sea floor by BP confirmed that the well was sound, they identified the likely source as leakage from an 80-ton cofferdam, abandoned during the operation to control the MW in May 2010. We acquired sheen samples and cofferdam oil and analyzed them using comprehensive two-dimensional gas chromatography. This allowed for the identification of drilling-fluid C16- to C18-alkenes in sheen samples that were absent in cofferdam oil. Furthermore, the spatial pattern of evaporative losses of sheen oil alkanes indicated that oil surfaced closer to the DWH wreckage than the cofferdam site. Last, ratios of alkenes and oil hydrocarbons pointed to a common source of oil found in sheen samples and recovered from oil-covered DWH debris collected shortly after the explosion. These lines of evidence suggest that the observed sheens do not originate from the MW, cofferdam, or from natural seeps. Rather, the likely source is oil in tanks and pits on the DWH wreckage, representing a finite oil volume for leakage. PMID:23799238

  1. Recurrent oil sheens at the deepwater horizon disaster site fingerprinted with synthetic hydrocarbon drilling fluids.

    PubMed

    Aeppli, Christoph; Reddy, Christopher M; Nelson, Robert K; Kellermann, Matthias Y; Valentine, David L

    2013-08-01

    We used alkenes commonly found in synthetic drilling-fluids to identify sources of oil sheens that were first observed in September 2012 close to the Deepwater Horizon (DWH) disaster site, more than two years after the Macondo well (MW) was sealed. While explorations of the sea floor by BP confirmed that the well was sound, they identified the likely source as leakage from an 80-ton cofferdam, abandoned during the operation to control the MW in May 2010. We acquired sheen samples and cofferdam oil and analyzed them using comprehensive two-dimensional gas chromatography. This allowed for the identification of drilling-fluid C16- to C18-alkenes in sheen samples that were absent in cofferdam oil. Furthermore, the spatial pattern of evaporative losses of sheen oil alkanes indicated that oil surfaced closer to the DWH wreckage than the cofferdam site. Last, ratios of alkenes and oil hydrocarbons pointed to a common source of oil found in sheen samples and recovered from oil-covered DWH debris collected shortly after the explosion. These lines of evidence suggest that the observed sheens do not originate from the MW, cofferdam, or from natural seeps. Rather, the likely source is oil in tanks and pits on the DWH wreckage, representing a finite oil volume for leakage.

  2. Determination of polycyclic aromatic hydrocarbon (PAH) content and risk assessment from edible oils in Korea.

    PubMed

    Kang, Bomi; Lee, Byung-Mu; Shin, Han-Seung

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAH) content and a risk assessment from consumption of Korean edible oils were investigated. Liquid-liquid extraction and gas chromatography-mass spectroscopy were used to measure eight PAH in edible oils commonly consumed in Korea. The total average PAH concentration was 0.548 μg/kg from edible oils and the content of the 8 PAH was lower than 2 μg/kg, which is the maximum tolerable limit reported by the commission regulation. The contents of the eight PAH were converted to exposure assessment and risk characterization values. Dietary exposure to PAH from edible oils was 0.025 ng-TEQBaP/kg/d, and margin of exposure (MOE) was 4 × 10(6), which represents negligible concern. Although PAH were detected from edible oils in Korea, their contribution to human exposure to PAH is considered not significant.

  3. Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels.

    PubMed

    Romero, M J A; Pizzi, A; Toscano, G; Busca, G; Bosio, B; Arato, E

    2016-01-01

    Deoxygenation of waste cooking vegetable oil and Jatropha curcas oil under nitrogen atmosphere was performed in batch and semi-batch experiments using CaO and treated hydrotalcite (MG70) as catalysts at 400 °C. In batch conditions a single liquid fraction (with yields greater than 80 wt.%) was produced containing a high proportion of hydrocarbons (83%). In semi-batch conditions two liquid fractions (separated by a distillation step) were obtained: a light fraction and an intermediate fraction containing amounts of hydrocarbons between 72-80% and 85-88% respectively. In order to assess the possible use of the liquid products as alternative fuels a complete chemical characterization and measurement of their properties were carried out. PMID:25869843

  4. Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels.

    PubMed

    Romero, M J A; Pizzi, A; Toscano, G; Busca, G; Bosio, B; Arato, E

    2016-01-01

    Deoxygenation of waste cooking vegetable oil and Jatropha curcas oil under nitrogen atmosphere was performed in batch and semi-batch experiments using CaO and treated hydrotalcite (MG70) as catalysts at 400 °C. In batch conditions a single liquid fraction (with yields greater than 80 wt.%) was produced containing a high proportion of hydrocarbons (83%). In semi-batch conditions two liquid fractions (separated by a distillation step) were obtained: a light fraction and an intermediate fraction containing amounts of hydrocarbons between 72-80% and 85-88% respectively. In order to assess the possible use of the liquid products as alternative fuels a complete chemical characterization and measurement of their properties were carried out.

  5. Chronic hydrocarbon exposure of harlequin ducks in areas affected by the Selendang Ayu oil spill at Unalaska Island, Alaska.

    PubMed

    Flint, Paul L; Schamber, Jason L; Trust, Kimberly A; Miles, A Keith; Henderson, John D; Wilson, Barry W

    2012-12-01

    We evaluated chronic exposure of harlequin ducks (Histrionicus histrionicus) to hydrocarbons associated with the 2004 M/V Selendang Ayu oil spill at Unalaska Island, Alaska. We measured levels of hepatic 7-ethoxyresorufin-O-deethylase activity (EROD) in liver biopsy samples as an indicator of hydrocarbon exposure in three oiled bays and one reference bay in 2005, 2006, and 2008. Median EROD activity in ducks from oiled bays was significantly higher than in the reference bay in seven of nine pairwise comparisons. These results indicated that harlequin ducks were exposed to lingering hydrocarbons more than three years after the spill. PMID:22933448

  6. Chronic hydrocarbon exposure of harlequin ducks in areas affected by the Selendang Ayu oil spill at Unalaska Island, Alaska

    USGS Publications Warehouse

    Flint, Paul L.; Schamber, J.L.; Trust, K.A.; Miles, A.K.; Henderson, J.D.; Wilson, B.W.

    2012-01-01

    We evaluated chronic exposure of harlequin ducks (Histrionicus histrionicus) to hydrocarbons associated with the 2004 M/V Selendang Ayu oil spill at Unalaska Island, Alaska. We measured levels of hepatic 7-ethoxyresorufin-O-deethylase activity (EROD) in liver biopsy samples as an indicator of hydrocarbon exposure in three oiled bays and one reference bay in 2005, 2006, and 2008. Median EROD activity in ducks from oiled bays was significantly higher than in the reference bay in seven of nine pairwise comparisons. These results indicated that harlequin ducks were exposed to lingering hydrocarbons more than three years after the spill.

  7. Chronic hydrocarbon exposure of harlequin ducks in areas affected by the Selendang Ayu oil spill at Unalaska Island, Alaska.

    PubMed

    Flint, Paul L; Schamber, Jason L; Trust, Kimberly A; Miles, A Keith; Henderson, John D; Wilson, Barry W

    2012-12-01

    We evaluated chronic exposure of harlequin ducks (Histrionicus histrionicus) to hydrocarbons associated with the 2004 M/V Selendang Ayu oil spill at Unalaska Island, Alaska. We measured levels of hepatic 7-ethoxyresorufin-O-deethylase activity (EROD) in liver biopsy samples as an indicator of hydrocarbon exposure in three oiled bays and one reference bay in 2005, 2006, and 2008. Median EROD activity in ducks from oiled bays was significantly higher than in the reference bay in seven of nine pairwise comparisons. These results indicated that harlequin ducks were exposed to lingering hydrocarbons more than three years after the spill.

  8. Aqueous extractive upgrading of bio-oils created by tail-gas reactive pyrolysis to produce pure hydrocarbons and phenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tail-gas reactive pyrolysis (TGRP) of biomass produces bio-oil that is lower in oxygen (~15 wt% total) and significantly more hydrocarbon-rich than traditional bio-oils or even catalytic fast pyrolysis. TGRP bio-oils lend themselves toward mild and inexpensive upgrading procedures. We isolated oxyge...

  9. Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors

    DOEpatents

    Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

    1982-06-29

    The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

  10. Study of weathering effects on the distribution of aromatic steroid hydrocarbons in crude oils and oil residues.

    PubMed

    Wang, Chuanyuan; Chen, Bing; Zhang, Baiyu; Guo, Ping; Zhao, Mingming

    2014-01-01

    The composition and distribution of triaromatic steroid hydrocarbons in oil residues after biodegradation and photo-oxidation processes were detected, and the diagnostic ratios for oil spill identification were developed and evaluated based on the relative standard deviation (RSD) and the repeatability limit. The preferential loss of C27 methyl triaromatic steranes (MTAS) relative to C28 MTAS and C29 MTAS was shown during the photo-oxidation process. In contrast to the photochemical degradation, the MTAS with the original 20R biological configuration was preferentially degraded during the biodegradation process. The RSD of most of the diagnostic ratios of MTAS ranged from 9 to 84% during the photo-oxidation process. However, the RSDs of such ratios derived from MTAS were all <5% even in high biodegradation, and such parameters may also provide new methods on oil spill identification. The parameters of monoaromatic sterane and monoaromatic sterane are not used well for oil spill identification after photo-oxidation. The triaromatic steroid hydrocarbons retained their molecular compositions after biodegradation and photo-oxidation and most of the diagnostic ratios derived from them could be efficiently used in oil spill identification.

  11. Study of weathering effects on the distribution of aromatic steroid hydrocarbons in crude oils and oil residues.

    PubMed

    Wang, Chuanyuan; Chen, Bing; Zhang, Baiyu; Guo, Ping; Zhao, Mingming

    2014-01-01

    The composition and distribution of triaromatic steroid hydrocarbons in oil residues after biodegradation and photo-oxidation processes were detected, and the diagnostic ratios for oil spill identification were developed and evaluated based on the relative standard deviation (RSD) and the repeatability limit. The preferential loss of C27 methyl triaromatic steranes (MTAS) relative to C28 MTAS and C29 MTAS was shown during the photo-oxidation process. In contrast to the photochemical degradation, the MTAS with the original 20R biological configuration was preferentially degraded during the biodegradation process. The RSD of most of the diagnostic ratios of MTAS ranged from 9 to 84% during the photo-oxidation process. However, the RSDs of such ratios derived from MTAS were all <5% even in high biodegradation, and such parameters may also provide new methods on oil spill identification. The parameters of monoaromatic sterane and monoaromatic sterane are not used well for oil spill identification after photo-oxidation. The triaromatic steroid hydrocarbons retained their molecular compositions after biodegradation and photo-oxidation and most of the diagnostic ratios derived from them could be efficiently used in oil spill identification. PMID:25144907

  12. Assessment of sediment hydrocarbon contamination from the 2009 Montara oil blow out in the Timor Sea.

    PubMed

    Burns, Kathryn A; Jones, Ross

    2016-04-01

    In August 2009, a blowout of the Montara H1 well 260 km off the northwest coast of Australia resulted in the uncontrolled release of about 4.7 M L of light crude oil and gaseous hydrocarbons into the Timor Sea. Over the 74 day period of the spill, the oil remained offshore and did not result in shoreline incidents on the Australia mainland. At various times slicks were sighted over a 90,000 km(2) area, forming a layer of oil which was tracked by airplanes and satellites but the slicks typically remained within 35 km of the well head platform and were treated with 183,000 L of dispersants. The shelf area where the spill occurred is shallow (100-200 m) and includes off shore emergent reefs and cays and submerged banks and shoals. This study describes the increased inputs of oil to the system and assesses the environmental impact. Concentrations of hydrocarbon in the sediment at the time of survey were very low (total aromatic hydrocarbons (PAHs) ranged from 0.04 to 31 ng g(-1)) and were orders of magnitude lower than concentrations at which biological effects would be expected. PMID:26774768

  13. Assessment of sediment hydrocarbon contamination from the 2009 Montara oil blow out in the Timor Sea.

    PubMed

    Burns, Kathryn A; Jones, Ross

    2016-04-01

    In August 2009, a blowout of the Montara H1 well 260 km off the northwest coast of Australia resulted in the uncontrolled release of about 4.7 M L of light crude oil and gaseous hydrocarbons into the Timor Sea. Over the 74 day period of the spill, the oil remained offshore and did not result in shoreline incidents on the Australia mainland. At various times slicks were sighted over a 90,000 km(2) area, forming a layer of oil which was tracked by airplanes and satellites but the slicks typically remained within 35 km of the well head platform and were treated with 183,000 L of dispersants. The shelf area where the spill occurred is shallow (100-200 m) and includes off shore emergent reefs and cays and submerged banks and shoals. This study describes the increased inputs of oil to the system and assesses the environmental impact. Concentrations of hydrocarbon in the sediment at the time of survey were very low (total aromatic hydrocarbons (PAHs) ranged from 0.04 to 31 ng g(-1)) and were orders of magnitude lower than concentrations at which biological effects would be expected.

  14. Sesquiterpene, alkene, and alkane hydrocarbons in virgin olive oils of different varieties and geographical origins.

    PubMed

    Bortolomeazzi, R; Berno, P; Pizzale, L; Conte, L S

    2001-07-01

    The hydrocarbon fraction of 30 virgin olive oils was analyzed, focusing in particular on the sesquiterpenes. The oil samples were of different geographical origins and obtained from different olive varieties. The hydrocarbon fraction was isolated by silica gel column chromatography of the unsaponifiable fraction of the oils. The sesquiterpene hydrocarbons were then fractionated, on the basis of their degree of unsaturation, by AgNO3 TLC and silica gel AgNO3 column chromatography. The composition of the sesquiterpenes was more complex than previously reported. Among the 31 sesquiterpenes detected, 24 have been tentatively identified, by comparison of the linear retention indices on two capillary columns of different polarities and mass spectra with those reported in the literature. The total concentration of the sesquiterpenes in the oils analyzed ranged from about 2 to 37 ppm. Among the sesquiterpenes the more abundant were alpha-farnesene, alpha-copaene, eremophyllene, and alpha-muurolene. The alkenes present in the hydrocarbon fraction were isolated by TLC AgNO3 and characterized by GC-MS of their dimethyl disulfide derivatives. The series of n-Delta9-alkenes from C22 to C27, 8-heptadecene, and 6,10-dimethyl-1-undecene were detected. Among the n-alkanes, those with an odd number of carbon atoms predominated in all of the analyzed oils, the most common being C23, C25, C27, and C29. The concentration of the n-alkenes ranged from about 0.5 to 2 ppm, whereas for the n-alkanes the range was from 30 to 177 ppm.

  15. 77 FR 9962 - Information Collection; Prospecting for Minerals Other Than Oil, Gas, and Sulphur on the Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... Bureau of Ocean Energy Management Information Collection; Prospecting for Minerals Other Than Oil, Gas... paperwork requirements in the regulations under Prospecting for Minerals Other than Oil, Gas, and Sulphur on...: 30 CFR Part 580, Prospecting for Minerals Other than Oil, Gas, and Sulphur on the Outer...

  16. Modern Processes of Hydrocarbon Migration and Re-Formation of Oil and Gas Fields (Based on the Results of Monitoring and Geochemical Studies)

    NASA Astrophysics Data System (ADS)

    Plotnikova, Irina; Salakhidinova, Gulmira; Nosova, Fidania; Pronin, Nikita; Ostroukhov, Sergey

    2015-04-01

    Special geochemical studies of oils allowed to allocate a movable migration component of oils in the industrial oil deposits. In the field the migration component of oils varies in different parts of the field. The largest percentage of the light migration component (gas condensate of the oil) was detected in the central part of the Kama-Kinel troughs system. Monitoring of the composition of water, oil and gas (condensate light oil component) in the sedimentary cover and ni crystalline basement led to the conclusion of modern migration of hydrocarbons in sedimentary cover. This proves the existence of the modern processes of formation and reformation of oil and gas fields. This presentation is dedicated to the problem of definition of geochemical criteria of selection of hydrocarbons deposit reformation zone in the sample wells of Minibaevskaya area of Romashkinskoye field. While carrying out this work we examined 11 samples of oil from the Upper Devonian Pashiysky horizon. Four oil samples were collected from wells reckoned among the "anomalous" zones that were marked out according to the results of geophysical, oil field and geological research. Geochemical studies of oils were conducted in the laboratory of geochemistry of the Kazan (Volga-region) Federal University. The wells where the signs of hydrocarbons influx from the deep zones of the crust were recorded are considered to be "anomalous". A number of scientists connect this fact to the hypothesis about periodic influx of deep hydrocarbons to the oil deposits of Romashkinskoye field. Other researchers believe that the source rocks of the adjacent valleys sedimentary cover generate gases when entering the main zone of gas formation, which then migrate up the section and passing through the previously formed deposits of oil, change and "lighten" their composition. Regardless of the point of view on the source of the hydrocarbons, the study of the process of deposits refilling with light hydrocarbons is an

  17. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    SciTech Connect

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  18. Self-division of a mineral oil-fatty acid droplet

    NASA Astrophysics Data System (ADS)

    Lagzi, István

    2015-11-01

    Self-division of a mineral oil-fatty acid droplet placed in an alkaline solution was investigated. The initially homogeneous mineral oil droplet containing various amounts of 2-hexyldecanoic fatty acid underwent a division process resulting in the formation of two droplets. One formed ('daughter') droplet contains middle-phase microemulsion (surfactant-rich phase), while the other contains mineral oil with 2-hexyldecanoic acid (surfactant-low organic phase). We found that the pH of the water phase has negligible effect on the ratio of the sizes of the 'daughter' droplets. However, the contact angle between two droplets highly depends on the pH of the alkaline solution.

  19. Determination of mineral oil and white petrolatum ratios in ointment products by capillary gas chromatography

    SciTech Connect

    Gavlick, W.K.; Ohlemeier, L.A.

    1994-12-31

    The determination of mineral oil and white petrolatum ratios in ointment products is important due to regulatory and formulation concerns. A capillary gas chromatographic method utilizing on-column temperature programmed injection and flame ionization detection has been developed to characterize mineral oil and white petrolatum raw materials. Once the raw materials have been characterized, the method can then be used to estimate the ratios of mineral oil and white petrolatum in the ointment product. Chromatographic method development work along with the final chromatographic conditions will be presented. Chromatograms of raw material and final formulation sample analyses demonstrate the utility of the method.

  20. Fluorous Metal Organic Frameworks as Superhydrophobic Adsorbents for Oil Spill Cleanup and Hydrocarbons Storage

    SciTech Connect

    Yang, Chi; Mather, Qian; Wang, Xiaoping; Kaipa, Ushasree; Nesterov, Vladimir; Venero, Augustin; Omary, Mohammad A

    2011-01-01

    We demonstrate that fluorous metal-organic frameworks (FMOFs) are highly hydrophobic porous materials with a high capacity and affinity to C{sub 6}-C{sub 8} hydrocarbons of oil components. FMOF-1 exhibits reversible adsorption with a high capacity for n-hexane, cyclohexane, benzene, toluene, and p-xylene, with no detectable water adsorption even at near 100% relative humidity, drastically outperforming activated carbon and zeolite porous materials. FMOF-2, obtained from annealing FMOF-1, shows enlarged cages and channels with double toluene adsorption vs FMOF-1 based on crystal structures. The results suggest great promise for FMOFs in applications such as removal of organic pollutants from oil spills or ambient humid air, hydrocarbon storage and transportation, water purification, etc. under practical working conditions.

  1. Electrical properties of dispersions of graphene in mineral oil

    SciTech Connect

    Monteiro, O. R.

    2014-02-03

    Dispersions of graphene in mineral oil have been prepared and electrical conductivity and permittivity have been measured. The direct current (DC) conductivity of the dispersions depends on the surface characteristics of the graphene platelets and followed a percolation model with a percolation threshold ranging from 0.05 to 0.1 wt. %. The difference in DC conductivities can be attributed to different states of aggregation of the graphene platelets and to the inter-particle electron transfer, which is affected by the surface radicals. The frequency-dependent conductivity (σ(ω)) and permittivity (ε(ω)) were also measured. The conductivity of dispersions with particle contents much greater than the percolation threshold remains constant and equal to the DC conductivity at low frequencies ω with and followed a power-law σ(ω)∝ ω{sup s} dependence at very high frequencies with s≈0.9. For dispersions with graphene concentration near the percolation threshold, a third regime was displayed at intermediate frequencies indicative of interfacial polarization consistent with Maxwell-Wagner effect typically observed in mixtures of two (or more) phases with very distinct electrical and dielectric properties.

  2. Solvent dewaxing waxy hydrocarbon oils using dewaxing aid

    SciTech Connect

    Achia, B.U.

    1983-03-22

    An improved dewaxing aid for solvent dewaxing processes comprising a mixture of (A) lithium isostearate and (B) a polymer of an ester of at least one aliphatic alcohol with methacrylic acid or acrylic acid having an average molecular weight ranging from between about 300,000 to 2,000,000. The lithium isostearate, when combined with the acrylic polymer, synergistically improves the efficiency of wax separation. This has been found to be especially useful for dewaxing heavy petroleum oil fractions, such as bright stocks.

  3. Hydrocarbon liquefaction: viability as a peak oil mitigation strategy.

    PubMed

    Höök, Mikael; Fantazzini, Dean; Angelantoni, André; Snowden, Simon

    2014-01-13

    Current world capacity of hydrocarbon liquefaction is around 400,000 barrels per day, providing a marginal share of the global liquid fuel supply. This study performs a broad review of technical, economic, environmental and supply chain issues related to coal-to-liquids (CTL) and gas-to-liquids (GTL). We find three issues predominate. First, significant amounts of coal and gas would be required to obtain anything more than a marginal production of liquids. Second, the economics of CTL plants are clearly prohibitive, but are better for GTL. Nevertheless, large-scale GTL plants still require very high upfront costs, and for three real-world GTL plants out of four, the final cost has been so far approximately three times that initially budgeted. Small-scale GTL holds potential for associated gas. Third, both CTL and GTL incur significant environmental impacts, ranging from increased greenhouse gas emissions (in the case of CTL) to water contamination. Environmental concerns may significantly affect growth of these projects until adequate solutions are found.

  4. Hydrocarbon liquefaction: viability as a peak oil mitigation strategy.

    PubMed

    Höök, Mikael; Fantazzini, Dean; Angelantoni, André; Snowden, Simon

    2014-01-13

    Current world capacity of hydrocarbon liquefaction is around 400,000 barrels per day, providing a marginal share of the global liquid fuel supply. This study performs a broad review of technical, economic, environmental and supply chain issues related to coal-to-liquids (CTL) and gas-to-liquids (GTL). We find three issues predominate. First, significant amounts of coal and gas would be required to obtain anything more than a marginal production of liquids. Second, the economics of CTL plants are clearly prohibitive, but are better for GTL. Nevertheless, large-scale GTL plants still require very high upfront costs, and for three real-world GTL plants out of four, the final cost has been so far approximately three times that initially budgeted. Small-scale GTL holds potential for associated gas. Third, both CTL and GTL incur significant environmental impacts, ranging from increased greenhouse gas emissions (in the case of CTL) to water contamination. Environmental concerns may significantly affect growth of these projects until adequate solutions are found. PMID:24298075

  5. Mineral Resource Information System for Field Lab in the Osage Mineral Reservation Estate

    SciTech Connect

    Carroll, H.B.; Johnson, William I.

    1999-04-27

    The Osage Mineral Reservation Estate is located in Osage County, Oklahoma. Minerals on the Estate are owned by members of the Osage Tribe who are shareholders in the Estate. The Estate is administered by the Osage Agency, Branch of Minerals, operated by the U.S. Bureau of Indian Affairs (BIA). Oil, natural gas, casinghead gas, and other minerals (sand, gravel, limestone, and dolomite) are exploited by lessors. Operators may obtain from the Branch of Minerals and the Osage Mineral Estate Tribal Council leases to explore and exploit oil, gas, oil and gas, and other minerals on the Estate. Operators pay a royalty on all minerals exploited and sold from the Estate. A mineral Resource Information system was developed for this project to evaluate the remaining hydrocarbon resources located on the Estate. Databases on Microsoft Excel spreadsheets of operators, leases, and production were designed for use in conjunction with an evaluation spreadsheet for estimating the remaining hydrocarbons on the Estate.

  6. Polycyclic aromatic hydrocarbon body residues and lysosomal membrane destabilization in mussels exposed to the Dubai Star bunker fuel oil (intermediate fuel oil 380) spill in San Francisco Bay.

    PubMed

    Hwang, Hyun-Min; Stanton, Beckye; McBride, Toby; Anderson, Michael J

    2014-05-01

    Following the spill of bunker fuel oil (intermediate fuel oil 380, approximately 1500-3000 L) into San Francisco Bay in October 2009, polycyclic aromatic hydrocarbon (PAH) concentrations in mussels from moderately oiled areas increased up to 87 554 ng/g (dry wt) and, 3 mo later, decreased to concentrations found in mussels collected prior to oiling, with a biological half-life of approximately 16 d. Lysosomal membrane destabilization increased in mussels with higher PAH body burdens.

  7. Comprehensive Chemical Characterization of Hydrocarbons in NIST Standard Reference Material 2779 Gulf of Mexico Crude Oil.

    PubMed

    Worton, David R; Zhang, Haofei; Isaacman-VanWertz, Gabriel; Chan, Arthur W H; Wilson, Kevin R; Goldstein, Allen H

    2015-11-17

    Comprehensive chemical information is needed to understand the environmental fate and impact of hydrocarbons released during oil spills. However, chemical information remains incomplete because of the limitations of current analytical techniques and the inherent chemical complexity of crude oils. In this work, gas chromatography (GC)-amenable C9-C33 hydrocarbons were comprehensively characterized from the National Institute of Standards and Technology Standard Reference Material (NIST SRM) 2779 Gulf of Mexico crude oil by GC coupled to vacuum ultraviolet photoionization mass spectrometry (GC/VUV-MS), with a mass balance of 68 ± 22%. This technique overcomes one important limitation faced by traditional GC and even comprehensive 2D gas chromatography (GC×GC): the necessity for individual compounds to be chromatographically resolved from one another in order to be characterized. VUV photoionization minimizes fragmentation of the molecular ions, facilitating the characterization of the observed hydrocarbons as a function of molecular weight (carbon number, NC), structure (number of double bond equivalents, NDBE), and mass fraction (mg kg(-1)), which represent important metrics for understanding their fate and environmental impacts. Linear alkanes (8 ± 1%), branched alkanes (11 ± 2%), and cycloalkanes (37 ± 12%) dominated the mass with the largest contribution from cycloalkanes containing one or two rings and one or more alkyl side chains (27 ± 9%). Linearity and good agreement with previous work for a subset of >100 components and for the sum of compound classes provided confidence in our measurements and represents the first independent assessment of our analytical approach and calibration methodology. Another crude oil collected from the Marlin platform (35 km northeast of the Macondo well) was shown to be chemically identical within experimental errors to NIST SRM 2779, demonstrating that Marlin crude is an appropriate surrogate oil for researchers conducting

  8. Cavitation pitting and erosion of aluminum 6061-T6 in mineral oil water

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1983-01-01

    Cavitation erosion studies of aluminum 6061-T6 in mineral oil and in ordinary tap water are presented. The maximum erosion rate (MDPR, or mean depth of penetration rate) in mineral oil was about four times that in water. The MDPR in mineral oil decreased continuously with time, but the MDPR in water remained approximately constant. The cavitation pits in mineral oil were of smaller diameter and depth than the pits in water. Treating the pits as spherical segments, we computed the radius r of the sphere. The logarithm of h/a, where h is the pit depth and 2a is the top width of the pit, was linear when plotted against the logarithm of 2r/h - 1.

  9. Natural hydrocarbon background in benthic sediments of Prince William Sound, Alaska: Oil vs coal

    USGS Publications Warehouse

    Short, J.W.; Kvenvolden, K.A.; Carlson, P.R.; Hostettler, F.D.; Rosenbauer, R.J.; Wright, B.A.

    1999-01-01

    The source of the background hydrocarbons in benthic sediments of Prince William Sound (PWS), AK, where the 1989 Exxon Valdez oil spill (EVOS) occurred, has been ascribed to oil seeps in coastal areas of the Gulf of Alaska (GOA). We present evidence that coal is a more plausible source, including (i) high concentrations of total PAH (TPAH), between 1670 and 3070 ng/g, in continental shelf sediments adjacent to the coastal region containing extensive coal deposits; (ii) PAH composition patterns of sediments along with predictive models that are consistent with coal but not oil; (iii) low ratios (<0.2) of triaromatic steranes to methylchrysenes found in sediments and coals, contrasting with the high ratios (11 and 13) found in seep oil; and (iv) bioaccumulation of PAH in salmon collected within 100 m of the Katalla oil seeps but not in filter-feeding mussels collected near oilfield drainages 9 km from the seeps, indicating negligible transport of bioavailable PAH from Katalla seeps to the GOA. In contrast with oil, PAH in coal are not bioavailable, so the presence of coal in these benthic sediments confers no adaptive benefit to biota of the marine ecosystem with respect to PAH insults from anthropogenic sources.The source of the background hydrocarbons in benthic sediments of Prince William Sound (PWS), AK, where the 1989 Exxon Valdez oil spill (EVOS) occurred, has been ascribed to oil seeps in coastal areas of the Gulf of Alaska (GOA). We present evidence that coal is a more plausible source, including (i) high concentrations of total PAH (TPAH), between 1670 and 3070 ng/g, in continental shelf sediments adjacent to the coastal region containing extensive coal deposits; (ii) PAH composition patterns of sediments along with predictive models that are consistent with coal but not oil; (iii) low ratios (<0.2) of triaromatic steranes to methylchrysenes found in sediments and coals, contrasting with the high ratios (11 and 13) found in seep oil; and (iv) bioaccumulation

  10. Composition and depth distribution of hydrocarbons in Barataria Bay marsh sediments after the Deepwater Horizon oil spill.

    PubMed

    Dincer Kırman, Zeynep; Sericano, José L; Wade, Terry L; Bianchi, Thomas S; Marcantonio, Franco; Kolker, Alexander S

    2016-07-01

    In 2010, an estimate 4.1 million barrels of oil were accidentally released into the Gulf of Mexico (GoM) during the Deepwater Horizon (DWH) Oil Spill. One and a half years after this incident, a set of subtidal and intertidal marsh sediment cores were collected from five stations in Barataria Bay, Louisiana, USA, and analyzed to determine the spatial and vertical distributions and source of hydrocarbon residues based on their chemical composition. An archived core, collected before the DWH oil spill from the same area, was also analyzed to assess the pre-spill hydrocarbon distribution in the area. Analyses of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and stable carbon isotope showed that the distribution of petroleum hydrocarbons in Barataria Bay was patchy and limited in areal extent. Significant TPH and ΣPAH concentrations (77,399 μg/g and 219,065 ng/g, respectively) were detected in the surface sediments of one core (i.e., core A) to a depth of 9 cm. Based on a sedimentation rate of 0.39 cm yr(-1), determined using (137)Cs, the presence of anthropogenic hydrocarbons in these sediment core deposited ca. 50 to 60 years ago. The historical background hydrocarbon concentrations increased significantly at the sediment surface and can be attributed to recent inputs. Although the oil present in the bay's sediments has undergone moderate weathering, biomarker analyses performed on core A samples likely indicated the presence of hydrocarbons from the DWH oil spill. The effects of oiling events on Barataria Bay and other marsh ecosystems in this region remain uncertain, as oil undergoes weathering changes over time. PMID:27064616

  11. Composition and depth distribution of hydrocarbons in Barataria Bay marsh sediments after the Deepwater Horizon oil spill.

    PubMed

    Dincer Kırman, Zeynep; Sericano, José L; Wade, Terry L; Bianchi, Thomas S; Marcantonio, Franco; Kolker, Alexander S

    2016-07-01

    In 2010, an estimate 4.1 million barrels of oil were accidentally released into the Gulf of Mexico (GoM) during the Deepwater Horizon (DWH) Oil Spill. One and a half years after this incident, a set of subtidal and intertidal marsh sediment cores were collected from five stations in Barataria Bay, Louisiana, USA, and analyzed to determine the spatial and vertical distributions and source of hydrocarbon residues based on their chemical composition. An archived core, collected before the DWH oil spill from the same area, was also analyzed to assess the pre-spill hydrocarbon distribution in the area. Analyses of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and stable carbon isotope showed that the distribution of petroleum hydrocarbons in Barataria Bay was patchy and limited in areal extent. Significant TPH and ΣPAH concentrations (77,399 μg/g and 219,065 ng/g, respectively) were detected in the surface sediments of one core (i.e., core A) to a depth of 9 cm. Based on a sedimentation rate of 0.39 cm yr(-1), determined using (137)Cs, the presence of anthropogenic hydrocarbons in these sediment core deposited ca. 50 to 60 years ago. The historical background hydrocarbon concentrations increased significantly at the sediment surface and can be attributed to recent inputs. Although the oil present in the bay's sediments has undergone moderate weathering, biomarker analyses performed on core A samples likely indicated the presence of hydrocarbons from the DWH oil spill. The effects of oiling events on Barataria Bay and other marsh ecosystems in this region remain uncertain, as oil undergoes weathering changes over time.

  12. The ecotoxicology of vegetable versus mineral based lubricating oils: 3. Coral fertilization and adult corals.

    PubMed

    Mercurio, Philip; Negri, Andrew P; Burns, Kathryn A; Heyward, Andrew J

    2004-05-01

    Biodegradable vegetable-derived lubricants (VDL) might be less toxic to marine organisms than mineral-derived oils (MDL) due to the absence of high molecular weight aromatics, but this remains largely untested. In this laboratory study, adult corals and coral gametes were exposed to various concentrations of a two-stroke VDL-1A and a corresponding MDL to determine which lubricant type was more toxic to each life stage. In the fertilization experiment, gametes from the scleractinian coral Acropora microphthalma were exposed to water-accommodated fractions (WAF) of VDL-1A and MDL for four hours. The MDL and VDL-1A WAFs inhibited normal fertilization of the corals at 200 microg l(-1) total hydrocarbon content (THC) and 150 microg l(-1) THC respectively. Disturbance of a stable coral-dinoflagellate symbiosis is regarded as a valid measure of sub-lethal stress in adult corals. The state of the symbiosis in branchlets of adult colonies of Acropora formosa was monitored using indicators such as dinoflagellate expulsion and dark-adapted photosystem II yields of dinoflagellate (using pulse amplitude modulation fluorescence). An effect on symbiosis was measurable following 48 h exposure to the lubricants at concentrations of 190 microg l(-1) and 37 microg l(-1) THC for the MDL and VDL-1A respectively. GC/MS revealed that the main constituent of the VDL-1A WAF was the compound coumarin, added by the manufacturer to improve odour. The fragrance containing coumarin was removed from the lubricant formulation and the toxicity towards adult corals re-examined. The coumarin-free VDL-2 exhibited significantly less toxicity towards the adult corals than all of the other oil types tested, with the only measurable effect being a slight but significant drop in photosynthetic efficiency at 280 microg l(-1).

  13. Interaction of oil and mineral fines on shorelines: review and assessment.

    PubMed

    Owens, Edward H; Lee, Kenneth

    2003-01-01

    The interaction of fine mineral particles with stranded oil in an aqueous medium reduces the adhesion of the oil to solid surfaces, such as sediments or bedrock. The net result is the formation of stable, micron-sized, oil droplets that disperse into the water column. In turn, the increase in surface area makes the oil more available for biodegradation. This interaction, referred to as oil-mineral aggregate (OMA) formation, can explain how oiled shorelines are cleaned naturally in the absence of wave action in very sheltered coastal environments. OMA formation also plays an important role in the efficacy of shoreline treatment techniques, such as physical mixing and sediment relocation that move oiled sediments into the zone of wave action to promote the interaction between oil and mineral fines. Successful application of these shoreline treatment options has been demonstrated at two spill events (the Tampa Bay response in Florida and the Sea Empress operation in Wales) and at a controlled oil spill experiment in the field (the 1997 Svalbard ITOSS program). Sediment relocation harnesses the hydraulic action of waves so that the processes of fine-particle interaction and physical abrasion usually occur in tandem on open coasts. There has been no evidence of significant detrimental side-effects of residual oil in pelagic or benthic environments associated with the use of these treatment options to enhance rates of dispersion and oil biodegradation.

  14. Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation.

    PubMed

    Chen, Peng-Cheng; Xu, Zhi-Kang

    2013-01-01

    Oil-polluted water is a worldwide problem due to the increasing industrial oily wastewater and the frequent oil spill accidents. Here, we report a novel kind of superhydrophilic hybrid membranes for effective oil/water separation. They were prepared by depositing CaCO3-based mineral coating on PAA-grafted polypropylene microfiltration membranes. The rigid mineral-coating traps abundant water in aqueous environment and forms a robust hydrated layer on the membrane pore surface, thus endowing the membranes with underwater superoleophobicity. Under the drive of either gravity or external pressure, the hybrid membranes separate a range of oil/water mixtures effectively with high water flux (>2000 L m(-2) h(-1)), perfect oil/water separation efficiency (>99%), high oil breakthrough pressure (>140 kPa) and low oil fouling. The oil/water mixtures include not only free mixtures but also oil-in-water emulsions. Therefore, the mineral-coated membrane enables an efficient and energy-saving separation for various oil/water mixtures, showing attractive potential for practical oil/water separation. PMID:24072204

  15. Mineral-Coated Polymer Membranes with Superhydrophilicity and Underwater Superoleophobicity for Effective Oil/Water Separation

    PubMed Central

    Chen, Peng-Cheng; Xu, Zhi-Kang

    2013-01-01

    Oil-polluted water is a worldwide problem due to the increasing industrial oily wastewater and the frequent oil spill accidents. Here, we report a novel kind of superhydrophilic hybrid membranes for effective oil/water separation. They were prepared by depositing CaCO3-based mineral coating on PAA-grafted polypropylene microfiltration membranes. The rigid mineral-coating traps abundant water in aqueous environment and forms a robust hydrated layer on the membrane pore surface, thus endowing the membranes with underwater superoleophobicity. Under the drive of either gravity or external pressure, the hybrid membranes separate a range of oil/water mixtures effectively with high water flux (>2000 L m−2 h−1), perfect oil/water separation efficiency (>99%), high oil breakthrough pressure (>140 kPa) and low oil fouling. The oil/water mixtures include not only free mixtures but also oil-in-water emulsions. Therefore, the mineral-coated membrane enables an efficient and energy-saving separation for various oil/water mixtures, showing attractive potential for practical oil/water separation. PMID:24072204

  16. Detection of arsenic-containing hydrocarbons in a range of commercial fish oils by GC-ICPMS analysis.

    PubMed

    Sele, Veronika; Amlund, Heidi; Berntssen, Marc H G; Berntsen, Jannicke A; Skov, Kasper; Sloth, Jens J

    2013-06-01

    The present study describes the use of a simple solid-phase extraction procedure for the extraction of arsenic-containing hydrocarbons from fish oil followed by analysis using gas chromatography (GC) coupled to inductively coupled plasma mass spectrometry (ICPMS). The procedure permitted the analysis of a small sample amount, and the method was applied on a range of different commercial fish oils, including oils of anchovy (Engraulis ringens), Atlantic herring (Clupea harengus), sand eel (Ammodytes marinus), blue whiting (Micromesistius poutassou) and a commercial mixed fish oil (mix of oils of Atlantic herring, Atlantic cod (Gadus morhua) and saithe (Pollachius virens)). Total arsenic concentrations in the fish oils and in the extracts of the fish oils were determined by microwave-assisted acid digestion and ICPMS. The arsenic concentrations in the fish oils ranged from 5.9 to 8.7 mg kg(-1). Three dominant arsenic-containing hydrocarbons in addition to one minor unidentified compound were detected in all the oils using GC-ICPMS. The molecular structures of the arsenic-containing hydrocarbons, dimethylarsinoyl hydrocarbons (C17H38AsO, C19H42AsO, C23H38AsO), were verified using GC coupled to tandem mass spectrometry (MS/MS), and the accurate masses of the compounds were verified using quadrupole time-of-flight mass spectrometry (qTOF-MS). Additionally, total arsenic and the arsenic-containing hydrocarbons were studied in decontaminated and in non-decontaminated fish oils, where a reduced arsenic concentration was seen in the decontaminated fish oils. This provided an insight to how a decontamination procedure originally ascribed for the removal of persistent organic pollutants affects the level of arsenolipids present in fish oils.

  17. Aryl Hydrocarbon Receptor–Independent Toxicity of Weathered Crude Oil during Fish Development

    PubMed Central

    Incardona, John P.; Carls, Mark G.; Teraoka, Hiroki; Sloan, Catherine A.; Collier, Tracy K.; Scholz, Nathaniel L.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs), derived largely from fossil fuels and their combustion, are pervasive contaminants in rivers, lakes, and nearshore marine habitats. Studies after the Exxon Valdez oil spill demonstrated that fish embryos exposed to low levels of PAHs in weathered crude oil develop a syndrome of edema and craniofacial and body axis defects. Although mechanisms leading to these defects are poorly understood, it is widely held that PAH toxicity is linked to aryl hydrocarbon receptor (AhR) binding and cytochrome P450 1A (CYP1A) induction. Using zebrafish embryos, we show that the weathered crude oil syndrome is distinct from the well-characterized AhR-dependent effects of dioxin toxicity. Blockade of AhR pathway components with antisense morpholino oligonucleotides demonstrated that the key developmental defects induced by weathered crude oil exposure are mediated by low-molecular-weight tricyclic PAHs through AhR-independent disruption of cardiovascular function and morphogenesis. These findings have multiple implications for the assessment of PAH impacts on coastal habitats. PMID:16330359

  18. Accumulation of Hydrocarbons by Maize (Zea mays L.) in Remediation of Soils Contaminated with Crude Oil.

    PubMed

    Liao, Changjun; Xu, Wending; Lu, Guining; Liang, Xujun; Guo, Chuling; Yang, Chen; Dang, Zhi

    2015-01-01

    This study has investigated the use of screened maize for remediation of soil contaminated with crude oil. Pots experiment was carried out for 60 days by transplanting maize seedlings into spiked soils. The results showed that certain amount of crude oil in soil (≤2 147 mg·kg(-1)) could enhance the production of shoot biomass of maize. Higher concentration (6 373 mg·kg(-1)) did not significantly inhibit the growth of plant maize (including shoot and root). Analysis of plant shoot by GC-MS showed that low molecular weight polycyclic aromatic hydrocarbons (PAHs) were detected in maize tissues, but PAHs concentration in the plant did not increase with higher concentration of crude oil in soil. The reduction of total petroleum hydrocarbon in planted soil was up to 52.21-72.84%, while that of the corresponding controls was only 25.85-34.22% in two months. In addition, data from physiological and biochemical indexes demonstrated a favorable adaptability of maize to crude oil pollution stress. This study suggested that the use of maize (Zea mays L.) was a good choice for remediation of soil contaminated with petroleum within a certain range of concentrations.

  19. Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development.

    PubMed

    Incardona, John P; Carls, Mark G; Teraoka, Hiroki; Sloan, Catherine A; Collier, Tracy K; Scholz, Nathaniel L

    2005-12-01

    Polycyclic aromatic hydrocarbons (PAHs), derived largely from fossil fuels and their combustion, are pervasive contaminants in rivers, lakes, and nearshore marine habitats. Studies after the Exxon Valdez oil spill demonstrated that fish embryos exposed to low levels of PAHs in weathered crude oil develop a syndrome of edema and craniofacial and body axis defects. Although mechanisms leading to these defects are poorly understood, it is widely held that PAH toxicity is linked to aryl hydrocarbon receptor (AhR) binding and cytochrome P450 1A (CYP1A) induction. Using zebrafish embryos, we show that the weathered crude oil syndrome is distinct from the well-characterized AhR-dependent effects of dioxin toxicity. Blockade of AhR pathway components with antisense morpholino oligonucleotides demonstrated that the key developmental defects induced by weathered crude oil exposure are mediated by low-molecular-weight tricyclic PAHs through AhR-independent disruption of cardiovascular function and morphogenesis. These findings have multiple implications for the assessment of PAH impacts on coastal habitats. PMID:16330359

  20. Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development.

    PubMed

    Incardona, John P; Carls, Mark G; Teraoka, Hiroki; Sloan, Catherine A; Collier, Tracy K; Scholz, Nathaniel L

    2005-12-01

    Polycyclic aromatic hydrocarbons (PAHs), derived largely from fossil fuels and their combustion, are pervasive contaminants in rivers, lakes, and nearshore marine habitats. Studies after the Exxon Valdez oil spill demonstrated that fish embryos exposed to low levels of PAHs in weathered crude oil develop a syndrome of edema and craniofacial and body axis defects. Although mechanisms leading to these defects are poorly understood, it is widely held that PAH toxicity is linked to aryl hydrocarbon receptor (AhR) binding and cytochrome P450 1A (CYP1A) induction. Using zebrafish embryos, we show that the weathered crude oil syndrome is distinct from the well-characterized AhR-dependent effects of dioxin toxicity. Blockade of AhR pathway components with antisense morpholino oligonucleotides demonstrated that the key developmental defects induced by weathered crude oil exposure are mediated by low-molecular-weight tricyclic PAHs through AhR-independent disruption of cardiovascular function and morphogenesis. These findings have multiple implications for the assessment of PAH impacts on coastal habitats.

  1. Bioaccumulation of petroleum hydrocarbons in fiddler crabs (Uca minax) exposed to weathered MC-252 crude oil alone and in mixture with an oil dispersant.

    PubMed

    Chase, Darcy A; Edwards, Donn S; Qin, Guangqiu; Wages, Mike R; Willming, Morgan M; Anderson, Todd A; Maul, Jonathan D

    2013-02-01

    The Deepwater Horizon accident in the Gulf of Mexico resulted in a sustained release of crude oil, and weathered oil was reported to have washed onto shorelines and marshes along the Gulf coast. One strategy to minimize effects of tarballs, slicks, and oil sheen, and subsequent risk to nearshore ecosystem resources was to use oil dispersants (primarily Corexit® 9500) at offshore surface and deepwater locations. Data have been generated reporting how Corexit® 9500 and other dispersants may alter the acute toxicity of crude oil (Louisiana sweet crude) to marine organisms. However, it remains unknown how oil dispersants may influence bioaccumulation of petroleum hydrocarbons in nearshore crustaceans. We compare bioaccumulation of petroleum hydrocarbons in fiddler crabs (Uca minax) from exposures to the water accommodated fraction (WAF) of weathered Mississippi Canyon 252 oil (~30 d post spill) and chemically-enhanced WAF when mixed with Corexit® EC9500A. Whole body total petroleum hydrocarbon (TPH) concentrations were greater than background for both treatments after 6h of exposure and reached steady state at 96 h. The modeled TPH uptake rate was greater for crabs in the oil only treatment (k(u)=2.51 mL/g/h vs. 0.76 mL/g/h). Furthermore, during the uptake phase TPH patterns in tissues varied between oil only and oil+dispersant treatments. Steady state bioaccumulation factors (BAFs) were 19.0 mL/g and 14.1 mL/g for the oil only and oil+Corexit treatments, respectively. These results suggest that the toxicokinetic mechanisms of oil may be dependent on oil dispersion (e.g., smaller droplet sizes). The results also indicate that multiple processes and functional roles of species should be considered for understanding how dispersants influence bioavailability of petroleum hydrocarbons.

  2. Bioaccumulation of petroleum hydrocarbons in fiddler crabs (Uca minax) exposed to weathered MC-252 crude oil alone and in mixture with an oil dispersant.

    PubMed

    Chase, Darcy A; Edwards, Donn S; Qin, Guangqiu; Wages, Mike R; Willming, Morgan M; Anderson, Todd A; Maul, Jonathan D

    2013-02-01

    The Deepwater Horizon accident in the Gulf of Mexico resulted in a sustained release of crude oil, and weathered oil was reported to have washed onto shorelines and marshes along the Gulf coast. One strategy to minimize effects of tarballs, slicks, and oil sheen, and subsequent risk to nearshore ecosystem resources was to use oil dispersants (primarily Corexit® 9500) at offshore surface and deepwater locations. Data have been generated reporting how Corexit® 9500 and other dispersants may alter the acute toxicity of crude oil (Louisiana sweet crude) to marine organisms. However, it remains unknown how oil dispersants may influence bioaccumulation of petroleum hydrocarbons in nearshore crustaceans. We compare bioaccumulation of petroleum hydrocarbons in fiddler crabs (Uca minax) from exposures to the water accommodated fraction (WAF) of weathered Mississippi Canyon 252 oil (~30 d post spill) and chemically-enhanced WAF when mixed with Corexit® EC9500A. Whole body total petroleum hydrocarbon (TPH) concentrations were greater than background for both treatments after 6h of exposure and reached steady state at 96 h. The modeled TPH uptake rate was greater for crabs in the oil only treatment (k(u)=2.51 mL/g/h vs. 0.76 mL/g/h). Furthermore, during the uptake phase TPH patterns in tissues varied between oil only and oil+dispersant treatments. Steady state bioaccumulation factors (BAFs) were 19.0 mL/g and 14.1 mL/g for the oil only and oil+Corexit treatments, respectively. These results suggest that the toxicokinetic mechanisms of oil may be dependent on oil dispersion (e.g., smaller droplet sizes). The results also indicate that multiple processes and functional roles of species should be considered for understanding how dispersants influence bioavailability of petroleum hydrocarbons. PMID:23268140

  3. An open-water electrical geophysical tool for mapping sub-seafloor heavy placer minerals in 3D and migrating hydrocarbon plumes in 4D

    USGS Publications Warehouse

    Wynn, Jefferey C.; Urquhart, Scott; Williamson, Mike; Fleming, John B.

    2011-01-01

    A towed-streamer technology has been developed for mapping placer heavy minerals and dispersed hydrocarbon plumes in the open ocean. The approach uses induced polarization (IP), an electrical measurement that encompasses several different surface-reactive capacitive and electrochemical phenomena, and thus is ideally suited for mapping dispersed or disseminated targets. The application is operated at sea by towing active electrical geophysical streamers behind a ship; a wide area can be covered in three dimensions by folding tow-paths over each other in lawn-mower fashion. This technology has already been proven in laboratory and ocean settings to detect IP-reactive titanium- and rare-earth (REE) minerals such as ilmenite and monazite. By extension, minerals that weather and accumulate/concentrate by a similar mechanism, including gold, platinum, and diamonds, may be rapidly detected and mapped indirectly- even when dispersed and covered with thick, inert sediment. IP is also highly reactive to metal structures such as pipelines and cables. Currently, the only means for mapping an oil-spill plume is to park a large ship in the ocean and drop a sampling string over the side, requiring hours of time per sampling point. The samples must then be chemically analyzed, adding additional time and expense. We believe that an extension of the marine IP technology could also apply to rapidly mapping both seafloor- blanket and disseminated hydrocarbon plumes in the open ocean, as hydrocarbon droplets in conductive seawater are topologically equivalent to a metal-plates-and-dielectric capacitor. Because the effective capacitance would be frequency-dependent on droplet size, the approach we advocate holds the potential to not only map, but also to characterize the evolution and degradation of such a plume over time. In areas where offshore oil field development has been practiced for extended periods, making IP measurements from a towed streamer may be useful for locating buried

  4. Norsesquiterpene hydrocarbon, chemical composition and antimicrobial activity of Rhaponticum carthamoides root essential oil.

    PubMed

    Havlik, Jaroslav; Budesinsky, Milos; Kloucek, Pavel; Kokoska, Ladislav; Valterova, Irena; Vasickova, Sona; Zeleny, Vaclav

    2009-02-01

    A detailed analysis of Rhaponticum carthamoides (Willd.) Iljin root essential oil was carried out by GC, GC-MS and GC-FTIR techniques. In total, 30 components were identified, accounting for 98.0% of total volatiles. A norsesquiterpene 13-norcypera-1(5),11(12)-diene (22.6%), followed by aplotaxene (21.2%) and cyperene (17.9%), were isolated and their structures confirmed by 1D and 2D-NMR spectra (COSY, ROESY, HSQC, HMBC and INADEQUATE). Selinene type sesquiterpenes and aliphatic hydrocarbons were among minor constituents of the essential oil. The oil exhibited antimicrobial activity against 5 of 9 strains of bacteria and yeast, when tested using broth micro-dilution method. Minimum inhibitory concentrations ranged between 32 and 256 microg/ml. PMID:19195668

  5. The use of chlorate, nitrate, and perchlorate to promote crude oil mineralization in salt marsh sediments.

    PubMed

    Brundrett, Maeghan; Horita, Juske; Anderson, Todd; Pardue, John; Reible, Danny; Jackson, W Andrew

    2015-10-01

    Due to the high volume of crude oil released by the Deepwater Horizon oil spill, the salt marshes along the gulf coast were contaminated with crude oil. Biodegradation of crude oil in salt marshes is primarily limited by oxygen availability due to the high organic carbon content of the soil, high flux rate of S(2-), and saturated conditions. Chlorate, nitrate, and perchlorate were evaluated for use as electron acceptors in comparison to oxygen by comparing oil transformation and mineralization in mesocosms consisting of oiled salt marsh sediment from an area impacted by the BP Horizon oil spill. Mineralization rates were determined by measuring CO2 production and δ (13)C of the produced CO2 and compared to transformation evaluated by measuring the alkane/hopane ratios over a 4-month period. Total alkane/hopane ratios decreased (~55-70 %) for all treatments in the following relative order: aerated ≈ chlorate > nitrate > perchlorate. Total CO2 produced was similar between treatments ranging from 550-700 mg CO2-C. The δ (13)C-CO2 values generally ranged between the indigenous carbon and oil values (-17 and -27‰, respectively). Oil mineralization was greatest for the aerated treatments and least for the perchlorate amended. Our results indicate that chlorate has a similar potential as oxygen to support oil mineralization in contaminated salt marshes, but nitrate and perchlorate were less effective. The use of chlorate as a means to promote oil mineralization in situ may be a promising means to remediate contaminated salt marshes while preventing unwanted secondary impacts related to nutrient management as in the case of nitrate amendments. PMID:25854211

  6. The use of chlorate, nitrate, and perchlorate to promote crude oil mineralization in salt marsh sediments.

    PubMed

    Brundrett, Maeghan; Horita, Juske; Anderson, Todd; Pardue, John; Reible, Danny; Jackson, W Andrew

    2015-10-01

    Due to the high volume of crude oil released by the Deepwater Horizon oil spill, the salt marshes along the gulf coast were contaminated with crude oil. Biodegradation of crude oil in salt marshes is primarily limited by oxygen availability due to the high organic carbon content of the soil, high flux rate of S(2-), and saturated conditions. Chlorate, nitrate, and perchlorate were evaluated for use as electron acceptors in comparison to oxygen by comparing oil transformation and mineralization in mesocosms consisting of oiled salt marsh sediment from an area impacted by the BP Horizon oil spill. Mineralization rates were determined by measuring CO2 production and δ (13)C of the produced CO2 and compared to transformation evaluated by measuring the alkane/hopane ratios over a 4-month period. Total alkane/hopane ratios decreased (~55-70 %) for all treatments in the following relative order: aerated ≈ chlorate > nitrate > perchlorate. Total CO2 produced was similar between treatments ranging from 550-700 mg CO2-C. The δ (13)C-CO2 values generally ranged between the indigenous carbon and oil values (-17 and -27‰, respectively). Oil mineralization was greatest for the aerated treatments and least for the perchlorate amended. Our results indicate that chlorate has a similar potential as oxygen to support oil mineralization in contaminated salt marshes, but nitrate and perchlorate were less effective. The use of chlorate as a means to promote oil mineralization in situ may be a promising means to remediate contaminated salt marshes while preventing unwanted secondary impacts related to nutrient management as in the case of nitrate amendments.

  7. Hydrocarbon biomarkers, thermal maturity, and depositional setting of tasmanite oil shales from Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Revill, A. T.; Volkman, J. K.; O'Leary, T.; Summons, R. E.; Boreham, C. J.; Banks, M. R.; Denwer, K.

    1994-09-01

    This study represents the first geological and organic geochemical investigation of samples of tasmanite oil shale representing different thermal maturities from three separate locations in Tasmania, Australia. The most abundant aliphatic hydrocarbon in the immature oil shale from Latrobe is a C 19 tricyclic alkane, whereas in the more mature samples from Oonah and Douglas River low molecular weight n- alkanes dominate the extractable hydrocarbon distribution. The aromatic hydrocarbons are predominantly derivatives of tricyclic compounds, with 1,2,8-trimethylphenanthrene increasing in relative abundance with increasing maturity. Geological and geochemical evidence suggests that the sediments were deposited in a marine environment of high latitude with associated cold waters and seasonal seaice. It is proposed that the organism contributing the bulk of the kerogen, Tasmanites, occupied an environmental niche similar to that of modern sea-ice diatoms and that bloom conditions coupled with physical isolation from atmospheric CO 2 led to the distinctive "isotopically heavy" δ 13C values (-13.5‰ to -11.7‰) for the kerogen. δ 13C data from modern sea-ice diatoms (-7‰) supports this hypothesis. Isotopic analysis of n- alkanes in the bitumen (-13.5 to -31‰) suggest a multiple source from bacteria and algae. On the other hand, the n- alkanes generated from closed-system pyrolysis of the kerogen (-15‰) are mainly derived from the preserved Tasmanites biopolymer algaenan. The tricyclic compounds (mean -8‰) both in the bitumen and pyrolysate, have a common precursor. They are consistently enriched in 13C compared with the kerogen and probably have a different source from the n- alkanes. The identification of a location where the maturity of the tasmanite oil shale approaches the "oil window" raises the possibility that it may be a viable petroleum source rock.

  8. Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oils

    NASA Astrophysics Data System (ADS)

    Noble, Rohinton A.; Alexander, Robert; Kagi, Robert Ian; Knox, John

    1985-10-01

    Tetracyclic diterpenoid hydrocarbons (diterpanes) based on the ent-beyerane, phyllocladane and ent-kaurane skeletons have been identified in the hydrocarbon extracts of some Australian coals, sediments and crude oils. Structures were assigned to the geological diterpanes by comparison with synthetically prepared reference compounds. Studies of a sample suite consisting of low-rank coals and sediments indicate that the ratios of C-16 epimers of phyllocladane and ent-kaurane are maturity dependent, and that the relative proportion of the thermodynamically preferred 16β (H)-compounds increases with increasing thermal maturity. Thermodynamic equilibrium for the interconversion reactions is attained in sediments before the onset of crude oil generation. The most likely natural product precursors for the tetracyclic diterpanes are considered to be the tetracyclic diterpene hydrocarbons which occur widely in the leaf resins of conifers. Tetracyclic diterpanes have been identified in sediments and coals of Permian age or younger, suggesting that these compounds are markers for both modern and extinct families of conifers. In particular, phyllocladane is proposed as a marker for the Podocarpaceae family of conifers.

  9. Hydrocarbon depuration and abiotic changes in artificially oil contaminated sediment in the subtidal

    NASA Astrophysics Data System (ADS)

    Berge, John A.; Lichtenthaler, Rainer G.; Oreld, Frøydis

    1987-04-01

    North Sea crude oil was mixed with sediment in concentrations similar to those found in heavily polluted areas (10 000 and 18 000 ppm) and placed in experimental boxes in the subtidal. Experiments were performed in two Norwegian fjords, the eutrophicated Oslofjord (experimental period of 3 months) and the non-eutrophicated Raunefjord (13 months). Physical and chemical responses of the contaminated sediment were compared with similarly treated control sediment without oil. Depuration was investigated using gas and liquid chromatographic analyses for determination of total hydrocarbon content and selected single aromatic components. Biodegradation was followed using n-alkane/branched alkane ratios. No depuration or biodegradation of hydrocarbon, or pronounced changes in sediment nitrogen and carbon content were observed after exposure in the Oslofjord. In the Raunefjord the redox potential was reduced by 75-200 mV in the oil contaminated sediment after 9 and 13 months. In the control sediment nitrogen and carbon content were significantly reduced after 9 and 13 months but did not change in the oil contaminated sediment except at the sediment surface (0-1 cm). A significantly higher macrofaunal biomass was found in the control sediment after 9 and 13 months but not after 5 months. After 13 months of exposure in the Raunefjord 33% of the originally added oil remained in the sediment. The most soluble components such as naphthalene and methylnaphthalene were reduced by two orders of magnitude and less soluble components such as phenanthrene and methylphenanthrene by one order of magnitude. Reduction was most pronounced at the sediment surface. Biodegradation in the Raunefjord sediment was documented after an initial lag period of 4-9 months. It is suggested that lower bioturbation and resuspension rates are responsible for the reducing conditions and the conservation of carbon, nitrogen and particle size distribution in the oil contaminated sediment. Results found as a

  10. Interleukin-1 alpha modulates neutrophil recruitment in chronic inflammation induced by hydrocarbon oil1

    PubMed Central

    Lee, Pui Y.; Kumagai, Yutaro; Xu, Yuan; Li, Yi; Barker, Tolga; Liu, Chao; Sobel, Eric S.; Takeuchi, Osamu; Akira, Shizuo; Satoh, Minoru; Reeves, WestleyH.

    2012-01-01

    Exposure to naturally-occurring hydrocarbon oils is associated with the development of chronic inflammation and a wide spectrum of pathological findings in humans and animal models. The mechanism underlying the unremitting inflammatory response to hydrocarbons remains largely unclear. The medium-length alkane 2,6,10,14 tetramethylpentadecane (TMPD; also known as pristane) is a hydrocarbon that potently elicits chronic peritonitis characterized by persistent infiltration of neutrophils and monocytes. In this study, we reveal the essential role of interleukin (IL)-1α in sustaining the chronic recruitment of neutrophils following TMPD treatment. IL-1α and IL-1 receptor signaling promote the migration of neutrophils to the peritoneal cavity in a CXC chemokine receptor-2 (CXCR2)-dependent manner. This mechanism is at least partially dependent on the production of the neutrophil chemoattractant CXCL5. Moreover, although chronic infiltration of inflammatory monocytes is dependent on a different pathway requiring Toll-like receptor (TLR)-7, type-I interferon receptor, and CC-chemokine receptor-2 (CCR2), the adaptor molecules MyD88, IRAK-4, IRAK1 and IRAK2 are shared in regulating the recruitment of both monocytes and neutrophils. Taken together, our findings uncover an IL-1α-dependent mechanism of neutrophil recruitment in hydrocarbon-induced peritonitis and illustrate the interactions of innate immune pathways in chronic inflammation. PMID:21191074

  11. Characteristics of Newly Isolated Geobacillus sp. ZY-10 Degrading Hydrocarbons in Crude Oil.

    PubMed

    Sun, Yumei; Ning, Zhanguo; Yang, Fan; Li, Xianzhen

    2015-01-01

    An obligately thermophilic strain ZY-10 was isolated from the crude oil in a high-temperature oilfield, which was capable of degrading heavy crude oil. Phenotypic and phylogenetic analysis demonstrated that the isolate should be grouped in the genus Geobacillus, which shared thd highest similarity (99%) of the 16S rDNA sequence to Geobacillus stearothermophilus. However, the major cellular fatty acid iso-15:0 (28.55%), iso-16:0 (24.93%), iso-17:0 (23.53%) and the characteristics including indole production, tolerance to NaN3 and carbohydrate fermentation showed some difference from the recognized species in the genus Geobacillus. The isolate could use tridecane, hexadecane, octacosane and hexatridecane as sole carbon source for cell growth, and the digesting rate of long-chain alkane was lower than that of short-chain alkane. When the isolate was cultured in the heavy crude oil supplement with inorganic salts and trace yeast extract, the concentration of short-chain alkane was significantly increased and the content of long-chain alkane was decreased, suggesting that the larger hydrocarbon components in crude oil were degraded into shorter-chain alkane. Strain ZY-10 would be useful for improving the mobility of crude oil and upgrading heavy crude oil in situ. PMID:26638533

  12. Characteristics of Newly Isolated Geobacillus sp. ZY-10 Degrading Hydrocarbons in Crude Oil.

    PubMed

    Sun, Yumei; Ning, Zhanguo; Yang, Fan; Li, Xianzhen

    2015-01-01

    An obligately thermophilic strain ZY-10 was isolated from the crude oil in a high-temperature oilfield, which was capable of degrading heavy crude oil. Phenotypic and phylogenetic analysis demonstrated that the isolate should be grouped in the genus Geobacillus, which shared thd highest similarity (99%) of the 16S rDNA sequence to Geobacillus stearothermophilus. However, the major cellular fatty acid iso-15:0 (28.55%), iso-16:0 (24.93%), iso-17:0 (23.53%) and the characteristics including indole production, tolerance to NaN3 and carbohydrate fermentation showed some difference from the recognized species in the genus Geobacillus. The isolate could use tridecane, hexadecane, octacosane and hexatridecane as sole carbon source for cell growth, and the digesting rate of long-chain alkane was lower than that of short-chain alkane. When the isolate was cultured in the heavy crude oil supplement with inorganic salts and trace yeast extract, the concentration of short-chain alkane was significantly increased and the content of long-chain alkane was decreased, suggesting that the larger hydrocarbon components in crude oil were degraded into shorter-chain alkane. Strain ZY-10 would be useful for improving the mobility of crude oil and upgrading heavy crude oil in situ.

  13. Natural hydrocarbon background in benthic sediments of Prince William Sound, Alaska: Oil vs coal

    SciTech Connect

    Short, J.W.; Wright, B.A.; Kvenvolden, K.A.; Carlson, P.R.; Hostettler, F.D.; Rosenbauer, R.J.

    1999-01-01

    The source of the background hydrocarbons in benthic sediments of Prince William Sound (PWS), AK, where the 1989 Exxon Valdez oil spill (EVOS) occurred, has been ascribed to oil seeps in coastal areas of the Gulf of Alaska (GOA). The authors present evidence that coal is a more plausible source, including (i) high concentrations of total PAH (TPAH), between 1,670 and 3,070 ng/g, in continental shelf sediments adjacent to the coastal region containing extensive coal deposits; (ii) PAH composition patterns of sediments along with predictive models that are consistent with coal but not oil; (iii) low ratios of triaromatic steranes of methylchrysenes found in sediments and coals, contrasting with the high ratios found in seep oil; and (iv) bioaccumulation of PAH in salmon collected within 100 m of the Katalla oil seeps but not in filter-feeding mussels collected near oilfield drainages 9 km from the seeps, indicating negligible transport of bioavailable PAH from Katalla seeps to the GOA. In contrast with oil, PAH in coal are not bioavailable, so the presence of coal in these benthic sediments confers no adaptive benefit to biota of the marine ecosystem with respect to PAH insults from anthropogenic sources.

  14. Assessing the hydrocarbon degrading potential of indigenous bacteria isolated from crude oil tank bottom sludge and hydrocarbon-contaminated soil of Azzawiya oil refinery, Libya.

    PubMed

    Mansur, Abdulatif A; Adetutu, Eric M; Kadali, Krishna K; Morrison, Paul D; Nurulita, Yuana; Ball, Andrew S

    2014-09-01

    The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of

  15. Minerals

    MedlinePlus

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including building bones, making ... regulating your heartbeat. There are two kinds of minerals: macrominerals and trace minerals. Macrominerals are minerals your ...

  16. 76 FR 16632 - Environmental Documents Prepared for Proposed Oil, Gas, and Mineral Operations by the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... Proposed Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer Continental Shelf (OCS) Region AGENCY... Environmental Documents Prepared for OCS Mineral Proposals by the Gulf of Mexico OCS Region. SUMMARY: The Bureau...), prepared by BOEMRE for the following oil-, gas-, and mineral-related activities proposed on the Gulf...

  17. 75 FR 67994 - Environmental Documents Prepared for Proposed Oil, Gas, and Mineral Operations by the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... Proposed Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer Continental Shelf (OCS) Region AGENCY... availability of environmental documents prepared for OCS mineral proposals by the Gulf of Mexico OCS Region... Impact (FONSI), prepared by BOEMRE for the following oil-, gas-, and mineral-related activities...

  18. 77 FR 802 - Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... Bureau of Ocean Energy Management Environmental Documents Prepared for Oil, Gas, and Mineral Operations..., Interior. ACTION: Notice of the availability of environmental documents prepared for OCS mineral proposals..., 2011, for the following oil-, gas-, and mineral-related activities that were proposed on the Gulf...

  19. 25 CFR 215.23a - Suspension of operations and production on leases for minerals other than oil and gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... minerals other than oil and gas. 215.23a Section 215.23a Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.23a Suspension of operations and production on leases for minerals other than oil and gas. The provisions...

  20. Survey of reproductive hazards among oil, chemical, and atomic workers exposed to halogenated hydrocarbons

    SciTech Connect

    Savitz, D.A.; Harley, B.; Krekel, S.; Marshall, J.; Bondy, J.; Orleans, M.

    1984-01-01

    Several halogenated hydrocarbons are suspected of causing adverse reproductive effects. Because of such concerns, the Oil, Chemical, and Atomic Workers International Union surveyed the reproductive histories of two groups of workers. One group worked at plants engaged in the production or use of halogenated hydrocarbons (exposed) whereas the others had no such opportunity for exposure (nonexposed). Although a low response rate precludes firm conclusions, the 1,280 completed questionnaires provide useful data for generating hypotheses in this developing field of interest. A history of diagnosed cancer was reported more frequently among exposed workers. The infant mortality rate was also significantly elevated among the offspring of exposed workers. No risk gradient was observed for episodes of infertility, fetal loss, congenital defects, or low-birthweight offspring. Concerns with nonresponse, exposure characterization, possible confounding factors, and limited statistical power are addressed. The results provide further suggestions which help to direct studies of occupational reproductive risks.

  1. Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Dubrovskaya, Ekaterina; Turkovskaya, Olga

    2010-05-01

    Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide E. Dubrovskaya1, O. Turkovskaya1, A. Tiunov2, N. Pozdnyakova1, A. Muratova1 1 - Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, 2 - A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russian Federation Hydrocarbon mineralization in soil undergoing phytoremediation was investigated in a laboratory experiment by estimating the variation in the 13С/12С ratio in the respired СО2. Hexadecane (HD) was used as a model hydrocarbon pollutant. The polluted soil was planted with winter rye (Secale cereale) inoculated with Azospirillum brasilense strain SR80, which combines the abilities to promote plant growth and to degrade oil hydrocarbon. Each vegetated treatment was accompanied with a corresponding nonvegetated one, and uncontaminated treatments were used as controls. Emission of carbon dioxide, its isotopic composition, and the residual concentration of HD in the soil were examined after two and four weeks. At the beginning of the experiment, the CO2-emission level was higher in the uncontaminated than in the contaminated soil. After two weeks, the quantity of emitted carbon dioxide decreased by about three times and did not change significantly in all uncontaminated treatments. The presence of HD in the soil initially increased CO2 emission, but later the respiration was reduced. During the first two weeks, nonvegetated soil had the highest CO2-emission level. Subsequently, the maximum increase in respiration was recorded in the vegetated contaminated treatments. The isotope composition of plant material determines the isotope composition of soil. The soil used in our experiment had an isotopic signature typical of soils formed by C3 plants (δ13C,-22.4‰). Generally, there was no significant fractionation of the carbon isotopes of the substrates metabolized by the

  2. Aerial Surveys of Elevated Hydrocarbon Emissions from Oil and Gas Production Sites.

    PubMed

    Lyon, David R; Alvarez, Ramón A; Zavala-Araiza, Daniel; Brandt, Adam R; Jackson, Robert B; Hamburg, Steven P

    2016-05-01

    Oil and gas (O&G) well pads with high hydrocarbon emission rates may disproportionally contribute to total methane and volatile organic compound (VOC) emissions from the production sector. In turn, these emissions may be missing from most bottom-up emission inventories. We performed helicopter-based infrared camera surveys of more than 8000 O&G well pads in seven U.S. basins to assess the prevalence and distribution of high-emitting hydrocarbon sources (detection threshold ∼ 1-3 g s(-1)). The proportion of sites with such high-emitting sources was 4% nationally but ranged from 1% in the Powder River (Wyoming) to 14% in the Bakken (North Dakota). Emissions were observed three times more frequently at sites in the oil-producing Bakken and oil-producing regions of mixed basins (p < 0.0001, χ(2) test). However, statistical models using basin and well pad characteristics explained 14% or less of the variance in observed emission patterns, indicating that stochastic processes dominate the occurrence of high emissions at individual sites. Over 90% of almost 500 detected sources were from tank vents and hatches. Although tank emissions may be partially attributable to flash gas, observed frequencies in most basins exceed those expected if emissions were effectively captured and controlled, demonstrating that tank emission control systems commonly underperform. Tanks represent a key mitigation opportunity for reducing methane and VOC emissions.

  3. Aerial Surveys of Elevated Hydrocarbon Emissions from Oil and Gas Production Sites.

    PubMed

    Lyon, David R; Alvarez, Ramón A; Zavala-Araiza, Daniel; Brandt, Adam R; Jackson, Robert B; Hamburg, Steven P

    2016-05-01

    Oil and gas (O&G) well pads with high hydrocarbon emission rates may disproportionally contribute to total methane and volatile organic compound (VOC) emissions from the production sector. In turn, these emissions may be missing from most bottom-up emission inventories. We performed helicopter-based infrared camera surveys of more than 8000 O&G well pads in seven U.S. basins to assess the prevalence and distribution of high-emitting hydrocarbon sources (detection threshold ∼ 1-3 g s(-1)). The proportion of sites with such high-emitting sources was 4% nationally but ranged from 1% in the Powder River (Wyoming) to 14% in the Bakken (North Dakota). Emissions were observed three times more frequently at sites in the oil-producing Bakken and oil-producing regions of mixed basins (p < 0.0001, χ(2) test). However, statistical models using basin and well pad characteristics explained 14% or less of the variance in observed emission patterns, indicating that stochastic processes dominate the occurrence of high emissions at individual sites. Over 90% of almost 500 detected sources were from tank vents and hatches. Although tank emissions may be partially attributable to flash gas, observed frequencies in most basins exceed those expected if emissions were effectively captured and controlled, demonstrating that tank emission control systems commonly underperform. Tanks represent a key mitigation opportunity for reducing methane and VOC emissions. PMID:27045743

  4. Performance of vegetable oils as a cooling medium in comparison to a standard mineral oil

    NASA Astrophysics Data System (ADS)

    Totten, G. E.; Tensi, H. M.; Lainer, K.

    1999-08-01

    Immersion quenching is the most widely used quenching technique today and is usually one of the last steps in heat treat processing. Improper hardening to incorrect cooling is generally a great loss and causes a great percentage of manufacturing costs. To avoid a failure in cooling, researchers are committed to describing the cooling effect as precisely as possible. The cooling of immersion cooled workpieces or probes is generally characterized by the process of wetting. Evaporable fluids exhibit the three well known stages of cooling: vapor blanket stage, boiling stage, and convective heat transfer. Therefore cooling behavior is influenced by a wide variety and depends on a number of parameters, that is, type of quenchant used, bath temperature, rate of agitation, and the physical and chemical properties of the quenched parts. Environmental pollution has caused the search for new products in har dening and shock cooling of steels. The use of soybean oils as quenching fluids is new, and compared with standard mineral oils, there are many advantages mainly concerning the environment and the health of workers.

  5. Distribution of oil and grease and petroleum hydrocarbons in the Straits of Johor, Peninsular Malaysia

    SciTech Connect

    Abdullah, A.R.; Bakar, R.A.; Woon, W.C.

    1996-07-01

    The Straits of Johor is a narrow stretch of water separating Peninsular Malaysia from Singapore. The two land masses bordering the Straits of Johor are characterized by a wide range of landscapes and activities. On the Malaysian side, which constitutes the state of Johor, lies the state capital as well as a rapidly developing international seaport, in the vicinity of a major industrial area. The eastern portion of the state bordering the straits is relatively undeveloped, comprising of wetland forests. On the Singapore side, apart from a power-generating facility, much of northern Singapore which borders the straits is undeveloped. The Straits of Johor and nearby-waters also represent an important area for fishing and aquaculture activities. Fish traps are a common sight along the length of the straits. Oil pollution has been identified as the major contribution to the deterioration of the marine water quality in the Straits of Johor. Shipping activities involving tankers and other vessels plying the Straits of Malacca, have been recognized as a source of petroleum hydrocarbons in these waters. Land-based industrial and urban sources also contribute to the overall oil pollution load in these waters. In recognizing the need for baseline data in assessing environmental pollution, the Department of Environment has been conducting pollution monitoring programs since 1976, at numerous sampling stations situated in the major river systems of the nation, as well as coastal areas,. including the Straits of Johor. However, as far as oil pollution is concerned, these programs have been restricted to measuring oil and grease. The present study was undertaken to determine petroleum hydrocarbons, as well as oil and grease in water and sediments along the near- coastal areas of the Straits of Johor and near-by waters. 12 refs., 2 figs., 2 tabs.

  6. Survey of polycyclic aromatic hydrocarbons of vegetable oils and oilseeds by GC-MS in China.

    PubMed

    Shi, Long-Kai; Zhang, Dong-Dong; Liu, Yu-Lan

    2016-01-01

    There is a lack of information regarding the occurrence and content of contamination of polycyclic aromatic hydrocarbon (PAH) in edible vegetable oils and oilseeds used for oil production in China. By combining the advantages of ultrasound-assisted extraction, low temperature separation and silica SPE purification, a method for the determination of the USEPA, 16 PAHs was developed based on GC-MS to fill this gap. The method recoveries for oils and oilseeds were 84.4-113.8% and 84.3-115.3%, respectively. The LODs and LOQs for 16 PAHs were ranged from 0.06-0.17 and 0.19-0.56 μg kg(-1), respectively. Based on the established method, PAH concentrations in 21 edible oils and 17 oilseeds were determined. Almost all the PAHs were found in all the samples tested, especially the light PAHs (LPAHs). Three oil samples exceeded the maximum level of 10 μg kg(-1) for BaP set by China. However, five and six oil samples, respectively, exceeded the maximum limits of 2 and 10 μg kg(-1) set for BaP and PAH4 by the European Union. The concentrations of PAH16 in oilseed samples were 1.5 times higher than corresponding oil samples. The relationships between PAH4 and PAH8, PAH4 and PAH16 as well as PAH8 and PAH16 indicates that PAH4 is a sufficient surrogate for the contamination level of PAHs in edible oils when compared with PAH8.

  7. Survey of polycyclic aromatic hydrocarbons of vegetable oils and oilseeds by GC-MS in China.

    PubMed

    Shi, Long-Kai; Zhang, Dong-Dong; Liu, Yu-Lan

    2016-01-01

    There is a lack of information regarding the occurrence and content of contamination of polycyclic aromatic hydrocarbon (PAH) in edible vegetable oils and oilseeds used for oil production in China. By combining the advantages of ultrasound-assisted extraction, low temperature separation and silica SPE purification, a method for the determination of the USEPA, 16 PAHs was developed based on GC-MS to fill this gap. The method recoveries for oils and oilseeds were 84.4-113.8% and 84.3-115.3%, respectively. The LODs and LOQs for 16 PAHs were ranged from 0.06-0.17 and 0.19-0.56 μg kg(-1), respectively. Based on the established method, PAH concentrations in 21 edible oils and 17 oilseeds were determined. Almost all the PAHs were found in all the samples tested, especially the light PAHs (LPAHs). Three oil samples exceeded the maximum level of 10 μg kg(-1) for BaP set by China. However, five and six oil samples, respectively, exceeded the maximum limits of 2 and 10 μg kg(-1) set for BaP and PAH4 by the European Union. The concentrations of PAH16 in oilseed samples were 1.5 times higher than corresponding oil samples. The relationships between PAH4 and PAH8, PAH4 and PAH16 as well as PAH8 and PAH16 indicates that PAH4 is a sufficient surrogate for the contamination level of PAHs in edible oils when compared with PAH8. PMID:26836028

  8. The influence of temperature on the lubricating effectiveness of MoS2 dispersed in mineral oils

    NASA Technical Reports Server (NTRS)

    Rolek, R. J.; Cusano, C.; Sliney, H. E.

    1984-01-01

    The effects of oil viscosity, base oil temperature, and surface-active agents naturally present in mineral oils on the lubricating effectiveness of MoS2 dispersions under boundary lubrication conditions are investigated. Friction and wear data are obtained from tests conducted under a wide range of oil viscosities and operating temperatures. The dispersion temperature at which the friction dropped below that obtained with the base oils, depended upon the base oil viscosity and the concentration of surface-active agents present in the oil. White oils showed reductions in friction before mineral oils of like viscosity, and lower viscosity oils showed reductions in friction before heavier viscosity oils. The results show that for a given base oil, wear increases as temperature increases, while the wear obtained from a MoS2 dispersion made from the base oil remains approximately constant as temperature is increased.

  9. Measurement of polynuclear aromatic hydrocarbon concentrations in the plume of Kuwait oil well fires

    SciTech Connect

    Olsen, K.B.; Wright, C.W.; Veverka, C.; Ball, J.C.; Stevens, R.

    1995-03-01

    Following their retreat from Kuwait during February and March of 1991, the Iraqi Army set fire to over 500 oil wells dispersed throughout the Kuwait oil fields. During the period of sampling from July to August 1991, it was estimated that between 3.29 {times} 10{sup 6} barrels per day of crude oil were combusted. The resulting fires produced several plumes of black and white smoke that coalesced to form a composite ``super`` plume. Because these fires were uncontrolled, significant quantities of organic materials were dispersed into the atmosphere and drifted throughout the Middle East. The organic particulants associated with the plume of the oil well fires had a potential to be rich in polynuclear aromatic hydrocarbon (PAH) compounds. Based on the extreme mutagenic and carcinogenic activities of PAHs found in laboratory testing, a serious health threat to the population of that region potentially existed. Furthermore, the Kuwait oil fire plumes represented a unique opportunity to study the atmospheric chemistry associated with PAHs in the plume. If samples were collected near the plume source and from the plume many kilometers downwind from the source, comparisons could be made to better understand atmospheric reactions associated with particle-bound and gas-phase PAHs. To help answer health-related concerns and to better understand the fate and transport of PAHs in an atmospheric environment, a sampling and analysis program was developed.

  10. Effects of rapeseed oil on the rhizodegradation of polyaromatic hydrocarbons in contaminated soil.

    PubMed

    Gartler, Jorg; Wimmer, Bernhard; Soja, Gerhard; Reichenauer, Thomas G

    2014-01-01

    Plants have the ability to promote degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil by supporting PAH degrading microorganisms in the rhizosphere (rhizodegradation). The aim of this study was to evaluate if rapeseed oil increases rhizodegradation because various studies have shown that vegetable oils are able to act as extractants for PAHs in contaminated soils and therefore might increase bioavailability of PAHs for microbial degradation. In this study different leguminous and grass species were tested. The results suggested a significant impact of vegetable oil (1 and 3% w/w) on plant growth (decrease of plant height and biomass). The results of the pot experiment showed a decrease in the PAH content of the soil without amendment of rapeseed oil after six months. In soil amended with 1% and 3% of oil, there was no decrease in PAH content within this period. Although no enhancement of PAH degradation by plants could be measured in the bulk soil of the pot experiments, a rhizobox experiment showed a significant reduction of PAH content in the rhizosphere of alfalfa (Medicago sativa cv. Europe). Our investigations also showed significant differences in the degradation behaviour of the 16 individually analysed PAHs.

  11. On-line coupled high performance liquid chromatography-gas chromatography for the analysis of contamination by mineral oil. Part 2: migration from paperboard into dry foods: interpretation of chromatograms.

    PubMed

    Biedermann, Maurus; Grob, Koni

    2012-09-14

    Mineral oil hydrocarbons are complex as well as varying mixtures and produce correspondingly complex chromatograms (on-line HPLC-GC-FID as described in Part 1): mostly humps of unresolved components are obtained, sometimes with sharp peaks on top. Chromatograms may also contain peaks of hydrocarbons from other sources which need to be subtracted from the mineral oil components. The review focuses on the interpretation and integration of chromatograms related to food contamination by mineral oil from paperboard boxes (off-set printing inks and recycled fibers), if possible distinguishing between various sources of mineral oil. Typical chromatograms are shown for relevant components and interferences as well as food samples encountered on the market. Details are pointed out which may provide relevant information. Integration is shown for examples of paperboard packaging materials as well as various foods. Finally the uncertainty of the analysis and limit of quantitation are discussed for specific examples. They primarily result from the interpretation of the chromatogram, manually placing the baseline and cuts for taking off extraneous components. Without previous enrichment, the limit of quantitation is between around 0.1 mg/kg for foods with a low fat content and 2.5 mg/kg for fats and oils. The measurement uncertainty can be kept clearly below 20% for most samples. PMID:22727555

  12. Process conditions for the mineralization of a biorefractory polycyclic aromatic hydrocarbon in soils using catalyzed hydrogen peroxide

    SciTech Connect

    Stanton, P.C.; Watts, R.J.

    1996-12-31

    Catalyzed hydrogen peroxide (H{sub 2}O{sub 2} and soluble iron or mineral catalysts) was investigated as a basis for mineralizing benzo[a]pyrene (BaP), a hydrophobic and toxic polycyclic aromatic hydrocarbon, in two soils of varied complexity. The process is based on Fenton`s reagent, which can be implemented in soils to generate hydroxyl radicals. This short-lived species reacts with most organic contaminants at near diffusion-controlled rates, providing a mechanism for potential rapid soil remediation. Benzo[a]pyrene labeled with {sup 14}C was added to silica sand and a silt loam loess soil; mineralization processes were then optimized using central composite rotatable experimental designs. Variables investigated during the optimization included H{sub 2}O{sub 2} concentration, slurry volume, iron (II) amendment, and pH. Experimental data were evaluated by linear regression to develop empirical relationships and interactions between the variables. The equations were then used to develop three-dimensional response surfaces to describe BaP mineralization. The results from the response surfaces showed that 74% and 78% BaP mineralization was achieved in the silica sand and loess soils, respectively. The balance of the contaminant carbon remained with the soil fraction and was probably irreversibly sorbed. Desorption measurements over 5 d confirmed negligible desorption; however, oxidation reactions, which were complete within 24 h, documented >78% BaP mineralization, suggesting that the contaminant was oxidized, at least in part, in the sorbed phase. The results show that catalyzed H{sub 2}O{sub 2} has the ability to rapidly mineralize BaP that is not irreversibly sorbed.

  13. The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill

    PubMed Central

    Kappell, Anthony D.; Wei, Yin; Newton, Ryan J.; Van Nostrand, Joy D.; Zhou, Jizhong; McLellan, Sandra L.; Hristova, Krassimira R.

    2014-01-01

    The Deepwater Horizon (DWH) blowout resulted in oil transport, including polycyclic aromatic hydrocarbons (PAHs) to the Gulf of Mexico shoreline. The microbial communities of these shorelines are thought to be responsible for the intrinsic degradation of PAHs. To investigate the Gulf Coast beach microbial community response to hydrocarbon exposure, we examined the functional gene diversity, bacterial community composition, and PAH degradation capacity of a heavily oiled and non-oiled beach following the oil exposure. With a non-expression functional gene microarray targeting 539 gene families, we detected 28,748 coding sequences. Of these sequences, 10% were uniquely associated with the severely oil-contaminated beach and 6.0% with the non-oiled beach. There was little variation in the functional genes detected between the two beaches; however the relative abundance of functional genes involved in oil degradation pathways, including polycyclic aromatic hydrocarbons (PAHs), were greater in the oiled beach. The microbial PAH degradation potentials of both beaches, were tested in mesocosms. Mesocosms were constructed in glass columns using sands with native microbial communities, circulated with artificial sea water and challenged with a mixture of PAHs. The low-molecular weight PAHs, fluorene and naphthalene, showed rapid depletion in all mesocosms while the high-molecular weight benzo[α]pyrene was not degraded by either microbial community. Both the heavily oiled and the non-impacted coastal communities showed little variation in their biodegradation ability for low molecular weight PAHs. Massively-parallel sequencing of 16S rRNA genes from mesocosm DNA showed that known PAH degraders and genera frequently associated with oil hydrocarbon degradation represented a major portion of the bacterial community. The observed similar response by microbial communities from beaches with a different recent history of oil exposure suggests that Gulf Coast beach communities are

  14. Western Greece unconventional hydrocarbon potential from oil shale and shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Karakitsios, Vasileios; Agiadi, Konstantina

    2013-04-01

    It is clear that we are gradually running out of new sedimentary basins to explore for conventional oil and gas and that the reserves of conventional oil, which can be produced cheaply, are limited. This is the reason why several major oil companies invest in what are often called unconventional hydrocarbons: mainly oil shales, heavy oil, tar sand and shale gas. In western Greece exist important oil and gas shale reservoirs which must be added to its hydrocarbon potential1,2. Regarding oil shales, Western Greece presents significant underground immature, or close to the early maturation stage, source rocks with black shale composition. These source rock oils may be produced by applying an in-situ conversion process (ICP). A modern technology, yet unproven at a commercial scale, is the thermally conductive in-situ conversion technology, developed by Shell3. Since most of western Greece source rocks are black shales with high organic content, those, which are immature or close to the maturity limit have sufficient thickness and are located below 1500 meters depth, may be converted artificially by in situ pyrolysis. In western Greece, there are several extensive areas with these characteristics, which may be subject of exploitation in the future2. Shale gas reservoirs in Western Greece are quite possibly present in all areas where shales occur below the ground-water level, with significant extent and organic matter content greater than 1%, and during their geological history, were found under conditions corresponding to the gas window (generally at depths over 5,000 to 6,000m). Western Greece contains argillaceous source rocks, found within the gas window, from which shale gas may be produced and consequently these rocks represent exploitable shale gas reservoirs. Considering the inevitable increase in crude oil prices, it is expected that at some point soon Western Greece shales will most probably be targeted. Exploration for conventional petroleum reservoirs

  15. Thickening power of hydrogenated polybutadiene-styrene in mineral oils

    SciTech Connect

    Natov, M.; Pavlov, D.

    1984-09-01

    This article investigates the thickening power of a hydrogenated polybutadiene-styrene with a molecular weight of 90,000 in three types of oil base stocks: KhF-12, SK-3, and a blend of 66% SK-3 with 34% NK-1. The results indicate that as the temperature is lowered, the relative viscosity of the compounded oils with a naphthenic-aromatic base stock (KhF-12) increases more rapidly than that of the oils formulated from a naphthenic-paraffinic base stock (blend of 66% SK-3 with 34% NK-1). The copolymer has a weaker thickening effect on naphthenic-paraffinic oil at temperatures from -10/sup 0/ to 80/sup 0/C. It is determined that with further increases in temperature, the differences in the thickening effect in oils of different compositions decrease continuously, and at 150/sup 0/C, these differences disappear.

  16. Kinetic studies on the evolution of hydrocarbons by pyrolysis of oil shale and vitrinite samples

    SciTech Connect

    Esser, W.; Schwochau, K. )

    1989-03-01

    Kinetic parameters for the evolution of hydrocarbons (C{sub 1}-C{sub 4}) by pyrolysis of Toarcian shales, northern Germany, and vitrinite samples of the Upper Carboniferous, western Germany, were derived according to the nonisothermal method. The solvent-extracted samples were heated in a flow of helium gas at a constant heating rate of 0.1 K/min and the purified hydrocarbons were analyzed by capillary GC. The activation energies for the evolution of alkanes and alkenes (C{sub 2}-C{sub 4}) from type II kerogen in the shales increase with increasing maturity up to a maximum whose position depends on the individual hydrocarbon. Methane generation proceeds via four discernible reactions. The evolution profiles of alkanes (C{sub 1}-C{sub 4}) released by pyrolysis of the vitrinite samples reveal relatively low activation energies. Mixing of vitrinite with finely ground quartz or calcite results in an evident change of the evolution profiles and the kinetic parameters, indicating vitrinite-mineral interactions.

  17. Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment.

    PubMed

    Ganesh Kumar, A; Vijayakumar, Lakshmi; Joshi, Gajendra; Magesh Peter, D; Dharani, G; Kirubagaran, R

    2014-10-01

    Complex hydrocarbon and aromatic compounds degrading marine bacterial strains were isolated from deep sea sediment after enrichment on spent engine (SE) oil. Phenotypic characterization and phylogenetic analysis of 16S rRNA gene sequences showed the isolates were related to members of the Pseudoalteromonas sp., Ruegeria sp., Exiguobacterium sp. and Acinetobacter sp. Biodegradation using 1% (v/v) SE oil with individual and mixed strains showed the efficacy of SE oil utilization within a short retention time. The addition of non-ionic surfactant 0.05% (v/v) Tween 80 as emulsifying agent enhanced the solubility of hydrocarbons and renders them more accessible for biodegradation. The degradation of several compounds and the metabolites formed during the microbial oxidation process were confirmed by Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses. The potential of this consortium to biodegrade SE oil with and without emulsifying agent provides possible application in bioremediation of oil contaminated marine environment.

  18. Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Bacteria Isolated from Light Oil Polluted Soils

    NASA Astrophysics Data System (ADS)

    Ohnuma, T.; Suto, K.; Inoue, C.

    2007-03-01

    Polycyclic aromatic hydrocarbons (PAHs) have polluted soil and groundwater widely and for long term because of their low solubility at normal temperature. Several microorganisms, such as Pseudomonas sp., Sphigomonas sp., a white-rot fungus and so on, being able to decompose PAHs, have been isolated and researched. This study reported to investigate biodegradation of low molecule PAH by isolated bacteria from light oil polluted soil. 12 isolates were obtained from a light oil polluted soil using naphthalene, fluorene and anthracene as sole carbon source, of which 4 isolates grew with naphthalene, 4 isolates did with fluorene and 4 isolates did with anthracene. Among them 3 isolates showed the ability to degrade phenanthrene additionally. These phenanthrene degradation and growth rates were almost same as that of S. yanoikuyae (DSM6900), which is the typical bacteria of PAHs degrader. Therefore, the isolate seemed to have an expectation for PAHs degradation.

  19. Generalist hydrocarbon-degrading bacterial communities in the oil-polluted water column of the North Sea.

    PubMed

    Chronopoulou, Panagiota-Myrsini; Sanni, Gbemisola O; Silas-Olu, Daniel I; van der Meer, Jan Roelof; Timmis, Kenneth N; Brussaard, Corina P D; McGenity, Terry J

    2015-05-01

    The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean.

  20. Generalist hydrocarbon-degrading bacterial communities in the oil-polluted water column of the North Sea.

    PubMed

    Chronopoulou, Panagiota-Myrsini; Sanni, Gbemisola O; Silas-Olu, Daniel I; van der Meer, Jan Roelof; Timmis, Kenneth N; Brussaard, Corina P D; McGenity, Terry J

    2015-05-01

    The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean. PMID:25251384

  1. Generalist hydrocarbon-degrading bacterial communities in the oil-polluted water column of the North Sea

    PubMed Central

    Chronopoulou, Panagiota-Myrsini; Sanni, Gbemisola O; Silas-Olu, Daniel I; van der Meer, Jan Roelof; Timmis, Kenneth N; Brussaard, Corina P D; McGenity, Terry J

    2015-01-01

    The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean. PMID:25251384

  2. Ex situ bioremediation of mineral oil in soils: Land treatment and composting. Final report

    SciTech Connect

    Gauger, K.

    1998-06-01

    Mineral oil dielectric fluid (MODF) has replaced PCB oil as the insulating medium in electrical transformers. Although eliminating PCBs has reduced the environmental impact resulting from transformer leaks, soil contaminated with mineral oil still often requires remediation. This study evaluated the feasibility of ex situ biotreatment by land farming and composting for Southern Company Services/Georgia Power. Research results indicate that composting does not enhance the biodegradation of mineral oil compared to land treatment. Furthermore, while land treatment does degrade mineral oil, the process takes nearly a year and may not meet regulatory limits. Because the environmental impact of MODF spills into soil is not well understood, states regulate this fluid similarly to petroleum fuel oil for cleanup purposes. This has led to costly remedial efforts, with utilities excavating contaminated media and disposing it in landfills. However, landfills are becoming increasingly regulated, and their use leaves future liability issues unresolved. Southern Company Services/Georgia Power and EPRI sought to explore the effectiveness of ex situ treatment technologies of land farming and composting to decontaminate soil for on-site reuse.

  3. The "Oil-Spill Snorkel": an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments.

    PubMed

    Cruz Viggi, Carolina; Presta, Enrica; Bellagamba, Marco; Kaciulis, Saulius; Balijepalli, Santosh K; Zanaroli, Giulio; Petrangeli Papini, Marco; Rossetti, Simona; Aulenta, Federico

    2015-01-01

    This study presents the proof-of-concept of the "Oil-Spill Snorkel": a novel bioelectrochemical approach to stimulate the oxidative biodegradation of petroleum hydrocarbons in sediments. The "Oil-Spill Snorkel" consists of a single conductive material (the snorkel) positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated sediment) and the oxic zone (the overlying O2-containing water). The segment of the electrode buried within the sediment plays a role of anode, accepting electrons deriving from the oxidation of contaminants. Electrons flow through the snorkel up to the part exposed to the aerobic environment (the cathode), where they reduce oxygen to form water. Here we report the results of lab-scale microcosms setup with marine sediments and spiked with crude oil. Microcosms containing one or three graphite snorkels and controls (snorkel-free and autoclaved) were monitored for over 400 days. Collectively, the results of this study confirmed that the snorkels accelerate oxidative reactions taking place within the sediment, as documented by a significant 1.7-fold increase (p = 0.023, two-tailed t-test) in the cumulative oxygen uptake and 1.4-fold increase (p = 0.040) in the cumulative CO2 evolution in the microcosms containing three snorkels compared to snorkel-free controls. Accordingly, the initial rate of total petroleum hydrocarbons (TPH) degradation was also substantially enhanced. Indeed, while after 200 days of incubation a negligible degradation of TPH was noticed in snorkel-free controls, a significant reduction of 12 ± 1% (p = 0.004) and 21 ± 1% (p = 0.001) was observed in microcosms containing one and three snorkels, respectively. Although, the "Oil-Spill Snorkel" potentially represents a groundbreaking alternative to more expensive remediation options, further research efforts are needed to clarify factors and conditions affecting the snorkel-driven biodegradation processes and to identify suitable

  4. [Bioremediation of oil-polluted soils: using the [13C]/[12C] ratio to characterize microbial products of oil hydrocarbon biodegradation].

    PubMed

    Ziakun, A M; Brodskiĭ, E S; Baskunov, B P; Zakharchenko, V N; Peshenko, V P; Filonov, A E; Vetrova, A A; Ivanova, A A; Boronin, A M

    2014-01-01

    We compared data on the extent of bioremediation in soils polluted with oil. The data were obtained using conventional methods of hydrocarbon determination: extraction gas chromatography-mass spectrometry, extraction IR spectroscopy, and extraction gravimetry. Due to differences in the relative abundances of the stable carbon isotopes (13C/12C) in oil and in soil organic matter, these ratios could be used as natural isotopic labels of either substance. Extraction gravimetry in combination with characteristics of the carbon isotope composition of organic products in the soil before and after bioremediation was shown to be the most informative approach to an evaluation of soil bioremediation. At present, it is the only method enabling quantification of the total petroleum hydrocarbons in oil-polluted soil, as well as of the amounts of hydrocarbons remaining after bioremediation and those microbially transformed into organic products and biomass.

  5. Dielectric breakdown in mineral oil ITO 100 based magnetic fluid

    NASA Astrophysics Data System (ADS)

    Kudelcik, J.; Bury, P.; Kopcansky, P.; Timko, M.

    The development of dielectric breakdown and the DC dielectric breakdown voltage of magnetic fluids based on inhibited transformer oil ITO 100 were investigated in parallel orientations of external magnetic field. It was shown that the breakdown voltage is strongly influenced by the magnetic nanoparticles. The magnetic fluids with the volume concentration 1and 0.2% had better dielectric properties than pure transformer oil. The increase of breakdown voltage was interpreted on the base of the bubble theory of breakdown.

  6. Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel.

    PubMed

    Zhao, Xianhui; Wei, Lin; Julson, James; Qiao, Qiquan; Dubey, Ashish; Anderson, Gary

    2015-03-25

    Non-edible sunflower oils that were extracted from sunflower residual wastes were catalytically cracked over a ZSM-5 catalyst in a fixed-bed reactor at three different reaction temperatures: 450°C, 500°C and 550°C. The catalyst was characterized using XRD, FT-IR, BET and SEM. Characterizations of the upgraded sunflower oils, hydrocarbon fuels, distillation residues and non-condensable gases were carried out. The effect of the reaction temperature on the yield and quality of liquid products was discussed. The results showed that the reaction temperature affected the hydrocarbon fuel yield but had a minor influence on its properties. The highest conversion efficiency from sunflower oils to hydrocarbon fuels was 30.1%, which was obtained at 550°C. The reaction temperature affected the component content of the non-condensable gases. The non-condensable gases generated at 550°C contained the highest content of light hydrocarbons (C1-C5), CO, CO2 and H2. Compared to raw sunflower oils, the properties of hydrocarbon fuels including the dynamic viscosity, pH, moisture content, density, oxygen content and heating value were improved.

  7. Effect of crude oil petroleum hydrocarbons on protein expression of the prawn Macrobrachium borellii.

    PubMed

    Pasquevich, M Y; Dreon, M S; Gutierrez Rivera, J N; Vázquez Boucard, C; Heras, H

    2013-05-01

    Hydrocarbon pollution is a major environmental threat to ecosystems in marine and freshwater environments, but its toxicological effect on aquatic organisms remains little studied. A proteomic approach was used to analyze the effect of a freshwater oil spill on the prawn Macrobrachium borellii. To this aim, proteins were extracted from midgut gland (hepatopancreas) of male and female prawns exposed 7 days to a sublethal concentration (0.6 ppm) of water-soluble fraction of crude oil (WSF). Exposure to WSF induced responses at the protein expression level. Two-dimensional gel electrophoresis (2-DE) revealed 10 protein spots that were differentially expressed by WSF exposure. Seven proteins were identified using MS/MS and de novo sequencing. Nm23 oncoprotein, arginine methyltransferase, fatty aldehyde dehydrogenase and glutathione S-transferase were down-regulated, whereas two glyceraldehyde-3-phosphate dehydrogenase isoforms and a lipocalin-like crustacyanin (CTC) were up-regulated after WSF exposure. CTC mRNA levels were further analyzed by quantitative real-time PCR showing an increased expression after WSF exposure. The proteins identified are involved in carbohydrate and amino acid metabolism, detoxification, transport of hydrophobic molecules and cellular homeostasis among others. These results provide evidence for better understanding the toxic mechanisms of hydrocarbons. Moreover, some of these differentially expressed proteins would be employed as potential novel biomarkers.

  8. Distribution of selected carcinogenic hydrocarbon and heavy metals in an oil-polluted agriculture zone.

    PubMed

    Nwaichi, E O; Wegwu, M O; Nwosu, U L

    2014-12-01

    Owing to the importance of clean and fertile agricultural soil for the continued existence of man, this study investigated the concentrations of total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs) and some heavy metals in soils and selected commonly consumed vegetables and tubers from oil-polluted active agricultural farmland in Gokana of Ogoniland, Rivers State, Nigeria. Samples from Umuchichi, Osisioma Local Government Area in Abia State, Nigeria, a non-oil-polluted area constituted the control. In test and control, up to 3,830 ± 19.6 mgkg(-1) dw and 6,950 ± 68.3 mgkg(-1) dw (exceeding DPR set limits) and 11.3 ± 0.04 mgkg(-1) dw and 186 ± 0.02 mgkg(-1) dw for TPH and PAHs, respectively, were recorded in test soil and plant samples, respectively. Among the metals studied (Pb, Cd, Cr, Mn, Fe and Zn), Pb and Cr uptake exceeded WHO set limits for crops in test samples. Combined sources of pollution were evident from our studies. Bitterleaf and Waterleaf could be tried as bioindicators owing to expressed contaminants uptake pattern.

  9. Salt Marsh Sediment Mixing Following Petroleum Hydrocarbon Exposure from the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Hatch, R. S.; Yeager, K. M.; Brunner, C. A.; Wade, T. L.; Briggs, K. B.; Schindler, K. J.

    2013-12-01

    Tidal marshes support valuable ecosystems, but their coastal locations make them susceptible to oil spills. Oil spilled in the ocean is easily transported via tidal and wind-driven currents to the shore and incorporated into sediments. The primary goal of this research was to determine how deeply oil from the 2010 Deepwater Horizon spill has penetrated sediments along the Gulf Coast, and whether oil has quantifiably affected benthic ecosystems at these sites. Sediment cores were taken from three marsh environments at sites classified as unoiled, lightly oiled, and heavily oiled based on data from NOAA's Environmental Response Management Application (ERMA). These classifications have been verified by measurements of total polycyclic aromatic hydrocarbons ([TPAH] without perylene). Bioturbators, such as polychaetes and oligochaetes, constantly rework sediments as they burrow into them. In this way, bioturbators can play a role in the fate of organic contaminants, either by allowing for natural remediation of contaminants via enhanced microbial degradation, or by mixing oil from the surface deeper into the sediment column. The constant fallout radionuclide 7Be was measured to determine short-term sediment mixing depths. However, there was a conspicuous absence of 7Be at most sites. This could be due to sediment composition constraints on 7Be sorption (coarse-grained sediment, high organic matter contents), or rapid erosion of the marsh surface. Instead, minimum mixing depths were derived from 234Thxs profiles. Thorium-234 is a lithogenic isotope that has widely been used to trace particle mixing on short time scales near that of its mean life (36 days). Penetration depths of 234Thxs ranged between 0.25 and 4.5 cm. Sediment accumulation rates will be determined using 210Pb, with verification from an independent tracer, 137Cs, in selected cores. Preliminary results from 210Pb profiles reveal thorough, long-term (decadal) sediment mixing to at least 40 cm at all sites

  10. Modeling the changes in the concentration of aromatic hydrocarbons from an oil-coated gravel column

    NASA Astrophysics Data System (ADS)

    Jung, Jee-Hyun; Kang, Hyun-Joong; Kim, Moonkoo; Yim, Un Hyuk; An, Joon Geon; Shim, Won Joon; Kwon, Jung-Hwan

    2015-12-01

    The performance of a lab-scale flow-through exposure system designed for the evaluation of ecotoxicity due to oil spills was evaluated. The system simulates a spill event using an oil-coated gravel column through which filtered seawater is passed and flows into an aquarium containing fish embryos of olive flounder ( Paralichthys olivaceus) and spotted sea bass ( Lateolabrax maculates). The dissolved concentrations of individual polycyclic aromatic hydrocarbons (PAHs) in the column effluent were monitored and compared with theoretical solubilities predicted by Raoult's law. The effluent concentrations after 24 and 48 h were close to the theoretical predictions for the higher molecular weight PAHs, whereas the measured values for the lower molecular weight PAHs were lower than predicted. The ratios of the concentration of PAHs in flounder embryos to that in seawater were close to the lipid-water partition coefficients for the less hydrophobic PAHs, showing that equilibrium was attained between embryos and water. On the other hand, 48 h were insufficient to attain phase equilibrium for the more hydrophobic PAHs, indicating that the concentration in fish embryos may be lower than expected by equilibrium assumption. The results indicate that the equilibrium approach may be suitable for less hydrophobic PAHs, whereas it might overestimate the effects of more hydrophobic PAHs after oil spills because phase equilibrium in an oil-seawater-biota system is unlikely to be achieved. The ecotoxicological endpoints that were affected within a few days are likely to be influenced mainly by moderately hydrophobic components such as 3-ring PAHs.

  11. Isolation, identification, and crude oil degradation characteristics of a high-temperature, hydrocarbon-degrading strain.

    PubMed

    Liu, Boqun; Ju, Meiting; Liu, Jinpeng; Wu, Wentao; Li, Xiaojing

    2016-05-15

    In this work, a hydrocarbon-degrading bacterium Y-1 isolated from petroleum contaminated soil in the Dagang Oilfield was investigated for its potential effect in biodegradation of crude oil. According to the analysis of 16S rRNA sequences, strain Y-1 was identified as Bacillus licheniformis. The growth parameters such as pH, temperature, and salinity were optimised and 60.2% degradation of crude oil removal was observed in 5days. The strain Y-1 showed strong tolerance to high salinity, alkalinity, and temperature. Emplastic produced by strain Y-1 at high temperatures could be applied as biosurfactant. Gas chromatography analysis demonstrated that the strain Y-1 efficiently degraded different alkanes from crude oil, and the emplastic produced by strain Y-1 promoted the degradation rates of long-chain alkanes when the temperature increased to 55°C. Therefore, strain Y-1 would play an important role in the area of crude oil contaminant bioremediation even in some extreme conditions. PMID:26994837

  12. MINERALIZATION OF A SORBED POLYCYCLIC AROMATIC HYDROCARBON IN TWO SOILS USING CATALYZED HYDROGEN PEROXIDE. (R826163)

    EPA Science Inventory

    Hydrogen peroxide (H2O2) catalyzed by soluble iron or naturally occurring soil minerals, (i.e., modified Fenton's reagent) was investigated as a basis for mineralizing sorbed and NAPL-phase benzo[a]pyrene (BaP), a hydrophobic and toxic polycyclic a...

  13. Multimedia fate of petroleum hydrocarbons in the soil: oil matrix of constructed biopiles.

    PubMed

    Coulon, Frédéric; Whelan, Michael J; Paton, Graeme I; Semple, Kirk T; Villa, Raffaella; Pollard, Simon J T

    2010-12-01

    A dynamic multimedia fugacity model was used to evaluate the partitioning and fate of petroleum hydrocarbon fractions and aromatic indicator compounds within the soil: oil matrix of three biopiles. Each biopile was characterised by four compartments: air, water, soil solids and non-aqueous phase liquid (NAPL). Equilibrium partitioning in biopile A and B suggested that most fractions resided in the NAPL, with the exception of the aromatic fraction with an equivalent carbon number from 5 to 7 (EC(5-7)). In Biopile C, which had the highest soil organic carbon content (13%), the soil solids were the most important compartment for both light aliphatic fractions (EC(5-6) and EC(6-8)) and aromatic fractions, excluding the EC(16-21) and EC(21-35). Our starting hypothesis was that hydrocarbons do not degrade within the NAPL. This was supported by the agreement between predicted and measured hydrocarbon concentrations in Biopile B when the degradation rate constant in NAPL was set to zero. In all scenarios, biodegradation in soil was predicted as the dominant removal process for all fractions, except for the aliphatic EC(5-6) which was predominantly lost via volatilization. The absence of an explicit NAPL phase in the model yielded a similar prediction of total petroleum hydrocarbon (TPH) behaviour; however the predicted concentrations in the air and water phases were significantly increased with consequent changes in potential mobility. Further comparisons between predictions and measured data, particularly concentrations in the soil mobile phases, are required to ascertain the true value of including an explicit NAPL in models of this kind.

  14. Lubricants based on renewable resources--an environmentally compatible alternative to mineral oil products.

    PubMed

    Willing, A

    2001-04-01

    The development of lubricants like, e.g. engine and hydraulic oils was traditionally based on mineral oil as a base fluid. This fact is related to the good technical properties and the reasonable price of mineral oils. The Report to the Club of Rome (W.W. Behrens III, D.H. Meadows, D.I. Meadows, J. Randers, The limits of growth, A Report to the Club of Rome, 1972) and the two oil crises of 1979 and 1983, however, elucidated that mineral oil is on principle a limited resource. In addition, environmental problems associated with the production and use of chemicals and the limited capacity of nature to tolerate pollution became obvious (G.H. Brundtland, et al., in: Hauff, Volker (Ed.), World Commission on Environment and Development (WCED), Report of the Brundtland-Commission, Oxford, UK, 1987), and the critical discussion included besides acid rain, smog, heavy metals, and pesticides also mineral oil (especially oil spills like the case Exxon Valdes). A disadvantage of mineral oil is its poor biodegradability and thus its potential for long-term pollution of the environment. From the early development of lubricants for special applications (e.g. turbojet engine oils) it was known, that fatty acid polyol esters have comparable or even better technical properties than mineral oil. Subsequently, innumerable synthetic esters have been synthesized by systematic variation of the fatty acid and the alcohol components. Whereas the alcohol moiety of the synthetic esters are usually of petrochemical origin, the fatty acids are almost exclusively based on renewable resources. The physico-chemical properties of oleochemical esters can cover the complete spectrum of technical requirements for the development of high-performance industrial oils and lubricants (e.g. excellent lubricating properties, good heat stability, high viscosity index, low volatility and superior shear stability). For a comprehensive review of their technical properties see F. Bongardt, in: Jahrbuchf

  15. Method and apparatus for separating wax/water from hydrocarbon mixture boiling in the lubricating oil range

    SciTech Connect

    Mintz, D.J.; Gleason, A.M.

    1986-04-08

    A method is described of separating wax particles and/or water droplets from a hydrocarbon oil mixture boiling in the lubricating oil range, in which mixture the wax/water forms a dispersion. The free excess electric charge which is net unipolar is introduced into the wax/water-containing oil mixture and the charged wax/water-containing oil mixture and at least one collector surface are brought into contact with one another so that the wax/water collects, due to the electrophoretic migration of the wax/water caused by the introduced electric charge, and accumulates on the collector surface(s).

  16. Polycyclic hydrocarbon biomarkers confirm selective incorporation of petroleum in kangaroo rat liver samples near oil well blowout site

    SciTech Connect

    Kaplan, I.; Lu, Shan-tan; Lee, Ru-po; Warrick, G.

    1996-12-31

    In June 1994, a well blowout occurred at an oil field in the western, part of the San Joaquin Valley, resulting in deposition of crude oil south of the well. Some light oil spray was found up to 13.6 km from the well, but the most heavily affected area was within 0.8 km of the site. Because the location contains habitats for several threatened and endangered species, an evaluation of damages to natural resources was initiated soon after the well was capped. As part of the assessment of damages to wildlife, an investigation was conducted to determine whether kangaroo rats had ingested crude oil hydrocarbons from the spill.

  17. The effect of different oil spill remediation techniques on petroleum hydrocarbon elimination in Australian bass (Macquaria novemaculeata).

    PubMed

    Cohen, A M; Nugegoda, D; Gagnon, M M

    2001-02-01

    Petroleum hydrocarbons were investigated in juvenile Australian bass, Macquaria novemaculeata, following exposure to the water accommodated fraction (WAF) of Bass Strait crude oil, chemically dispersed crude oil, and burnt crude oil. Each treatment was administered for 16 days either through the water column or through the diet (amphipod, Allorchestes compressa). Polycyclic aromatic hydrocarbon (PAH) elimination was determined by measuring biliary benzo(a)pyrene (B(a)P) and naphthalene-type metabolites. Biliary PAH-type metabolite concentrations varied with the type of oil spill remediation technique, route of exposure (food versus water), and exposure concentration. Fish exposed to chemically dispersed crude oil via the water exhibited the highest PAH-type biliary metabolite concentrations, relative to fish exposed to other treatments. In fish exposed via the diet, the highest concentration of both types of biliary metabolites also appeared in the dispersed oil-exposed individuals. The results suggest that chemically dispersing oil may have the greatest effect on bioavailability of hydrocarbons, both through waterborne and food chain exposures.

  18. Photocatalytic degradation of oil industry hydrocarbons models at laboratory and at pilot-plant scale

    SciTech Connect

    Vargas, Ronald; Nunez, Oswaldo

    2010-02-15

    Photodegradation/mineralization (TiO{sub 2}/UV Light) of the hydrocarbons: p-nitrophenol (PNP), naphthalene (NP) and dibenzothiophene (DBT) at three different reactors: batch bench reactor (BBR), tubular bench reactor (TBR) and tubular pilot-plant (TPP) were kinetically monitored at pH = 3, 6 and 10, and the results compared using normalized UV light exposition times. The results fit the Langmuir-Hinshelwood (LH) model; therefore, LH adsorption equilibrium constants (K) and apparent rate constants (k) are reported as well as the apparent pseudo-first-order rate constants, k{sub obs}{sup '} = kK/(1 + Kc{sub r}). The batch bench reactor is the most selective reactor toward compound and pH changes in which the reactivity order is: NP > DBT > PNP, however, the catalyst adsorption (K) order is: DBT > NP > PNP at the three pH used but NP has the highest k values. The tubular pilot-plant (TPP) is the most efficient of the three reactors tested. Compound and pH photodegradation/mineralization selectivity is partially lost at the pilot plant where DBT and NP reaches ca. 90% mineralization at the pH used, meanwhile, PNP reaches only 40%. The real time, in which these mineralization occur are: 180 min for PNP and 60 min for NP and DBT. The mineralization results at the TPP indicate that for the three compounds, the rate limiting step is the same as the degradation one. So that, there is not any stable intermediate that may accumulate during the photocatalytic treatment. (author)

  19. Voltammetric Determination of Dinonyl Diphenylamine and Butylated Hydroxytoluene in Mineral and Synthetic Oil

    PubMed Central

    Xiang, Yaling; Qian, Xuzheng; Hua, Meng; Cheng, Bingxue; Chen, Wu; Li, Jian

    2016-01-01

    ABSTRACT A method is reported for the determination of diphenylamine and butylated hydroxytoluene in mineral and synthetic oil. The procedure used differential pulse voltammetry with a glassy carbon electrode. This method was then used for determining these antioxidants in supporting electrolyte consisting of dilute sulfuric acid and sodium dodecyl sulfonate in ethanol. Anodic peaks were obtained for both analytes. Oxidation peaks at 250 mV were observed from a mixture of butylated hydroxytoluene and dinonyl diphenylamine, allowing their simultaneous determination. This approach was successfully used for the determination of dinonyl diphenylamine and butylated hydroxytoluene in fortified mineral and synthetic oils with good accuracy and precision. PMID:27365537

  20. Use of mineral oil aids scoliosis correction by decreasing implant friction.

    PubMed

    Hoernschemeyer, Daniel G; Skaggs, David L; Sucher, Mark

    2012-01-01

    Adolescent idiopathic scoliosis is commonly corrected through posterior spinal fusion and instrumentation using pedicle screws. One difficulty in performing the correction with this method is the potential for friction at the interface between the rod and each individual point of fixation. The authors have found that the application of mineral oil at these points of contact serves to reduce friction, reducing the need for undue force and increasing the likelihood of effective fixation. The lubrication afforded by the mineral oil is particularly helpful when performing scoliosis correction using the classic derotation of the rod and direct vertebral rotation.

  1. The carcinogenic potential of twelve refined mineral oils following long-term topical application.

    PubMed Central

    Doak, S. M.; Brown, V. K.; Hunt, P. F.; Smith, J. D.; Roe, F. J.

    1983-01-01

    Twelve mineral oils, originating from naphthenic and paraffinic stocks and variously refined, were evaluated for their potential to induce cutaneous neoplasia in female CF1 mice. The oils were applied to the shorn dorsal skin for up to 78 weeks, using several different treatment regimes. The sole acid/earth refined naphthenic spindle oil was a moderately potent cutaneous carcinogen. By comparison, the 11 oils, processed by other refining routes, were less carcinogenic or non-carcinogenic to murine skin. Two of the 11 oils were weak cutaneous carcinogens viz, a naphthenic spindle oil refined only by mild hydrotreatment and a paraffinic spindle oil refined by mild solvent extraction and 'Ferrofining'. All 9 remaining oils had been solvent-extracted as part of the secondary refining process; none induced malignant tumours, although solitary benign tumours of the treated site were recorded after exposure to 3 oils. The cutaneous carcinogenic potential of the test oils did not correlate well with their potential to induce epidermal hyperplasia at the treated site. Consequently, hyperplasia caused after short term exposure is of little value for distinguishing between carcinogenic and non-carcinogenic oils. PMID:6615701

  2. Amine derivatives of thio-bis-lactone acids in combination with coadditive hydrocarbons are flow improvers for middle distillate fuel oils

    SciTech Connect

    Brois, S.J.; Feldman, N.; Gutierrez, A.

    1981-02-17

    Amine salts, amino acids, amino acid salts bis-amides and imides of oil-soluble thio-bis-(C12-50 alkyl lactone acid), e.g. a secondary hydrogenated tallow amide of dithio-bis-(C16-c24 alkyl lactone carboxylic acid), are useful in combination with a coadditive hydrocarbon such as an amorphous hydrocarbon or a hydrogenated polybutadiene in improving the cold flow properties of distillate hydrocarbon oils.

  3. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 2. Induction of mixed function oxidase enzymes in barramundi, Lates calcarifer, a tropical fish species.

    PubMed

    Mercurio, Philip; Burns, Kathryn A; Cavanagh, Joanne

    2004-05-01

    An increasing number of vegetable-based oils are being developed as environmentally friendly alternatives to petroleum products. However, toxicity towards key tropical marine species has not been investigated. In this study we used laboratory-based biomarker induction experiments to compare the relative stress of a vegetable-based lubricating oil for marine 2-stroke engines with its mineral oil-based counterpart on tropical fish. The sub-lethal stress of 2-stoke outboard lubricating oils towards the fish Lates calcarifer (barramundi) was examined using liver microsomal mixed function oxidase (MFO) induction assays. This study is the first investigation into the use of this key commercial species in tropical North Queensland, Australia in stress assessment of potential hydrocarbon pollution using ethoxyresorufin O-deethylase (EROD) induction. Our results indicated that barramundi provide a wide range of inducible rates of EROD activity in response to relevant organic stressors. The vegetable- and mineral-based lubricants induced significant EROD activity at 1.0 mg kg(-1) and there was no significant difference between the two oil treatments at that concentration. At increasing concentrations of 2 and 3 mg kg(-1), the mineral-based lubricant resulted in slightly higher EROD activity than the vegetable-based lubricant. The EROD activity of control and treated barramundi are found to be within ranges for other species from temperate and tropical environments. These results indicate that vegetable-based lubricants may be less stressful to barramundi than their mineral counterparts at concentrations of lubricant > or =2 mg kg(-1). There is great potential for this species to be used in the biomonitoring of waterways around tropical North Queensland and SE Asia.

  4. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment

    PubMed Central

    2012-01-01

    Background Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Results Mangrove sediment was sampled from 0–5, 15–20 and 35–40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Conclusions Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0–5 cm) being greater than in both deeper sediment layers (15–20 and 35–40 cm), which were similar to each other. PMID:22935169

  5. Toxic myopathy induced by industrial minerals oils: clinical and histopathological features.

    PubMed

    Rossi, B; Siciliano, G; Giraldi, C; Angelini, C; Marchetti, A; Paggiaro, P L

    1986-12-01

    We report a case of subacute myopathy in a 47 years old man engaged on boiler maintenance at an oil-fired thermoelectric power station. The occupational history highlighted heavy exposure to inhalation of ash derived from mineral oil combustion and containing several elements, metals and metalloids, including vanadium and nickel. The presenting symptoms, clinical course and muscle histopathology suggest that exposure to toxic agents probably played an important part in the causation of the myopathy. PMID:3804712

  6. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    PubMed

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.

  7. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    PubMed

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment. PMID:26406569

  8. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 1. Degradation rates using tropical marine microbes.

    PubMed

    Mercurio, Philip; Burns, Kathryn A; Negri, Andrew

    2004-05-01

    Vegetable-derived lubricants (VDL) might be more biodegradable than mineral-derived lubricants (MDL) due to the absence of high molecular weight aromatics, but this remains largely untested in tropical conditions. In this laboratory study, the degradation rates of 2-stroke, 4-stroke and hydraulic VDLs were compared with their MDL counterparts in the presence of mangrove and coral reef microbial communities. While MDLs were comprised largely of unresolved saturated and some aromatic hydrocarbons, their VDL counterparts contained, potentially more degradable, fatty acid methyl esters. Degradation of some VDL was observed by day 7, with the 2-stroke VDL markedly consumed by mangrove microorganisms and the hydraulic VDL degraded by both microorganism communities after this short period. All of the VDL groups were significantly more degraded than the comparable MDLs mineral oil lubricants over 14 days in the presence of either mangrove or coral reef microbial communities. In general the mangrove-sourced microorganisms more efficiently degraded the lubricants than reef-sourced microorganisms.

  9. Draft Genome Sequence of Hydrocarbon-Degrading Staphylococcus saprophyticus Strain CNV2, Isolated from Crude Oil-Contaminated Soil from the Noonmati Oil Refinery, Guwahati, Assam, India.

    PubMed

    Mukherjee, Arghya; Chettri, Bobby; Langpoklakpam, James S; Singh, Arvind K; Chattopadhyay, Dhrubajyoti

    2016-05-12

    Here, we report the 2.6 Mb draft genome sequence of hydrocarbon-degrading Staphylococcus saprophyticus strain CNV2, isolated from oil-contaminated soil in Guwahati, India. CNV2 contains 2,545 coding sequences and has a G+C content of 33.2%. This is the first report of the genome sequence of an S. saprophyticus adapted to an oil-contaminated environment.

  10. Draft Genome Sequence of Hydrocarbon-Degrading Staphylococcus saprophyticus Strain CNV2, Isolated from Crude Oil-Contaminated Soil from the Noonmati Oil Refinery, Guwahati, Assam, India

    PubMed Central

    Mukherjee, Arghya; Chettri, Bobby; Langpoklakpam, James S.; Singh, Arvind K.

    2016-01-01

    Here, we report the 2.6 Mb draft genome sequence of hydrocarbon-degrading Staphylococcus saprophyticus strain CNV2, isolated from oil-contaminated soil in Guwahati, India. CNV2 contains 2,545 coding sequences and has a G+C content of 33.2%. This is the first report of the genome sequence of an S. saprophyticus adapted to an oil-contaminated environment. PMID:27174281

  11. Draft Genome Sequence of Hydrocarbon-Degrading Staphylococcus saprophyticus Strain CNV2, Isolated from Crude Oil-Contaminated Soil from the Noonmati Oil Refinery, Guwahati, Assam, India.

    PubMed

    Mukherjee, Arghya; Chettri, Bobby; Langpoklakpam, James S; Singh, Arvind K; Chattopadhyay, Dhrubajyoti

    2016-01-01

    Here, we report the 2.6 Mb draft genome sequence of hydrocarbon-degrading Staphylococcus saprophyticus strain CNV2, isolated from oil-contaminated soil in Guwahati, India. CNV2 contains 2,545 coding sequences and has a G+C content of 33.2%. This is the first report of the genome sequence of an S. saprophyticus adapted to an oil-contaminated environment. PMID:27174281

  12. Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP

    PubMed Central

    Gutierrez, Tony; Singleton, David R; Berry, David; Yang, Tingting; Aitken, Michael D; Teske, Andreas

    2013-01-01

    The massive influx of crude oil into the Gulf of Mexico during the Deepwater Horizon (DWH) disaster triggered dramatic microbial community shifts in surface oil slick and deep plume waters. Previous work had shown several taxa, notably DWH Oceanospirillales, Cycloclasticus and Colwellia, were found to be enriched in these waters based on their dominance in conventional clone and pyrosequencing libraries and were thought to have had a significant role in the degradation of the oil. However, this type of community analysis data failed to provide direct evidence on the functional properties, such as hydrocarbon degradation of organisms. Using DNA-based stable-isotope probing with uniformly 13C-labelled hydrocarbons, we identified several aliphatic (Alcanivorax, Marinobacter)- and polycyclic aromatic hydrocarbon (Alteromonas, Cycloclasticus, Colwellia)-degrading bacteria. We also isolated several strains (Alcanivorax, Alteromonas, Cycloclasticus, Halomonas, Marinobacter and Pseudoalteromonas) with demonstrable hydrocarbon-degrading qualities from surface slick and plume water samples collected during the active phase of the spill. Some of these organisms accounted for the majority of sequence reads representing their respective taxa in a pyrosequencing data set constructed from the same and additional water column samples. Hitherto, Alcanivorax was not identified in any of the previous water column studies analysing the microbial response to the spill and we discuss its failure to respond to the oil. Collectively, our data provide unequivocal evidence on the hydrocarbon-degrading qualities for some of the dominant taxa enriched in surface and plume waters during the DWH oil spill, and a more complete understanding of their role in the fate of the oil. PMID:23788333

  13. Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP.

    PubMed

    Gutierrez, Tony; Singleton, David R; Berry, David; Yang, Tingting; Aitken, Michael D; Teske, Andreas

    2013-11-01

    The massive influx of crude oil into the Gulf of Mexico during the Deepwater Horizon (DWH) disaster triggered dramatic microbial community shifts in surface oil slick and deep plume waters. Previous work had shown several taxa, notably DWH Oceanospirillales, Cycloclasticus and Colwellia, were found to be enriched in these waters based on their dominance in conventional clone and pyrosequencing libraries and were thought to have had a significant role in the degradation of the oil. However, this type of community analysis data failed to provide direct evidence on the functional properties, such as hydrocarbon degradation of organisms. Using DNA-based stable-isotope probing with uniformly (13)C-labelled hydrocarbons, we identified several aliphatic (Alcanivorax, Marinobacter)- and polycyclic aromatic hydrocarbon (Alteromonas, Cycloclasticus, Colwellia)-degrading bacteria. We also isolated several strains (Alcanivorax, Alteromonas, Cycloclasticus, Halomonas, Marinobacter and Pseudoalteromonas) with demonstrable hydrocarbon-degrading qualities from surface slick and plume water samples collected during the active phase of the spill. Some of these organisms accounted for the majority of sequence reads representing their respective taxa in a pyrosequencing data set constructed from the same and additional water column samples. Hitherto, Alcanivorax was not identified in any of the previous water column studies analysing the microbial response to the spill and we discuss its failure to respond to the oil. Collectively, our data provide unequivocal evidence on the hydrocarbon-degrading qualities for some of the dominant taxa enriched in surface and plume waters during the DWH oil spill, and a more complete understanding of their role in the fate of the oil.

  14. The world's most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions

    NASA Astrophysics Data System (ADS)

    Hornafius, J. Scott; Quigley, Derek; Luyendyk, Bruce P.

    1999-09-01

    We used 50 kHz sonar data to estimate natural hydrocarbon emission rates from the 18 km2 marine seep field offshore from Coal Oil Point, Santa Barbara, California. The hydrocarbon gas emission rate is 1.7 ± 0.3 × 105 m3 d-1 (including gas captured by a subsea seep containment device) and the associated oil emission rate is 1.6 ± 0.2 × 104 Ld-1 (100 barrels d-1). The nonmethane hydrocarbon emission rate from the gas seepage is 35±7 td-1 and a large source of air pollution in Santa Barbara County. Our estimate is equal to twice the emission rate from all the on-road vehicle traffic in the county. Our estimated methane emission rate for the Coal Oil Point seeps (80±12 td-1) is 4 times higher than previous estimates. The most intense areas of seepage correspond to structural culminations along anticlinal axes. Seep locations are mostly unchanged from those documented in 1946, 1953, and 1973. An exception is the seepage field that once existed near offshore oil platform Holly. A reduction in seepage within a 1 km radius around this offshore platform is correlated with reduced reservoir pressure beneath the natural seeps due to oil production. Our findings suggest that global emissions of methane from natural marine seepage have been underestimated and may be decreasing because of oil production.

  15. Highly selective detection of oil spill polycyclic aromatic hydrocarbons using molecularly imprinted polymers for marine ecosystems.

    PubMed

    Krupadam, Reddithota J; Nesterov, Evgueni E; Spivak, David A

    2014-06-15

    Im*plications due to oil spills on marine ecosystems have created a great interest toward developing more efficient and selective materials for oil spill toxins detection and remediation. This research paper highlights the application of highly efficient molecularly imprinted polymer (MIP) adsorbents based on a newly developed functional crosslinker (N,O-bismethacryloyl ethanolamine, NOBE) for detection of highly toxic polycyclic aromatic hydrocarbons (PAHs) in seawater. The binding capacity of MIP for oil spill toxin pyrene is 35 mg/g as compared to the value of 3.65 mg/g obtained using a non-imprinted polymer (NIP). The selectivity of all three high molecular weight PAHs (pyrene, chrysene and benzo[a]pyrene) on the NOBE-MIP shows an excellent selective binding with only 5.5% and 7% cross-reactivity for chrysene and benzo[a]pyrene, respectively. Not only is this particularly significant because the rebinding solvent is water, which is known to promote non-selective hydrophobic interactions; the binding remains comparable under salt-water conditions. These selective and high capacity adsorbents will find wide application in industrial and marine water monitoring/remediation.

  16. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    SciTech Connect

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen ranged from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.

  17. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    DOE PAGES

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen rangedmore » from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.« less

  18. Benzene and total hydrocarbon exposures in the upstream petroleum oil and gas industry.

    PubMed

    Verma, D K; Johnson, D M; McLean, J D

    2000-01-01

    Occupational exposures to benzene and total hydrocarbons (THC) in the Canadian upstream petroleum industry are described in this article. A total of 1547 air samples taken by 5 oil companies in various sectors (i.e., conventional oil/gas, conventional gas, heavy oil processing, drilling and pipelines) were evaluated and summarized. The data includes personal long- and short-term samples and area long-term samples. The percentage of samples over the occupational exposure limit (OEL) of 3.2 mg/m3 or one part per million for benzene, for personal long-term samples ranges from 0 to 0.7% in the different sectors, and area long-term samples range from 0 to 13%. For short-term personal samples, the exceedance for benzene is at 5% with respect to the OEL of 16 mg/m3 or five parts per million in the conventional gas sector and none in the remaining sectors. THC levels were not available for all sectors and had limited data points in others. The percentage exceedance of the OEL of 280 mg/m3 or 100 parts per million for THC as gasoline ranged from 0 to 2.6% for personal long-term samples. It is recommended that certain operations such as glycol dehydrators be carefully monitored and that a task-based monitoring program be included along with the traditional long- and short-term personal exposure sampling. PMID:10782197

  19. Color changes in hydrocarbon oil-in-water emulsions caused by Ostwald ripening.

    PubMed

    Weiss, J; McClements, D J

    2001-09-01

    The influence of Ostwald ripening on the optical properties of hydrocarbon oil-in-water emulsions stabilized by sodium dodecyl sulfate was investigated. The droplet size, spectral reflectance, and tristimulus color coordinates (L, a, and b) of a series of n-hexadecane and n-octadecane oil-in-water emulsions were measured in the presence and absence of a water-soluble red dye (FD&C Red No. 40). The droplets grew more rapidly in the emulsion containing n-hexadecane than in the emulsion containing n-octadecane because of the higher solubility of n-hexadecane molecules in the aqueous phase. Ostwald ripening caused appreciable changes in n-hexadecane emulsion spectral reflectance and color L, a, and b values due to the growth of emulsion droplets. L, a, and b color values and spectral reflectances of n-octadecane emulsions did not significantly change during the course of the experiment. The results were explained in terms of Ostwald ripening theory and a previously described light scattering theory. The model enables emulsion manufacturers to predict color changes in oil-in-water emulsions that exhibit transcondensational ripening. PMID:11559140

  20. Color changes in hydrocarbon oil-in-water emulsions caused by Ostwald ripening.

    PubMed

    Weiss, J; McClements, D J

    2001-09-01

    The influence of Ostwald ripening on the optical properties of hydrocarbon oil-in-water emulsions stabilized by sodium dodecyl sulfate was investigated. The droplet size, spectral reflectance, and tristimulus color coordinates (L, a, and b) of a series of n-hexadecane and n-octadecane oil-in-water emulsions were measured in the presence and absence of a water-soluble red dye (FD&C Red No. 40). The droplets grew more rapidly in the emulsion containing n-hexadecane than in the emulsion containing n-octadecane because of the higher solubility of n-hexadecane molecules in the aqueous phase. Ostwald ripening caused appreciable changes in n-hexadecane emulsion spectral reflectance and color L, a, and b values due to the growth of emulsion droplets. L, a, and b color values and spectral reflectances of n-octadecane emulsions did not significantly change during the course of the experiment. The results were explained in terms of Ostwald ripening theory and a previously described light scattering theory. The model enables emulsion manufacturers to predict color changes in oil-in-water emulsions that exhibit transcondensational ripening.

  1. Structural setting and validation of direct hydrocarbon indicators for Amauligak oil field, Canadian Beaufort Sea

    SciTech Connect

    Enachescu, M.E. )

    1990-01-01

    The recent discovery of a giant oil field in the southeastern Beaufort-Mackenzie basin has brought this frontier area closer to oil production despite severe environmental conditions. The Amauligak field is a fault-bounded growth structure developed in the Kugmallit Trough, within deltaic deposits of the Beaufort Sea Shelf. Shelf construction occurred during the Late Cretaceous-Tertiary by repeated progradation of the Mackenzie River delta in response to rift-induced opening of the Canada basin and extension of the Kugmallit Trough. The Amauligak field contains oil and gas in multiple sandstone reservoirs of the Oligocene Kugmallit sequence. The upper sandstones are truncated by an unconformity and sealed by the overlying shales of the Miocene Mackenzie Bay sequence. Based on two-dimensional seismic coverage, the field was initially described as structurally simple. Interactive interpretation on Landmark and SIDIS workstations of a three-dimensional seismic program revealed the local structural complications, spatial configuration, and detailed structural elements of the field. Direct hydrocarbon indicators (DHIs), including amplitude anomaly, phase change, flat spot, and low-frequency zone, associated with a large gas cap were investigated using full amplitude-range and attribute-extraction methods. Interpretation of seismic data and correlation with well results suggest that a combination of structural, stratigraphic, and hydrodynamic factors are responsible for the appearance and distribution of Amauligak DHIs. On the amplitude displays, a fluid contact is seismically mappable over the field, clearly separating the gas cap from the wet reservoir. 16 figs.

  2. 76 FR 11809 - Environmental Documents Prepared for Proposed Oil, Gas, and Mineral Operations by the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Proposed Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer Continental Shelf (OCS) Region AGENCY... Impact (FONSI), prepared by BOEMRE for the following oil-, gas-, and mineral-related activities proposed... SEAs and FONSIs for proposals that relate to exploration, development, production, and transport of...

  3. Study of a hydrocarbon-utilizing and emulsifier-producing Acinetobacter calcoaceticus strain isolated from heating oil.

    PubMed

    Marín, M M; Pedregosa, A M; Ortiz, M L; Laborda, F

    1995-12-01

    Twenty bacterial strains were isolated from a sample of contaminated heating oil and screened for their ability to use petroleum and several common fuels as the sole source of carbon and energy. One of the isolates, named MM5, was able to grow on petroleum derivatives and brought about an emulsification of those compounds. Gas chromatography studies showed that strain MM5 was able to degrade hydrocarbons of heating oil. MM5 has been tentatively identified as a strain of Acinetobacter calcoaceticus. The fine structure of MM5 was examined by transmission electron microscopy. Incubation in the presence of hydrocarbon substrates resulted in the development of intracellular electron-transparent inclusions. These structures were absent in the non-hydrocarbon cultures studied.

  4. Hydrocarbon migration and accumulation in the Upper Cretaceous Qingshankou Formation, Changling Sag, southern Songliao Basin: Insights from integrated analyses of fluid inclusion, oil source correlation and basin modelling

    NASA Astrophysics Data System (ADS)

    Dong, Tian; He, Sheng; Wang, Dexi; Hou, Yuguang

    2014-08-01

    The Upper Cretaceous Qingshankou Formation acts as both the source and reservoir sequence in the Changling Sag, situated in the southern end of the Songliao Basin, northeast China. An integrated approach involving determination of hydrocarbon charging history, oil source correlation and hydrocarbon generation dynamic modeling was used to investigate hydrocarbon migration processes and further predict the favorable targets of hydrocarbon accumulations in the Qingshankou Formation. The hydrocarbon generation and charge history was investigated using fluid inclusion analysis, in combination with stratigraphic burial and thermal modeling. The source rocks began to generate hydrocarbons at around 82 Ma and the hydrocarbon charge event occurred from approximately 78 Ma to the end of Cretaceous (65.5 Ma) when a large tectonic uplift took place. Correlation of stable carbon isotopes of oils and extracts of source rocks indicates that oil was generated mainly from the first member of Qingshankou Formation (K2qn1), suggesting that hydrocarbon may have migrated vertically. Three dimensional (3D) petroleum system modeling was used to evaluate the processes of secondary hydrocarbon migration in the Qingshankou Formation since the latest Cretaceous. During the Late Cretaceous, hydrocarbon, mainly originated from the Qianan depression, migrated laterally to adjacent structural highs. Subsequent tectonic inversion, defined as the late Yanshan Orogeny, significantly changed hydrocarbon migration patterns, probably causing redistribution of primary hydrocarbon reservoirs. In the Tertiary, the Heidimiao depression was buried much deeper than the Qianan depression and became the main source kitchen. Hydrocarbon migration was primarily controlled by fluid potential and generally migrated from relatively high potential areas to low potential areas. Structural highs and lithologic transitions are potential traps for current oil and gas exploration. Finally, several preferred hydrocarbon

  5. Hydrocarbon degassing of the earth and origin of oil-gas fields (isotope-geochemical and geodynamic aspects)

    NASA Astrophysics Data System (ADS)

    Valyaev, Boris; Dremin, Ivan

    2016-04-01

    More than half a century ago, Academician PN Kropotkin substantiated the relationship of the formation and distribution of oil and gas fields with the processes of emanation hydrocarbon degassing of the Earth. Over the years, the concept of PN Kropotkin received further development and recognition of studies based on new factual material. Of particular importance are the following factors: a) the results of studies on global and regional uneven processes of traditional oil and gas and the role of deep faults in controlling the spread of oil and gas fields; b) the results of the research on gigantic volumes and localization of the discharges of hydrocarbon fluids (mud volcanoes, seeps) on land and into the atmosphere and through the bottom of the World ocean; c) the results of the studies on grand volumes of the spread of unconventional hydrocarbon resources in their non-traditional fields, especially on near-surface interval of unconventional oil and gas accumulation with gas hydrates, heavy oil and bitumen, as well as extraordinary resources of oil and gas in the shale and tight rocks. Deep mantle-crust nature of oil and gas in traditional and nontraditional deposits thus received further substantiation of geological and geophysical data and research results. However, isotopic and geochemical data are still interpreted in favor of the concept of the genesis of oil and gas in the processes of thermal catalytic conversion of organic matter of sedimentary rocks, at temperatures up to 200°C. In this report an alternative interpretation of the isotope carbon-hydrogen system (δ13C-δD) for gas and of oil deposits, isotope carbon system for methane and carbon dioxide (δ13C1-δ13C0) will be presented. An alternative interpretation will also be presented for the data on carbon-helium isotope geochemical system for oil and gas fields, volcanoes and mud volcanoes. These constructions agree with the geological data on the nature of deep hydrocarbon fluids involved in the

  6. Development of new mineral oil-based antifoams containing size-controlled hydrophobic silica particles for gloss paints.

    PubMed

    Jo, Kiyokazu; Ishizuka, Motoyoshi; Shimabayashi, Katsuomi; Ando, Tsuyoshi

    2014-01-01

    Water-based architectural paints commonly contain either mineral oil-based or silicone-based antifoams. Mineral oil-based antifoams generally reduce the gloss of paint films; thus, silicone-based antifoams are mainly used in the field of architectural paints. The relationship between the antifoaming performance and the particle size of hydrophobic silica for mineral oil-based antifoams was investigated and a novel mineral oil-based antifoam that provided a glossy surface to the paint films equivalent to the surface obtained with silicone-based antifoams and with excellent antifoaming performance compared to silicone-based antifoams was developed. The novel mineral oil-based antifoam exhibits better performance than silicon-based antifoam, and thus the former is a perfect alternative to the latter for use in architectural paints.

  7. Retrospective analysis: bile hydrocarbons and histopathology of demersal rockfish in Prince William Sound, Alaska, after the Exxon Valdez oil spill.

    PubMed

    Marty, Gary D; Hoffmann, Andy; Okihiro, Mark S; Hepler, Kelly; Hanes, David

    2003-12-01

    Demersal rockfish are the only fish species that have been found dead in significant numbers after major oil spills, but the link between oil exposure and effect has not been well established. After the 1989 Exxon Valdez oil spill in Prince William Sound, Alaska, several species of rockfish (Sebastes spp.) from oiled and reference sites were analyzed for hydrocarbon metabolites in bile (1989-1991) and for microscopic lesions (1990 and 1991). Biliary hydrocarbons consistent with exposure to Exxon Valdez oil were elevated in 1989, but not in 1990 or 1991. Significant microscopic findings included pigmented macrophage aggregates and hepatic megalocytosis, fibrosis, and lipid accumulation. Site differences in microscopic findings were significant with respect to previous oil exposure in 1991 (P=0.038), but not in 1990. However, differences in microscopic findings were highly significant with respect to age and species in both years (P<0.001). We conclude that demersal rockfish were exposed to Exxon Valdez oil in 1989, but differences in microscopic changes in 1990 and 1991 were related more to age and species differences than to previous oil exposure. PMID:12927739

  8. Retrospective analysis: bile hydrocarbons and histopathology of demersal rockfish in Prince William Sound, Alaska, after the Exxon Valdez oil spill.

    PubMed

    Marty, Gary D; Hoffmann, Andy; Okihiro, Mark S; Hepler, Kelly; Hanes, David

    2003-12-01

    Demersal rockfish are the only fish species that have been found dead in significant numbers after major oil spills, but the link between oil exposure and effect has not been well established. After the 1989 Exxon Valdez oil spill in Prince William Sound, Alaska, several species of rockfish (Sebastes spp.) from oiled and reference sites were analyzed for hydrocarbon metabolites in bile (1989-1991) and for microscopic lesions (1990 and 1991). Biliary hydrocarbons consistent with exposure to Exxon Valdez oil were elevated in 1989, but not in 1990 or 1991. Significant microscopic findings included pigmented macrophage aggregates and hepatic megalocytosis, fibrosis, and lipid accumulation. Site differences in microscopic findings were significant with respect to previous oil exposure in 1991 (P=0.038), but not in 1990. However, differences in microscopic findings were highly significant with respect to age and species in both years (P<0.001). We conclude that demersal rockfish were exposed to Exxon Valdez oil in 1989, but differences in microscopic changes in 1990 and 1991 were related more to age and species differences than to previous oil exposure.

  9. Erosion of aluminum 6061-T6 under cavitation attack in mineral oil and water

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1985-01-01

    Studies of the erosion of aluminum 6061-T6 under cavitation attack in distilled water, ordinary tap water and a viscous mineral oil are presented. The mean depth of penetration for the mineral oil was about 40 percent of that for water at the end of a 40 min test. The mean depth of penetration and its rate did not differ significantly for distilled and tap water. The mean depth of penetration rate for both distilled and tap water increased to a maximum and then decreased with test duration, while that for mineral oil had a maximum during the initial period. The ratio h/2a of the pit depth h to the pit diameter 2a varied from 0.04 to 0.13 in water and from 0.06 to 0.20 in mineral oil. Scanning electron microscopy indicates that the pits are initially formed over the grain boundaries and precipitates while the surface grains are deformed under cavitation attack.

  10. An empirical method to estimate the viscosity of mineral oil by means of ultrasonic attenuation.

    PubMed

    Ju, Hyeong; Gottlieb, Emanuel; Augenstein, Donald; Brown, Gregor; Tittmann, Bernhard

    2010-07-01

    This paper presents an empirical method for measuring the viscosity of mineral oil. In a built-in pipeline application, conventional ultrasonic methods using shear reflectance or rheological and acoustical phenomena may fail because of attenuated shear wave propagation and an unpredictable spreading loss caused by protective housings and comparable main flows. The empirical method utilizing longitudinal waves eliminates the unknown spreading loss from attenuation measurements on the object fluid by removing the normalized spreading loss per focal length with the measurement of a reference fluid of a known acoustic absorption coefficient. The ultrasonic attenuation of fresh water as the reference fluid and mineral oil as the object fluid were measured along with the sound speed and effective frequency. The empirical equation for the spreading loss in the reference fluid is determined by high-order polynomial fitting. To estimate the shear viscosity of the mineral oil, a linear fit is applied to the total loss difference between the two fluids, whose slope (the absorption coefficient) is combined with an assumed shear-to-volume viscosity relation. The empirical method predicted the viscosities of two types of the mineral oil with a maximum statistical uncertainty of 8.8% and a maximum systematic error of 12.5% compared with directly measured viscosity using a glass-type viscometer. The validity of this method was examined by comparison with the results from theoretical far-field spreading.

  11. The Flux of Select NSAIDs through Silicone Membranes from Mineral Oil

    PubMed Central

    Mertz, Paul S.; Sloan, Kenneth B.

    2014-01-01

    Here we report the experimental log maximum fluxes of n = 9 non-steroidal anti-inflammatory drugs (NSAID) through silicone membranes from the lipid mineral oil (experimental (Exp.) log JMPMO) and correlate those Exp. log JMPMO values with their experimental log maximum fluxes through human skin in vivo from mineral oil (Exp. log JMHMO). The correlation was only fair (r2 = 0.647) for n = 9 but improved dramatically if Nabumetone was removed from the correlation (n = 8, r2 = 0.858). Non-linear regression of the n = 8 Exp. log JMPMO values as the dependent variable against their log solubilities in mineral oil (log SMO) and in pH 7.4 or 1.0 buffers (log S7.4 or S1.0, respectively), and their molecular weights as independent variables in the Roberts–Sloan (RS) equation gave a new set of coefficients for the independent variables in RS. Those coefficients have been used to calculate log JMPMO values which have been correlated with the Exp. log JMPMO values to give r2 = 0.911 if log S7.4 and r2 = 0.896 if log S1.0 were used as aqueous phases. Thus, silicone membranes appear to be good surrogates for predicting flux through human skin if the vehicle is a lipid such as mineral oil. PMID:24991867

  12. Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium.

    PubMed

    Nievas, M L; Commendatore, M G; Esteves, J L; Bucalá, V

    2008-06-15

    The biodegradation of a hazardous waste (bilge waste), a fuel oil-type complex residue from normal ship operations, was studied in a batch bioreactor using a microbial consortium in seawater medium. Experiments with initial concentrations of 0.18 and 0.53% (v/v) of bilge waste were carried out. In order to study the biodegradation kinetics, the mass of n-alkanes, resolved hydrocarbons and unresolved complex mixture (UCM) hydrocarbons were assessed by gas chromatography (GC). Emulsification was detected in both experiments, possibly linked to the n-alkanes depletion, with differences in emulsification start times and extents according to the initial hydrocarbon concentration. Both facts influenced the hydrocarbon biodegradation kinetics. A sequential biodegradation of n-alkanes and UMC was found for the higher hydrocarbon content. Being the former growth associated, while UCM biodegradation was a non-growing process showing enzymatic-type biodegradation kinetics. For the lower hydrocarbon concentration, simultaneous biodegradation of n-alkanes and UMC were found before emulsification. Nevertheless, certain UCM biodegradation was observed after the medium emulsification. According to the observed kinetics, three main types of hydrocarbons (n-alkanes, biodegradable UCM and recalcitrant UCM) were found adequate to represent the multicomponent substrate (bilge waste) for future modelling of the biodegradation process. PMID:17997031

  13. Biogeochemical evidence for subsurface hydrocarbon occurrence, Recluse oil field, Wyoming; preliminary results

    USGS Publications Warehouse

    Dalziel, Mary C.; Donovan, Terrence J.

    1980-01-01

    Anomalously high manganese-to-iron ratios occurring in pine needles and sage leaves over the Recluse oil field, Wyoming, suggest effects of petroleum microseepage on the plants. This conclusion is supported by iron and manganese concentrations in soils and carbon and oxygen isotope ratios in rock samples. Seeping hydrocarbons provided reducing conditions sufficient to enable divalent iron and manganese to be organically complexed or adsorbed on solids in the soils. These bound or adsorped elements in the divalent state are essential to plants, and the plants readily assimilate them. The magnitude of the plant anomalies, combined with the supportive isotopic and chemical evidence confirming petroleum leakage, makes a strong case for the use of plants as a biogeochemical prospecting tool.

  14. Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus

    SciTech Connect

    Bezalel, L.; Hadar, Y.; Cerniglia, C.E.

    1996-01-01

    White rot fungi, including Pleurotus ostreatus, have the ability to efficiently degrade lignin, a naturally occurring aromatic polymer. Previous work has found these organisms were able to degrade PAHs and in some cases to mineralize them; most of the work was done with Phanerochaete chrysosporium. P. ostreatus differs from P. chrysosporium in its lignin degradation mechanism. In this study, enzymatic activities were monitored during P. ostreatus growth in the presence of PAHs and the fungus`s ability to mineralize catechol and various PAHs was demonstrated. 29 refs., 3 figs., 1 tab.

  15. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures

    SciTech Connect

    Boonchan, S.; Britz, M.L.; Stanley, G.A.

    2000-03-01

    This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10,201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO{sub 2} by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization, and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula.

  16. Microcosm assays and Taguchi experimental design for treatment of oil sludge containing high concentration of hydrocarbons.

    PubMed

    Castorena-Cortés, G; Roldán-Carrillo, T; Zapata-Peñasco, I; Reyes-Avila, J; Quej-Aké, L; Marín-Cruz, J; Olguín-Lora, P

    2009-12-01

    Microcosm assays and Taguchi experimental design was used to assess the biodegradation of an oil sludge produced by a gas processing unit. The study showed that the biodegradation of the sludge sample is feasible despite the high level of pollutants and complexity involved in the sludge. The physicochemical and microbiological characterization of the sludge revealed a high concentration of hydrocarbons (334,766+/-7001 mg kg(-1) dry matter, d.m.) containing a variety of compounds between 6 and 73 carbon atoms in their structure, whereas the concentration of Fe was 60,000 mg kg(-1) d.m. and 26,800 mg kg(-1) d.m. of sulfide. A Taguchi L(9) experimental design comprising 4 variables and 3 levels moisture, nitrogen source, surfactant concentration and oxidant agent was performed, proving that moisture and nitrogen source are the major variables that affect CO(2) production and total petroleum hydrocarbons (TPH) degradation. The best experimental treatment yielded a TPH removal of 56,092 mg kg(-1) d.m. The treatment was carried out under the following conditions: 70% moisture, no oxidant agent, 0.5% of surfactant and NH(4)Cl as nitrogen source.

  17. Investigation on the mineral contents of capers (Capparis spp.) seed oils growing wild in Turkey.

    PubMed

    Ozcan, M Musa

    2008-09-01

    Minor and major mineral contents of seed oils of Capparis ovata Desf. var. canescens (Coss.) Heywood and Capparis spinosa var. spinosa used as pickling products in Turkey were determined by inductively coupled plasma atomic emission spectrometry. The seed oils contained Al, P, Na, Mg, Fe, and Ca, in addition to fatty acids. The highest mineral concentrations measured were 14.91-118.81 mg/kg Al, 1,489.34-11,523.74 mg/kg P, 505.78-4,489.51 mg/kg Na, 102.15-1,655.33 mg/kg Mg, 78.83-298.14 mg/kg Fe, and 1.04-76.39 mg/kg Ca. The heavy metal concentrations were less than the limit of detection in all oil samples. The results may also be useful for the evaluation of nutritional information. PMID:18800913

  18. Sulfide mineralization and magnetization, Cement oil field, Oklahoma

    USGS Publications Warehouse

    Reynolds, Richard L.; Fishman, Neil S.; Webring, Michael W.; Wanty, Richard B.; Goldhaber, Martin B.

    1989-01-01

    Geochemical, petrographic, and rock-magnetic studies were undertaken to investigate possible sources for reported positive aeromagnetic anomalies over the Cement oil field, Oklahoma. Ferrimagnetic pyrrhotite (monoclinic, Fe7S8 ), intergrown with more-abundant, nonmagnetic pyrite (FeS2), is present in well-cutting, core, and quarry samples at Cement, and it is the only identified source of possible enhanced magnetization in rocks over the field. Magnetite, found only in well cuttings from Cement, is contamination from drilling. Magnetite was considered previously by others to be the source of magnetic anomalies at Cement.

  19. Analysis of polycyclic aromatic hydrocarbons in vegetable oils combining gel permeation chromatography with solid-phase extraction clean-up.

    PubMed

    Fromberg, A; Højgård, A; Duedahl-Olesen, L

    2007-07-01

    A semi-automatic method for the determination of polycyclic aromatic hydrocarbons (PAHs) in edible oils using a combined gel permeation chromatography/solid-phase extraction (GPC/SPE) clean-up is presented. The method takes advantage of automatic injections using a Gilson ASPEC XL sample handling system equipped with a GPC column (S-X3) and pre-packed silica SPE columns for the subsequent clean-up and finally gas chromatography-mass spectrometry (GC-MS) determination. The method was validated for the determination of PAHs in vegetable oils and it can meet the criteria for the official control of benzo[a]pyrene levels in foods laid down by the Commission of the European Communities. A survey of 69 vegetable oils sampled from the Danish market included olive oil as well as other vegetable oils such as rapeseed oil, sunflower oil, grape seed oil and sesame oil. Levels of benzo[a]pyrene in all the oils were low (<0.2-0.8 microg kg(-1)), except for one sample of sunflower oil containing 11 microg kg(-1) benzo[a]pyrene. PMID:17613061

  20. Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis.

    PubMed

    Abbasian, Firouz; Palanisami, Thavamani; Megharaj, Mallavarapu; Naidu, Ravi; Lockington, Robin; Ramadass, Kavitha

    2016-05-01

    Soils contaminated with crude oil are rich sources of enzymes suitable for both degradation of hydrocarbons through bioremediation processes and improvement of crude oil during its refining steps. Due to the long term selection, crude oil fields are unique environments for the identification of microorganisms with the ability to produce these enzymes. In this metagenomic study, based on Hiseq Illumina sequencing of samples obtained from a crude oil field and analysis of data on MG-RAST, Actinomycetales (9.8%) were found to be the dominant microorganisms, followed by Rhizobiales (3.3%). Furthermore, several functional genes were found in this study, mostly belong to Actinobacteria (12.35%), which have a role in the metabolism of aliphatic and aromatic hydrocarbons (2.51%), desulfurization (0.03%), element shortage (5.6%), and resistance to heavy metals (1.1%). This information will be useful for assisting in the application of microorganisms in the removal of hydrocarbon contamination and/or for improving the quality of crude oil. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:638-648, 2016.

  1. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil.

    PubMed

    Brown, Kathryn E; King, Catherine K; Kotzakoulakis, Konstantinos; George, Simon C; Harrison, Peter L

    2016-09-15

    As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region. PMID:27389459

  2. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil.

    PubMed

    Brown, Kathryn E; King, Catherine K; Kotzakoulakis, Konstantinos; George, Simon C; Harrison, Peter L

    2016-09-15

    As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region.

  3. Phase and sedimentation behavior of oil (octane) dispersions in the presence of model mineral aggregates.

    PubMed

    Gupta, Anju; Sender, Maximilian; Fields, Sarah; Bothun, Geoffrey D

    2014-10-15

    Adsorption of suspended particles to the interface of surfactant-dispersed oil droplets can alter emulsion phase and sedimentation behavior. This work examines the effects of model mineral aggregates (silica nanoparticle aggregates or SNAs) on the behavior of oil (octane)-water emulsions prepared using sodium bis(2-ethylhexyl) sulfosuccinate (DOSS). Experiments were conducted at different SNA hydrophobicities in deionized and synthetic seawater (SSW), and at 0.5mM and 2.5mM DOSS. SNAs were characterized by thermogravimetric analysis (TGA) and dynamic light scattering (DLS), and the emulsions were examined by optical and cryogenic scanning electron microscopy. In deionized water, oil-in-water emulsions were formed with DOSS and the SNAs did not adhere to the droplets or alter emulsion behavior. In SSW, water-in-oil emulsions were formed with DOSS and SNA-DOSS binding through cation bridging led to phase inversion to oil-in-water emulsions. Droplet oil-mineral aggregates (OMAs) were observed for hydrophilic SNAs, while hydrophobic SNAs yielded quickly sedimenting agglomerated OMAs.

  4. EFFECTS OF CHEMICAL DISPERSANTS AND MINERAL FINES ON CRUDE OIL DISPERSION IN A WAVE TANK UNDER BREAKING WAVES

    EPA Science Inventory

    The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on the dispersion of oil and the ...

  5. Universal Indicators for Oil and Gas Prospecting Based on Bacterial Communities Shaped by Light-Hydrocarbon Microseepage in China.

    PubMed

    Deng, Chunping; Yu, Xuejian; Yang, Jinshui; Li, Baozhen; Sun, Weilin; Yuan, Hongli

    2016-07-28

    Light hydrocarbons accumulated in subsurface soil by long-term microseepage could favor the anomalous growth of indigenous hydrocarbon-oxidizing microorganisms, which could be crucial indicators of underlying petroleum reservoirs. Here, Illumina MiSeq sequencing of the 16S rRNA gene was conducted to determine the bacterial community structures in soil samples collected from three typical oil and gas fields at different locations in China. Incubation with n-butane at the laboratory scale was performed to confirm the presence of "universal microbes" in light-hydrocarbon microseepage ecosystems. The results indicated significantly higher bacterial diversity in next-to-well samples compared with background samples at two of the three sites, which were notably different to oil-contaminated environments. Variation partitioning analysis showed that the bacterial community structures above the oil and gas fields at the scale of the present study were shaped mainly by environmental parameters, and geographic location was able to explain only 7.05% of the variation independently. The linear discriminant analysis effect size method revealed that the oil and gas fields significantly favored the growth of Mycobacterium, Flavobacterium, and Pseudomonas, as well as other related bacteria. The relative abundance of Mycobacterium and Pseudomonas increased notably after n-butane cultivation, which highlighted their potential as biomarkers of underlying oil deposits. This work contributes to a broader perspective on the bacterial community structures shaped by long-term light-hydrocarbon microseepage and proposes relatively universal indicators, providing an additional resource for the improvement of microbial prospecting of oil and gas. PMID:27116995

  6. [The hepatotropic action of sodium chloride and hydrocarbonate mineral water containing humic acids (an experimental study)].

    PubMed

    Verigo, N S; Ulashchik, V S

    2015-01-01

    The present article summarizes the results of experimental studies on the hepatotropic action of native and modified low-mineralized sodium chloride and bicarbonate waters differing in the content of humic acids. It was found that the most beneficial changes after a course of 21 day therapy with the use of such mineral waters for the treatment of experimental hepatitis were observed after the application of the water with a humic acid content of roughly 20 g/dm3. Such treatment resulted in the significant improvement of the liver antitoxic function, intensification of basal metabolism, reduction of the inflammatory processes, normalization of the hepatic enzyme activity, and stimulation of proteinsynthetic function in parallel with positive dynamics of the morphological and histochemical characteristics of the liver.

  7. Secondary ion mass spectrometric investigation of penetration of coconut and mineral oils into human hair fibers: relevance to hair damage.

    PubMed

    Ruetsch, S B; Kamath, Y K; Rele, A S; Mohile, R B

    2001-01-01

    An attempt has been made to show the difference in the penetrability of coconut oil and mineral oil in human hair. We have used secondary ion mass spectrometry (SIMS) in combination with a time-of-flight (TOF) mass spectrometer. Characteristic ions formed by the pure components when bombarded with gallium ions have been identified with their m/z values. The distribution of the ion, characteristic of the particular treatment, has been established in the cross sections of hair treated with coconut and mineral oils. The results show that coconut oil penetrates the hair shaft while mineral oil does not. The difference may be due to the polarity of the coconut oil compared to the nonpolar nature of the mineral oil. The affinity of the penetrant to the protein seems to be the cause for this difference in their behavior. This study also indicates that the swelling of hair is limited by the presence oil. Since the process of swelling and deswelling of hair is one of the causes of hair damage by hygral fatigue, coconut oil, which is a better penetrant than mineral oil, may provide better protection from damage by hygral fatigue.

  8. Biodegradation of petroleum hydrocarbons at low temperature in the presence of the dispersant Corexit 9500.

    PubMed

    Lindstrom, Jon E; Braddock, Joan F

    2002-08-01

    Our study examined the effects of Corexit 9500 and sediment on microbial mineralization of specific aliphatic and aromatic hydrocarbons found in crude oil. We also measured gross mineralization of crude oil, dispersed crude oil and dispersant by a marine microbial consortium in the absence of sediment. When provided as carbon sources, our consortium mineralized Corexit 9500 the most rapidly, followed by fresh oil, and finally weathered oil or dispersed oil. However, mineralization in short term assays favored particular components of crude oil (2-methyl-naphthalene > dodecane > phenanthrene > hexadecane > pyrene) and was not affected by addition of nutrients or sediment (high sand, low organic carbon). Adding dispersant inhibited hexadecane and phenanthrene mineralization but did not affect dodecane and 2-methyl-naphthalene mineralization. Thus, the effect of dispersant on biodegradation of a specific hydrocarbon was not predictable by class. The results were consistent for both high and low oiling experiments and for both fresh and weathered oil. Overall, our results indicate that environmental use of Corexit 9500 could result in either increases or decreases in the toxicity of residual oil through selective microbial mineralization of hydrocarbons.

  9. Effects of oil pipeline explosion on ambient particulate matter and their associated polycyclic aromatic hydrocarbons.

    PubMed

    Zhao, Yue; Cao, Lixin; Zhou, Qing; Que, Qiming

    2015-01-01

    Effects of the oil pipeline explosion on PM(2.5)-associated polycyclic aromatic hydrocarbons (PAHs) and their substituted (alkylated, nitrated, oxygenated, hydroxyl and chlorinated) derivatives are assessed near the accident scene of Qingdao, China. Compared with those in TSP-PM(2.5), gaseous phase, burn residue and unburned crude oil, eighty-nine PAHs in PM(2.5) are identified and quantified to investigate the composition, temporal and spatial distribution, and sources. The concentrations of PM(2.5)-associated parent PAHs increase approximately seven times from the non-explosion samples to the explosion samples (mean ± standard deviation: 112 ± 2 vs 764 ± 15 ng/m(3)), while some substituted products (nitro- and oxy-) increase by two orders of magnitude (3117 ± 156 pg/m(3) vs 740 ± 37 ng/m(3)). The toxicity evaluation indicates the BaP equivalent concentrations (based on the US EPA's toxicity factors) in PM(2.5) are much higher than those in the other phases, especially for a long duration after the tragic accident.

  10. Catalytic conversion of palm oil to hydrocarbons: Performance of various zeolite catalysts

    SciTech Connect

    Twaiq, F.A.; Zabidi, N.A.M.; Bhatia, S.

    1999-09-01

    The catalytic cracking of palm oil to fuels was studied in a fixed bed microreactor operated at atmospheric pressure, a reaction temperature of 350--450 C and weight hourly space velocities (WHSVs) of 1--4 h{sup {minus}1}. HZSM-5, zeolite {beta}, and ultrastable Y (USY) zeolites with different pore sizes were used to study the effects of reaction temperature and WHSV on the conversion of palm oil and yields of gasoline. The performances of HZSM-5-USY and HZSM-5-zeolite {beta} hybrid catalysts containing 10, 20, and 30 wt % HZSM-5 were investigated. Potassium-impregnated K-HZSM-5 catalysts with different potassium loadings were used to study the effect of acidity on the selectivity for gasoline formation. The major products obtained were organic liquid product (OLP), hydrocarbon gases, and water. HZSM-5 catalyst gave conversion of 99 wt % and a gasoline yield of 28 wt % at a reaction temperature of 350 C and WHSV of 1 h{sup {minus}1} and was the best among the three zeolites tested. The HZSM-5-USY hybrid catalyst performed better than USY catalyst as it resulted in a higher gasoline yield, whereas HZSM-5-zeolite {beta} hybrid catalyst gave lower conversion compared to that of zeolite {beta}. The selectivity for gasoline decreased from 45 to 10 wt % with an increase in potassium concentration from 0 to 1.5 wt %.

  11. Influence of edaphic factors on the mineralization of neem oil coated urea in four Indian soils.

    PubMed

    Kumar, Rajesh; Devakumar, C; Kumar, Dinesh; Panneerselvam, P; Kakkar, Garima; Arivalagan, T

    2008-11-12

    The utility of neem (Azadirachta indica A Juss) oil coated urea as a value-added nitrogenous fertilizer has been now widely accepted by Indian farmers and the fertilizer industry. In the present study, the expeller grade (EG) and hexane-extracted (HE) neem oils, the two most common commercial grades, were used to prepare neem oil coated urea (NOCU) of various oil doses, for which mineralization rates were assessed in four soils at three incubation temperatures (20, 27, and 35 degrees C). Neem oil dose-dependent conservation of ammonium N was observed in NOCU treatments in all of the soils. However, a longer incubation period and a higher soil temperature caused depletion of ammonium N. Overall, the nitrification in NOCU treatment averaged 56.6% against 77.3% for prilled urea in four soils. NOCU prepared from EG neem oil was consistently superior to that derived from hexane-extracted oil. The performance of NOCUs was best in coarse-textured soil and poorest in sodic soil. The nitrification rate (NR) of the NOCUs in the soils followed the order sodic > fine-textured > medium-textured > coarse-textured. The influence of edaphic factors on NR of NOCUs has been highlighted. The utility of the present study in predicting the performance of NOCU in diverse Indian soils was highlighted through the use of algorithms for computation of the optimum neem oil dose that would cause maximum inhibition of nitrification in any soil. PMID:18841982

  12. Influence of edaphic factors on the mineralization of neem oil coated urea in four Indian soils.

    PubMed

    Kumar, Rajesh; Devakumar, C; Kumar, Dinesh; Panneerselvam, P; Kakkar, Garima; Arivalagan, T

    2008-11-12

    The utility of neem (Azadirachta indica A Juss) oil coated urea as a value-added nitrogenous fertilizer has been now widely accepted by Indian farmers and the fertilizer industry. In the present study, the expeller grade (EG) and hexane-extracted (HE) neem oils, the two most common commercial grades, were used to prepare neem oil coated urea (NOCU) of various oil doses, for which mineralization rates were assessed in four soils at three incubation temperatures (20, 27, and 35 degrees C). Neem oil dose-dependent conservation of ammonium N was observed in NOCU treatments in all of the soils. However, a longer incubation period and a higher soil temperature caused depletion of ammonium N. Overall, the nitrification in NOCU treatment averaged 56.6% against 77.3% for prilled urea in four soils. NOCU prepared from EG neem oil was consistently superior to that derived from hexane-extracted oil. The performance of NOCUs was best in coarse-textured soil and poorest in sodic soil. The nitrification rate (NR) of the NOCUs in the soils followed the order sodic > fine-textured > medium-textured > coarse-textured. The influence of edaphic factors on NR of NOCUs has been highlighted. The utility of the present study in predicting the performance of NOCU in diverse Indian soils was highlighted through the use of algorithms for computation of the optimum neem oil dose that would cause maximum inhibition of nitrification in any soil.

  13. 26 CFR 1.613-4 - Gross income from the property in the case of minerals other than oil and gas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... minerals other than oil and gas. 1.613-4 Section 1.613-4 Internal Revenue INTERNAL REVENUE SERVICE....613-4 Gross income from the property in the case of minerals other than oil and gas. (a) In general... property in the case of minerals other than oil and gas and the rules contained in § 1.613-3 are...

  14. 26 CFR 1.613-4 - Gross income from the property in the case of minerals other than oil and gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... minerals other than oil and gas. 1.613-4 Section 1.613-4 Internal Revenue INTERNAL REVENUE SERVICE....613-4 Gross income from the property in the case of minerals other than oil and gas. (a) In general... property in the case of minerals other than oil and gas and the rules contained in § 1.613-3 are...

  15. Mineral elements and essential oil contents of Scutellaria luteo-caerulea Bornm. & Snit

    PubMed Central

    Nikbin, Mohammad; Kazemipour, Nasrin; Maghsoodlou, Malek Taher; Valizadeh, Jafar; Sepehrimanesh, Masood; Davarimanesh, Amene

    2014-01-01

    Objective: Scutellaria luteo-caerulea Bornm. & Snit. is one of the species of genus Scutellaria, within the family of the Lamiaceae, that is used for immune system stimulation and antibacterial effects in traditional medicine in Iran. The aims of this study were to analyze essential oils and mineral element contents of leaves of S. luteo-caerulea in flowering stage of development. Materials and Methods: The essential oils were obtained by hydrodistillation of the leaves of S. luteo-caerulea and were analyzed by gas chromatography mass spectrometry (GC/MS). Moreover, microwave digestion with atomic absorption spectrophotometry were used for the mineral elements assay. Results: Ninety-seven constituents were detected. Between them, the major components were trans-caryophyllene (25.4%), D-germacrene (7.9%), and linalool (7.4%). Determination of mineral elements showed that the highest minerals were Ca2+ (65.14±1.95 µg/ml) and K+ (64.67±3.10 µg/ml). Conclusion: Presence of different essential oils and rich sources of Ca2+ and K+ candidate this plant as an auxiliary medication in different diseases, but more complementary researches are needed about its potency and side effects. PMID:25050316

  16. Analysis of persistent halogenated hydrocarbons in fish feeds containing fish oil and other alternative lipid sources.

    PubMed

    You, Jing; Kelley, Rebecca A; Crouse, Curtis C; Trushenski, Jesse T; Lydy, Michael J

    2011-09-15

    A trade-off exists between beneficial n-3 long-chain polyunsaturated acids and toxic persistent halogenated hydrocarbons (PHHs), both of which primarily originate from fish oil commonly used in fish feeds. Alternative lipid sources are being investigated for use in fish feeds to reduce harmful contaminant accumulation, hence, research is needed to evaluate PHHs in fish feeds with various lipid compositions. An analytical method was developed for PHHs including nine organochlorine insecticides (OCPs), 26 polychlorinated biphenyls (PCBs) and seven polybrominated diphenyl ethers (PBDEs) in fish feeds with differing proportions of fish oils and alternative lipid sources by GC-ECD after accelerated solvent extraction, gel permeation chromatography (GPC), and sulfuric acid cleanup. The GPC removed the majority of the neutral lipids and sulfuric acid treatment effectively destroyed the polar lipids. Thus, the combination of the two methods removed approximately 99.7% of the lipids in the extracts. The method detection limits were less than 5 ng/g dry weight (dw) for most PHHs, while recoveries were 75-118%, 67-105%, 69-92%, 63-100% and 94-144% with relative standard deviations of 0.2-39%, 0.3-20%, 0.5-12%, 1.5-18% and 1.5-15% for PHHs in five types of fish feeds made from different lipid sources. Although the source of lipid showed no impact on cleanup efficiency and the developed method worked well for all feeds, fish feeds with 100% fish oil contained background PHHs and more interference than feeds containing alternative lipids.

  17. Forensic fingerprinting of oil-spill hydrocarbons in a methanogenic environment-Mandan, ND and Bemidji, MN

    USGS Publications Warehouse

    Hostettler, F.D.; Wang, Y.; Huang, Y.; Cao, W.; Bekins, B.A.; Rostad, C.E.; Kulpa, C.F.; Laursen, A.

    2007-01-01

    In recent decades forensic fingerprinting of oil-spill hydrocarbons has emerged as an important tool for correlating oils and for evaluating their source and character. Two long-term hydrocarbon spills, an off-road diesel spill (Mandan, ND) and a crude oil spill (Bemidji, MN) experiencing methanogenic biodegradation were previously shown to be undergoing an unexpected progression of homologous n-alkane and n-alkylated cyclohexane loss. Both exhibited degradative losses proceeding from the high-molecular-weight end of the distributions, along with transitory concentration increases of lower-molecular-weight homologs. Particularly in the case of the diesel fuel spill, these methanogenic degradative patterns can result in series distributions that mimic lower cut refinery fuels or admixture with lower cut fuels. Forensic fingerprinting in this long-term spill must therefore rely on more recalcitrant series, such as polycyclic aromatic hydrocarbon or drimane sesquiterpane profiles, to prove if the spilled oil is single-sourced or whether there is verifiable admixture with other extraneous refinery fuels. Degradation processes impacting n-alkanes and n-alkylated ring compounds, which make these compounds unsuitable for fingerprinting, nevertheless are of interest in understanding methanogenic biodegradation. Copyright ?? Taylor & Francis Group, LLC.

  18. Blasting with used oil/diesel blend at Echo Bay Minerals -- McCoy/Cove Mine

    SciTech Connect

    Zadra, S.L.

    1996-12-31

    In May, 1994, Echo Bay Minerals -- McCoy/Cove Mine petitioned for approval to recycle used oil for manufacturing ANFO. Recycling oil in this way will result in a cost savings for the minesite as well as having a positive environmental affect. The petition has met the approval of the Bureau of Land Management, the Nevada Department of Environmental Protection, and has received tentative approval from the Mine Safety and Health Administration. This paper discusses the issues raised by governmental agencies, site specific design parameters, and construction aspects of the facility. Standard operating procedures of the facility are also discussed.

  19. Use of mussels and semipermeable membrane devices to assess bioavailability of residual polynuclear aromatic hydrocarbons three years after the Exxon Valdez oil spill

    SciTech Connect

    Shigenaka, G.; Henry, C.B. Jr.

    1995-12-31

    Mussels (Mytilus cf. trossulus) were transplanted to a heavily oiled and extensively treated site on Smith Island, Prince William Sound, Alaska, in 1992. A new monitoring and assessment tool, the semipermeable membrane device, was also deployed to compare hydrocarbon uptake with mussels and to evaluate the route of exposure to mussels. Both mussels and semipermeable membrane devices accumulated polynuclear aromatic hydrocarbons during 14- and 52-day deployments, particularly at the oiled site. Accumulation levels were similar between mussels and the semipermeable membrane devices, but the distribution of individual hydrocarbons differed. The results permit some inference about route of exposure to mussels. Sheens leaching from subsurface deposits of residual oil, and particulate material with adsorbed hydrocarbons were apparently more important exposure pathways than dissolved hydrocarbons in water. Semipermeable membrane devices show promise as monitoring tools and to provide insights into exposure pathways for biota. 20 refs., 7 figs., 4 tabs.

  20. Evaluation of the Resource Potential of Shale Hydrocarbons on the Territory Tatarstan Republic (Volga-Ural oil and gas province)

    NASA Astrophysics Data System (ADS)

    Muslimov, Renat; Plotnikova, Irina

    2015-04-01

    Volga-Ural provinces of Eastern European platform are referred to industrial developed areas of oil production with the deteriorating structure of residual hydrocarbon reserves, forcing to search for new reserves of raw materials growth, including unconventional sources of hydrocarbons - shale strata. The top priority for the study and evaluation of this territory are complexes of Domanic and Domanician shale deposits (Upper Devonian carbonate-siliceous-clays horizons that contain a significant amount of ТОС). In the present report the prospects of the development of shale oil facilities design methods in Tatarstan are considered. A program for evaluation of oil and gas deposits prospects is worked out. The stages of its realization are described. A preliminary estimate of the cost of the program is made. Research on the evaluation criteria of shale oil and gas is conducted to accurately assess the resource potential of shale oil. Statistic analysis of the geochemical index of hydrocarbon source rocks in some areas of the Tatarstan (such as Melekessky basin, South-Tatar arch, North-Tatar arch and other) based on the characteristic of triple-division between the oil content and TOC of source rock, suggests that shale oil can be categorized into different levels of resource enrichment. The report contains results of analysis of organic matter porosity and permeability distribution in domanik type rocks on the Tatarstan area. First estimation of resource potential of shale hydrocarbons in the territory of the Republic of Tatarstan were carried out. Resource assessment carried out for domanik rocks of the Ust-Cheremshansk deflection in the Melekess depression. Method of evaluation provided an opportunity to evaluate amount of mobile hydrocarbons in dense shale rock. Still the question of the degree of maturity of the organic substance remains open. A detailed analysis of the pyrolysis was performed. The study of lithology and geochemistry allowed to develop shale

  1. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE PAGES

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; Whitmer, Lysle; Smith, Ryan; Brown, Robert C.

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore » the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less

  2. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    SciTech Connect

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; Whitmer, Lysle; Smith, Ryan; Brown, Robert C.

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreating the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.

  3. Degradation and Mineralization of High-Molecular-Weight Polycyclic Aromatic Hydrocarbons by Defined Fungal-Bacterial Cocultures

    PubMed Central

    Boonchan, Sudarat; Britz, Margaret L.; Stanley, Grant A.

    2000-01-01

    This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10,201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO2 by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization (53% of added [14C]benzo[a]pyrene was recovered as 14CO2 in 100 days), and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula. PMID:10698765

  4. Mineral oil extraction of light filth from rubbed sage: collaborative study.

    PubMed

    Holtgreve, N D

    1978-07-01

    An improved method has been developed for extracting light filth in rubbed sage. The method is similar to 44.A04 and 44.A05, except the light filth is isolated by using 20% isopropanol with mineral oil. Collaborative results show that the proposed method yielded better recoveries than the present official first action method. The method has been adopted as official first action. PMID:681262

  5. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: Live-oil escape or fingerprint of contamination?

    NASA Astrophysics Data System (ADS)

    Brocks, Jochen J.

    2011-06-01

    Archean shales from the Pilbara in Western Australia contain biomarkers that have been interpreted as evidence for the existence of cyanobacteria and eukaryotes 2.7 billion years (Ga) ago, with far reaching implications for the evolution of Earth's early biosphere. To re-evaluate the provenance of the biomarkers, this study determined the spatial distribution of hydrocarbons in the original drill core material. Rock samples were cut into millimeter-thick slices, and the molecular content of each slice was analyzed. In core from the Hamersley Group (˜2.5 Ga), C <13 alkanes had gradually increasing concentrations from the surfaces to the center of the rock while the abundance of steranes, hopanes and C 15+ alkanes decreased with distance from the outer surfaces. In samples from the Fortescue Group (˜2.7 Ga), hydrocarbons were overwhelmingly concentrated on rock surfaces. Two mechanisms are proposed that may have caused the inhomogeneous distribution: diffusion of petroleum products into the rock (contamination model), and leaching of indigenous hydrocarbons out of host shales driven by pressure release after drilling ('live-oil' effect). To test these models, the hydrocarbon distributions in the Archean shales are compared with artificially contaminated rocks as well as younger mudstones where leaching of live-oil had been observed. The results show that chromatographic phenomena associated with live-oil escape and contaminant diffusion have strong effects on molecular ratios and maturity parameters, potentially with broad implications for oil-source rock correlation studies and paleoenvironmental interpretations. For the Archean shales, the live-oil effect is consistent with some of the observed patterns, but only the contamination model fully explains the complex chromatographic fingerprints. Therefore, the biomarkers in the Pilbara samples have an anthropogenic origin, and previous conclusions about the origin of eukaryotes and oxygenic photosynthesis based on

  6. Hydrocarbons identified in extracts from estuarine water accommodated no. 2 fuel oil by gas chromatography-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Walker, A. L.; Bieri, R. H.

    1974-01-01

    Results are presented on a computerized gas chromatograph-mass spectrometer analysis of methylene chloride and n-heptane extracts of a No. 2 fuel oil accommodated estuarine water sample. The analytical method is briefly described, and the limitations on the identifications are categorized. Some attempt was made to determine major and trace constituents in the water accommodate. Altogether 66 hydrocarbon compounds were identified specifically, and 75 compounds were partially identified. Seven compounds could be recognized as major constituents of the water accommodated oil and ten were present only as traces. The aromatic compounds found were alkyl benzenes, naphthalene, tetralin, indane, biphenyl, fluorene, anthracene, and some of their alkyl substituted isomers in the range of carbon numbers C7 to C15. Four n-alkanes, C10 to C13, were found along with four other assorted hydrocarbons.

  7. Third-Party Evaluation of Petro Tex Hydrocarbons, LLC, ReGen Lubricating Oil Re-refining Process

    SciTech Connect

    Compere, A L; Griffith, William {Bill} L

    2009-04-01

    This report presents an assessment of market, energy impact, and utility of the PetroTex Hydrocarbons, LLC., ReGen process for re-refining used lubricating oil to produce Group I, II, and III base oils, diesel fuel, and asphalt. PetroTex Hydrocarbons, LLC., has performed extensive pilot scale evaluations, computer simulations, and market studies of this process and is presently evaluating construction of a 23 million gallon per year industrial-scale plant. PetroTex has obtained a 30 acre site in the Texas Industries RailPark in Midlothian Texas. The environmental and civil engineering assessments of the site are completed, and the company has been granted a special use permit from the City of Midlothian and air emissions permits for the Texas Commission on Environmental Quality.

  8. Application of microwave irradiation for the removal of polychlorinated biphenyls from siloxane transformer and hydrocarbon engine oils.

    PubMed

    Antonetti, Claudia; Licursi, Domenico; Raspolli Galletti, Anna Maria; Martinelli, Marco; Tellini, Filippo; Valentini, Giorgio; Gambineri, Francesca

    2016-09-01

    The removal of polychlorinated biphenyls (PCBs) both from siloxane transformer oil and hydrocarbon engine oil was investigated through the application of microwave (MW) irradiation and a reaction system based on polyethyleneglycol (PEG) and potassium hydroxide. The influence of the main reaction parameters (MW irradiation time, molecular weight of PEG, amount of added reactants and temperature) on the dechlorination behavior was studied. Promising performances were reached, allowing about 50% of dechlorination under the best experimental conditions, together time and energy saving compared to conventional heating systems. Moreover, an interesting dechlorination degree (up to 32%) was achieved for siloxane transformer oil when MW irradiation was employed as the unique driving force. To the best of our knowledge, this is the first time in which MW irradiation is tested as the single driving force for the dechlorination of these two types of PCB-contaminated oils.

  9. Polycyclic aromatic hydrocarbons in caribou, moose, and wolf scat samples from three areas of the Alberta oil sands.

    PubMed

    Lundin, Jessica I; Riffell, Jeffrey A; Wasser, Samuel K

    2015-11-01

    Impacts of toxic substances from oil production in the Alberta oil sands (AOS), such as polycyclic aromatic hydrocarbons (PAHs), have been widely debated. Studies have been largely restricted to exposures from surface mining in aquatic species. We measured PAHs in Woodland caribou (Rangifer tarandus caribou), moose (Alces americanus), and Grey wolf (Canis lupus) across three areas that varied in magnitude of in situ oil production. Our results suggest a distinction of PAH level and source profile (petro/pyrogenic) between study areas and species. Caribou samples indicated pyrogenic sourced PAHs in the study area previously devastated by forest fire. Moose and wolf samples from the high oil production area demonstrated PAH ratios indicative of a petrogenic source and increased PAHs, respectively. These findings emphasize the importance of broadening monitoring and research programs in the AOS.

  10. Polycyclic aromatic hydrocarbons in caribou, moose, and wolf scat samples from three areas of the Alberta oil sands.

    PubMed

    Lundin, Jessica I; Riffell, Jeffrey A; Wasser, Samuel K

    2015-11-01

    Impacts of toxic substances from oil production in the Alberta oil sands (AOS), such as polycyclic aromatic hydrocarbons (PAHs), have been widely debated. Studies have been largely restricted to exposures from surface mining in aquatic species. We measured PAHs in Woodland caribou (Rangifer tarandus caribou), moose (Alces americanus), and Grey wolf (Canis lupus) across three areas that varied in magnitude of in situ oil production. Our results suggest a distinction of PAH level and source profile (petro/pyrogenic) between study areas and species. Caribou samples indicated pyrogenic sourced PAHs in the study area previously devastated by forest fire. Moose and wolf samples from the high oil production area demonstrated PAH ratios indicative of a petrogenic source and increased PAHs, respectively. These findings emphasize the importance of broadening monitoring and research programs in the AOS. PMID:26284348

  11. Parasitism in marine fish after chronic exposure to petroleum hydrocarbons in the laboratory and to the Exxon Valdez oil spill

    SciTech Connect

    Khan, R.A. )

    1990-05-01

    Crude oil or its water soluble components are known to induce histopathological effects in fish following chronic exposure. Fish tend to harbor a variety of parasites, most of which under natural conditions cause little or no apparent harm. However, after chronic exposure to petroleum hydrocarbons, the prevalence and intensity of parasitism increases substantially. Trichodinid ciliates are mainly ectoparasitic protozoans on the fills of fish. Since a previous study showed that chronic exposure to crude oil fractions resulted in increased parasitism, a study was initiated to ascertain the relationship between trichodinid infections and exposure of fish to crude oil or its fractions in the laboratory and subsequently, in the Gulf of Alaska following the Exxon Valdez oil spill.

  12. Determination of polycyclic aromatic hydrocarbons in vegetable oils using solid-phase microextraction-comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry.

    PubMed

    Purcaro, Giorgia; Morrison, Paul; Moret, Sabrina; Conte, Lanfranco S; Marriott, Philip J

    2007-08-17

    A simple and fast solid-phase microextraction method coupled with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry was developed for analysis of polycyclic aromatic hydrocarbons in edible oil, performed directly in a hexane solution of the oil. Sampling conditions (solvent used, extraction time, extraction temperature and fiber rinsing time) were optimized by using a sample of oil fortified with a standard solution of polycyclic aromatic hydrocarbons. The method was validated by calculating linear range, correlation coefficient, accuracy, repeatability, detection limit and quantification limit. The method was applied to several oils collected from the market and directly from an olive pomace extraction plant. PMID:17597138

  13. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation

    USGS Publications Warehouse

    Lewan, M.D.; Roy, S.

    2011-01-01

    Hydrous and anhydrous closed-system pyrolysis experiments were conducted on a sample of Mahogany oil shale (Eocene Green River Formation) containing Type-I kerogen to determine whether the role of water had the same effect on petroleum generation as reported for Type-II kerogen in the Woodford Shale. The experiments were conducted at 330 and 350??C for 72h to determine the effects of water during kerogen decomposition to polar-rich bitumen and subsequent bitumen decomposition to hydrocarbon-rich oil. The results showed that the role of water was more significant in bitumen decomposition to oil at 350??C than in kerogen decomposition to bitumen at 330??C. At 350??C, the hydrous experiment generated 29% more total hydrocarbon product and 33% more C15+ hydrocarbons than the anhydrous experiment. This is attributed to water dissolved in the bitumen serving as a source of hydrogen to enhance thermal cracking and facilitate the expulsion of immiscible oil. In the absence of water, cross linking is enhanced in the confines of the rock, resulting in formation of pyrobitumen and molecular hydrogen. These differences are also reflected in the color and texture of the recovered rock. Despite confining liquid-water pressure being 7-9 times greater in the hydrous experiments than the confining vapor pressure in the anhydrous experiments, recovered rock from the former had a lighter color and expansion fractures parallel to the bedding fabric of the rock. The absence of these open tensile fractures in the recovered rock from the anhydrous experiments indicates that water promotes net-volume increase reactions like thermal cracking over net-volume decrease reactions like cross linking, which results in pyrobitumen. The results indicate the role of water in hydrocarbon and petroleum formation from Type-I kerogen is significant, as reported for Type-II kerogen. ?? 2010.

  14. Hydrocarbon residues in tissues of sea otters (`enhydra lutris`) collected following the Exxon Valdez oil spill. Marine mammal study 6-16. Exxon Valdez oil spill state/federal natural resource damage assessment. Final report

    SciTech Connect

    Ballachey, B.E.; Kloecker, K.A.

    1997-04-01

    Ten moderately to heavily oiled sea otters were collected in Prince William Sound during the Exxon Valdez oil spill and up to seven tissues from each were analyzed for hydrocarbons. Aliphatic and aromatic hydrocarbons were detected in all tissues. Concentrations of aromatic hydrocarbons in fat samples were an order of magnitude higher than in other tissues. The patterns of distribution of these hydrocarbons suggested crude oil as the source of contamination. However, there was variation among oiled otters in the concentrations of individual hydrocarbons, which may be due to differing proximate causes of mortality and varying lengths of time and sea otters survived following oil exposure. The concentrations of both aliphatic and aromatic hydrocarbons in the tissues of the ten oiled sea otters generally were higher than in tissues from 7 sea otters with no external oiling that were collected from prince William Sound in 1989 and 1990, or from 12 sea otters collected from an area in southeast Alaska which had not experienced an oil spill.

  15. Monitoring polycyclic aromatic hydrocarbon pollution in the marine environment after the Prestige oil spill by means of seabird blood analysis.

    PubMed

    Pérez, Cristóbal; Velando, Alberto; Munilla, Ignacio; López-Alonso, Marta; Oro, Daniel

    2008-02-01

    In this study we tested the use of seabird blood as a bioindicator of polycyclic aromatic hydrocarbon (PAH) pollution in the marine environment. Blood cells of breeding yellow-legged gulls (Larus michahellis) were able to track spatial and temporal changes consistent with the massive oil pollution pulse that resulted from the Prestige oil spill. Thus, in 2004, blood samples from yellow-legged gulls breeding in colonies that were in the trajectory of the spill doubled in theirtotal PAH concentrations when compared to samples from unoiled colonies. Furthermore, PAH levels in gulls from an oiled colony decreased by nearly a third in two consecutive breeding seasons (2004 and 2005). Experimental evidence was gathered by means of an oil-ingestion field experiment. The total concentration of PAHs in the blood of gulls given oil supplements was 30% higher compared to controls. This strongly suggested that measures of PAHs in the blood of gulls are sensitive to the ingestion of small quantities of oil. Our study provides evidence that seabirds were exposed to residual Prestige oil 17 months after the spill commenced and gives support to the nondestructive use of seabirds as biomonitors of oil pollution in marine environments.

  16. Presence of aliphatic and polycyclic aromatic hydrocarbons in near-surface sediments of an oil spill area in Bohai Sea.

    PubMed

    Li, Shuanglin; Zhang, Shengyin; Dong, Heping; Zhao, Qingfang; Cao, Chunhui

    2015-11-15

    In order to determine the source of organic matter and the fingerprint of the oil components, 50 samples collected from the near-surface sediments of the oil spill area in Bohai Sea, China, were analyzed for grain size, total organic carbon, aliphatic hydrocarbons (AHs), and polycyclic aromatic hydrocarbons (PAHs). The concentrations of C15-35 n-alkanes and 16 United States Environmental Protection Agency (US EPA) priority pollutant PAHs were found in the ranges of 0.88-3.48μg g(-1) and 9.97-490.13ng/g, respectively. The terrestrial organic matters characterized by C27-C35 n-alkanes and PAHs, resulting from the combustion of higher plants, are dominantly contributed from the transportation of these plants by rivers. Marine organic matters produced from plankton and aquatic plants were represented by C17-C26 n-alkanes in AHs. Crude oil, characterized by C17-C21 n-alkanes, unresolved complex mixture (UCM) with a mean response factor of C19 n-alkanes, low levels of perylene, and a high InP/(InP+BghiP) ratio, seeped into the oceans from deep hydrocarbon reservoirs, as a result of geological faults.

  17. Petrophysical evaluation of the hydrocarbon potential of the Lower Cretaceous Kharita clastics, North Qarun oil field, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Teama, Mostafa A.; Nabawy, Bassem S.

    2016-09-01

    Based on the available well log data of six wells chosen in the North Qarun oil field in the Western Desert of Egypt, the petrophysical evaluation for the Lower Cretaceous Kharita Formation was accomplished. The lithology of Kharita Formation was analyzed using the neutron porosity-density and the neutron porosity-gamma ray crossplots as well as the litho-saturation plot. The petrophysical parameters, include shale volume, effective porosity, water saturation and hydrocarbon pore volume, were determined and traced laterally in the studied field through the iso-parametric maps. The lithology crossplots of the studied wells show that the sandstone is the main lithology of the Kharita Formation intercalated with some calcareous shale. The cutoff values of shale volume, porosity and water saturation for the productive hydrocarbon pay zones are defined to be 40%, 10% and 50%, respectively, which were determined, based on the applied crossplots approach and their limits. The iso-parametric contour maps for the average reservoir parameters; such as net-pay thickness, average porosity, shale volume, water saturation and the hydrocarbon pore volume were illustrated. From the present study, it is found that the Kharita Formation in the North Qarun oil field has promising reservoir characteristics, particularly in the northwestern part of the study area, which is considered as a prospective area for oil accumulation.

  18. Presence of aliphatic and polycyclic aromatic hydrocarbons in near-surface sediments of an oil spill area in Bohai Sea.

    PubMed

    Li, Shuanglin; Zhang, Shengyin; Dong, Heping; Zhao, Qingfang; Cao, Chunhui

    2015-11-15

    In order to determine the source of organic matter and the fingerprint of the oil components, 50 samples collected from the near-surface sediments of the oil spill area in Bohai Sea, China, were analyzed for grain size, total organic carbon, aliphatic hydrocarbons (AHs), and polycyclic aromatic hydrocarbons (PAHs). The concentrations of C15-35 n-alkanes and 16 United States Environmental Protection Agency (US EPA) priority pollutant PAHs were found in the ranges of 0.88-3.48μg g(-1) and 9.97-490.13ng/g, respectively. The terrestrial organic matters characterized by C27-C35 n-alkanes and PAHs, resulting from the combustion of higher plants, are dominantly contributed from the transportation of these plants by rivers. Marine organic matters produced from plankton and aquatic plants were represented by C17-C26 n-alkanes in AHs. Crude oil, characterized by C17-C21 n-alkanes, unresolved complex mixture (UCM) with a mean response factor of C19 n-alkanes, low levels of perylene, and a high InP/(InP+BghiP) ratio, seeped into the oceans from deep hydrocarbon reservoirs, as a result of geological faults. PMID:26375779

  19. Muslim oil and gas periphery; the future of hydrocarbons in Africa, southeast Asia and the Caspian. Master`s thesis

    SciTech Connect

    Crockett, B.D.

    1997-12-01

    This thesis is a study of the contemporary political, economic, and technical developments and future prospects of the Muslim hydrocarbon exporters of Africa, Southeast Asia, and the Caspian. The established Muslim oil and gas periphery of Africa and Southeast Asia has four members in the Organization of Petroleum Exporting Countries (OPEC) and is systemically increasing its production of natural gas. I analyze US government and corporate policies regarding the countries and the major dilemmas of the Muslim hydrocarbon periphery. The first chapter provides a selective overview of global energy source statistics; the policies, disposition and composition of the major hydrocarbon production and consumption players and communities; a selective background of OPEC and its impact on the globe; and a general portrait of how the Muslim periphery piece fits into the overall Muslim oil and gas puzzle. Chapter two analyzes the established Muslim oil and gas periphery of Africa and Southeast Asia asking the following questions: What are the major political, economic, and technical trends and dilemmas affecting these producer nations. And what are the United States` policies and relationships with these producers. Chapter three asks the same questions as chapter two, but with regard to the newly independent states of the Caspian Sea. I probe the regional petroleum exploration and transportation dilemmas in some detail.

  20. 30 CFR 57.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuel oil requirements for ANFO. 57.6309 Section 57.6309 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Transportation-Surface and Underground § 57.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon...

  1. 30 CFR 57.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fuel oil requirements for ANFO. 57.6309 Section 57.6309 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Transportation-Surface and Underground § 57.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon...

  2. 30 CFR 57.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fuel oil requirements for ANFO. 57.6309 Section 57.6309 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Transportation-Surface and Underground § 57.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon...

  3. 30 CFR 57.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fuel oil requirements for ANFO. 57.6309 Section 57.6309 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Transportation-Surface and Underground § 57.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon...

  4. 30 CFR 57.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fuel oil requirements for ANFO. 57.6309 Section 57.6309 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Transportation-Surface and Underground § 57.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon...

  5. Wetting and Interfacial Tension Dynamics of Oil-Nanofluids-Surface Minerals System

    NASA Astrophysics Data System (ADS)

    Bai, L.; Li, C.; Darnault, C. J. G.; Korte, C.; Ladner, D.; Daigle, H.

    2015-12-01

    Among the techniques used in enhanced oil recovery (EOR), chemical injection involves the injection of surfactants to increase the oil mobility and decrease the interfacial tension (IFT). With the nanotechnology revolution, the use of nanoparticles has shown unique opportunities in petroleum engineering due to their physico-chemical properties. Our research examines the potential application of nanoparticles as a means of EOR by studying the influence of silicon oxide nanoparticles on the wettability and IFT of oil-nanofluids-surface systems. Batch studies were conducted to assess the stability of the nanoparticle suspensions of different concentrations (0, 0.001, 0.005, 0.01, 0.05 and 0.1 wt. %) in different reservoir conditions with and without the addition of surfactants (i.e. 5% brine, and Tween 20 at 0.5 and 2 cmc). Testing of oil-nanofluids and oil-nanofluids-minerals interactions was performed using crude oils from West Texas (light, API 40), Prudhoe Bay (medium, API 28), and Lloydminster (heavy, API 20). The dynamic behavior of IFT was measured using a pendant drop method. Results for 5% brine-nanoparticle systems indicated that 0.001 and 0.01 wt.% of nanoparticles contributed to a significant decrease of IFT for West Texas and Prudhoe Bay oils, while the highest decrease of IFT for Lloydminster was reported with 0.1 wt.% nanoparticles. IFT decrease was also enhanced by surfactant, and the addition of nanoparticles at 0.001 wt.% to surfactant resulted in significant decrease of IFT in most of the tested oil-nanofluid systems. The sessile drop method was used to measure the dynamic behavior of the contact angle of these oil droplets on minerals surface made of thin sections from Berea and Boise sandstone cores through a wetting test. Different nanofluid and surfactant concentrations were tested for the optimization of changes in wettability, which is a critical phase in assessing the behavior of nanofluids for optimal EOR with the selected crude oils.

  6. Pattern of explosive reaction between uranium hexafluoride and hydrocarbon oils. Revision 1

    SciTech Connect

    Rapp, K.E.

    1986-03-21

    Examination of uranium hexafluoride release incidents occurring over the past three decades of ORGDP experience has identified only four which apparently involved an explosion of a container resulting from reaction between uranium hexafluoride and an impurity. These four incidents exhibit a certain degree of commonality. Each has involved: (1) condensed phase uranium hexafluoride, (2) a moderately elevated temperature, (3) a sufficient quantity of uranium hexafluoride for a significant partial pressure to be maintained independently above that which can be consumed by chemical reaction, and (4) an organic liquid (probably hydrocarbon oil) accidentally present in the container as a contaminant. The purpose of this investigative search was to establish some conditional pattern for these four incidents to which their violent consequences could be attributed. Fortunately, the number of such incidents is relatively small, which emphasizes even more pointedly the unfortunate fact that documentation ranges from thorough to very limited. Documented sources of information are given in the bibliography. Copies of those which are not readily available are contained in six appendices. 8 refs.

  7. Monitoring of polycyclic aromatic hydrocarbons on agricultural lands surrounding Tehran oil refinery.

    PubMed

    Bayat, J; Hashemi, S H; Khoshbakht, K; Deihimfard, R; Shahbazi, A; Momeni-Vesalian, R

    2015-07-01

    Soil samples at two depths were collected and analyzed to determine the concentrations of 16 polycyclic aromatic hydrocarbons (PAHs), organic carbon, and soil pH. The Σ16PAHs were 0.13 to 3.92 mg kg(-1) at depth 1 and 0.21 to 50.32 mg kg(-1)at depth 2. The averages of the PAH compounds indicate that the area is contaminated with oil, and this pollution was greater at depth 2. Interpolation maps showed that the southern region, especially at depth 2, has been contaminated more by anthropogenic activity. The diagnostic ratios indicate several sources of pollution of the agricultural soil. A comparison of average PAHs and standard values revealed that higher molecular weight compounds in the topsoil (InP and BghiP) and subsoil (BaA, BkF, BaP, DBA, and BghiP) exceed standard values for farmland. The pH interpolation map for both depths showed that most of the area has alkaline soil from long-term irrigation with untreated urban wastewater. PMID:26092238

  8. Metal/metalloid elements and polycyclic aromatic hydrocarbon in various biochars: The effect of feedstock, temperature, minerals, and properties.

    PubMed

    Qiu, Mengyi; Sun, Ke; Jin, Jie; Han, Lanfang; Sun, Haoran; Zhao, Ye; Xia, Xinghui; Wu, Fengchang; Xing, Baoshan

    2015-11-01

    Fourteen metal/metalloid elements and sixteen polycyclic aromatic hydrocarbons (PAHs) within biochars were quantified to investigate how heat treatment temperatures (HTTs) and feedstocks affect their concentration and composition. Concentrations and composition of metals/metalloids were strongly dependent upon feedstocks rather than HTTs. HTTs significantly affected concentrations and composition of PAHs. The highest concentration of PAHs was observed for plant residue-derived biochars (PLABs) produced at 450 °C and the opposite result was for animal waste-derived bichars. High mineral content was responsible for depolymerization of organic matter (OM), which facilitated high production of PAHs. High HTTs pyrolysis or combustion PAHs (COMB) of PLABs possibly blocks their micropores derived from other components within OM and leads to a decline of CO2-surface areas (CO2-SAs). Concentration of ∑COMB or individual PAH was affected by biochar properties, including composition and contents of functional groups, ash content, and CO2-SAs. PLABs produced at 600 °C were recommended for low toxicity.

  9. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    P. Somasundaran

    2005-04-30

    The aim of this project is to delineate the role of mineralogy of reservoir rocks in determining interactions between reservoir minerals and externally added reagents (surfactants/polymers) and its effect on critical solid-liquid and liquid-liquid interfacial properties such as adsorption, wettability and interfacial tension in systems relevant to reservoir conditions. Previous studies have suggested that significant surfactant loss by precipitation or adsorption on reservoir minerals can cause chemical schemes to be less than satisfactory for enhanced oil recovery. Both macroscopic adsorption, wettability and microscopic orientation and conformation studies for various surfactant/polymer mixtures/reservoir rocks systems were conducted to explore the cause of chemical loss by means of precipitation or adsorption, and the effect of rock mineralogy on the chemical loss. During this period, the adsorption of mixed system of n-dodecyl-{beta}-D-maltoside (DM) and dodecyl sulfonate (C{sub 12}SO{sub 3}Na) has been studied. The effects of solution pH, surfactant mixing ratio and different salts on surfactant adsorption on alumina have been investigated in detail. Along with these adsorption studies, changes in mineral wettability due to the adsorption of the mixtures were determined under relevant conditions to identify the nano-structure of the adsorbed layers. Solution properties of C{sub 12}SO{sub 3}Na/DM mixtures were also studied to identify surfactant interactions that affect the mixed aggregate formation in solution. Adsorption of SDS on gypsum and limestone suggested stronger surfactant/mineral interaction than on alumina, due to the precipitation of surfactant by dissolved calcium ions. The effects of different salts such as sodium nitrate, sodium sulfite and sodium chloride on DM adsorption on alumina have also been determined. As surfactant hemimicelles at interface and micelles in solution have drastic effects on oil recovery processes, their microstructures in

  10. Fingerprinting of petroleum hydrocarbons (PHC) and other biogenic organic compounds (BOC) in oil-contaminated and background soil samples.

    PubMed

    Wang, Zhendi; Yang, C; Yang, Z; Hollebone, B; Brown, C E; Landriault, M; Sun, J; Mudge, S M; Kelly-Hooper, F; Dixon, D G

    2012-09-01

    Total petroleum hydrocarbons (TPH) or petroleum hydrocarbons (PHC) are one of the most widespread soil contaminants in Canada, the United States and many other countries worldwide. Clean-up of PHC-contaminated soils costs the Canadian economy hundreds of millions of dollars annually. In Canada, most PHC-contaminated site evaluations are based on the methods developed by the Canadian Council of the Ministers of the Environment (CCME). However, the CCME method does not differentiate PHC from BOC (the naturally occurring biogenic organic compounds), which are co-extracted with petroleum hydrocarbons in soil samples. Consequently, this could lead to overestimation of PHC levels in soil samples. In some cases, biogenic interferences can even exceed regulatory levels (300 μg g(-1) for coarse soils and 1300 μg g(-1) for fine soils for Fraction 3, C(16)-C(34) range, in the CCME Soil Quality Level). Resulting false exceedances can trigger unnecessary and costly cleanup or remediation measures. Therefore, it is critically important to develop new protocols to characterize and quantitatively differentiate PHC and BOC in contaminated soils. The ultimate objective of this PERD (Program of Energy Research and Development) project is to correct the misconception that all detectable hydrocarbons should be regulated as toxic petroleum hydrocarbons. During 2009-2010, soil and plant samples were collected from over forty oil-contaminated and paired background sites in various provinces. The silica gel column cleanup procedure was applied to effectively remove all target BOC from the oil-contaminated sample extracts. Furthermore, a reliable GC-MS method in combination with the derivatization technique, developed in this laboratory, was used for identification and characterization of various biogenic sterols and other major biogenic compounds in these oil-contaminated samples. Both PHC and BOC in these samples were quantitatively determined. This paper reports the characterization

  11. Bioprocessing-Based Approach for Bitumen/Water/Fines Separation and Hydrocarbon Recovery from Oil Sands Tailings

    DOE PAGES

    Brigmon, Robin L.; Berry, Christopher J.; Wade, Arielle; Simpson, Waltena

    2016-05-04

    Oil sands are a major source of oil, but their industrial processing generates tailings ponds that are an environmental hazard. The main concerns are mature fine tailings (MFT) composed of residual hydrocarbons, water, and fine clay. Tailings ponds include toxic contaminants such as heavy metals, and toxic organics including naphthenics. Naphthenic acids and polyaromatic hydrocarbons (PAHs) degrade very slowly and pose a long-term threat to surface and groundwater, as they can be transported in the MFT. Research into improved technologies that would enable densification and settling of the suspended particles is ongoing. In batch tests, BioTiger™, a microbial consortium thatmore » can metabolize PAHs, demonstrated improved oil sands tailings settling from a Canadian tailings pond. Results also showed, depending on the timing of the measurements, lower suspended solids and turbidity. Elevated total organic carbon was observed in the first 48 hours in the BioTiger™-treated columns and then decreased in overlying water. Oil sands tailings mixed with BioTiger™ showed a two-fold reduction in suspended solids within 24 hours as compared to abiotic controls. The tailings treated with BioTiger™ increased in microbial densities three orders of magnitude from 8.5 × 105 CFU/mL to 1.2 × 108 CFU/mL without any other carbon or energy source added, indicating metabolism of hydrocarbons and other available nutrients. Results demonstrated that bioaugmentation of BioTiger™ increased separation of organic carbon from particles in oil sands and enhanced settling with tailings with improved water quality.« less

  12. EDTA addition enhances bacterial respiration activities and hydrocarbon degradation in bioaugmented and non-bioaugmented oil-contaminated desert soils.

    PubMed

    Al Kharusi, Samiha; Abed, Raeid M M; Dobretsov, Sergey

    2016-03-01

    The low number and activity of hydrocarbon-degrading bacteria and the low solubility and availability of hydrocarbons hamper bioremediation of oil-contaminated soils in arid deserts, thus bioremediation treatments that circumvent these limitations are required. We tested the effect of Ethylenediaminetetraacetic acid (EDTA) addition, at different concentrations (i.e. 0.1, 1 and 10 mM), on bacterial respiration and biodegradation of Arabian light oil in bioaugmented (i.e. with the addition of exogenous alkane-degrading consortium) and non-bioaugmented oil-contaminated desert soils. Post-treatment shifts in the soils' bacterial community structure were monitored using MiSeq sequencing. Bacterial respiration, indicated by the amount of evolved CO2, was highest at 10 mM EDTA in bioaugmented and non-bioaugmented soils, reaching an amount of 2.2 ± 0.08 and 1.6 ± 0.02 mg-CO2 g(-1) after 14 days of incubation, respectively. GC-MS revealed that 91.5% of the C14-C30 alkanes were degraded after 42 days when 10 mM EDTA and the bacterial consortium were added together. MiSeq sequencing showed that 78-91% of retrieved sequences in the original soil belonged to Deinococci, Alphaproteobacteria, Gammaproteobacteia and Bacilli. The same bacterial classes were detected in the 10 mM EDTA-treated soils, however with slight differences in their relative abundances. In the bioaugmented soils, only Alcanivorax sp. MH3 and Parvibaculum sp. MH21 from the exogenous bacterial consortium could survive until the end of the experiment. We conclude that the addition of EDTA at appropriate concentrations could facilitate biodegradation processes by increasing hydrocarbon availability to microbes. The addition of exogenous oil-degrading bacteria along with EDTA could serve as an ideal solution for the decontamination of oil-contaminated desert soils.

  13. The utilization natural mineral in the process of palm oil glycerolysis

    NASA Astrophysics Data System (ADS)

    Mujdalipah, Siti

    2015-09-01

    The reaction of glycerolysis currently has weakness, which uses a catalyst with a high price and performed at a high temperature. Indonesia is rich in minerals that have the potential to be used as a catalyst. Besides that, the solvent allows the glycerolysis reaction done in a low temperature so that it can maintain the quality of product. The purpose of this research is to study the influence of a type of solvent and a type of natural mineral to the chemistry and physical characteristic of palm oil glycerolysis product. The research activity consists of four steps. The first is the analysis of chemistry characteristics of palm oil. The second is the process of palm oil as the effect of a type of solvent and a type of natural mineral factors. The third is the analysis of chemistry and physical characteristics of glycerolysis product. The last is the analysis of data. Based on the analysis variant at α=0.05, it shows that type of solvent and type of natural mineral doesnot influence significantly to the ability of glycerolysis product in decreasing the water surface tension and to the free glycerol content. The best product is able to decrease the water surface tension from 44.933 dyne/cm to 29.00 dyne/cm. It contains the free glycerol content of 1.30%, 1-monoglyceride content of 43.10%, acid number of 0.146 mg KOH/g sample, and it has simillar fatty acid composition with the raw material.

  14. 25 CFR 215.23a - Suspension of operations and production on leases for minerals other than oil and gas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Suspension of operations and production on leases for... THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.23a Suspension of operations and production on leases for minerals other than oil and gas. The provisions...

  15. Mineral contents of seed and seed oils of Capparis species growing wild in Turkey.

    PubMed

    Duman, Erman; Ozcan, Mehmet Musa

    2014-01-01

    The mineral contents of seed and seed oils of Capparis species growing wild in Turkey were established by inductively coupled plasma-atomic emission spectrometry. Capparis spinosa var. spinosa (2010) and Capparis ovata var. canescens variety (2009) were determined to be rich in terms of mineral matter as 19,514.60 and 16,995.92 ppm as a total, respectively. C. spinosa var. spinosa collected from Muğla-Milas region (2009) had the highest amount of Ca with 1,010.67 ppm in C. spinosa species and in C. ovata species. C. ovata var. canescens collected from Ankara-Beypazarı (2010) region had the highest amount of Ca with 833.92 ppm Ca amount in C. spinosa var. spinosa, inermis, herbaceae seeds decreased in 2010. C. spinosa var. inermis collected from Antalya-Serik (2010) in C. spinosa species had rich amount of Ca with 123.78 ppm and C. ovata var. palaestina seed oils collected from Mardin-Savur region (2009) had rich amount of Ca with 253.71 ppm in C. ovata species. The oil of C. spinosa var. herbaceae variety collected from Mardin-Midyat region (2010) was determined to have the highest major mineral matter (Ca, K, Mg, Na, and P) with 1,424.37 ppm in C. spinosa species. It was also determined that as a result, caper seed and oils were found to be important sources of nutrients and essential elements.

  16. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of

  17. Determination of volatile organic and polycyclic aromatic hydrocarbons in crude oil with efficient gas-chromatographic methods.

    PubMed

    Wang, Haijing; Geppert, Helmut; Fischer, Thomas; Wieprecht, Wolfgang; Möller, Detlev

    2015-01-01

    Determination of volatile organic compounds (VOCs) in crude oil, such as super volatile organic compounds (super VOCs) and simple polycyclic aromatic hydrocarbons (PAHs), is vital for targeting crude oil spill spots. In this study, a static headspace gas chromatography flame ionization detection method was established for determination of super VOCs in crude oil with both external and internal standard determination, which can be used in the field when using portable gas chromatography. Identification was done by comparing the retention time with the corresponding standards and quantitation was done with a new one-drop method. Another simplified and efficient method was performed to analyze volatile PAHs in crude oil, which can also be used in field analysis. Toluene was used as the extraction solvent for PAHs in crude oil. Method validation for both analyses was satisfactory. The result showed that n-butane and n-pentane were maximum super VOCs and naphthalene, phenanthrene and fluorene were the main PAHs in the crude oil studied. The super VOCs quantity ranged from 3 to 6% and the main PAHs consisted of 0.02-0.06% of studied crude oil. PMID:25225200

  18. Evolution of Hydrocarbon-Degrading Microbial Communities in the Aftermath of the Deepwater Horizon Oil Well Blowout in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Dubinsky, E. A.; Chakraborty, R.; Hollibaugh, J. T.; Hazen, T. C.

    2012-12-01

    The Deepwater Horizon oil spill created large plumes of dispersed oil and gas that remained deep in the water column and stimulated growth of several deep-sea bacteria that can degrade hydrocarbons at cold temperatures. We tracked microbial community composition before, during and after the 83-day spill to determine relationships between microbial dynamics, and hydrocarbon and dissolved-oxygen concentrations. Dominant bacteria in plumes shifted drastically over time and were dependent on the concentration of hydrocarbons, and the relative quantities of insoluble and soluble oil fractions. Unmitigated flow from the wellhead early in the spill resulted in the highest concentrations of oil and relatively more n-alkanes suspended in the plume as small oil droplets. These conditions resulted in near complete dominance by alkane-degrading Oceanospirillales, Pseudomonas and Shewanella. Six-weeks into the spill overall hydrocarbon concentrations in the plume decreased and were almost entirely composed of BTEX after management actions reduced emissions into the water column. These conditions corresponded with the emergence of Colwellia, Pseudoalteromonas, Cycloclasticus and Halomonas that are capable of degrading aromatic compounds. After the well was contained dominant plume bacteria disappeared within two weeks after the spill and transitioned to an entirely different set of bacteria dominated by Flavobacteria, Methylophaga, Alteromonas and Rhodobacteraceae that were found in anomalous oxygen depressions throughout August and are prominent degraders of both high molecular weight organic matter as well as hydrocarbons. Bio-Sep beads amended with volatile hydrocarbons from MC-252 oil were used from August through September to create hydrocarbon-amended traps for attracting oil-degrading microbes in situ. Traps were placed at multiple depths on a drilling rig about 600-m from the original MC-252 oil spill site. Microbes were isolated on media using MC-252 oil as the sole

  19. Subacute inhalation toxicity of mineral oils, C sub 15 -C sub 20 alkylbenzenes, and polybutene in male rats

    SciTech Connect

    Skyberg, K.; Skaug, V.; Gylseth, B.; Pedersen, J.R.; Iversen, O.H. Univ. of Oslo )

    1990-10-01

    Male Wistar rats were exposed to mist and vapor of two mineral oils, two C{sub 15}-C{sub 20} alkylbenzenes, and one polybutene at aerosol concentrations of 70 mg {center dot} m{sup {minus}3} and 700 mg {center dot} m{sup {minus}3} for 2 weeks. Of oil mist particles, 82-97 wt% were respirable (<4.7 {mu}m). High-level exposure to polybutene was lethal to three of four animals, due to pulmonary edema. Elevated numbers of pulmonary macrophages and increased macrophage vacuolization were observed after exposure to the polybutene, both mineral oils, and one alkylbenzene. The same alkylbenzene produced body weight loss. Deposition analysis was performed for one mineral oil. No oil was detected in brain tissue, while retroperitoneal fat tissue contained 541 (401-702) {mu}g oil/g tissue, half of this still present after an exposure-free period of 2 weeks. It is concluded that inhalation of the polybutene and one of the mineral cable oils tested here produces toxic effects in lung. In light of the respiratory diseases found in oil mist-exposed cable workers, the experiment was designed to give detailed information on histopathological changes in the respiratory tract.

  20. Optimisation of pressurised liquid extraction (PLE) for rapid and efficient extraction of superficial and total mineral oil contamination from dry foods.

    PubMed

    Moret, Sabrina; Scolaro, Marianna; Barp, Laura; Purcaro, Giorgia; Sander, Maren; Conte, Lanfranco S

    2014-08-15

    Pressurised liquid extraction (PLE) represents a powerful technique which can be conveniently used for rapid extraction of mineral oil saturated (MOSH) and aromatic hydrocarbons (MOAH) from dry foods with a low fat content, such as semolina pasta, rice, and other cereals. Two different PLE methods, one for rapid determination of superficial contamination mainly from the packaging, the other for efficient extraction of total contamination from different sources, have been developed and optimised. The two methods presented good performance characteristics in terms of repeatability (relative standard deviation lower than 5%) and recoveries (higher than 95%). To show their potentiality, the two methods have been applied in combination on semolina pasta and rice packaged in direct contact with recycled cardboard. In the case of semolina pasta it was possible to discriminate between superficial contamination coming from the packaging, and pre-existing contamination (firmly enclosed into the matrix).

  1. Bioavailability of polycyclic aromatic hydrocarbons from buried shoreline oil residues thirteen years after the Exxon Valdez oil spill: a multispecies assessment.

    PubMed

    Neff, Jerry M; Bence, A Edward; Parker, Keith R; Page, David S; Brown, John S; Boehm, Paul D

    2006-04-01

    Seven taxa of intertidal plants and animals were sampled at 17 shoreline sites in Prince William Sound ([PWS]; AK, USA), that were heavily oiled in 1989 by the Exxon Valdez oil spill (EVOS) to determine if polycyclic aromatic hydrocarbons (PAH) from buried oil in intertidal sediments are sufficiently bioavailable to intertidal prey organisms that they might pose a health risk to populations of birds and wildlife that forage on the shore. Buried residues of EVOS oil are present in upper and middle intertidal sediments at 16 sites. Lower intertidal (0 m) sediments contain little oil. Much of the PAH in lower intertidal sediments are from combustion sources. Mean tissue total PAH (TPAH) concentrations in intertidal clams, mussels, and worms from oiled sites range from 24 to 36 ng/g (parts per billion) dry weight; sea lettuce, whelks, hermit crabs, and intertidal fish contain lower concentrations. Concentrations of TPAH are similar or slightly lower in biota from unoiled reference sites. The low EVOS PAH concentrations detected in intertidal biota at oiled shoreline sites indicate that the PAH from EVOS oil buried in intertidal sediments at these sites have a low bioavailability to intertidal plants and animals. Individual sea otters or shorebirds that consumed a diet of intertidal clams and mussels exclusively from the 17 oiled shores in 2002 were at low risk of significant health problems. The low concentrations of EVOS PAH found in some intertidal organisms at some oiled shoreline sites in PWS do not represent a health risk to populations of marine birds and mammals that forage in the intertidal zone. PMID:16629134

  2. Bioavailability of polycyclic aromatic hydrocarbons from buried shoreline oil residues thirteen years after the Exxon Valdez oil spill: a multispecies assessment.

    PubMed

    Neff, Jerry M; Bence, A Edward; Parker, Keith R; Page, David S; Brown, John S; Boehm, Paul D

    2006-04-01

    Seven taxa of intertidal plants and animals were sampled at 17 shoreline sites in Prince William Sound ([PWS]; AK, USA), that were heavily oiled in 1989 by the Exxon Valdez oil spill (EVOS) to determine if polycyclic aromatic hydrocarbons (PAH) from buried oil in intertidal sediments are sufficiently bioavailable to intertidal prey organisms that they might pose a health risk to populations of birds and wildlife that forage on the shore. Buried residues of EVOS oil are present in upper and middle intertidal sediments at 16 sites. Lower intertidal (0 m) sediments contain little oil. Much of the PAH in lower intertidal sediments are from combustion sources. Mean tissue total PAH (TPAH) concentrations in intertidal clams, mussels, and worms from oiled sites range from 24 to 36 ng/g (parts per billion) dry weight; sea lettuce, whelks, hermit crabs, and intertidal fish contain lower concentrations. Concentrations of TPAH are similar or slightly lower in biota from unoiled reference sites. The low EVOS PAH concentrations detected in intertidal biota at oiled shoreline sites indicate that the PAH from EVOS oil buried in intertidal sediments at these sites have a low bioavailability to intertidal plants and animals. Individual sea otters or shorebirds that consumed a diet of intertidal clams and mussels exclusively from the 17 oiled shores in 2002 were at low risk of significant health problems. The low concentrations of EVOS PAH found in some intertidal organisms at some oiled shoreline sites in PWS do not represent a health risk to populations of marine birds and mammals that forage in the intertidal zone.

  3. Robust and sensitive analysis of methanol and ethanol from cellulose degradation in mineral oils.

    PubMed

    Jalbert, Jocelyn; Duchesne, Steve; Rodriguez-Celis, Esperanza; Tétreault, Pierre; Collin, Pascal

    2012-09-21

    Methanol and ethanol have been identified as oil-soluble by-products generated by the aging of oil-impregnated cellulosic insulation materials of power transformers. Their presence provides useful information for diagnostics and end-of-life transformer estimation. Despite their value as cellulose degradation indicators, their sensitive and accurate determination is challenged by the complex oil matrix. To overcome this constraint, we present a simple, fast and direct procedure for their simultaneous determination in mineral insulating oil samples. The procedure uses a static headspace sampler coupled with a gas chromatograph equipped with a mass spectrometer. The selected method parameters permitted adequate separation of these two compounds from the complex oil matrix and quantification at ng g(-1) concentrations. An original internal standard procedure was developed, in which ethanol-d6 was added to all studied samples and blanks, with adequate resolution between the internal standard and its isotopomer ethanol. The method was validated in terms of accuracy and reproducibility for both analytes. The method detection limit, 4 ng g(-1) for methanol and ethanol, is well below the value (μg g(-1)) achieved by a standardized method for methanol determination in crude oil. During method validation studies, a relative error of approximately 6% was obtained for both methanol and ethanol with excellent reproducibility, average %RSD, below 2%. An experiment control chart, constructed to evaluate long-term reproducibility, indicate an overall good reproducibility (%RSD<3%) for 1000 ng g(-1) control solutions. The applicability of the method to the direct analysis of trace methanol and ethanol in oil from field transformer samples was successfully demonstrated. This analytical method is of high relevance to the electrical utilities as it allows indirectly assessment of the level of deterioration of the critical cellulose, an inaccessible part of a power transformer.

  4. Insight into unresolved complex mixtures of aromatic hydrocarbons in heavy oil via two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analysis.

    PubMed

    Weng, Na; Wan, Shan; Wang, Huitong; Zhang, Shuichang; Zhu, Guangyou; Liu, Jingfu; Cai, Di; Yang, Yunxu

    2015-06-12

    The aromatic hydrocarbon fractions of five crude oils representing a natural sequence of increasing degree of biodegradation from the Liaohe Basin, NE, China, were analyzed using conventional gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography (GC×GC). Because of the limited peak capability and low resolution, compounds in the aromatic fraction of a heavily biodegraded crude oil that were analyzed by GC-MS appeared as unresolved complex mixtures (UCMs) or GC "humps". They could be separated based on their polarity by GC×GC. UCMs are composed mainly of aromatic biomarkers and aromatic hydrocarbons with branched alkanes or cycloalkanes substituents. The quantitative results achieved by GC×GC-FID were shown that monoaromatic hydrocarbons account for the largest number and mass of UCMs in the aromatic hydrocarbon fraction of heavily biodegraded crude oil, at 45% by mass. The number and mass of diaromatic hydrocarbons ranks second at 33% by mass, followed by the aromatic biomarker compounds, triaromatic, tetraaromatic, and pentaaromatic hydrocarbons, that account for 10%, 6%, 1.5%, and 0.01% of all aromatic compounds by mass, respectively. In the heavily biodegraded oil, compounds with monocyclic cycloalkane substituents account for the largest proportion of mono- and diaromatic hydrocarbons, respectively. The C4-substituted compounds account for the largest proportion of naphthalenes and the C3-substituted compounds account for the largest proportion of phenanthrenes, which is very different from non-biodegraded, slightly biodegraded, and moderately biodegraded crude oil. It is inferred that compounds of monoaromatic, diaromatic and triaromatic hydrocarbons are affected by biodegradation, that compounds with C1-, C2-substituents are affected by the increase in degree of biodegradation, and that their relative content decreased, whereas compounds with C3-substituents or more were affected slightly or unaffected, and their

  5. Geochemical Features of Shale Hydrocarbons of the Central Part of Volga-Ural Oil and Gas Province

    NASA Astrophysics Data System (ADS)

    Nosova, Fidania F.; Pronin, Nikita V.; Plotnikova, Irina N.; Nosova, Julia G.

    2014-05-01

    This report contains the results of the studies of shale hydrocarbons from carbonate-siliceous rocks on the territory of South-Tatar arch of Volga-Ural oil and gas province of the East European Platform. The assessment of the prospects of shale hydrocarbon in Tatarstan primarily involves finding of low permeable, poor-porous shale strata that would be rich in organic matter. Basing on the analysis of the geological structure of the sedimentary cover, we can distinguish three main objects that can be considered as promising targets for the study from the point of the possible presence of shale hydrocarbons: sedimentary deposits Riphean- Vendian; Domanicoid high-carbon rocks of Devonian time; sedimentary strata in central and side areas of Kama-Kinel deflection system. The main object of this study is Domanicoid high-carbon rocks of Devonian time. They are mainly represented by dark gray, almost black bituminous limestones that are interbedded with calcareous siliceous shales and cherts. Complex studies include the following: extraction of bitumen from the rock, determination of organic carbon content, determination of the group and elemental composition of the bitumen, gas chromatographic studies of the alkanoic lube fractions of bitumoid and oil, gas chromato-mass spectrometry of the naphthenic lube fractions of bitumoid and oil, pyrolysis studies of the rock using the Rock -Eval method (before and after extraction), study of trace-element composition of the rocks and petrologen, comparison in terms of adsorbed gas and studying of the composition of adsorbed gases. Group and elemental analyses showed that hydrocarbons scattered in the samples contain mainly resinous- and asphaltene components, the share lube fraction is smaller. The terms sediment genesis changed from weakly to strongly reducing. According to the results of gas chromatography, no biodegradation processes were observed. According to biomarker indicators in the samples studied there is some certain

  6. Complete Genome Sequence of Bacillus pumilus PDSLzg-1, a Hydrocarbon-Degrading Bacterium Isolated from Oil-Contaminated Soil in China

    PubMed Central

    Hao, Kun; Li, Hongna; Li, Feng

    2016-01-01

    Bacillus pumilus strain PDSLzg-1, an efficient hydrocarbon-degrading bacterium, was isolated from oil-contaminated soil. Here, we present the complete sequence of its circular chromosome and circular plasmid. The genomic information is essential for the study of degradation of oil by B. pumilus PDSLzg-1.

  7. In vitro microbial degradation of bituminous hydrocarbons and in situ colonization of bitumen surfaces within the athabasca oil sands deposit.

    PubMed

    Wyndham, R C; Costerton, J W

    1981-03-01

    Bituminous hydrocarbons extracted from the Athabasca oil sands of north-eastern Alberta were adsorbed onto filter supports and placed at sites in the Athabasca River and its tributaries where these rivers come in contact with the oil sands formation. Colonization of the hydrocarbon surfaces at summer and winter ambient temperatures was examined by scanning and transmission electron microscopy as well as by epifluorescence microscopy of acridine orange-stained cross sections. Ruthenium red and alkaline bismuth stains visualized an association of bacteria with the hydrocarbon surface which was mediated by bacterial polysaccharides. Bacteria apparently lacking a glycocalyx were also found closely associated with the surface of the hydrophobic substrate and in channels within the substrate. A solvent precipitation and column chromatographic fractionation of the bitumen was followed by cross-tests for growth on the fractions by various isolated sediment microorganisms, as determined by epifluorescence count. All fractions except the asphaltenes supported the growth of at least two of the isolates, although fractionation of degraded bitumen revealed that the saturate, aromatic, and first polar fractions were preferentially degraded. PMID:16345738

  8. Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery

    SciTech Connect

    P. Somasundaran

    2008-09-20

    Chemical EOR can be an effective method for increasing oil recovery and reducing the amount of produced water; however, reservoir fluids are chemically complex and may react adversely to the polymers and surfactants injected into the reservoir. While a major goal is to alter rock wettability and interfacial tension between oil and water, rock-fluid and fluid-fluid interactions must be understood and controlled to minimize reagent loss, maximize recovery and mitigate costly failures. The overall objective of this project was to elucidate the mechanisms of interactions between polymers/surfactants and the mineral surfaces responsible for determining the chemical loss due to adsorption and precipitation in EOR processes. The role of dissolved inorganic species that are dependent on the mineralogy is investigated with respect to their effects on adsorption. Adsorption, wettability and interfacial tension are studied with the aim to control chemical losses, the ultimate goal being to devise schemes to develop guidelines for surfactant and polymer selection in EOR. The adsorption behavior of mixed polymer/surfactant and surfactant/surfactant systems on typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) was correlated to their molecular structures, intermolecular interactions and the solution conditions such as pH and/or salinity. Predictive models as well as general guidelines for the use of polymer/surfactant surfactant/surfactant system in EOR have been developed The following tasks have been completed under the scope of the project: (1) Mineral characterization, in terms of SEM, BET, size, surface charge, and point zero charge. (2) Study of the interactions among typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) and surfactants and/or polymers in terms of adsorption properties that include both macroscopic (adsorption density, wettability) and microscopic (orientation

  9. Activation of the cnidarian oxidative stress response by ultraviolet radiation, polycyclic aromatic hydrocarbons and crude oil

    PubMed Central

    Tarrant, A. M.; Reitzel, A. M.; Kwok, C. K.; Jenny, M. J.

    2014-01-01

    Organisms are continuously exposed to reactive chemicals capable of causing oxidative stress and cellular damage. Antioxidant enzymes, such as superoxide dismutases (SODs) and catalases, are present in both prokaryotes and eukaryotes and provide an important means of neutralizing such oxidants. Studies in cnidarians have previously documented the occurrence of antioxidant enzymes (transcript expression, protein expression and/or enzymatic activity), but most of these studies have not been conducted in species with sequenced genomes or included phylogenetic analyses, making it difficult to compare results across species due to uncertainties in the relationships between genes. Through searches of the genome of the sea anemone Nematostella vectensis Stephenson, one catalase gene and six SOD family members were identified, including three copper/zinc-containing SODs (CuZnSODs), two manganese-containing SODs (MnSODs) and one copper chaperone of SOD (CCS). In 24 h acute toxicity tests, juvenile N. vectensis showed enhanced sensitivity to combinations of ultraviolet radiation (UV) and polycyclic aromatic hydrocarbons (PAHs, specifically pyrene, benzo[a]pyrene and fluoranthene) relative to either stressor alone. Adult N. vectensis exhibited little or no mortality following UV, benzo[a]pyrene or crude oil exposure but exhibited changes in gene expression. Antioxidant enzyme transcripts were both upregulated and downregulated following UV and/or chemical exposure. Expression patterns were most strongly affected by UV exposure but varied between experiments, suggesting that responses vary according to the intensity and duration of exposure. These experiments provide a basis for comparison with other cnidarian taxa and for further studies of the oxidative stress response in N. vectensis. PMID:24436378

  10. Cretaceous tectonism, mineralization & hydrocarbon trap formation in the northern Canadian Cordillera: results of zircon (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Schneider, David; Powell, Jeremy; Ryan, Jim

    2013-04-01

    eastern-most Cordilleran thrust fault, the Plateau Fault, to be Cenomanian. This appears to correspond with a significant Late Albian-Early Cenomanian erosional event modeled through basin borehole AFT data. Our new ZHe dataset across the northern Canadian Cordillera demonstrate a strong coupling between hinterland and foreland tectonism during the mid-Cretaceous. Protracted terrane accretion and transpression / transtension drove the exhumation between the Tintina and Teslin faults which also resulted in mineralization. Synchronous and far-field convergence and thrusting inboard caused basin inversion and provided the structural traps required for hydrocarbon reservoirs.

  11. Aliphatic hydrocarbon levels in turbot and salmon farmed close to the site of the Aegean Sea oil spill

    SciTech Connect

    Alvarez Pineiro, M.E.; Gonzalez-Barros, S.T.C.; Lozano, J.S.

    1996-12-31

    After the Andros Patria oil spill, the most serious oil tanker accident to occur off the coast of Galicia (N.W. Spain) was the running aground and subsequent conflagration of the Aegean Sea supertanker outside the northern Spanish port of La Coruna (December 3rd 1992). Approximately 60,000 tonnes of Brent oil were spilled into the Atlantic Ocean in the cited coastal region. Subsequently, an impropitious combination of a high tide and a change in wind direction caused the resulting slick to rapidly spread into the port. Measures aimed at cleaning up affected areas and evacuating the ca. 11,215 tonnes of oil remaining in the supertanker were immediately implemented. However, within just a few days the resulting contamination had killed some 15000 turbot juveniles and larvae, which are cultivated in fish farms close to the accident site. The environmental impact of major oil spillages has been widely studied. Several scientists have suggested that, in terms of the negative effects on the seawater quality and productive capacity of the affected maritime regions, the magnitudes of the Aegean Sea and Amoco Cadiz accidents are comparable. This paper reports variations over time of aliphatic hydrocarbon levels in turbot and Atlantic salmon sampled from fish farms close to the site of the Aegean Sea oil spill. 6 refs., 2 figs., 1 tab.

  12. Diversity, distribution and hydrocarbon biodegradation capabilities of microbial communities in oil-contaminated cyanobacterial mats from a constructed wetland.

    PubMed

    Abed, Raeid M M; Al-Kharusi, Samiha; Prigent, Stephane; Headley, Tom

    2014-01-01

    communities and that these mats contribute directly to the removal of hydrocarbons from oil field wastewaters. PMID:25514025

  13. Diversity, Distribution and Hydrocarbon Biodegradation Capabilities of Microbial Communities in Oil-Contaminated Cyanobacterial Mats from a Constructed Wetland

    PubMed Central

    Abed, Raeid M. M.; Al-Kharusi, Samiha; Prigent, Stephane; Headley, Tom

    2014-01-01

    microbial communities and that these mats contribute directly to the removal of hydrocarbons from oil field wastewaters. PMID:25514025

  14. Migrating Tundra Peregrine Falcons accumulate polycyclic aromatic hydrocarbons along Gulf of Mexico following Deepwater Horizon oil spill.

    PubMed

    Seegar, William S; Yates, Michael A; Doney, Gregg E; Jenny, J Peter; Seegar, Tom C M; Perkins, Christopher; Giovanni, Matthew

    2015-07-01

    Monitoring internal crude oil exposure can assist the understanding of associated risks and impacts, as well as the effectiveness of restoration efforts. Under the auspices of a long-term monitoring program of Tundra Peregrine Falcons (Falco peregrinus tundrius) at Assateague (Maryland) and South Padre Islands (Texas), we measured the 16 parent (unsubstituted) polycyclic aromatic hydrocarbons (PAHs), priority pollutants identified by the United States Environmental Protection Agency and components of crude oil, in peripheral blood cells of migrating Peregrine Falcons from 2009 to 2011. The study was designed to assess the spatial and temporal trends of crude oil exposure associated with the 2010 Deepwater Horizon (DWH) oil spill which started 20 April 2010 and was capped on 15 July of that year. Basal PAH blood distributions were determined from pre-DWH oil spill (2009) and unaffected reference area sampling. This sentinel species, a predator of shorebirds and seabirds during migration, was potentially exposed to residual oil from the spill in the northern Gulf of Mexico. Results demonstrate an increased incidence (frequency of PAH detection and blood concentrations) of PAH contamination in 2010 fall migrants sampled along the Texas Gulf Coast, declining to near basal levels in 2011. Kaplan-Meier peak mean ∑PAH blood concentration estimates varied with age (Juveniles-16.28 ± 1.25, Adults-5.41 ± 1.10 ng/g, wet weight) and PAHs detected, likely attributed to the discussed Tundra Peregrine natural history traits. Increased incidence of fluorene, pyrene and anthracene, with the presence of alkylated PAHs in peregrine blood suggests an additional crude oil source after DWH oil spill. The analyses of PAHs in Peregrine Falcon blood provide a convenient repeatable method, in conjunction with ongoing banding efforts, to monitoring crude oil contamination in this avian predator.

  15. Identification of the mineral phases responsible for cementation of Lurgi spent oil shale

    SciTech Connect

    Brown, M.; Huntington, G.; Brown, T.

    1991-02-01

    The purpose of this study is to investigate the mineralogical character of the cements that are responsible for the increased strength of the spent oil shale. Several techniques to identify the nature of the cementing agents have been used in this study. X-ray diffraction was used to identify mineral dissolution and formation; scanning electron microscopy (SEM) was used to observe the cementing agents; energy dispersive X-ray analysis (EDXA) was used to provide information on the elemental composition of both the bulk material and the cementing agents; and differential thermal analyses and thermogravimetric analyses were used to document the presence of suspected minerals that may be involved in formation of the cementing material.

  16. Analysis of phthalate migration from plastic containers to packaged cooking oil and mineral water.

    PubMed

    Xu, Qian; Yin, Xueyan; Wang, Min; Wang, Haifeng; Zhang, Niping; Shen, Yanyan; Xu, Shi; Zhang, Ling; Gu, Zhongze

    2010-11-10

    The migration of phthalates (PAEs), a class of typical environmental estrogen contaminants in food, from food packaging to packaged food attracts more and more attention worldwide. Many factors will affect the migration processes. The purpose of this study was to evaluate PAE migration from plastic containers to cooking oil and mineral water packed in authentic commercial packaging and stored under various conditions (different storage temperatures, contact times, and storage states (static or dynamic state)) and to identify a potential relationship between the amount and type of PAEs migrated and the lipophilic character of the food matrix. The samples were analyzed by a novel method of liquid chromatography combined with solid-phase extraction by an electrospun nylon 6 nanofibers mat, with PAE detection limits of 0.001 μg/L in mineral water and 0.020 μg/L in cooking oil, respectively. The results demonstrated that the cooking oil was a more suitable medium for the migration of PAEs from packages into foodstuffs than mineral water. Scilicet, the migration potential of the PAEs into foodstuffs, depends on the lipophilic characteristics of the food matrix. The results also demonstrated that migrations were more significant at higher temperature, longer contact time, and higher dynamic frequency; thus, the migration tests should be evaluated with consideration of different storage temperatures and contact times. Mathematical models with good logarithmic relationships were established to demonstrate the relationship between the PAE migration and food/packaging contact time for different storage temperatures. These established mathematical models would be expected to become a set of practical tools for the prediction of PAE migration.

  17. Baffin Island experimental oil spill and dispersant studies. Hydrocarbon bioaccumulation and histopathological and biochemical responses in marine bivalve molluscs. Final report

    SciTech Connect

    Neff, J.M.; Hillman, R.E.; Boehm, P.D.

    1984-02-01

    Infaunal bivalve molluscs from four bays at the BIOS experimental oil-spill site became contaiminated with petroleum hydrocarbons. A Lagomedio crude oil and the dispersant, Corexit 9527, were used in these field experiments. Based on chemical data, both Mya and Serripes depurated oil during the two-week post-spill period, in part through an in vivo biodegradation presumably by microbial activity in the guts of the animals. However, Serripes pregerentially retained the high-molucular-weight saturated hydrocarbon assemblage as well as the higher alkylated naphthalene, phenanthrene and dibenzothiophene compounds, whereas Mya depurated all hydrocarbon components although the water-soluble alkyl benzenes and naphthalenes were depurated somewhat faster. However, the deposit feeders continued to accumulate oil from the sediments, at least for the two weeks after the spill.

  18. Erosion of phosphor bronze under cavitation attack in a mineral oil

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1986-01-01

    Experimental investigations on erosion of a copper alloy, phosphor bronze, under cavitation attack in a viscous mineral oil are presented. The details of pit formation and erosion were studied using scanning electron microscopy. The mean depth of penetration, the variations in surface roughness, and the changes in erosion pit size were studied. Cavitation pits formed initially over the grain boundaries while the surface grains were plastically deformed. Erosion of surface grains occurred largely by ductile fracture involving microcracking and removal in layers. The ratio h/a of the depth h to half width a of cavitation pits increased with test duration from 0.047 to 0.55.

  19. Collaborative study of a mineral oil method for the extraction of light filth from ground paprika.

    PubMed

    Thrasher, J J; Gentry, R

    1977-01-01

    An official first action method for the extraction of light filth from spices, 44.A03--44.A05, was modified for the analyses of ground paprika. The sample is extracted with isopropanol and light filth is isolated from 40% isopropanol with mineral oil. Eight collaborators analyzed 4 paprika samples, 2 by the official method and 2 by the proposed method. Average recoveries of added elytral squares were 97 and 66%, respectively, for the proposed and official methods. Recoveries of added rodent hairs were 94 and 61%, respectively. The method has been adopted as official first action for the extraction of light filth from ground paprika. PMID:833083

  20. Gloves against mineral oils and mechanical hazards: composites of carboxylated acrylonitrile-butadiene rubber latex.

    PubMed

    Krzemińska, Sylwia; Rzymski, Władysław M; Malesa, Monika; Borkowska, Urszula; Oleksy, Mariusz

    2016-09-01

    Resistance to permeation of noxious chemical substances should be accompanied by resistance to mechanical factors because the glove material may be torn, cut or punctured in the workplace. This study reports on glove materials, protecting against mineral oils and mechanical hazards, made of carboxylated acrylonitrile-butadiene rubber (XNBR) latex. The obtained materials were characterized by a very high resistance of the produced materials to oil permeation (breakthrough time > 480 min). The mechanical properties, and especially tear resistance, of the studied materials were improved after the addition of modified bentonite (nanofiller) to the XNBR latex mixture. The nanocomposite meets the requirements in terms of parameters characterizing tear, abrasion, cut and puncture resistance. Therefore, the developed material may be used for the production of multifunctional protective gloves. PMID:26757889

  1. Gloves against mineral oils and mechanical hazards: composites of carboxylated acrylonitrile–butadiene rubber latex

    PubMed Central

    Krzemińska, Sylwia; Rzymski, Władysław M.; Malesa, Monika; Borkowska, Urszula; Oleksy, Mariusz

    2016-01-01

    Resistance to permeation of noxious chemical substances should be accompanied by resistance to mechanical factors because the glove material may be torn, cut or punctured in the workplace. This study reports on glove materials, protecting against mineral oils and mechanical hazards, made of carboxylated acrylonitrile–butadiene rubber (XNBR) latex. The obtained materials were characterized by a very high resistance of the produced materials to oil permeation (breakthrough time > 480 min). The mechanical properties, and especially tear resistance, of the studied materials were improved after the addition of modified bentonite (nanofiller) to the XNBR latex mixture. The nanocomposite meets the requirements in terms of parameters characterizing tear, abrasion, cut and puncture resistance. Therefore, the developed material may be used for the production of multifunctional protective gloves. PMID:26757889

  2. Cod liver oil consumption at different periods of life and bone mineral density in old age.

    PubMed

    Eysteinsdottir, Tinna; Halldorsson, Thorhallur I; Thorsdottir, Inga; Sigurdsson, Gunnar; Sigurdsson, Sigurdur; Harris, Tamara; Launer, Lenore J; Gudnason, Vilmundur; Gunnarsdottir, Ingibjorg; Steingrimsdottir, Laufey

    2015-07-01

    Cod liver oil is a traditional source of vitamin D in Iceland, and regular intake is recommended partly for the sake of bone health. However, the association between lifelong consumption of cod liver oil and bone mineral density (BMD) in old age is unclear. The present study attempted to assess the associations between intake of cod liver oil in adolescence, midlife, and old age, and hip BMD in old age, as well as associations between cod liver oil intake in old age and serum 25-hydroxyvitamin D (25(OH)D) concentration. Participants of the Age, Gene/Environment Susceptibility-Reykjavik Study (age 66-96 years; n 4798), reported retrospectively cod liver oil intake during adolescence and midlife, as well as the one now in old age, using a validated FFQ. BMD of femoral neck and trochanteric region was measured by volumetric quantitative computed tomography, and serum 25(OH)D concentration was measured by means of a direct, competitive chemiluminescence immunoassay. Associations were assessed using linear regression models. No significant association was seen between retrospective cod liver oil intake and hip BMD in old age. Current intake of aged men was also not associated with hip BMD, while aged women with daily intakes had z-scores on average 0.1 higher, compared with those with an intake of < once/week. Although significant, this difference is small, and its clinical relevance is questionable. Intake of aged participants was positively associated with serum 25(OH)D: individuals with intakes of < once/week, one to six time(s)/week and daily intake had concentrations of approximately 40, 50 and 60 nmol/l respectively (P for trend < 0.001).

  3. An improved technique for modeling initial reservoir hydrocarbon saturation distributions: Applications in Illinois (USA) aux vases oil reservoirs

    USGS Publications Warehouse

    Udegbunam, E.; Amaefule, J.O.

    1998-01-01

    An improved technique for modeling the initial reservoir hydrocarbon saturation distributions is presented. In contrast to the Leverett J-function approach, this methodology (hereby termed flow-unit-derived initial oil saturation or FUSOI) determines the distributions of the initial oil saturations from a measure of the mean hydraulic radius, referred to as the flow zone indicator (FZI). FZI is derived from porosity and permeability data. In the FUSOI approach, capillary pressure parameters, S(wir), P(d), and ??, derived from the Brooks and Corey (1966) model [Brooks, R.H., Corey, A.T., 1966. Hydraulic properties of porous media, Hydrology Papers, Colorado State Univ., Ft. Collins, No. 3, March.], are correlated to the FZI. Subsequent applications of these parameters then permit the computation of improved hydrocarbon saturations as functions of FZI and height above the free water level (FWL). This technique has been successfully applied in the Mississippian Aux Vases Sandstone reservoirs of the Illinois Basin (USA). The Aux Vases Zeigler field (Franklin County, IL, USA) was selected for a field-wide validation of this FUSOI approach because of the availability of published studies. With the initial oil saturations determined on a depth-by-depth basis in cored wells, it was possible to geostatistically determine the three-dimensional (3-D) distributions of initial oil saturations in the Zeigler field. The original oil-in-place (OOIP), computed from the detailed initialization of the 3-D reservoir simulation model of the Zeigler field, was found to be within 5.6% of the result from a rigorous material balance method.An improved technique for modeling the initial reservoir hydrocarbon saturation distributions is presented. In contrast to the Leverett J-function approach, this methodology (hereby termed flow-unit-derived initial oil saturation or FUSOI) determines the distributions of the initial oil saturations from a measure of the mean hydraulic radius, referred to

  4. Concentrations in human blood of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico.

    PubMed

    Sammarco, Paul W; Kolian, Stephan R; Warby, Richard A F; Bouldin, Jennifer L; Subra, Wilma A; Porter, Scott A

    2016-04-01

    During/after the BP/Deepwater Horizon oil spill, cleanup workers, fisherpersons, SCUBA divers, and coastal residents were exposed to crude oil and dispersants. These people experienced acute physiological and behavioral symptoms and consulted a physician. They were diagnosed with petroleum hydrocarbon poisoning and had blood analyses analyzed for volatile organic compounds; samples were drawn 5-19 months after the spill had been capped. We examined the petroleum hydrocarbon concentrations in the blood. The aromatic compounds m,p-xylene, toluene, ethylbenzene, benzene, o-xylene, and styrene, and the alkanes hexane, 3-methylpentane, 2-methylpentane, and iso-octane were detected. Concentrations of the first four aromatics were not significantly different from US National Health and Nutritional Examination Survey/US National Institute of Standards and Technology 95th percentiles, indicating high concentrations of contaminants. The other two aromatics and the alkanes yielded equivocal results or significantly low concentrations. The data suggest that single-ring aromatic compounds are more persistent in the blood than alkanes and may be responsible for the observed symptoms. People should avoid exposure to crude oil through avoidance of the affected region, or utilizing hazardous materials suits if involved in cleanup, or wearing hazardous waste operations and emergency response suits if SCUBA diving. Concentrations of alkanes and PAHs in the blood of coastal residents and workers should be monitored through time well after the spill has been controlled.

  5. Distribution and Attenuation of Polycyclic Aromatic Hydrocarbons in Gulf of Mexico Seawater from the Deepwater Horizon Oil Accident.

    PubMed

    Boehm, Paul D; Murray, Karen J; Cook, Linda L

    2016-01-19

    The extended duration of the oil release from the Deepwater Horizon accident (April 20-July 15, 2010) triggered a need to characterize environmental exposures in four dimensions through sampling and tracking the changes in distributions, concentrations, and compositions of oil and total polycyclic aromatic hydrocarbons (TPAH) in the Gulf of Mexico over time and space. More than 11,000 water samples were collected offshore during more than 100 cruises and were measured for 50 parent and alkylated polycyclic aromatic hydrocarbons (PAHs). Elevated concentrations (greater than 1 ppb) of TPAH were largely limited to an area within about 20 km of the wellhead in the subsurface deepwaters at 1000-1200 m depth to the southwest of the wellhead and in the top 3 m underlying the surface oil. Concentrations decreased with distance and time, and changes in the PAH composition indicate that these changes were due to differential solubilization, photodegradation, evaporation, and/or biodegradation of individual PAH compounds. These limited areas of elevated PAH concentrations disappeared within weeks after the release was stopped. PMID:26721562

  6. Concentrations in human blood of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico.

    PubMed

    Sammarco, Paul W; Kolian, Stephan R; Warby, Richard A F; Bouldin, Jennifer L; Subra, Wilma A; Porter, Scott A

    2016-04-01

    During/after the BP/Deepwater Horizon oil spill, cleanup workers, fisherpersons, SCUBA divers, and coastal residents were exposed to crude oil and dispersants. These people experienced acute physiological and behavioral symptoms and consulted a physician. They were diagnosed with petroleum hydrocarbon poisoning and had blood analyses analyzed for volatile organic compounds; samples were drawn 5-19 months after the spill had been capped. We examined the petroleum hydrocarbon concentrations in the blood. The aromatic compounds m,p-xylene, toluene, ethylbenzene, benzene, o-xylene, and styrene, and the alkanes hexane, 3-methylpentane, 2-methylpentane, and iso-octane were detected. Concentrations of the first four aromatics were not significantly different from US National Health and Nutritional Examination Survey/US National Institute of Standards and Technology 95th percentiles, indicating high concentrations of contaminants. The other two aromatics and the alkanes yielded equivocal results or significantly low concentrations. The data suggest that single-ring aromatic compounds are more persistent in the blood than alkanes and may be responsible for the observed symptoms. People should avoid exposure to crude oil through avoidance of the affected region, or utilizing hazardous materials suits if involved in cleanup, or wearing hazardous waste operations and emergency response suits if SCUBA diving. Concentrations of alkanes and PAHs in the blood of coastal residents and workers should be monitored through time well after the spill has been controlled. PMID:25998020

  7. Assessment of hydrocarbons concentration in marine fauna due to Tasman Spirit oil spill along the Clifton beach at Karachi coast.

    PubMed

    Siddiqi, Hina A; Ansari, Fayyaz A; Munshi, Alia B

    2009-01-01

    On 27 July 2003, Tasman Spirit spilled 31,000 tonnes of crude oil into the sea at the Karachi coast. This disaster badly affected the marine life (Flora and Fauna.) Present research has been proposed to ascertain the level of Polycyclic Aromatic hydrocarbons (PAHs) contamination in different fisheries including Fishes, Crustaceans; Crabs and Shrimps, Mollusks and Echinoderms along with passing time. Heavier components of crude oil such as Polycyclic Aromatic Hydrocarbons (PAHs) appear to cause most damages as these are relatively unreactive and persist in water. High concentrations of toxic PAHs were observed in all the fisheries and shellfishes caught form oil-impacted area. In this study fishes were found most contaminated than shellfishes i.e. summation operator 16 PAH = 1821.24 microg/g and summation operator 1164.34 microg/g, respectively. Naphthalene was found in the range of 0.042-602.23 microg/g. Acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene were detected in the range 0.008-80.03 microg/g, fluoranthene, pyrene, benzo(a)anthracene and chrysene 0.0008-221.32 microg/g, benzo(b) fluoranthene, benzo(k)fluoranthene and benzo(a) pyrene 0.0005-7.71 microg/g, benzo(g,h,i)perylene and indeno(1,2,3-c,d)pyrene 0.02-503.7 microg/g. Dibenzo(a,h)anthracenre was not detected in any specie. PMID:18302003

  8. Assessment of hydrocarbons concentration in marine fauna due to Tasman Spirit oil spill along the Clifton beach at Karachi coast.

    PubMed

    Siddiqi, Hina A; Ansari, Fayyaz A; Munshi, Alia B

    2009-01-01

    On 27 July 2003, Tasman Spirit spilled 31,000 tonnes of crude oil into the sea at the Karachi coast. This disaster badly affected the marine life (Flora and Fauna.) Present research has been proposed to ascertain the level of Polycyclic Aromatic hydrocarbons (PAHs) contamination in different fisheries including Fishes, Crustaceans; Crabs and Shrimps, Mollusks and Echinoderms along with passing time. Heavier components of crude oil such as Polycyclic Aromatic Hydrocarbons (PAHs) appear to cause most damages as these are relatively unreactive and persist in water. High concentrations of toxic PAHs were observed in all the fisheries and shellfishes caught form oil-impacted area. In this study fishes were found most contaminated than shellfishes i.e. summation operator 16 PAH = 1821.24 microg/g and summation operator 1164.34 microg/g, respectively. Naphthalene was found in the range of 0.042-602.23 microg/g. Acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene were detected in the range 0.008-80.03 microg/g, fluoranthene, pyrene, benzo(a)anthracene and chrysene 0.0008-221.32 microg/g, benzo(b) fluoranthene, benzo(k)fluoranthene and benzo(a) pyrene 0.0005-7.71 microg/g, benzo(g,h,i)perylene and indeno(1,2,3-c,d)pyrene 0.02-503.7 microg/g. Dibenzo(a,h)anthracenre was not detected in any specie.

  9. Application of vegetable oils in the treatment of polycyclic aromatic hydrocarbons-contaminated soils.

    PubMed

    Yap, C L; Gan, S; Ng, H K

    2010-05-15

    A brief review is conducted on the application of vegetable oils in the treatment of PAH-contaminated soils. Three main scopes of treatment strategies are discussed in this work including soil washing by oil, integrated oil-biological treatment and integrated oil-non-biological treatment. For each of these, the arguments supporting vegetable oil application, the applied treatment techniques and their efficiencies, associated factors, as well as the feasibility of the techniques are detailed. Additionally, oil regeneration, the environmental impacts of oil residues in soil and comparison with other commonly employed techniques are also discussed.

  10. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils

    PubMed Central

    2012-01-01

    Background The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS), the key enzymes in constructing terpene carbon skeletons. Results Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita). Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (−)-(E)-β-caryophyllene (MrTPS1), (+)-germacrene A (MrTPS3), (E)-β-ocimene (MrTPS4) and (−)-germacrene D (MrTPS5). A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (−)-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. Conclusions The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+)-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils. PMID:22682202

  11. The Amoco CadizOil Spill: Evolution of Petroleum Hydrocarbons in the Ile Grande Salt Marshes (Brittany) after a 13-year Period

    NASA Astrophysics Data System (ADS)

    Mille, G.; Munoz, D.; Jacquot, F.; Rivet, L.; Bertrand, J.-C.

    1998-11-01

    The Ile Grande salt marshes (Brittany coast) were polluted by petroleum hydrocarbons after theAmoco Cadizgrounding in 1978. Thirteen years after the oil spill, sediments were analysed for residual hydrocarbons in order to monitor the aliphatic and aromatic hydrocarbon signatures and to assess both qualitatively and quantitatively the changes in composition of theAmoco Cadizoil. Six stations were selected in the Ile Grande salt marshes and sediments were sampled to a depth of 20 cm. For each sample, the hydrocarbon compositions were determined for alkanes, alkenes, aromatics and biomarkers (terpanes, steranes, diasteranes). Hydrocarbon levels drastically decreased between 1978 and 1991, but to different extents according to the initial degree of contamination. In 1991, hydrocarbon concentrations never exceeded 1·7 g kg-1sediment dry weight, and in most cases were less than 0·1 g kg-1sediment dry weight. Even though petroleum hydrocarbons are still present, natural hydrocarbons were also detected at several stations. Changes in some biomarker distributions were observed 13 years after the oil spill. Nevertheless, most of the biomarkers are very stable in the salt marsh environment and remain unaltered even after a 13-year period.

  12. Polycyclic hydrocarbon biomarkers confirm selective incorporation of petroleum in soil and kangaroo rat liver samples near an oil well blowout site in the western San Joaquin Valley, California

    SciTech Connect

    Kaplan, I.; Lu, S.T.; Lee, R.P.; Warrick, G.

    1996-05-01

    Following an accidental oil well blow out at an oil field in the western part of the San Joaquin Valley, soil samples and specimens of Heermann`s kangaroo rats (Dipodomys heermanni) were collected from two oil-impacted areas and one control area. Fingerprinting by GC-MS and quantitative evaluation of metabolized petroleum hydrocarbons was performed on oil, soil extracts, and rat livers. A liver from a domestically raised rabbit was used as an experimental control. The results show that there is no significant incorporation of PAHs or low molecular weight n-alkanes (C{sub 13}--C{sub 25}) into the liver tissues. The C{sub 25}--C{sub 35} n-alkane range for all soil samples, kangaroo rat livers, and rabbit liver, is dominated by a high abundance of C{sub 27}, C{sub 29}, C{sub 31}, and C{sub 33} hydrocarbons typical of epicuticular plant waxes. In all liver tissue samples, squalene, the cholesterol precursor, is the dominant hydrocarbon. Although evidence is lacking for metabolism of PAHs and paraffinic petroleum hydrocarbons, very strong evidence is available for incorporation of a set of polycyclic hydrocarbons (biomarkers) belonging to the terpane, sterane, and monoaromatic and triaromatic sterane families, identified by ion monitoring at 191, 217, 253, and 231 m/z, respectively. Because these hydrocarbons are not known to exist in the biosphere, but are only synthesized during oil- and coal-forming processes, their presence in the liver samples constitutes proof for crude oil incorporation into tissues. This conclusion is further substantiated by the selective incorporation of only the 20S enantiomer of C{sub 28} and C{sub 29} steranes and aromatic steranes into the livers, with the exclusion of the 20R enantiomer. The results from the study conclusively demonstrate that polycyclic hydrocarbon biomarkers provide excellent indices for proof of petroleum exposure and metabolism in some terrestrial herbivores.

  13. Water based demulsifier formulation and process for its use in dewatering and desalting crude hydrocarbon oils

    SciTech Connect

    Merchant, P. Jr.; Lacy, S.M.

    1988-04-12

    A process for separating emulsified water from water-in-crude oil emulsion produced from underground reservoirs is described which comprises: (a) dispersing from 1 volume ppm to 50 volume ppm of a water soluble demulsifier into the crude oil containing water emulsified therein the parts being based on the volume of the oil; (b) permitting the water to separate from the crude oil; and (c) removing the water from the crude oil.

  14. Effects of chemical dispersants and mineral fines on crude oil dispersion in a wave tank under breaking waves.

    PubMed

    Li, Zhengkai; Kepkay, Paul; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2007-07-01

    The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on the dispersion of oil and the formation of oil-mineral-aggregates (OMAs) in natural seawater. Results of ultraviolet spectrofluorometry and gas chromatography flame ionized detection analysis indicated that dispersants and mineral fines, alone and in combination, enhanced the dispersion of oil into the water column. Measurements taken with a laser in situ scattering and transmissometer (LISST-100X) showed that the presence of mineral fines increased the total concentration of the suspended particles from 4 to 10microl l(-1), whereas the presence of dispersants decreased the particle size (mass mean diameter) of OMAs from 50 to 10microm. Observation with an epifluorescence microscope indicated that the presence of dispersants, mineral fines, or both in combination significantly increased the number of particles dispersed into the water. PMID:17433372

  15. Interactions between marine bacteria and dissolved-phase and beached hydrocarbons after the Exxon Valdez oil spill

    SciTech Connect

    Button, D.K.; Robertson, B.R.; McIntosh, D. ); Juettner, F. )

    1992-01-01

    Turnover times for toluene in Resurrection Bay after the Exxon Valdez grounding were determined to be decades, longer than expected considering that dissolved hydrocarbons were anticipated to drift with the current and stimulate development of additional hydrocarbon-utilizing capacity among the microflora in that downcurrent location. These turnover times were based on the recovery of {sup 14}CO{sub 2} from added ({sup 14}C)toluene that was oxidized. The concentrations of toluene there, 0.1 to 0.2 {mu}g/liter, were similar to prespill values. Oxidation rates appeared to be enhanced upstream near islands in the wake of the wind-blown slick, and even more within the slick itself. Since current-driven mixing rates exceeded those of oxidation, dissolved spill components such as toluene should enter the world-ocean pool of hydrocarbons rather than biooxidize in place. Some of the floating oil slick washed ashore and permeated a coarse gravel beach. A bacterial biomass of 2 to 14 mg/kg appeared in apparent response to the new carbon and energy source. A large population of carbon- and energy-starved, induced hydrocarbon oxidizers with metabolism limited by the physical and molecular recalcitrance of the heavier components is suggested. The effects of a surfactant that was widely applied were unremarkable on a test beach after 1.5 months. Unresolved components appearing in chromatograms from the remaining mixture were characteristic of partial oxidation products. Such compounds, known to accumulate when concentrations of smaller aqueous-phase hydrocarbons exceed the K{sub m}, may form in sediments as well.

  16. Impact of the Deepwater Horizon oil spill on bioavailable polycyclic aromatic hydrocarbons in Gulf of Mexico coastal waters

    PubMed Central

    Allan, Sarah E.; Smith, Brian W.; Anderson, Kim A.

    2012-01-01

    An estimated 4.1 million barrels of oil and 2.1 million gallons of dispersants were released into the Gulf of Mexico during the Deepwater Horizon oil spill. There is a continued need for information about the impacts and long-term effects of the disaster on the Gulf of Mexico. The objectives of this study were to assess bioavailable polycyclic aromatic hydrocarbons (PAHs) in the coastal waters of four Gulf Coast states that were impacted by the spill. For over a year, beginning in May 2010, passive sampling devices were used to monitor the bioavailable concentration of PAHs. Prior to shoreline oiling, baseline data were obtained at all the study sites, allowing for direct before and after comparisons of PAH contamination. Significant increases in bioavailable PAHs were seen following the oil spill, however, pre-oiling levels were observed at all sites by March, 2011. A return to elevated PAH concentrations, accompanied by a chemical fingerprint similar to that observed while the site was being impacted by the spill, was observed in Alabama in summer, 2011. Chemical forensic modeling demonstrated that elevated PAH concentrations are associated with distinctive chemical profiles. PMID:22321043

  17. Optimized conditions for hydrocarbon group type analysis of base oils by thin-layer chromatography-flame ionisation detection.

    PubMed

    Kamiński, Marian; Gudebska, Joanna; Górecki, Tadeusz; Kartanowicz, Rafał

    2003-04-01

    The results of research on the optimization of the thin-layer chromatography-flame ionisation detection for the determination of group composition of natural base oils, including separation of the aromatics into subgroups, are presented. Neutral base oils obtained in several steps of refining from vacuum distillation petroleum fractions are the most difficult to analyze by hydrocarbon group type analysis (HGTA) because of the high content of aliphatic fragments in their molecules. Factors affecting the accuracy and precision of the results were identified. The paper presents the analytical procedure, including two different calibration methods, as well as the results of studies on the reproducibility of HGTA of typical base oils of different viscosity classes under the optimized conditions. The same conditions were found suitable for HGTA of other high-boiling petroleum fractions by TLC with flame ionisation detection. The paper also introduces a new procedure for reproducible determination of polar fractions in base oils utilizing solid-phase extraction columns, and presents a corrected procedure for the determination of saturated compounds and aromatics (mono-, bi- and polycyclic) in base oils by column liquid chromatography.

  18. Thermally induced formation of polychlorinated dibenzofurans from Aroclor 1254-contaminated mineral oil.

    PubMed Central

    Narang, R S; Swami, K; Stein, V; Smith, R; O'Keefe, P; Aldous, K; Hilker, D; Eadon, G; Vernoy, C; Narang, A S

    1989-01-01

    Numerous laboratory simulations and real-world events have demonstrated the thermal conversion of neat or high concentration of PCBs into the much more toxic PCDFs. Since millions of mineral oil transformers currently in service contain PCB concentrations in the 50 to 5000 ppm range, the thermal behavior of dilute PCB solutions is of practical and regulatory significance. In this work, neat Aroclor 1254 and 5000 ppm Aroclor 1254 in mineral oil were subjected to pyrolysis and combustion under a range of experimental conditions to define parameters resulting in maximal PCDF yields. The dependence of PCDF yield on Aroclor 1254 concentrations was then investigated in the 5000 to 50 ppm range. Combustion experiments demonstrated that PCDF yields expressed as micrograms PCDF/gram PCB were independent of concentration range, confirming that the process is kinetically first order in PCB. Much lower yields of PCDF were observed in the open tube pyrolysis experiments, as compared to combustion experiments and to earlier and concurrent sealed tube experiments. Slightly improved yields were observed in the pyrolysis experiments at lower concentrations, suggesting the existence of a PCB or PCDF destruction process of higher than first order kinetics. In all cases, yields expressed as micrograms PCDF/gram mixture were sharply and monotonically lower as concentrations decreased between neat or 5000 ppm Aroclor 1254 and 50 ppm Aroclor 1254. PMID:2495933

  19. Biotransformation of petroleum hydrocarbons and microbial communities in seawater with oil dispersions and copepod feces.

    PubMed

    Størdal, Ingvild Fladvad; Olsen, Anders Johny; Jenssen, Bjørn Munro; Netzer, Roman; Altin, Dag; Brakstad, Odd Gunnar

    2015-12-30

    To determine biotransformation of components in crude oil dispersions in the presence of feces from marine copepods, dispersed oil was incubated alone, with the addition of clean or oil-containing feces. We hypothesized that the feces would contribute with nutrients to bacteria, and higher concentrations of oil-degrading bacteria, respectively. Presence of clean feces resulted in higher degradation of aromatic oil compounds, but lower degradation of n-alkanes. Presence of oil-containing feces resulted in higher degradation of n-alkanes. The effect of clean feces on aromatic compounds are suggested to be due to higher concentrations of nutrients in the seawater where aromatic degradation takes place, while the lower degradation of n-alkanes are suggested to be due to a preference by bacteria for feces over these compounds. Large aggregates were observed in oil dispersions with clean feces, which may cause sedimentation of un-weathered lipophilic oil compounds towards the seafloor if formed during oil spills.

  20. A porous covalent porphyrin framework with exceptional uptake capacity of saturated hydrocarbons oil spill cleanup

    SciTech Connect

    Wang, Xi-Sen; Liu, Jian; Bonefont, Jean M.; Yuan, Da-Qiang; Thallapally, Praveen K.; Ma, Shengqian

    2013-01-21

    Yamamoto homo-coupling reaction of tetra(4-bromophenyl)porphyrin afforded a porous covalent porphyrin framework, PCPF-1, which features strong hydrophobicity and oleophilicity and demonstrates exceptional adsorptive capacities for saturated hydrocarbons and gasoline.

  1. Single-laboratory validation of a GC/MS method for the determination of 27 polycyclic aromatic hydrocarbons (PAHs) in oils and fats.

    PubMed

    Rose, M; White, S; Macarthur, R; Petch, R G; Holland, J; Damant, A P

    2007-06-01

    A protocol for the measurement of 27 polycyclic aromatic hydrocarbons (PAHs) in vegetable oils by GC/MS has undergone single-laboratory validation. PAHs were measured in three oils (olive pomace, sunflower and coconut oil). Five samples of each oil (one unfortified, and four fortified at concentrations between 2 and 50 microg kg(-1)) were analysed in replicate (four times in separate runs). Two samples (one unfortified and one fortified at 2 microg kg(-1)) of five oils (virgin olive oil, grapeseed oil, toasted sesame oil, olive margarine and palm oil) were also analysed. The validation included an assessment of measurement bias from the results of 120 measurements of a certified reference material (coconut oil BCR CRM458 certified for six PAHs). The method is capable of reliably detecting 26 out of 27 PAHs, at concentration <2 microg kg(-1) which is the European Union maximum limit for benzo[a]pyrene, in vegetable oils, olive pomace oil, sunflower oil and coconut oil. Quantitative results were obtained that are fit for purpose for concentrations from <2 to 50 microg kg(-1) for 24 out of 27 PAHs in olive pomace oil, sunflower oil and coconut oil. The reliable detection of 2 microg kg(-1) of PAHs in five additional oils (virgin olive oil, grapeseed oil, toasted sesame oil, olive margarine and palm oil) has been demonstrated. The method failed to produce fit-for-purpose results for the measurement of dibenzo[a,h]pyrene, anthanthrene and cyclopenta[c,d]pyrene. The reason for the failure was the large variation in results. The likely cause was the lack of availability of (13)C isotope internal standards for these PAHs at the time of the study. The protocol has been shown to be fit-for-purpose and is suitable for formal validation by inter-laboratory collaborative study. PMID:17487605

  2. Diamondoid hydrocarbons as a molecular proxy for thermal maturity and oil cracking: Geochemical models from hydrous pyrolysis

    USGS Publications Warehouse

    Wei, Z.; Moldowan, J.M.; Zhang, S.; Hill, R.; Jarvie, D.M.; Wang, Hongfang; Song, F.; Fago, F.

    2007-01-01

    A series of isothermal hydrous pyrolysis experiments was performed on immature sedimentary rocks and peats of different lithology and organic source input to explore the generation of diamondoids during the thermal maturation of sediments. Oil generation curves indicate that peak oil yields occur between 340 and 360 ??C, followed by intense oil cracking in different samples. The biomarker maturity parameters appear to be insensitive to thermal maturation as most of the isomerization ratios of molecular biomarkers in the pyrolysates have reached their equilibrium values. Diamondoids are absent from immature peat extracts, but exist in immature sedimentary rocks in various amounts. This implies that they are not products of biosynthesis and that they may be generated during diagenesis, not just catagenesis and cracking. Most importantly, the concentrations of diamondoids are observed to increase with thermal stress, suggesting that they can be used as a molecular proxy for thermal maturity of source rocks and crude oils. Their abundance is most sensitive to thermal exposure above temperatures of 360-370 ??C (R0 = 1.3-1.5%) for the studied samples, which corresponds to the onset of intense cracking of other less stable components. Below these temperatures, diamondoids increase gradually due to competing processes of generation and dilution. Calibrations were developed between their concentrations and measured vitrinite reflectance through hydrous pyrolysis maturation of different types of rocks and peats. The geochemical models obtained from these methods may provide an alterative approach for determining thermal maturity of source rocks and crude oils, particularly in mature to highly mature Paleozoic carbonates. In addition, the extent of oil cracking was quantified using the concentrations of diamondoids in hydrous pyrolysates of rocks and peats, verifying that these hydrocarbons are valuable indicators of oil cracking in nature. ?? 2006 Elsevier Ltd. All rights

  3. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    SciTech Connect

    Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

    2014-08-14

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMo on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

  4. Hydrocarbon-oil encapsulated air bubble flotation of fine coal. Technical progress report for the third quarter, April 1, 1991--June 30, 1991

    SciTech Connect

    Peng, F.F.

    1995-01-01

    This report is concerned with the progress made during the third period of the two year project. A significant portion of this reporting period has been consumed in measurement of induction time of oil-free and oil-coated bubbles, modification of collector gasifier, hydrocarbon oil encapsulated flotation tests and float and sink analyses of various rank of coal samples, building a 1-inch column cell, as well as building the ultrasound collector emulsification apparatus. Induction time has been measured using an Electronic Induction Timer. The results indicate that alteration of chemical properties of air bubble by applying hydrocarbon oil or reagent can drastically improve the rate of flotation process. Various techniques have been employed in hydrocarbon oil encapsulated flotation processes to further enhance the selectivity of the process, which include: (1) gasified collector flotation with addition of gasified collector into the air stream in the initial stage; (2) two-stage (rougher-cleaner) gasified collector flotation; and (3) starvation gasified collector flotation by addition of gasified collector at various flotation times. Among these, three techniques used in hydrocarbon oil encapsulated flotation process, the starvation flotation technique provides the best selectivity.

  5. Hydrocarbons and heavy metals in fine particulates in oil field air: possible impacts on production of natural silk.

    PubMed

    Devi, Gitumani; Devi, Arundhuti; Bhattacharyya, Krishna Gopal

    2016-02-01

    Analyses of fine particulates (PM2.5) from the upper Assam oil fields of India indicated considerable presence of higher hydrocarbons (C22-C35) and heavy metals, Cd, Co, Cr, Cu, Ni, Pb, and Zn. This has raised serious concern for the sustainability of the exotic Muga (Antheraea assama) silk production, which has been a prime activity of a large number of people living in the area. The Muga worm feeds on the leaves of Machilus bombycina plant, and the impacts of air quality on its survival were further investigated by analyzing the leaves of the plant, the plantation soil, and the Muga cocoons. PM2.5 content in the air was much more during the winter due to near calm conditions and high humidity. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and gas chromatography-mass spectrometer (GC-MS) analysis of PM2.5 showed the presence of higher alkanes (C22-C35) that could be traced to crude oil. Cr, Ni, and Zn were found in higher concentrations in PM2.5, M. bombycina leaves, and the plantation soil indicating a common origin. The winter has been the best period for production of the silk cocoons, and the unhealthy air during this period is likely to affect the production, which is already reflected in the declining yield of Muga cocoons from the area. SEM and protein analyses of the Muga silk fiber produced in the oil field area have exhibited the deteriorating quality of the silk. This is the first report from India on hydrocarbons and associated metals in PM2.5 collected from an oil field and on their possible effects on production of silk by A. assama.

  6. Hydrocarbons and heavy metals in fine particulates in oil field air: possible impacts on production of natural silk.

    PubMed

    Devi, Gitumani; Devi, Arundhuti; Bhattacharyya, Krishna Gopal

    2016-02-01

    Analyses of fine particulates (PM2.5) from the upper Assam oil fields of India indicated considerable presence of higher hydrocarbons (C22-C35) and heavy metals, Cd, Co, Cr, Cu, Ni, Pb, and Zn. This has raised serious concern for the sustainability of the exotic Muga (Antheraea assama) silk production, which has been a prime activity of a large number of people living in the area. The Muga worm feeds on the leaves of Machilus bombycina plant, and the impacts of air quality on its survival were further investigated by analyzing the leaves of the plant, the plantation soil, and the Muga cocoons. PM2.5 content in the air was much more during the winter due to near calm conditions and high humidity. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and gas chromatography-mass spectrometer (GC-MS) analysis of PM2.5 showed the presence of higher alkanes (C22-C35) that could be traced to crude oil. Cr, Ni, and Zn were found in higher concentrations in PM2.5, M. bombycina leaves, and the plantation soil indicating a common origin. The winter has been the best period for production of the silk cocoons, and the unhealthy air during this period is likely to affect the production, which is already reflected in the declining yield of Muga cocoons from the area. SEM and protein analyses of the Muga silk fiber produced in the oil field area have exhibited the deteriorating quality of the silk. This is the first report from India on hydrocarbons and associated metals in PM2.5 collected from an oil field and on their possible effects on production of silk by A. assama. PMID:26490906

  7. The “Oil-Spill Snorkel”: an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments

    PubMed Central

    Cruz Viggi, Carolina; Presta, Enrica; Bellagamba, Marco; Kaciulis, Saulius; Balijepalli, Santosh K.; Zanaroli, Giulio; Petrangeli Papini, Marco; Rossetti, Simona; Aulenta, Federico

    2015-01-01

    This study presents the proof-of-concept of the “Oil-Spill Snorkel”: a novel bioelectrochemical approach to stimulate the oxidative biodegradation of petroleum hydrocarbons in sediments. The “Oil-Spill Snorkel” consists of a single conductive material (the snorkel) positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated sediment) and the oxic zone (the overlying O2-containing water). The segment of the electrode buried within the sediment plays a role of anode, accepting electrons deriving from the oxidation of contaminants. Electrons flow through the snorkel up to the part exposed to the aerobic environment (the cathode), where they reduce oxygen to form water. Here we report the results of lab-scale microcosms setup with marine sediments and spiked with crude oil. Microcosms containing one or three graphite snorkels and controls (snorkel-free and autoclaved) were monitored for over 400 days. Collectively, the results of this study confirmed that the snorkels accelerate oxidative reactions taking place within the sediment, as documented by a significant 1.7-fold increase (p = 0.023, two-tailed t-test) in the cumulative oxygen uptake and 1.4-fold increase (p = 0.040) in the cumulative CO2 evolution in the microcosms containing three snorkels compared to snorkel-free controls. Accordingly, the initial rate of total petroleum hydrocarbons (TPH) degradation was also substantially enhanced. Indeed, while after 200 days of incubation a negligible degradation of TPH was noticed in snorkel-free controls, a significant reduction of 12 ± 1% (p = 0.004) and 21 ± 1% (p = 0.001) was observed in microcosms containing one and three snorkels, respectively. Although, the “Oil-Spill Snorkel” potentially represents a groundbreaking alternative to more expensive remediation options, further research efforts are needed to clarify factors and conditions affecting the snorkel-driven biodegradation processes and to identify

  8. BIODEGRADATION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAH) FROM CRUDE OIL IN SANDY-BEACH MICROCOSMS.

    EPA Science Inventory

    Though the lower n-alkanes are considered the most degradable components of crude oil, our experiments with microcosms simulating oiled beaches showed substantial depletion of fluorene, phenanthrene, dibenzothiophene, and other PAH in control treatments consisting of raw seawater...

  9. CO2 mineral sequestration in oil-shale wastes from Estonian power production.

    PubMed

    Uibu, Mai; Uus, Mati; Kuusik, Rein

    2009-02-01

    In the Republic of Estonia, local low-grade carbonaceous fossil fuel--Estonian oil-shale--is used as a primary energy source. Combustion of oil-shale is characterized by a high specific carbon emission factor (CEF). In Estonia, the power sector is the largest CO(2) emitter and is also a source of huge amounts of waste ash. Oil-shale has been burned by pulverized firing (PF) since 1959 and in circulating fluidized-bed combustors (CFBCs) since 2004-2005. Depending on the combustion technology, the ash contains a total of up to 30% free Ca-Mg oxides. In consequence, some amount of emitted CO(2) is bound by alkaline transportation water and by the ash during hydraulic transportation and open-air deposition. The goal of this study was to investigate the possibility of improving the extent of CO(2) capture using additional chemical and technological means, in particular the treatment of aqueous ash suspensions with model flue gases containing 10-15% CO(2). The results indicated that both types of ash (PF and CFBC) could be used as sorbents for CO(2) mineral sequestration. The amount of CO(2) captured averaged 60-65% of the carbonaceous CO(2) and 10-11% of the total CO(2) emissions.

  10. CO2 mineral sequestration in oil-shale wastes from Estonian power production.

    PubMed

    Uibu, Mai; Uus, Mati; Kuusik, Rein

    2009-02-01

    In the Republic of Estonia, local low-grade carbonaceous fossil fuel--Estonian oil-shale--is used as a primary energy source. Combustion of oil-shale is characterized by a high specific carbon emission factor (CEF). In Estonia, the power sector is the largest CO(2) emitter and is also a source of huge amounts of waste ash. Oil-shale has been burned by pulverized firing (PF) since 1959 and in circulating fluidized-bed combustors (CFBCs) since 2004-2005. Depending on the combustion technology, the ash contains a total of up to 30% free Ca-Mg oxides. In consequence, some amount of emitted CO(2) is bound by alkaline transportation water and by the ash during hydraulic transportation and open-air deposition. The goal of this study was to investigate the possibility of improving the extent of CO(2) capture using additional chemical and technological means, in particular the treatment of aqueous ash suspensions with model flue gases containing 10-15% CO(2). The results indicated that both types of ash (PF and CFBC) could be used as sorbents for CO(2) mineral sequestration. The amount of CO(2) captured averaged 60-65% of the carbonaceous CO(2) and 10-11% of the total CO(2) emissions. PMID:18793821

  11. Investigation of sorption interactions between organic and mineral phases of processed oil shale

    SciTech Connect

    Blanche, M. S.; Bowen, J. M.

    1987-11-01

    Minerals and organic compounds representative of oil shale processing wastes were analyzed for potential sorption interactions. The analysis consisted of Fourier Transform Infrared spectroscopy, high performance liquid chromatography, thermogravimetric and differential scanning calorimetry, and laser Raman spectroscopy. Montmorillonite clay was used as a representative of the smectites found in raw and spent shales, and hematite was used as a representative of iron oxide found in spent shales. Benzene, 2,2,4-trimethylpentane, benzoic acid, sodium benzoate, and pyridine were used as representatives of oil shale process organic wastes. In addition, isopropylamine and dimethyl methylphosphonate, a pesticide model, were studied. A preparation methods comparison study was performed and established the validity of the solid state KBr sample preparation technique upon FTIR spectral quality. The results of this study illustrate the utility of fourier transform infrared spectroscopic analysis to establish and describe the potential for sorption interactions between inorganic and organic phases of oil shale processing wastes. Experimentation with the laser remain system shows promise for significant contributions in this field of research. 43 refs., 3 figs., 6 tabs.

  12. Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon Oil Spill, Gulf of Mexico.

    PubMed

    Sammarco, Paul W; Kolian, Steve R; Warby, Richard A F; Bouldin, Jennifer L; Subra, Wilma A; Porter, Scott A

    2013-08-15

    We examined the geographic extent of petroleum hydrocarbon contamination in sediment, seawater, biota, and seafood during/after the BP/Deepwater Horizon Oil Spill (April 20-July 15, 2010; 28.736667°N, -88.386944°W). TPH, PAHs, and 12 compound classes were examined, particularly C1-benzo(a)anthracenes/chrysenes, C-2-/C-4-phenanthrenes/anthracenes, and C3-naphthalenes. Sediment TPH, PAHs, and all classes peaked near Pensacola, Florida, and Galveston, Texas. Seawater TPH peaked off Pensacola; all of the above classes peaked off the Mississippi River, Louisiana and Galveston. Biota TPH and PAHs peaked near the Mississippi River; C-3 napthalenes peaked near the spill site. Seafood TPH peaked near the spill site, with PAHs and all classes peaking near Pensacola. We recommend that oil concentrations continued to be monitored in these media well after the spill has ceased to assist in defining re-opening dates for fisheries; closures should be maintained until hydrocarbon levels are deemed within appropriate limits.

  13. Report of EPA efforts to replace freon for the determination of oil and grease and total petroleum hydrocarbons: Phase 2

    SciTech Connect

    1995-04-01

    The Environmental Protection Agency (EPA) initiated a multiphase study to determine a suitable replacement solvent for Freon-113, a class I CFC used in several EPA wastewater and solid waste methods for the determination of oil and grease and petroleum hydrocarbons. Conclusions from the Phase I study were used to narrow the list of alternative solvents to be considered in Phase II to n-hexane and cyclohexane. These solvents were evaluated for separatory funnel extraction and gravimetric determination of both oil and grease and total petroleum hydrocarbons (TPH) in aqueous samples. Triplicate analyses were performed for each of the solvents tested (i.e Freon-113, n-hexane, and cyclohexane) on each of 34 samples from a combination of inprocess and effluent waste streams collected from 25 facilities encompassing 16 different industrial categories. The objectives of Phase II were to find the alternative solvent that produced results closest to the results produced by Freon-113 and to develop an analytical method that incorporated this extraction solvent. In addition to studies of alternative solvents, solid phase disk extraction, solid phase cartridge extraction (also known as solid phase column extraction), non-dispersive infra-red spectroscopy, and immunoassay were voluntarily evaluated by vendors of the products using splits of each sample collected as part of the Phase II study.

  14. Influence of the Deep Water Horizon Oil Spill on Atmospheric Hydrocarbon Levels over the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Blake, N. J.; Barletta, B.; Meinardi, S.; Leifer, I.; Rowland, F. S.; Blake, D. R.

    2010-12-01

    The waters of the Gulf of Mexico recently were impacted negatively by the large oil spill that occurred after an explosion at the BP Deep Water Horizon rig on April 20, 2010. In response to this disaster, and out of concern for the multitude of chemical pollutants being emitted, we collected 96 air samples in the Gulf region aboard the 65 ft vessel “R/V Eugenie” during 20-23 May, 2010. Sample analysis was by high sensitivity gas chromatographic analysis with special attention to the presence of possible toxic components. Analysis of each canister included straight-chain saturated hydrocarbons from C1 (methane) to C12 (dodecane), aromatic hydrocarbons such as benzene and toluene, as well as higher molecular weight species. High levels of C5-C12 alkanes and cyclo-alkanes, typical of crude oil, were observed in the atmosphere downwind of the spill location. However, the most soluble components, especially methane and benzene, were largely absent from the near-surface atmosphere implying dissolution in the deep sea, where they could impact negatively oxygen levels.

  15. Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon Oil Spill, Gulf of Mexico.

    PubMed

    Sammarco, Paul W; Kolian, Steve R; Warby, Richard A F; Bouldin, Jennifer L; Subra, Wilma A; Porter, Scott A

    2013-08-15

    We examined the geographic extent of petroleum hydrocarbon contamination in sediment, seawater, biota, and seafood during/after the BP/Deepwater Horizon Oil Spill (April 20-July 15, 2010; 28.736667°N, -88.386944°W). TPH, PAHs, and 12 compound classes were examined, particularly C1-benzo(a)anthracenes/chrysenes, C-2-/C-4-phenanthrenes/anthracenes, and C3-naphthalenes. Sediment TPH, PAHs, and all classes peaked near Pensacola, Florida, and Galveston, Texas. Seawater TPH peaked off Pensacola; all of the above classes peaked off the Mississippi River, Louisiana and Galveston. Biota TPH and PAHs peaked near the Mississippi River; C-3 napthalenes peaked near the spill site. Seafood TPH peaked near the spill site, with PAHs and all classes peaking near Pensacola. We recommend that oil concentrations continued to be monitored in these media well after the spill has ceased to assist in defining re-opening dates for fisheries; closures should be maintained until hydrocarbon levels are deemed within appropriate limits. PMID:23831318

  16. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. [Physical and chemical interactions of Enhanced Oil Recovery reagents with hydrocarbons present in petroleum

    SciTech Connect

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  17. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region.

    PubMed

    Zhang, Yifeng; Shotyk, William; Zaccone, Claudio; Noernberg, Tommy; Pelletier, Rick; Bicalho, Beatriz; Froese, Duane G; Davies, Lauren; Martin, Jonathan W

    2016-02-16

    Oil sands mining has been linked to increasing atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in the Athabasca oil sands region (AOSR), but known sources cannot explain the quantity of PAHs in environmental samples. PAHs were measured in living Sphagnum moss (24 sites, n = 68), in sectioned peat cores (4 sites, n = 161), and snow (7 sites, n = 19) from ombrotrophic bogs in the AOSR. Prospective source samples were also analyzed, including petroleum coke (petcoke, from both delayed and fluid coking), fine tailings, oil sands ore, and naturally exposed bitumen. Average PAH concentrations in near-field moss (199 ng/g, n = 11) were significantly higher (p = 0.035) than in far-field moss (118 ng/g, n = 13), and increasing temporal trends were detected in three peat cores collected closest to industrial activity. A chemical mass-balance model estimated that delayed petcoke was the major source of PAHs to living moss, and among three peat core the contribution to PAHs from delayed petcoke increased over time, accounting for 45-95% of PAHs in contemporary layers. Petcoke was also estimated to be a major source of vanadium, nickel, and molybdenum. Scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed large petcoke particles (>10 μm) in snow at near-field sites. Petcoke dust has not previously been considered in environmental impact assessments of oil sands upgrading, and improved dust control from growing stockpiles may mitigate future risks.

  18. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region.

    PubMed

    Zhang, Yifeng; Shotyk, William; Zaccone, Claudio; Noernberg, Tommy; Pelletier, Rick; Bicalho, Beatriz; Froese, Duane G; Davies, Lauren; Martin, Jonathan W

    2016-02-16

    Oil sands mining has been linked to increasing atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in the Athabasca oil sands region (AOSR), but known sources cannot explain the quantity of PAHs in environmental samples. PAHs were measured in living Sphagnum moss (24 sites, n = 68), in sectioned peat cores (4 sites, n = 161), and snow (7 sites, n = 19) from ombrotrophic bogs in the AOSR. Prospective source samples were also analyzed, including petroleum coke (petcoke, from both delayed and fluid coking), fine tailings, oil sands ore, and naturally exposed bitumen. Average PAH concentrations in near-field moss (199 ng/g, n = 11) were significantly higher (p = 0.035) than in far-field moss (118 ng/g, n = 13), and increasing temporal trends were detected in three peat cores collected closest to industrial activity. A chemical mass-balance model estimated that delayed petcoke was the major source of PAHs to living moss, and among three peat core the contribution to PAHs from delayed petcoke increased over time, accounting for 45-95% of PAHs in contemporary layers. Petcoke was also estimated to be a major source of vanadium, nickel, and molybdenum. Scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed large petcoke particles (>10 μm) in snow at near-field sites. Petcoke dust has not previously been considered in environmental impact assessments of oil sands upgrading, and improved dust control from growing stockpiles may mitigate future risks. PMID:26771587

  19. Impact of the deepwater horizon oil spill on bioavailable polycyclic aromatic hydrocarbons in Gulf of Mexico coastal waters.

    PubMed

    Allan, Sarah E; Smith, Brian W; Anderson, Kim A

    2012-02-21

    An estimated 4.1 million barrels of oil and 2.1 million gallons of dispersants were released into the Gulf of Mexico during the Deepwater Horizon oil spill. There is a continued need for information about the impacts and long-term effects of the disaster on the Gulf of Mexico. The objectives of this study were to assess bioavailable polycyclic aromatic hydrocarbons (PAHs) in the coastal waters of four Gulf Coast states that were impacted by the spill. For over a year, beginning in May 2010, passive sampling devices were used to monitor the bioavailable concentration of PAHs. Prior to shoreline oiling, baseline data were obtained at all the study sites, allowing for direct before and after comparisons of PAH contamination. Significant increases in bioavailable PAHs were seen following the oil spill, however, preoiling levels were observed at all sites by March 2011. A return to elevated PAH concentrations, accompanied by a chemical fingerprint similar to that observed while the site was being impacted by the spill, was observed in Alabama in summer 2011. Chemical forensic modeling demonstrated that elevated PAH concentrations are associated with distinctive chemical profiles. PMID:22321043

  20. Phytoremediation of abandoned crude oil contaminated drill sites of Assam with the aid of a hydrocarbon-degrading bacterial formulation.

    PubMed

    Yenn, R; Borah, M; Boruah, H P Deka; Roy, A Sarma; Baruah, R; Saikia, N; Sahu, O P; Tamuli, A K

    2014-01-01

    Environmental deterioration due to crude oil contamination and abandoned drill sites is an ecological concern in Assam. To revive such contaminated sites, afield study was conducted to phytoremediate four crude oil abandoned drill sites of Assam (Gelakey, Amguri, Lakwa, and Borholla) with the aid of two hydrocarbon-degrading Pseudomonas strains designated N3 and N4. All the drill sites were contaminated with 15.1 to 32.8% crude oil, and the soil was alkaline in nature (pH8.0-8.7) with low moisture content, low soil conductivity and low activities of the soil enzymes phosphatase, dehydrogenase and urease. In addition, N, P, K, and C contents were below threshold limits, and the soil contained high levels of heavy metals. Bio-augmentation was achieved by applying Pseudomonas aeruginosa strains N3 and N4 followed by the introduction of screened plant species Tectona grandis, Gmelina arborea, Azadirachta indica, and Michelia champaca. The findings established the feasibility of the phytoremediation of abandoned crude oil-contaminated drill sites in Assam using microbes and native plants. PMID:24933892

  1. Soluble hydrocarbons uptake by porous carbonaceous adsorbents at different water ionic strength and temperature: something to consider in oil spills.

    PubMed

    Flores-Chaparro, Carlos E; Ruiz, Luis Felipe Chazaro; Alfaro-De la Torre, Ma Catalina; Rangel-Mendez, Jose Rene

    2016-06-01

    Nowadays, petrochemical operations involve risks to the environment and one of the biggest is oil spills. Low molecular aromatics like benzene, toluene, and naphthalene dissolve in water, and because of their toxicological characteristics, these produce severe consequences to the environment. The oil spill cleanup strategies are mainly designed to deal with the heavy fractions accumulated on the water surface. Unfortunately, very limited information is available regarding the treatment of dissolved fractions.A commercial (Filtrasorb 400) and modified activated carbons were evaluated to remove benzene, toluene, and naphthalene from water, which are the most soluble aromatic hydrocarbons, at different ionic strengths (I) and temperatures (0-0.76 M and 4-25 °C, respectively). This allowed simulating the conditions of fresh and saline waters when assessing the performance of these adsorbents. It was found that the hydrocarbons adsorption affinity increased 12 % at a I of 0.5 M, due to the less negative charge of the adsorbent, while at a high I (≃0.76 M) in a synthetic seawater, the adsorption capacity decreased 21 % that was attributed to the adsorbent's pores occlusion by water clusters. Approximately, 40 h were needed to reach equilibrium; however, the maximum adsorption rate occurred within the first hour in all the cases. Moreover, the hydrocarbons adsorption and desorption capacities increased when the temperature augmented from 4 to 25 °C. On the other hand, thermally and chemically modified materials showed that the interactions between adsorbent-contaminant increased with the basification degree of the adsorbent surface.

  2. Soluble hydrocarbons uptake by porous carbonaceous adsorbents at different water ionic strength and temperature: something to consider in oil spills.

    PubMed

    Flores-Chaparro, Carlos E; Ruiz, Luis Felipe Chazaro; Alfaro-De la Torre, Ma Catalina; Rangel-Mendez, Jose Rene

    2016-06-01

    Nowadays, petrochemical operations involve risks to the environment and one of the biggest is oil spills. Low molecular aromatics like benzene, toluene, and naphthalene dissolve in water, and because of their toxicological characteristics, these produce severe consequences to the environment. The oil spill cleanup strategies are mainly designed to deal with the heavy fractions accumulated on the water surface. Unfortunately, very limited information is available regarding the treatment of dissolved fractions.A commercial (Filtrasorb 400) and modified activated carbons were evaluated to remove benzene, toluene, and naphthalene from water, which are the most soluble aromatic hydrocarbons, at different ionic strengths (I) and temperatures (0-0.76 M and 4-25 °C, respectively). This allowed simulating the conditions of fresh and saline waters when assessing the performance of these adsorbents. It was found that the hydrocarbons adsorption affinity increased 12 % at a I of 0.5 M, due to the less negative charge of the adsorbent, while at a high I (≃0.76 M) in a synthetic seawater, the adsorption capacity decreased 21 % that was attributed to the adsorbent's pores occlusion by water clusters. Approximately, 40 h were needed to reach equilibrium; however, the maximum adsorption rate occurred within the first hour in all the cases. Moreover, the hydrocarbons adsorption and desorption capacities increased when the temperature augmented from 4 to 25 °C. On the other hand, thermally and chemically modified materials showed that the interactions between adsorbent-contaminant increased with the basification degree of the adsorbent surface. PMID:26903130

  3. Nearshore transport of hydrocarbons and sediments following the Exxon Valdez oil spill. Subtidal study number 3b. Exxon Valdez oil spill state/federal natural resource damage assessment final report

    SciTech Connect

    Sale, D.M.; Gibeaut, J.C.; Short, J.W.

    1995-06-01

    Following the Exxon Valdez oil spill, sediment traps were deployed in nearshore subtidal areas of Prince William Sound, Alaska (PWS) to monitor particulate chemistry and mineralogy. Complemented by benthic sediment chemistry and core sample stratigraphy at the study sites, results were compared to historical trends and data from other Exxon Valdez studies. These results clearly indicate the transport of oil-laden sediments from oiled shorelines to adjacent subtidal sediments. The composition of hydrocarbons adsorbed to settling particulates at sites adjacent to oiled shorelines matched the PAH pattern of weathered Exxon Valdez crude oil.

  4. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    SciTech Connect

    Ponomarev, A. V.; Pershukov, V. A.; Smirnov, V. P.

    2015-12-15

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  5. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Pershukov, V. A.; Smirnov, V. P.

    2015-12-01

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  6. Interactions between marine bacteria and dissolved-phase and beached hydrocarbons after the Exxon Valdez oil spill.

    PubMed Central

    Button, D K; Robertson, B R; McIntosh, D; Jüttner, F

    1992-01-01

    Turnover times for toluene in Resurrection Bay after the Exxon Valdez grounding were determined to be decades, longer than expected considering that dissolved hydrocarbons were anticipated to drift with the current and stimulate development of additional hydrocarbon-utilizing capacity among the microflora in that downcurrent location. These turnover times were based on the recovery of 14CO2 from added [14C]toluene that was oxidized. The concentrations of toluene there, 0.1 to 0.2 microgram/liter, were similar to prespill values. Oxidation rates appeared to be enhanced upstream near islands in the wake of the wind-blown slick, and even more within the slick itself. Specific affinities of the water column bacteria for toluene were computed with the help of biomass data, as measured by high-resolution flow cytometry. They were a very low 0.3 to 3 liters/g of cells.h-1, indicating limited capacity to utilize this hydrocarbon. Since current-driven mixing rates exceeded those of oxidation, dissolved spill components such as toluene should enter the world-ocean pool of hydrocarbons rather than biooxidize in place. Some of the floating oil slick washed ashore and permeated a coarse gravel beach. A bacterial biomass of 2 to 14 mg/kg appeared in apparent response to the new carbon and energy source. This biomass was computed from that of the organisms and associated naphthalene oxidation activity washed from the gravel compared with the original suspension. These sediment organisms were very small at approximately 0.06 microns 3 in volume, low in DNA at approximately 5.5 g per cell, and unlike the aquatic bacteria obtained by enrichment culture but quite similar to the oligobacteria in the water column.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1539978

  7. Interactions between marine bacteria and dissolved-phase and beached hydrocarbons after the Exxon Valdez oil spill.

    PubMed

    Button, D K; Robertson, B R; McIntosh, D; Jüttner, F

    1992-01-01

    Turnover times for toluene in Resurrection Bay after the Exxon Valdez grounding were determined to be decades, longer than expected considering that dissolved hydrocarbons were anticipated to drift with the current and stimulate development of additional hydrocarbon-utilizing capacity among the microflora in that downcurrent location. These turnover times were based on the recovery of 14CO2 from added [14C]toluene that was oxidized. The concentrations of toluene there, 0.1 to 0.2 microgram/liter, were similar to prespill values. Oxidation rates appeared to be enhanced upstream near islands in the wake of the wind-blown slick, and even more within the slick itself. Specific affinities of the water column bacteria for toluene were computed with the help of biomass data, as measured by high-resolution flow cytometry. They were a very low 0.3 to 3 liters/g of cells.h-1, indicating limited capacity to utilize this hydrocarbon. Since current-driven mixing rates exceeded those of oxidation, dissolved spill components such as toluene should enter the world-ocean pool of hydrocarbons rather than biooxidize in place. Some of the floating oil slick washed ashore and permeated a coarse gravel beach. A bacterial biomass of 2 to 14 mg/kg appeared in apparent response to the new carbon and energy source. This biomass was computed from that of the organisms and associated naphthalene oxidation activity washed from the gravel compared with the original suspension. These sediment organisms were very small at approximately 0.06 microns 3 in volume, low in DNA at approximately 5.5 g per cell, and unlike the aquatic bacteria obtained by enrichment culture but quite similar to the oligobacteria in the water column.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Efficacy of several insecticides alone and with horticultural mineral oils on light brown apple moth (Lepidoptera: Tortricidae) eggs.

    PubMed

    Taverner, Peter D; Sutton, Clay; Cunningham, Nancy M; Dyson, Chris; Lucas, Nola; Myers, Scott W

    2011-02-01

    The aim of the research was to identify efficacious and less environmentally harmful treatments than the standard chlorpyrifos sprays used for the control light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), eggs on nursery stock. A series of dip experiments showed a range of responses when comparing the efficacy of insecticides on egg hatch of E. postvittana. The insecticides that compared most favorably with chlorpyrifos were lamda-cyhalothrin and gamma-cyhalothrin, and thiacloprid. Indoxacarb, novaluron, and spinosad caused significant mortality only when combined with All Seasons mineral oil. All Seasons, showed ovicidal properties when evaluated alone and demonstrated adjuvant properties when combined with the above-mentioned insecticides, except gamma-cyhalothrin and thiacloprid. Several other horticultural mineral oils performed similarly, except the efficacy of spinosad varied with the oil product used, suggesting that the oil type selected is important for some insecticide and oil combinations. Several insecticides evaluated in this study are likely candidates for further work to develop treatments against E. postvittana eggs on nursery plants. Mineral oils are ovicidal and combinations with insecticides are likely to be advantageous.

  9. Diesel oil

    MedlinePlus

    Various hydrocarbons ... Empyema Many of the most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to ... PA: Elsevier Saunders; 2016:chap 75. Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ...

  10. Extractable hydrocarbons, nickel and vanadium contents of Ogbodo-Isiokpo oil spill polluted soils in Niger Delta, Nigeria.

    PubMed

    Osuji, Leo C; Adesiyan, Samuel O

    2005-11-01

    An oil spill polluted site at Ogbodo-Isiokpo in Ikwere Local Government Area of Rivers State in southern Nigeria, was identified for study following three successive reconnaissance surveys of oil fields in the Agbada west plain of Eastern Niger Delta. A sampling area of 200 m x 200 m was delimited at the oil spill impacted site using the grid technique and soils were collected at surface (0-15 cm) and subsurface (15-30 cm) depths from three replicate quadrats. A geographically similar, unaffected area, located 50 m adjacent to the polluted site, was chosen as a control (reference) site. Total extractable hydrocarbon contents of the polluted soils ranged from 3.02-4.54 and 1.60-4.20 mg/kg (no overlap in standard errors) at surface and subsurface depths respectively. The concentrations of two "diagnostic" trace heavy metals, nickel (Ni) and vanadium (V), which are normal constituents of crude oil, were also determined in the soils by atomic absorption spectrophotometric method after pre-extraction of cations with dithionite-citrate carbonate. Ni varied from 0.15 to 1.65 mg/kg in the polluted plots and from 0.18 to 0.82 mg/kg in the unpolluted plots; vanadium varied from 0.19 to 0.70 mg/kg in the polluted plots and from 0.14 to 0.38 mg/kg in the unpolluted plots. Ni and V were more enhanced (p < 0.05) in the oil-polluted soils, especially at subsurface depth. Whilst the oil spillage could be said to be indirectly responsible for the enhanced concentrations of nickel and vanadium via the injection and availability of the petroleum hydrocarbons that might have increased the activities of biodegradation on site, the physico-chemical properties of the soils and inherent mobility of metals, as well as the intense rainfall and flooding that characterized the period of study, may have also contributed, at least in part, to these enhanced concentrations. Such levels of Ni and V may result to enhanced absorption by plants, which may bring about possible bioaccumulation in such

  11. Extractable hydrocarbons, nickel and vanadium contents of Ogbodo-Isiokpo oil spill polluted soils in Niger Delta, Nigeria.

    PubMed

    Osuji, Leo C; Adesiyan, Samuel O

    2005-11-01

    An oil spill polluted site at Ogbodo-Isiokpo in Ikwere Local Government Area of Rivers State in southern Nigeria, was identified for study following three successive reconnaissance surveys of oil fields in the Agbada west plain of Eastern Niger Delta. A sampling area of 200 m x 200 m was delimited at the oil spill impacted site using the grid technique and soils were collected at surface (0-15 cm) and subsurface (15-30 cm) depths from three replicate quadrats. A geographically similar, unaffected area, located 50 m adjacent to the polluted site, was chosen as a control (reference) site. Total extractable hydrocarbon contents of the polluted soils ranged from 3.02-4.54 and 1.60-4.20 mg/kg (no overlap in standard errors) at surface and subsurface depths respectively. The concentrations of two "diagnostic" trace heavy metals, nickel (Ni) and vanadium (V), which are normal constituents of crude oil, were also determined in the soils by atomic absorption spectrophotometric method after pre-extraction of cations with dithionite-citrate carbonate. Ni varied from 0.15 to 1.65 mg/kg in the polluted plots and from 0.18 to 0.82 mg/kg in the unpolluted plots; vanadium varied from 0.19 to 0.70 mg/kg in the polluted plots and from 0.14 to 0.38 mg/kg in the unpolluted plots. Ni and V were more enhanced (p < 0.05) in the oil-polluted soils, especially at subsurface depth. Whilst the oil spillage could be said to be indirectly responsible for the enhanced concentrations of nickel and vanadium via the injection and availability of the petroleum hydrocarbons that might have increased the activities of biodegradation on site, the physico-chemical properties of the soils and inherent mobility of metals, as well as the intense rainfall and flooding that characterized the period of study, may have also contributed, at least in part, to these enhanced concentrations. Such levels of Ni and V may result to enhanced absorption by plants, which may bring about possible bioaccumulation in such

  12. Petroleum hydrocarbon-induced injury to subtidal marine sediment resources. Subtidal study number 1a. Exxon Valdez oil spill state/federal natural resource damage assessment final report

    SciTech Connect

    O`Clair, C.E.; Short, J.W.; Rice, S.D.

    1996-04-01

    To determine the distribution of oil in subtidal sediments after the Exxon Valdez oil spill we sampled sediments at six depths (0, 3, 6, 20, 40 and 100 m) at 53 locations in Prince William Sound and the northern Gulf of Alaska from 1989 to 1991. Results are based on 1278 sediment samples analyzed by gas chromatography/mass spectrometry. In 1989, the oil concentration was greatest in the Sound at 0 m. Outside the Sound, Exxon Valdez oil occurred at Chugach Bay, Hallo Bay, Katmai Bay, and Windy Bay in 1989. Hydrocarbons often matched Exxon Valdez oil less closely, oil was more patchily distributed, and the oil concentration decreased in sediments after 1989.

  13. Cavitation Erosion of Copper, Brass, Aluminum and Titanium Alloys in Mineral Oil

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1983-01-01

    The variations of the mean depth of penetration, the mean depth rate of penetration, MDRP, the pit diameter 2a and depth h due to cavitation attack on Al 6061-T6, Cu, brass of composition Cu-35Zn-3Pb and Ti-5A1-2.5Sn are presented. The experiments are conducted in a mineral oil of viscosity 110 CS using a magnetostrictive oscillator of 20 kHz frequency. Based on MDRP on the materials, it is found that Ti-5Al-2.5Sn exhibits cavitation erosion resistance which is two orders of magnitude higher than the other three materials. The values of h/a are the largest for copper and decreased with brass, titanium, and aluminum. Scanning electron microscope studies show that extensive slip and cross slip occurred on the surface prior to pitting and erosion. Twinning is also observed on copper and brass.

  14. Evaluation of replacement thread lubricants for red lead and graphite in mineral oil

    SciTech Connect

    Jungling, T.L.; Rauth, D.R.; Goldberg, D.

    1998-04-30

    Eight commercially available thread lubricants were evaluated to determine the best replacement for Red Lead and Graphite in Mineral Oil (RLGMO). The evaluation included coefficient of friction testing, high temperature anti-seizing testing, room temperature anti-galling testing, chemical analysis for detrimental impurities, corrosion testing, off-gas testing, and a review of health and environmental factors. The coefficient of friction testing covered a wide variety of factors including stud, nut, and washer materials, sizes, manufacturing methods, surface coatings, surface finishes, applied loads, run-in cycles, and relubrication. Only one lubricant, Dow Corning Molykote P37, met all the criteria established for a replacement lubricant. It has a coefficient of friction range similar to RLGMO. Therefore, it can be substituted directly for RLGMO without changing the currently specified fastener torque values for the sizes, materials and conditions evaluated. Other lubricants did not perform as well as Molykote P37 in one or more test or evaluation categories.

  15. Study of magneto-dielectric and magneto-optical effects in mineral oil based magnetic fluids

    NASA Astrophysics Data System (ADS)

    Kopcansky, P.; Horvath, D.; Kellnerova, V.; Koneracka, M.; Svidron, V.; Tima, T.; Slanco, P.; Macko, D.; Kasparkova, M.

    1994-03-01

    The magneto-dielectric effect and magneto-optical effect (absorption coefficient in infrared range) were studied for mineral oil based magnetic fluids with magnetite particles in the volume concentration range from phi = 0.0125 to phi = 0.2. The anisotropy parameter - g defined as a ratio of change of dielectric constant Delta epsilon(sub parallel)(H) (absorption coefficient Delta A(sub parallel)(H)) for E parallel H with respect to zero magnetic field dielectric constant and change of dielectric constant Delta epsilon(sub perpendicular) (H) for E perpendicular H (Delta A(sub perpendicular)(H)) has been calculated from the experimental data for both effects. The values of g nearly equal 2 has been found in agreement with theoretical predictions.

  16. Mineral oil extraction of light filth from rubbed sage: collaborative study.

    PubMed

    Colliflower, E J; Thrasher, J J

    1979-05-01

    The official methods for extracting light filth from rubbed sage, 44.D08--44.D10, specifies a hot isopropanol pretreatment and flotation from cooled dilute isopropanol with mineral oil to extract light filth. The method gives good recoveries, but occasionally excessive interfering plant material is extracted along with the filth elements. A new method has been developed in which chloroform is used for pretreatment instead of isopropanol, and Tween 80-EDTA is added twice rather than once. This method has given consistently cleaner filter papers and better recoveries for rodent hairs, 85 vs. 79%, and for elytral squares, 95 vs. 84%. The new method has been adopted as official first action. PMID:479084

  17. Influence of seasonal variability of lower Mississippi River discharge, temperature, suspended sediments, and salinity on oil-mineral aggregate formation.

    PubMed

    Danchuk, Samantha; Willson, Clinton S

    2011-07-01

    Under certain conditions, oil droplets that have separated from the main oil slick may become coated by suspended sediments forming oil-mineral aggregates (OMAs). The formation of these aggregates depends on suspended particulate characteristics, temperature, salinity, mixing energy, droplet size and number, and oil properties. The OMAs do not re-coalesce with the slick and tend not to adhere to surfaces, potentially evading surface cleanup measures, enhancing opportunity for biodegradation and reducing shoreline oiling. Potential OMA formation was quantified during four distinct states of the Lower Mississippi River during a typical year using empirical relationships from laboratory and field studies for three common oils and different combinations of discharge, temperature, suspended sediments, and salinity. The largest potential OMA formation for the two lighter oils, up to 36% of the total release volume, was in the winter and spring, when high sediment availability promotes formation. For the denser, high-viscosity oil, the peak potential OMA formation, 9% of the release volume, occurred in the summer, when the salinity was higher. These results provide some evidence that, depending on environmental and spill characteristics, the formation of OMAs could be an important, but unaccounted for, process in the fate and transport of oils released in the Lower Mississippi River and should be included in oil spill dispersion models and post-spill site assessment and remediation actions.

  18. Examining Methane and Non-methane Hydrocarbons in an Oil and Gas Production Area using Low-cost Sensor Arrays

    NASA Astrophysics Data System (ADS)

    Collier, A. M.; Piedrahita, R.; Halliday, H.; Hannigan, M.; Masson, N.; Casey, J. G.

    2015-12-01

    During the 2014 FRAPPE/DISCOVER-AQ sampling campaigns a network of next-generation, low-cost air quality monitors were placed throughout the Colorado Front Range area. The network covered areas ranging from high saturation of oil and gas development to no development. We are leveraging the monitors' multiple 'off-the-shelf' sensors to collect and analyze continuous data on volatile organic compounds (VOCs). The monitors were developed at the University of Colorado Boulder and include different VOC sensor models, as well as sensors for other gas-phase pollutants (e.g., carbon dioxide and ozone). Using high-quality methane and non-methane hydrocarbon data collected by the Penn State Native Trailer research team and Armin Wisthaler's research team (University of Oslo) as a reference we can calibrate data for one of our monitors. Additionally, through the use of various quantification models we can characterize sensor responses to specific VOCs and groups of VOCs. The primary monitor was located at the Native Trailer in Platteville throughout the study. By using this monitor for secondary field normalization, we can apply our quantification methods to the remaining monitors in the network. The sensor network data provides greater spatial resolution than would be possible with fewer, more expensive instruments. In addition to discussing the quantification of low-cost sensors, we will examine how the spatial and temporal variability of hydrocarbon concentrations throughout the area relates to sources, specifically oil and gas development and its impacts on air quality. Although more research is needed, low-cost sensor arrays have the potential to support reference-quality measurements and expand our capacity in future oil and gas related research.

  19. Accumulation trends of petroleum hydrocarbons in commercial shellfish from the Galician coast (NW Spain) affected by the Prestige oil spill.

    PubMed

    Viñas, L; Franco, M A; Soriano, J A; González, J J; Ortiz, L; Bayona, J M; Albaigés, J

    2009-04-01

    Aliphatic and aromatic hydrocarbons were determined in three species of commercial shellfish, namely razor shells (Ensis arcuatus and Ensis siliqua), goose barnacle (Pollicipes cornucopia) and sea urchin (Paracentrotus lividus), living in different habitats and exhibiting different feeding behaviors. The samples were collected monthly, from January 2003 to October 2004, in three stations of the Galicia coast (NW Spain), following the Prestige oil spill, with the aim of assessing their response to the spill and, therefore, their suitability for monitoring purposes. The aliphatic fractions were mostly dominated by biogenic hydrocarbons, reflecting the diet composition of the organisms and their low metabolic capacity. The presence of oil was assessed by the determination of chemical markers. The analysis of the aromatic fractions revealed the occurrence of 3-6 ring parent and alkylated PAHs, consistent with a mixed petrogenic-pyrolytic origin, with the common feature of the predominance of chrysene in all samples collected after the spill. However, the distributions exhibited both temporal and interspecies variations. The PAH concentrations (Sigma13) increased significantly after the spill and decreased 6-7 months later close to background levels for the region. One year after the accident, the median values were: 58 microg/kg for razor shells, 26 microg/kg for barnacles, and 25 microg/kg for sea urchins. The temporal evolution of the PAH concentrations along the survey period was used to estimate loss rates for bioavailable PAHs in barnacles and sea urchins after the spill. Half-life values were in the order of 30 and 60 d, respectively. The results of the study demonstrate that barnacles can be suitable species for oil spill monitoring.

  20. Hydrocarbon-degrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the deepwater horizon oil spill.

    PubMed

    Kostka, Joel E; Prakash, Om; Overholt, Will A; Green, Stefan J; Freyer, Gina; Canion, Andy; Delgardio, Jonathan; Norton, Nikita; Hazen, Terry C; Huettel, Markus

    2011-11-01

    A significant portion of oil from the recent Deepwater Horizon (DH) oil spill in the Gulf of Mexico was transported to the shoreline, where it may have severe ecological and economic consequences. The objectives of this study were (i) to identify and characterize predominant oil-degrading taxa that may be used as model hydrocarbon degraders or as microbial indicators of contamination and (ii) to characterize the in situ response of indigenous bacterial communities to oil contamination in beach ecosystems. This study was conducted at municipal Pensacola Beach, FL, where chemical analysis revealed weathered oil petroleum hydrocarbon (C₈ to C₄₀) concentrations ranging from 3.1 to 4,500 mg kg⁻¹ in beach sands. A total of 24 bacterial strains from 14 genera were isolated from oiled beach sands and confirmed as oil-degrading microorganisms. Isolated bacterial strains were primarily Gammaproteobacteria, including representatives of genera with known oil degraders (Alcanivorax, Marinobacter, Pseudomonas, and Acinetobacter). Sequence libraries generated from oiled sands revealed phylotypes that showed high sequence identity (up to 99%) to rRNA gene sequences from the oil-degrading bacterial isolates. The abundance of bacterial SSU rRNA gene sequences was ∼10-fold higher in oiled (0.44 × 10⁷ to 10.2 × 10⁷ copies g⁻¹) versus clean (0.024 × 10⁷ to 1.4 × 10⁷ copies g⁻¹) sand. Community analysis revealed a distinct response to oil contamination, and SSU rRNA gene abundance derived from the genus Alcanivorax showed the largest increase in relative abundance in contaminated samples. We conclude that oil contamination from the DH spill had a profound impact on the abundance and community composition of indigenous bacteria in Gulf beach sands, and our evidence points to members of the Gammaproteobacteria (Alcanivorax, Marinobacter) and Alphaproteobacteria (Rhodobacteraceae) as key players in oil degradation there.

  1. Microwave assisted saponification (MAS) followed by on-line liquid chromatography (LC)-gas chromatography (GC) for high-throughput and high-sensitivity determination of mineral oil in different cereal-based foodstuffs.

    PubMed

    Moret, Sabrina; Scolaro, Marianna; Barp, Laura; Purcaro, Giorgia; Conte, Lanfranco S

    2016-04-01

    A high throughput, high-sensitivity procedure, involving simultaneous microwave-assisted extraction (MAS) and unsaponifiable extraction, followed by on-line liquid chromatography (LC)-gas chromatography (GC), has been optimised for rapid and efficient extraction and analytical determination of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) in cereal-based products of different composition. MAS has the advantage of eliminating fat before LC-GC analysis, allowing an increase in the amount of sample extract injected, and hence in sensitivity. The proposed method gave practically quantitative recoveries and good repeatability. Among the different cereal-based products analysed (dry semolina and egg pasta, bread, biscuits, and cakes), egg pasta packed in direct contact with recycled paperboard had on average the highest total MOSH level (15.9 mg kg(-1)), followed by cakes (10.4 mg kg(-1)) and bread (7.5 mg kg(-1)). About 50% of the pasta and bread samples and 20% of the biscuits and cake samples had detectable MOAH amounts. The highest concentrations were found in an egg pasta in direct contact with recycled paperboard (3.6 mg kg(-1)) and in a milk bread (3.6 mg kg(-1)).

  2. Microwave assisted saponification (MAS) followed by on-line liquid chromatography (LC)-gas chromatography (GC) for high-throughput and high-sensitivity determination of mineral oil in different cereal-based foodstuffs.

    PubMed

    Moret, Sabrina; Scolaro, Marianna; Barp, Laura; Purcaro, Giorgia; Conte, Lanfranco S

    2016-04-01

    A high throughput, high-sensitivity procedure, involving simultaneous microwave-assisted extraction (MAS) and unsaponifiable extraction, followed by on-line liquid chromatography (LC)-gas chromatography (GC), has been optimised for rapid and efficient extraction and analytical determination of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) in cereal-based products of different composition. MAS has the advantage of eliminating fat before LC-GC analysis, allowing an increase in the amount of sample extract injected, and hence in sensitivity. The proposed method gave practically quantitative recoveries and good repeatability. Among the different cereal-based products analysed (dry semolina and egg pasta, bread, biscuits, and cakes), egg pasta packed in direct contact with recycled paperboard had on average the highest total MOSH level (15.9 mg kg(-1)), followed by cakes (10.4 mg kg(-1)) and bread (7.5 mg kg(-1)). About 50% of the pasta and bread samples and 20% of the biscuits and cake samples had detectable MOAH amounts. The highest concentrations were found in an egg pasta in direct contact with recycled paperboard (3.6 mg kg(-1)) and in a milk bread (3.6 mg kg(-1)). PMID:26593464

  3. Recent hydrocarbon developments in Latin America: Key issues in the downstream oil sector

    SciTech Connect

    Wu, K.; Pezeshki, S.

    1995-03-01

    This report discusses the following: (1) An overview of major issues in the downstream oil sector, including oil demand and product export availability, the changing product consumption pattern, and refineries being due for major investment; (2) Recent upstream developments in the oil and gas sector in Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Mexico, Peru, Trinidad and Tobago, and Venezuela; (3) Recent downstream developments in the oil and gas sector in Argentina, Chile, Colombia, Ecuador, Mexico, Peru, Cuba, and Venezuela; (4) Pipelines in Argentina, Bolivia, Brazil, Chile, and Mexico; and (5) Regional energy balance. 4 figs., 5 tabs.

  4. Biotransformation of petroleum hydrocarbons and microbial communities in seawater with oil dispersions and copepod feces.

    PubMed

    Størdal, Ingvild Fladvad; Olsen, Anders Johny; Jenssen, Bjørn Munro; Netzer, Roman; Altin, Dag; Brakstad, Odd Gunnar

    2015-12-30

    To determine biotransformation of components in crude oil dispersions in the presence of feces from marine copepods, dispersed oil was incubated alone, with the addition of clean or oil-containing feces. We hypothesized that the feces would contribute with nutrients to bacteria, and higher concentrations of oil-degrading bacteria, respectively. Presence of clean feces resulted in higher degradation of aromatic oil compounds, but lower degradation of n-alkanes. Presence of oil-containing feces resulted in higher degradation of n-alkanes. The effect of clean feces on aromatic compounds are suggested to be due to higher concentrations of nutrients in the seawater where aromatic degradation takes place, while the lower degradation of n-alkanes are suggested to be due to a preference by bacteria for feces over these compounds. Large aggregates were observed in oil dispersions with clean feces, which may cause sedimentation of un-weathered lipophilic oil compounds towards the seafloor if formed during oil spills. PMID:26494249

  5. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons

    SciTech Connect

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. Concentrations in produced water discharge plume/receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  6. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons.

    SciTech Connect

    1997-06-01

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. concentrations in produced water discharge plume / receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentration of metals and hydrocarbons determined in the samples.

  7. 76 FR 52006 - Information Collection Activity: Leasing of Minerals Other Than Oil, Gas and Sulphur in the Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... 15, 2011, we published a Federal Register notice (76 FR 21393) announcing that we would submit this... Bureau of Ocean Energy Management, Regulation and Enforcement Information Collection Activity: Leasing of... Leasing of Minerals Other than Oil, Gas and Sulphur in the Outer Continental Shelf (OMB No. 1010-...

  8. Seed protein, oil, fatty acids, and minerals concentration as affected by foliar K-glyphosate application in soybean cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies showed that glyphosate (Gly) may chelate cation nutrients, including potassium (K), which might affect the nutritional status of soybean seed. The objective of this study was to evaluate seed composition (protein, oil, fatty acids, and minerals) as influenced by foliar applications ...

  9. 77 FR 74213 - Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... Bureau of Ocean Energy Management Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer Continental Shelf (OCS) Region AGENCY: Bureau of Ocean Energy Management... Supplementary Information section of this notice. FOR FURTHER INFORMATION CONTACT: Bureau of Ocean...

  10. 78 FR 72096 - Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... Bureau of Ocean Energy Management Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer Continental Shelf (OCS) Region AGENCY: Bureau of Ocean Energy Management... Supplementary Information Section of this notice. FOR FURTHER INFORMATION CONTACT: Bureau of Ocean...

  11. 77 FR 18263 - Environmental Documents Prepared for Proposed Oil, Gas, and Mineral Operations by the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... Bureau of Ocean Energy Management Environmental Documents Prepared for Proposed Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer Continental Shelf (OCS) Region AGENCY: Bureau of Ocean Energy... Proposals by the Gulf of Mexico OCS Region. SUMMARY: The Bureau of Ocean Energy Management (BOEM),...

  12. 77 FR 57581 - Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... Bureau of Ocean Energy Management Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer Continental Shelf (OCS) Region AGENCY: Bureau of Ocean Energy Management... Information Unit, Information Services Section at the number below. Bureau of Ocean Energy Management, Gulf...

  13. Comparison of mussels and semi-permeable membrane devices as intertidal monitors of polycyclic aromatic hydrocarbons at oil spill sites.

    PubMed

    Boehm, Paul D; Page, David S; Brown, John S; Neff, Jerry M; Edward Bence, A

    2005-07-01

    Side-by-side comparisons of polycyclic aromatic hydrocarbon (PAH) concentrations in resident blue mussels (Mytilus trossulus) and in semi-permeable membrane devices (SPMDs) were made at four sites in Prince William Sound, Alaska. SPMDs were deployed for approximately 30 days on the surface of the beach sediment at three tidal elevations on each shore and in 0.5 m deep open pits in the middle intertidal zone. Total PAH (TPAH) concentrations in mussels and in SPMDs were correlated, but the PAH compositions were different. The lower molecular weight PAH were relatively more abundant in the SPMDs than in the mussels at oiled and HA sites. TPAH concentrations in SPMDs deployed in pits and mussels collected adjacent to those pits at oiled sites were higher than in SPMDs and mussels from non-pitted SPMD locations approximately 3-15 m from the pits. Pitting released buried oil making its PAH bioavailable. SPMDs deployed in the supratidal zone (+4.0 m tidal elevation) were exposed to atmospheric contaminants for a large fraction of the deployment time and accumulated primarily pyrogenic (combustion-sourced) PAH from the atmosphere. The SPMD strips supplied by the manufacturer contained significant amounts (approximately 125 ng/strip) of primarily alkylated 2-3 ring PAH. These blank levels make SPMDs unsuitable for shoreline assessments when environmental PAH concentrations are low. Consequently, where available, mussels are recommended for use in assessments of the bioavailability of buried oil residues sequestered in intertidal sediments following an oil spill. Mussels are the preferred monitoring tool when the assessments involve food-chain effects. At locations where the absence of mussels necessitates the use of SPMDs or other passive sampling devices, their limitations need to be carefully considered in the interpretation of results.

  14. The potential of solvent-minimized extraction methods in the determination of polycyclic aromatic hydrocarbons in fish oils.

    PubMed

    Yebra-Pimentel, Iria; Martínez-Carballo, Elena; Regueiro, Jorge; Simal-Gándara, Jesús

    2013-08-15

    Fish oil has been identified as one of the most important contributors to the level of Persistent Organic Pollutants (POPs) in feed products. The determination of polycyclic aromatic hydrocarbons (PAHs) in fish oils is complicated due to the fat matrix, which affects both extraction efficiency and analytical quality. This article reviews and addresses two of the most relevant analytical methods for determining 11 mutagenic and carcinogenic PAHs, as well as two EPA indicator PAHs in fish oils. We discuss and critically evaluate two different extraction procedures, such as ultrasound-assisted solvent extraction (USAE) and ultrasound-assisted emulsification-microextraction (USAEME). Clean-up of extracts was performed by solid-phase extraction using C18 and glass columns containing silica gel and florisil for USAE or only C18 for USAEME. Detection of the selected PAHs was carried out by high-performance liquid chromatography coupled with fluorescence detection for determination. Optimization of the variables affecting extraction by the selected extraction techniques was conducted and recoveries ranged from 70% to 100% by USAE and from 70% to 108% by USAEME with estimated quantification limits between 0.020 and 2.6 μg/kg were achieved. Moreover, the applicability of the selected methods was evaluated by the analysis of real samples. To our knowledge, this is the first time that USAEME has been applied to the determination of PAHs in food matrices, such as oil fish samples. The methods proposed were applied to the determination of the target PAHs in fish samples from different countries, and it was found that the low PAH contamination of the selected fish oils could mainly occur by atmospheric sources. PMID:23561207

  15. The potential of solvent-minimized extraction methods in the determination of polycyclic aromatic hydrocarbons in fish oils.

    PubMed

    Yebra-Pimentel, Iria; Martínez-Carballo, Elena; Regueiro, Jorge; Simal-Gándara, Jesús

    2013-08-15

    Fish oil has been identified as one of the most important contributors to the level of Persistent Organic Pollutants (POPs) in feed products. The determination of polycyclic aromatic hydrocarbons (PAHs) in fish oils is complicated due to the fat matrix, which affects both extraction efficiency and analytical quality. This article reviews and addresses two of the most relevant analytical methods for determining 11 mutagenic and carcinogenic PAHs, as well as two EPA indicator PAHs in fish oils. We discuss and critically evaluate two different extraction procedures, such as ultrasound-assisted solvent extraction (USAE) and ultrasound-assisted emulsification-microextraction (USAEME). Clean-up of extracts was performed by solid-phase extraction using C18 and glass columns containing silica gel and florisil for USAE or only C18 for USAEME. Detection of the selected PAHs was carried out by high-performance liquid chromatography coupled with fluorescence detection for determination. Optimization of the variables affecting extraction by the selected extraction techniques was conducted and recoveries ranged from 70% to 100% by USAE and from 70% to 108% by USAEME with estimated quantification limits between 0.020 and 2.6 μg/kg were achieved. Moreover, the applicability of the selected methods was evaluated by the analysis of real samples. To our knowledge, this is the first time that USAEME has been applied to the determination of PAHs in food matrices, such as oil fish samples. The methods proposed were applied to the determination of the target PAHs in fish samples from different countries, and it was found that the low PAH contamination of the selected fish oils could mainly occur by atmospheric sources.

  16. Theoretical investigation of isotope exchange reaction in tritium-contaminated mineral oil in vacuum pump.

    PubMed

    Dong, Liang; Xie, Yun; Du, Liang; Li, Weiyi; Tan, Zhaoyi

    2015-04-28

    The mechanism of the isotope exchange reaction between molecular tritium and several typical organic molecules in vacuum pump mineral oil has been investigated by density functional theory (DFT), and the reaction rates are determined by conventional transition state theory (TST). The tritium-hydrogen isotope exchange reaction can proceed with two different mechanisms, the direct T-H exchange mechanism and the hyrogenation-dehydrogenation exchange mechanism. In the direct exchange mechanism, the titrated product is obtained through one-step via a four-membered ring hydrogen migration transition state. In the hyrogenation-dehydrogenation exchange mechanism, the T-H exchange could be accomplished by the hydrogenation of the unsaturated bond with tritium followed by the dehydrogenation of HT. Isotope exchange between hydrogen and tritium is selective, and oil containing molecules with OH and COOH groups can more easily exchange hydrogen for tritium. For aldehydes and ketones, the ability of T-H isotope exchange can be determined by the hydrogenation of T2 or the dehydrogenation of HT. The molecules containing one type of hydrogen provide a single product, while the molecules containing different types of hydrogens provide competitive products. The rate constants are presented to quantitatively estimate the selectivity of the products.

  17. Influence of soil moisture on sunflower oil extraction of polycyclic aromatic hydrocarbons from a manufactured gas plant soil.

    PubMed

    Gong, Zongqiang; Wilke, B-M; Alef, Kassem; Li, Peijun

    2005-05-01

    The influence of soil moisture on efficiency of sunflower oil extraction of polycyclic aromatic hydrocarbons (PAHs) from contaminated soil was investigated. The PAH-contaminated soil was collected from a manufactured gas plant (MGP) site in Berlin, Germany. Half of the soil was air-dried, and the other half was kept as field-moist soil. Batch experiments were performed using air-dried and field-moist soils, and sunflower oil was used as extractant at oil/soil ratios of 2:1 and 1:1 (v/m). The experimental data were fitted to a first-order empirical model to describe mass-transfer profiles of the PAHs. Column extraction experiments were also conducted. Field-moist and air-dried soils in the column were extracted using sunflower oil at an oil/soil ratio of 2:1. In the batch experiments, PAHs were more rapidly extracted from air-dried soil than from field-moist soil. Removal rate of total PAH increased 23% at oil/soil ratio of 1:1 and 15.5% at oil/soil ratio of 2:1 after the soil was air dried. The most favorable conditions for batch extraction were air-dried soil, with an oil/soil ratio of 2:1. In the column experiments, the removal rate of total PAH from air-dried soil was 30.7% higher than that from field-moist soil. For field-moist soil, extraction efficiencies of the batch extraction (67.2% and 81.5%) were better than that for column extraction (65.6%). However, this difference between the two methods became less significant for the air-dried soil, with a total removal rate of 96.3% for column extraction and 90.2% and 97% for batch extractions. A mass-balance test was carried out for analytical quality assurance. The results of both batch and column experiments indicated that drying the soil increased efficiency of extraction of PAHs from the MGP soil.

  18. Two years after the Hebei Spirit oil spill: residual crude-derived hydrocarbons and potential AhR-mediated activities in coastal sediments.

    PubMed

    Hong, Seongjin; Khim, Jong Seong; Ryu, Jongseong; Park, Jinsoon; Song, Sung Joon; Kwon, Bong-Oh; Choi, Kyungho; Ji, Kyunghee; Seo, Jihyun; Lee, Sangwoo; Park, Jeongim; Lee, Woojin; Choi, Yeyong; Lee, Kyu Tae; Kim, Chan-Kook; Shim, Won Joon; Naile, Jonathan E; Giesy, John P

    2012-02-01

    The Hebei Spirit oil spill occurred in December 2007 approximately 10 km off the coast of Taean, South Korea, on the Yellow Sea. However, the exposure and potential effects remain largely unknown. A total of 50 surface and subsurface sediment samples were collected from 22 sampling locations at the spill site in order to determine the concentration, distribution, composition of residual crudes, and to evaluate the potential ecological risk after two years of oil exposure. Samples were extracted and analyzed for 16 polycyclic aromatic hydrocarbons (PAHs), 20 alkyl-PAHs, 15 aliphatic hydrocarbons, and total petroleum hydrocarbons using GC-MSD. AhR-mediated activity associated with organic sediment extracts was screened using the H4IIE-luc cell bioassay. The response of the benthic invertebrate community was assessed by mapping the macrobenthic fauna. Elevated concentrations of residual crudes from the oil spill were primarily found in muddy bottoms, particularly in subsurface layers. In general, the bioassay results were consistent with the chemistry data in a dose-dependent manner, although the mass-balance was incomplete. More weathered samples containing greater fractions of alkylated PAHs exhibited greater AhR activity, due to the occurrence of recalcitrant AhR agonists present in residual oils. The macrobenthic population distribution exhibits signs of species-specific tolerances and/or recolonization of certain species such as Batillaria during weathering periods. Although the Hebei Spirit oil spill was a severe oil exposure, it appears the site is recovering two years later.

  19. Design of the typical altered mineral spectral feature database system on the area of oil and gas migration

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Chen, Xiaomei; Li, Qianqian; Ni, Guoqiang

    2011-11-01

    According to the abnormal spectrum produced by Oil micro-leakage in China's Gobi and sparse vegetated region, six types of spectrum data, which were used as the reference spectrum, were established for the database of exploring oil and gas. The USGS and JPL spectrum data, the spectrum data of alteration mineral in the gas field, the carbonation and clay mineral spectrum data and the hyperspectral spectrum data were contained in the database. The spectral characteristic information was extracted and integrated into the database. A series of interfaces were provided to users to allow the users to add their own spectrum features of the oil and gas areas, which will enhance the scalability of the feature database. The typical altered mineral spectrums produced by oil micro-leakage in China's Gobi and sparse vegetated regions were comprehensively covered in the database, which will enrich China's spectral library and is with the guidance of the oil and gas exploration by aerospace and aviation hyperspectral remote sensing.

  20. Marine Oil-Degrading Microorganisms and Biodegradation Process of Petroleum Hydrocarbon in Marine Environments: A Review.

    PubMed

    Xue, Jianliang; Yu, Yang; Bai, Yu; Wang, Liping; Wu, Yanan

    2015-08-01

    Due to the toxicity of petroleum compounds, the increasing accidents of marine oil spills/leakages have had a significant impact on our environment. Recently, different remedial techniques for the treatment of marine petroleum pollution have been proposed, such as bioremediation, controlled burning, skimming, and solidifying. (Hedlund and Staley in Int J Syst Evol Microbiol 51:61-66, 2001). This review introduces an important remedial method for marine oil pollution treatment-bioremediation technique-which is considered as a reliable, efficient, cost-effective, and eco-friendly method. First, the necessity of bioremediation for marine oil pollution was discussed. Second, this paper discussed the species of oil-degrading microorganisms, degradation pathways and mechanisms, the degradation rate and reaction model, and the factors affecting the degradation. Last, several suggestions for the further research in the field of marine oil spill bioremediation were proposed.

  1. In vitro microbial degradation of bituminous hydrocarbons and in-situ colonization of bitumen surfaces within the Athabasca oil sands deposit

    SciTech Connect

    Wyndham, R.C.; Costerton, J.W.

    1981-03-01

    Bituminous hydrocarbons extracted from the Athabasca oil sands of N.E. Alberta were adsorbed onto filter supports and placed at sites in the Athabasca River and its tributaries where these rivers come in contact with the oil sands formation. Colonization of the hydrocarbon surfaces at summer and winter ambient temperatures was examined by scanning and transmission electron microscopy as well as by epifluorescence microscopy of acridine orange-stained cross section. Ruthenium red and alkaline bismuth stains visualized an association of bacteria with the hydrocarbon surface which was mediated by bacteria polysaccharides. Bacteria apparently lacking a glycocalyx also were found closely associated with the surface of the hydrophobic substrate and in channels within the substrate. All fractions except the asphaltenes supported the growth of at least 2 of the isolates, although fractionation of degraded bitumen revealed that the saturate, aromatic, and first polar fractions were preferentially degraded. 20 references.

  2. Exposure to hydrocarbons 10 years after the Exxon Valdez oil spill: evidence from cytochrome P4501A expression and biliary FACs in nearshore demersal fishes.

    PubMed

    Jewett, Stephen C; Dean, Thomas A; Woodin, Bruce R; Hoberg, Max K; Stegeman, John J

    2002-01-01

    Three biomarkers of hydrocarbon exposure, CYP1A in liver vascular endothelium, liver ethoxyresorufin O-deethylase (EROD), and biliary fluorescent aromatic compounds (FACs), were examined in the nearshore fishes, masked greenling (Hexagrammos octogrammus) and crescent gunnel (Pholis laeta), collected in Prince William Sound, Alaska, 7-10 years after the Exxon Valdez oil spill (EVOS). All biomarkers were elevated in fish collected from sites originally oiled, in comparison to fish from unoiled sites. In 1998, endothelial CYP1A in masked greenling from sites that were heavily oiled in 1989 was significantly higher than in fish collected outside the spill trajectory. In 1999, fishes collected from sites adjacent to intertidal mussel beds containing lingering Exxon Valdez oil had elevated endothelial CYP1A and EROD, and high concentrations of biliary FACs. Fishes from sites near unoiled mussel beds, but within the original spill trajectory, also showed evidence of hydrocarbon exposure, although there were no correlations between sediment petroleum hydrocarbon and any of the biomarkers. Our data show that 10 years after the spill, nearshore fishes within the original spill zone were still exposed to residual EVOS hydrocarbons.

  3. Exposure to hydrocarbons 10 years after the Exxon Valdez oil spill: evidence from cytochrome P4501A expression and biliary FACs in nearshore demersal fishes.

    PubMed

    Jewett, Stephen C; Dean, Thomas A; Woodin, Bruce R; Hoberg, Max K; Stegeman, John J

    2002-01-01

    Three biomarkers of hydrocarbon exposure, CYP1A in liver vascular endothelium, liver ethoxyresorufin O-deethylase (EROD), and biliary fluorescent aromatic compounds (FACs), were examined in the nearshore fishes, masked greenling (Hexagrammos octogrammus) and crescent gunnel (Pholis laeta), collected in Prince William Sound, Alaska, 7-10 years after the Exxon Valdez oil spill (EVOS). All biomarkers were elevated in fish collected from sites originally oiled, in comparison to fish from unoiled sites. In 1998, endothelial CYP1A in masked greenling from sites that were heavily oiled in 1989 was significantly higher than in fish collected outside the spill trajectory. In 1999, fishes collected from sites adjacent to intertidal mussel beds containing lingering Exxon Valdez oil had elevated endothelial CYP1A and EROD, and high concentrations of biliary FACs. Fishes from sites near unoiled mussel beds, but within the original spill trajectory, also showed evidence of hydrocarbon exposure, although there were no correlations between sediment petroleum hydrocarbon and any of the biomarkers. Our data show that 10 years after the spill, nearshore fishes within the original spill zone were still exposed to residual EVOS hydrocarbons. PMID:12148943

  4. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Final report

    SciTech Connect

    1995-11-01

    The National Energy Strategy Plan (NES) has called for 900,000 barrels/day production of heavy oil in the mid-1990s to meet our national needs. To achieve this goal, it is important that the Alaskan heavy oil fields be brought to production. Alaska has more than 25 billion barrels of heavy oil deposits. Conoco, and now BP Exploration have been producing from Schrader Bluff Pool, which is part of the super heavy oil field known as West Sak Field. Schrader Bluff reservoir, located in the Milne Point Unit, North Slope of Alaska, is estimated to contain up to 1.5 billion barrels of (14 to 21{degrees}API) oil in place. The field is currently under production by primary depletion; however, the primary recovery will be much smaller than expected. Hence, waterflooding will be implemented earlier than anticipated. The eventual use of enhanced oil recovery (EOR) techniques, such as hydrocarbon miscible solvent slug injection process, is vital for recovery of additional oil from this reservoir. The purpose of this research project was to determine the nature of miscible solvent slug which would be commercially feasible, to evaluate the performance of the hydrocarbon miscible solvent slug process, and to assess the feasibility of this process for improved recovery of heavy oil from Schrader Bluff reservoir. The laboratory experimental work includes: slim tube displacement experiments and coreflood experiments. The components of solvent slug includes only those which are available on the North Slope of Alaska.

  5. Response of the bacterial community associated with a cosmopolitan marine diatom to crude oil shows a preference for the biodegradation of aromatic hydrocarbons.

    PubMed

    Mishamandani, Sara; Gutierrez, Tony; Berry, David; Aitken, Michael D

    2016-06-01

    Emerging evidence shows that hydrocarbonoclastic bacteria (HCB) may be commonly found associated with phytoplankton in the ocean, but the ecology of these bacteria and how they respond to crude oil remains poorly understood. Here, we used a natural diatom-bacterial assemblage to investigate the diversity and response of HCB associated with a cosmopolitan marine diatom, Skeletonema costatum, to crude oil. Pyrosequencing analysis and qPCR revealed a dramatic transition in the diatom-associated bacterial community, defined initially by a short-lived bloom of Methylophaga (putative oil degraders) that was subsequently succeeded by distinct groups of HCB (Marinobacter, Polycyclovorans, Arenibacter, Parvibaculum, Roseobacter clade), including putative novel phyla, as well as other groups with previously unqualified oil-degrading potential. Interestingly, these oil-enriched organisms contributed to the apparent and exclusive biodegradation of substituted and non-substituted polycyclic aromatic hydrocarbons (PAHs), thereby suggesting that the HCB community associated with the diatom is tuned to specializing in the degradation of PAHs. Furthermore, the formation of marine oil snow (MOS) in oil-amended incubations was consistent with its formation during the Deepwater Horizon oil spill. This work highlights the phycosphere of phytoplankton as an underexplored biotope in the ocean where HCB may contribute importantly to the biodegradation of hydrocarbon contaminants in marine surface waters. PMID:26184578

  6. Hydrocarbon Potential of the Southern Gulf of Mexico. Evidences from Tectonic Features and Oil Seeps

    NASA Astrophysics Data System (ADS)

    Padilla Y Sanch, R.

    2008-05-01

    The Gulf of Mexico has an enormous oil potential, about 104 billion barrels of oil equivalent (BBOE). From these, about 54 BBOE are in Mexican waters. Tectonic features in the sea-floor of the Gulf of Mexico (GOM) are closely related to oil seepage that have been mapped since the early 20 century, and are direct evidences of working petroleum systems, as well as that deep reservoirs are leaking oil to the surface. This could be considered an inconvenience by some, but it is known that the giant field Cantarell was named after a fisherman that reported frequently giant oil seeps offshore northward Ciudad del Carmen. Deep water exploration has become more and more important these days because of the continuously increasing oil prices. The northern half of the Gulf of Mexico today displays an unusual drilling activity, whereas in the southern part drilling activity is too low. In this research work the interest is focused on the satellite detected oil seeps, and ther coincident location with the tectonic structures shown in the new digital tectonic map of mexico.

  7. Characterization of polycyclic aromatic hydrocarbons from the diesel engine by adding light cycle oil to premium diesel fuel.

    PubMed

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chen, Chung-Bang

    2006-06-01

    Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L(-1), respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L(-1), respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.

  8. Macondo-1 well oil-derived polycyclic aromatic hydrocarbons in mesozooplankton from the northern Gulf of Mexico

    USGS Publications Warehouse

    Mitra, Siddhartha; Kimmel, David G.; Snyder, Jessica; Scalise, Kimberly; McGlaughon, Benjamin D.; Roman, Michael R.; Jahn, Ginger L.; Pierson, James J.; Brandt, Stephen B.; Montoya, Joseph P.; Rosenbauer, Robert J.; Lorenson, T.D.; Wong, Florence L.; Campbell, Pamela L.

    2012-01-01

    Mesozooplankton (>200 μm) collected in August and September of 2010 from the northern Gulf of Mexico show evidence of exposure to polycyclic aromatic hydrocarbons (PAHs). Multivariate statistical analysis revealed that distributions of PAHs extracted from mesozooplankton were related to the oil released from the ruptured British Petroleum Macondo-1 (M-1) well associated with the R/VDeepwater Horizon blowout. Mesozooplankton contained 0.03–97.9 ng g−1 of total PAHs and ratios of fluoranthene to fluoranthene + pyrene less than 0.44, indicating a liquid fossil fuel source. The distribution of PAHs isolated from mesozooplankton extracted in this study shows that the 2010 Deepwater Horizon spill may have contributed to contamination in the northern Gulf of Mexico ecosystem.

  9. Macondo-1 well oil-derived polycyclic aromatic hydrocarbons in mesozooplankton from the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Mitra, Siddhartha; Kimmel, David G.; Snyder, Jessica; Scalise, Kimberly; McGlaughon, Benjamin D.; Roman, Michael R.; Jahn, Ginger L.; Pierson, James J.; Brandt, Stephen B.; Montoya, Joseph P.; Rosenbauer, Robert J.; Lorenson, Thomas D.; Wong, Florence L.; Campbell, Pamela L.

    2012-01-01

    Mesozooplankton (>200 μm) collected in August and September of 2010 from the northern Gulf of Mexico show evidence of exposure to polycyclic aromatic hydrocarbons (PAHs). Multivariate statistical analysis revealed that distributions of PAHs extracted from mesozooplankton were related to the oil released from the ruptured British Petroleum Macondo-1 (M-1) well associated with the R/V Deepwater Horizon blowout. Mesozooplankton contained 0.03-97.9 ng g-1 of total PAHs and ratios of fluoranthene to fluoranthene + pyrene less than 0.44, indicating a liquid fossil fuel source. The distribution of PAHs isolated from mesozooplankton extracted in this study shows that the 2010 Deepwater Horizon spill may have contributed to contamination in the northern Gulf of Mexico ecosystem.

  10. Distribution of Polycyclic Aromatic Hydrocarbons in Soils and Terrestrial Biota After a Spill of Crude Oil in Trecate, Italy

    SciTech Connect

    Brandt, Charles A. ); Becker, James M. ); Porta, Augusto C.

    2001-12-01

    Following a large blowout of crude oil in northern Italy in 1994, the distribution of polyaromatic hydrocarbons (PAHs) was examined over time and space in soils, uncultivated wild vegetation, insects, mice, and frogs in the area. Within 2 y of the blowout, PAH concentrations declined to background levels over much of the area where initial concentrations were within an order of magnitude above background, but had not declined to background in areas where starting concentrations exceeded background by two orders of magnitude. Octanol-water partitioning and extent of alkylation explained much of the variance in uptake of PAHs by plants and animals. Lower Kow PAHs and higher-alkylated PAHs had higher soil-to-biota accumulation factors (BSAFs) than did high-Kow and unalkylated forms. BSAFs for higher Kow PAHs were very low for plants, but much higher for animals, with frogs accumulating more of these compounds than other species.

  11. [Microbial communities of the discharge zone of oil- and gas-bearing fluids in low-mineral Lake Baikal].

    PubMed

    Lomakina, A V; Pogodaeva, T V; Morozov, I V; Zemskaya, T I

    2014-01-01

    At the site of natural ingress of oil microbial diversity in the Central Baikal bottom sediments differing in the chemical composition of pore waters was studied by molecular biological techniques. The sediments saturated with oil and methane were found to contain members of 10 bacterial and 2 archaeal phyla. The oxidized sediment layer contained methanotrophic bacteria belonging to the Alphaproteobacteria, which had a specific structure of the pmoA gene and clustered together with uncultured methanotrophs from cold ecosystems. The upper sediment layer contained also oil-oxidizing bacteria and the alkB genes most colsely related to those of Rhodococcus. The microbial community of reduced sediments exhibited lower diversity and was represented mostly by the organisms involved in hydrocarbon biodegradation. PMID:25844446

  12. Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin

    PubMed Central

    He, Ying; Xiao, Xiang; Wang, Fengping

    2013-01-01

    Deep-sea hydrothermal vent chimneys contain a high diversity of microorganisms, yet the metabolic activity and the ecological functions of the microbial communities remain largely unexplored. In this study, a metagenomic approach was applied to characterize the metabolic potential in a Guaymas hydrothermal vent chimney and to conduct comparative genomic analysis among a variety of environments with sequenced metagenomes. Complete clustering of functional gene categories with a comparative metagenomic approach showed that this Guaymas chimney metagenome was clustered most closely with a chimney metagenome from Juan de Fuca. All chimney samples were enriched with genes involved in recombination and repair, chemotaxis and flagellar assembly, highlighting their roles in coping with the fluctuating extreme deep-sea environments. A high proportion of transposases was observed in all the metagenomes from deep-sea chimneys, supporting the previous hypothesis that horizontal gene transfer may be common in the deep-sea vent chimney biosphere. In the Guaymas chimney metagenome, thermophilic sulfate reducing microorganisms including bacteria and archaea were found predominant, and genes coding for the degradation of refractory organic compounds such as cellulose, lipid, pullullan, as well as a few hydrocarbons including toluene, ethylbenzene and o-xylene were identified. Therefore, this oil-immersed chimney supported a thermophilic microbial community capable of oxidizing a range of hydrocarbons that served as electron donors for sulphate reduction under anaerobic conditions. PMID:23785357

  13. Process for manufacturing a supported catalyst for the hydrotreatment of hydrocarbon oils

    SciTech Connect

    Toulhoat, H.; Jacquin, Y.; Mercier, M.; Plumail, J. C.

    1985-04-09

    Supported catalysts for use in hydrocarbons hydrotreatments are made by shaping catalyst carrier, with or without catalyst precursors, into balls, calcining the balls at 300/sup 0/-1000/sup 0/ C., and crushing the calcined balls to particles whose average size is 0.2-0.8 times the average diameter of the balls. When the precursors are not present during the manufacture, they are added thereafter.

  14. Hydrocarbon composition and toxicity of sediments following the Exxon Valdez oil spill in Prince William Sound, Alaska, USA.

    PubMed

    Page, David S; Boehm, Paul D; Stubblefield, William A; Parker, Keith R; Gilfillan, Edward S; Neff, Jerry M; Maki, Alan W

    2002-07-01

    An 1-year study of the 1989 Exxon Valdez oil spill found that spill residues on the oiled shorelines rapidly lost toxicity through weathering. After 1990, toxicity of sediments remained at only a few heavily oiled, isolated locations in Prince William Sound (AK, USA), as measured by a standard amphipod bioassay using Rhepoxynius abronius. Data from 648 sediment samples taken during the 1990 to 1993 period were statistically analyzed to determine the relationship between the total concentration of 39 parent and methyl-substituted polycyclic aromatic hydrocarbons (defined as total polycyclic aromatic hydrocarbons [TPAH]) and amphipod mortality and the effect of oil weathering on toxicity. A logistic regression model yielded estimates of the lower threshold, LC10 (lethal concentration to 10% of the population), and LC50 (median lethal concentration) values of 2,600, 4,100, and 10,750 ng/g TPAH (dry wt), respectively. Estimates of the threshold and LC50 values in this field study relate well to corresponding sediment quality guideline (SQG) values reported in the literature. For sediment TPAH concentrations >2,600 ng/g, samples with high mortality values (>90%) had relatively high fractions of naphthalenes and those with low mortality (<20%) had relatively high fractions of chrysenes. By 1999, the median sediment TPAH concentration of 117 ng/g for the post-1989 worst-case sites studied were well below the 2,600 ng/g toxicity threshold value, confirming the lack of potential for long-term toxic effects. Analysis of biological community structure parameters for sediment samples taken concurrently found that species richness and Shannon diversity decreased with increasing TPAH above the 2,600 ng/g threshold, demonstrating a correspondence between sediment bioassay results and biological community effects in the field. The low probability of exposure to toxic concentrations of weathered spill residues at the worst-case sites sampled in this study is consistent with the

  15. Hydrocarbon composition and toxicity of sediments following the Exxon Valdez oil spill in Prince William Sound, Alaska, USA.

    PubMed

    Page, David S; Boehm, Paul D; Stubblefield, William A; Parker, Keith R; Gilfillan, Edward S; Neff, Jerry M; Maki, Alan W

    2002-07-01

    An 1-year study of the 1989 Exxon Valdez oil spill found that spill residues on the oiled shorelines rapidly lost toxicity through weathering. After 1990, toxicity of sediments remained at only a few heavily oiled, isolated locations in Prince William Sound (AK, USA), as measured by a standard amphipod bioassay using Rhepoxynius abronius. Data from 648 sediment samples taken during the 1990 to 1993 period were statistically analyzed to determine the relationship between the total concentration of 39 parent and methyl-substituted polycyclic aromatic hydrocarbons (defined as total polycyclic aromatic hydrocarbons [TPAH]) and amphipod mortality and the effect of oil weathering on toxicity. A logistic regression model yielded estimates of the lower threshold, LC10 (lethal concentration to 10% of the population), and LC50 (median lethal concentration) values of 2,600, 4,100, and 10,750 ng/g TPAH (dry wt), respectively. Estimates of the threshold and LC50 values in this field study relate well to corresponding sediment quality guideline (SQG) values reported in the literature. For sediment TPAH concentrations >2,600 ng/g, samples with high mortality values (>90%) had relatively high fractions of naphthalenes and those with low mortality (<20%) had relatively high fractions of chrysenes. By 1999, the median sediment TPAH concentration of 117 ng/g for the post-1989 worst-case sites studied were well below the 2,600 ng/g toxicity threshold value, confirming the lack of potential for long-term toxic effects. Analysis of biological community structure parameters for sediment samples taken concurrently found that species richness and Shannon diversity decreased with increasing TPAH above the 2,600 ng/g threshold, demonstrating a correspondence between sediment bioassay results and biological community effects in the field. The low probability of exposure to toxic concentrations of weathered spill residues at the worst-case sites sampled in this study is consistent with the

  16. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source.

    PubMed

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are "green" amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by mar