Science.gov

Sample records for mineral residues properties

  1. Elastic properties of minerals

    SciTech Connect

    Aleksandrov, K.S.; Prodaivoda, G.T.

    1993-09-01

    Investigations of the elastic properties of the main rock-forming minerals were begun by T.V. Ryzhova and K.S. Aleksandrov over 30 years ago on the initiative of B.P. Belikov. At the time, information on the elasticity of single crystals in general, and especially of minerals, was very scanty. In the surveys of that time there was information on the elasticity of 20 or 30 minerals. These, as a rule, did not include the main rock-forming minerals; silicates were represented only by garnets, quartz, topaz, tourmaline, zircon, beryl, and staurolite, which are often found in nature in the form of large and fairly high-quality crystals. Then and even much later it was still necessary to prove a supposition which now seems obvious: The elastic properties of rocks, and hence the velocities of elastic (seismic) waves in the earth`s crust, are primarily determined by the elastic characteristics of the minerals composing these rocks. Proof of this assertion, with rare exceptions of mono-mineralic rocks (marble, quartzite, etc.) cannot be obtained without information on the elasticities of a sufficiently large number of minerals, primarily framework, layer, and chain silicates which constitute the basis of most rocks. This also served as the starting point and main problem of the undertakings of Aleksandrov, Ryzhova, and Belikov - systematic investigations of the elastic properties of minerals and then of various rocks. 108 refs., 7 tabs.

  2. Thermodynamic properties of minerals

    USGS Publications Warehouse

    Robie, Richard A.

    1962-01-01

    In the ten years since the publication of the national Bureau of Standards comprehensive tables of thermochemical properties, by Rossini and other (1952), a very large body of modern calorimetric and equilibrium data has become available. Because of the complex interrelations among many thermochemical data and the necessity for internal consistency among these values, a complete revision of this standard reference is required. This is also true of the summaries of thermochemical data for the sulfides (Richardson and Jeffes 1952) and for the oxides (Coughlin 1954). The following tables present critically selected values for the heat and free energy of formation, the logarithm of the equilibrium constant of formation Log Kf, the entropy and the molar volume, at 298.15°K (25.0°C) and one atmosphere for minerals.

  3. Elastic Properties of Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Duffy, T. S.; Stan, C. V.

    2012-12-01

    The most direct information about the interior structure of the Earth comes from seismic wave velocities. Interpretation of seismic data requires an understanding of how sound velocities and elastic properties of minerals vary with pressure, temperature, crystal structure, and composition as well as the role of anelasticity, melts, etc. More generally, elastic moduli are important for understanding many solid-state phenomena including mechanical stability, interatomic interactions, material strength, compressibility, and phase transition mechanisms. The database of mineral elasticity measurements has been growing rapidly in recent years. In this work, we report initial results of an ongoing survey of our current knowledge of mineral elasticity at both ambient conditions and high pressures and temperatures. The analysis is selective, emphasizing single crystal measurements but also incorporating polycrystalline measurements and volume compression data as appropriate. The goal is to synthesize our current understanding of mineral elasticity in terms of structure and composition, and to identify the major remaining needs for experimental and theoretical work. Clinopyroxenes (Cpx) provide an example of our approach. A wide range of clinopyroxene compositions are found geologically and Mg-, Ca-, and Na-rich clinopyroxenes are expected to be important components in the upper mantle. The single-crystal elastic properties of a number of endmember Cpx compositions have been measured and these exhibit a range of ~25% in shear velocity. Those with monovalent cations (spodumene, jadeite) in the M2 site exhibit the highest velocities while Fe-rich (hendenbergit, acmite) compositions have the lowest velocities. The effects on velocity due to a wide range of chemical substitutions can be defined, but there are important discrepancies and omissions in the database. New measurements of omphacites, intermediate diopside-hedenbergite compositions, aegerine/acmite, augite, etc. are

  4. Physical properties of evaporite minerals

    USGS Publications Warehouse

    Robertson, Eugene C.

    1962-01-01

    The data in the following tables were abstracted from measurements of physical properties of evaporite minerals or of equivalent synthetic compounds. The compounds considered are the halide and sulfate salts which supposedly precipitated from evaporating ocean water and which form very extensive and thick "rock salt" beds. These beds are composed almost entirely of NaCl. In places where the beds are deeply buried and where fractures occur in the overlying rocks, the salt is plastically extruded upward as in a pipe to form the "salt domes". Most of the tables are for NaCl, both the natural (halite) and the synthetic salt, polycrystalline and single crystals. These measurements have been collected for use 1) in studies on storage of radioactive wastes in salt domes or beds, 2) in calculations concerned with nuclear tests in salt domes and beds, and 3) in studies of phenomena in salt of geologic interest. Rather than an exhaustive compilation of physical property measurements, there tables represent a summary of data from accessible sources. As limitations of time have presented making a more systematic and comprehensive selection, the data given may seem arbitrarily chosen. Some of the data listed are old, and newer, more accurate data are undoubtedly available. Halite (an synthetic NaCl) has been very thoroughly studied because of its relatively simple and highly symmetrical crystal structure, its easy availability naturally or synthetically, both in single crystals and polycrystalline, its useful and scientifically interesting properties, and its role as a compound of almost purely ionic bonding. The measurements of NaCl in the tables, however, represent only a small part of the total number of observations; discrimination was necessary to keep the size of the tabulations manageable. The physical properties of the evaporite minerals other than halite and sylvite have received only desultory attention of experiementalists, and appear in only a few tables. The

  5. Coal cleaning residues and Fe-minerals implications.

    PubMed

    Silva, Luis F O; Macias, Felipe; Oliveira, Marcos L S; da Boit, M Kátia; Waanders, Frans

    2011-01-01

    In the present investigation, a study was undertaken to understand the origin of Fe-minerals presents in Brazilian coal mining and to understand the environmental implication and the chemical heterogeneity in the study area. Coal cleaning residue samples rich in clays, quartz, sulphides, carbonates, sulphates, etc. were sampled from Lauro Muller, Urussanga, Treviso, Siderópolis, and Criciúma cities in the Santa Catarina State and a total of 19 samples were collected and Mössbauer, XRD, SEM/EDX, and TEM analyses were conducted on the samples. The major Fe-minerals identified are represented by the major minerals chlorite, hematite, illite, and pyrite, while the minor minerals include, ankerite, chalcopyrite, goethite, hematite, jarosite, maghemite, magnetie, marcasite, melanterite, natrojarosite, oligonite, pyrrhotite, rozenite, schwertmannite, siderite, and sideronatrile. Pyrite is relatively abundant in some cases, making up to around 10% of the mineral matter in several samples. The sulphates minerals such as jarosite and others, probably represent oxidation products of pyrite, developed during exposure or storage.

  6. ELECTROCHEMICAL PROPERTIES OF ROCKS AND MINERALS.

    USGS Publications Warehouse

    Olhoeft, Gary R.

    1985-01-01

    Many phenomena and processes in the earth sciences are a result of the electrochemical properties of rocks and minerals. Examples include formation of mineral deposits and petroleum reservoirs control of drilling muds, and success or failure of toxic waste isolation barriers. Such phenomena can be observed at a distance using geophysical techniques to measure various electrical properties of the earth.

  7. Formation of filamentary sublimate residues (FSR) from mineral grains

    SciTech Connect

    Storrs, A.D.; Fanale, F.P.; Saunders, R.S.; Stephens, J.B.

    1988-12-01

    The significant interparticle forces observed between solar system dust grains upon desorption or sublimation of excess volatiles in simulated Martian or cometary environments are presently investigated, in order to more precisely define these mechanisms and to simulate the types of deposits thereby formed. Some classes of phyllosilicate mineral grains are noted to bond together to form a highly porous filamentary sublimate residue (FSR) exhibiting an exceptionally high tensile strength for its density; this may be important in its control of erosion and sublimation in Martian and cometary environments. It is concluded that FSR formation from clean mineral grains in water ice may be important in the formation of the Martian polar layered terrain. 41 references.

  8. Properties of Rasch residual fit statistics.

    PubMed

    Wu, Margaret; Adams, Richard J

    2013-01-01

    This paper examines the residual-based fit statistics commonly used in Rasch measurement. In particular, the paper analytically examines some of the theoretical properties of the residual-based fit statistics with a view to establishing the inferences that can be made using these fit statistics. More specifically, the relationships between the distributional properties of the fit statistics and sample size are discussed; some research that erroneously concludes that residual-based fit statistics are unstable is reviewed; and finally, it is analytically illustrated that, for dichotomous items, residual-based fit statistics provide a measure of the relative slope of empirical item characteristic curves. With a clear understanding of the theoretical properties of the fit statistics, the use and limitations of these statistics can be placed in the right light.

  9. Influence of residue and nitrogen fertilizer additions on carbon mineralization in soils with different texture and cropping histories

    USDA-ARS?s Scientific Manuscript database

    To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using soil sampled from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ul...

  10. Erionite series minerals: mineralogical and carcinogenic properties.

    PubMed

    Dogan, A Umran; Dogan, Meral; Hoskins, John A

    2008-08-01

    Erionite is a human and animal carcinogen and one of the most toxic minerals known. Erionite deposits have been reported in many countries; however, it is only in the area of three villages of Cappadocia, Turkey, that environmental exposure to erionite has been demonstrated to be the cause of an epidemic of the disease mesothelioma. In the USA, no cases of mesothelioma have been reliably proven to be the result of erionite exposure, though the possibility exists. Erionite samples from three villages of the Cappadocia region were characterized mineralogically and compared with three different standards from the USA. Micro morphological details of erionite minerals using a high-resolution field-emission SEM showed that microstructures of "bundles", "fibers", and "fibrils" are important physical properties of fibrous erionite minerals. Typical lung burden of erionite and asbestos fibers were compared in terms of number of fibers. Assuming the lung burden of fibers in a human mesothelioma victim is about 1 mg, and the hazardous fibers are approximately 1 mum in diameter and 10 mum long, that milligram contains approximately 40 million asbestos and 50 million erionite fibers. These microstructures of erionite minerals draw attention to the concepts of surface area or surface-area-to-volume ratio and their relationship to the carcinogenicity of the mineral. The larger surface area creates a wider platform for mineral-cell interaction and thus more possibilities of proliferative transformation of mesothelial cells. Consequently, understanding the exact mineralogical properties will help determination of the true carcinogenic mechanism(s) of the mineral for prevention and possibly treatment of malignant mesothelioma.

  11. In vitro Induction of residual caries lesions in dentin: comparative mineral loss and nano-hardness analysis.

    PubMed

    Schwendicke, Falk; Eggers, Kerrin; Meyer-Lueckel, Hendrik; Dörfer, Christof; Kovalev, Alexander; Gorb, Stanislav; Paris, Sebastian

    2015-01-01

    Artificially inducing dentinal lesions mimicking those remaining after selective excavation should allow to investigate the effects and limits of such selective excavation, for example regarding the mechanical properties of treated teeth or the remineralisation of sealed residual lesions. Such analyses might otherwise be limited by the variability of natural lesions or ethical and practical concerns. This study compared different demineralisation protocols for their suitability to induce lesions similar to natural residual caries. Twelve natural deep lesions were excavated until leathery dentin remained, and analysed for their mineral loss (ΔZ), lesion depth (LD), mineral loss ratio (R), the slope of the mineral gradient and their nano-hardness profile. Artificial lesions were induced using four different demineralisation protocols (acetic acid pH = 4.95; 0.1 M lactic acid gel pH = 5.0; 0.5 M ethylenediaminetetraacetic acid pH = 7.2; Streptococcus mutans biofilms) and their depths monitored over different demineralisation times. Lesions with depths most according to those of natural lesions were analysed using transversal microradiography. Lesions induced by acetic acid solution did not significantly differ with regards to LD, ΔZ, R and mineral profile. Seven dentin specimens were subsequently submitted to a moderately acidic (pH = 5.3) methylhydroxydiphosphonate-buffered acetate solution for 12 weeks. Natural and artificial residual lesions were similarly deep (mean ± SD: LD = 626 ± 212 and 563 ± 88 µm), demineralised (R = 19.5 ± 4.7 and 29.8 ± 4.1%), showed a flat and continuous mineral gradient (slope = 0.10 ± 0.05 and 0.13 ± 0.06 vol%/µm) and did not significantly differ regarding their nano-hardness profile. The described protocol induces lesions with mineral content and mechanical properties similar to natural residual lesions.

  12. Pyrolysis of Woody Residues: Impact of Mineral Content

    SciTech Connect

    Iisa, Kristiina; Zacher, Alan; Sykes, Robert; Preto, Fernando; Bronson, Benjamin

    2014-11-21

    Woody residues represent a lower cost option for feedstocks for the production of biofuels. In this study, the pyrolysis of woody residues was investigated as part of Clean Energy Dialogue between the U.S. and Canada. Three pine-based hog fuels from saw mills and wood from pine beetle killed trees were chosen as the woody residue feedstocks and pine and birch as the reference clean feedstocks. The yields and quality of the oil were evaluated in a bubbling fluidized bed reactor and a laboratory-scale pyrolyzer connected to a molecular beam mass spectrometer.

  13. Peanut residue carbon and nitrogen mineralization under simulated conventional and conservation tillage

    USDA-ARS?s Scientific Manuscript database

    Residue management is an important aspect of crop production systems. Availability of plant residue nitrogen (N) to succeeding crops is dependent on N mineralization rates during decomposition. Cooperative Extension currently recommends 22-67 kg N ha-1 credit to subsequent crops following peanut (Ar...

  14. Nitrogen and carbon mineralization from peanut residues under conservation and conventional tillage at two locations

    USDA-ARS?s Scientific Manuscript database

    Residue management is an important aspect of crop production systems. Availability of plant residue nitrogen (N) to succeeding crops is dependent on N mineralization rates and therefore on rates of N release during decomposition. Much of the information available on N release rates from peanut (Ar...

  15. Transformation kinetics of corn and clover residues in mineral substrates of different composition

    NASA Astrophysics Data System (ADS)

    Pinskii, D. L.; Maltseva, A. N.; Zolotareva, B. N.; Dmitrieva, E. D.

    2017-06-01

    Mineralization kinetics of corn and clover residues in quartz sand, loam, sand + 15% bentonite, and sand + 30% kaolinite have been studied. A scheme has been proposed for the transformation of plant residues in mineral substrates. Kinetic parameters of mineralization have been calculated with the use of a first-order two-term exponential polynomial. It has been shown that the share of labile organic carbon pool in the clover biomass is higher (57-63%) than in the corn biomass (47-49%), which is related to the biochemical composition of plant residues. The mineralization constants of clover residues generally significantly exceed those of corn because of the stronger stabilization of the decomposition products of corn residues. The turnover time of the labile clover pool (4-9 days) in all substrates and that of the labile corn pool (8-10 days) in sands and substrates containing kaolinites and bentonite are typical for organic acids, amino acids, and simple sugars. In the loamy substrate, the turnover time of labile corn pool is about 46 days due to the stronger stabilization of components of the labile pool containing large amounts of organic acids. The turnover time of the stable clover pool (0.95 years) is significantly lower than that of the stable corn pool (1.60 years) and largely corresponds to the turnover time of plant biomass.

  16. Fate of phenanthrene and mineralization of its non-extractable residues in an oxic soil.

    PubMed

    Wang, Yongfeng; Xu, Jun; Shan, Jun; Ma, Yini; Ji, Rong

    2017-05-01

    The fate of organic pollutants in the environment, especially the formation and stability of non-extractable (i.e., bound) residues (NERs) determines their environmental risk. Using (14)C-tracers, we studied the fate of the carcinogen phenanthrene in active or sterilized oxic loamy soil in the absence and presence of the geophagous earthworm Metaphire guillelmi and characterized the NERs derived from phenanthrene. After incubation of (14)C-phenanthrene in active soil for 28 days, 40 ± 3.1% of the initial amount was mineralized and 70.1 ± 1.9% was converted to NERs. Most of the NERs (>92%) were bound to soil humin. Silylation of the humin-bound residues released 45.3 ± 5.3% of these residues, which indicated that they were physically entrapped, whereas the remainder of the residues were chemically bound or biogenic. By contrast, in sterilized soil, only 43.4 ± 12.6% of the phenanthrene was converted to NERs and all of these residues were completely released upon silylation, which underlines the essential role of microbial activity in NER formation. The presence of M. guillelmi in active soil significantly inhibited phenanthrene mineralization (24.4 ± 2.6% mineralized), but NER formation was not significantly affected. Only a small amount of phenanthrene-derived residues (1.9-5.3% of the initial amount) accumulated in the earthworm body. When humin-bound residues were mixed with fresh soil, 33.9% (humin recovered from active soils) and 12.4% (humin recovered from sterilized soils) of the residues were mineralized after 75 days of incubation, respectively, which indicated a high bioavailability of NERs, albeit lower than the initial addition of phenanthrene. Our results indicated that many phenanthrene-derived NERs, especially those physically entrapped, are still bioavailable and may pose a toxic threat to soil organisms.

  17. Bacteria-mineral interactions in soil and their effect on particle surface properties

    NASA Astrophysics Data System (ADS)

    Miltner, Anja; Achtenhagen, Jan; Goebel, Marc-Oliver; Bachmann, Jörg; Kästner, Matthias

    2015-04-01

    Interactions between bacteria or their residues and mineral surfaces play an important role for soil processes and properties. It is well known that bacteria tend to grow attached to surfaces and that they get more hydrophobic when grown under stress conditions. In addition, bacterial and fungal biomass residues have recently been shown to contribute to soil organic matter formation. The attachment of bacteria or their residues to soil minerals can be expected to modify the surface properties of these particles, in particular the wettability. We hypothesize that the extent of the effect depends on the surface properties of the bacteria, which change depending on environmental conditions. As the wettability of soil particles is crucial for the distribution and the availability of water, we investigated the effect of both living cells and bacterial residues (cell envelope fragments and cytosol) on the wettability of model mineral particles in a simplified laboratory system. We grew Pseudomonas putida cells in mineral medium either without (unstressed) or with additional 1.5 M NaCl (osmotically stressed). After 2 h of incubation, the cells were disintegrated by ultrasonic treatment. Different amounts of either intact cells, cell envelope fragments or cytosol (each corresponding to 108, 109, or 1010 cells per gram of mineral) were mixed with quartz sand, quartz silt or kaolinite. The bacteria-mineral associations were air-dried for 2 hours and analyzed for their contact angle. We found that the surfaces of osmotically stressed cells were more hydrophobic than the surfaces of unstressed cells and that the bacteria-mineral associations had higher contact angles than the pure minerals. A rather low surface coverage (~10%) of the mineral surfaces by bacteria was sufficient to increase the contact angle significantly, and the different wettabilities of stressed and unstressed cells were reflected in the contact angles of the bacteria-mineral associations. The increases in

  18. Carbon and nitrogen mineralization and persistence of organic residues under conservation and conventional tillage

    USDA-ARS?s Scientific Manuscript database

    A combination of high biomass cover crops with organic mulches may be an option for no-till vegetable production, but mineralization rates from these residues is lacking. The objective of this study was to assess nutrient release rates and persistence from mimosa, lespedeza, oat straw, and soybean r...

  19. Physical and chemical properties of industrial mineral oils affecting lubrication

    SciTech Connect

    Godfrey, D.; Herguth, W.R.

    1996-02-01

    The lubricating properties of mineral oils, and contaminants which affect those properties, are discussed. A contaminant is any material not in the original fresh oil, whether it is generated within the system or ingested. 5 refs.

  20. Physical and chemical properties of industrial mineral oils affecting lubrication

    SciTech Connect

    Godfrey, D.; Herguth, W.R.

    1995-05-01

    The physical and chemical properties of mineral oils that affect lubrication are reviewed. Recognition of these properties is useful for designing lubrication systems, diagnostics, friction and wear problems, and selecting appropriate test methods.

  1. [Effects of stabilization treatment on migration and transformation of heavy metals in mineral waste residues].

    PubMed

    Zhao, Shu-Hua; Chen, Zhi-Liang; Zhang, Tai-Ping; Pan, Wei-Bin; Peng, Xiao-Chun; Che, Rong; Ou, Ying-Juan; Lei, Guo-Jian; Zhou, Ding

    2014-04-01

    Different forms of heavy metals in soil will produce different environmental effects, and will directly influence the toxicity, migration and bioavailability of heavy metals. This study used lime, fly ash, dried sludge, peanut shells as stabilizers in the treatment of heavy metals in mineral waste residues. Morphological analyses of heavy metal, leaching experiments, potted plant experiments were carried out to analyze the migration and transformation of heavy metals. The results showed that after adding stabilizers, the pH of the acidic mineral waste residues increased to more than neutral, and the organic matter content increased significantly. The main existing forms of As, Pb, and Zn in the mineral waste residues were the residual. The contents of exchangeable and organic matter-bound As decreased by 65.6% and 87.7% respectively after adding fly ash, dried sludge and peanut shells. Adding lime, fly ash and peanut shells promoted the transformation of As from the Fe-Mn oxide-bound to the carbonate-bound, and adding lime and fly ash promoted the transformation of Pb and Zn from the exchangeable, Fe-Mn oxide-bound, organic matter-bound to the residual. After the early stage of the stabilization treatment, the contents of As, Pb and Zn in the leachate had varying degrees of decline, and adding peanut shells could reduce the contents of As, Pb and Zn in the leachate further. Among them, the content of As decreased most significantly after treatment with fly ash, dried sludge and peanut shells, with a decline of 57.4%. After treatment with lime, fly ash and peanut shells, the content of Zn decreased most significantly, by 24.9%. The addition of stabilizers was advantageous to the germination and growth of plants. The combination of fly ash, dried sludge and peanut shell produced the best effect, and the Vetiveria zizanioides germination rate reached 76% in the treated wasted mineral residues.

  2. Scoping candidate minerals for stabilization of arsenic-bearing solid residuals.

    PubMed

    Raghav, Madhumitha; Shan, Jilei; Sáez, A Eduardo; Ela, Wendell P

    2013-12-15

    Arsenic Crystallization Technology (ACT) is a potentially eco-friendly, effective technology for stabilization of arsenic-bearing solid residuals (ABSRs). The strategy is to convert ABSRs generated by water treatment facilities into minerals with a high arsenic capacity and long-term stability in mature, municipal solid waste landfills. Candidate minerals considered in this study include scorodite, arsenate hydroxyapatites, ferrous arsenates (symplesite-type minerals), tooeleite, and arsenated-schwertmannite. These minerals were evaluated as to ease of synthesis, applicability to use of iron-based ABSRs as a starting material, and arsenic leachability. The Toxicity Characteristic Leaching Procedure (TCLP) was used for preliminary assessment of candidate mineral leaching. Minerals that passed the TCLP and whose synthesis route was promising were subjected to a more aggressive leaching test using a simulated landfill leachate (SLL) solution. Scorodite and arsenate hydroxyapatites were not considered further because their synthesis conditions were not found to be favorable for general application. Tooeleite and silica-amended tooeleite showed high TCLP arsenic leaching and were also not investigated further. The synthesis process and leaching of ferrous arsenate and arsenated-schwertmannite were promising and of these, arsenated-schwertmannite was most stable during SLL testing. The latter two candidate minerals warrant synthesis optimization and more extensive testing.

  3. Scoping Candidate Minerals for Stabilization of Arsenic-Bearing Solid Residuals

    PubMed Central

    Raghav, Madhumitha; Shan, Jilei; Sáez, A. Eduardo; Ela, Wendell P.

    2014-01-01

    Arsenic Crystallization Technology (ACT) is a potentially eco-friendly, effective technology for stabilization of arsenic-bearing solid residuals (ABSRs). The strategy is to convert ABSRs generated by water treatment facilities into minerals with a high arsenic capacity and long-term stability in mature, municipal solid waste landfills. Candidate minerals considered in this study include scorodite, arsenate hydroxyapatites, ferrous arsenates (symplesite-type minerals), tooeleite, and arsenated-schwertmannite. These minerals were evaluated as to ease of synthesis, applicability to use of iron-based ABSRs as a starting material, and arsenic leachability. The Toxicity Characteristic Leaching Procedure (TCLP) was used for preliminary assessment of candidate mineral leaching. Minerals that passed the TCLP and whose synthesis route was promising were subjected to a more aggressive leaching test using a simulated landfill leachate (SLL) solution. Scorodite and arsenate hydroxyapatites were not considered further because their synthesis conditions were not found to be favorable for general application. Tooeleite and silica-amended tooeleite showed high TCLP arsenic leaching and were also not investigated further. The synthesis process and leaching of ferrous arsenate and arsenated-schwertmannite were promising and of these, arsenated-schwertmannite was most stable during SLL testing. The latter two candidate minerals warrant synthesis optimization and more extensive testing. PMID:24231323

  4. Bauxite residue neutralization with simultaneous mineral carbonation using atmospheric CO2.

    PubMed

    Han, Young-Soo; Ji, Sangwoo; Lee, Pyeong-Koo; Oh, Chamteut

    2017-03-15

    Simultaneous carbon mineralization during neutralization of bauxite residue, a caustic alkaline by-product of alumina refining, was tested using laboratory batch and a field pilot study in contact with atmospheric CO2. Since CO2 sequestration is limited by the Ca concentration in the bauxite residue, extra Ca sources were added in a semi-soluble mineral and salt form (flue gas desulfurization gypsum or CaCl2) to verify whether this Ca addition accelerated and enlarged the CO2 sequestration obtained as a consequence of neutralization. The results of 55 days of batch and longer-term field tests were in good agreement, and the neutralization rate was accelerated through the addition of both Ca sources. Without the addition of the extra Ca source, atmospheric CO2 contributed to neutralization of pore water alkalinity alone, while Ca addition induced further neutralization through mineral carbonation of atmospheric CO2 to CaCO3. This simple addition of environmentally benign Ca to bauxite residue may provide a feasible bauxite residue management practice that is cost-effective and easy to apply in the field.

  5. Antioxidant properties of roasted coffee residues.

    PubMed

    Yen, Wen-Jye; Wang, Bor-Sen; Chang, Lee-Wen; Duh, Pin-Der

    2005-04-06

    The antioxidant activity of roasted coffee residues was evaluated. Extraction with four solvents (water, methanol, ethanol, and n-hexane) showed that water extracts of roasted coffee residues (WERCR) produced higher yields and gave better protection for lipid peroxidation. WERCR showed a remarkable protective effect on oxidative damage of protein. In addition, WERCR showed scavenging of free radicals as well as the reducing ability and to bind ferrous ions, indicating that WERCR acts as both primary and secondary antioxidants. The HPLC analyses showed that phenolic acids (chlorogenic acid and caffeic acid) and nonphenolic compounds [caffeine, trigonelline, nicotinic acid, and 5-(hydroxymethyl)furfuraldehyde] remained in roasted coffee residues. These compounds showed a protective effect on a liposome model system. The concentrations of flavonoids and polyphenolic compounds in roasted coffee residues were 8,400 and 20,400 ppm, respectively. In addition, the Maillard reaction products (MRPs) remaining in roasted coffee residues were believed to show antioxidant activity. These data indicate that roasted coffee residues have excellent potential for use as a natural antioxidant source because the antioxidant compounds remained in roasted coffee residues.

  6. Electroacoustic isoelectric point determinations of bauxite refinery residues: different neutralization techniques and minor mineral effects.

    PubMed

    Freire, Tiago S S; Clark, Malcolm W; Comarmond, M Josick; Payne, Timothy E; Reichelt-Brushett, Amanda J; Thorogood, Gordon J

    2012-08-14

    Bauxite refinery residue (BRR) is a highly caustic, iron hydroxide-rich byproduct from alumina production. Some chemical treatments of BRR reduce soluble alkalinity and lower residue pH (to values <10) and generate a modified BRR (MBRR). MBRR has excellent acid neutralizing (ANC) and trace-metal adsorption capacities, making it particularly useful in environmental remediation. However, soluble ANC makes standard acid-base isoelectric point (IEP) determination difficult. Consequently, the IEP of a BRR and five MBRR derivatives (sulfuric acid-, carbon dioxide-, seawater-, a hybrid neutralization, i.e, partial CO(2) neutralization followed by seawater, and an activated-seawater-neutralized MBRR) were determined using electroacoustic techniques. Residues showed three significantly different groups of IEPs (p < 0.05) based around the neutralization used. Where the primary mineral assemblage is effectively unchanged, the IEPs were not significantly different from BRR (pH 6.6-6.9). However, neutralizations generating neoformational minerals (alkalinity precipitation) significantly increased the IEP to pH 8.1, whereas activation (a removal of some primary mineralogy) significantly lowered the IEP to pH 6.2. Moreover, surface charging curves show that surfaces remain in the ±30 mV surface charge instability range, which provides an explanation as to why MBRRs remove trace metals and oxyanions over a broad pH range, often simultaneously. Importantly, this work shows that minor mineral components in complex mineral systems may have a disproportionate effect on the observable bulk IEP. Furthermore, this work shows the appropriateness of electroacoustic techniques in investigating samples with significant soluble mineral components (e.g., ANC).

  7. High concentration of residual aluminum oxide on titanium surface inhibits extracellular matrix mineralization.

    PubMed

    Canabarro, A; Diniz, M G; Paciornik, S; Carvalho, L; Sampaio, E M; Beloti, M M; Rosa, A L; Fischer, R G

    2008-12-01

    In the present study we characterized titanium (Ti) surfaces submitted to different treatments and evaluated the response of osteoblasts derived from human alveolar bone to these surfaces. Five different surfaces were evaluated: ground (G), ground and chemical etched (G1-HF for 60 s), sand blasted (SB-Al(2)O(3) particles 65 mum), sand blasted and chemical etched (SLA1-HF for 60 s and SLA2-HF for 13 s). Surface morphology was evaluated under SEM and roughness parameters by contact scanning instrument. The presence of Al(2)O(3) was detected by EDS and the amount calculated by digital analyses. Osteoblasts were cultured on these surfaces and it was evaluated: cell adhesion, proliferation, and viability, alkaline phosphatase activity, total protein content, and matrix mineralization formation. Physical and chemical treatments produced very different surface morphologies. Al(2)O(3) residues were detected on SB and SLA2 surfaces. Only matrix mineralization formation was affected by different surface treatments, being increased on rough surface (SLA1) and reduced on surface with high amount of Al(2)O(3) residues (SB). On the basis of these findings, it is possible to conclude that high concentration of residual Al(2)O(3) negatively interfere with the process of matrix mineralization formation in contact with Ti implant surfaces.

  8. Automated mineral identification algorithm using optical properties of crystals

    NASA Astrophysics Data System (ADS)

    Aligholi, Saeed; Khajavi, Reza; Razmara, Morteza

    2015-12-01

    A method has been developed to automatically characterize the type of mineral phases by means of digital image analysis using optical properties of crystals. The method relies on microscope automation, digital image acquisition, image processing and analysis. Two hundred series of digital images were taken from 45 standard thin sections using a digital camera mounted on a conventional microscope and then transmitted to a computer. CIELab color space is selected for the processing, in order to effectively employ its well-defined color difference metric for introducing appropriate color-based feature. Seven basic optical properties of minerals (A. color; B. pleochroism; C. interference color; D. birefringence; E. opacity; F. isotropy; G. extinction angle) are redefined. The Local Binary Pattern (LBP) operator and modeling texture is integrated in the Mineral Identification (MI) scheme to identify homogeneous regions in microscopic images of minerals. The accuracy of mineral identification using the method was %99, %98, %96 and %95 for biotite, hornblende, quartz and calcite minerals, respectively. The method is applicable to other minerals and phases for which individual optical properties of crystals do not provide enough discrimination between the relevant phases. On the basis of this research, it can be concluded that if the CIELab color space and the local binary pattern (LBP) are applied, it is possible to recognize the mineral samples with the accuracy of more than 98%.

  9. Three Aromatic Residues are Required for Electron Transfer during Iron Mineralization in Bacterioferritin.

    PubMed

    Bradley, Justin M; Svistunenko, Dimitri A; Lawson, Tamara L; Hemmings, Andrew M; Moore, Geoffrey R; Le Brun, Nick E

    2015-12-01

    Ferritins are iron storage proteins that overcome the problems of toxicity and poor bioavailability of iron by catalyzing iron oxidation and mineralization through the activity of a diiron ferroxidase site. Unlike in other ferritins, the oxidized di-Fe(3+) site of Escherichia coli bacterioferritin (EcBFR) is stable and therefore does not function as a conduit for the transfer of Fe(3+) into the storage cavity, but instead acts as a true catalytic cofactor that cycles its oxidation state while driving Fe(2+) oxidation in the cavity. Herein, we demonstrate that EcBFR mineralization depends on three aromatic residues near the diiron site, Tyr25, Tyr58, and Trp133, and that a transient radical is formed on Tyr25. The data indicate that the aromatic residues, together with a previously identified inner surface iron site, promote mineralization by ensuring the simultaneous delivery of two electrons, derived from Fe(2+) oxidation in the BFR cavity, to the di-ferric catalytic site for safe reduction of O2.

  10. Statistical measures on residue-level protein structural properties.

    PubMed

    Huang, Yuanyuan; Bonett, Stephen; Kloczkowski, Andrzej; Jernigan, Robert; Wu, Zhijun

    2011-07-01

    The atomic-level structural properties of proteins, such as bond lengths, bond angles, and torsion angles, have been well studied and understood based on either chemistry knowledge or statistical analysis. Similar properties on the residue-level, such as the distances between two residues and the angles formed by short sequences of residues, can be equally important for structural analysis and modeling, but these have not been examined and documented on a similar scale. While these properties are difficult to measure experimentally, they can be statistically estimated in meaningful ways based on their distributions in known proteins structures. Residue-level structural properties including various types of residue distances and angles are estimated statistically. A software package is built to provide direct access to the statistical data for the properties including some important correlations not previously investigated. The distributions of residue distances and angles may vary with varying sequences, but in most cases, are concentrated in some high probability ranges, corresponding to their frequent occurrences in either α-helices or β-sheets. Strong correlations among neighboring residue angles, similar to those between neighboring torsion angles at the atomic-level, are revealed based on their statistical measures. Residue-level statistical potentials can be defined using the statistical distributions and correlations of the residue distances and angles. Ramachandran-like plots for strongly correlated residue angles are plotted and analyzed. Their applications to structural evaluation and refinement are demonstrated. With the increase in both number and quality of known protein structures, many structural properties can be derived from sets of protein structures by statistical analysis and data mining, and these can even be used as a supplement to the experimental data for structure determinations. Indeed, the statistical measures on various types of

  11. Ice nucleation properties of the most abundant mineral dust phases

    NASA Astrophysics Data System (ADS)

    Zimmermann, Frank; Weinbruch, Stephan; Schütz, Lothar; Hofmann, Heiko; Ebert, Martin; Kandler, Konrad; Worringen, Annette

    2008-12-01

    The ice nucleation properties of the nine most abundant minerals occurring in desert aerosols (quartz, albite, microcline, kaolinite, montmorillonite, illite, calcite, gypsum, and hematite) were investigated by environmental scanning electron microscopy (ESEM). In this instrument, the pure minerals are exposed to water vapor at variable pressures and temperatures. The crystallization of ice on the mineral particles is observed by secondary electron imaging, and the supersaturation for an activated particle fraction of 1-3% is determined as function of temperature. In all experiments, condensation of water prior to ice formation was not observed within detectable limits, even at water supersaturation. The highest temperatures for 1-3% activation vary between -10°C and -16°C for the nine minerals investigated, and the corresponding onset relative humidities relative to ice RHi between 107 and 117%. Supersaturation temperature curves for initial ice formation (1-3% activation) in the temperature range typical for mixed-phase clouds were measured for all nine minerals. The temperature dependence of the onset relative humidity is strongly dependent on mineralogy. Kaolinite, montmorillonite, and hematite show a strong increase in RHi with decreasing temperature, whereas RHi is almost constant for illite, albite, quartz, and calcite. The highly variable ice nucleation properties of the various mineral dust components should be considered for parameterization schemes. Illite and kaolinite are the most important minerals to consider, as they have high ice nucleation efficiency and are common components of desert aerosols.

  12. ASSESSING CHANGES IN SOIL MICROBIAL COMMUNITIES AND CARBON MINERALIZATION IN BT AND NON-BT CORN RESIDUE-AMENDED SOILS

    USDA-ARS?s Scientific Manuscript database

    The effects of Bt corn (Zea mays L.) residue on soil microbial communities and rates of C mineralization were investigated. The Bt corn residue had a higher lignin content (12%) and lignin/N (9.9) ratio compared with its non-Bt near-isoline (10% lignin; lignin/N = 8.6). We examined the relationships...

  13. A kinetic approach to evaluate salinity effects on carbon mineralization in a plant residue-amended soil*

    PubMed Central

    Nourbakhsh, Farshid; Sheikh-Hosseini, Ahmad R.

    2006-01-01

    The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralization kinetics in a soil amended with alfalfa, wheat and corn residues. A factorial combination of two salinity levels (0.97 and 18.2 dS/m) and four levels of plant residues (control, alfalfa, wheat and corn) with three replications was performed. A first order kinetic model was used to describe the C mineralization and to calculate the potentially mineralizable C. The CO2-C evolved under non-saline condition, ranged from 814.6 to 4842.4 mg CO2-C/kg in control and alfalfa residue-amended soils, respectively. Salinization reduced the rates of CO2 evolution by 18.7%, 6.2% and 5.2% in alfalfa, wheat and corn residue-amended soils, respectively. Potentially mineralizable C (C 0) was reduced significantly in salinized alfalfa residue-treated soils whereas, no significant difference was observed for control treatments as well as wheat and corn residue-treated soils. We concluded that the response pattern of C mineralization to salinity stress depended on the plant residue quality and duration of incubation. PMID:16972320

  14. Biological residues define the ice nucleation properties of soil dust

    NASA Astrophysics Data System (ADS)

    Conen, F.; Morris, C. E.; Leifeld, J.; Yakutin, M. V.; Alewell, C.

    2011-06-01

    Soil dust is a major driver of ice nucleation in clouds leading to precipitation. It consists largely of mineral particles with a small fraction of organic matter constituted mainly of remains of micro-organisms that participated in degrading plant debris before their own decay. Some micro-organisms have been shown to be much better ice nuclei than the most efficient soil mineral. Yet, current aerosol schemes in global climate models do not consider a difference between soil dust and mineral dust in terms of ice nucleation activity. Here, we show that particles from the clay and silt size fraction of four different soils naturally associated with 0.7 to 11.8 % organic carbon (w/w) can have up to four orders of magnitude more ice nuclei per unit mass active in the immersion freezing mode at -12 °C than montmorillonite, the most efficient pure clay mineral. Most of this activity was lost after heat treatment. Removal of biological residues reduced ice nucleation activity to, or below that of montmorillonite. Desert soils, inherently low in organic content, are a large natural source of dust in the atmosphere. In contrast, agricultural land use is concentrated on fertile soils with much larger organic matter contents than found in deserts. It is currently estimated that the contribution of agricultural soils to the global dust burden is less than 20 %. Yet, these disturbed soils can contribute ice nuclei to the atmosphere of a very different and much more potent kind than mineral dusts.

  15. Crop residue management and fertilization effects on soil organic matter and associated biological properties.

    PubMed

    Zhao, Bingzi; Zhang, Jiabao; Yu, Yueyue; Karlen, Douglas L; Hao, Xiying

    2016-09-01

    Returning crop residue may result in nutrient reduction in soil in the first few years. A two-year field experiment was conducted to assess whether this negative effect is alleviated by improved crop residue management (CRM). Nine treatments (3 CRM and 3 N fertilizer rates) were used. The CRM treatments were (1) R0: 100 % of the N using mineral fertilizer with no crop residues return; (2) R: crop residue plus mineral fertilizer as for the R0; and (3) Rc: crop residue plus 83 % of the N using mineral and 17 % manure fertilizer. Each CRM received N fertilizer rates at 270, 360, and 450 kg N ha(-1) year(-1). At the end of the experiment, soil NO3-N was reduced by 33 % from the R relative to the R0 treatment, while the Rc treatment resulted in a 21 to 44 % increase in occluded particulate organic C and N, and 80 °C extracted dissolved organic N, 19 to 32 % increase in microbial biomass C and protease activity, and higher monounsaturated phospholipid fatty acid (PLFA):saturated PLFA ratio from stimulating growth of indigenous bacteria when compared with the R treatment. Principal component analysis showed that the Biolog and PLFA profiles in the three CRM treatments were different from each other. Overall, these properties were not influenced by the used N fertilizer rates. Our results indicated that application of 17 % of the total N using manure in a field with crop residues return was effective for improving potential plant N availability and labile soil organic matter, primarily due to a shift in the dominant microorganisms.

  16. Impact of the addition of different plant residues on carbon-nitrogen content and nitrogen mineralization-immobilization turnover in a soil incubated under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Abbasi, M. K.; Tahir, M. M.; Sabir, N.; Khurshid, M.

    2014-10-01

    Application of plant residues as soil amendment may represent a valuable recycling strategy that affects on carbon (C) and nitrogen (N) cycling, soil properties improvement and plant growth promotion. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water filled pore space (WFPS)) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues i.e. the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Poplus euramericana, Rubinia pseudoacacia and Elagnus umbellate incorporated into the soil at the rate of 200 mg residue N kg-1 soil. The diverse plant residues showed wide variation in total N, carbon, lignin, polyphenols and C/N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of G. max and the shoot and root of T. repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg-1 and representing a 55, 37 and 36% of added N being released from these resources. The roots of G. max and Z. mays and the shoot of Z. mays showed continuous negative values throughout the incubation showing net immobilization. After an initial immobilization, leaves of P. euramericana, R. pseudoacacia and E. umbellate exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg-1, respectively and representing a 16, 32 and 33% of added N being released. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01), and negatively correlated with lignin content (r = -0.84; p ≤ 0.01), C/N ratio (r = -0.69; p ≤ 0.05), lignin/N ratio (r = -0.68; p ≤ 0.05), polyphenol/N ratio (r = -0.73; p ≤ 0.05) and ligin + polyphenol/N ratio (r = -0.70; p ≤ 0.05) indicating

  17. Mineral properties and their contributions to particle toxicity.

    PubMed Central

    Guthrie, G D

    1997-01-01

    It has been recognized since at least as early as the mid-1500s that inhaled minerals (i.e., inorganic particles) can pose a risk. Extensive research has focused on the biological mechanisms responsible for asbestos- and silica-induced diseases, but much less attention has been paid to the mineralogical properties and geochemical mechanisms that might influence a mineral's biological activity. Several important mineralogical characteristics control a mineral's reactivity in geochemical reactions and are likely to determine its biological reactivity. In addition to the traditionally considered variables of particle size and shape, mineralogical characteristics such as dissolution behavior, ion exchange, sorptive properties, and the nature of the mineral surface (e.g., surface reactivity) play important roles in determining the toxicity and carcinogenicity of a particle. Ultimately, a mineral's species (which provides direct information on a mineral's structure and composition) is probably one of the most significant yet most neglected factors that must be considered in studies of toxicity and carcinogenicity. Images Figure 4. PMID:9400692

  18. Enzyme-Mimicking properties of silicates and other minerals

    NASA Astrophysics Data System (ADS)

    Siegel, B. Z.; Siegel, S. M.

    The adsorptive and/or catalytic properties of clays, silicates in general, and other minerals are well known. More recently, their probable role in prebiotic syntheses of bio-organic compounds has become a matter of record. We demonstrate that, in addition to their role in de novo formation of important biomolecules, clays, micas, fibrous silicates and other minerals mimick the activities of contemporary enzymes including oxidases, esterases, phosphatases and glucosidases. The existence of such capabilities in substances likely to be represented on the surfaces of Earth-like planets may offer a challenge to the technology and design of remote life detection systems which must then distinguish between bona fide biological chemistry and mineral-base pseudometabolism. It also raises questions about the importance of mineral surfaces in post-mortem transformations of organic metabolites in our own biosphere.

  19. The VLab repository of thermodynamics and thermoelastic properties of minerals

    NASA Astrophysics Data System (ADS)

    Da Silveira, P. R.; Sarkar, K.; Wentzcovitch, R. M.; Shukla, G.; Lindemann, W.; Wu, Z.

    2015-12-01

    Thermodynamics and thermoelastic properties of minerals at planetary interior conditions are essential as input for geodynamics simulations and for interpretation of seismic tomography models. Precise experimental determination of these properties at such extreme conditions is very challenging. Therefore, ab initio calculations play an essential role in this context, but at the cost of great computational effort and memory use. Setting up a widely accessible and versatile mineral physics database can relax unnecessary repetition of such computationally intensive calculations. Access to such data facilitates transactional interaction across fields and can advance more quickly insights about deep Earth processes. Hosted by the Minnesota Supercomputing Institute, the Virtual Laboratory for Earth and Planetary Materials (VLab) was designed to develop and promote the theory of planetary materials using distributed, high-throughput quantum calculations. VLab hosts an interactive database of thermodynamics and thermoelastic properties or minerals computed by ab initio. Such properties can be obtained according to user's preference. The database is accompanied by interactive visualization tools, allowing users to repeat and build upon previously published results. Using VLab2015, we have evaluated thermoelastic properties, such as elastic coefficients (Cij), Voigt, Reuss, and Voigt-Reuss-Hill aggregate averages for bulk (K) and shear modulus (G), shear wave velocity (VS), longitudinal wave velocity (Vp), and bulk sound velocity (V0) for several important minerals. Developed web services are general and can be used for crystals of any symmetry. Results can be tabulated, plotted, or downloaded from the VLab website according to user's preference.

  20. Structure, chemistry, and properties of mineral nanoparticles

    SciTech Connect

    Waychunas, G.A.; Zhang, H.; Gilbert, B.

    2008-12-02

    Nanoparticle properties can depart markedly from their bulk analog materials, including large differences in chemical reactivity, molecular and electronic structure, and mechanical behavior. The greatest changes are expected at the smallest sizes, e.g. 10 nm and below, where surface effects are expected to dominate bonding, shape and energy considerations. The precise chemistry at nanoparticle interfaces can have a profound effect on structure, phase transformations, strain, and reactivity. Certain phases may exist only as nanoparticles, requiring transformations in chemistry, stoichiometry and structure with evolution to larger sizes. In general, mineralogical nanoparticles have been little studied.

  1. EM Properties of Magnetic Minerals at RADAR Frequencies

    NASA Technical Reports Server (NTRS)

    Stillman, D. E.; Olhoeft, G. R.

    2005-01-01

    Previous missions to Mars have revealed that Mars surface is magnetic at DC frequency. Does this highly magnetic surface layer attenuate RADAR energy as it does in certain locations on Earth? It has been suggested that the active magnetic mineral on Mars is titanomaghemite and/or titanomagnetite. When titanium is incorporated into a maghemite or magnetite crystal, the Curie temperature can be significantly reduced. Mars has a wide range of daily temperature fluctuations (303K - 143K), which could allow for daily passes through the Curie temperature. Hence, the global dust layer on Mars could experience widely varying magnetic properties as a function of temperature, more specifically being ferromagnetic at night and paramagnetic during the day. Measurements of EM properties of magnetic minerals were made versus frequency and temperature (300K- 180K). Magnetic minerals and Martian analog samples were gathered from a number of different locations on Earth.

  2. Minerals

    NASA Astrophysics Data System (ADS)

    Wenk, Hans-Rudolf; Bulakh, Andrei

    2004-06-01

    This introduction to mineralogy for undergraduate and graduate students in geology and materials science has been designed for a semester course. Covering all aspects of mineralogy in an integrated way, it links mineral properties with broader geological processes, and conveys their economic importance throughout the text. Handy reference tables and a glossary of terms make this study an indispensable guide for the next generation of mineralogy students.

  3. Nitrogen mineralization from selected /sup 15/N-labelled crop residues and humus as affected by inorganic nitrogen

    SciTech Connect

    Santos, J.A.

    1987-01-01

    The use of cover crops or crop residues as a source of N to succeeding crops has become a matter of increasing importance for economic and environmental reason. Greenhouse and field studies were conducted to determine the N contribution of four /sup 15/N labelled crop residues, rye (Secale cereale L.), wheat (Triticum aestivum L.), crimson clover (Trifolium encarnatum L.), and hairy vetch (Vicia sativa L.), to successive crops and to evaluate the effect of different organic (ON) and inorganic N (IN) combinations on mineralization of the above residues. Total /sup 15/N recovery from the residues ranged from 51% to 85% and 4% to 74% for the greenhouse and field studies, respectively.

  4. Sugar cane management with humic extract and organic and mineral fertilizer: impacts on Oxisol some physical properties

    NASA Astrophysics Data System (ADS)

    Alves, M. C.; Campos, F. S.; Souza, Z. M.

    2012-04-01

    The present investigation has as objective to study the impact of cultive systems, humic extract and organic and mineral fertilizers on Oxisol some physical properties cultivated of sugar cane. It was developed in Aparecida do Taboado, Mato Grosso do Sul, Brazil, in Manufactores Alcoolvale. The study was in sugar cane culture implanted on 3th and 4th cycle. The experimental design was at randomized blocks following scheme in zone with eight treatments and four replications. The two treatments in main zone were represented by cultivation systems (with and without chisel) and the subzone fertilization (T1-mineral, T2-mineral+sugar cane residue, T3-mineral+humic and fulvic acids and T4-mix of mineral, sugar cane residue and humic and fulvic acids). In three soil layers: 0.00-0.05; 0.10-0.20 and 0.20-0.40 m were studied the physical soil properties: macroporosity, microporosity, total porosity and soil bulk density. Also evaluate the technological quality of sugar cane. The conclusions are: the application of mineral fertilizer+sugar cane residue+humic extract (Humitec ®) and cropping system with chisel were more effective in improving soil physical; the system of crop of sugar cane ratton implanted in the 2th and 3th cycle, without the use of chisel was better in the recovery of soil physical properties; the crop system without the chisel and the combination of mineral fertilizer+sugar cane residue was promising to increase of Brix, Pol juice, Pol sugar cane and total recoverable sugars Pol.

  5. Mechanical properties of mineralized collagen fibrils as influenced by demineralization

    PubMed Central

    Balooch, M.; Habelitz, S.; Kinney, J. H.; Marshall, S. J.; Marshall, G. W.

    2009-01-01

    Dentin and bone derive their mechanical properties from a complex arrangement of collagen type I fibrils reinforced with nanocrystaline apatite mineral in extra- and intrafibrillar compartments. While mechanical properties have been determined for the bulk of the mineralized tissue, information on the mechanics of the individual fibril is limited. Here, atomic force microscopy was used on individual collagen fibrils to study structural and mechanical changes during acid etching. The characteristic 67 nm periodicity of gap-zones was not observed on the mineralized fibril, but became apparent and increasingly pronounced with continuous demineralization. AFM-nanoindentation showed a decrease in modulus from 1.5 GPa to 50 MPa during acid etching of individual collagen fibrils and revealed that the modulus profile followed the axial periodicity. The nanomechanical data, Raman spectroscopy and SAXS support the hypothesis that intrafibrillar mineral etches at a substantially slower rate than the extrafibrillar mineral. These findings are relevant for understanding the biomechanics and design principles of calcified tissues derived from collagen matrices. PMID:18467127

  6. Mechanical Properties of Mineralized Collagen Fibrils As Influenced By Demineralization

    SciTech Connect

    Balooch, M.; Habelitz, S.; Kinney, J.H.; Marshall, S.J.; Marshall, G.W.

    2009-05-11

    Dentin and bone derive their mechanical properties from a complex arrangement of collagen type-I fibrils reinforced with nanocrystalline apatite mineral in extra- and intrafibrillar compartments. While mechanical properties have been determined for the bulk of the mineralized tissue, information on the mechanics of the individual fibril is limited. Here, atomic force microscopy was used on individual collagen fibrils to study structural and mechanical changes during acid etching. The characteristic 67 nm periodicity of gap zones was not observed on the mineralized fibril, but became apparent and increasingly pronounced with continuous demineralization. AFM-nanoindentation showed a decrease in modulus from 1.5 GPa to 50 MPa during acid etching of individual collagen fibrils and revealed that the modulus profile followed the axial periodicity. The nanomechanical data, Raman spectroscopy and SAXS support the hypothesis that intrafibrillar mineral etches at a substantially slower rate than the extrafibrillar mineral. These findings are relevant for understanding the biomechanics and design principles of calcified tissues derived from collagen matrices.

  7. Hazardous properties of paint residues from the furniture industry.

    PubMed

    Vaajasaari, Kati; Kulovaara, Maaret; Joutti, Anneli; Schultz, Eija; Soljamo, Kari

    2004-01-30

    The objective of this study was to screen nine excess paint residues for environmental hazard and to evaluate their disposability in a non-hazardous or hazardous-waste landfill. These residues were produced in the process of spray-painting furniture. Residues were classified according to their leaching and ecotoxicological properties. Leaching properties were determined with the European standard SFS-EN 12457-2 leaching-test. The toxicity of the leaching-test eluates was measured with plant-, bacteria- and enzyme-inhibition bioassays. Total organic carbon, formaldehyde and solvent concentrations in the solid wastes and in the leaching-test eluates were analysed. It seemed likely that leached formaldehyde caused very high acute toxicity in leaching-test eluates of the dry-booth residues. This hypothesis was based on the fact that the formaldehyde concentrations in the leaching-test eluates of the dry-booth residues were 62-75 times higher than the EC50 value reported in the literature for formaldehyde. The results of the water-curtain booth residues showed that the samples with the highest TOC and aromatic solvent concentrations were also the most toxic. The studied excess paint residues were complex organic mixtures and contained large amounts of compounds not identifiable from chemical data. Therefore, the evaluation of the hazard based solely on available chemical data is unlikely to be sufficient, as evidenced by our study. Our results show that harmful compounds remain in the solid waste and the toxicity results of their leaching-test eluates show that toxicity may leach from residues in contact with water at landfill sites. They also confirm the benefit of combining chemical and ecotoxicological assays in assessing the potential environmental hazard of complex organic mixtures found in wastes. Copyright 2003 Elsevier B.V.

  8. Effect of high-energy X-ray doses on bone elastic properties and residual strains.

    PubMed

    Singhal, A; Deymier-Black, Alix C; Almer, J D; Dunand, D C

    2011-11-01

    Bone X-ray irradiation occurs during medical treatments, sterilization of allografts, space travel and in vitro studies. High doses are known to affect the post-yield properties of bone, but their effect on the bone elastic properties is unclear. The effect of such doses on the mineral-organic interface has also not been adequately addressed. Here, the evolution of elastic properties and residual strains with increasing synchrotron X-ray dose (5-3880 kGy) is examined on bovine cortical bone. It is found that these doses affect neither the degree of nanometer-level load transfer between the hydroxyapatite (HAP) platelets and the collagen up to stresses of -60 MPa nor the microscopic modulus of collagen fibrils (both measured by synchrotron X-ray scattering during repeated in situ loading and unloading). However, the residual elastic strains in the HAP phase decrease markedly with increased irradiation, indicating damage at the HAP-collagen interface. The HAP residual strain also decreases after repeated loading/unloading cycles. These observations can be explained by temporary de-bonding at the HAP/collagen interface (thus reducing the residual strain), followed by rapid re-bonding (so that load transfer capability is not affected). Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Comparison of mineral dust and droplet residuals measured with two single particle aerosol mass spectrometers

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Ludwig, Wolfgang; Zawadowicz, Maria; Hiranuma, Naruki; Hitzenberger, Regina; Cziczo, Daniel; DeMott, Paul; Möhler, Ottmar

    2017-04-01

    Single Particle mass spectrometers are used to gain information on the chemical composition of individual aerosol particles, aerosol mixing state, and other valuable aerosol characteristics. During the Mass Spectrometry Intercomparison at the Fifth Ice Nucleation (FIN-01) Workshop, the new LAAPTOF single particle aerosol mass spectrometer (AeroMegt GmbH) was conducting simultaneous measurements together with the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument. The aerosol particles were sampled from the AIDA chamber during ice cloud expansion experiments. Samples of mineral dust and ice droplet residuals were measured simultaneously. In this work, three expansion experiments are chosen for a comparison between the two mass spectrometers. A fuzzy clustering routine is used to group the spectra. Cluster centers describing the ensemble of particles are compared. First results show that while differences in the peak heights are likely due to the use of an amplifier in PALMS, cluster centers are comparable.

  10. Compressive Residual Strains in Mineral Nanoparticles as a Possible Origin of Enhanced Crack Resistance in Human Tooth Dentin.

    PubMed

    Forien, Jean-Baptiste; Fleck, Claudia; Cloetens, Peter; Duda, Georg; Fratzl, Peter; Zolotoyabko, Emil; Zaslansky, Paul

    2015-06-10

    The tough bulk of dentin in teeth supports enamel, creating cutting and grinding biostructures with superior failure resistance that is not fully understood. Synchrotron-based diffraction methods, utilizing micro- and nanofocused X-ray beams, reveal that the nm-sized mineral particles aligned with collagen are precompressed and that the residual strains vanish upon mild annealing. We show the link between the mineral nanoparticles and known damage propagation trajectories in dentin, suggesting a previously overlooked compression-mediated toughening mechanism.

  11. Scattering Properties of Heterogeneous Mineral Particles with Absorbing Inclusions

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.

    2015-01-01

    We analyze the results of numerically exact computer modeling of scattering and absorption properties of randomly oriented poly-disperse heterogeneous particles obtained by placing microscopic absorbing grains randomly on the surfaces of much larger spherical mineral hosts or by imbedding them randomly inside the hosts. These computations are paralleled by those for heterogeneous particles obtained by fully encapsulating fractal-like absorbing clusters in the mineral hosts. All computations are performed using the superposition T-matrix method. In the case of randomly distributed inclusions, the results are compared with the outcome of Lorenz-Mie computations for an external mixture of the mineral hosts and absorbing grains. We conclude that internal aggregation can affect strongly both the integral radiometric and differential scattering characteristics of the heterogeneous particle mixtures.

  12. Scattering Properties of Heterogeneous Mineral Particles with Absorbing Inclusions

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.

    2015-01-01

    We analyze the results of numerically exact computer modeling of scattering and absorption properties of randomly oriented poly-disperse heterogeneous particles obtained by placing microscopic absorbing grains randomly on the surfaces of much larger spherical mineral hosts or by imbedding them randomly inside the hosts. These computations are paralleled by those for heterogeneous particles obtained by fully encapsulating fractal-like absorbing clusters in the mineral hosts. All computations are performed using the superposition T-matrix method. In the case of randomly distributed inclusions, the results are compared with the outcome of Lorenz-Mie computations for an external mixture of the mineral hosts and absorbing grains. We conclude that internal aggregation can affect strongly both the integral radiometric and differential scattering characteristics of the heterogeneous particle mixtures.

  13. Ultraviolet spectral reflectance properties of common planetary minerals

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward A.; McCormack, Kaitlyn A.; Bell, James F.; Hendrix, Amanda R.; Bailey, Daniel T.; Craig, Michael A.; Mertzman, Stanley A.; Robinson, Mark S.; Riner, Miriam A.

    2008-09-01

    Ultraviolet spectral reflectance properties (200-400 nm) of a large number of minerals known or presumed to exist on the surfaces of Mars, the Moon, and asteroids, and in many meteorites, were investigated. Ultraviolet reflectance spectra (200-400 nm) of these minerals range from slightly blue-sloped (reflectance decreasing toward longer wavelengths) to strongly red-sloped (reflectance increasing toward longer wavelengths). Most exhibit one or two absorption features that are attributable to Fe sbnd O charge transfers involving Fe 3+ or Fe 2+. The UV region is a very sensitive indicator of the presence of even trace amounts (<0.01 wt%) of Fe 3+ and Fe 2+. The major Fe 3+sbnd O absorption band occurs at shorter wavelengths (˜210-230 nm), and is more intense than the major Fe 2+sbnd O absorption band (˜250-270 nm). Ti-bearing minerals, such as ilmenite, rutile and anatase exhibit UV absorption bands attributable to Ti 4+sbnd O charge transfers. While the positions of metal-O charge transfer bands sometimes differ for different minerals, the variation is often not diagnostic enough to permit unique mineral identification. However, iron oxides and oxyhydroxides can generally be distinguished from Fe-bearing silicates in the 200-400 nm region on the basis of absorption band positions. Within a given mineral group (e.g., low-calcium pyroxene, olivine, plagioclase feldspar), changes in Fe 2+ or Fe 3+ abundance do not appear to result in a measurable change in absorption band minima positions. Absorption band positions can vary as a function of grain size, however, and this variation is likely due to band saturation effects. The intensity of metal-O charge transfers means that some minerals will exhibit saturated UV absorption bands even for fine-grained (<45 μm) powders. In cases where absorption bands are not saturated (e.g., Fe 2+sbnd O bands in some plagioclase feldspars and pyroxenes), changes in Fe 2+ content do not appear to cause variations in band position. In

  14. Mechanical properties of nacre and highly mineralized bone.

    PubMed

    Currey, J D; Zioupos, P; Davies, P; Casino, A

    2001-01-07

    We compared the mechanical properties of 'ordinary' bovine bone, the highly mineralized bone of the rostrum of the whale Mesoplodon densirostris, and mother of pearl (nacre) of the pearl oyster Pinctada margaritifera. The rostrum and the nacre are similar in having very little organic material. However, the rostral bone is much weaker and more brittle than nacre, which in these properties is close to ordinary bone. The ability of nacre to outperform rostral bone is the result of its extremely well-ordered microstructure, with organic material forming a nearly continuous jacket round all the tiny aragonite plates, a design well adapted to produce toughness. In contrast, in the rostrum the organic material, mainly collagen, is poorly organized and discontinuous, allowing the mineral to join up to form, in effect, a brittle stony material.

  15. Mechanical properties of nacre and highly mineralized bone.

    PubMed Central

    Currey, J D; Zioupos, P; Davies, P; Casino, A

    2001-01-01

    We compared the mechanical properties of 'ordinary' bovine bone, the highly mineralized bone of the rostrum of the whale Mesoplodon densirostris, and mother of pearl (nacre) of the pearl oyster Pinctada margaritifera. The rostrum and the nacre are similar in having very little organic material. However, the rostral bone is much weaker and more brittle than nacre, which in these properties is close to ordinary bone. The ability of nacre to outperform rostral bone is the result of its extremely well-ordered microstructure, with organic material forming a nearly continuous jacket round all the tiny aragonite plates, a design well adapted to produce toughness. In contrast, in the rostrum the organic material, mainly collagen, is poorly organized and discontinuous, allowing the mineral to join up to form, in effect, a brittle stony material. PMID:12123292

  16. Structure and physical properties of Hydrogrossular mineral series

    NASA Astrophysics Data System (ADS)

    Adhikari, Puja

    The mineral hydrogrossular series (Ca3Al2(SiO 4)3-x(OH)4x; 0 ≤ x ≤ 3) are important water bearing minerals found in the upper and lower part of the Earth's mantle. They are vital to the planet's hydrosphere under different hydrothermal conditions. The composition and structure of this mineral series are important in geoscience and share many commonalities with cement and clay materials. Other than the end members of the series x = 0 (grossular) and x = 3 (katoite) which have a cubic garnet structure, the structure of the series is totally unknown. We used large-scale ab initio modeling to investigate the structures and properties for hydrogrossular series for x = 0, 0.5, 1, 1.5, 2, 2.5, 3. Results indicate that for x > 0 and x < 3, the structures are tetragonal. This shows that there is structural change related to the lowering of overall symmetry associated with the composition of SiO4 tetrahedra and AlO6 octahedra. Total Bond order also explains the reason behind the change in the compressibility of the series. The electronic structure, mechanical and optical properties of the hydrogrossular series are calculated and the results for grossular and katoite are in good agreement with the available experimental data. The x--dependence of these physical properties for the series supports the notion of the aforementioned structural transition from cubic to tetragonal.

  17. Minerals

    MedlinePlus

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  18. AMBIENT CARBONATION of MINING RESIDUES: Understanding the Mechanisms and Optimization of Direct Carbon Dioxide Mineral Sequestration

    NASA Astrophysics Data System (ADS)

    Assima, G. P.; Larachi, F.; Molson, J. W.; Beaudoin, G.

    2013-12-01

    early UMRs passivation by iron (III) hydroxide, lepidocrocite, promptly inhibiting the reaction. The kinetics and extent of CO2 uptake were also determined on the basis of the residues' physicochemical properties while key criteria were proposed to assist in categorizing ultramafic mining residues based on their suitability to bind to CO2. The implementation of techniques such as chelation, draining and venting was also investigated with the aim of improving and sustaining the carbonation reaction under ambient conditions.

  19. 26 CFR 1.615-7 - Effect of transfer of mineral property.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Effect of transfer of mineral property. 1.615-7... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.615-7 Effect of transfer of mineral property. (a) Transfer before election by transferor. (1) If mineral property is transferred in...

  20. 26 CFR 1.615-7 - Effect of transfer of mineral property.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 7 2011-04-01 2009-04-01 true Effect of transfer of mineral property. 1.615-7... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.615-7 Effect of transfer of mineral property. (a) Transfer before election by transferor. (1) If mineral property is transferred in...

  1. 26 CFR 1.615-7 - Effect of transfer of mineral property.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 7 2012-04-01 2012-04-01 false Effect of transfer of mineral property. 1.615-7... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.615-7 Effect of transfer of mineral property. (a) Transfer before election by transferor. (1) If mineral property is transferred in...

  2. 26 CFR 1.615-7 - Effect of transfer of mineral property.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 7 2013-04-01 2013-04-01 false Effect of transfer of mineral property. 1.615-7... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.615-7 Effect of transfer of mineral property. (a) Transfer before election by transferor. (1) If mineral property is transferred in...

  3. 26 CFR 1.615-7 - Effect of transfer of mineral property.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 7 2014-04-01 2013-04-01 true Effect of transfer of mineral property. 1.615-7... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.615-7 Effect of transfer of mineral property. (a) Transfer before election by transferor. (1) If mineral property is transferred in...

  4. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    NASA Astrophysics Data System (ADS)

    Basyigit, Celalettin; Uysal, Volkan; Kilinçarslan, Şemsettin; Mavi, Betül; Günoǧlu, Kadir; Akkurt, Iskender; Akkaş, Ayşe

    2011-12-01

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  5. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    SciTech Connect

    Basyigit, Celalettin; Uysal, Volkan; Kilincarslan, Semsettin; Akkas, Ayse; Mavi, Betuel; Guenoglu, Kadir; Akkurt, Iskender

    2011-12-26

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  6. Identification of Iron-Bearing Minerals in Solid Residues from Industrial Kaolin Processing

    NASA Astrophysics Data System (ADS)

    Ribeiro, F. R.; Mussel, W. N.; Fabris, J. D.; Novais, R. F.; Garg, V. K.

    2003-06-01

    During the industrial processing of kaolin, the ore material is submitted to bleaching treatments with sulfuric and phosphoric acids and metallic zinc, in order to remove colored iron-rich minerals. The effluent waste is initially strongly acidic, and is chemically neutralized with calcium oxide and left to dry in open pits dug out in the terrain surrounding the industrial plant. The dried residue is then accumulated in deposits so as to produce the ``solid reject''. The Fe in these reject deposits precipitates as poorly crystalline iron-bearing compounds, which are difficult to identify by conventional X-ray diffraction techniques, and must be further characterized by complementary 57Fe Mössbauer analysis. 298 and 80 K Mössbauer spectra of the whole sample collected from the solid reject deposit of the Caolim Azzi industrial plant, in the city of Mar de Espanha, MG, Brazil, revealed that Fe3+ is mainly in octahedral sites of silicates. After treating this whole sample with NaOH, the Mössbauer parameters at 298 and 80 K indicated mainly the presence of iron oxide (hematite; ideal formula, αFe2O3) and oxyhydroxides, such as lepidocrocite (γFeOOH), goethite (αFeOOH) and iron hydroxysulphate, as jarosite (MFe3(SO4)2(OH)6; M = mono or divalent cation).

  7. 26 CFR 1.381(c)(18)-1 - Depletion on extraction of ores or minerals from the waste or residue of prior mining.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Depletion on extraction of ores or minerals from... Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or residue of prior... section 613(c)(3) (relating to extraction of ores or minerals from the ground). Thus, an...

  8. 26 CFR 1.381(c)(18)-1 - Depletion on extraction of ores or minerals from the waste or residue of prior mining.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 4 2011-04-01 2011-04-01 false Depletion on extraction of ores or minerals from... Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or residue of prior... section 613(c)(3) (relating to extraction of ores or minerals from the ground). Thus, an...

  9. Transfer of atrazine degradation capability to mineralize aged ¹⁴C-labeled atrazine residues in soils.

    PubMed

    Jablonowski, Nicolai David; Krutz, Jason L; Martinazzo, Rosane; Zajkoska, Petra; Hamacher, Georg; Borchard, Nils; Burauel, Peter

    2013-07-03

    The degradation of environmentally long-term aged (22 years) ¹⁴C-labeled atrazine residues in soil stimulated by inoculation with atrazine-adapted soil from Belgium, the United States (U.S.), and Brazil at two different moisture regimes (50% WHCmax/slurried conditions) was evaluated. Inoculation of the soil containing the aged ¹⁴C-labeled atrazine residues with 5, 50, and 100% (w/w) Belgian, U.S., or Brazilian atrazine-adapted soil increased ¹⁴C-atrazine residue mineralization by a factor of 3.1-13.9, depending upon the amount of atrazine-adapted soil inocula and the moisture conditions. Aged ¹⁴C-atrazine residue mineralization varied between 2 and 8% for Belgian and between 1 and 2% for U.S. and Brazilian soil inoculum at 50% WHCmax but was increased under slurried conditions, accounting for 8-10% (Belgian soil), 2-7% (Brazilian soil), and 3% (American soil). The results show that an increased degradation of long-term aged ¹⁴C-labeled atrazine residues is possible by the transfer of atrazine-adapted soil microflora from different soils and regions to non-adapted soil.

  10. Influence of Residue and Nitrogen Fertilizer Additions on Carbon Mineralization in Soils with Different Texture and Cropping Histories

    PubMed Central

    Chen, Xianni; Wang, Xudong; Liebman, Matt; Cavigelli, Michel; Wander, Michelle

    2014-01-01

    To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil]) comparing conventional grain systems (Conv) amended with inorganic fertilizers with 3 yr (Med) and longer (Long), more diverse cropping systems amended with manure. A double exponential model was used to estimate the size (Ca, Cs) and decay rates (ka, ks) of active and slow C pools which we compared with total particulate organic matter (POM) and occluded-POM (OPOM). The high-SOC IAsoil containing highly active smectite clays maintained smaller labile pools and higher decay rates than the low-SOC MDsoil containing semi-active kaolinitic clays. Net SOC loss was greater (2.6 g kg−1; 8.6%) from the IAsoil than the MDsoil (0.9 g kg−1, 6.3%); fractions and coefficients suggest losses were principally from IAsoil’s resistant pool. Cropping history did not alter SOC pool size or decay rates in IAsoil where rotation-based differences in OPOM-C were small. In MDsoil, use of diversified rotations and manure increased ka by 32% and ks by 46% compared to Conv; differences mirrored in POM- and OPOM-C contents. Residue addition prompted greater increases in Ca (340% vs 230%) and Cs (38% vs 21%) and decreases in ka (58% vs 9%) in IAsoil than MDsoil. Reduced losses of SOC from residue-amended MDsoil were associated with increased OPOM-C. Nitrogen addition dampened CO2-C release. Clay type and C saturation dominated the IAsoil’s response to external inputs and made labile and stable fractions more vulnerable to decay. Trends in OPOM suggest aggregate protection influences C turnover in the low active MDsoil. Clay charge and OPOM-C contents were better predictors of soil C dynamics than clay or POM-C contents. PMID:25078458

  11. Interactive calculations of thermodynamics properties of minerals in VLab

    NASA Astrophysics Data System (ADS)

    Kelly, N.; da Silveira, P. R.; Wentzcovitch, R. M.

    2009-12-01

    We have developed a page within the VLab web site from which calculations of thermodynamics properties of minerals can be performed interactively. Previously published first principles calculations based on qhasiharmonic theory by our group have produced pressure dependent vibrational density of states (VDOSs). These calculations were costly and the essential information they produced, the VDOSs, are now stored on a database. They can be used to regenerate published results or calculate thermodynamics properties using specific user entered information (pressure and temperature range and grids, equation of state type, etc). Results are presented in numerical or graphics format (Gnuplot 4.2.2) that are interactively customized and downloadable. All codes behind the Web container are written in Java.

  12. Optical properties of mineral dust aerosol in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Köhler, Claas H.

    2017-02-01

    The optical properties of mineral dust and biomass burning aerosol in the thermal infrared (TIR) are examined by means of Fourier Transform Infrared Spectrometer (FTIR) measurements and radiative transfer (RT) simulations. The measurements were conducted within the scope of the Saharan Mineral Dust Experiment 2 (SAMUM-2) at Praia (Cape Verde) in January and February 2008. The aerosol radiative effect in the TIR atmospheric window region 800-1200 cm-1 (8-12 µm) is discussed in two case studies. The first case study employs a combination of IASI measurements and RT simulations to investigate a lofted optically thin biomass burning layer with emphasis on its potential influence on sea surface temperature (SST) retrieval. The second case study uses ground based measurements to establish the importance of particle shape and refractive index for benchmark RT simulations of dust optical properties in the TIR domain. Our research confirms earlier studies suggesting that spheroidal model particles lead to a significantly improved agreement between RT simulations and measurements compared to spheres. However, room for improvement remains, as the uncertainty originating from the refractive index data for many aerosol constituents prohibits more conclusive results.

  13. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties

    SciTech Connect

    Nearby Supernova Factory; Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

    2014-01-17

    Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spec- trophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ? 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at ? 1?, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is 0.045 ? 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch param- eters: Steps at> 2? significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light- curve width and color around peak (similar to the∆m15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20 to 30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  14. Type Ia supernova Hubble residuals and host-galaxy properties

    SciTech Connect

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Baltay, C.; Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Childress, M.; Chotard, N.; Copin, Y.; Gangler, E. [Université de Lyon, F-69622 Lyon; Université de Lyon 1, Villeurbanne; CNRS and others

    2014-03-20

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm {sub 15} and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  15. Nanofluid enhancement of mineral oil and thermal properties instrument design

    NASA Astrophysics Data System (ADS)

    Wilborn, Eli

    thermal conductivities of various fluids. The second design calculated a thermal conductivity of water to be 0.59W/m2 c', while the commonly accepted value is 0.58W/ m2c', which is well within a tolerable range of error to accept this value as accurate at the experimental conditions. This heat transfer cell also calculated the thermal conductivity value for AMSOIL synthetic motor oil to be 0.12W/m2 c and 0.10W/m2c for mineral oil, both of these values are within the expected ranges of thermal conductivity for oils. The second goal of applying the heat transfer enhancement properties of a nanofluid to a transformer cooling application proved to be futile for Copper Oxide(40nm) and Carbon coated Copper nanoparticles(25nm) in mineral oil. All of the attempted nanofluids fell out of suspension within a timeframe of a day, and in a transformer cell where natural convection is the only means of flow available that contributes to keeping the nanoparticles suspended, there is not enough flow to keep the nanoparticles from falling out of suspension. That is why unless the transformer industry moves towards another coolant besides mineral oil, heat transfer enhancement using Copper Oxide (40nm) or Carbon Coated nanoparticles (25nm) in a mineral oil nanofluid is not a viable option.

  16. GEMAS: Mineral magnetic properties of European agricultural soils

    NASA Astrophysics Data System (ADS)

    Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Fabian, Karl; Nourgaliev, Danis; Reimann, Clemens

    2015-04-01

    The GEMAS survey of European agricultural soil provides a unique opportunity to create the first comprehensive overview of mineral magnetic properties in agricultural soil on a continental scale. Samples from the upper 20 cm were taken in large agricultural fields (Ap-sample) at a density of 1 site/2500 km2. After air drying and sieving to < 2 mm, low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k was measured on 2500 samples using a Bartington MS2B sensor to obtain frequency dependence of magnetic susceptibility kfd. Hysteresis properties are determined using a J coercivity spectrometer, built in the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T, taking approximately 15 minutes. This allows to measure a wide range of magnetic parameters for large sample collections. Because the GEMAS geochemical atlas provides a comprehensive set of geochemical measurements characterizing the individual soil samples, the new data allow to study magnetic parameters in relation to chemical and geological parameters. The results show a clear large scale spatial distribution with e.g. broad distinct lows of k over sandy sediments of the last glaciation in central northern Europe and other sedimentary basins. More localized positive k anomalies occur near young volcanism, or old basalts exposed on the surface. On the other hand, frequency dependence of k displays a much more scattered behavior, indicating either high noise level, or large local variability. Clearly distinguishable, small-scale patterns in the randomized data set indicate that the latter is more likely. This indicates that local influences on soil magnetic properties, including anthropogenic effects, may be easier detected by frequency dependence

  17. Photoacoustic properties of mineral marmatite (ZnS+Fe)

    NASA Astrophysics Data System (ADS)

    Nikolić, P. M.; Durić, S.; Todorović, D. M.; Blagojević, V.; Urošević, D.; Mihajlović, P.; Bojičić, A. I.; Radulović, K. T.; Vasiljević-Radović, D. G.; Elazar, J.

    1999-03-01

    Thermal diffusivity and some electron transport properties of semiconducting ore mineral marmatite (ZnS+Fe) from the Trepca mine, were determined using the photoacoustic method with a transmission detection configuration. Thermal diffusivity (for single crystal DTSC=0.2×10-5 m2/s and polycristalline small grain size DTPC=0.86×10-6 m2/s), coefficient of the carrier diffusion (DSC=0.108×10-2 m2/s and DPC=0.5×10-3 m2/s), the excess carrier life time (τSC=34 μs and τPC=5 μs) and the rear and front surface recombination velocities were calculated by fitting experimental spectra and theoretical photoacoustic amplitude and phase signals. The value of minority free carrier holes of single crystal marmatite was calculated for the first time as μp˜428 cm2/Vs.

  18. Antimicrobial properties of Dead Sea black mineral mud.

    PubMed

    Ma'or, Zeev; Henis, Yigal; Alon, Yaacov; Orlov, Elina; Sørensen, Ketil B; Oren, Aharon

    2006-05-01

    The unique, black, hypersaline mud mined from the Dead Sea shores is extensively used in mud packs, masks, and topical body and facial treatments in spas surrounding the lake, and in cosmetic preparations marketed worldwide, but little is known about its antimicrobiological properties. We performed detailed microbial and chemical analysis of Dead Sea mineral mud compounded in dermatological and cosmetic preparations. Using conventional bacteriological media (with or without salt augmentation), we found surprisingly low numbers of colony-forming microorganisms in the mud. The highest counts (up to 20,000 colonies per gram, mostly consisting of endospore-forming bacteria) were obtained on sheep blood agar. Test microorganisms (i.e. Escherichia coli, Staphylococcus aureus, Propionibacterium acnes, Candida albicans) rapidly lost their viability when added to the mud. Zones of growth inhibition were observed around discs of Dead Sea mud placed on agar plates inoculated with Candida or with Propionibacterium, but not with Staphylococcus or Escherichia. The effect was also found when the mud was sterilized by gamma irradiation. Using (35)S-labeled sulfate as a tracer, bacterial dissimilatory sulfate reduction could be demonstrated at a low rate (0.13 +/- 0.03 nmol/cm(3).d). The antibacterial properties of Dead Sea mud are probably owing to chemical and/or physical phenomena. Possible modes of antimicrobial action of the mud in relation to its therapeutic properties are discussed.

  19. Elastic properties of geophysical minerals at different temperatures

    NASA Astrophysics Data System (ADS)

    Singh, Chandra Kumar; Pandey, Brijesh K.; Pandey, Anjani K.

    2017-05-01

    The elastic properties of minerals are very important to decide its technological applications upto the desired limit of accuracy. For some specific applications sometimes its mechanical properties such as ductility and brittleness plays significant role. The ratio K/G decides the brittleness and ductile behavior of material. In the present work we have taken Pyrope rich garnet (Mg3Al2Si3O12) and Grossular garnet (Ca3Al2Si3O12) to study their ductility and brittleness at different temperature ranges by using Hill's averaging method and other methods of thermodynamics. From the obtained results it is clear that in case of Pyrope-rich garnet, when the temperature increases the fracture decreases slowly in comparison to toughness, as a result the K/G ratio increases while in case of Grossular-garnet the toughness decreases slowly in comparison to fracture with increase in temperature, as a result the K/G ratio increases. Thus the fracture / toughness ratio increases with the temperature for Grossular-garnet while for Pyrope - rich garnet this ratio decreases. On the basis of these results it is clear that the nature of Pyrope-rich garnets is ductile whereas Grossular-garnet is brittle in nature. The interpretation of these properties can be interpreted on the basis of its composition, crystal structure dependence on temperature and the level of defect.

  20. Effects of aluminate ion toxicity on plant growth and mineral nutrition in bauxite residue reclamation

    SciTech Connect

    Fuller, R.D.

    1983-01-01

    Extraction of aluminum from bauxite ore with caustic sodium hydroxide produces an alkaline waste termed bauxite residue. Methods of vegetating bauxite residue impoundments were investigated utilizing alkaline tolerant species with readily available organic amendments. Species screening experiments identified Distichlis spicata var. stricta, an alkaline tolerant grass, as a potential species for bauxite residue reclamation. Additions of sewage sludge to bauxite residue increased growth over 10-fold. Low yields were associated with high shoot tissue concentrations of Fe and Al, and low concentrations of Mg, K, P, Ca and N. In field experiments at a bauxite residue impoundment in Mobile, Alabama, organic amendments (paper pulp waste, coastal bermuda grass mulch and sewage sludge) were tested as ameliorants to increase growth of Distichlis. In coarse textured bauxite residue amended with sewage sludge, a dense cover of Distichlis formed within 1.5 years. After 2.5 years, substantial declines in Distichlis cover occured. Additions of large quantities (6 cm) of sewage sludge to the surface of fine textured bauxite residue fostered growth of numerous local species. Most successful were Panicum dichotomiflorum and Cynodon dactylon. This research indicates the use of alkaline tolerant species with organic ameliorants has potential for bauxite residue reclamation. Problems with aluminum toxicity and Mn/sup 2 +/ deficiency must be overcome through additional research. The use of local, perhaps Al tolerant, species is also indicated if methods of effectively isolating roots from bauxite residue alkalinity are successful.

  1. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization.

    PubMed

    Nikolov, Svetoslav; Raabe, Dierk

    2008-06-01

    We model the elastic properties of bone at the level of mineralized collagen fibrils via step-by-step homogenization from the staggered arrangement of collagen molecules up to an array of parallel mineralized fibrils. A new model for extrafibrillar mineralization is proposed, assuming that the extrafibrillar minerals are mechanically equivalent to reinforcing rings coating each individual fibril. Our modeling suggests that no more than 30% of the total mineral content is extrafibrillar and the fraction of extrafibrillar minerals grows linearly with the overall degree of mineralization. It is shown that the extrafibrillar mineralization considerably reinforces the fibrils' mechanical properties in the transverse directions and the fibrils' shear moduli. The model predictions for the elastic moduli and constants are found to be in a good agreement with the experimental data reported in the literature.

  2. Direct and residual effects of manure on soil chemical properties

    NASA Astrophysics Data System (ADS)

    Nastri, A.; Triberti, L.; Giordani, G.; Comellini, F.; Baldoni, G.

    2009-04-01

    The beneficial effects of manure recycling in cropland on soil fertility are well documented. Nowadays it can help sequestrate C in the soil organic matter, advocated to mitigate the atmospheric CO2 increase. Because of the gradual disappearance of conventional livestock farming in Western Europe, the study of the persistence of the positive effects of manuring after its interruption can be interesting. Any research on soil fertility dynamic, however, requires long-term experiments because it is quite slow and greatly influenced by weather. A field trial, started in 1966 and still in progress in the Experimental Farm of Bologna University, compares 5 crop rotations (a 9-year course: corn-wheat-corn-wheat-corn-wheat-alfalfa-alfalfa-alfalfa, corn-wheat and sugarbeet-wheat, continuous corn and continuous wheat), at 3 levels of cattle manure supply combined with 3 inorganic NP fertilizers rates in a split-split plot replicated twice. The soil is an alluvial silty loam, fertile but low in organic matter (13.3 g kg-1). Manure is spread before corn, sugarbeet and alfalfa, at a mean yearly rate of 0 (M0), 20 (M1) and 40 (M2) t ha-1 of fresh material. Since 1984 M2 has been interrupted to evaluate residual effects. Regarding mineral fertilizer rates, for this study we considered only the unfertilized control (N0P0) and N1P1 level, corresponding to a mean yearly application of 220 kg N ha-1 and 75 kg P2O5 ha-1. Each year, since 1972 till now, we have sampled soil in the ploughed layer (0-0.4 m) to assess its pH (in water) and its content of organic carbon (SOC, Lotti method), total nitrogen (TN, Kjeldahl) and available phosphorus (P2O5, Olsen). To reduce the influence of crops and weather, statistical analyses were conducted on the averages of data obtained in the 4-year periods at the end of four 9-year cycles (1972-75, 81-84, 90-93 and 99-02). In 30 years, the continuous M1 supply without any inorganic integration increased SOC, TN and P2O5 by +3.6 t ha-1 (+11%), +1.09 t

  3. Effect of ultrasonication on physical properties of mineral trioxide aggregate.

    PubMed

    Parashos, Peter; Phoon, Amanda; Sathorn, Chankhrit

    2014-01-01

    To evaluate the effect on physical properties of Mineral Trioxide Aggregate (MTA) of using direct hand compaction during placement and when using hand compaction with indirect ultrasonic activation with different application times. One hundred acrylic canals were obturated in 3 increments with MTA in sample sizes of 10. One group was obturated by hand with an endodontic plugger and the remainder obturated with indirect ultrasonic application, with times ranging from 2 seconds to 18 seconds per increment. Microhardness values, dye penetration depths, and radiographs of the samples were evaluated. As ultrasonic application time per increment increased, microhardness values fell significantly (P < 0.001) while dye penetration values increased (P < 0.001). Microhardness of MTA ultrasonicated for 2 seconds was significantly higher than hand compaction (P = 0.03). Most radiographic voids were visible in the hand-compacted group (P < 0.001), which also had higher dye penetration depths than the 2-second ultrasonicated samples. Ultrasonication of MTA for 10-18 seconds resulted in significantly more voids than 2-8 seconds of ultrasonication (P = 0.02). The use of ultrasonics with MTA improved the compaction and flow of MTA, but excessive ultrasonication adversely affected MTA properties. A time of 2 seconds of ultrasonication per increment presented the best compromise between microhardness values, dye penetration depths, and lack of radiographic voids.

  4. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.

    PubMed

    Jaramillo, Ashley M; Douglas, Thomas A; Walsh, Marianne E; Trainor, Thomas P

    2011-08-01

    Composition B (Comp B) is a commonly used military formulation composed of the toxic explosive compounds 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Numerous studies of the temporal fate of explosive compounds in soils, surface water and laboratory batch reactors have been conducted. However, most of these investigations relied on the application of explosive compounds to the media via aqueous addition and thus these studies do not provide information on the real world loading of explosive residues during detonation events. To address this we investigated the dissolution and sorption of TNT and RDX from Comp B residues loaded to pure mineral phases through controlled detonation. Mineral phases included nontronite, vermiculite, biotite and Ottawa sand (quartz with minor calcite). High Performance Liquid Chromatography and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy were used to investigate the dissolution and sorption of TNT and RDX residues loaded onto the mineral surfaces. Detonation resulted in heterogeneous loading of TNT and RDX onto the mineral surfaces. Explosive compound residues dissolved rapidly (within 9 h) in all samples but maximum concentrations for TNT and RDX were not consistent over time due to precipitation from solution, sorption onto mineral surfaces, and/or chemical reactions between explosive compounds and mineral surfaces. We provide a conceptual model of the physical and chemical processes governing the fate of explosive compound residues in soil minerals controlled by sorption-desorption processes.

  5. The effect of microwave radiation on the magnetic properties of minerals.

    PubMed

    Kingman, S W; Rowson, N A

    2000-01-01

    The effects of microwave radiation on the magnetic properties of common ore minerals are discussed. The effects of varying microwave power levels on heating rates are presented along with comparative magnetic susceptibility surveys for both treated and non treated minerals. Various chemical and physical analysis techniques are considered to quantify any changes in mineral phases during heating. Conclusions are made as to the possible impact of microwave pretreatment on the downstream magnetic processing of minerals and ores.

  6. Evolution of Morphological and Physical Properties of Laboratory Interstellar Organic Residues with Ultraviolet Irradiation

    NASA Astrophysics Data System (ADS)

    Piani, L.; Tachibana, S.; Hama, T.; Tanaka, H.; Endo, Y.; Sugawara, I.; Dessimoulie, L.; Kimura, Y.; Miyake, A.; Matsuno, J.; Tsuchiyama, A.; Fujita, K.; Nakatsubo, S.; Fukushi, H.; Mori, S.; Chigai, T.; Yurimoto, H.; Kouchi, A.

    2017-03-01

    Refractory organic compounds formed in molecular clouds are among the building blocks of the solar system objects and could be the precursors of organic matter found in primitive meteorites and cometary materials. However, little is known about the evolutionary pathways of molecular cloud organics from dense molecular clouds to planetary systems. In this study, we focus on the evolution of the morphological and viscoelastic properties of molecular cloud refractory organic matter. We found that the organic residue, experimentally synthesized at ∼10 K from UV-irradiated H2O-CH3OH-NH3 ice, changed significantly in terms of its nanometer- to micrometer-scale morphology and viscoelastic properties after UV irradiation at room temperature. The dose of this irradiation was equivalent to that experienced after short residence in diffuse clouds (≤104 years) or irradiation in outer protoplanetary disks. The irradiated organic residues became highly porous and more rigid and formed amorphous nanospherules. These nanospherules are morphologically similar to organic nanoglobules observed in the least-altered chondrites, chondritic porous interplanetary dust particles, and cometary samples, suggesting that irradiation of refractory organics could be a possible formation pathway for such nanoglobules. The storage modulus (elasticity) of photo-irradiated organic residues is ∼100 MPa irrespective of vibrational frequency, a value that is lower than the storage moduli of minerals and ice. Dust grains coated with such irradiated organics would therefore stick together efficiently, but growth to larger grains might be suppressed due to an increase in aggregate brittleness caused by the strong connections between grains.

  7. Surface electrochemical properties of red mud (bauxite residue): zeta potential and surface charge density.

    PubMed

    Liu, Yanju; Naidu, Ravendra; Ming, Hui

    2013-03-15

    The surface electrochemical properties of red mud (bauxite residue) from different alumina refineries in Australia and China were studied by electrophoresis and measuring surface charge density obtained from acid/base potentiometric titrations. The electrophoretic properties were measured from zeta potentials obtained in the presence of 0.01 and 0.001 M KNO(3) over a wide pH range (3.5-10) by titration. The isoelectric point (IEP) values were found to vary from 6.35 to 8.70 for the red mud samples. Further investigation into the surface charge density of one sample (RRM) by acid/base potentiometric titration showed similar results for pH(PZC) with pH(IEP) obtained from electrokinetic measurements. The pH(IEP) determined from zeta potential measurements can be used as a characteristic property of red mud. The minerals contained in red mud contributed to the different values of pH(IEP) of samples obtained from different refineries. Different relationships of pH(IEP) with Al/Fe and Al/Si ratios (molar basis) were also found for different red mud samples. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Electrical properties of dispersions of graphene in mineral oil

    SciTech Connect

    Monteiro, O. R.

    2014-02-03

    Dispersions of graphene in mineral oil have been prepared and electrical conductivity and permittivity have been measured. The direct current (DC) conductivity of the dispersions depends on the surface characteristics of the graphene platelets and followed a percolation model with a percolation threshold ranging from 0.05 to 0.1 wt. %. The difference in DC conductivities can be attributed to different states of aggregation of the graphene platelets and to the inter-particle electron transfer, which is affected by the surface radicals. The frequency-dependent conductivity (σ(ω)) and permittivity (ε(ω)) were also measured. The conductivity of dispersions with particle contents much greater than the percolation threshold remains constant and equal to the DC conductivity at low frequencies ω with and followed a power-law σ(ω)∝ ω{sup s} dependence at very high frequencies with s≈0.9. For dispersions with graphene concentration near the percolation threshold, a third regime was displayed at intermediate frequencies indicative of interfacial polarization consistent with Maxwell-Wagner effect typically observed in mixtures of two (or more) phases with very distinct electrical and dielectric properties.

  9. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties.

    PubMed

    Malagurski, Ivana; Levic, Steva; Nesic, Aleksandra; Mitric, Miodrag; Pavlovic, Vladimir; Dimitrijevic-Brankovic, Suzana

    2017-11-01

    New mineralized, agar-based nanocomposite films (Zn-carbonate and Zn-phosphate/agar) were produced by a combination of in situ precipitation and a casting method. The presence of minerals significantly influenced the morphology, properties and functionality of the obtained nanocomposites. Reinforcement with the Zn-mineral phase improved the mechanical properties of the carbonate-mineralized films, but had a negligible effect on the phosphate-mineralized samples. Both nanocomposites showed improved optical and thermal properties, better Zn(II) release potential in a slightly acidic environment and exhibited antimicrobial activity against S. aureus. These results suggest that Zn-mineralized agar nanocomposite films could be potentially used as affordable, eco-friendly and active food packaging materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Physical, Chemical and Mineral Properties of the Polonnaruwa Stones

    NASA Astrophysics Data System (ADS)

    Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.; Samaranayake, Anil; Wickramarathne, Keerthi; Oldroyd, Anthony

    We report on the physical, chemical and mineral properties of a series of stone fragments recovered from the North Central Province of Sri Lanka following a witnessed fireball event on 29 December 2012. The stones exhibit highly porous poikilitic textures comprising of isotropic silica-rich/plagioclase-like hosts. Inclusions range in size and shape from mm-sized to smaller subangular grains frequently more fractured than the surrounding host and include ilmenite, olivine (fayalitic), quartz and accessory zircon. Bulk mineral compositions include accessory cristobalite, hercynite, anorthite, wuestite, albite, anorthoclase and the high pressure olivine polymorph wadsleyite, suggesting previous endurance of a shock pressure of ~20GPa. Further evidence of shock is confirmed by theconversion of all plagioclase to maskelynite. Here the infrared absorption spectra in the region 580 cm-1 to 380 cm-1 due to the Si-O-Si or Si-O-Al absorption band shows a partial shift in the peak at 380 cm-1 towards 480 cm-1 indicating an intermediate position between crystalline and amorphous phase. Host matrix chemical compositions vary between samples, but all are rich in SiO2. Silica-rich melts display a heterogeneous K-enrichment comparable to that reported in a range of nonterrestrial material from rare iron meteorites to LL chondritic breccias and Lunar granites. Bulk chemical compositions of plagioclase-like samples are comparable to reported data e.g. Miller Ranger 05035 (Lunar), while Si-rich samples accord well with mafic and felsic glasses reported in NWA 1664 (Howardite)as well asdata for fusion crust present in a variety of meteoritic samples.Triple oxygen isotope results show Δ17O = .0.335 with δ18O (‰ rel. SMOW) values of 17.816 ± 0.100 and compare well with those of known CI chondrites and are within the range of CI-like (Meta-C) chondrites. Rare earth elemental abundances show a profound Europium anomaly of between 0.7 and 0.9 ppm while CI normalized REE patterns

  11. Physical, chemical, and mineral properties of the Polonnaruwa stones

    NASA Astrophysics Data System (ADS)

    Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.; Samaranayake, Anil; Wickramarathne, Keerthi; Oldroyd, Anthony

    2013-09-01

    We report on the physical, chemical and mineral properties of a series of stone fragments recovered from the North Central Province of Sri Lanka following a witnessed fireball event on 29 December 2012. The stones exhibit highly porous poikilitic textures comprising of isotropic silica-rich/plagioclase-like hosts. Inclusions range in size and shape from mm-sized to smaller subangular grains frequently more fractured than the surrounding host and include ilmenite, olivine (fayalitic), quartz and accessory zircon. Bulk mineral compositions include accessory cristobalite, hercynite, anorthite, wuestite, albite, anorthoclase and the high pressure olivine polymorph wadsleyite, suggesting previous endurance of a shock pressure of ~20 GPa. Further evidence of shock is confirmed by the conversion of all plagioclase to maskelynite. Here the infrared absorption spectra in the region 580 cm-1 to 380 cm-1 due to the Si-O-Si or Si-O-Al absorption band shows a partial shift in the peak at 380 cm-1 towards 480 cm-1 indicating an intermediate position between crystalline and amorphous phase. Host matrix chemical compositions vary between samples, but all are rich in SiO2. Silica-rich melts display a heterogeneous K-enrichment comparable to that reported in a range of non-terrestrial material from rare iron meteorites to LL chondritic breccias and Lunar granites. Bulk chemical compositions of plagioclase-like samples are comparable to reported data e.g. Miller Ranger 05035 (Lunar), while Si-rich samples accord well with mafic and felsic glasses reported in NWA 1664 (Howardite) as well as data for fusion crust present in a variety of meteoritic samples. Triple oxygen isotope results show Δ17O = -0.335 with δ18O (‰ rel. SMOW) values of 17.816 +/- 0.100 and compare well with those of known CI chondrites and are within the range of CI-like (Meta-C) chondrites. Rare earth elemental abundances show a profound Europium anomaly of between 0.7 and 0.9 ppm while CI normalized REE

  12. The Role of Nonconserved Residues of Archaeoglobus fulgidus Ferritin on Its Unique Structure and Biophysical Properties*

    PubMed Central

    Sana, Barindra; Johnson, Eric; Le Magueres, Pierre; Criswell, Angela; Cascio, Duilio; Lim, Sierin

    2013-01-01

    Archaeoglobus fulgidus ferritin (AfFtn) is the only tetracosameric ferritin known to form a tetrahedral cage, a structure that remains unique in structural biology. As a result of the tetrahedral (2-3) symmetry, four openings (∼45 Å in diameter) are formed in the cage. This open tetrahedral assembly contradicts the paradigm of a typical ferritin cage: a closed assembly having octahedral (4-3-2) symmetry. To investigate the molecular mechanism affecting this atypical assembly, amino acid residues Lys-150 and Arg-151 were replaced by alanine. The data presented here shed light on the role that these residues play in shaping the unique structural features and biophysical properties of the AfFtn. The x-ray crystal structure of the K150A/R151A mutant, solved at 2.1 Å resolution, indicates that replacement of these key residues flips a “symmetry switch.” The engineered molecule no longer assembles with tetrahedral symmetry but forms a typical closed octahedral ferritin cage. Small angle x-ray scattering reveals that the overall shape and size of AfFtn and AfFtn-AA in solution are consistent with those observed in their respective crystal structures. Iron binding and release kinetics of the AfFtn and AfFtn-AA were investigated to assess the contribution of cage openings to the kinetics of iron oxidation, mineralization, or reductive iron release. Identical iron binding kinetics for AfFtn and AfFtn-AA suggest that Fe2+ ions do not utilize the triangular pores for access to the catalytic site. In contrast, relatively slow reductive iron release was observed for the closed AfFtn-AA, demonstrating involvement of the large pores in the pathway for iron release. PMID:24030827

  13. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    PubMed

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  14. A Fortran Program to Aid in Mineral Identification Using Optical Properties.

    ERIC Educational Resources Information Center

    Blanchard, Frank N.

    1980-01-01

    Describes a search and match computer program which retreives from a user-generated mineral file those minerals which are not incompatible with the observed or measured optical properties of an unknown. Careful selection of input lists make it unlikely that the program will fail when reasonably accurate observations are recorded. (Author/JN)

  15. Mineral associated and aggregate-occluded soil carbon decreased with increasing nitrogen and residue input for three decades

    NASA Astrophysics Data System (ADS)

    Shahbaz, Muhammad; Kuzyakov, Yakov; Heitkamp, Felix

    2016-04-01

    Cropland soils may be a source or sink for atmospheric CO2. Therefore, effects of cropland management and fertilization on soil organic carbon (SOC) can be assessed best in long-term experiments. Generally, it is assumed that change in SOC is linearly related to C-input into the soil. However, recently it has been shown that residue incorporation resulted to only small extents in the increase of SOC levels. This gives rise to environmental concerns regarding the efficient use of crop residue. Such concerns are also applicable for the well designed and documented long-term experiment of Puch, Germany, in a silt-loam soil. The crop rotation is winter barley - winter wheat - silage maize. Five organic amendments were combined with N-fertiliser rates. The levels of organic amendments are unamended control (CON), straw was removed; farmyard manure (FYM), straw was removed; straw incorporation (STR); slurry application (SLU), straw was removed; and straw incorporation combined with slurry application (STSL). Three levels of mineral fertilizer application were selected: no nitrogen (N0); medium, 100 kg N ha-1year-1 (N2); and high, 200 kg N ha-1 year-1 (N4). These treatments resulted in a wide range of mean annual carbon input (1 - 5 t C ha-1 year-1). We hypothesize that the amount of soil carbon stored in different fractions will increase with C-input, but the effect will decrease in the order free light fraction (f-LF), occluded light fraction (o-LF) and heavy mineral-associated fraction (HF). Soil samples were fractionated by density using sodium polytungstate (1.6 g cm-3). Compared to the starting value SOC was lost in STR and CON and increased in SLU and STSL, whereas FYM showed no differences to initial carbon stocks. However, N additions resulted in only slightly increase in SOC contents with reference to C-input. The lower amount of o-LF carbon in CON and STR demonstrated the low ability of crop residue in comparison to animal manures to build up SOC contents

  16. Characterization of a mineral waste resulting from the melting treatment of air pollution control residues.

    PubMed

    Trujillo-vazquez, A; Metiver-pignon, H; Tiruta-barna, L; Piantone, P

    2009-02-01

    Air pollution control (APC) residues which are generated by municipal solid waste (MSW) incineration show a high-level of pollution potential. In order to stabilize such APC residues, the French power supply company (EDF) is developing a thermal treatment process which leads to the production of a vitrified material. A structural characterization of the vitrified product was carried out by applying complementary investigation methods: XRD, SEM, Raman spectroscopy, EPMA, and data interpretation methods such as mineralogical analysis and principal component analysis (PCA). The major phase of the material was a solid solution of melilite type composed of five end-members: gehlenite (44%), åkermanite (25%), ferri-gehlenite (5%), sodamelilite (14%) and hardystonite (11%). The minor phases identified were spinels and pyroxenes. An ANC leaching test was performed in order to observe the treatment effect on pollutant release. The natural pH was close to 10, and the major element release was less than in the case of untreated APC. This was a consequence of melilite formation. The effect of pH was fundamental for heavy metals release: lower solubilization occurs at pH 10 than at APC's natural pH (11-12).

  17. Contribution of mineral to bone structural behavior and tissue mechanical properties.

    PubMed

    Donnelly, Eve; Chen, Dan X; Boskey, Adele L; Baker, Shefford P; van der Meulen, Marjolein C H

    2010-11-01

    Bone geometry and tissue material properties jointly govern whole-bone structural behavior. While the role of geometry in structural behavior is well characterized, the contribution of the tissue material properties is less clear, partially due to the multiple tissue constituents and hierarchical levels at which these properties can be characterized. Our objective was to elucidate the contribution of the mineral phase to bone mechanical properties across multiple length scales, from the tissue material level to the structural level. Vitamin D and calcium deficiency in 6-week-old male rats was employed as a model of reduced mineral content with minimal collagen changes. The structural properties of the humeri were measured in three-point bending and related to the mineral content and geometry from microcomputed tomography. Whole-cortex and local bone tissue properties were examined with infrared (IR) spectroscopy, Raman spectroscopy, and nanoindentation to understand the role of altered mineral content on the constituent material behavior. Structural stiffness (-47%) and strength (-50%) were reduced in vitamin D-deficient (-D) humeri relative to controls. Moment of inertia (-38%), tissue mineral density (TMD, -9%), periosteal mineralization (-28%), and IR mineral:matrix ratio (-19%) were reduced in -D cortices. Thus, both decreased tissue mineral content and changes in cortical geometry contributed to impaired skeletal load-bearing function. In fact, 97% of the variability in humeral strength was explained by moment of inertia, TMD, and IR mineral:matrix ratio. The strong relationships between structural properties and cortical material composition demonstrate a critical role of the microscale material behavior in skeletal load-bearing performance.

  18. Contribution of mineral to bone structural behavior and tissue mechanical properties

    PubMed Central

    Donnelly, Eve; Chen, Dan X.; Boskey, Adele L.; Baker, Shefford P.; Meulen, Marjolein C. H. van der

    2010-01-01

    Bone geometry and tissue material properties jointly govern whole-bone structural behavior. While the role of geometry in structural behavior is well characterized, the contribution of the tissue material properties is less clear, partially due to the multiple tissue constituents and hierarchical levels at which these properties can be characterized. Our objective was to elucidate the contribution of the mineral phase to bone mechanical properties across multiple length scales, from the tissue material level to the structural level. Vitamin D and calcium deficiency in 6-week-old male rats was employed as a model of reduced mineral content with minimal collagen changes. The structural properties of the humeri were measured in three-point bending and related to the mineral content and geometry from microcomputed tomography. Whole-cortex and local bone tissue properties were examined with infrared (IR) spectroscopy, Raman spectroscopy, and nanoindentation, to understand the role of altered mineral content on the constituent material behavior. Structural stiffness (-47%) and strength (-50%) were reduced in vitamin D-deficient (-D) humeri relative to controls. Moment of inertia (-38%), tissue mineral density (TMD, -9%), periosteal mineralization (-28%), and IR mineral:matrix ratio (-19%) were reduced in -D cortices. Thus, both decreased tissue mineral content and changes in cortical geometry contributed to impaired skeletal load bearing function. In fact, 97% of the variability in humeral strength was explained by moment of inertia, TMD, and IR mineral:matrix ratio. The strong relationships between structural properties and cortical material composition demonstrate a critical role of the microscale material behavior in skeletal load-bearing performance. PMID:20730582

  19. Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand.

    PubMed

    Jones, Benjamin E H; Haynes, Richard J; Phillips, Ian R

    2011-02-01

    In an alumina refinery, bauxite ore is treated with sodium hydroxide at high temperatures and pressures and for every tone of alumina produced, about 2 tones of alkaline, saline bauxite processing waste is also produced. At Alcoa, a dry stacking system of disposal is used, and it is the sand fraction of the processing waste that is rehabilitated. There is little information available regarding the most appropriate amendments to add to the processing sand to aid in revegetation. The purpose of this study was to investigate how the addition of organic wastes (biosolids and poultry manure), in the presence or absence of added residue mud, would affect the properties of the residue sand and its suitability for revegetation. Samples of freshly deposited residue sand were collected from Alcoa's Kwinana refinery. Samples were treated with phosphogypsum (2% v/v), incubated, and leached. A laboratory experiment was then set up in which the two organic wastes were applied at 0 or the equivalent to 60 tones ha(-1) in combination with residue mud added at rates of 0%, 10% and 20% v/v. Samples were incubated for 8 weeks, after which, key chemical, physical and microbial properties of the residue sand were measured along with seed germination. Additions of residue mud increased exchangeable Na(+), ESP and the pH, and HCO (3) (-) and Na(+) concentrations in saturation paste extracts. Additions of biosolids and poultry manure increased concentrations of extractable P, NH (4) (+) , K, Mg, Cu, Zn, Mn and Fe. Addition of residue mud, in combination with organic wastes, caused a marked decrease in macroporosity and a concomitant increase in mesoporosity, available water holding capacity and the quantity of water held at field capacity. With increasing residue mud additions, the percentage of sample present as sand particles (<1 mm diameter) decreased, and the percentage present in aggregated form (>2 mm diameter) increased; greatest aggregation occurred where a combination of residue

  20. Effects of Vermicompost and Water Treatment Residuals on Soil Physical Properties and Wheat Yield

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mahmoud M.; Mahmoud, Essawy K.; Ibrahim, Doaa A.

    2015-04-01

    The application of vermicompost and water treatment residuals to improve the physical properties in the salt affected soils is a promising technology to meet the requirements of high plant growth and cost-effective reclamation. Therefore, the aim of this study was to investigate the effect of vermicompost and its mixtures with water treatment residuals on selected physical properties of saline sodic soil and on wheat yield. The treatments were vermicompost, water treatment residuals, vermicompost + water treatment residuals (1:1 and 2:1 wet weight ratio) at levels of 5 and 10 g dry weight kg-1 dry soil. The considered physical properties included aggregate stability, mean weight diameter, pore size distribution and dry bulk density. The addition of vermicompost and water treatment residuals had significant positive effects on the studied soil physical properties, and improved the grain yield of wheat. The treatment of (2 vermicompost + 1 water treatment residuals) at level of 5 g kg-1 soil gave the best grain yield. Combination of vermicompost and water treatment residuals improved the water treatment residuals efficiency in ameliorating the soil physical properties, and could be considered as an ameliorating material for the reclamation of salt affected soils.

  1. Formation of bound residues in bioremediation experiments of mineral oil polluted environments

    SciTech Connect

    Richnow, H.H.; Seifert, R.; Michaelis, W.; Wehrung, P.; Albrecht, P.

    1996-10-01

    Non-extractable residues formed during biodegradation or humification processes are thought to represent a sink for contaminants but may become a source later on. The association of contaminants with macromolecular organic matter has major implications for their bioavailability, toxicity, and transport in natural environments. we studied the mode of incorporation of xenobiotics and their metabolites into macromolecular organic matter. Typical metabolites of PAHs, chemically bound to soil humic substances by ester and ether linkages, were cleaved from the macromolecular matrix by selective chemical degradation techniques including isotope labelling. Low molecular weight compounds liberated by these reactions were studied on a molecular level by GC-MS and Irm GC-MS. The results are discussed in terms of long-term risk assessment of bioremediation.

  2. Impact of Reed Canary Grass Cultivation and Mineral Fertilisation on the Microbial Abundance and Genetic Potential for Methane Production in Residual Peat of an Abandoned Peat Extraction Area

    PubMed Central

    Espenberg, Mikk; Truu, Marika; Truu, Jaak; Maddison, Martin; Nõlvak, Hiie; Järveoja, Järvi; Mander, Ülo

    2016-01-01

    This study examined physiochemical conditions and prokaryotic community structure (the bacterial and archaeal 16S rRNA genes and mcrA gene abundances and proportions), and evaluated the effect of reed canary grass cultivation and mineral fertilisation on these factors, in the 60 cm thick residual peat layer of experimental plots located on an abandoned peat extraction area. The archaeal proportion was 0.67–39.56% in the prokaryotic community and the methanogens proportion was 0.01–1.77% in the archaeal community. When bacterial abundance was higher in the top 20 cm of peat, the archaea were more abundant in the 20–60 cm layer and methanogens in the 40–60 cm layer of the residual peat. The bacterial abundance was significantly increased, but archaeal abundance was not affected by cultivation. The fertiliser application had a slight effect on peat properties and on archaeal and methanogen abundances in the deeper layer of cultivated peat. The CH4 emission was positively related to mcrA abundance in the 20–60 cm of the bare peat, while in case of reed canary grass cultivation these two parameters were not correlated. Reed canary grass cultivation mitigated CH4 emission, although methanogen abundance remained approximately the same or even increased in different layers of residual peat under cultivated sites over time. This study supports the outlook of using abandoned peat extraction areas to produce reed canary grass for energy purposes as an advisable land-use practice from the perspective of atmospheric impact in peatland-rich Northern Europe. PMID:27684377

  3. Impact of Reed Canary Grass Cultivation and Mineral Fertilisation on the Microbial Abundance and Genetic Potential for Methane Production in Residual Peat of an Abandoned Peat Extraction Area.

    PubMed

    Espenberg, Mikk; Truu, Marika; Truu, Jaak; Maddison, Martin; Nõlvak, Hiie; Järveoja, Järvi; Mander, Ülo

    This study examined physiochemical conditions and prokaryotic community structure (the bacterial and archaeal 16S rRNA genes and mcrA gene abundances and proportions), and evaluated the effect of reed canary grass cultivation and mineral fertilisation on these factors, in the 60 cm thick residual peat layer of experimental plots located on an abandoned peat extraction area. The archaeal proportion was 0.67-39.56% in the prokaryotic community and the methanogens proportion was 0.01-1.77% in the archaeal community. When bacterial abundance was higher in the top 20 cm of peat, the archaea were more abundant in the 20-60 cm layer and methanogens in the 40-60 cm layer of the residual peat. The bacterial abundance was significantly increased, but archaeal abundance was not affected by cultivation. The fertiliser application had a slight effect on peat properties and on archaeal and methanogen abundances in the deeper layer of cultivated peat. The CH4 emission was positively related to mcrA abundance in the 20-60 cm of the bare peat, while in case of reed canary grass cultivation these two parameters were not correlated. Reed canary grass cultivation mitigated CH4 emission, although methanogen abundance remained approximately the same or even increased in different layers of residual peat under cultivated sites over time. This study supports the outlook of using abandoned peat extraction areas to produce reed canary grass for energy purposes as an advisable land-use practice from the perspective of atmospheric impact in peatland-rich Northern Europe.

  4. Effect of Solution Properties on Arsenic Adsorption by Drinking Water Treatment Residuals

    NASA Astrophysics Data System (ADS)

    Nagar, R.; Sarkar, D.; Datta, R.; Sharma, S.

    2005-05-01

    Arsenic (As) is a ubiquitous element in the environment. Higher levels of As in soils may result from various anthropogenic sources such as use of arsenical pesticides, fertilizers, wood preservatives, smelter wastes, and coal combustion. This is of great environmental and human health concern due to the high toxicity and proven carcinogenicity of several arsenical species. Thus there is a need for developing cost effective technologies capable of lowering bioavailable As concentrations in soils to environmentally acceptable levels. In-situ immobilization of metals using inexpensive amendments such as minerals (apatite, zeolite, or clay minerals) or waste by-products (steel shot, beringite, and iron-rich biosolids) to reduce bioavailability is an inexpensive alternative to the more expensive ex-situ remediation methods. One such emerging in-situ technique is the application of drinking water treatment residuals (WTRs). WTRs can be classified as a byproduct of drinking water treatment plants and are generally composed of amorphous Fe/Al oxides, activated C and cationic polymers. WTRs possess amorphous structure and generally have high positive charge. Because As is chemically similar to phosphorus, the oxyanions As (V) and As (III) may have the potential of being retained by the WTRs. Thus, it is hypothesized that WTRs retain As irreversibly, thereby reducing As biavailability. As mobility of arsenic is controlled by adsorption reactions, knowledge of adsorption of As by WTRs is of primary relevance. Although the overall rate of adsorption is dependent on numerous factors, review of the literature indicates that competing ions in solution play an important role in the overall retention of As; however, little work has been conducted to identify which ions provide the most competition. As arsenic adsorption appears to be influenced by the variable pH-dependent charges developed on the soil particle surfaces, the effect of pH is also of critical importance. Hence, the

  5. Site-directed mutagenesis of photoprotein mnemiopsin: implication of some conserved residues in bioluminescence properties.

    PubMed

    Mahdavi, Atiyeh; Sajedi, Reza H; Hosseinkhani, Saman; Taghdir, Majid; Sariri, Reyhaneh

    2013-03-01

    Mnemiopsin is a Ca(2+)-binding photoprotein from Mnemiopsis leidyi that emits a flash of blue light upon reacting with coelenterazine and Ca(2+). The light emission is a result of an intramolecular oxidation reaction. Similar to the other Ca(2+)-binding photoproteins, mnemiopsin is composed of apophotoprotein (206 amino acid residues), the imidazopyrazine chromophore, coelenterazine, and molecular oxygen. The biochemical properties of this photoprotein have been recently characterized but so far there has been no individual study on the role of critical residues. In this study, we introduced some mutations in the mnemiopsin structure for investigation of the roles of some critical residues in the substrate binding cavity, and neighboring residues in the mechanism of the reaction and the bioluminescence properties of the photoprotein. Mutants of mnemiopsin were produced by substitution of residues M77, W101 and M151. Three mutants (W101F, W101Y and M151Y mutants) had significantly reduced luminescence activity and altered bioluminescent properties (such as decay rate, Ca(2+) sensitivity, etc.), whereas the fourth (M77H mutant) lost its luminescence activity completely. Our experimental and theoretical studies suggest that residue M77 probably has structural importance and participates in stabilization of active site residues, whereas residue M151 is one of the critical mechanistic residues in ctenophore photoproteins.

  6. Evaluating the influence of residual stresses on the magnetic properties of electrical steel

    SciTech Connect

    Korzunin, G.S.; Chistyakov, V.K.

    1995-04-01

    The method described for evaluating the influence of residual stresses on the magnetic properties of coiled cold-rolled electrical steel consists in measuring the ratio of the magnetic characteristics that are and are not sensitive to the effect of residual stresses. The evaluation is made from the value of the ratio, using the correlations between its value and the magnetic characteristics studied.

  7. Electrical and dielectric properties of bovine trabecular bone--relationships with mechanical properties and mineral density.

    PubMed

    Sierpowska, J; Töyräs, J; Hakulinen, M A; Saarakkala, S; Jurvelin, J S; Lappalainen, R

    2003-03-21

    Interrelationships of trabecular bone electrical and dielectric properties with mechanical characteristics and density are poorly known. While electrical stimulation is used for healing fractures, better understanding of these relations has clinical importance. Furthermore, earlier studies have suggested that bone electrical and dielectric properties depend on the bone density and could, therefore, be used to predict bone strength. To clarify these issues, volumetric bone mineral density (BMDvol), electrical and dielectric as well as mechanical properties were determined from 40 cylindrical plugs of bovine trabecular bone. Phase angle, relative permittivity, loss factor and conductivity of wet bovine trabecular bone were correlated with Young's modulus, yield stress, ultimate strength, resilience and BMDvol. The reproducibility of in vitro electrical and dielectric measurements was excellent (standardized coefficient of variation less than 1%, for all parameters), especially at frequencies higher than 1 kHz. Correlations of electrical and dielectric parameters with the bone mechanical properties or density were frequency-dependent. The relative permittivity showed the strongest linear correlations with mechanical parameters (r > 0.547, p < 0.01, n = 40, at 50 kHz) and with BMDvol (r = 0.866, p < 0.01, n = 40, at 50 kHz). In general, linear correlations between relative permittivity and mechanical properties or BMDvol were highest at frequencies over 6 kHz. In addition, a significant site-dependent variation of electrical and dielectric characteristics, mechanical properties and BMDvol was revealed in bovine femur (p < 0.05, Kruskall-Wallis H-test). Based on the present results, we conclude that the measurement of electrical and dielectric properties provides quantitative information that is related to bone quantity and quality.

  8. Evaluation of coal minerals and metal residues as coal-liquefaction catalysts

    SciTech Connect

    1982-02-01

    Under DOE Contract No. DE-AC22-79ET14806, Air Products and Chemicals, Inc., subcontracted Auburn University Coal Conversion Laboratory to perform exploratory studies on the use of minerals and by-product metallic wastes in coal liquefaction. Under this program Auburn University conducted an extensive screening program on numerous materials from which the more active or interesting ones were further investigated in the continuous process development units (PDU) at Air Products. In Volume 1 of the final report a number of the results from those tests are summarized for comparison with the PDU results. Because of the very extensive and detailed work performed at Auburn University, a portion of that work is not included in Volume 1. Therefore, in order to fulfill the requirements of the contract with DOE, a compilation of the work performed by Auburn University is submitted in Volume 2. The information from the Auburn University work was compiled from a sequence of monthly reports submitted to air Products and Chemicals, Inc., during the course of the program. Because of the very large numbers of screening runs conducted at Auburn, the overlap between these reports is minimal. This work presents in some detail the various stages of development of screening procedures and analytical methods that were developed. The reader should also find them extremely informative as to the generation of ideas that developed during this program. The work reported in this volume went beyond simple screening runs. Extensive exploratory studies as well as basic studies on the behavior of reactants and catalysts were performed. These results from the basic and exploratory studies impacted on the overall direction of this program.

  9. Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition.

    PubMed

    Landete-Castillejos, T; Currey, J D; Ceacero, F; García, A J; Gallego, L; Gomez, S

    2012-01-01

    It is well known that porosity has an inverse relationship with the mechanical properties of bones. We examined cortical and trabecular porosity of antlers, and mineral composition, thickness and mechanical properties in the cortical wall. Samples belonged to two deer populations: a captive population of an experimental farm having a high quality diet, and a free-ranging population feeding on plants of lower nutritive quality. As shown for minerals and mechanical properties in previous studies by our group, cortical and trabecular porosity increased from the base distally. Cortical porosity was always caused by the presence of incomplete primary osteons. Porosity increased along the length of the antler much more in deer with lower quality diet. Despite cortical porosity being inversely related to mechanical properties and positively with K, Zn and other minerals indicating physiological effort, it was these minerals and not porosity that statistically better explained variability in mechanical properties. Histochemistry showed that the reason for this is that Zn is located around incomplete osteons and also in complete osteons that were still mineralizing, whereas K is located in non-osteonal bone, which constitutes a greater proportion of bone where osteons are incompletely mineralized. This suggests that, K, Zn and other minerals indicate reduction in mechanical performance even with little porosity. If a similar process occurred in internal bones, K, Zn and other minerals in the bone may be an early indicator of decrease in mechanical properties and future osteoporosis. In conclusion, porosity is related to diet and physiological effort in deer.

  10. Effect of organic residues addition on the technological properties of clay bricks.

    PubMed

    Demir, Ismail

    2008-01-01

    The objective of this study is to investigate the utilization potential of several organic residues in clay bricks. Sawdust, tobacco residues, and grass are widespread by-products of industrial and agricultural processes in Turkey. These residue materials have long cellulose fibres. Sawdust and tobacco residues generally are used as fuel, and the grass is utilized for agricultural purposes. The insulation capacity of brick increases with the increasing porosity of the clay body. Combustible, organic types of pore-forming additives are most frequently used for this purpose. For this reason, increasing amounts of organic residues (0%, 2.5%, 5% and 10% in wt.) were mixed with raw brick-clay. All samples were fired at 900 degrees C. Effects on shaping, plasticity, density, and mechanical properties were investigated. The organic residue additions were found to be effective for pore-forming in the clay body with the clay maintaining acceptable mechanical properties. It was observed that the fibrous nature of the residues did not create extrusion problems. However, higher residue addition required a higher water content to ensure the right plasticity. As a result, sawdust, tobacco residues, and grass can be utilized in an environmentally safe way as organic pore-forming agents in brick-clay.

  11. Impact of the addition of different plant residues on nitrogen mineralization-immobilization turnover and carbon content of a soil incubated under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Kaleeem Abbasi, M.; Tahir, M. Mahmood; Sabir, N.; Khurshid, M.

    2015-02-01

    Application of plant residues as soil amendment may represent a valuable recycling strategy that affects carbon (C) and nitrogen (N) cycling in soil-plant systems. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water-filled pore space) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues, i.e., the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Populus euramericana, Robinia pseudoacacia and Elaeagnus umbellata, incorporated into the soil at the rate of 200 mg residue N kg-1 soil. The diverse plant residues showed a wide variation in total N, C, lignin, polyphenols and C / N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of Glycine max and the shoot and root of Trifolium repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg-1 and representing a 55, 37 and 36% recovery of N that had been released from these added resources. The roots of Glycine max and Zea mays and the shoot of Zea mays showed continuous negative values throughout the incubation. After an initial immobilization, leaves of Populus euramericana, Robinia pseudoacacia and Elaeagnus umbellata exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg-1, respectively, and representing a 16, 32 and 33% N recovery, respectively. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01) and negatively correlated with lignin content (r = -0.84; p ≤ 0.01), C / N ratio (r = -0.69; p ≤ 0.05), lignin / N ratio (r = -0.68; p ≤ 0.05), polyphenol / N ratio (r = -0.73; p ≤ 0.05) and (lignin + polyphenol) : N ratio (r = -0.70; p ≤ 0.05) indicating a

  12. Sensitivity of Residual Soil Moisture Content in VIC Model Soil Property Parameterizations for Sub-arctic Discontinuous Permafrost Watersheds

    NASA Astrophysics Data System (ADS)

    Endalamaw, A. M.; Bolton, W. R.; Hinzman, L. D.; Morton, D.; Cable, J.

    2015-12-01

    Most soil property representations in large scale hydrological and atmospheric models are derived from empirical relationships of soil texture, wherein the average hydraulic, thermal and thermodynamic processes are described for each layer of the soil column. Of all the soil hydraulic properties, hydraulic conductivity is one of the most difficult to estimate, particularly in permafrost environments. This is because, for large-scale models, it is estimated from soil properties that are originally estimated from other empirical relationships of soil texture, such as residual soil moisture content. Residual soil moisture content determines the amount of available moisture for evapotranspiration and drainage in unsaturated flow. In cold regions, it is also important to estimate the depth of the freezing front by estimating the antecedent soil moisture status before the soils freeze for the winter. This will have direct and indirect effects on the freeze-thaw depth and runoff generation the following spring. Therefore, inaccurate data on residual soil moisture will impact on hydrological modeling of the discontinuous permafrost watersheds in Interior Alaska, where soil water content is highly variable even within a given soil texture. The main objective of this study is to test the sensitivity of models to variation in residual soil moisture for runoff, evaporation, evapotranspiration and soil moisture simulations in discontinuous permafrost watersheds of Interior Alaska. We use the Variable Infiltration Capacity model, a meso-scale hydrological model, and HYDRUS 1D, a software package for simulating water, heat and solute movement, to estimate the soil hydraulics properties at the two contrasting sub-basins of the Caribou Poker Creek Research Watershed. . Preliminary modeling results show that small variations in the residual soil moisture content results in significant differences in the timing and amount of runoff, evapotranspiration and soil moisture storage. Our

  13. Morphology, absorptivity and viscoelastic properties of mineralized PVP-CMC hydrogel

    NASA Astrophysics Data System (ADS)

    Saha, Nabanita; Shah, Rushita; Vyroubal, Radek; Kitano, Takeshi; Saha, Petr

    2013-04-01

    A simple liquid diffusion mineralization technique was applied for the incorporation of calcium carbonate (CaCO3) in PVP-CMC hydrogel. The hydrogel was prepared 6.5 mm thick to achieve around 1 mm thick sample after mineralization of hydrogel matrix with calcite. The calcite crystals were round shaped and organized as building blocks inside the porous three dimensional cross linked structure of the PVP-CMC hydrogel. The present study was designed to evaluate the properties of mineralized (calcite) hydrogel with respect to freshly prepared hydrogel and those swelled in water (H2O) after drying. The viscoelastic properties of swelled and mineralized samples were reported though the dry PVP-CMC hydrogel were swelled and mineralized with calcite until 150 min. It is observed that there is not much difference in elastic property of fresh and 60 min mineralized hydrogels but the values of elastic property are decreased in the case of swelled hydrogels. It is interesting that in case of swelled samples the values of complex viscosity (η*) are increased with the increase of swelling time after 90 min but in case of calcite hydrogel the values (η*) are gradually decreased with the increase of time.

  14. Dependence of Long Bone Flexural Properties on Bone Mineral Distribution

    NASA Technical Reports Server (NTRS)

    Katz, BethAnn; Cleek, Tammy M.; Whalen, Robert T.; Connolly, James P. (Technical Monitor)

    1995-01-01

    The objective of this study is to assess whether a non-invasive determination of long bone cross-sectional areal properties using bone densitometry accurately estimates true long bone flexural properties. In this study, section properties of two pairs of human female embalmed tibiae were compared using two methods: special analysis of bone densitometry data, and experimental determination of flexural regidities from bone surface strain measurements during controlled loading.

  15. Sorting Earth Materials as a Means to Explore Physical Properties of Rocks and Minerals

    NASA Astrophysics Data System (ADS)

    Cook, H. M.; Cook, G. W.

    2016-12-01

    During this in-class activity, students are divided into small groups (4-6 individuals) and given a bag of earth materials (rocks and minerals). The students are asked to carefully examine each of the samples and to collectively decide how they would characterize or describe each. They are then asked to place the samples into as many or few groups as they see fit. The groupings must be defined by shared physical properties believed to be noteworthy by the students. This activity precedes all instruction about rocks and minerals and is designed to encourage students to make detailed observations and to think about the physical characteristics of various earth materials. After receiving instruction on rocks and minerals, students are given their same collection of rocks and minerals so that they can see how their new knowledge about rocks and minerals and their classifications might affect their original groupings. This activity is appropriate and effective for both lecture and laboratory settings.

  16. Compositions and sorptive properties of crop residue-derived chars

    USGS Publications Warehouse

    Chun, Y.; Sheng, G.; Chiou, G.T.; Xing, B.

    2004-01-01

    Chars originating from the burning or pyrolysis of vegetation may significantly sorb neutral organic contaminants (NOCs). To evaluate the relationship between the char composition and NOC sorption, a series of char samples were generated by pyrolyzing a wheat residue (Triticum aestivum L) for 6 h at temperatures between 300 ??C and 700 ??C and analyzed for their elemental compositions, surface areas, and surface functional groups. The samples were then studied for their abilities to sorb benzene and nitrobenzene from water. A commercial activated carbon was used as a reference carbonaceous sample. The char samples produced at high pyrolytic temperatures (500-700 ??C) were well carbonized and exhibited a relatively high surface area (>300 m2/g), little organic matter (20% oxygen). The char samples exhibited a significant range of surface acidity/basicity because of their different surface polar-group contents, as characterized by the Boehm titration data and the NMR and FTIR spectra. The NOC sorption by high-temperature chars occurred almost exclusively by surface adsorption on carbonized surfaces, whereas the sorption by low-temperature chars resulted from the surface adsorption and the concurrent smaller partition into the residual organic-matter phase. The chars appeared to have a higher surface affinity for a polar solute (nitrobenzene) than for a nonpolar solute (benzene), the difference being related to the surface acidity/basicity of the char samples.

  17. In situ osteoblast mineralization mediates post-injection mechanical properties of osteoconductive material.

    PubMed

    Bialorucki, Callan; Subramanian, Gayathri; Elsaadany, Mostafa; Yildirim-Ayan, Eda

    2014-10-01

    The objective of this study was to understand the temporal relationship between in situ generated calcium content (mineralization) and the mechanical properties of an injectable orthobiologic bone-filler material. Murine derived osteoblast progenitor cells were differentiated using osteogenic factors and encapsulated within an injectable polycaprolactone nanofiber-collagen composite scaffold (PN-COL +osteo) to evaluate the effect of mineralization on the mechanical properties of the PN-COL scaffold. A comprehensive study was conducted using both an experimental and a predictive analytical mechanical analysis for mechanical property assessment as well as an extensive in vitro biological analysis for in situ mineralization. Cell proliferation was evaluated using a PicoGreen dsDNA quantification assay and in situ mineralization was analyzed using both an alkaline phosphatase (ALP) assay and an Alizarin Red stain-based assay. Mineralized matrix formation was further evaluated using energy dispersive x-ray spectroscopy (EDS) and visualized using SEM and histological analyses. Compressive mechanical properties of the PN-COL scaffolds were determined using a confined compression stress-relaxation protocol and the obtained data was fit to the standard linear solid viscoelastic material mathematical model to demonstrate a relationship between increased in situ mineralization and the mechanical properties of the PN-COL scaffold. Cell proliferation was constant over the 21 day period. ALP activity and calcium concentration significantly increased at day 14 and 21 as compared to PN-COL -osteo with undifferentiated osteoblast progenitor cells. Furthermore, at day 21 EDS, SEM and von Kossa histological staining confirmed mineralized matrix formation within the PN-COL scaffolds. After 21 days, compressive modulus, peak stress, and equilibrium stress demonstrate significant increases of 3.4-fold, 3.3-fold, and 4.0-fold respectively due to in situ mineralization. Viscoelastic

  18. Effects of Different Mineral Admixtures on the Properties of Fresh Concrete

    PubMed Central

    Nuruddin, Muhammad Fadhil; Shafiq, Nasir

    2014-01-01

    This paper presents a review of the properties of fresh concrete including workability, heat of hydration, setting time, bleeding, and reactivity by using mineral admixtures fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA). Comparison of normal and high-strength concrete in which cement has been partially supplemented by mineral admixture has been considered. It has been concluded that mineral admixtures may be categorized into two groups: chemically active mineral admixtures and microfiller mineral admixtures. Chemically active mineral admixtures decrease workability and setting time of concrete but increase the heat of hydration and reactivity. On the other hand, microfiller mineral admixtures increase workability and setting time of concrete but decrease the heat of hydration and reactivity. In general, small particle size and higher specific surface area of mineral admixture are favourable to produce highly dense and impermeable concrete; however, they cause low workability and demand more water which may be offset by adding effective superplasticizer. PMID:24701196

  19. A new model to simulate the elastic properties of mineralized collagen fibril.

    SciTech Connect

    Yuan, F.; Stock, S.R.; Haeffner, D.R.; Almer, J.D.; Dunand , D.C.; Brinson, K.

    2011-01-01

    Bone, because of its hierarchical composite structure, exhibits an excellent combination of stiffness and toughness, which is due substantially to the structural order and deformation at the smaller length scales. Here, we focus on the mineralized collagen fibril, consisting of hydroxyapatite plates with nanometric dimensions aligned within a protein matrix, and emphasize the relationship between the structure and elastic properties of a mineralized collagen fibril. We create two- and three-dimensional representative volume elements to represent the structure of the fibril and evaluate the importance of the parameters defining its structure and properties of the constituent mineral and collagen phase. Elastic stiffnesses are calculated by the finite element method and compared with experimental data obtained by synchrotron X-ray diffraction. The computational results match the experimental data well, and provide insight into the role of the phases and morphology on the elastic deformation characteristics. Also, the effects of water, imperfections in the mineral phase and mineral content outside the mineralized collagen fibril upon its elastic properties are discussed.

  20. A new model to simulate the elastic properties of mineralized collagen fibril

    SciTech Connect

    Yuan, F.; Stock, S.R.; Haeffner, D.R.; Almer, J.D.; Dunand, D.C.; Brinson, L.C.

    2012-05-02

    Bone, because of its hierarchical composite structure, exhibits an excellent combination of stiffness and toughness, which is due substantially to the structural order and deformation at the smaller length scales. Here, we focus on the mineralized collagen fibril, consisting of hydroxyapatite plates with nanometric dimensions aligned within a protein matrix, and emphasize the relationship between the structure and elastic properties of a mineralized collagen fibril. We create two- and three-dimensional representative volume elements to represent the structure of the fibril and evaluate the importance of the parameters defining its structure and properties of the constituent mineral and collagen phase. Elastic stiffnesses are calculated by the finite element method and compared with experimental data obtained by synchrotron X-ray diffraction. The computational results match the experimental data well, and provide insight into the role of the phases and morphology on the elastic deformation characteristics. Also, the effects of water, imperfections in the mineral phase and mineral content outside the mineralized collagen fibril upon its elastic properties are discussed.

  1. RESISTANT PROPERTIES OF AZOTOBACTER CYSTS INDUCED IN RESPONSE TO MINERAL DEFICIENCIES

    PubMed Central

    Layne, Joseph S.; Johnson, Emmett J.

    1964-01-01

    Layne, Joseph S. (University of Mississippi School of Medicine, Jackson), and Emmett J. Johnson. Resistant properties of Azotobacter cysts induced in response to mineral deficiencies. J. Bacteriol. 88:956–959. 1964.—Cysts produced in response to mineral deficiencies, and apparently lacking the characteristic exine and intine, possess the same degree of resistance to heat, mechanical disruption, desiccation, the action of lysozyme, and the combined action of ethylenediaminetetraacetic acid (EDTA) and lysozyme as do butanol-induced cysts. Slight differences in the behavior of the two varieties of cysts toward EDTA were observed. Since no significant differences seem to exist in resistant properties between cysts induced in response to mineral deficiencies and n-butanol-induced cysts, it would seem that the current concepts attributing the resistant properties of the Azotobacter cyst to the exine and intine require modification. PMID:14219059

  2. Determinants of ovine compact bone viscoelastic properties: effects of architecture, mineralization, and remodeling.

    PubMed

    Les, C M; Spence, C A; Vance, J L; Christopherson, G T; Patel, B; Turner, A S; Divine, G W; Fyhrie, D P

    2004-09-01

    Significant decreases in ovine compact bone viscoelastic properties (specifically, stress-rate sensitivity, and damping efficiency) are associated with three years of ovariectomy and are particularly evident at higher frequencies [Proc. Orthop. Res. Soc. 27 (2002) 89]. It is unclear what materials or architectural features of bone are responsible for either the viscoelastic properties themselves, or for the changes in those properties that were observed with estrogen depletion. In this study, we examined the relationship between these viscoelastic mechanical properties and features involving bone architecture (BV/TV), materials parameters (ash density, %mineralization), and histologic evidence of remodeling (%remodeled, cement line interface). The extent of mineralization was inversely proportional to the material's efficiency in damping stress oscillations. The damping characteristics of bone material from ovariectomized animals were significantly more sensitive to variation in mineralization than was bone from control animals. At low frequencies (6 Hz or less), increased histologic evidence of remodeling was positively correlated with increased damping efficiency. However, the dramatic decreases in stress-rate sensitivity that accompanied 3-year ovariectomy were seen throughout the bone structure and occurred even in areas with little or no secondary Haversian remodeling as well as in areas of complete remodeling. Taken together, these data suggest that, while the mineral component may modify the viscoelastic behavior of bone, the basic mechanism underlying bone viscoelastic behavior, and of the changes in that behavior with estrogen depletion, reside in a non-mineral component of the bone that can be significantly altered in the absence of secondary remodeling.

  3. Clay Minerals as Solid Acids and Their Catalytic Properties.

    ERIC Educational Resources Information Center

    Helsen, J.

    1982-01-01

    Discusses catalytic properties of clays, attributed to acidity of the clay surface. The formation of carbonium ions on montmorillonite is used as a demonstration of the presence of surface acidity, the enhanced dissociation of water molecules when polarized by cations, and the way the surface can interact with organic substances. (Author/JN)

  4. Clay Minerals as Solid Acids and Their Catalytic Properties.

    ERIC Educational Resources Information Center

    Helsen, J.

    1982-01-01

    Discusses catalytic properties of clays, attributed to acidity of the clay surface. The formation of carbonium ions on montmorillonite is used as a demonstration of the presence of surface acidity, the enhanced dissociation of water molecules when polarized by cations, and the way the surface can interact with organic substances. (Author/JN)

  5. Skip residues modulate the structural properties of the myosin rod and guide thick filament assembly

    PubMed Central

    Taylor, Keenan C.; Buvoli, Massimo; Korkmaz, Elif Nihal; Buvoli, Ada; Zheng, Yuqing; Heinze, Nathan T.; Cui, Qiang; Leinwand, Leslie A.; Rayment, Ivan

    2015-01-01

    The rod of sarcomeric myosins directs thick filament assembly and is characterized by the insertion of four skip residues that introduce discontinuities in the coiled-coil heptad repeats. We report here that the regions surrounding the first three skip residues share high structural similarity despite their low sequence homology. Near each of these skip residues, the coiled-coil transitions to a nonclose-packed structure inducing local relaxation of the superhelical pitch. Moreover, molecular dynamics suggest that these distorted regions can assume different conformationally stable states. In contrast, the last skip residue region constitutes a true molecular hinge, providing C-terminal rod flexibility. Assembly of myosin with mutated skip residues in cardiomyocytes shows that the functional importance of each skip residue is associated with rod position and reveals the unique role of the molecular hinge in promoting myosin antiparallel packing. By defining the biophysical properties of the rod, the structures and molecular dynamic calculations presented here provide insight into thick filament formation, and highlight the structural differences occurring between the coiled-coils of myosin and the stereotypical tropomyosin. In addition to extending our knowledge into the conformational and biological properties of coiled-coil discontinuities, the molecular characterization of the four myosin skip residues also provides a guide to modeling the effects of rod mutations causing cardiac and skeletal myopathies. PMID:26150528

  6. Skip residues modulate the structural properties of the myosin rod and guide thick filament assembly

    DOE PAGES

    Taylor, Keenan C.; Buvoli, Massimo; Korkmaz, Elif Nihal; ...

    2015-07-06

    The rod of sarcomeric myosins directs thick filament assembly and is characterized by the insertion of four skip residues that introduce discontinuities in the coiled-coil heptad repeats. We report in this paper that the regions surrounding the first three skip residues share high structural similarity despite their low sequence homology. Near each of these skip residues, the coiled-coil transitions to a nonclose-packed structure inducing local relaxation of the superhelical pitch. Moreover, molecular dynamics suggest that these distorted regions can assume different conformationally stable states. In contrast, the last skip residue region constitutes a true molecular hinge, providing C-terminal rod flexibility.more » Assembly of myosin with mutated skip residues in cardiomyocytes shows that the functional importance of each skip residue is associated with rod position and reveals the unique role of the molecular hinge in promoting myosin antiparallel packing. By defining the biophysical properties of the rod, the structures and molecular dynamic calculations presented here provide insight into thick filament formation, and highlight the structural differences occurring between the coiled-coils of myosin and the stereotypical tropomyosin. Finally, in addition to extending our knowledge into the conformational and biological properties of coiled-coil discontinuities, the molecular characterization of the four myosin skip residues also provides a guide to modeling the effects of rod mutations causing cardiac and skeletal myopathies.« less

  7. Skip residues modulate the structural properties of the myosin rod and guide thick filament assembly

    SciTech Connect

    Taylor, Keenan C.; Buvoli, Massimo; Korkmaz, Elif Nihal; Buvoli, Ada; Zheng, Yuqing; Heinze, Nathan T.; Cui, Qiang; Leinwand, Leslie A.; Rayment, Ivan

    2015-07-06

    The rod of sarcomeric myosins directs thick filament assembly and is characterized by the insertion of four skip residues that introduce discontinuities in the coiled-coil heptad repeats. We report in this paper that the regions surrounding the first three skip residues share high structural similarity despite their low sequence homology. Near each of these skip residues, the coiled-coil transitions to a nonclose-packed structure inducing local relaxation of the superhelical pitch. Moreover, molecular dynamics suggest that these distorted regions can assume different conformationally stable states. In contrast, the last skip residue region constitutes a true molecular hinge, providing C-terminal rod flexibility. Assembly of myosin with mutated skip residues in cardiomyocytes shows that the functional importance of each skip residue is associated with rod position and reveals the unique role of the molecular hinge in promoting myosin antiparallel packing. By defining the biophysical properties of the rod, the structures and molecular dynamic calculations presented here provide insight into thick filament formation, and highlight the structural differences occurring between the coiled-coils of myosin and the stereotypical tropomyosin. Finally, in addition to extending our knowledge into the conformational and biological properties of coiled-coil discontinuities, the molecular characterization of the four myosin skip residues also provides a guide to modeling the effects of rod mutations causing cardiac and skeletal myopathies.

  8. Skip residues modulate the structural properties of the myosin rod and guide thick filament assembly.

    PubMed

    Taylor, Keenan C; Buvoli, Massimo; Korkmaz, Elif Nihal; Buvoli, Ada; Zheng, Yuqing; Heinze, Nathan T; Cui, Qiang; Leinwand, Leslie A; Rayment, Ivan

    2015-07-21

    The rod of sarcomeric myosins directs thick filament assembly and is characterized by the insertion of four skip residues that introduce discontinuities in the coiled-coil heptad repeats. We report here that the regions surrounding the first three skip residues share high structural similarity despite their low sequence homology. Near each of these skip residues, the coiled-coil transitions to a nonclose-packed structure inducing local relaxation of the superhelical pitch. Moreover, molecular dynamics suggest that these distorted regions can assume different conformationally stable states. In contrast, the last skip residue region constitutes a true molecular hinge, providing C-terminal rod flexibility. Assembly of myosin with mutated skip residues in cardiomyocytes shows that the functional importance of each skip residue is associated with rod position and reveals the unique role of the molecular hinge in promoting myosin antiparallel packing. By defining the biophysical properties of the rod, the structures and molecular dynamic calculations presented here provide insight into thick filament formation, and highlight the structural differences occurring between the coiled-coils of myosin and the stereotypical tropomyosin. In addition to extending our knowledge into the conformational and biological properties of coiled-coil discontinuities, the molecular characterization of the four myosin skip residues also provides a guide to modeling the effects of rod mutations causing cardiac and skeletal myopathies.

  9. Natural Minerals Coated by Biopolymer Chitosan: Synthesis, Physicochemical, and Adsorption Properties

    NASA Astrophysics Data System (ADS)

    Budnyak, T. M.; Yanovska, E. S.; Kichkiruk, O. Yu.; Sternik, D.; Tertykh, V. A.

    2016-11-01

    Natural minerals are widely used in treatment technologies as mineral fertilizer, food additive in animal husbandry, and cosmetics because they combine valuable ion-exchanging and adsorption properties together with unique physicochemical and medical properties. Saponite (saponite clay) of the Ukrainian Podillya refers to the class of bentonites, a subclass of layered magnesium silicate montmorillonite. Clinoptilolits are aluminosilicates with carcase structure. In our work, we have coated biopolymer chitosan on the surfaces of natural minerals of Ukrainian origin — Podilsky saponite and Sokyrnitsky clinoptilolite. Chitosan mineral composites have been obtained by crosslinking of adsorbed biopolymer on saponite and clinoptilolite surface with glutaraldehyde. The obtained composites have been characterized by the physicochemical methods such as thermogravimetric/differential thermal analyses (DTA, DTG, TG), differential scanning calorimetry, mass analysis, nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy to determine possible interactions between the silica and chitosan molecule. The adsorption of microquantities of cations Cu(II), Zn(II), Fe(III), Cd(II), and Pb(II) by the obtained composites and the initial natural minerals has been studied from aqueous solutions. The sorption capacities and kinetic adsorption characteristics of the adsorbents were estimated. It was found that the obtained results have shown that the ability of chitosan to coordinate heavy metal ions Zn(II), Cu(II), Cd(II), and Fe(III) is less or equal to the ability to retain ions of these metals in the pores of minerals without forming chemical bonds.

  10. Effects of hydration on the elastic properties of transition zone minerals

    NASA Astrophysics Data System (ADS)

    Jacobsen, S. D.; van der Lee, S.; Holl, C. M.; Mao, Z.; Jiang, F. M.; Duffy, T. S.; Smyth, J. R.

    2008-12-01

    Water, dissolved as hydroxyl into the solid silicate minerals of the upper mantle, can reduce elastic wave speeds through associated defects. Efforts are underway to use new mineral physics data on how hydration affects mineral elasticity to interpret regional seismic tomography images showing potential spatial variability in mantle hydrogen content. Because the water storage capacity of olivine, wadsleyite, and ringwoodite approaches one weight percent at depths of 300-660 km, the effects of hydration on the elastic properties of transition zone minerals are needed to evaluate seismic anomalies that are not easily explained by temperature anomalies alone. We review recent and forthcoming mineral physics data on the high-pressure elastic properties of hydrous olivine, hydrous wadsleyite, and hydrous ringwoodite measured using Brillouin spectroscopy and GHz-ultrasonic interferometry. We examine regional tomography models beneath the eastern US through forward modeling of the mineral physics data that suggest a relatively high water contents compared with the surrounding mantle, which is interpreted to have derived from subducted oceanic lithosphere during Farallon subduction from west.

  11. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid.

    PubMed

    Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui

    2010-04-01

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  12. [Aging effect on mechanical properties in fluid resin. (Part 1). Affection of residual monomer (author's transl)].

    PubMed

    Horiuchi, A

    1979-07-01

    Aging effect on the mechanical properties in fluid resins was pointed out, but little was studied on this point. Relationship between amount of residual monomer in the samples prepared by fluid resin and the mechanical properties, brinell hardness, tensile strength, were studied. Test pieces just as polymerized in the size were used. Weights of specimens kept at three different circumstances, in the air at 20 degrees C, in a water bath at 37 degrees C and in a desiccator at 11 mmHg and 40 degrees C, was checked at the prescribed time to clarify the amount of residual monomer and the mechanical properties were measured at the same time. Amount of weight loss, due to evaporation of MMA, must improve the mechanical properties. The improvement by postpolymerization could be neglected. Rate of the weight loss suggests that residual monomer must mainly be at the surface. Molecular weight of PMMA, 86.4 X 10(4) did not have any effect on the mechanical properties and on the evaporation rate of monomers from polymerized specimens. To improve the mechanical properties of fluid resin must be to decrease residual monomer as much as possible in the fluid resin especially at the surface area.

  13. Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar.

    PubMed

    Zhao, Ling; Cao, Xinde; Zheng, Wei; Wang, Qun; Yang, Fan

    2015-10-01

    The feedstocks for biochar production are diverse and many of them contain various minerals in addition to being rich in carbon. Twelve types of biomass classified into 2 categories: plant-based and municipal waste, were employed to produce biochars under 350 °C and 500 °C. Their pH, point of zero net charge (PZNC), zeta potential, cation and anion exchange capacity (CEC and AEC) were analyzed. The municipal waste-based biochars (MW-BC) had higher mineral levels than the plant-based biochars (PB-BC). However, the water soluble mineral levels were lower in the MW-BCs due to the dominant presence of less soluble minerals, such as CaCO3 and (Ca,Mg)3(PO4)2. The higher total minerals in MW-BCs accounted for the higher PZNC (5.47-9.95) than in PB-BCs (1.91-8.18), though the PZNCs of the PB-BCs increased more than that of the MW-BCs as the production temperature rose. The minerals had influence on the zeta potentials via affecting the negative charges of biochars and the ionic strength of solution. The organic functional groups in PB-BCs such as -COOH and -OH had a greater effect on the CEC and AEC, while the minerals had a greater effect on that of MW-BCs. The measured CEC and AEC values had a strong positive correlation with the total amount of soluble cations and anions, respectively. Results indicated that biochar surface charges depend not only on the organic functional groups, but also on the minerals present and to some extent, minerals have more influences on the surface electrochemistry and ion exchange properties of biochar.

  14. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.

    PubMed

    Kotha, S P; Guzelsu, N

    2007-01-01

    A porous composite model is developed to analyze the tensile mechanical properties of cortical bone. The effects of microporosity (volksman's canals, osteocyte lacunae) on the mechanical properties of bone tissue are taken into account. A simple shear lag theory, wherein tensile loads are transferred between overlapped mineral platelets by shearing of the organic matrix, is used to model the reinforcement provided by mineral platelets. It is assumed that the organic matrix is elastic in tension and elastic-perfectly plastic in shear until it fails. When organic matrix shear stresses at the ends of mineral platelets reach their yield values, the stress-strain curve of bone tissue starts to deviate from linear behavior. This is referred as the microscopic yield point. At the point where the stress-strain behavior of bone shows a sharp curvature, the organic phase reaches its shear yield stress value over the entire platelet. This is referred as the macroscopic yield point. It is assumed that after macroscopic yield, mineral platelets cannot contribute to the load bearing capacity of bone and that the mechanical behavior of cortical bone tissue is determined by the organic phase only. Bone fails when the principal stress of the organic matrix is reached. By assuming that mechanical properties of the organic matrix are dependent on bone mineral content below the macroscopic yield point, the model is used to predict the entire tensile mechanical behavior of cortical bone for different mineral contents. It is found that decreased shear yield stresses and organic matrix elastic moduli are required to explain the mechanical behavior of bones with lowered mineral contents. Under these conditions, the predicted values (elastic modulus, 0.002 yield stress and strain, and ultimate stress and strain) are within 15% of experimental data.

  15. Batch tests on mineral deposit formation due to co-mingling of leachates derived from municipal solid wastes and waste-to-energy combustion residues.

    PubMed

    Cardoso, Antonio J; Levine, Audrey D

    2009-02-01

    Deposit formation in leachate collection systems can be problematic for landfill operations. Deposits from municipal solid waste (MSW) derived leachates are impacted by microbial activity and biofilm development, whereas leachates generated from co-disposal of MSW with combustion residues (CR) from waste-to-energy (WTE) facilities and other mineral-rich waste materials are more prone to forming dense mineral deposits dominated by calcium carbonate. In this study, leachates from laboratory lysimeters containing either WTE-CR or shredded MSW were mixed at different volumetric ratios. The mixed leachates were incubated for 5 weeks in batch tests to evaluate the potential for formation of precipitates. Although mineral precipitates have been reported to form in landfills with no co-disposal practices, in this study mineral precipitates did not form in either the WTE-CR derived leachate or the MSW derived leachate, but formed in all leachate mixtures. Mineral precipitates consisted of calcium carbonate particles, with the highest yield from a 1:1 combination of the WTE-CR derived leachate mixed with the MSW derived leachate. The introduction of gaseous carbon dioxide or air into WTE-CR derived leachate resulted in the production of particles of similar chemical composition but different morphology. Operation of landfills to prevent co-mingling of mineral-rich leachates with microbially active leachates and/or to control leachate exposure to sources of carbon dioxide may help to prevent this type of precipitate formation in leachate collection systems.

  16. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    PubMed Central

    Sun, Hongfang; Li, Zishanshan; Bai, Jing; Ali Memon, Shazim; Dong, Biqin; Fang, Yuan; Xu, Weiting; Xing, Feng

    2015-01-01

    Calcium carbide residue (CCR) is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH)2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP). The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength) with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement) pastes was also examined through SEM (scanning electron microscope). Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills. PMID:28787963

  17. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties.

    PubMed

    Sun, Hongfang; Li, Zishanshan; Bai, Jing; Memon, Shazim Ali; Dong, Biqin; Fang, Yuan; Xu, Weiting; Xing, Feng

    2015-02-13

    Calcium carbide residue (CCR) is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH)₂, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP). The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength) with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement) pastes was also examined through SEM (scanning electron microscope). Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  18. Differences in residual lignin properties between Betula verrucosa and Eucalyptus urograndis kraft pulps.

    PubMed

    Hänninen, Tuomas A; Kontturi, Eero; Isogai, Akira; Vuorinen, Tapani

    2008-10-01

    By comparing the ultrastructural features of two oxygen delignified hardwood kraft pulps (Eucalyptus urograndis and Betula verrucosa), we have demonstrated a marked difference in their residual lignin properties. In this study, properties such as crystallinity and crystal size of cellulose, molecular weights, carboxyl group contents, and carbohydrate compositions of the two kraft pulps were compared. The examined pulps were in our observations relatively similar. A significant difference, however, was observed in the size exclusion chromatography measurements, which indirectly suggested that a significant portion of residual lignin in eucalyptus pulp was associated with cellulose. Birch pulp, in contrast, exhibited a more conventional tendency for hardwood pulps: lignin mainly associated with hemicelluloses.

  19. Thermodynamic properties for arsenic minerals and aqueous species

    USGS Publications Warehouse

    Nordstrom, D. Kirk; Majzlan, Juraj; Königsberger, Erich; Bowell, Robert J.; Alpers, Charles N.; Jamieson, Heather E.; Nordstrom, D. Kirk; Majzlan, Juraj

    2014-01-01

    Quantitative geochemical calculations are not possible without thermodynamic databases and considerable advances in the quantity and quality of these databases have been made since the early days of Lewis and Randall (1923), Latimer (1952), and Rossini et al. (1952). Oelkers et al. (2009) wrote, “The creation of thermodynamic databases may be one of the greatest advances in the field of geochemistry of the last century.” Thermodynamic data have been used for basic research needs and for a countless variety of applications in hazardous waste management and policy making (Zhu and Anderson 2002; Nordstrom and Archer 2003; Bethke 2008; Oelkers and Schott 2009). The challenge today is to evaluate thermodynamic data for internal consistency, to reach a better consensus of the most reliable properties, to determine the degree of certainty needed for geochemical modeling, and to agree on priorities for further measurements and evaluations.

  20. The Challenges of Observing Geologically: Third Graders' Descriptions of Rock and Mineral Properties

    ERIC Educational Resources Information Center

    Ford, Danielle J.

    2005-01-01

    The understandings of properties that children develop in the context of rock and mineral identification point to the challenges of observing in a manner authentic to the discipline of geology. The notebook entries of 34 third graders written during the enactment of a commercial unit on earth materials were investigated for their descriptions of…

  1. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level.

    PubMed

    Imbert, Laurianne; Aurégan, Jean-Charles; Pernelle, Kélig; Hoc, Thierry

    2014-08-01

    Osteogenesis imperfecta (OI) is a genetic disorder characterized by an increase in bone fragility on the macroscopic scale, but few data are available to describe the mechanisms involved on the tissue scale and the possible correlations between these scales. To better understand the effects of OI on the properties of human bone, we studied the mechanical and chemical properties of eight bone samples from children suffering from OI and compared them to the properties of three controls. High-resolution computed tomography, nanoindentation and Raman microspectroscopy were used to assess those properties. A higher tissue mineral density was found for OI bone (1.131 gHA/cm3 vs. 1.032 gHA/cm3, p=0.032), along with a lower Young's modulus (17.6 GPa vs. 20.5 GPa, p=0.024). Obviously, the mutation-induced collagen defects alter the collagen matrix, thereby affecting the mineralization. Raman spectroscopy showed that the mineral-to-matrix ratio was higher in the OI samples, while the crystallinity was lower, suggesting that the mineral crystals were smaller but more abundant in the case of OI. This change in crystal size, distribution and composition contributes to the observed decrease in mechanical strength. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Challenges of Observing Geologically: Third Graders' Descriptions of Rock and Mineral Properties

    ERIC Educational Resources Information Center

    Ford, Danielle J.

    2005-01-01

    The understandings of properties that children develop in the context of rock and mineral identification point to the challenges of observing in a manner authentic to the discipline of geology. The notebook entries of 34 third graders written during the enactment of a commercial unit on earth materials were investigated for their descriptions of…

  3. Effects of Chlorinated Paraffin and ZDDP Concentrations on Boundary Lubrication Properties of Mineral and Soybean Oils

    USDA-ARS?s Scientific Manuscript database

    The effect of chlorinated paraffin (CP) and zinc di-ethylhexyl dithio phosphate (ZDDP) concentration in polar and non-polar base fluids on boundary lubrication properties was investigated. The non-polar fluid was a solvent refined low sulfur heavy paraffinic mineral oil (150N oil); and the polar fl...

  4. Mineral concentration dependent modulation of mechanical properties of bone-inspired bionanocomposite scaffold

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Ovaert, Timothy C.; Slaboch, Constance; Zhao, He; Bayer, Ilker S.; Biris, Alexandru S.; Wang, Tao

    2011-07-01

    We demonstrate tunable mechanical properties of bone-inspired bionanocomposite scaffolds while maintaining the required viscoelasticity. Mechanical properties such as hardness and elastic modulus of the bionanocomposite scaffolds were controlled by varying mineral concentrations of the bioscaffold. In particular, higher calcium and oxygen contents in the bioscaffold resulted in a significant enhancement in hardness and modulus of the bionanocomposite. Moreover, the phosphorous content appeared to be a determining factor in the hardness and mechanical properties of the bionanocomposites. These results open up the possibility of designing new engineered biocompatible nanoscaffolds with desired and tunable biomimetic functions and biomechanical properties with significant potential for advanced bone tissue engineering platforms and bone substitutes.

  5. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    SciTech Connect

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.; Nico, Peter; Keiluweit, Marco; Ahmed, Musahid

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novel analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.

  6. Influence of Surface Properties and Impact Conditions on Adhesion of Insect Residues

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Smith, Joseph G.; Connell, John W.; Siochi, Emilie J.; Doss, Jereme R.; Shanahan, Michelle H.; Penner, Ronald K.

    2015-01-01

    Insect residues can cause premature transition to turbulent flow on laminar flow airfoils. Engineered surfaces that mitigate the adhesion of insect residues provide, therefore, a route to more efficient aerodynamics and reduced fuel burn rates. Areal coverage and heights of residues depend not only on surface properties, but also on impact conditions. We report high speed photography of fruit fly impacts at different angles of inclination on a rigid aluminum surface, optical microscopy and profilometry, and contact angle goniometry to support the design of engineered surfaces. For the polyurethane and epoxy coatings studied, some of which exhibited superhydrophobicity, it was determined that impact angle and surface compositions play critical roles in the efficacy of these surfaces to reduce insect residue adhesion.

  7. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants.

    PubMed

    Kimura, Masaoki; Matsui, Yoshihiko; Kondo, Kenta; Ishikawa, Tairyo B; Matsushita, Taku; Shirasaki, Nobutaka

    2013-04-15

    Aluminum coagulants are widely used in water treatment plants to remove turbidity and dissolved substances. However, because high aluminum concentrations in treated water are associated with increased turbidity and because aluminum exerts undeniable human health effects, its concentration should be controlled in water treatment plants, especially in plants that use aluminum coagulants. In this study, the effect of polyaluminum chloride (PACl) coagulant characteristics on dissolved residual aluminum concentrations after coagulation and filtration was investigated. The dissolved residual aluminum concentrations at a given coagulation pH differed among the PACls tested. Very-high-basicity PACl yielded low dissolved residual aluminum concentrations and higher natural organic matter (NOM) removal. The low residual aluminum concentrations were related to the low content of monomeric aluminum (Ala) in the PACl. Polymeric (Alb)/colloidal (Alc) ratio in PACl did not greatly influence residual aluminum concentration. The presence of sulfate in PACl contributed to lower residual aluminum concentration only when coagulation was performed at around pH 6.5 or lower. At a wide pH range (6.5-8.5), residual aluminum concentrations <0.02 mg/L were attained by tailoring PACl properties (Ala percentage ≤0.5%, basicity ≥85%). The dissolved residual aluminum concentrations did not increase with increasing the dosage of high-basicity PACl, but did increase with increasing the dosage of normal-basicity PACl. We inferred that increasing the basicity of PACl afforded lower dissolved residual aluminum concentrations partly because the high-basicity PACls could have a small percentage of Ala, which tends to form soluble aluminum-NOM complexes with molecular weights of 100 kDa-0.45 μm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. 43 CFR 3873.3 - Non-mineral entry of residue of subdivisions invaded by mining claims.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... covered by pending applications for patent which the non-mineral applicant does not desire to contest, or... subdivision, where the tract has not been lotted to show the reduced area by reason of approved surveys of mining claims for which applications for patent have not been filed, until the non-mineral...

  9. 43 CFR 3873.3 - Non-mineral entry of residue of subdivisions invaded by mining claims.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... covered by pending applications for patent which the non-mineral applicant does not desire to contest, or... subdivision, where the tract has not been lotted to show the reduced area by reason of approved surveys of mining claims for which applications for patent have not been filed, until the non-mineral...

  10. 43 CFR 3873.3 - Non-mineral entry of residue of subdivisions invaded by mining claims.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... covered by pending applications for patent which the non-mineral applicant does not desire to contest, or... subdivision, where the tract has not been lotted to show the reduced area by reason of approved surveys of mining claims for which applications for patent have not been filed, until the non-mineral...

  11. 43 CFR 3873.3 - Non-mineral entry of residue of subdivisions invaded by mining claims.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... covered by pending applications for patent which the non-mineral applicant does not desire to contest, or... subdivision, where the tract has not been lotted to show the reduced area by reason of approved surveys of mining claims for which applications for patent have not been filed, until the non-mineral...

  12. Bisphosphonate Treatment Modifies Canine Bone Mineral and Matrix Properties and their Heterogeneity

    PubMed Central

    Gourion-Arsiquaud, Samuel; Allen, Matthew R.; Burr, David B.; Vashishth, Deepak; Tang, Simon Y.; Boskey, Adele L.

    2009-01-01

    Bone loss and alterations in bone quality are major causes leading to bone fragility in postmenopausal women. Although bisphosphonates are well known to reduce bone turnover and prevent bone loss in postmenopausal osteoporosis, their effects on other bone properties are not fully characterized. Changes in bone mineral and matrix properties may contribute to the anti-fracture efficacy observed with bisphosphonate treatments. The aim of this work was to analyze the effect of a one-year treatment with either alendronate or risedronate, at low and high doses, on spatially resolved bone material and compositional properties that could contribute to the fracture efficacy of these agents. Distal tibias from thirty normal beagles that had been treated daily for one year with oral doses of vehicle (Veh), alendronate (Aln) at 0.2 or 1 mg/kg, and risedronate (Ris) at 0.1 or 0.5 mg/kg were analyzed by Fourier Transform Infrared imaging (FTIRI) to assess the changes in both mineral and matrix properties in discrete bone areas. The widths at half maximum of the pixel histograms for each FTIRI parameter were used to assess the heterogeneity of the bone tissue. Aln and Ris increased the mineral content and the collagen maturity mainly in cancellous bone and at the endocortical surface. Significant differences were observed in the mineral content and in the hydroxyapatite crystallinity distribution in bone tissue, which can contribute to reduced ductility and micro-crack accumulation. No significant differences were observed between low and high dose nor between Aln and Ris treatments. These results show that pharmacologic suppression of bone turnover increases the mineral and matrix bone tissue maturity in normal cancellous and endocortical bone areas where bone turnover is higher. These positive effects for decreased fracture risk are also associated with a loss of bone heterogeneity that could be one factor contributing to increased bone tissue brittleness and micro

  13. Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity

    NASA Astrophysics Data System (ADS)

    Li, Chunlin; Hu, Yunjie; Chen, Jianmin; Ma, Zhen; Ye, Xingnan; Yang, Xin; Wang, Lin; Wang, Xinming; Mellouki, Abdelwahid

    2016-09-01

    Size-resolved effective density, mixing state, and hygroscopicity of smoke particles from five kinds of agricultural residues burning were characterized using an aerosol chamber system, including a volatility/hygroscopic tandem differential mobility analyzer (V/H-TDMA) combined with an aerosol particle mass analyzer (APM). To profile relationship between the thermodynamic properties and chemical compositions, smoke PM1.0 and PM2.5 were also measured for the water soluble inorganics, mineral elements, and carbonaceous materials like organic carbon (OC) and elemental carbon (EC). Smoke particle has a density of 1.1-1.4 g cm-3, and hygroscopicity parameter (κ) derived from hygroscopic growth factor (GF) of the particles ranges from 0.20 to 0.35. Size- and fuel type-dependence of density and κ are obvious. The integrated effective densities (ρ) and hygroscopicity parameters (κ) both scale with alkali species, which could be parameterized as a function of organic and inorganic mass fraction (forg &finorg) in smoke PM1.0 and PM2.5: ρ-1 =finorg ·ρinorg-1 +forg ·ρorg-1 and κ =finorg ·κinorg +forg ·κorg . The extrapolated values of ρinorg and ρorg are 2.13 and 1.14 g cm-3 in smoke PM1.0, while the characteristic κ values of organic and inorganic components are about 0.087 and 0.734, which are similar to the bulk density and κ calculated from predefined chemical species and also consistent with those values observed in ambient air. Volatility of smoke particle was quantified as volume fraction remaining (VFR) and mass fraction remaining (MFR). The gradient temperature of V-TDMA was set to be consistent with the splitting temperature in the OC-EC measurement (OC1 and OC2 separated at 150 and 250 °C). Combing the thermogram data and chemical composition of smoke PM1.0, the densities of organic matter (OM1 and OM2 correspond to OC1 and OC2) are estimated as 0.61-0.90 and 0.86-1.13 g cm-3, and the ratios of OM1/OC1 and OM2/OC2 are 1.07 and 1.29 on average

  14. Natural Minerals Coated by Biopolymer Chitosan: Synthesis, Physicochemical, and Adsorption Properties.

    PubMed

    Budnyak, T M; Yanovska, E S; Kichkiruk, O Yu; Sternik, D; Tertykh, V A

    2016-12-01

    Natural minerals are widely used in treatment technologies as mineral fertilizer, food additive in animal husbandry, and cosmetics because they combine valuable ion-exchanging and adsorption properties together with unique physicochemical and medical properties. Saponite (saponite clay) of the Ukrainian Podillya refers to the class of bentonites, a subclass of layered magnesium silicate montmorillonite. Clinoptilolits are aluminosilicates with carcase structure. In our work, we have coated biopolymer chitosan on the surfaces of natural minerals of Ukrainian origin - Podilsky saponite and Sokyrnitsky clinoptilolite. Chitosan mineral composites have been obtained by crosslinking of adsorbed biopolymer on saponite and clinoptilolite surface with glutaraldehyde. The obtained composites have been characterized by the physicochemical methods such as thermogravimetric/differential thermal analyses (DTA, DTG, TG), differential scanning calorimetry, mass analysis, nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy to determine possible interactions between the silica and chitosan molecule. The adsorption of microquantities of cations Cu(II), Zn(II), Fe(III), Cd(II), and Pb(II) by the obtained composites and the initial natural minerals has been studied from aqueous solutions. The sorption capacities and kinetic adsorption characteristics of the adsorbents were estimated. It was found that the obtained results have shown that the ability of chitosan to coordinate heavy metal ions Zn(II), Cu(II), Cd(II), and Fe(III) is less or equal to the ability to retain ions of these metals in the pores of minerals without forming chemical bonds.

  15. Magnetic properties of iron minerals produced by natural iron- and manganese-reducing groundwater bacteria

    NASA Astrophysics Data System (ADS)

    Abrajevitch, Alexandra; Kondratyeva, Lubov M.; Golubeva, Evgeniya M.; Kodama, Kazuto; Hori, Rie S.

    2016-08-01

    Understanding the contribution of biogenic magnetic particles into sedimentary assemblages is a current challenge in palaeomagnetism. It has been demonstrated recently that magnetic particles produced through biologically controlled mineralization processes, such as magnetosomes from magnetotactic bacteria, contribute to the recording of natural remanent magnetization in marine and lacustrian sediments. Contributions from other, biologically induced, mineralization types, which are known from multiple laboratory experiments to include magnetic minerals, remain largely unknown. Here, we report magnetic properties of iron minerals formed by a community of iron- and manganese-reducing bacteria isolated from a natural groundwater deposit during a 2 yr long incubation experiment. The main iron phases of the biomineralized mass are lepidocrocite, goethite and magnetite, each of which has environmental significance. Unlike the majority of the previous studies that reported superparamagnetic grain size, and thus no remanence carrying capacity of biologically induced magnetite, hysteresis and first-order reversal curves measurements in our study have not detected significant superparamagnetic contribution. The biomineralized mass, instead, contains a mixture of single-domain to pseudo-single-domain and multidomain magnetite particles that are capable of carrying a stable chemical remanent magnetization. Isothermal remanent magnetization acquisition parameters and first-order reversal curves signatures of the biomineralized samples deviate from previously proposed criteria for the distinction of extracellular (biologically induced) magnetic particles in mixtures. Given its potential significance as a carrier of natural remanent magnetization, environmental requirements, distribution in nature and the efficiency in the geomagnetic field recording by biologically induced mineralization need comprehensive investigation.

  16. Physicochemical and functional properties of dietary fiber from maca (Lepidium meyenii Walp.) liquor residue.

    PubMed

    Chen, Jinjin; Zhao, Qingsheng; Wang, Liwei; Zha, Shenghua; Zhang, Lijun; Zhao, Bing

    2015-11-05

    Using maca (Lepidium meyenii) liquor residue as the raw material, dietary fiber (DF) was prepared by chemical (MCDF) and enzymatic (MEDF) methods, respectively, of which the physicochemical and functional properties were comparatively studied. High contents of DF were found in MCDF (55.63%) and MEDF (81.10%). Both fibers showed good functional properties, including swelling capacity, water holding capacity, oil holding capacity, glucose adsorption capacity and glucose retardation index. MEDF showed better functional properties, which could be attributed to its higher content of DF, more irregular surface and more abundant monosaccharide composition. The results herein suggest that maca DF prepared by enzymatic method from liquor residue is a good functional ingredient in food products.

  17. Effect of residual sericin on the structural characteristics and properties of regenerated silk films.

    PubMed

    Lee, Ji Hye; Song, Dae Woong; Park, Young Hwan; Um, In Chul

    2016-08-01

    Regenerated silk film has been increasingly attracting the research community's attention for biomedical applications due to its good biocompatibility and excellent cyto-compatibility. However, some limitations regarding its mechanical properties, such as brittleness, have restricted the use of silk films for industrial biomedical applications. In this study, regenerated silk films with different residual sericin content were prepared applying controlled degumming conditions to evaluate the effect of sericin content on the structure and properties of the films generated. When the residual sericin content increased to 0.6%, crystallinity index and breaking strength of silk films were increased. Above this value, these parameters then decreased. A 1.5 fold increase of silk film elongation properties was obtained when incorporating 16% sericin. Regardless of sericin content, all regenerated silk films showed excellent cyto-compatibility, comparable to the one obtained with tissue culture plates.

  18. CO2 Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues

    PubMed Central

    Bermúdez, José M.; Dominguez, Pablo Haro; Arenillas, Ana; Cot, Jaume; Weber, Jens; Luque, Rafael

    2013-01-01

    Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO2 adsorption properties, with interestingly high gas selectivities for CO2 (α > 200 at a gas composition of 15% CO2/85% N2, 273K, 1 bar) and capacities (>2 mmol·g−1 at 273 K). Both CO2 isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO2 which may be correlated with both: N content in the leather residues and ultrasmall pore sizes. PMID:28788352

  19. Multivariate analysis of properties of amino acid residues in proteins from a viewpoint of functional site prediction

    NASA Astrophysics Data System (ADS)

    Du, Shiqiao; Sakurai, Minoru

    2010-03-01

    For the prediction of a protein's function from its 3D-structure alone, it is of importance to elucidate by which properties functional site residues in a protein are discriminated from other residues. Here, we calculated five kinds of geometrical or physical properties of each residue in a protein. Those properties were integrated with techniques of multivariate analysis such as principal component analysis (PCA) or kernel PCA. Consequently, functional residues were found to show some distinct distributions in the scatter plot of those integrated data, which led to the proposal of a method for functional site prediction with a good performance.

  20. Water, mineral waters and health.

    PubMed

    Petraccia, Luisa; Liberati, Giovanna; Masciullo, Stefano Giuseppe; Grassi, Marcello; Fraioli, Antonio

    2006-06-01

    The authors focus on water resources and the use of mineral waters in human nutrition, especially in the different stages of life, in physical activity and in the presence of some morbid conditions. Mineral water is characterized by its purity at source, its content in minerals, trace elements and other constituents, its conservation and its healing properties recognized by the Ministry of Health after clinical and pharmacological trials. Based on total salt content in grams after evaporation of 1l mineral water dried at 180 degrees C (dry residues), mineral waters can be classified as: waters with a very low mineral content, waters low in mineral content, waters with a medium mineral content, and strongly mineralized waters. Based on ion composition mineral waters can be classified as: bicarbonate waters, sulfate waters, sodium chloride or saltwater, sulfuric waters. Based on biological activity mineral waters can be classified as: diuretic waters, cathartic waters, waters with antiphlogistic properties. Instructions for use, doses, and current regulations are included.

  1. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone.

    PubMed

    Vercher-Martínez, Ana; Giner, Eugenio; Arango, Camila; Fuenmayor, F Javier

    2015-02-01

    In this work, a three-dimensional finite element model of the staggered distribution of the mineral within the mineralized collagen fibril has been developed to characterize the lamellar bone elastic behavior at the sub-micro length scale. Minerals have been assumed to be embedded in a collagen matrix, and different degrees of mineralization have been considered allowing the growth of platelet-shaped minerals both in the axial and the transverse directions of the fibril, through the variation of the lateral space between platelets. We provide numerical values and trends for all the elastic constants of the mineralized collagen fibril as a function of the volume fraction of mineral. In our results, we verify the high influence of the mineral overlapping on the mechanical response of the fibril and we highlight that the lateral distance between crystals is relevant to the mechanical behavior of the fibril and not only the mineral overlapping in the axial direction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Desorption and Transformation of Nitroaromatic (TNT) and Nitramine (RDX and HMX) Explosive Residues on Detonated Pure Mineral Phases

    DTIC Science & Technology

    2011-11-01

    surface area measurements were used to compare the pristine and detonated mineral surfaces and to determine if the extreme heat and/or pressures of...gas (N2) in a liquid nitrogen atmosphere (−194.8°C). Results from six relative pressure points were reduced to surface area values applying BET theory...include the minerals quartz, calcite, and dolomite . However, in some detonated Ottawa sand samples the highest intensity peak for calcite at 29° 2Θ

  3. Air-coupled ultrasonic spectroscopy applied to the study of the properties of paper produced from mineral powder (mineral paper).

    NASA Astrophysics Data System (ADS)

    Soto, D. A.; Salas, R. A.; Alvarez-Arenas, T. E. Gómez

    2012-05-01

    A recent technology has been introduced into the paper industry that makes possible to produce paper materials by replacing the cellulose fibres by a mineral powder, achieving a more environmentally friendly product compared with conventional paper. The purpose of this work is to determine the possibilities of an air-coupled ultrasonic technique to study this kind of new materials in order to develop an ultrasonic system useful for quality control for this industry. In particular, air-coupled ultrasonic spectroscopy is specially well suited to this kind of materials because of the fact that no coupling liquid and no direct contact with the sample is employed. A through transmission technique is employed and Fourier analysis is performed to obtain both magnitude and phase spectra of the transmission coefficient. Properties in the thickness direction as well as in the paper plane are investigated. Different paper grades (from 120 to 400 g/m2) provided by Terraskin have been studied. Very high attenuation coeficientes and very low propagation velocities (and hence elastic constant) are obtained, this can be explained by considering the large porosity of this material (about 50%) and the microstrucutre: solid grains in contact with a variable amount of polymeric resin partially filling the pore space.

  4. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    PubMed

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils.

  5. Mining Properties in Oregon that were Involved in the DMA, DMEA, OME Mineral Exploration Programs, 1950-1974

    USGS Publications Warehouse

    Kiilsgaard, Thor H.

    1998-01-01

    Introduction This report and accompanying map (Plate 1) presents information on the Defense Minerals Administration (DMA), Defense Minerals Exploration Administration (DMEA), and Office of Minerals Exploration (OME) mineral exploration programs in Oregon. Under these programs, the federal government participated in the exploration costs for certain strategic and critical minerals. Federal funds for mineral exploration under the programs were available from 1950 to 1974, although limited funds for OME administrative work were continued until 1979. The report reviews the three programs, associated regulations, administrative procedures, and operational techniques. It also describes the various types of informative reports on individual mining properties generated by the programs, lists properties in Oregon that were involved in the different exploration programs, and advises on the location of compiled information that resulted from the work.

  6. The contribution of mineral to the material properties of vertebral cartilage from the smooth-hound shark Mustelus californicus.

    PubMed

    Porter, Marianne E; Koob, Thomas J; Summers, Adam P

    2007-10-01

    Elasmobranch vertebral cartilage has a substantial mineral fraction (39-55%) and the arrangement of mineral varies among species. We examined vertebrae from one shark species, Mustelus californicus, to determine mineral content, the effect of mineral on material properties and the viscoelastic response of vertebral cartilage. We serially demineralized vertebrae and compressively tested them to failure at varying strain rates. Mineral in vertebral cartilage varies within individuals, intraspecifically and interspecifically; this is in contrast to bone, in which significant variation in mineral content is pathological or an interspecific effect. Within Mustelus, vertebrae with larger mineral fractions were significantly stiffer and stronger; however when variation is assessed across species, the structure has a larger effect. Shark vertebral cartilage did not show a substantial viscoelastic response at biologically relevant strain rates, validating the use of quasistatic testing for this material.

  7. Properties of the Residual Stress of the Temporally Filtered Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Pruett, C. D.; Gatski, T. B.; Grosch, C. E.; Thacker, W. D.

    2002-01-01

    The development of a unifying framework among direct numerical simulations, large-eddy simulations, and statistically averaged formulations of the Navier-Stokes equations, is of current interest. Toward that goal, the properties of the residual (subgrid-scale) stress of the temporally filtered Navier-Stokes equations are carefully examined. Causal time-domain filters, parameterized by a temporal filter width 0 less than Delta less than infinity, are considered. For several reasons, the differential forms of such filters are preferred to their corresponding integral forms; among these, storage requirements for differential forms are typically much less than for integral forms and, for some filters, are independent of Delta. The behavior of the residual stress in the limits of both vanishing and in infinite filter widths is examined. It is shown analytically that, in the limit Delta to 0, the residual stress vanishes, in which case the Navier-Stokes equations are recovered from the temporally filtered equations. Alternately, in the limit Delta to infinity, the residual stress is equivalent to the long-time averaged stress, and the Reynolds-averaged Navier-Stokes equations are recovered from the temporally filtered equations. The predicted behavior at the asymptotic limits of filter width is further validated by numerical simulations of the temporally filtered forced, viscous Burger's equation. Finally, finite filter widths are also considered, and a priori analyses of temporal similarity and temporal approximate deconvolution models of the residual stress are conducted.

  8. Polyphenols from different agricultural residues: extraction, identification and their antioxidant properties.

    PubMed

    Vijayalaxmi, S; Jayalakshmi, S K; Sreeramulu, K

    2015-05-01

    Agricultural residues like sugarcane bagasse (SCB), corn husk (CH), peanut husk (PNH), coffee cherry husk (CCH), rice bran (RB) and wheat bran (WB) are low-value byproducts of agriculture. They have been shown to contain significant levels of phenolic compounds with demonstrated antioxidant properties. In this study, the effects of two types of solvent extraction methods: solid-liquid extraction (SLE) and hot water extraction on the recovery of phenolic compounds from agricultural residues were investigated to optimize the extraction conditions based on total phenolic content (TPC), total tannin content (TTC) and total flavonoids content (TFC). Methanol (50 %) was found to be the most efficient solvent for the extraction of phenolics with higher DPPH, nitric oxide radical scavenging and reducing power activity, followed by ethanol and water. The phenolic compounds of methanolic extracts (50 %) were determined by reverse phase high performance liquid chromatography; in addition gallic acid became the major phenolic acid present in all the agricultural residues whereas ferulic acid, epicatechin, catechin, quercitin and kampferol present in lesser amounts. The present investigation suggested that agricultural residues are potent antioxidants. The overall results of this research demonstrated the potential of agricultural residues to be an abundant source of natural antioxidants suitable for further development into dietary supplements and various food additives.

  9. Gasification of residual materials from coal liquefaction. Type III extended pilot plant evaluation of a pelletized and ground Kerr McGee mineral ash residue from SRC-I coal liquefaction process

    SciTech Connect

    Wu, C.M.; Robin, A.M.

    1984-02-01

    A Type III extended pilot plant evaluation of pelletized and ground Kerr McGee mineral ash residue, which was obtained from the liquefaction of Illinois No. 6 coal at the SRC-I coal liquefaction process pilot plant at Wilsonville, Alabama, was successfully completed at Texaco's Montebello Research Laboratory (MRL). A total of 60 tons of residue was gasified during three runs which were carried out at 950 psig in the MRL High Pressure Solids Gasification Unit II gasifier. The oxygen-to-residue ratio was varied to determine optimum operating conditions. The runs lasted from 6.9 hours to 56.3 hours and a total of 72.9 hours of on-stream time was accumulated. This work was authorized by DOE Delivery Order Number 9 under DOE contract DEAC-01-76ET-10137. It is part of a continuing project to evaluate residual materials from various DOE sponsored coal liquefaction projects to determine their suitability for conversion to hydrogen using one of the Texaco gasification processes. 5 figures, 5 tables.

  10. HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    SciTech Connect

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon; Universite de Lyon 1, Villeurbanne; CNRS and others

    2013-06-20

    We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 {+-} 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 {<=} log (M{sub *}/M{sub Sun }) {<=} 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.

  11. A study of the relationship between mineral content and mechanical properties of turkey gastrocnemius tendon

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Librizzi, J. J.; Dunn, M. G.; Silver, F. H.

    1995-01-01

    The vertebrate skeletal system undergoes adaptation in response to external forces, but the relation between the skeletal changes and such forces is not understood. In this context, the variation in the amount and location of calcification has been compared with changes in mechanical properties of the normally mineralizing turkey gastrocnemius tendon using ash weight measurements, X-ray radiography, and mechanical testing. Radiographic evidence from 12- to 17-week-old birds showed calcification in only portions of gastrocnemius tendons proximal to the tarsometatarsal joint. Mechanical testing of these dissected proximal regions demonstrated an increased ultimate stress and modulus and a decreased maximum strain that appeared to parallel calcification. Further, stress-strain curves of portions of uncalcified turkey gastrocnemius tendon were shaped similar to those of other typical unmineralized tendon curves while highly calcified tendons yielded curves resembling those of bone. The proximal portions of the gastrocnemius where mineralization begins were observed to have a decreased tendon cross-sectional area compared with distal portions which do not mineralize. Based on the resultant measures of mineral content and location and mechanical properties, it is hypothesized that increased calcification is a result of increased stresses at certain locations of the tendon, perhaps the consequence of the natural forces exerted by the large leg muscles of the bird into which the gastrocnemius inserts. More specifically, tendon calcification may be the result of stress-induced exposure of charged sites on the surfaces of collagen molecules, fibrils, or fibers so that deposition of mineral and subsequent mechanical reinforcement occur in the tissue.(ABSTRACT TRUNCATED AT 250 WORDS).

  12. A study of the relationship between mineral content and mechanical properties of turkey gastrocnemius tendon

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Librizzi, J. J.; Dunn, M. G.; Silver, F. H.

    1995-01-01

    The vertebrate skeletal system undergoes adaptation in response to external forces, but the relation between the skeletal changes and such forces is not understood. In this context, the variation in the amount and location of calcification has been compared with changes in mechanical properties of the normally mineralizing turkey gastrocnemius tendon using ash weight measurements, X-ray radiography, and mechanical testing. Radiographic evidence from 12- to 17-week-old birds showed calcification in only portions of gastrocnemius tendons proximal to the tarsometatarsal joint. Mechanical testing of these dissected proximal regions demonstrated an increased ultimate stress and modulus and a decreased maximum strain that appeared to parallel calcification. Further, stress-strain curves of portions of uncalcified turkey gastrocnemius tendon were shaped similar to those of other typical unmineralized tendon curves while highly calcified tendons yielded curves resembling those of bone. The proximal portions of the gastrocnemius where mineralization begins were observed to have a decreased tendon cross-sectional area compared with distal portions which do not mineralize. Based on the resultant measures of mineral content and location and mechanical properties, it is hypothesized that increased calcification is a result of increased stresses at certain locations of the tendon, perhaps the consequence of the natural forces exerted by the large leg muscles of the bird into which the gastrocnemius inserts. More specifically, tendon calcification may be the result of stress-induced exposure of charged sites on the surfaces of collagen molecules, fibrils, or fibers so that deposition of mineral and subsequent mechanical reinforcement occur in the tissue.(ABSTRACT TRUNCATED AT 250 WORDS).

  13. Crystal chemical characteristics and physical properties of ferrous minerals as the basis for the formation of functional materials

    NASA Astrophysics Data System (ADS)

    Shmakova, A.; Kanev, B.; Gömze, A. L.; Kotova, O.

    2017-02-01

    Crystal chemical characteristics and physical properties of ferrous minerals can be criteria for search and evaluation of mineral (natural) raw for the production of functional materials. Special attention will be given to new experimental methods of transformation of minerals at different methods of influence. As a probe to identify the relationship between the actual crystalline structure of the mineral and its technological properties we used the oxidation - reduction reactions of iron ore-forming minerals. We will show that the inexpensive and affordable methods of influence at ore and technological products result in the observed Fe2+— Fe3+ charge transfer, which result in the increase of the conversion degree of the structure and change of magnetic properties of the substance.

  14. Effect of mineral elements on physicochemical properties of oxidised starches and generation of free radicals.

    PubMed

    Pietrzyk, Sławomir; Fortuna, Teresa; Królikowska, Karolina; Rogozińska, Ewelina; Labanowska, Maria; Kurdziel, Magdalena

    2013-09-12

    The objective of this study was to determine the effect of enrichment of oxidised starches with mineral compounds on their physicochemical properties and capability for free radical generation. Potato and spelt wheat starches were oxidised with sodium hypochlorite and, afterwards, modified with ions of potassium, magnesium and iron. The modified starches were analysed for: content of mineral elements, colour parameters (L*a*b*), water binding capacity solubility in water at temperature of 50 and 80 °C, and susceptibility to enzymatic hydrolysis with α-amylase. In addition, thermodynamic characteristics of gelatinisation was determined by differential scanning calorimetry (DSC), and the number and character of thermally generated free radicals was assayed using electron paramagnetic resonance (EPR). Based on the results achieved, it was concluded that the quantity of incorporated minerals and changes in the assayed physicochemical parameters depended not only on the botanical type of starch but also on the type of the incorporated mineral element. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Calcium-silicate mesoporous nanoparticles loaded with chlorhexidine for both anti- Enterococcus faecalis and mineralization properties.

    PubMed

    Fan, Wei; Li, Yanyun; Sun, Qing; Ma, Tengjiao; Fan, Bing

    2016-10-21

    In infected periapical tissues, Enterococcus faecalis is one of the most common dominant bacteria. Chlorhexidine has been proved to show strong antibacterial ability against E. faecalis but is ineffective in promoting mineralization for tissues around root apex. Mesoporous calcium-silicate nanoparticles are newly synthesized biomaterials with excellent ability to promote mineralization and carry-release bioactive molecules in a controlled manner. In this study, mesoporous calcium-silicate nanoparticles were functionalized with chlorhexidine and their releasing profile, antibacterial ability, effect on cell proliferation and in vitro mineralization property were evaluated. The chlorhexidine was successfully incorporated into mesoporous calcium-silicate nanoparticles by a mixing-coupling method. The new material could release chlorhexidine as well as Ca(2+) and SiO3(2-) in a sustained manner with an alkaline pH value under different conditions. The antimicrobial ability against planktonic E. faecalis was dramatically improved after chlorhexidine incorporation. The nanoparticles with chlorhexidine showed no negative effect on cell proliferation with low concentrations. On dentin slices, the new synthesized material demonstrated a similar inhibitory effect on E. faecalis as the chlorhexidine. After being immersed in SBF for 9 days, numerous apatite crystals could be observed on surfaces of the material tablets. Mesoporous calcium-silicate nanoparticles loaded with chlorhexidine exhibited release of ions and chlorhexidine, low cytotoxicity, excellent antibacterial ability and in vitro mineralization. This material could be developed into a new effective intra-canal medication in dentistry or a new bone defect filling material for infected bone defects.

  16. The prediction of residual stress and its influence on the mechanical properties of weld joint

    NASA Astrophysics Data System (ADS)

    Ni, J.; Wahab, M. A.

    2017-05-01

    A three-dimensional metallo-thermo-mechanical analysis of bead on plate welding is performed in this work. This coupled model enables to capture the microstructural development and temperature history at local region. As a result, the residual stress is evaluated based on the temperature-dependent mechanical properties computed by the mixture of individual phase. Isotropic hardening is assumed in the finite element (FE) analysis. At the same time, the distribution of residual stress is also predicted by treating the mechanical properties as integral values of sheet metal. The two simulated fields of stress and strain after welding are analysed and compared. Moreover, as it is known that welding changes the mechanical properties of the original material, especially in fusion zone (FZ) and heat affected zone (HAZ), the stress and strain data at interested areas (HAZ and FZ) are subtracted for comparison. The predicted stress and strain fields are imported to subsequent simulation of standard tensile test. The stress-strain curves are compared with the one of base material. It is found that residual stress has significant influence on the structural performance of weld joints.

  17. The Effects of Mineral Dust on the Hygroscopic and Optical Properties of Inorganic Salt Aerosols

    NASA Astrophysics Data System (ADS)

    Attwood, A. R.; Greenslade, M. E.

    2011-12-01

    Mineral dust particles are a significant fraction of the total aerosol mass, thus they play an important role in the Earth's radiative budget by direct scattering and absorption of radiation. Assessing this impact is complicated by the variability of optical properties resulting from water uptake and changes in chemical composition due to atmospheric mixing. Internal mixtures of montmorillonite, a clay component of mineral dust, with sodium chloride and ammonium sulfate were studied optically using cavity ring down spectroscopy. The effects of the addition of the clay to the optically observed deliquescence relative humidity (DRH) and water uptake of these salts was considered by investigating a series of different salt mass fractions. In most cases, montmorillonite alters the hygroscopic properties and causes the DRH to occur at a lower relative humidity. For ammonium sulfate, optical properties can be approximated by volume weighted mixing rules with some minor deviations around the DRH. For sodium chloride, this approximation is only accurate below the DRH with enhanced water uptake at higher relative humidities. Our results show that salt particles may transition from solid to liquid at a lower relative humidity than is expected based on the salt alone, as observed with changes in optical properties. Further, they contradict current measurements in the literature that suggest little change in the hygroscopic behavior of salts when insoluble mineral dust components are added and should continue to be investigated. Accurate, direct measurements of the effect of the addition of clays to the optical properties of common aerosol species will allow for improvements in the prediction of the aerosol direct effect.

  18. Diagenesis-inspired reaction of magnesium ions with surface enamel mineral modifies properties of human teeth.

    PubMed

    Abdallah, Mohamed-Nur; Eimar, Hazem; Bassett, David C; Schnabel, Martin; Ciobanu, Ovidiu; Nelea, Valentin; McKee, Marc D; Cerruti, Marta; Tamimi, Faleh

    2016-06-01

    Mineralized tissues such as teeth and bones consist primarily of highly organized apatitic calcium-phosphate crystallites within a complex organic matrix. The dimensions and organization of these apatite crystallites at the nanoscale level determine in part the physical properties of mineralized tissues. After death, geological processes such as diagenesis and dolomitization can alter the crystallographic properties of mineralized tissues through cycles of dissolution and re-precipitation occurring in highly saline environments. Inspired by these natural exchange phenomena, we investigated the effect of hypersalinity on tooth enamel. We discovered that magnesium ions reacted with human tooth enamel through a process of dissolution and re-precipitation, reducing enamel crystal size at the surface of the tooth. This change in crystallographic structure made the teeth harder and whiter. Salt-water rinses have been used for centuries to ameliorate oral infections; however, our discovery suggests that this ancient practice could have additional unexpected benefits. Here we describe an approach inspired by natural geological processes to modify the properties of a biomineral - human tooth enamel. In this study we showed that treatment of human tooth enamel with solutions saturated with magnesium induced changes in the nanocrystals at the outer surface of the protective enamel layer. As a consequence, the physical properties of the tooth were modified; tooth microhardness increased and the color shade became whiter, thus suggesting that this method could be used as a clinical treatment to improve dental mechanical properties and esthetics. Such an approach is simple and straightforward, and could also be used to develop new strategies to synthesize and modify biominerals for biomedical and industrial applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. High Temperature Residual Properties of Carbon Fiber Composite Sandwich Panel with Pyramidal Truss Cores

    NASA Astrophysics Data System (ADS)

    Liu, Jiayi; Zhou, Zhengong; Wu, Linzhi; Ma, Li; Pan, Shidong

    2013-08-01

    A study on the mechanical property degradation of carbon fiber composite sandwich panel with pyramidal truss cores by high temperature exposure is performed. Analytical formulae for the residual bending strength of composite sandwich panel after thermal exposure are presented for possible competing failure modes. The composite sandwich panels were fabricated from unidirectional carbon/epoxy prepreg, and were exposed to different temperatures for different time. The bending properties of the exposed specimens were measured by three-point bending tests. Then the effect of high temperature exposure on the bending properties and damage mechanism were analyzed. The results have shown that the residual bending strength of composite sandwich panels decreased with increasing exposure temperature and time, which was caused by the degradation of the matrix property and fiber-matrix interface property at high temperature. The effect of thermal exposure on failure mode of composite sandwich panel was observed as well. The measured failure loads showed good agreement with the analytical predictions. It is expected that this study can provide useful information on the design and application of carbon fiber composite sandwich panel at high temperature.

  20. Mineral and water content of A. gigas scales determine local micromechanical properties and energy dissipation mechanisms

    NASA Astrophysics Data System (ADS)

    Troncoso, Omar P.; Gigos, Florian; Torres, Fernando G.

    2017-03-01

    Arapaima gigas scales are natural laminated composite materials made of individual layers with different degrees of mineralization, accompanied of varying mechanical properties. This natural design provides scales with hardness and flexibility, and can serve as a source of inspiration for the development of new layered composites with a hard surface and flexible base. In this paper, we have carried out cyclic micro-indentation tests on both; the internal and the highly mineralized external surface of air dried and wet scales, in order to assess the variation of their local micromechanical properties with regard to the mineral and water content. The load-penetration (P-h) curves showed that creep takes place throughout the application of a constant force during the micro-indentation tests, confirming the time dependent response of A. gigas scales. A model that accounted for the elastic, plastic and viscous responses of the samples was used to fit the experimental results. The penetration depth during loading and creep, as well as the energy dissipated are dependent on the water content. The used model suggests that the viscous response of the internal layer increases with the water content.

  1. Overexpression of DMP1 accelerates mineralization and alters cortical bone biomechanical properties in vivo

    SciTech Connect

    Bhatia A.; Miller L.; Albazza, M.; Espinoza Orias, A.A.; Inoue, N.; Acerbo, A.; George, A.; Sumner, D.R.

    2011-09-29

    Dentin matrix protein-1 (DMP1) is a key regulator of biomineralization. Here, we examine changes in structural, geometric, and material properties of cortical bone in a transgenic mouse model overexpressing DMP1. Micro-computed tomography and three-point bending were performed on 90 femora of wild type and transgenic mice at 1, 2, 4, and 6 months. Fourier transform infrared imaging was performed at 2 months. We found that the transgenic femurs were longer (p < 0.01), more robust in cross-section (p < 0.05), stronger (p < 0.05), but had less post-yield strain and displacement (p < 0.01), and higher tissue mineral density (p < 0.01) than the wild type femurs at 1 and 2 months. At 2 months, the transgenic femurs also had a higher mineral-to-matrix ratio (p < 0.05) and lower carbonate substitution (p < 0.05) compared to wild type femurs. These findings indicate that increased mineralization caused by overexpressing DMP1 led to increased structural cortical bone properties associated with decreased ductility during the early post-natal period.

  2. Organic farming and cover crops as an alternative to mineral fertilizers to improve soil physical properties

    NASA Astrophysics Data System (ADS)

    Sánchez de Cima, Diego; Luik, Anne; Reintam, Endla

    2015-10-01

    For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.

  3. Helicobacter pylori in bottled mineral water: genotyping and antimicrobial resistance properties.

    PubMed

    Ranjbar, Reza; Khamesipour, Faham; Jonaidi-Jafari, Nematollah; Rahimi, Ebrahim

    2016-03-12

    Up to now, fecal-oral and oral-oral are the most commonly known routes for transmission of H. pylori, therefore, contaminated water can play an important role in transmission of H. pylori to humans. Genotyping using virulence markers of H. pylori is one of the best approaches to study the correlations between H. pylori isolates from different samples. The present research was carried out to study the vacA, cagA, cagE, oipA, iceA and babA2 genotyping and antimicrobial resistance properties of H. pylori isolated from the bottled mineral water samples of Iran. Of 450 samples studied, 8 samples (1.77%) were contaminated with H. pylori. Brand C of bottled mineral water had the highest prevalence of H. pylori (3.63%). The bottled mineral water samples of July month had the highest levels of H. pylori-contamination (50%). H. pylori strains had the highest levels of resistance against metronidazole (62.5%), erythromycin (62.5%), clarithromycin (62.5%), amoxicillin (62.5%) and trimethoprim (62.5%). Totally, 12.5% of strains were resistant to more than 6 antibiotics. VvacAs1a (100%), vacAm1a (87.5%), cagA (62.5%), iceA1 (62.5%), oipA (25%), babA2 (25%) and cagE (37.5%) were the most commonly detected genotypes. M1as1a (62.5%), m1as2 (37.5%), m2s2 (37.5%) and S1a/cagA+/IceA2/oipA-/babA2-/cagE- (50%) were the most commonly detected combined genotypes. Contaminated bottled mineral water maybe the sources of virulent and resistant strains H. pylori. Careful monitoring of bottled mineral water production may reduce the risk of H. pylori transmission into the human population.

  4. Experimental study of Frictional property of siliceous shale from the viewpoint of clay mineral fabric

    NASA Astrophysics Data System (ADS)

    Wada, E.; Takemura, T.

    2015-12-01

    There exist slate cleavages in siliceous shale distributed in Tamba-belt located southwest Japan, belonging to Jurassic accretionary complexes, which is formed by a unique geological process. Tamba belt is classified into the complexes of the Type I and II Suites. It is well known that the siliceous shale mined from Type I Suite of Tamba belt is of high-quality as natural whetstone. In this study, we analyzed the relationship between the accretionary prism geology and topography of the study area in order to characterize the distribution of the siliceous shale. We measured illite crystallinity (IC) in order to consider the deformation process, metamorphic conditions, and clay mineral fabric. The value of IC and clay mineral fabric are deemed to be related to frictional properties.

  5. Material properties and biochemical composition of mineralized vertebral cartilage in seven elasmobranch species (Chondrichthyes).

    PubMed

    Porter, Marianne E; Beltrán, Jennie L; Koob, Thomas J; Summers, Adam P

    2006-08-01

    Elasmobranchs, particularly sharks, function at speed and size extremes, exerting large forces on their cartilaginous skeletons while swimming. This casts doubt on the generalization that cartilaginous skeletons are mechanically inferior to bony skeletons, a proposition that has never been experimentally verified. We tested mineralized vertebral centra from seven species of elasmobranch fishes: six sharks and one axially undulating electric ray. Species were chosen to represent a variety of morphologies, inferred swimming speeds and ecological niches. We found vertebral cartilage to be as stiff and strong as mammalian trabecular bone. Inferred swimming speed was a good, but not infallible, predictor of stiffness and strength. Collagen content was also a good predictor of material stiffness and strength, although proteoglycan was not. The mineral fraction in vertebral cartilage was similar to that in mammalian trabecular bone and was a significant predictor of material properties.

  6. Size distribution and optical properties of African mineral dust after intercontinental transport

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Formenti, Paola; Desboeufs, Karine; Chevaillier, Servanne; Triquet, Sylvain; Maillé, Michel; Cazaunau, Mathieu; Laurent, Benoit; Mayol-Bracero, Olga L.; Vallejo, Pamela; Quiñones, Mariana; Gutierrez-Molina, Ian E.; Cassola, Federico; Prati, Paolo; Andrews, Elisabeth; Ogren, John

    2016-06-01

    The transatlantic transport of mineral dust from Africa is a persistent atmospheric phenomenon, clue for understanding the impacts of dust at the global scale. As part of the DUST Aging and Transport from Africa to the Caribbean (Dust-ATTACk) intensive field campaign, the size distribution and optical properties of mineral dust were measured in June-July 2012 on the east coast of Puerto Rico, more than 5000 km from the west coast of Africa. During the recorded dust events, the PM10 (particulate matter 10 micrometers or less in diameter) concentrations increased from 20 to 70 µg m-3. Remote sensing observations and modeling analysis were used to identify the main source regions, which were found in the Western Sahara, Mauritania, Algeria, Niger, and Mali. The microphysical and optical properties of the dust plumes were almost independent of origin. The size distribution of mineral dust after long-range transport may have modal diameters similar to those on the eastern side of the Atlantic short time after emission, possibly depending on height of transport. Additional submicron particles of anthropogenic absorbing aerosols (likely from regional marine traffic activities) can be mixed within the dust plumes, without affecting in a significant way the PM10 absorption properties of dust observed in Puerto Rico. The Dust-ATTACk experimental data set may be useful for modeling the direct radiative effect of dust. For accurate representation of dust optical properties over the Atlantic remote marine region, we recommend mass extinction efficiency (MEE) and single-scattering albedo values in the range 1.1-1.5 m2 g-1 and 0.97-0.98, respectively, for visible wavelengths.

  7. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties

    PubMed Central

    Díaz-García, Almudena; Martínez-García, Carmen; Cotes-Palomino, Teresa

    2017-01-01

    Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values. PMID:28772461

  8. Study on magnetic properties of magnetic minerals in the quartzofeldspathic schist by using magnetic force microscope

    NASA Astrophysics Data System (ADS)

    Ni, C. H.; Chen, Y. H.

    2016-12-01

    The pseudotachylyte generated from the fault sliding during an earthquake plays an important role in the geology. In general, the pseudotachylyte vein has a magnetic susceptibility which is higher than wall rocks attributed by the fine-grained magnetic minerals. In this study, the fault pseudotachylyte formed by frictional melting in quartzofeldspathic schist rocks from Alpine Fault, New Zealand, was investigated. The scanning electron microscopy (SEM) was used to obtain the morphology of magnetic minerals and magnetic force microscopy (MFM) was utilized to observe magnetic domain structures. We want to realize how the growth process of magnetic minerals affects magnetic structures and magnetic properties. It was observed exsoluted-titanomagnetite was especially around outer edge of pseudotachylyte. These titanomagnetite had a single domain (SD) and distributed paralleling to the direction of exsolution. In contrast, the magnetic minerals (magnetite) in the pseudotachylyte vein had two different magnetic structures: one is the detrital magnetite showed multiple domains (MD) without regular arrangement, which may be indicated the thermal remanent magnetization (TRM). One the other is neoformed fine-grained magnetite scattering in the matrix and showed SD to pseudo-single-domain (PSD) and their magnetic direction was perpendicular to the direction of pseudotachylyte veins, suggesting the chemical remanent magnetization (CRM). However, the macroscopic magnetic property, based on Day's plot, measured from superconducting quantum interference device (SQUID) was shown the sample belonged to MD structures. These results indicated that MFM is a more powerful and precise tool to figure out the magnetic structure. The related studies will be further investigated.

  9. Mining Properties in Washington that were involved in the DMA, DMEA, OME Mineral Exploration Programs, 1950-1974

    USGS Publications Warehouse

    Kiilsgaard, Thor H.

    1998-01-01

    Introduction This report and accompanying map (Plate 1) presents information on the Defense Minerals Administration (DMA), Defense Minerals Exploration Administration (DMEA), and Office of Minerals Exploration (OME) mineral exploration programs in Washington. Under these programs, the federal government participated in the exploration costs for certain strategic and critical minerals. Federal funds for mineral exploration under the programs were available from 1950 to 1974, although limited funds for OME administrative work were continued until 1979. The report reviews the three programs, associated regulations, administrative procedures, and operational techniques. It also describes the various types of informative reports generated by the programs, lists mining properties in Washington that were involved in the exploration programs, and advises on location of compiled exploration information that resulted from the work.

  10. Properties of sintered glass-ceramics prepared from plasma vitrified air pollution control residues.

    PubMed

    Roether, J A; Daniel, D J; Rani, D Amutha; Deegan, D E; Cheeseman, C R; Boccaccini, A R

    2010-01-15

    Air pollution control (APC) residues, obtained from a major UK energy from waste (EfW) plant, processing municipal solid waste, have been blended with silica and alumina and melted using DC plasma arc technology. The glass produced was crushed, milled, uni-axially pressed and sintered at temperatures between 750 and 1150 degrees C, and the glass-ceramics formed were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties assessed included Vickers's hardness, flexural strength, Young's modulus and thermal shock resistance. The optimum sintering temperature was found to be 950 degrees C. This produced a glass-ceramic with high density (approximately 2.58 g/cm(3)), minimum water absorption (approximately 2%) and relatively high mechanical strength (approximately 81+/-4 MPa). Thermal shock testing showed that 950 degrees C sintered samples could withstand a 700 degrees C quench in water without micro-cracking. The research demonstrates that glass-ceramics can be readily formed from DC plasma treated APC residues and that these have comparable properties to marble and porcelain. This novel approach represents a technically and commercially viable treatment option for APC residues that allow the beneficial reuse of this problematic waste.

  11. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures.

    PubMed

    Wang, Zhen Xiang; Lloyd, Ashley A; Burket, Jayme C; Gourion-Arsiquaud, Samuel; Donnelly, Eve

    2016-03-01

    Heterogeneity of bone tissue properties is emerging as a potential indicator of altered bone quality in pathologic tissue. The objective of this study was to compare the distributions of tissue properties in women with and without histories of fragility fractures using Fourier transform infrared (FTIR) imaging. We extended a prior study that examined the relationship of the mean FTIR properties to fracture risk by analyzing in detail the widths and the tails of the distributions of FTIR properties in biopsies from fracture and non-fracture cohorts. The mineral and matrix properties of cortical and trabecular iliac crest tissue were compared in biopsies from women with a history of fragility fracture (+Fx; n=21, age: mean 54±SD 15y) and with no history of fragility fracture (-Fx; n=12, age: 57±5y). A subset of the patients included in the -Fx group were taking estrogen-plus-progestin hormone replacement therapy (HRT) (-Fx+HRT n=8, age: 58±5y) and were analyzed separately from patients with no history of HRT (-Fx-HRT n=4, age: 56±7y). When the FTIR parameter mean values were examined by treatment group, the trabecular tissue of -Fx-HRT patients had a lower mineral:matrix ratio (M:M) and collagen maturity (XLR) than that of -Fx+HRT patients (-22% M:M, -18% XLR) and +Fx patients (-17% M:M, -18% XLR). Across multiple FTIR parameters, tissue from the -Fx-HRT group had smaller low-tail (5th percentile) values than that from the -Fx+HRT or +Fx groups. In trabecular collagen maturity and crystallinity (XST), the -Fx-HRT group had smaller low-tail values than those in the -Fx+HRT group (-16% XLR, -5% XST) and the +Fx group (-17% XLR, -7% XST). The relatively low values of trabecular mineral:matrix ratio and collagen maturity and smaller low-tail values of collagen maturity and crystallinity observed in the -Fx-HRT group are characteristic of younger tissue. Taken together, our data suggest that the presence of newly formed tissue that includes small/imperfect crystals

  12. Self-cementing properties of oil shale solid heat carrier retorting residue.

    PubMed

    Talviste, Peeter; Sedman, Annette; Mõtlep, Riho; Kirsimäe, Kalle

    2013-06-01

    Oil shale-type organic-rich sedimentary rocks can be pyrolysed to produce shale oil. The pyrolysis of oil shale using solid heat carrier (SHC) technology is accompanied by large amount of environmentally hazardous solid residue-black ash-which needs to be properly landfilled. Usage of oil shale is growing worldwide, and the employment of large SHC retorts increases the amount of black ash type of waste, but little is known about its physical and chemical properties. The objectives of this research were to study the composition and self-cementing properties of black ash by simulating different disposal strategies in order to find the most appropriate landfilling method. Three disposal methods were simulated in laboratory experiment: hydraulic disposal with and without grain size separation, and dry dumping of moist residue. Black ash exhibited good self-cementing properties with maximum compressive strength values of >6 MPa after 90 days. About 80% of strength was gained in 30 days. However, the coarse fraction (>125 µm) did not exhibit any cementation, thus the hydraulic disposal with grain size separation should be avoided. The study showed that self-cementing properties of black ash are governed by the hydration of secondary calcium silicates (e.g. belite), calcite and hydrocalumite.

  13. EFFECTS OF MINERAL CONTENT ON THE FRACTURE PROPERTIES OF EQUINE CORTICAL BONE IN DOUBLE-NOTCHED BEAMS

    PubMed Central

    McCormack, Jordan; Stover, Susan M.; Gibeling, Jeffery C.; Fyhrie, David P.

    2012-01-01

    We recently developed a method to measure cortical bone fracture initiation toughness using a double-notched beam in four-point bending. This method was used to test the hypothesis that mineralization around the two notch roots is correlated with fracture toughness and crack extension (physical damage). Total energy absorbed to failure negatively correlated with average mineralization of the beam (r2=0.62), but not with notch root mineralization. Fracture initiation toughness was positively correlated to mineralization at the broken notch root (r2=0.34). Crack length extension at the unbroken notch was strongly negatively correlated with the average mineralization of the notch roots (r2=0.81) whereas crack length extension at the broken notch did not correlate with any of the mineralization measurements. Mineralization at the notch roots and the average mineralization contributed independently to the mechanical and damage properties. The data are consistent with an hypothesis that a) high notch root mineralization results in less stable crack length extension but high force to initiate unstable crack propagation while b) higher average mineralization leads to low post-yield (and total) energy absorption to failure. PMID:22394589

  14. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Cassola, F.; Mazzino, A.; Triquet, S.; Chevaillier, S.; Grand, N.; Bourrianne, T.; Momboisse, G.; Sellegri, K.; Schwarzenbock, A.; Freney, E.; Mallet, M.; Formenti, P.

    2016-02-01

    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June-July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of transport (1-5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l.) than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling studies and satellite retrievals

  15. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Cassola, F.; Mazzino, A.; Triquet, S.; Chevaillier, S.; Grand, N.; Bourrianne, T.; Momboisse, G.; Sellegri, K.; Schwarzenbock, A.; Freney, E.; Mallet, M.; Formenti, P.

    2015-08-01

    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June-July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of tranport (1-5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried higher concentration of pollution particles at intermediate altitude (1-3 km) than at elevated altitude (> 3 km), resulting in scattering Angstrom exponent up to 2.2 within the intermediate altitude. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate light absorption of the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00 ± 0.04. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assimilated to those of native dust in radiative transfer simulations, modeling studies and

  16. Antioxidant Capacity, Mineral Content and Sensory Properties of Gluten-Free Rice and Buckwheat Cookies

    PubMed Central

    Pestorić, Mladenka; Mišan, Aleksandra; Nedeljković, Nataša; Jambrec, Dubravka; Jovanov, Pavle; Banjac, Vojislav; Torbica, Aleksandra; Hadnađev, Miroslav; Mandić, Anamarija

    2015-01-01

    Summary Light buckwheat flour was used to substitute rice flour at the level of 10, 20 and 30% to produce gluten-free cookies. The substitution of gluten-free cookie formulation with light buckwheat flour contributed to the significantly higher mineral content, especially magnesium, potassium, iron and copper, in comparison with the control rice cookies (p<0.05). Gluten-free cookies made with rice flour and buckwheat flour exhibited significantly higher total phenolic and rutin content, scavenging activity against 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH•), antioxidant activity and reducing power than the control cookies (p<0.05). Comparing all evaluated sensory properties, cookies containing 20% of light buckwheat flour had the most acceptable sensory properties. The obtained results of principal component analysis showed that the cookies with 20 and 30% buckwheat flour had better antioxidant and sensory properties in comparison with other two cookie samples. PMID:27904330

  17. The influence of organic substances type on the properties of mineral-organic fertilizers

    NASA Astrophysics Data System (ADS)

    Huculak-Mä Czka, Marta; Hoffmann, Krystyna; Hoffmann, Józef

    2010-05-01

    In presented research the lignite coal, peat, poultry droppings and their composts were suggested as a components of mineral-organic fertilizers. Fertility of soil is conditioned by an ability to supply plants with water and nutrients essential to their growth and development. The soil is described as tri-phase system consisting of solid, liquid and gas phase. In solid phase the soil minerals and organic matter can be distinguished. The content of micro-organisms contained in the soil i.e. microfauna and microflora is indispensable for high soil fertility. Nutrients should occur in the forms available for plants in order to obtain high yields of the high quality crops. Organic fertilizing has versatile activity. Increasing contents of humus, providing mineral nutrients included in organic substance and the improvement in physical properties of the soil belong to its main purposes. Due to applying organic fertilizers heavy soils is getting loosen and in consequence become more airy what probably influences stimulation of soil micro-organisms activity. An aqueous as well as sorption capacity of light soils is also increasing, buffer range and the stabilization of the proper level of pH value of the soil, plants are provided with basic macro and micronutrients. Conventional organic fertilizers applied in an arable farms are manure, dung, green manures and composts of different kind. Within compost group the following types can be distinguished: compost from farming, urban wastes, shredded straw, poultry droppings, industrial wastes, bark of coniferous tree etc. Properly developed fertilizer formulas should contain in their composition both mineral as well as organic elements. Such fertilizer should fit its composition to the soil and plant requirements. It should contain organic substance being characterized by a high aqueous and cations sorption capacity, substance undergoing the fast mineralization with the large calcium content. Inorganic substances e.g. bentonites

  18. Determination of the mineral fraction and rheological properties of microwave modified starch from Canna edulis.

    PubMed

    Lares, Mary; Pérez, Elevina

    2006-09-01

    The goal of this study was to evaluate the effect of the physical modification by microwave irradiation on the mineral fraction and rheological properties of starch isolated from Canna edulis rhizomes. Phosphorus, sodium, potassium, magnesium, iron, calcium and zinc were evaluated using atomic absorption spectrophotometry. Rheological properties were determined using both the Brabender amylograph and Brookfield viscosimeter. Except for the calcium concentration, mineral contents decreased significantly (p < 0.05) after microwave treatment. The amylographic profile was also modified, showing increased pasting temperature range and breakdown index, whereas the viscosity peak, viscosity at holding (95 degrees C) and cooling periods (50 degrees C), setback and consistency decreased as compared to the native starch counterpart. Although viscosity decreased in the microwaved sample, presumably due to starch changes at molecular level, it retained the general pseudo plastic behavior of native starch. It is concluded that canna starch may be modified by microwave irradiation in order to change its functional properties. This information should be considered when using microwave irradiation for food processing. Furthermore, the altered functional attributes of canna modified starch could be advantageous in new product development.

  19. Mineral status and mechanical properties of cancellous bone exposed to hydrogen peroxide for various time periods.

    PubMed

    Li, Dan; Bi, Long; Meng, Guolin; Wang, Jun; Lv, Rong; Liu, Min; Liu, Jian; Hu, Yunyu

    2011-02-01

    Processed cancellous bone has been regarded as one alternative for the treatment of bone defects. In order to avoid immunogenic effects and preserve the natural properties of the bone, the optimal processing method should be determined. To observe the influence of hydrogen peroxide on the mineral status and mechanical properties of cancellous bone for various time periods and find the optimal processing time. Cancellous bone granules from bovine femur condyles were treated with 30% hydrogen dioxide for 0, 12, 24, 36, 48, 60 and 72 h separately. The microstructure and mineral content of the granules were evaluated by ash analysis, Micro-CT, scanning electron micrograph and energy dispersive X-ray. The biomechanical properties were analyzed by applying cranial-caudal compression in a materials testing machine. With increasing exposure to hydrogen peroxide, the BMD and BMC of granules gradually decreased, and the Ca/P molar ratios clearly increased (P < 0.05). Meanwhile, the mineral content of the granules increased from 48.5 ± 1.3 to 79.5 ± 2.1%. Substantial decreases in the strength of the granules were observed, and after 48 h severe decreases were noted. The decrease in strength was also evident after normalizing the parameters to the cross-sectional area. Granules of bovine cancellous bone matrix should be processed by hydrogen peroxide for 12 to 36 h to fulfill the basic requirements of a bone tissue engineering scaffold. These granules could potentially be useful during orthopedic operations.

  20. Spectral reflectance properties of minerals exposed to simulated Mars surface conditions

    NASA Astrophysics Data System (ADS)

    Cloutis, E. A.; Craig, M. A.; Kruzelecky, R. V.; Jamroz, W. R.; Scott, A.; Hawthorne, F. C.; Mertzman, S. A.

    2008-05-01

    A number of mineral species were exposed to martian surface conditions of atmospheric pressure and composition, temperature, and UV light regime, and their evolution was monitored using reflectance spectroscopy. The stabilities for different groups varied widely. Phyllosilicate spectra all showed measurable losses of interlayer H 2O, with some structural groups showing more rapid H 2O loss than others. Loss of OH from the phyllosilicates is not always accompanied by a change in metal-OH overtone absorption bands. OH-bearing sulfates, such as jarosite and alunite, show no measurable change in spectral properties, suggesting that they should be spectrally detectable on Mars on the basis of diagnostic absorption bands in the 0.4-2.5 μm region. Fe 3+- and H 2O-bearing sulfates all showed changes in the appearance and/or reduction in depths of hydroxo-bridged Fe 3+ absorption bands, particularly at 0.43 μm. The spectral changes were often accompanied by visible color changes, suggesting that subsurface sulfates exposed to the martian surface environment may undergo measurable changes in reflectance spectra and color over short periods of time (days to weeks). Organic-bearing geological materials showed no measurable change in C sbnd H related absorption bands, while carbonates and hydroxides also showed no systematic changes in spectral properties. The addition of ultraviolet irradiation did not seem to affect mineral stability or rate of spectral change, with one exception (hexahydrite). In some cases, spectral changes could be related to the formation of specific new phases. The data also suggest that hydrated minerals detected on Mars to date retain their diagnostic spectral properties that allow their unique identification.

  1. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats.

    PubMed

    Álvarez-Lloret, Pedro; Lee, Ching Ming; Conti, María Inés; Terrizzi, Antonela Romina; González-López, Santiago; Martínez, María Pilar

    2017-02-15

    Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n=12) to 1000ppm lead acetate in drinking water for 90days while control group (n=8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca(2+)+Mg(2+)+ Na(+))/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. An investigation into particle shape effects on the light scattering properties of mineral dust aerosol

    NASA Astrophysics Data System (ADS)

    Meland, Brian Steven

    Mineral dust aerosol plays an important role in determining the physical and chemical equilibrium of the atmosphere. The radiative balance of the Earth's atmosphere can be affected by mineral dust through both direct and indirect means. Mineral dust can directly scatter or absorb incoming visible solar radiation and outgoing terrestrial IR radiation. Dust particles can also serve as cloud condensation nuclei, thereby increasing albedo, or provide sites for heterogeneous reactions with trace gas species, which are indirect effects. Unfortunately, many of these processes are poorly understood due to incomplete knowledge of the physical and chemical characteristics of the particles including dust concentration and global distribution, as well as aerosol composition, mixing state, and size and shape distributions. Much of the information about mineral dust aerosol loading and spatial distribution is obtained from remote sensing measurements which often rely on measuring the scattering or absorption of light from these particles and are thus subject to errors arising from an incomplete understanding of the scattering processes. The light scattering properties of several key mineral components of atmospheric dust have been measured at three different wavelengths in the visible. In addition, measurements of the scattering were performed for several authentic mineral dust aerosols, including Saharan sand, diatomaceous earth, Iowa loess soil, and palagonite. These samples include particles that are highly irregular in shape. Using known optical constants along with measured size distributions, simulations of the light scattering process were performed using both Mie and T-Matrix theories. Particle shapes were approximated as a distribution of spheroids for the T-Matrix calculations. It was found that the theoretical model simulations differed markedly from experimental measurements of the light scattering, particularly near the mid-range and near backscattering angles. In

  3. Surface Properties of Bacterially-Influenced CaCO3 Mineralization

    NASA Astrophysics Data System (ADS)

    Cappuccio, J. A.; Pillar, V. D.; Ajo-Franklin, C. M.

    2010-12-01

    Geologic carbon dioxide sequestration, the underground storage of carbon dioxide (CO2), will be an essential component of climate change mitigation. Carbonate minerals are a promising form of stable CO2 storage, but their natural formation is slow. Many microbes can increase the rate of carbonate mineral formation; however the mechanisms of such mineralization are largely unknown. Hypothesized mechanisms include metabolic processes altering pH and supersaturation, as well as cell surface properties of EPS, cell membrane, and S-layers that may alter mineral nucleation. This work investigates these mechanisms by allowing calcium carbonate (CaCO3) to form in the presence or absence of various microbes that are expected to impact these mechanisms. Escherichia coli (E. coli) or Synechocystis sp. PCC 6803 (Syn. sp. 6803) were added to solutions of varying calcium ion concentrations, receiving ammonium carbonate, (NH4)2CO3, by diffusion. The resulting CaCO3 was imaged with an optical microscope in tandem with fluorescent imaging of the bacteria. Surprisingly, formation of calcite was accelerated by the presence of either E. coli or Syn. Sp. 6803 relative to abiotic solutions. This rate acceleration also occurred for metabolically inactive bacteria, indicating that metabolic change was not the operating mechanism. Rather since the calcite crystals increased in number as the cell density increased and both species had similar effects on formation of calcite, we suggest that both bacterial species could play a role in nucleation of calcite crystals. Fluorescent images show that both species of bacteria cluster on the edges and crevices of the crystals, further supporting this idea. Bacterial surface charge was assessed using zeta potential measurements and correlated to biomineralization experiments. From these results, we postulate that the charged bacterial surfaces attract Ca2+ ions, serving as nucleation sites for CaCO3, thereby accelerating crystal formation. These

  4. Research on the property improvement of PVC using red mud in industrial waste residue

    NASA Astrophysics Data System (ADS)

    Nie, Xiaopeng; Li, Xingang; Shuai, Songxian

    2015-07-01

    Red mud is a red solid power waste that is discharged in the aluminium refinery industry during production. It is a strong alkali and can be categorized as polluting industrial residue. How to make comprehensive use of red mud has become a worldwide issue. In this paper, we put red mud into PVC (polyvinyl chloride polymer), taking advantage of the complicated chemical properties of red mud derived from the Bayer process. The results are compared with silica fume, coal ash and calcium carbonate under the same experimental conditions, which shows that improvement of PVC plastication can be achieved by adding red mud.

  5. Modified Surface Having Low Adhesion Properties to Mitigate Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J., Jr. (Inventor); Smith, Joseph G., Jr. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)

    2016-01-01

    A process to modify a surface to provide reduced adhesion surface properties to mitigate insect residue adhesion. The surface may include the surface of an article including an aircraft, an automobile, a marine vessel, all-terrain vehicle, wind turbine, helmet, etc. The process includes topographically and chemically modifying the surface by applying a coating comprising a particulate matter, or by applying a coating and also topographically modifying the surface by various methods, including but not limited to, lithographic patterning, laser ablation and chemical etching, physical vapor phase deposition, chemical vapor phase deposition, crystal growth, electrochemical deposition, spin casting, and film casting.

  6. Mining Properties in Montana that were involved in the DMA, DMEA, OME Mineral Exploration Programs, 1950-1974

    USGS Publications Warehouse

    Kiilsgaard, Thor H.

    1996-01-01

    Introduction This report and accompanying map (plate 1) presents information on the Defense Minerals Administration (DMA), Defense Minerals Exploration Administration (DMEA), and Office of Minerals Exploration (OME) mineral exploration programs in Montana. Under these programs, the federal government participated in the exploration costs for certain strategic and critical minerals. Federal funds for mineral exploration under the programs were available from 1950 to 1974, although limited funds for OME administrative work were continued until 1979. Federal consideration for exploration at a particular property was initiated by submittal of an application for financial assistance by the owner or operator of the property. Each application received was assigned a docket number and all subsequent correspondence and information resulting from the application was filed under that docket number. The report reviews the three programs and some of the associated regulations and procedures. It also describes the various types of information generated by the programs, presents information on mining properties in Montana that were involved in the exploration programs, and advises on location of compiled mineral exploration information that resulted from the work.

  7. Conformational and dynamic properties of a 14 residue antifreeze glycopeptide from Antarctic cod.

    PubMed Central

    Lane, A. N.; Hays, L. M.; Feeney, R. E.; Crowe, L. M.; Crowe, J. H.

    1998-01-01

    The 1H and 13C NMR spectra of a 14-residue antifreeze glycopeptide from Antarctic cod (Tetramatomnus borchgrevinki) containing two proline residues have been assigned. 13C NMR relaxation experiments indicate motional anisotropy of the peptide, with a tumbling time in water at 5 degrees C of 3-4 ns. The relaxation data and lack of long-range NOEs are consistent with a linear peptide undergoing significant segmental motion. However, extreme values of some coupling constants and strong sequential NOEs indicate regions of local order, which are most evident at the two ATPA subsequences. Similar spectroscopic properties were observed in the 16-residue analogue containing an Arg-Ala dipeptide added to the C-terminus. Molecular modeling also showed no evidence of long-range order, but the two ATPA subsequences were relatively well determined by the experimental data. These motifs were quite distinct from helical structures or beta turns commonly found in proteins, but rather resemble sections of an extended polyproline helix. Thus, the NMR data provide a description of the local order, which is of relevance to the mechanism of action of the antifreeze activity of the antifreeze glycopeptides as well as their ability to protect cells during hypothermic storage. PMID:9684888

  8. Conformational and dynamic properties of a 14 residue antifreeze glycopeptide from Antarctic cod.

    PubMed

    Lane, A N; Hays, L M; Feeney, R E; Crowe, L M; Crowe, J H

    1998-07-01

    The 1H and 13C NMR spectra of a 14-residue antifreeze glycopeptide from Antarctic cod (Tetramatomnus borchgrevinki) containing two proline residues have been assigned. 13C NMR relaxation experiments indicate motional anisotropy of the peptide, with a tumbling time in water at 5 degrees C of 3-4 ns. The relaxation data and lack of long-range NOEs are consistent with a linear peptide undergoing significant segmental motion. However, extreme values of some coupling constants and strong sequential NOEs indicate regions of local order, which are most evident at the two ATPA subsequences. Similar spectroscopic properties were observed in the 16-residue analogue containing an Arg-Ala dipeptide added to the C-terminus. Molecular modeling also showed no evidence of long-range order, but the two ATPA subsequences were relatively well determined by the experimental data. These motifs were quite distinct from helical structures or beta turns commonly found in proteins, but rather resemble sections of an extended polyproline helix. Thus, the NMR data provide a description of the local order, which is of relevance to the mechanism of action of the antifreeze activity of the antifreeze glycopeptides as well as their ability to protect cells during hypothermic storage.

  9. Isospin and kinematical properties of heavy residues from the multifragmentation of neutron-rich systems

    NASA Astrophysics Data System (ADS)

    Souliotis, G. A.; Veselsky, M.; Botvina, A. S.; Keksis, A.; Martin, E.; Shetty, D. V.; Yennello, S. J.

    2004-05-01

    The yields and velocity distributions of isotopically resolved projectile residues from the reactions of 86Kr(25MeV/nucleon) with 64Ni,58Ni,124Sn,112Sn and 208Pb, as well as 124Sn(20MeV/u) with 124Sn are studied in this work [1,2]. Special attention is given to residues produced at excitation energies near the multifragmentation threshold ( ˜2-3MeV/nucleon). Both the isospin and the kinematical properties of the observed residues are well described by a hybrid approach consisting of a deep inelastic transfer model for the dynamical stage of the collision and the statistical multifragmentation model (SMM) for the de-excitation stage [3]. The present version of SMM features a fully microcanonically-based partition of fragmentation space and a detailed treatment of Coulomb interaction (including the interaction of fragments with target `spectators'). Apart from a nuclear reaction standpoint, the present study also addresses, both experimentally and theoretically, the practical issue of the production of very neutron-rich rare isotopes in multifragmentation of neutron-rich systems. [1] G.A. Souliotis et al., Phys. Rev. C 68 024605 (2003). [2] G.A. Souliotis et al., Nucl. Instrum. Methods B 204 166 (2003). [3] A.S. Botvina et al. Phys. Rev. C 65 044610 (2002) and references therein.

  10. Evidence for rapid epithermal mineralization and coeval bimodal volcanism, Bruner Au-Ag property, NV USA

    NASA Astrophysics Data System (ADS)

    Baldwin, Dylan

    The character of Au-Ag mineralization and volcanic/hydrothermal relationships at the underexplored Miocene-age Bruner low-sulfidation epithermal Au-Ag deposit are elucidated using field and laboratory studies. Bruner is located in central Nevada within the Great Basin extensional province, near several major volcanic trends (Western Andesite, Northern Nevada Rift) associated with world-class Miocene-age epithermal Au-Ag provinces. Despite its proximity to several >1 Moz Au deposits, and newly discovered high-grade drill intercepts (to 117 ppm Au/1.5m), there is no published research on the deposit, the style of mineralization has not been systematically characterized, and vectors to mineralization remain elusive. By investigating the nature of mineralization and time-space relationships between volcanic/hydrothermal activity, the deposit has been integrated into a regional framework, and exploration targeting improved. Mineralization occurs within narrow quartz + adularia +/- pyrite veins that manifest as sheeted/stockwork zones, vein swarms, and rare 0.3-2 m wide veins hosted by two generations of Miocene high-K, high-silica rhyolite flow dome complexes overlying an andesite flow unit. The most prominent structural controls on veining are N­striking faults and syn-mineral basalt/rhyolite dikes. Productive veins have robust boiling indicators (high adularia content, bladed quartz after calcite, recrystallized colloform quartz bands), lack rhythmic banding, and contain only 1-2 stages; these veins overprint, or occur separately from another population of barren to weakly mineralized rhythmically banded quartz-only veins. Ore minerals consist of coarse Au0.5Ag 0.5 electrum, fine Au0.7Ag0.3 electrum, acanthite, uytenbogaardtite (Ag3AuS2) and minor embolite Ag(Br,Cl). Now deeply oxidized, veins typically contain <1% pyrite/goethite + Au-Ag minerals, with trace marcasite and microscopic Fe-poor sphalerite. Property-scale K-feldspar alteration related to a pre

  11. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents.

    PubMed

    Novitskaya, Ekaterina; Chen, Po-Yu; Lee, Steve; Castro-Ceseña, Ana; Hirata, Gustavo; Lubarda, Vlado A; McKittrick, Joanna

    2011-08-01

    The mechanical properties of fully demineralized, fully deproteinized and untreated cortical bovine femur bone were investigated by compression testing in three anatomical directions (longitudinal, radial and transverse). The weighted sum of the stress-strain curves of the treated bones was far lower than that of the untreated bone, indicating a strong molecular and/or mechanical interaction between the collagen matrix and the mineral phase. Demineralization and deproteinization of the bone demonstrated that contiguous, stand-alone structures result, showing that bone can be considered an interpenetrating composite material. Structural features of the samples from all groups were studied by optical and scanning electron microscopy. Anisotropic mechanical properties were observed: the radial direction was found to be the strongest for untreated bone, while the longitudinal one was found to be the strongest for deproteinized and demineralized bones. A possible explanation for this phenomenon is the difference in bone microstructure in the radial and longitudinal directions.

  12. Age-related ransparent root dentin: mineral concentration,crystallite size and mechanical properties

    SciTech Connect

    Kinney, John H.; Nalla, Ravi K.; Pople, John A.; Breunig, Tom M.; Ritchie, Robert O.

    2004-12-29

    Many fractures occur in teeth that have been altered, forexample restored or endodontically repaired. It is therefore essential toevaluate the structure and mechanical properties of these altereddentins. One such altered form of dentin is transparent (sometimes calledsclerotic) dentin, which forms gradually with aging. The present studyfocuses on differences in the structure and mechanical properties ofnormal versus transparent dentin. The mineral concentration, as measuredby X-ray computed microtomography, was signifcantly higher in transparentdentin, the elevated concentration being consistent with the closure ofthe tubule lumens. Crystallite size, as measured by small angle X-rayscattering, was slightly smaller in transparent dentin, although theimportance of this ending requires further study. The elastic propertieswere unchanged by transparency; however, transparent dentin, unlikenormal dentin, exhibited almost no yielding before failure. In addition,the fracture toughness was lowered by roughly 20 percent while thefatigue lifetime was deleteriously affected at high stress levels. Theseresults are discussed in terms of the altered microstructure oftransparent dentin.

  13. Sugar Profile, Mineral Content, and Rheological and Thermal Properties of an Isomerized Sweet Potato Starch Syrup.

    PubMed

    Dominque, Brunson; Gichuhi, Peter N; Rangari, Vijay; Bovell-Benjamin, Adelia C

    2013-01-01

    Currently, corn is used to produce more than 85% of the world's high fructose syrup (HFS). There is a search for alternative HFS substrates because of increased food demand and shrinking economies, especially in the developing world. The sweet potato is a feasible, alternative raw material. This study isomerized a high glucose sweet potato starch syrup (SPSS) and determined its sugar profile, mineral content, and rheological and thermal properties. Rheological and thermal properties were measured using a rheometer and DSC, respectively. Sweet potato starch was hydrolyzed to syrup with a mean fructose content of 7.6 ± 0.4%. The SPSS had significantly higher (P < 0.05) mineral content when compared to commercial ginger and pancake syrups. During 70 days of storage, the SPSS acted as a non-Newtonian, shear-thinning liquid in which the viscosity decreased as shear stress increased. Water loss temperature of the SPSS continually decreased during storage, while pancake and ginger syrups' peak water loss temperature decreased initially and then increased. Further and more detailed studies should be designed to further enhance the fructose content of the syrup and observe its stability beyond 70 days. The SPSS has the potential to be used in human food systems in space and on Earth.

  14. Sugar Profile, Mineral Content, and Rheological and Thermal Properties of an Isomerized Sweet Potato Starch Syrup

    PubMed Central

    Dominque, Brunson; Gichuhi, Peter N.; Rangari, Vijay; Bovell-Benjamin, Adelia C.

    2013-01-01

    Currently, corn is used to produce more than 85% of the world's high fructose syrup (HFS). There is a search for alternative HFS substrates because of increased food demand and shrinking economies, especially in the developing world. The sweet potato is a feasible, alternative raw material. This study isomerized a high glucose sweet potato starch syrup (SPSS) and determined its sugar profile, mineral content, and rheological and thermal properties. Rheological and thermal properties were measured using a rheometer and DSC, respectively. Sweet potato starch was hydrolyzed to syrup with a mean fructose content of 7.6 ± 0.4%. The SPSS had significantly higher (P < 0.05) mineral content when compared to commercial ginger and pancake syrups. During 70 days of storage, the SPSS acted as a non-Newtonian, shear-thinning liquid in which the viscosity decreased as shear stress increased. Water loss temperature of the SPSS continually decreased during storage, while pancake and ginger syrups' peak water loss temperature decreased initially and then increased. Further and more detailed studies should be designed to further enhance the fructose content of the syrup and observe its stability beyond 70 days. The SPSS has the potential to be used in human food systems in space and on Earth. PMID:26904593

  15. Specialized Dynamical Properties of Promiscuous Residues Revealed by Simulated Conformational Ensembles

    PubMed Central

    2013-01-01

    The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein

  16. A review of corn masa processing residues: generation, properties, and potential utilization.

    PubMed

    Rosentrater, K A

    2006-01-01

    The production of corn masa-based products in the US has been increasing over the last several years, and as a result, so has the quantity of waste materials being generated from this industry. Although currently landfilled, these byproduct streams may have potential for value-added processing and utilization, which are options that simultaneously hold the promise of increased economic benefit for masa processors as well as decreased potential pollution for the environment. Fundamental to any byproduct development effort is knowledge of the characteristics of the residue stream, because physical and chemical properties are vital for the proper design of subsequent processing operations and applications. Data for masa byproduct materials are currently not readily available, however. Thus, the objective of this study was to fully investigate, review, and summarize the existing literature in order to develop a comprehensive knowledge base for these residue streams. The most substantial findings from this study were that masa residues currently are not being utilized as coproducts, but instead are being landfilled; they have a high fiber content, and thus much untapped potential exists for its extraction and value-added utilization vis-à-vis human and industrial applications, including phytosterol and ethanol production. It was also determined that masa byproducts, due to the high fiber content, may also be suitable for use as livestock feed additives, especially for ruminant animals that can digest these materials. Furthermore, due to substantial calcium content, masa byproducts could also potentially be used as a calcium resource. Under current processing practices, though, these residues have very high moisture contents. Before they can be effectively and economically utilized, they must be dehydrated in order to reduce transportation costs, decrease microbial activity, and increase shelf life.

  17. Mars residual north polar cap - Earth-based spectroscopic confirmation of water ice as a major constituent and evidence for hydrated minerals

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Mccord, T. B.

    1982-01-01

    A description is presented of new earth-based reflectance spectra of the Martian north residual polar cap. The spectra indicate that the composition is at least mostly water ice plus another component with a 'gray' reflectance. The other minerals in the ice cap appear to be hydrated. The data were obtained with a cooled circular variable filter spectrometer on February 20, 1978, using the 2.2-m telescope on Mauna Kea, Hawaii. It is pointed out that the identification of water ice in the north polar cap alone does not indicate that water makes up all or even most of the bulk of the cap. Kieffer (1970) has shown that a small amount of water will mask the spectral features of CO2.

  18. Mars residual north polar cap - Earth-based spectroscopic confirmation of water ice as a major constituent and evidence for hydrated minerals

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Mccord, T. B.

    1982-01-01

    A description is presented of new earth-based reflectance spectra of the Martian north residual polar cap. The spectra indicate that the composition is at least mostly water ice plus another component with a 'gray' reflectance. The other minerals in the ice cap appear to be hydrated. The data were obtained with a cooled circular variable filter spectrometer on February 20, 1978, using the 2.2-m telescope on Mauna Kea, Hawaii. It is pointed out that the identification of water ice in the north polar cap alone does not indicate that water makes up all or even most of the bulk of the cap. Kieffer (1970) has shown that a small amount of water will mask the spectral features of CO2.

  19. Processing effects for integrated PZT: Residual stress, thickness, and dielectric properties

    NASA Astrophysics Data System (ADS)

    Ong, Ryan Jason

    This dissertation focuses on the integration of lead zirconate titanate (PZT) films on Pt/Ti/SiO2//Si, and the effect of on properties. Direct deposition of PZT on Si will lead to on-chip power capacitors, non-volatile memory cells, and vibration sensors. However, previous research indicates that the dielectric, ferroelectric and piezoelectric response characteristics for the devices are often inferior to bulk specimens. Property variations have been attributed to changes in several major variables including, chemical composition, phase content, grain size, crystallographic orientation, film thickness, and stress, each of which, in turn, can depend on processing. The first goal of this work was to design a sol-gel processing methodology to control all major variables except film thickness and stress, thus isolating their respective effects on properties. All specimens were verified to be of the Pb(Zr0.53Ti0.47)O3 composition, in the perovskite structure, with a constant grain size of 110nm, and with (111) fiber texture. PZT film thickness was varied from 95nm to 500nm and residual stress was measured to be either 150 or 180MPa, biaxial tensile, depending on thickness. These specimens allowed for new insights into the fundamental differences between bulk materials and thin films. A series-capacitor model accounted for the observed dilution in room-temperature K from >900 to ˜600 as film thickness decreased, but could not account for the absence of the expected dielectric anomaly at high temperatures. Instead, a stress-induced distributed phase transformation related to the polycrystalline nature of the film was proposed to account for the observed behavior. Residual stress reduced the spontaneous polarization values in these specimens to 32muC/cm 2 from the predicted stress-free value of 50muC/cm2. An increase in coercive field was attributed to interfacial capacitance and residual stress, whereas a decrease of 30MPa tensile stress resulted in an increase of d33

  20. Dielectric properties of residual water in amorphous lyophilized mixtures of sugar and drug

    NASA Astrophysics Data System (ADS)

    El Moznine, R.; Smith, G.; Polygalov, E.; Suherman, P. M.; Broadhead, J.

    2003-02-01

    Dielectric relaxation spectroscopy was used to investigate the properties of residual water in lyophilized formulations of a proprietary tri-phosphate drug containing a sugar (trehalose, lactose or sucrose) or dextran. The dielectric properties of each formulation were determined in the frequency range (0.1 Hz-0.1 MHz) and temperature range (30°C-Tg). The temperature dependence of the relaxation times for all samples showed Arrhenuis behaviour, from which the activation energy was derived. Proton hopping through the hydrogen-bonded network (clusters) of water molecules was suggested as the principle mode of charge transport. Significant differences in dielectric relaxation kinetics and activation energy were observed for the different formulations, which were found to correlate with the amount of monophosphate degradation product.

  1. Properties of Filamentary Sublimation Residues from Dispersions of Clay in Ice

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Parker, T. J.; Saunders, R. S.; Laue, E. G.; Fanale, F. P.

    1985-01-01

    The properties of sublimate residues are of considerable interest in studies of the thermal modeling of Martian and cometary ice surfaces. The study of the formation of sand grains from this mantle on Martian polar ice is also supported by these experiments. To understand these properties, a series of low temperature vacuum experiments were run during which dirty ices that might be expected to be found in Martian polar caps and in comet nuclei were made and then freeze dried. In addition to using particulate material of appropriate grain size and minerology, particle nucleated ices were simulated by dispersing the particulates in the ice so that they did not contact one another. This noncontact dispersion was the most difficult requirement to achieve but the most rewarding in that it produced a new filamentary sublimate residue that was not a relic of the frozen dispersion. If the siliceous particles are allowed to touch one another in the ice the structure of the contacting particles in the ice will remain as a relic after the ice is sublimed away.

  2. Properties of Filamentary Sublimation Residues from Dispersions of Clay in Ice

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Parker, T. J.; Saunders, R. S.; Laue, E. G.; Fanale, F. P.

    1985-01-01

    The properties of sublimate residues are of considerable interest in studies of the thermal modeling of Martian and cometary ice surfaces. The study of the formation of sand grains from this mantle on Martian polar ice is also supported by these experiments. To understand these properties, a series of low temperature vacuum experiments were run during which dirty ices that might be expected to be found in Martian polar caps and in comet nuclei were made and then freeze dried. In addition to using particulate material of appropriate grain size and minerology, particle nucleated ices were simulated by dispersing the particulates in the ice so that they did not contact one another. This noncontact dispersion was the most difficult requirement to achieve but the most rewarding in that it produced a new filamentary sublimate residue that was not a relic of the frozen dispersion. If the siliceous particles are allowed to touch one another in the ice the structure of the contacting particles in the ice will remain as a relic after the ice is sublimed away.

  3. Effect of HIP/Ribosomal Protein L29 Deficiency on Mineral Properties of Murine Bones and Teeth

    PubMed Central

    Sloofman, Laura G.; Verdelis, Kostas; Spevak, Lyudmila; Zayzafoon, Majd; Yamauchi, Mistuo; Opdenaker, Lynn M.; Farach-Carson, Mary C.; Boskey, Adele L.; Kirn-Safran, Catherine B.

    2010-01-01

    Mice lacking HIP/RPL29, a component of the ribosomal machinery, display increased bone fragility. To understand the effect of sub-efficient protein synthetic rates on mineralized tissue quality, we performed dynamic and static histomorphometry and examined the mineral properties of both bones and teeth in HIP/RPL29 knock-out mice using Fourier transform infrared imaging (FTIRI). While loss of HIP/RPL29 consistently reduced total bone size, decreased mineral apposition rates were not significant, indicating that short stature is not primarily due to impaired osteoblast function. Interestingly, our microspectroscopic studies showed that a significant decrease in collagen crosslinking during maturation of HIP/RPL29-null bone precedes an overall enhancement in the relative extent of mineralization of both trabecular and cortical adult bones. This report provides strong genetic evidence that ribosomal insufficiency induces subtle organic matrix deficiencies which elevates calcification. Consistent with the HIP/RPL29-null bone phenotype, HIP/RPL29-deficient teeth also showed reduced geometric properties accompanied with relative increased mineral densities of both dentin and enamel. Increased mineralization associated with enhanced tissue fragility related to imperfection in organic phase microstructure evokes defects seen in matrix protein-related bone and tooth diseases. Thus, HIP/RPL29 mice constitute a new genetic model for studying the contribution of global protein synthesis in the establishment of organic and inorganic phases in mineral tissues. PMID:20362701

  4. Effect of HIP/ribosomal protein L29 deficiency on mineral properties of murine bones and teeth.

    PubMed

    Sloofman, Laura G; Verdelis, Kostas; Spevak, Lyudmila; Zayzafoon, Majd; Yamauchi, Mistuo; Opdenaker, Lynn M; Farach-Carson, Mary C; Boskey, Adele L; Kirn-Safran, Catherine B

    2010-07-01

    Mice lacking HIP/RPL29, a component of the ribosomal machinery, display increased bone fragility. To understand the effect of sub-efficient protein synthetic rates on mineralized tissue quality, we performed dynamic and static histomorphometry and examined the mineral properties of both bones and teeth in HIP/RPL29 knock-out mice using Fourier transform infrared imaging (FTIRI). While loss of HIP/RPL29 consistently reduced total bone size, decreased mineral apposition rates were not significant, indicating that short stature is not primarily due to impaired osteoblast function. Interestingly, our microspectroscopic studies showed that a significant decrease in collagen crosslinking during maturation of HIP/RPL29-null bone precedes an overall enhancement in the relative extent of mineralization of both trabecular and cortical adult bones. This report provides strong genetic evidence that ribosomal insufficiency induces subtle organic matrix deficiencies which elevates calcification. Consistent with the HIP/RPL29-null bone phenotype, HIP/RPL29-deficient teeth also showed reduced geometric properties accompanied with relative increased mineral densities of both dentin and enamel. Increased mineralization associated with enhanced tissue fragility related to imperfection in organic phase microstructure evokes defects seen in matrix protein-related bone and tooth diseases. Thus, HIP/RPL29 mice constitute a new genetic model for studying the contribution of global protein synthesis in the establishment of organic and inorganic phases in mineral tissues. 2010 Elsevier Inc. All rights reserved.

  5. Optical properties of selected components of mineral dust aerosol processed with organic acids and humic material

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer M.; Grassian, V. H.; Young, M. A.; Kleiber, P. D.

    2015-03-01

    Visible light scattering phase function and linear polarization profiles of mineral dust components processed with organic acids and humic material are measured, and results are compared to T-matrix simulations of the scattering properties. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acids. Clear differences in light scattering properties are observed for all three processed samples when compared to the unprocessed dust or organic salt products. Results for quartz processed with humic acid sodium salt (NaHA) indicate the presence of both internally mixed quartz-NaHA particles and externally mixed NaHA aerosol. Simulations of light scattering suggest that the processed quartz particles become more moderate in shape due to the formation of a coating of humic material over the mineral core. Experimental results for calcite reacted with acetic acid are consistent with an external mixture of calcite and the reaction product, calcium acetate. Modeling of the light scattering properties does not require any significant change to the calcite particle shape distribution although morphology changes cannot be ruled out by our data. It is expected that calcite reacted with oxalic acid will produce internally mixed particles of calcite and calcium oxalate due to the low solubility of the product salt. However, simulations of the scattering for the calcite-oxalic acid system result in rather poor fits to the data when compared to the other samples. The poor fit provides a less accurate picture of the impact of processing in the calcite-oxalic acid system.

  6. The bowing potential of granitic rocks: rock fabrics, thermal properties and residual strain

    NASA Astrophysics Data System (ADS)

    Siegesmund, S.; Mosch, S.; Scheffzük, Ch.; Nikolayev, D. I.

    2008-10-01

    The bowing of natural stone panels is especially known for marble slabs. The bowing of granite is mainly known from tombstones in subtropical humid climate. Field inspections in combination with laboratory investigations with respect to the thermal expansion and the bowing potential was performed on two different granitoids (Cezlak granodiorite and Flossenbürg granite) which differ in the composition and rock fabrics. In addition, to describe and explain the effect of bowing of granitoid facade panels, neutron time-of-flight diffraction was applied to determine residual macro- and microstrain. The measurements were combined with investigations of the crystallographic preferred orientation of quartz and biotite. Both samples show a significant bowing as a function of panel thickness and destination temperature. In comparison to marbles the effect of bowing is more pronounced in granitoids at temperatures of 120°C. The bowing as well as the thermal expansion of the Cezlak sample is also anisotropic with respect to the rock fabrics. A quantitative estimate was performed based on the observed textures. The effect of the locked-in stresses may also have a control on the bowing together with the thermal stresses related to the different volume expansion of the rock-forming minerals.

  7. Effects of residual stress and texture on the high-cycle fatigue properties of light metals

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuping

    2007-12-01

    High cycle fatigue tests were conducted on a commercially pure Ti, a forged Ti-6Al-4V alloy, and newly developed high strength AA2026 and AA2099 Al alloys in four-point bend. The effects of surface compressive residual stress and texture on the fatigue properties of these alloys were systematically investigated. The resistance to fatigue crack growth in an alloy was estimated using a simple model that took into account texture and grain structure. The resistance calculations were able to explain the observed behaviors of fatigue crack growth in planar slip materials. Due to strengthening in the surface by enhancement treatment, fatigue cracks were found to be initiated in the subsurface region in the short peened Ti-6Al-4V alloy and sandblasted CP Ti, in contrast to crack initiation on the surface of the untreated samples. When the shot peened Ti-6A1-4V alloy was tested between 25°C and 200°C, the surface compressive residual stress could only be slightly relaxed due to thermal exposure, which did not deteriorate the fatigue strength of the alloy. Similarly, no obvious redistribution of the residual stress was observed when the sandblasted Ti was annealed below 200°C. With increase in the annealing temperature (300°C˜700°C), the compressive residual stresses were significantly relaxed, leading to relatively a lower fatigue strength. In AA2026 & AA2099 Al alloys, crack growth was found to be in a predominantly crystallographic mode in unrecrystallized regions, and a non-crystallographic mode in recrystallized regions. Fatigue cracks were deflected at grain boundaries usually with small twist angles in the unrecrystallized regions, but with large twist angles in the recrystallized regions. The theoretical analysis verified that a large percentage of recrystallized grains could provide strong resistance to fatigue crack growth by producing larger twist angles of crack deflection at their grain boundaries than those of most of the gains in unrecrystallized

  8. Dynamics of biochemical properties associated with soil nitrogen mineralization following nitrification inhibitor and fungicide applications.

    PubMed

    Zhang, Manyun; Wang, Weijin; Wang, Jun; Teng, Ying; Xu, Zhihong

    2017-04-01

    Agrochemical applications may have side effects on soil biochemical properties related to soil nitrogen (N) mineralization and thus affect N cycling. The present study aimed to evaluate the effects of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) and fungicide iprodione on soil neutral protease (NPR), alkaline protease (APR), chitinase (CHI), and their functional genes (nprA, aprA, and chiA) related to soil N mineralization. The following four treatments were included: blank control (CK), single DMPP application (DAA), weekly iprodione applications (IPR), and the combined applications of DMPP and iprodione (DI). Compared with the CK treatment, DMPP application significantly inhibited the CHI activity in the first 14 days of incubation, and iprodione applications, particularly when applied alone, decreased the NPR, APR, and CHI activities. Relative to the IPR treatment, extra DMPP application had the potential to alleviate the inhibitory effects of iprodione on the activities of these enzymes. DMPP application significantly increased aprA gene abundances after 14 days of incubation. However, repeated iprodione applications, alone or with the DMPP, decreased nprA and chiA gene abundances. Relative to the CK treatment, DMPP application generated negligible effects on the positive/negative correlations between soil enzyme activities and the corresponding functional gene abundances. However, the positive correlation between the CHI activity and chiA gene abundance was changed to negative correlation by repeated iprodione applications, alone or together with the DMPP. Our results demonstrated that agrochemical applications, particularly repeated fungicide applications, can have inadvertent effects on enzyme activities and functional gene abundances associated with soil N mineralization.

  9. A crayfish molar tooth protein with putative mineralized exoskeletal chitinous matrix properties.

    PubMed

    Tynyakov, Jenny; Bentov, Shmuel; Abehsera, Shai; Yehezkel, Galit; Roth, Ziv; Khalaila, Isam; Weil, Simy; Berman, Amir; Plaschkes, Inbar; Tom, Moshe; Aflalo, Eliahu D; Sagi, Amir

    2015-11-01

    Some crustaceans possess exoskeletons that are reinforced with calcium carbonate. In the crayfish Cherax quadricarinatus, the molar tooth, which is part of the mandibular exoskeleton, contains an unusual crystalline enamel-like apatite layer. As this layer resembles vertebrate enamel in composition and function, it offers an interesting example of convergent evolution. Unlike other parts of the crayfish exoskeleton, which is periodically shed and regenerated during the molt cycle, molar mineral deposition takes place during the pre-molt stage. The molar mineral composition transforms continuously from fluorapatite through amorphous calcium phosphate to amorphous calcium carbonate and is mounted on chitin. The process of crayfish molar formation is entirely extracellular and presumably controlled by proteins, lipids, polysaccharides, low-molecular weight molecules and calcium salts. We have identified a novel molar protein termed Cq-M15 from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. Its transcript and differential expression were confirmed by a next-generation sequencing library. The predicted acidic pI of Cq-M15 suggests its possible involvement in mineral arrangement. Cq-M15 is expressed in several exoskeletal tissues at pre-molt and its silencing is lethal. Like other arthropod cuticular proteins, Cq-M15 possesses a chitin-binding Rebers-Riddiford domain, with a recombinant version of the protein found to bind chitin. Cq-M15 was also found to interact with calcium ions in a concentration-dependent manner. This latter property might make Cq-M15 useful for bone and dental regenerative efforts. We suggest that, in the molar tooth, this protein might be involved in calcium phosphate and/or carbonate precipitation. © 2015. Published by The Company of Biologists Ltd.

  10. Addition of an organic amendment and/or residue mud to bauxite residue sand in order to improve its properties as a growth medium.

    PubMed

    Jones, B E H; Haynes, R J; Phillips, I R

    2012-03-01

    The effects of addition of carbonated residue mud (RMC) or seawater neutralized residue mud (RMS), at two rates, in the presence or absence of added green waste compost, on the chemical, physical and microbial properties of gypsum-treated bauxite residue sand were studied in a laboratory incubation study. The growth of two species commonly used in revegetation of residue sand (Lolium rigidum and Acacia saligna) in the treatments was then studied in a 18-week greenhouse study. Addition of green waste-based compost increased ammonium acetate-extractable (exchangeable) Mg, K and Na. Addition of residue mud at 5 and 10% w/w reduced exchangeable Ca but increased that of Mg and Na (and K for RMS). Concentrations of K, Na, Mg and level of EC in saturation paste extracts were increased by residue mud additions. Concentrations of cations in water extracts were considerably higher than those in saturation paste extracts but trends with treatment were broadly similar. Addition of both compost and residue mud caused a significant decrease in macroporosity with a concomitant increase in mesoporosity and microporosity, available water holding capacity and the quantity of water held at field capacity. Increasing rates of added residue mud reduced the percentage of sample present as discrete sand particles and increased that in aggregated form (particularly in the 1-2 and >10mm diameter ranges). Organic C content, C/N ratio, soluble organic C, microbial biomass C and basal respiration were increased by compost additions. Where compost was added, residue mud additions caused a substantial increase in microbial biomass and basal respiration. L. rigidum grew satisfactorily in all treatments although yields tended to be reduced by additions of mud (especially RMC) particularly in the absence of added compost. Growth of A. saligna was poor in sand alone and mud-amended sand and was greatly promoted by additions of compost. However, in the presence of compost, addition of carbonated

  11. Creep and residual mechanical properties of cast superalloys and oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1981-01-01

    Tensile, stress-rupture, creep, and residual tensile properties after creep testing were determined for two typical cast superalloys and four advanced oxide dispersion strengthened (ODS) alloys. The superalloys examined included the nickel-base alloy B-1900 and the cobalt-base alloy MAR-M509. The nickel-base ODS MA-757 (Ni-16CR-4Al-0.6Y2O3 and the iron-base ODS alloy MA-956 (Fe-20Cr-5Al-0.8Y2O3) were extensively studied, while limited testing was conducted on the ODS nickel-base alloys STCA (Ni-16Cr-4.5Al-2Y2O3) with a without Ta and YD-NiCrAl (Ni-16Cr-5Al-2Y2O3). Elevated temperature testing was conducted from 114 to 1477 K except for STCA and YD-NiCrAl alloys, which were only tested at 1366 K. The residual tensile properties of B-1900 and MAR-M509 are not reduced by prior creep testing (strains at least up to 1 percent), while the room temperature tensile properties of ODS nickel-base alloys can be reduced by small amounts of prior creep strain (less than 0.5 percent). The iron-base ODS alloy MA-956 does not appear to be susceptible to creep degradation at least up to strains of about 0.25 percent. However, MA-956 exhibits unusual creep behavior which apparently involves crack nucleation and growth.

  12. Mineral Phases and Release Behaviors of As in the Process of Sintering Residues Containing As at High Temperature

    PubMed Central

    Wang, Xingrun; Zhang, Fengsong; Nong, Zexi

    2014-01-01

    To investigate the effect of sintering temperature and sintering time on arsenic volatility and arsenic leaching in the sinter, we carried out experimental works and studied the structural changes of mineral phases and microstructure observation of the sinter at different sintering temperatures. Raw materials were shaped under the pressure of 10 MPa and sintered at 1000~1350°C for 45 min with air flow rate of 2000 mL/min. The results showed that different sintering temperatures and different sintering times had little impact on the volatilization of arsenic, and the arsenic fixed rate remained above 90%; however, both factors greatly influenced the leaching concentration of arsenic. Considering the product's environmental safety, the best sintering temperature was 1200°C and the best sintering time was 45 min. When sintering temperature was lower than 1000°C, FeAsS was oxidized into calcium, aluminum, and iron arsenide, mainly Ca3(AsO4)2 and AlAsO4, and the arsenic leaching was high. When it increased to 1200°C, arsenic was surrounded by a glass matrix and became chemically bonded inside the matrix, which lead to significantly lower arsenic leaching. PMID:24723798

  13. Effects of heat treatment of wood on hydroxylapatite type mineral precipitation and biomechanical properties in vitro.

    PubMed

    Rekola, J; Lassila, L V J; Hirvonen, J; Lahdenperä, M; Grenman, R; Aho, A J; Vallittu, P K

    2010-08-01

    Wood is a natural fiber reinforced composite. It structurally resembles bone tissue to some extent. Specially heat-treated birch wood has been used as a model material for further development of synthetic fiber reinforced composites (FRC) for medical and dental use. In previous studies it has been shown, that heat treatment has a positive effect on the osteoconductivity of an implanted wood. In this study the effects of two different heat treatment temperatures (140 and 200 degrees C) on wood were studied in vitro. Untreated wood was used as a control material. Heat treatment induced biomechanical changes were studied with flexural and compressive tests on dry birch wood as well as on wood after 63 days of simulated body fluid (SBF) immersion. Dimensional changes, SBF sorption and hydroxylapatite type mineral formation were also assessed. The results showed that SBF immersion decreases the biomechanical performance of wood and that the heat treatment diminishes the effect of SBF immersion on biomechanical properties. With scanning electron microscopy and energy dispersive X-ray analysis it was shown that hydroxylapatite type mineral precipitation formed on the 200 degrees C heat-treated wood. An increased weight gain of the same material during SBF immersion supported this finding. The results of this study give more detailed insight of the biologically relevant changes that heat treatment induces in wood material. Furthermore the findings in this study are in line with previous in vivo studies.

  14. Physico-chemical properties, antioxidant activity and mineral contents of pineapple genotypes grown in china.

    PubMed

    Lu, Xin-Hua; Sun, De-Quan; Wu, Qing-Song; Liu, Sheng-Hui; Sun, Guang-Ming

    2014-06-23

    The fruit physico-chemical properties, antioxidant activity and mineral contents of 26 pineapple [Ananas comosus (L.) Merr.] genotypes grown in China were measured. The results showed great quantitative differences in the composition of these pineapple genotypes. Sucrose was the dominant sugar in all 26 genotypes, while citric acid was the principal organic acid. Potassium, calcium and magnesium were the major mineral constituents. The ascorbic acid (AsA) content ranged from 5.08 to 33.57 mg/100 g fresh weight (FW), while the total phenolic (TP) content varied from 31.48 to 77.55 mg gallic acid equivalents (GAE)/100 g FW. The two parameters in the predominant cultivars Comte de Paris and Smooth Cayenne were relative low. However, MD-2 indicated the highest AsA and TP contents (33.57 mg/100 g and 77.55 mg GAE/100 g FM, respectively), and it also showed the strongest antioxidant capacity 22.85 and 17.30 μmol TE/g FW using DPPH and TEAC methods, respectively. The antioxidant capacity of pineapple was correlated with the contents of phenolics, flavonoids and AsA. The present study provided important information for the further application of those pineapple genotypes.

  15. Mineral Properties and Dietary Value of Raw and Processed Stinging Nettle (Urtica dioica L.)

    PubMed Central

    Xu, Yixiang; Ramirez, Elizabeth

    2013-01-01

    Stinging nettle (Urtica dioica L.) has a long history of usage and is currently receiving attention as a source of fiber and alternative medicine. In many cultures, nettle is also eaten as a leafy vegetable. In this study, we focused on nettle yield (edible portion) and processing effects on nutritive and dietary properties. Actively growing shoots were harvested from field plots and leaves separated from stems. Leaf portions (200 g) were washed and processed by blanching (1 min at 96–98°C) or cooking (7 min at 98-99°C) with or without salt (5 g·L−1). Samples were cooled immediately after cooking and kept in frozen storage before analysis. Proximate composition, mineral, amino acid, and vitamin contents were determined, and nutritive value was estimated based on 100 g serving portions in a 2000 calorie diet. Results show that processed nettle can supply 90%–100% of vitamin A (including vitamin A as β-carotene) and is a good source of dietary calcium, iron, and protein. We recommend fresh or processed nettle as a high-protein, low-calorie source of essential nutrients, minerals, and vitamins particularly in vegetarian, diabetic, or other specialized diets. PMID:26904610

  16. Mineral Properties and Dietary Value of Raw and Processed Stinging Nettle (Urtica dioica L.).

    PubMed

    Rutto, Laban K; Xu, Yixiang; Ramirez, Elizabeth; Brandt, Michael

    2013-01-01

    Stinging nettle (Urtica dioica L.) has a long history of usage and is currently receiving attention as a source of fiber and alternative medicine. In many cultures, nettle is also eaten as a leafy vegetable. In this study, we focused on nettle yield (edible portion) and processing effects on nutritive and dietary properties. Actively growing shoots were harvested from field plots and leaves separated from stems. Leaf portions (200 g) were washed and processed by blanching (1 min at 96-98°C) or cooking (7 min at 98-99°C) with or without salt (5 g·L(-1)). Samples were cooled immediately after cooking and kept in frozen storage before analysis. Proximate composition, mineral, amino acid, and vitamin contents were determined, and nutritive value was estimated based on 100 g serving portions in a 2000 calorie diet. Results show that processed nettle can supply 90%-100% of vitamin A (including vitamin A as β-carotene) and is a good source of dietary calcium, iron, and protein. We recommend fresh or processed nettle as a high-protein, low-calorie source of essential nutrients, minerals, and vitamins particularly in vegetarian, diabetic, or other specialized diets.

  17. Mineral density and biomechanical properties of bone tissue from male Arctic foxes (Vulpes lagopus) exposed to organochlorine contaminants and emaciation.

    PubMed

    Sonne, Christian; Wolkers, Hans; Rigét, Frank F; Jensen, Jens-Erik Beck; Teilmann, Jenni; Jenssen, Bjørn Munro; Fuglei, Eva; Ahlstrøm, Øystein; Dietz, Rune; Muir, Derek C G; Jørgensen, Even H

    2009-01-01

    We investigated the impact from dietary OC (organochlorine) exposure and restricted feeding (emaciation) on bone mineral density (BMD; g hydroxy-apatite cm(-2)) in femoral, vertebrate, skull and baculum osteoid tissue from farmed Arctic blue foxes (Vulpes lagopus). For femur, also biomechanical properties during bending (displacement [mm], load [N], energy absorption [J] and stiffness [N/mm]) were measured. Sixteen foxes (EXP) were fed a wet food containing 7.7% OC-polluted minke whale (Balaenoptera acutorostrata) blubber in two periods of body fat deposition (Aug-Dec) and two periods of body fat mobilisation (Jan-July) in which the food contained less energy and only 2% blubber. SigmaOC food concentration in the food containing 7.7% whale blubber was 309 ng/g wet mass. This corresponded to a SigmaOC exposure of ca. 17 microg/kg body mass/d and a responding SigmaOC residue in subcutaneous adipose tissue of ca. 1700 ng/g live mass in the 8 EXP fat foxes euthanized after 16 months. A control group (CON) composed of 15 foxes were fed equal daily caloric amounts of clean pork (Sus scrofa) fat. After 16 months, 8 EXP and 7 CON foxes were euthanized (mean body mass=9.25 kg) while the remaining 8 EXP and 8 CON foxes were given restricted food rations for 6 months resulting in a body weight reduction (mean body mass=5.46 kg). The results showed that only BMD(skull) vs. BMD(vertebrae) were significantly correlated (R=0.68; p=0.03; n=10) probably due to a similar composition of trabecular and cortical osteoid tissue. No difference in any of the BMD measurements or femoral biomechanical properties was found between EXP and CON foxes although BMD baculum was 1.6-folds lower in the EXP group. However, lean summer foxes had significantly lower femoral biomechanical properties measured as displacement (mm), energy absorption (J) and time (s) biomechanical properties than fat winter foxes (all p<0.004). This indicates lower stiffness and softer bones from fasting which is in

  18. Effects of mineral additions on durability and physico-mechanical properties of mortar

    NASA Astrophysics Data System (ADS)

    Logbi, A.; Kriker, A.; Snisna, Z.

    2017-02-01

    This paper consists of an experimental study of the effect of some mineral admixtures on the properties of mortar. Blast furnace Slag of El-Hadjar, natural pozzolan of Beni saf and limestone of Ghardaia, all from Algeria, are crushed in high fineness and incorporated in the cement with different contents (15 % 20 % and 10%) respectively, in order to perform the physico-mechanical characteristics and durability of the mortar. The replacement of cement by 15% of natural pozzolan, or 20% of the Blast furnace Slag improves the mechanical performances of mortar in early and long ages than the mortar without additions, but 10% of limestone fillers have a positive effect only at early age. For durability the three additions have developed a beneficial effect on mechanical resistance under the free aquifers water, while their effects are different on capillary absorption.

  19. Effect of mineral admixtures on kinetic property and compressive strength of self Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Jagalur Mahalingasharma, Srishaila; Prakash, Parasivamurthy; Vishwanath, K. N.; Jawali, Veena

    2017-06-01

    This paper presents experimental investigations made on the influence of chemical, physical, morphological and mineralogical properties of mineral admixtures such as fly ash, ground granulate blast furnace slag, metakaoline and micro silica used as a replacement of cement in self compacting concrete on workability and compressive strength. Nineteen concrete mixes were cast by replacing with cement by fly ash or ground granulated blast furnace slag as binary blend at 30%, 40%, 50% and with addition of micro silica and metakaoline at 10% as a ternary blend with fly ash, ground granulated blast furnace slag and obtained results were compare with control mix. Water powder ratio 0.3 and super plasticizer dosage 1% of cementitious material was kept constant for all the mixes. The self compacting concrete tested for slump flow, V-funnel, L-Box, J-Ring, T50, and compressive strength on concrete cube were determined at age of 3, 7, 28, 56, 90 days.

  20. Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid.

    PubMed

    Sa, Yue; Yang, Fang; de Wijn, Joost R; Wang, Yining; Wolke, Joop G C; Jansen, John A

    2016-04-01

    The aim of this study was to evaluate the effect of carboxymethylcellulose (CMC) as a pore generator and hydroxyapatite (HA) as an osteoconductive agent on the physicochemical properties and in-vitro mineralization ability of porous polymethylmethacrylate (PMMA) cement. To this end, various compositions of PMMA cements, which differed in amount of millimeter-sized hydroxyapatite (HA) particles and CMC hydrogel, were prepared and immersed into simulated body fluid (SBF) for 0, 7, 14, 21 and 28 days. It was demonstrated that the incorporation of CMC hydrogel decreased the maximum temperature of cement to the normal body temperature and prolonged the handling time during polymerization. Further, the amount of CMC was responsible for the creation of porosity and interconnectivity, which in turn determined the final mechanical properties of cements. The loaded HA particles enhanced the potential bioactivity of cement for bone ingrowth. Albeit different amount of HA particles influenced their final exposures on the surface of cured cement, all of the three amounts of HA did not weaken the final mechanical properties of cements. The data here suggests that the HA particle loaded porous PMMA cement can serve as the promising candidate for bone reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls.

    PubMed

    Zheng, Xianbing; Ren, Jiusheng

    2016-03-21

    Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls are analyzed in this paper, based on the model which considered the bending and stretching both in the circumferential and axial directions of the three distinct arterial layers. Moreover, different constitutive models are proposed to quantify the nonlinear mechanics of the three distinct layers and the important constituents, i.e. elastin, collagen fibers and smooth muscle cells (SMCs), are all taken into account. The stress distributions and pressure-radius curves of the arterial wall are given in details. Results demonstrate that the maximum values of the circumferential stress and the corresponding stress gradient in the media under the mean arterial pressure are reduced significantly as a consequence of the SMCs. The bending in the axial direction of the media and the opening angle of the intima have an obvious impact on the mechanical behaviors of arterial walls. This study may not only develop the understanding of effects of the three-dimensional residual stresses on the arterial wall response, but also can increase the accuracy of the analyses for patient-specific studies used for the treatments of arterial diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of crude oil residuals on soil chemical properties in oil sites, Momoge Wetland, China.

    PubMed

    Wang, Xiaoyu; Feng, Jiang; Zhao, Jimin

    2010-02-01

    Crude oil exploration and production has been the largest anthropogenic factor contributing to the degradation of Momoge Wetland, China. To study the effects of crude oil on wetland soils, we examined the total petroleum hydrocarbon (TPH), total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP), as well as pH and electricity conductivity (EC) from oil sites and uncontaminated areas in the Momoge Wetland. All contaminated areas had significantly higher (p < 0.05) contents of TPH and TOC, but significantly lower (p < 0.05) TN contents than those of the uncontaminated areas. Contaminated sites also exhibited significantly higher (p < 0.05) pH values, C/N and C/P ratios. For TP contents and EC, no significant changes were detected. The level of soil contamination and impact of oil residuals on soil quality greatly depended on the length of time the oil well was in production. Oil residuals had caused some major changes in the soils' chemical properties in the Momoge Wetland.

  3. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli

    NASA Technical Reports Server (NTRS)

    Blount, P.; Sukharev, S. I.; Schroeder, M. J.; Nagle, S. K.; Kung, C.

    1996-01-01

    MscL is a channel that opens a large pore in the Escherichia coli cytoplasmic membrane in response to mechanical stress. Previously, we highly enriched the MscL protein by using patch clamp as a functional assay and cloned the corresponding gene. The predicted protein contains a largely hydrophobic core spanning two-thirds of the molecule and a more hydrophilic carboxyl terminal tail. Because MscL had no homology to characterized proteins, it was impossible to predict functional regions of the protein by simple inspection. Here, by mutagenesis, we have searched for functionally important regions of this molecule. We show that a short deletion from the amino terminus (3 amino acids), and a larger deletion of 27 amino acids from the carboxyl terminus of this protein, had little if any effect in channel properties. We have thus narrowed the search of the core mechanosensitive mechanism to 106 residues of this 136-amino acid protein. In contrast, single residue substitutions of a lysine in the putative first transmembrane domain or a glutamine in the periplasmic loop caused pronounced shifts in the mechano-sensitivity curves and/or large changes in the kinetics of channel gating, suggesting that the conformational structure in these regions is critical for normal mechanosensitive channel gating.

  4. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli

    NASA Technical Reports Server (NTRS)

    Blount, P.; Sukharev, S. I.; Schroeder, M. J.; Nagle, S. K.; Kung, C.

    1996-01-01

    MscL is a channel that opens a large pore in the Escherichia coli cytoplasmic membrane in response to mechanical stress. Previously, we highly enriched the MscL protein by using patch clamp as a functional assay and cloned the corresponding gene. The predicted protein contains a largely hydrophobic core spanning two-thirds of the molecule and a more hydrophilic carboxyl terminal tail. Because MscL had no homology to characterized proteins, it was impossible to predict functional regions of the protein by simple inspection. Here, by mutagenesis, we have searched for functionally important regions of this molecule. We show that a short deletion from the amino terminus (3 amino acids), and a larger deletion of 27 amino acids from the carboxyl terminus of this protein, had little if any effect in channel properties. We have thus narrowed the search of the core mechanosensitive mechanism to 106 residues of this 136-amino acid protein. In contrast, single residue substitutions of a lysine in the putative first transmembrane domain or a glutamine in the periplasmic loop caused pronounced shifts in the mechano-sensitivity curves and/or large changes in the kinetics of channel gating, suggesting that the conformational structure in these regions is critical for normal mechanosensitive channel gating.

  5. Comparison of physical and mechanical properties of mineral trioxide aggregate and Biodentine.

    PubMed

    Butt, Naziya; Talwar, Sangeeta; Chaudhry, Sarika; Nawal, Ruchika Roongta; Yadav, Seema; Bali, Anuradha

    2014-01-01

    Mineral trioxide aggregate (MTA) fulfills many of the ideal properties of the root-end filling material. However, its low cohesive property often makes it difficult to handle. Biodentine, new calcium-silicate-based cement has been developed to improve some MTA drawbacks such as its difficult handling property and long-setting time. The objective of this study was to compare at different times the microleakage of roots filled with Biodentine and white MTA (WMTA)-Angelus and to investigate their setting time, handling properties and compressive strength. Root canals of single-rooted teeth were instrumented, filled with either Biodentine or WMTA-Angelus (n=15 each) with two positive and two negative control roots and stored at 37°C. Sealing was assessed at 4, 24 h, 1, 2, 4, 8, and 12 weeks by a fluid filtration method. The initial setting time, handling properties, and compressive strength of the test groups were investigated by a vicat needle, questionnaire of operational hand feel, and universal instron machine, respectively. Significant differences in microleakage were found between two groups at 4-h and 24 h (P<0.05) and no difference at 1, 2, 4, 8, and 12 weeks. No significant difference was seen in the setting time of MTA-Angelus and Biodentine, though latter was found to have better handling consistency. Compressive strength of Biodentine was significantly higher than MTA-Angelus. The results suggest that the new calcium-silicate-based endodontic cement provides improvement in sealing ability as well as clinical manageability of dental filling materials.

  6. Adsorption properties of cationic rhodamine B dye onto metals chloride-activated castor bean residue carbons.

    PubMed

    Zhi, Lee Lin; Zaini, Muhammad Abbas Ahmad

    2017-02-01

    This work was aimed to evaluate the feasibility of castor bean residue based activated carbons prepared through metals chloride activation. The activated carbons were characterized for textural properties and surface chemistry, and the adsorption data of rhodamine B were established to investigate the removal performance. Zinc chloride-activated carbon with specific surface area of 395 m(2)/g displayed a higher adsorption capacity of 175 mg/g. Magnesium chloride and iron(III) chloride are less toxic and promising agents for composite chemical activation. The adsorption data obeyed Langmuir isotherm and pseudo-second-order kinetics model. The rate-limiting step in the adsorption of rhodamine B is film diffusion. The positive values of enthalpy and entropy indicate that the adsorption is endothermic and spontaneous at high temperature.

  7. [The fibrogenic property of mineral wool dust obtained from ferronickel slags].

    PubMed

    Shevchenko, A M; Shkurko, G A; Andreenko, T V

    1993-01-01

    Dust of mineral wool obtained from ferronickel slags was demonstrated to be capable of inducing moderate pneumofibrosis. Small contents of manganese, nickel, chrome and cobalt in the mineral wool particles necessitate further investigations for their probable mutagenic effect.

  8. Chemical, Mechanical, and Durability Properties of Concrete with Local Mineral Admixtures under Sulfate Environment in Northwest China

    PubMed Central

    Nie, Qingke; Zhou, Changjun; Shu, Xiang; He, Qiang; Huang, Baoshan

    2014-01-01

    Over the vast Northwest China, arid desert contains high concentrations of sulfate, chloride, and other chemicals in the ground water, which poses serious challenges to infrastructure construction that routinely utilizes portland cement concrete. Rapid industrialization in the region has been generating huge amounts of mineral admixtures, such as fly ash and slags from energy and metallurgical industries. These industrial by-products would turn into waste materials if not utilized in time. The present study evaluated the suitability of utilizing local mineral admixtures in significant quantities for producing quality concrete mixtures that can withstand the harsh chemical environment without compromising the essential mechanical properties. Comprehensive chemical, mechanical, and durability tests were conducted in the laboratory to characterize the properties of the local cementitious mineral admixtures, cement mortar and portland cement concrete mixtures containing these admixtures. The results from this study indicated that the sulfate resistance of concrete was effectively improved by adding local class F fly ash and slag, or by applying sulfate resistance cement to the mixtures. It is noteworthy that concrete containing local mineral admixtures exhibited much lower permeability (in terms of chloride ion penetration) than ordinary portland cement concrete while retaining the same mechanical properties; whereas concrete mixtures made with sulfate resistance cement had significantly reduced strength and much increased chloride penetration comparing to the other mixtures. Hence, the use of local mineral admixtures in Northwest China in concrete mixtures would be beneficial to the performance of concrete, as well as to the protection of environment. PMID:28788648

  9. Chemical, Mechanical, and Durability Properties of Concrete with Local Mineral Admixtures under Sulfate Environment in Northwest China.

    PubMed

    Nie, Qingke; Zhou, Changjun; Shu, Xiang; He, Qiang; Huang, Baoshan

    2014-05-13

    Over the vast Northwest China, arid desert contains high concentrations of sulfate, chloride, and other chemicals in the ground water, which poses serious challenges to infrastructure construction that routinely utilizes portland cement concrete. Rapid industrialization in the region has been generating huge amounts of mineral admixtures, such as fly ash and slags from energy and metallurgical industries. These industrial by-products would turn into waste materials if not utilized in time. The present study evaluated the suitability of utilizing local mineral admixtures in significant quantities for producing quality concrete mixtures that can withstand the harsh chemical environment without compromising the essential mechanical properties. Comprehensive chemical, mechanical, and durability tests were conducted in the laboratory to characterize the properties of the local cementitious mineral admixtures, cement mortar and portland cement concrete mixtures containing these admixtures. The results from this study indicated that the sulfate resistance of concrete was effectively improved by adding local class F fly ash and slag, or by applying sulfate resistance cement to the mixtures. It is noteworthy that concrete containing local mineral admixtures exhibited much lower permeability (in terms of chloride ion penetration) than ordinary portland cement concrete while retaining the same mechanical properties; whereas concrete mixtures made with sulfate resistance cement had significantly reduced strength and much increased chloride penetration comparing to the other mixtures. Hence, the use of local mineral admixtures in Northwest China in concrete mixtures would be beneficial to the performance of concrete, as well as to the protection of environment.

  10. Physical and Chemical Properties and Subcutaneous Implantation of Mineral Trioxide Aggregate Mixed with Propylene Glycol.

    PubMed

    Marciano, Marina Angélica; Guimarães, Bruno Martini; Amoroso-Silva, Pablo; Camilleri, Josette; Hungaro Duarte, Marco Antonio

    2016-03-01

    The aim of this study was to evaluate the physical, chemical, and biological properties of mineral trioxide aggregate (MTA) mixed with 80% distilled water and 20% propylene glycol (PG) compared with MTA mixed with distilled water only. Flowability, film thickness, and solubility were analyzed according to American National Standards Institute/American Dental Association specification 57/2000. Initial and final setting times were assessed according to American Society for Testing and Materials specification C266/08. Porosity was assessed by using mercury intrusion porosimetry after 1 and 28 days of hydration, and the pH and calcium ion release were assessed after 3, 24, 72, and 168 hours. For the tissue reaction, the cements were implanted in 24 albino rats (2 groups, n = 12). An analysis of the inflammatory infiltrate was performed after 15, 30, and 60 days. MTA + PG exhibited lower film thickness and higher final setting time. No differences were verified for flowability (P > .05). MTA + PG showed high porosity at 1 day of hydration (P < .05). All the test cements demonstrated an alkaline pH. Microscopic analysis of the specimens revealed neoformation of connective tissue in contact with the cements. The introduction of PG as a mixing vehicle alters the physical and chemical properties of MTA and is biologically acceptable. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Chemical composition, mineral profile, and functional properties of Canna (Canna edulis) and Arrowroot (Maranta spp.) starches.

    PubMed

    Pérez, Elevina; Lares, Mary

    2005-09-01

    The aim of the present study was to evaluate some chemical and mineral characteristics and functional and rheological properties of Canna and Arrowroot starches produced in the Venezuelan Andes. Canna starch showed a higher (P < 0.05) moisture, ash, and crude protein content than arrowroot starch, while crude fiber, crude fat, and amylose content of this starch were higher (P < 0.05). Starches of both rhizomes own phosphorus, sodium, potassium, magnesium, iron, calcium, and zinc in their composition. Phosphorus, sodium, and potassium are the higher in both starches. Water absorption, swelling power, and solubility values revealed weak bonding forces in Canna starch granules; this explained the lower gelatinization temperature and the substantial viscosity development of Canna starch during heating. Arrowroot starch showed a higher gelatinization temperature measure by DSC, than Canna starch and exhibited a lower value of DeltaH. Both starches show negative syneresis. The apparent viscosity of Canna starch was higher (P < 0.05) than the Arrowroot starch values. The size (wide and large) of Canna starch granules was higher than arrowroot starch. From the previous results, it can be concluded that Canna and Arrowroot starches could become interesting alternatives for food developers, depending on their characteristics and functional properties.

  12. Electrical and geochemical properties of tufa deposits as related to mineral composition in the South Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Gomaa, Mohamed M.; Abou El-Anwar, Esmat A.

    2015-06-01

    The geochemical, petrographical, and electrical properties of rocks are essential to the investigation of the properties of minerals. In this paper we will try to present a study of the A. C. electrical properties of carbonate rock samples and their relation to petrographical and geochemical properties. Samples were collected from four formations from the Bir Dungul area, in the South Western Desert, Egypt. The electrical properties of the samples were measured using a non-polarizing electrode, at room temperature (~28 °C), and at a relative atmospheric humidity of (~45%), in the frequency range from 42 Hz to 5 MHz. The changes in the electrical properties were argued to the change in mineral composition. Generally, the electrical properties of rocks are changed due to many factors e.g., grain size, mineral composition, grain shape and inter-granular relations between grains. The dielectric constant of samples decreases with frequency, and increases with conductor concentration. Also, the conductivity increases with an increase of continuous conductor paths between electrodes. The petrographical and geochemical studies reveal that the deposition of the tufa deposits occurred in shallow lakes accompanied by a high water table, an alkaline spring recharge and significant vegetation cover. Diagenetically, tufa deposits were subjected to early and late diagenesis. Petrography and geochemistry studies indicated that the area of tufa deposits was deposited under the control of bacterial activity. Geochemically, the Sr content indicates that the tufa deposits formed from dissolved bicarbonate under the control of microbes and bacterial activity.

  13. Effect of high temperature creep and oxidation on residual room temperature properties for several thin sheet superalloys

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Lisagor, W. B.

    1972-01-01

    Superalloys are being considered for the primary heat shields and supports in the thermal protection system of both hypersonic transport and space shuttle vehicles. Since conservative design philosophy dictates designs based on residual material properties at the end of the service life, material characterization after exposure to the environmental conditions imposed by the flight requirements of these two classes of vehicles is needed on the candidate alloys. An investigation was conducted to provide some of the necessary data, with emphasis placed on oxidation, creep, and residual properties of thin-gage sheet material.

  14. In ovo feeding with minerals and vitamin D3 improves bone properties in hatchlings and mature broilers.

    PubMed

    Yair, R; Shahar, R; Uni, Z

    2015-11-01

    The objective of this study was to examine the effect of in ovo feeding (IOF) with inorganic minerals or organic minerals and vitamin D3 on bone properties and mineral consumption. Eggs were incubated and divided into 4 groups: IOF with organic minerals, phosphate, and vitamin D3 (IOF-OMD); IOF with inorganic minerals and phosphate (IOF-IM); sham; and non-treated controls (NTC). IOF was performed on embryonic day (E) 17; tibiae and yolk samples were taken on E19 and E21. Post-hatch, only chicks from the IOF-OMD, sham, and NTC were raised, and tibiae were taken on d 10 and 38. Yolk mineral content was examined by inductively coupled plasma spectroscopy. Tibiae were tested for their whole-bone mechanical properties, and mid-diaphysis bone sections were indented in a micro-indenter to determine bone material stiffness (Young's modulus). Micro-computed tomography (μCT) was used to examine cortical and trabecular bone structure. Ash content analysis was used to examine bone mineralization. A latency-to-lie (LTL) test was used to measure standing ability of the d 38 broilers. The results showed that embryos from both IOF-OMD and IOF-IM treatments had elevated Cu, Mn, and Zn amounts in the yolk on E19 and E21 and consumed more of these minerals (between E19 and E21) in comparison to the sham and NTC. On E21, these hatchlings had higher whole-bone stiffness in comparison to the NTC. On d 38, the IOF-OMD had higher ash content, elevated whole-bone stiffness, and elevated Young's modulus (in males) in comparison to the sham and NTC; however, no differences in standing ability were found. Very few structural differences were seen during the whole experiment. This study demonstrates that mineral supplementation by in ovo feeding is sufficient to induce higher mineral consumption from the yolk, regardless of its chemical form or the presence of vitamin D3. Additionally, IOF with organic minerals and vitamin D3 can increase bone ash content, as well as stiffness of the whole

  15. Influence of the inherent properties of drinking water treatment residuals on their phosphorus adsorption capacities.

    PubMed

    Bai, Leilei; Wang, Changhui; He, Liansheng; Pei, Yuansheng

    2014-12-01

    Batch experiments were conducted to investigate the phosphorus (P) adsorption and desorption on five drinking water treatment residuals (WTRs) collected from different regions in China. The physical and chemical characteristics of the five WTRs were determined. Combined with rotated principal component analysis, multiple regression analysis was used to analyze the relationship between the inherent properties of the WTRs and their P adsorption capacities. The results showed that the maximum P adsorption capacities of the five WTRs calculated using the Langmuir isotherm ranged from 4.17 to 8.20mg/g at a pH of 7 and further increased with a decrease in pH. The statistical analysis revealed that a factor related to Al and 200 mmol/L oxalate-extractable Al (Alox) accounted for 36.5% of the variations in the P adsorption. A similar portion (28.5%) was attributed to an integrated factor related to the pH, Fe, 200 mmol/L oxalate-extractable Fe (Feox), surface area and organic matter (OM) of the WTRs. However, factors related to other properties (Ca, P and 5 mmol/L oxalate-extractable Fe and Al) were rejected. In addition, the quantity of P desorption was limited and had a significant negative correlation with the (Feox+Alox) of the WTRs (p<0.05). Overall, WTRs with high contents of Alox, Feox and OM as well as large surface areas were proposed to be the best choice for P adsorption in practical applications.

  16. Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels.

    PubMed

    Claudio-Rizo, Jesús A; Rangel-Argote, Magdalena; Castellano, Laura E; Delgado, Jorge; Mata-Mata, José L; Mendoza-Novelo, Birzabith

    2017-10-01

    In this work, hydrolysates of extracellular matrix (hECM) were obtained from rat tail tendon (TR), bovine Achilles tendon (TAB), porcine small intestinal submucosa (SIS) and bovine pericardium (PB), and they were polymerized to generate ECM hydrogels. The composition of hECM was evaluated by quantifying the content of sulphated glycosaminoglycans (sGAG), fibronectin and laminin. The polymerization process, structure, physicochemical properties, in vitro degradation and biocompatibility were studied and related to their composition. The results indicated that the hECM derived from SIS and PB were significantly richer in sGAG, fibronectin and laminin, than those derived from TAB and TR. These differences in hECM composition influenced the polymerization and the structural characteristics of the fibrillar gel network. Consequently, the swelling, mechanics and degradation of the hydrogels showed a direct relationship with the remaining composition. Moreover, the cytocompatibility and the secretion of transforming growth factor beta-1 (TGF-β1) by macrophages were enhanced in hydrogels with the highest residual content of ECM biomolecules. The results of this work evidenced the role of the ECM molecules remaining after both decellularization and hydrolysis steps to produce tissue derived hydrogels with structure and properties tailored to enhance their performance in tissue engineering and regenerative medicine applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Physical and chemical properties of ice residuals during the 2013 and 2014 CLACE campaigns

    NASA Astrophysics Data System (ADS)

    Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Hammer, Emanuel; Gysel, Martin; Färber, Raphael; Fuchs, Claudia; Schnaiter, Martin; Baltensperger, Urs; Schmidt, Susan; Schneider, Johannes; Bigi, Alessandro; Toprak, Emre; Linke, Claudia; Klimach, Thomas

    2014-05-01

    The shortcomings in our understanding and, thus, representation of aerosol-cloud interactions are one of the major sources of uncertainty in climate model projections. Among the poorly understood processes is mixed-phase cloud formation via heterogeneous nucleation, and the subsequent spatial and temporal evolution of such clouds. Cloud glaciation augments precipitation formation, resulting in decreased cloud cover and lifetime, and affects cloud radiative properties. Meanwhile, the physical and chemical properties of atmospherically relevant ice nuclei (IN), the sub-population of aerosol particles which enable heterogeneous nucleation, are not well known. Extraction of ice residuals (IR) in mixed-phase clouds is a difficult task, requiring separation of the few small, freshly formed ice crystals (the IR within such crystals can be deemed representative of the original IN) not only from interstitial particles, but also from the numerous supercooled droplets which have aerodynamic diameters similar to those of the ice crystals. In order to address the difficulties with ice crystal sampling and IR extraction in mixed-phase clouds, the new Ice Selective Inlet (ISI) has been designed and deployed at the Jungfraujoch field site. Small ice crystals are selectively sampled via the inlet with simultaneous counting, sizing and imaging of hydrometeors contained in the cloud by a set of optical particle spectrometers, namely Welas optical particle counters (OPC) and a Particle Phase Discriminator (PPD). The heart of the ISI is a droplet evaporation unit with ice-covered inner walls, resulting in removal of droplets using the Wegener-Bergeron-Findeisen process, while transmitting a relatively high fraction of small ice crystals. The ISI was deployed in the winters of 2013 and 2014 at the high alpine Jungfraujoch site (3580 m.a.s.l) during the intensive CLACE field campaigns. The measurements focused on analysis of the physical and chemical characteristics of IR and the

  18. Jumping exercise preserves bone mineral density and mechanical properties in osteopenic ovariectomized rats even following established osteopenia.

    PubMed

    Okubo, R; Sanada, L S; Castania, V A; Louzada, M J Q; de Paula, F J A; Maffulli, N; Shimano, A C

    2017-04-01

    The effects of jump training on bone structure before and after ovariectomy-induced osteopenia in rats were investigated. Jumping exercise induced favorable changes in bone mineral density, bone mechanical properties, and bone formation/resorption markers. This exercise is effective to prevent bone loss after ovariectomy even when osteopenia is already established.

  19. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  20. White mineral trioxide aggregate mixed with calcium chloride dihydrate: chemical analysis and biological properties

    PubMed Central

    2017-01-01

    Objectives This study aimed to evaluate the chemical and biological properties of fast-set white mineral trioxide aggregate (FS WMTA), which was WMTA combined with calcium chloride dihydrate (CaCl2·2H2O), compared to that of WMTA. Materials and Methods Surface morphology, elemental, and phase analysis were examined using scanning electron microscope (SEM), energy dispersive X-ray microanalysis (EDX), and X-ray diffraction (XRD), respectively. The cytotoxicity and cell attachment properties were evaluated on human periodontal ligament fibroblasts (HPLFs) using methyl-thiazol-diphenyltetrazolium (MTT) assay and under SEM after 24 and 72 hours, respectively. Results Results showed that the addition of CaCl2·2H2O to WMTA affected the surface morphology and chemical composition. Although FS WMTA exhibited a non-cytotoxic profile, the cell viability values of this combination were lesser than WMTA, and the difference was significant in 7 out of 10 concentrations at the 2 time intervals (p < 0.05). HPLFs adhered over the surface of WMTA and at the interface, after 24 hours of incubation. After 72 hours, there were increased numbers of HPLFs with prominent cytoplasmic processes. Similar findings were observed with FS WMTA, but the cells were not as confluent as with WMTA. Conclusions The addition of CaCl2·2H2O to WMTA affected its chemical properties. The favorable biological profile of FS WMTA towards HPLFs may have a potential impact on its clinical application for repair of perforation defects. PMID:28808634

  1. Determination of the chemical properties of residues retained in individual cloud droplets by XRF microprobe at SPring-8

    NASA Astrophysics Data System (ADS)

    Ma, C.-J.; Tohno, S.; Kasahara, M.; Hayakawa, S.

    2004-06-01

    To determine the chemical properties of residue retained in individual cloud droplets is primarily important for the understanding of rainout mechanism and aerosol modification in droplet. The sampling of individual cloud droplets were carried out on the summit of Mt. Taiko located in Tango peninsula, Kyoto prefecture, during Asian dust storm event in March of 2002. XRF microprobe system equipped at SPring-8, BL-37XU was applied to the subsequent quantification analysis of ultra trace elements in residues of individual cloud droplets. It was possible to form the replicas of separated individual cloud droplets on the thin collodion film. The two dimensional XRF maps for the residues in individual cloud droplets were clearly drawn by scanning of micro-beam. Also, XRF spectra of trace elements in residues were well resolved. From the XRF spectra for individual residues, the chemical mixed state of residues could be assumed. The chemical forms of Fe (Fe +++) and Zn (Zn +) could be clearly characterized by their K-edge micro-XANES spectra. By comparison of Z/Si mass ratios of residues in cloud droplets and those of the original sands collected in desert areas in China, the aging of ambient dust particles and their in cloud modification were indirectly assumed.

  2. Residual effect of pre-emergence herbicides on microbial activities in relation to mineralization of C, N and P in the Gangetic alluvial soil of West Bengal, India.

    PubMed

    Barman, Saurav; Das, Amal Chandra

    2015-07-01

    An experiment has been conducted under laboratory conditions to investigate the residual effect of three pre-emergence herbicides (thiobencarb, pendimethalin and pretilachlor) at fivefold field application rates (7.5, 10.0 and 2.5 kg a.i. ha(-1), respectively), on the changes of microbial activities and some biochemical processes in the Gangetic alluvial soil of West Bengal. Application of herbicides in general significantly increased microbial biomass resulting in greater mineralization of C, N and P in soil. The highest stimulation of microbial biomass C was recorded with thiobencarb (24.4%) followed by pendimethalin (23.4%). Microbial biomass N was highly induced under pretilachlor (54.5%) and thiobencarb (52.7%), while the stimulation of microbial biomass P was at par in the herbicide-treated soils. Compared to untreated control, the highest amount of organic C was retained with thiobencarb followed by pendimethalin. A similar trend was recorded with thiobencarb for total N, while pendimethalin induced exchangeable NH4 (+) and soluble NO3 (-) to the highest extent (42.2 and 34.5%, respectively). Regarding the availability of P in soil, pretilachlor manifested greater stimulation (33.1%) than thiobencarb (21.6%) and pendimethalin (11.4%). As compared to untreated control, thiobencarb harboured maximum number of bacteria (107.9%), while pretilachlor exerted the highest stimulations towards the proliferations of actinomycetes (132.6%) and fungi (149.5%) in soil.

  3. Effects of the geophagous earthworm Metaphire guillelmi on sorption, mineralization, and bound-residue formation of 4-nonylphenol in an agricultural soil.

    PubMed

    Shan, Jun; Wang, Yongfeng; Wang, Lianhong; Yan, Xiaoyuan; Ji, Rong

    2014-06-01

    Effects of earthworms on fate of nonylphenol (NP) are obscure. Using (14)C-4-NP111 as a representative, we studied the fate of 4-NP in an agricultural soil with or without the earthworm Metaphire guillelmi and in fresh cast of the earthworm. Sorption of 4-NP on the cast (Kd 1564) was significantly higher than on the parent soil (Kd 1474). Mineralization of 4-NP was significantly lower in the cast (13.2%) and the soil with earthworms (10.4%) than in the earthworm-free soil (16.0%). One nitro metabolite of 4-NP111 (2-nitro-4-NP111) was identified in the soil and cast, and the presence of the earthworm significantly decreased its amounts. The presence of earthworm also significantly decreased formation of bound residues of 4-NP in the soil. Our results demonstrate that earthworms could significantly change the fate of 4-NP, underlining that earthworm effects should be considered when evaluating behavior and risk of 4-NP in soil.

  4. Tunability of collagen matrix mechanical properties via multiple modes of mineralization

    PubMed Central

    Smith, Lester J.; Deymier, Alix C.; Boyle, John J.; Li, Zhen; Linderman, Stephen W.; Pasteris, Jill D.; Xia, Younan; Genin, Guy M.; Thomopoulos, Stavros

    2016-01-01

    Functionally graded, mineralized collagen tissues exist at soft-to-hard material attachments throughout the body. However, the details of how collagen and hydroxyapatite mineral (HA) interact are not fully understood, hampering efforts to develop tissue-engineered constructs that can assist with repair of injuries at the attachments of soft tissues to bone. In this study, spatial control of mineralization was achieved in collagen matrices using simulated body fluids (SBFs). Based upon previous observations of poor bonding between reconstituted collagen and HA deposited using SBF, we hypothesized that mineralizing collagen in the presence of fetuin (which inhibits surface mineralization) would lead to more mineral deposition within the scaffold and therefore a greater increase in stiffness and toughness compared with collagen mineralized without fetuin. We tested this hypothesis through integrated synthesis, mechanical testing and modelling of graded, mineralized reconstituted collagen constructs. Results supported the hypothesis, and further suggested that mineralization on the interior of reconstituted collagen constructs, as promoted by fetuin, led to superior bonding between HA and collagen. The results provide us guidance for the development of mineralized collagen scaffolds, with implications for bone and tendon-to-bone tissue engineering. PMID:26855755

  5. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue.

    PubMed

    Suk, Ji Won; Lee, Wi Hyoung; Lee, Jongho; Chou, Harry; Piner, Richard D; Hao, Yufeng; Akinwande, Deji; Ruoff, Rodney S

    2013-04-10

    Residual polymer (here, poly(methyl methacrylate), PMMA) left on graphene from transfer from metals or device fabrication processes affects its electrical and thermal properties. We have found that the amount of polymer residue left after the transfer of chemical vapor deposited (CVD) graphene varies depending on the initial concentration of the polymer solution, and this residue influences the electrical performance of graphene field-effect transistors fabricated on SiO2/Si. A PMMA solution with lower concentration gave less residue after exposure to acetone, resulting in less p-type doping in graphene and higher charge carrier mobility. The electrical properties of the weakly p-doped graphene could be further enhanced by exposure to formamide with the Dirac point at nearly zero gate voltage and a more than 50% increase of the room-temperature charge carrier mobility in air. This can be attributed to electron donation to graphene by the -NH2 functional group in formamide that is absorbed in the polymer residue. This work provides a route to enhancing the electrical properties of CVD-grown graphene even when it has a thin polymer coating.

  6. Relationship between physicochemical properties and maximum residue levels and tolerances of crop-protection products for crops set by the USA, European Union and Codex.

    PubMed

    Thorbek, P; Hyder, K

    2006-08-01

    Residues on foodstuffs resulting from the use of crop-protection products are a function of many factors, e.g. environmental conditions, dissipation and application rate, some of which are linked to the physicochemical properties of the active ingredients. Residue limits (maximum residue levels (MRLs) and tolerances) of fungicides, herbicides and insecticides set by different regulatory authorities are compared, and the relationship between physicochemical properties of the active ingredients and residue limits are explored. This was carried out using simple summary statistics and artificial neural networks. US tolerances tended to be higher than European Union MRLs. Generally, fungicides had the highest residue limits followed by insecticides and herbicides. Physicochemical properties (e.g. aromatic proportion, non-carbon proportion and water solubility) and crop type explained up to 50% of the variation in residue limits. This suggests that physicochemical properties of the active ingredients may control important aspects of the processes leading to residues.

  7. The effects of shot-peening residual stresses on the fracture and crack growth properties of D6AC steel

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1973-01-01

    The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that the shot-peening residual stresses influence the fracture and crack-growth properties of the material. The analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions are presented.

  8. Effects of shot-peening residual stresses on the fracture and crack-growth properties of D6AC steel

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1974-01-01

    The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5 mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that shot-peening residual stresses influence the fracture and crack-growth properties of the material. This report presents the analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions.

  9. Properties of filamentary sublimation residues from dispersions of clay in ice. [on Martian poles, comet nuclei, and icy satellites

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Parker, T. J.; Stephens, J. B.; Fanale, F. P.; Sutton, S.

    1986-01-01

    Results are reported from experimental studies of the formation of ice mixed with mineral particles in an effort to simulate similar processes on natural surfaces such as at the Martian poles, on comet nuclei and on icy satellites. The study consisted of low-pressure, low-temperature sublimations of water ice from dilutions of water-clay (montmorillonite and Cabosil) dispersions of various component ratios. Liquid dispersions were sprayed into liquid nitrogen to form droplets at about -50 C. Both clay-water dispersions left a filamentary residue on the bottom of the Dewar after the water ice had sublimated off. The residue was studied with optical and SEM microscopy, the latter method revealing a high electrical conductivity in the residue. The results suggest that the sublimation of the water ice can leave a surface crust, which may be analogous to processes at the Martian poles and on comet nuclei. The process could proceed by the attachment of water molecules to salt crystals during the hottest part of the Martian year. The residue remaining was found to remain stable up to 370 C, be porous, and remain resilient, which could allow it to insulate ice bodies such as comets in space.

  10. Residual Mechanical Properties of Concrete Made with Crushed Clay Bricks and Roof Tiles Aggregate after Exposure to High Temperatures.

    PubMed

    Miličević, Ivana; Štirmer, Nina; Banjad Pečur, Ivana

    2016-04-19

    This paper presents the residual mechanical properties of concrete made with crushed bricks and clay roof tile aggregates after exposure to high temperatures. One referent mixture and eight mixtures with different percentages of replacement of natural aggregate by crushed bricks and roof tiles are experimentally tested. The properties of the concrete were measured before and after exposure to 200, 400, 600 and 800 °C. In order to evaluate the basic residual mechanical properties of concrete with crushed bricks and roof tiles after exposure to high temperatures, ultrasonic pulse velocity is used as a non-destructive test method and the results are compared with those of a destructive method for validation. The mixture with the highest percentage of replacement of natural aggregate by crushed brick and roof tile aggregate has the best physical, mechanical, and thermal properties for application of such concrete in precast concrete elements exposed to high temperatures.

  11. Residual Mechanical Properties of Concrete Made with Crushed Clay Bricks and Roof Tiles Aggregate after Exposure to High Temperatures

    PubMed Central

    Miličević, Ivana; Štirmer, Nina; Banjad Pečur, Ivana

    2016-01-01

    This paper presents the residual mechanical properties of concrete made with crushed bricks and clay roof tile aggregates after exposure to high temperatures. One referent mixture and eight mixtures with different percentages of replacement of natural aggregate by crushed bricks and roof tiles are experimentally tested. The properties of the concrete were measured before and after exposure to 200, 400, 600 and 800 °C. In order to evaluate the basic residual mechanical properties of concrete with crushed bricks and roof tiles after exposure to high temperatures, ultrasonic pulse velocity is used as a non-destructive test method and the results are compared with those of a destructive method for validation. The mixture with the highest percentage of replacement of natural aggregate by crushed brick and roof tile aggregate has the best physical, mechanical, and thermal properties for application of such concrete in precast concrete elements exposed to high temperatures. PMID:28773420

  12. Influence of long-term mineral fertilization on metal contents and properties of soil samples taken from different locations in Hesse, Germany

    NASA Astrophysics Data System (ADS)

    Czarnecki, S.; Düring, R.-A.

    2014-06-01

    Essential and non-essential metals occur in soils as a result of weathering, industrial processes, fertilization and atmospheric deposition. Badly adapted cultivation of agricultural soils (declining pH-value, application of unsuitable fertilizers) can enhance the mobility of metals and by the way increase their concentrations in agricultural products. The main objective of this study was to test the effects of different mineral fertilizer variations on soil properties (pH, Corg and CEC) and pseudo total and mobile metal contents of soils after 14 years of fertilizer application and to determine residual effects of the fertilization 8 years after cessation of fertilizer treatment. Soil samples were taken from a field experiment which was carried out at four different locations 210, 260, 360, and 620 m a.s.l., in Hesse, Germany. During the study, a significant decrease in soil pH and an evident increase in soil carbon content and cation exchange capacity with fertilization were determined. The CEC of the soils was closely related to their organic C contents. Moreover, pseudo and mobile metal (Cd, Cu, Mn, Pb, Zn) contents in the soils increased due to application of 14 years mineral fertilizer treatments (N, P, NP, and NPK) when compared to control plots. Fertilization is one of the major paths for metal input to agricultural soils, therefore monitoring of the long term impact of fertilization is necessary. 8 years after termination of the fertilization in the soil samples taken from soil profiles of the fertilized plots (NPK) for monitoring the residual effects of the fertilizer application, a decrease of 82.6%, 54.2%, 48.5%, 74.4%, and 56.9%, respectively, in pseudo total Cd, Cu, Mn, Pb, and Zn contents was determined.

  13. Influence of long-term mineral fertilization on metal contents and properties of soil samples taken from different locations in Hesse, Germany

    NASA Astrophysics Data System (ADS)

    Czarnecki, S.; Düring, R.-A.

    2015-01-01

    Essential and non-essential metals occur in soils as a result of weathering, industrial processes, fertilization, and atmospheric deposition. Badly adapted cultivation of agricultural soils (declining pH value, application of unsuitable fertilizers) can enhance the mobility of metals and thereby increase their concentrations in agricultural products. As the enrichment of metals in soils occurs over long time periods, monitoring of the long-term impact of fertilization is necessary to assess metal accumulation in agricultural soils. The main objective of this study was to test the effects of different mineral fertilizer variations on soil properties (pH, Corg, and cation exchange capacity (CEC)) and pseudo-total and mobile metal contents of soils after 14 years of fertilizer application and to determine residual effects of the fertilization 8 years after cessation of fertilizer treatment. Soil samples were taken from a field experiment which was carried out at four different locations (210, 260, 360, and 620 m above sea level) in Hesse, Germany. During the study, a significant decrease in soil pH and an evident increase in soil carbon content and cation exchange capacity with fertilization were determined. The CEC of the soils was closely related to their organic C contents. Moreover, pseudo- and mobile metal (Cd, Cu, Mn, Pb, Zn) contents in the soils increased due to application of 14 years of mineral fertilizer treatments (N, P, NP, and NPK) when compared to control plots. Eight years after termination of the fertilization in the soil samples taken from soil profiles of the fertilized plots (NPK) for monitoring the residual effects of the fertilizer application, a decrease of 82.6, 54.2, 48.5, 74.4, and 56.9% in pseudo-total Cd, Cu, Mn, Pb, and Zn contents, respectively, was determined.

  14. Modelling and Observation of Mineral Dust Optical Properties over Central Europe

    NASA Astrophysics Data System (ADS)

    Chilinski, Michał T.; Markowicz, Krzysztof M.; Zawadzka, Olga; Stachlewska, Iwona S.; Kumala, Wojciech; Petelski, Tomasz; Makuch, Przemysław; Westphal, Douglas L.; Zagajewski, Bogdan

    2016-12-01

    This paper is focused on Saharan dust transport to Central Europe/Poland; we compare properties of atmospheric Saharan dust using data from NAAPS, MACC, AERONET as well as observations obtained during HyMountEcos campaign in June 2012. Ten years of dust climatology shows that long-range transport of Saharan dust to Central Europe is mostly during spring and summer. HYSPLIT back-trajectories indicate airmass transport mainly in November, but it does not agree with modeled maxima of dust optical depth. NAAPS model shows maximum of dust optical depth ( 0.04-0.05, 550 nm) in April-May, but the MACC modeled peak is broader ( 0.04). During occurrence of mineral dust over Central-Europe for 14% (NAAPS) / 12% (MACC) of days dust optical depths are above 0.05 and during 4% (NAAPS) / 2.5% (MACC) of days dust optical depths exceed 0.1. The HyMountEcos campaign took place in June-July 2012 in the mountainous region of Karkonosze. The analysis includes remote sensing data from lidars, sun-photometers, and numerical simulations from NAAPS, MACC, DREAM8b models. Comparison of simulations with observations demonstrates the ability of models to reasonably reproduce aerosol vertical distributions and their temporal variability. However, significant differences between simulated and measured AODs were found. The best agreement was achieved for MACC model.

  15. AnimoAminoMiner: Exploration of Protein Tunnels and their Properties in Molecular Dynamics.

    PubMed

    Byska, Jan; Le Muzic, Mathieu; Gröller, M Eduard; Viola, Ivan; Kozlíková, Barbora

    2016-01-01

    In this paper we propose a novel method for the interactive exploration of protein tunnels. The basic principle of our approach is that we entirely abstract from the 3D/4D space the simulated phenomenon is embedded in. A complex 3D structure and its curvature information is represented only by a straightened tunnel centerline and its width profile. This representation focuses on a key aspect of the studied geometry and frees up graphical estate to key chemical and physical properties represented by surrounding amino acids. The method shows the detailed tunnel profile and its temporal aggregation. The profile is interactively linked with a visual overview of all amino acids which are lining the tunnel over time. In this overview, each amino acid is represented by a set of colored lines depicting the spatial and temporal impact of the amino acid on the corresponding tunnel. This representation clearly shows the importance of amino acids with respect to selected criteria. It helps the biochemists to select the candidate amino acids for mutation which changes the protein function in a desired way. The AnimoAminoMiner was designed in close cooperation with domain experts. Its usefulness is documented by their feedback and a case study, which are included.

  16. Saharan Mineral Dust Experiment SAMUM 2006: Airborne observations of dust particle properties and vertical dust profiles

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Weinzierl, B.; Esselborn, M.; Fiebig, M.; Fix, A.; Kiemle, C.; Wirth, M.; Müller, D.; Wendisch, M.; Schuetz, L.; Kandler, K.; Kahn, R.; Wagner, F.; Pereira, S.; Virkkula, A.

    2006-12-01

    The Saharan Mineral Dust Experiment (SAMUM) is an initiative of several German institutes. Its goal is the characterisation of optical, physical, chemical, and radiative properties of Saharan dust at the source region. SAMUM data may serve as ground truth data to validate satellite products and atmospheric transport models, and to support the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) mission. The first SAMUM intensive field phase was carried out in May/June 2006 in Southern Morocco. Ground sites were Ouarzazate (30.93° N, 6.9° W), Zagora (30.15° N, 5.37°), and Evora (38.53°N, 7.90°E) in Portugal for long- range transport studies. Research aircraft were operating from Ouarzazate (Partenavia, local flights) and Casablanca (DLR Falcon) at the Moroccan west coast As part of SAMUM, airborne measurements of dust particle properties were conducted using the German research aircraft Falcon. The DLR Falcon was equipped with an extensive set of aerosol physico-chemical instruments for size, volatility, and absorption measurements, impactor sampling for chemical analyses and with a nadir-looking high spectral resolution lidar (HSRL) for measuring aerosol extinction at 532 nm, and aerosol backscatter and depolarisation at 532 nm and 1064 nm. The field sites were equipped with aerosol sampling devices and instruments for particle size distribution measurements. During the SAMUM core phase, three large-scale dust events were probed which extended from southern Morocco to Portugal. Vertical (0 10 km) and horizontal (Saharan border to southern Portugal) dust plume structures, aerosol optical depth as well as particle microphysical and optical properties were studied for all cases. The upper boundary of the dust layers was found at altitudes between 4 and 6 km above sea level. The internal structure of the dust layers varied from well mixed to stratified. The influence of the Atlas Mountains on the lifting of the dust layers was monitored

  17. Effect of bismuth oxide on white mineral trioxide aggregate: chemical characterization and physical properties.

    PubMed

    Grazziotin-Soares, R; Nekoofar, M H; Davies, T E; Bafail, A; Alhaddar, E; Hübler, R; Busato, A L S; Dummer, P M H

    2014-06-01

    To assess the effect of bismuth oxide (Bi2 O3 ) on the chemical characterization and physical properties of White mineral trioxide aggregate (MTA) Angelus. Commercially available White MTA Angelus and White MTA Angelus without Bi2 O3 provided by the manufacturer especially for this study were subjected to the following tests: Rietveld X-ray diffraction analysis (XRD), energy-dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), compressive strength, Vickers microhardness test and setting time. Chemical analysis data were reported descriptively, and physical properties were expressed as means and standard deviations. Data were analysed using Student's t-test and Mann-Whitney U test (P = 0.05). Calcium silicate peaks were reduced in the diffractograms of both hydrated materials. Bismuth particles were found on the surface of White MTA Angelus, and a greater amount of particles characterized as calcium hydroxide was observed by visual examination on White MTA without Bi2 O3 . The material without Bi2 O3 had the shortest final setting time (38.33 min, P = 0.002), the highest Vickers microhardness mean value (72.35 MPa, P = 0.000) and similar compressive strength results (P = 0.329) when compared with the commercially available White MTA Angelus containing Bi2 O3 . The lack of Bi2 O3 was associated with an increase in Vickers microhardness, a reduction in final setting time, absence of Bi2 O3 peaks in diffractograms, as well as a large amount of calcium and a morphology characteristic of calcium hydroxide in EDX/SEM analysis. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  18. Dynamic Alterations in Microarchitecture, Mineralization and Mechanical Property of Subchondral Bone in Rat Medial Meniscal Tear Model of Osteoarthritis

    PubMed Central

    Yu, De-Gang; Nie, Shao-Bo; Liu, Feng-Xiang; Wu, Chuan-Long; Tian, Bo; Wang, Wen-Gang; Wang, Xiao-Qing; Zhu, Zhen-An; Mao, Yuan-Qing

    2015-01-01

    Background: The properties of subchondral bone influence the integrity of articular cartilage in the pathogenesis of osteoarthritis (OA). However, the characteristics of subchondral bone alterations remain unresolved. The present study aimed to observe the dynamic alterations in the microarchitecture, mineralization, and mechanical properties of subchondral bone during the progression of OA. Methods: A medial meniscal tear (MMT) operation was performed in 128 adult Sprague Dawley rats to induce OA. At 2, 4, 8, and 12 weeks following the MMT operation, cartilage degeneration was evaluated using toluidine blue O staining, whereas changes in the microarchitecture indices and tissue mineral density (TMD), mineral-to-collagen ratio, and intrinsic mechanical properties of subchondral bone plates (BPs) and trabecular bones (Tbs) were measured using micro-computed tomography scanning, confocal Raman microspectroscopy and nanoindentation testing, respectively. Results: Cartilage degeneration occurred and worsened progressively from 2 to 12 weeks after OA induction. Microarchitecture analysis revealed that the subchondral bone shifted from bone resorption early (reduced trabecular BV/TV, trabecular number, connectivity density and trabecular thickness [Tb.Th], and increased trabecular spacing (Tb.Sp) at 2 and 4 weeks) to bone accretion late (increased BV/TV, Tb.Th and thickness of subchondral bone plate, and reduced Tb.Sp at 8 and 12 weeks). The TMD of both the BP and Tb displayed no significant changes at 2 and 4 weeks but decreased at 8 and 12 weeks. The mineral-to-collagen ratio showed a significant decrease from 4 weeks for the Tb and from 8 weeks for the BP after OA induction. Both the elastic modulus and hardness of the Tb showed a significant decrease from 4 weeks after OA induction. The BP showed a significant decrease in its elastic modulus from 8 weeks and its hardness from 4 weeks. Conclusion: The microarchitecture, mineralization and mechanical properties of

  19. Morphology of diesel soot residuals from supercooled water droplets and ice crystals: Implications for optical properties

    DOE PAGES

    China, Swarup; Kulkarni, Gourihar; Scarnato, Barbara V.; ...

    2015-11-01

    Freshly emitted soot particles are fractal-like aggregates, but atmospheric processing often transforms their morphology. Morphology of soot particles plays an important role in determining their optical properties, life cycle and hence their effect on Earth’s radiative balance. However, little is known about the morphology of soot particles that participated in cold cloud processes. Here we report results from laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to form supercooled droplets and ice crystals at -20 and -40°C, respectively. Electron microscopy revealed that soot residuals from ice crystals were more compact (roundness~0.55) than those frommore » supercooled droplets (roundness ~0.45), while nascent soot particles were the least compact (roundness~0.41). Optical simulations using the discrete dipole approximation showed that the more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing the top-of-the-atmosphere direct radiative forcing by ~63%. Lastly, these results underscore that climate models should consider the morphological evolution of soot particles due to cold cloud processing to improve the estimate of direct radiative forcing of soot.« less

  20. [Compositions and residual properties of petroleum hydrocarbon in contaminated soil of the oilfields].

    PubMed

    Hu, Di; Li, Chuan; Dong, Qian-Qian; Li, Li-Ming; Li, Guang-He

    2014-01-01

    The aims of this study were to determine the compositions and residual properties of petroleum hydrocarbon in soil, as well as to identify the source and weathering degree of the pollution. A total of 5 producing wells in Gudao and Hekou oil producing region of Shengli oilfields were analyzed. More than 50 individual target compounds including straight-and branched-chain alkanes( n-alkanes, pristine and phytane) and polycyclic aromatic hydrocarbons (PAHs) in soil samples and crude oil were determined by gas chromatography-mass spectrometry (GC-MS). The percentages of chain alkanes and PAHs in total solvent extractable matters(TSEM) of soil samples were both much lower than those in the crude oil samples. The compositions of petroleum hydrocarbon in soil samples differed from those in crude oil, which indicated the n-alkanes with carbon numbers <12 were much easier to lose in contrast to the n-alkanes with high carbon numbers. With n-octadecane/phytane as index for the weathering rate of oil contaminated soils, the relationship between the index and petroleum hydrocarbon compounds was analyzed using principal component analysis (PCA). The results showed that the n-alkanes with carbon numbers > 33 and the PAHs with rings between 3 and 5 were much harder to degrade. PCA of 4 indexes for source identification revealed more than 50% of the soil samples were polluted by crude oil, which needs more attention during remediation.

  1. Investigations of Residual Stresses and Mechanical Properties of Single Crystal Niobium for SRF Cavities

    SciTech Connect

    Thomas Gnäupel-Herold; Ganapati Rao Myneni; Richard E. Ricker

    2007-06-01

    This work investigates properties of large grained, high purity niobium with respect to the forming of superconducting radio frequency (SRF) cavities from such large grained sheets. The yield stresses were examined using tensile specimens that were essentially single crystals in orientations evenly distributed in the standard projection triangle. No distinct yield anisotropy was found, however, vacuum annealing increased the yield strength by a factor 2..3. The deep drawing forming operation of the half cells raises the issues of elastic shape changes after the release of the forming tool (springback) and residual stresses, both of which are indicated to be negligible. This is a consequence of the low yield stress (< 100 MPa) and the large thickness (compared to typical thicknesses in sheet metal forming). However, the significant anisotropy of the transversal plastic strains after uniaxial deformation points to potentially critical thickness variations for large grained / single crystal half cells, thus raising the issue of controlling grain orientation or using single crystal sheet material.

  2. D-glyceraldehyde-3-phosphate dehydrogenase. Properties of the enzyme modified at arginine residues.

    PubMed

    Nagradova, N K; Schmalhausen, E V; Levashov, P A; Asryants, R A; Muronetz, V I

    1996-01-01

    Examination of the properties of Escherichia coli and rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase (GPDHs) modified by 2,3-butanedione has shown that both tetrameric enzymes are stabilized, on selective modification of arginine residues (probably Arg 231), in an asymmetric state with only two active centers capable of performing the dehydrogenase reaction. The functionally incompetent active centers can be alkylated by iodoacetate or iodoacetamide in the case of E. coli enzyme, but are inaccessible for these reagents in the case of rabbit muscle D-GPDH. These results are consistent with the idea that the two homologous enzymes share common principles of the protein design, but differ somewhat in their active centers geometries. Modification of the arginine procedures marked changes in the shape of the charge transfer complex spectrum in the region of 300-370 nm, suggestive of the alterations in the microenvironment of the nicotinamide ring of NAD(+), although the coenzyme binding characteristics remain largely unaltered. On arginine modification, the enzyme becomes insensitive to the effect of AMP on the kinetic parameters of p-nitrophenyl acetate hydrolysis reaction.

  3. Effects of natural acids on surface properties of asbestos minerals and kaolinite.

    PubMed

    Lavkulich, Les M; Schreier, Hanspeter E; Wilson, Julie E

    2014-01-01

    Serpentine, and other asbestos minerals, are considered potential hazards to human respiratory health. It has been postulated that the surface characteristics of these substances, such as surface charge and adsorbed metals, notably Fe and other transition metals, may be the major agents responsible for their toxicity. There is a general consensus that the amphibole group of minerals possesses a greater health risk than serpentines dominated by chrysotile. There have been suggestions that natural processes can alter the surfaces of these minerals and reduce their potency. This study examined the effects of carbonic acid, oxalic acid and hydrochloric acid on the surface characteristics of two trioctahedral minerals, actinolite (amphibole) and chrysotile (serpentine), and compared the results to a non-asbestiform, dioctahedral mineral, kaolinite. Results confirm that the treatments alter the mineral surfaces by changing the zeta potential of the asbestiform minerals from positive to negative and by removing considerable amounts on non-crystalline Fe and other metals. X-ray analyses indicated that mineral structure was little affected by the treatments, and TOF-SIMS revealed that treatments did remove surface adsorbed metals and cations in octahedral coordination within the samples.

  4. 26 CFR 1.381(c)(18)-1 - Depletion on extraction of ores or minerals from the waste or residue of prior mining.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 4 2014-04-01 2014-04-01 false Depletion on extraction of ores or minerals from...) Insolvency Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or... the applicability of section 613(c)(3) (relating to extraction of ores or minerals from the ground...

  5. 26 CFR 1.381(c)(18)-1 - Depletion on extraction of ores or minerals from the waste or residue of prior mining.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Depletion on extraction of ores or minerals from...) Insolvency Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or... the applicability of section 613(c)(3) (relating to extraction of ores or minerals from the ground...

  6. 26 CFR 1.381(c)(18)-1 - Depletion on extraction of ores or minerals from the waste or residue of prior mining.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 4 2012-04-01 2012-04-01 false Depletion on extraction of ores or minerals from...) Insolvency Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or... the applicability of section 613(c)(3) (relating to extraction of ores or minerals from the ground...

  7. Training of panellists for the sensory control of bottled natural mineral water in connection with water chemical properties.

    PubMed

    Rey-Salgueiro, Ledicia; Gosálbez-García, Aitana; Pérez-Lamela, Concepción; Simal-Gándara, Jesús; Falqué-López, Elena

    2013-11-01

    As bottled mineral water market is increasing in the world (especially in emergent and developed countries), the development of a simple protocol to train a panel to evaluate sensory properties would be a useful tool for natural drinking water industry. A sensory protocol was developed to evaluate bottled natural mineral water (17 still and 10 carbonated trademarks). The tasting questionnaire included 13 attributes for still water plus overall impression and they were sorted by: colour hues, transparency and brightness, odour/aroma and taste/flavour/texture and 2 more for carbonated waters (bubbles and effervescence). The training lasted two months with, at least, 10 sessions, was adequate to evaluate bottled natural mineral water. To confirm the efficiency of the sensory training procedure two sensory groups formed the whole panel. One trained panel (6 persons) and one professional panel (6 sommeliers) and both participated simultaneously in the water tasting evaluation of 3 sample lots. Similar average scores obtained from trained and professional judges, with the same water trademarks, confirmed the usefulness of the training protocol. The differences obtained for trained panel in the first lot confirm the necessity to train always before a sensory procedure. A sensory water wheel is proposed to guide the training in bottled mineral water used for drinking, in connection with their chemical mineral content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Soil Incubations Synthesis Study to Identify and Constrain Relations of Soil Properties and Carbon Mineralization

    NASA Astrophysics Data System (ADS)

    Moyano, F. E.; Chenu, C.

    2010-12-01

    Soil carbon models use temperature and moisture relations commonly derived from one or a few representative experimental studies on the topic. These relations are then applied to a more or less wide range of soils, depending on the model type and use. Despite the number of studies looking at such relations, models are yet incapable of successfully simulating carbon dynamics in a wide range of soils. Relations between soil moisture and carbon mineralization are particularly difficult to predict, something which is necessarily related to complicated and yet unexplained aspects of soil and organic matter properties. Soil incubations under controlled conditions are well suited for studying the effect of different factors and their interactions. However, since most incubation studies use one or only a few soil types, extrapolating the results of single studies to a range of soils, as is done in most models, leads to inexact predictions. A problem in analyzing and comparing results from multiple studies lies in the use of different units, especially in the case of soil moisture measurements where, without the required soil characteristics, different units cannot be inter-converted. A comparison is further complicated by most studies giving functions fitted and parameterized for a particular dataset, but since the data is usually not available, alternative functions cannot be derived to effectively compare with other measurements. The project presented here shows the first steps in building a database from soil incubation studies serving as the basis for a statistically significant comparison of datasets. First results are likewise given. Our initial aim is to collect and make comparable datasets from different sources, by directly converting units or using pedotransfer functions, and by including as much data on soil properties and treatments as available. We then analyze the data to find relations between moisture, temperature, soil properties and microbial activity

  9. Microscale Material Properties of Bone and the Mineralized Tissues of the Intervertebral Disc-Vertebral Body Interface

    NASA Astrophysics Data System (ADS)

    Paietta, Rachel C.

    The objective of this dissertation is to understand the influences of material structure on the properties, function and failure of biological connective tissues. Biological interfaces are becoming an increasingly studied system within mechanics and tissue engineering as a model for attaching dissimilar materials. The elastic modulus of bone (≈ 20 GPa) and cartilage (≈ 0.1-1 MPa) differ over orders of magnitude, which should intuitively create high stress concentrations and failure at the interface. Yet, these natural interface systems rarely fail in vivo, and the mechanism by which loads are transferred between tissues has not yet been established. Tissue quality is one major contributor to the mechanical behavior of bone and cartilage, and is defined by properties such as collagen orientation, mineral volume fraction, porosity and tissue geometry. These properties have yet to be established at the bone-cartilage interface in the spine, and the lack of quantitative data on material microstructure and behavior limits treatments and tissue engineering construct design. In this dissertation, second harmonic generation imaging, quantitative backscattered scanning electron imaging and nanoindentation are combined to characterize micrometer scale tissue quality and modulus in both bone and calcified cartilage. These techniques are utilized to: 1) determine the hierarchical micrometer to millimeter scale properties of lamellar bone, 2) quantify changes throughout development and aging at the human intervertebral disc-vertebral body junction, and 3) explore compressive fractures at this interface. This work is the first to provide quantitative data on the mineral volume fraction, collagen orientation and modulus from the same, undecalcified sections of tissue to corroborate tissue structure and mineralization and describe quantitative parameters of the interface. The principal findings from this work indicate that the underlying matrix, or collagen, organization in

  10. Perturbations of the optical properties of mineral dust particles by mixing with black carbon: a numerical simulation study

    NASA Astrophysics Data System (ADS)

    Scarnato, B. V.; China, S.; Nielsen, K.; Mazzoleni, C.

    2015-06-01

    Field observations show that individual aerosol particles are a complex mixture of a wide variety of species, reflecting different sources and physico-chemical transformations. The impacts of individual aerosol morphology and mixing characteristics on the Earth system are not yet fully understood. Here we present a sensitivity study on climate-relevant aerosols optical properties to various approximations. Based on aerosol samples collected in various geographical locations, we have observationally constrained size, morphology and mixing, and accordingly simulated, using the discrete dipole approximation model (DDSCAT), optical properties of three aerosols types: (1) bare black carbon (BC) aggregates, (2) bare mineral dust, and (3) an internal mixture of a BC aggregate laying on top of a mineral dust particle, also referred to as polluted dust. DDSCAT predicts optical properties and their spectral dependence consistently with observations for all the studied cases. Predicted values of mass absorption, scattering and extinction coefficients (MAC, MSC, MEC) for bare BC show a weak dependence on the BC aggregate size, while the asymmetry parameter (g) shows the opposite behavior. The simulated optical properties of bare mineral dust present a large variability depending on the modeled dust shape, confirming the limited range of applicability of spheroids over different types and size of mineral dust aerosols, in agreement with previous modeling studies. The polluted dust cases show a strong decrease in MAC values with the increase in dust particle size (for the same BC size) and an increase of the single scattering albedo (SSA). Furthermore, particles with a radius between 180 and 300 nm are characterized by a decrease in SSA values compared to bare dust, in agreement with field observations. This paper demonstrates that observationally constrained DDSCAT simulations allow one to better understand the variability of the measured aerosol optical properties in ambient

  11. Anaerobic N mineralization in paddy soils in relation to inundation management, physicochemical soil fractions, mineralogy and soil properties

    NASA Astrophysics Data System (ADS)

    Sleutel, Steven; Kader, Mohammed Abdul; Ara Begum, Shamim; De Neve, Stefaan

    2013-04-01

    Anaerobic N mineralization measured from (saturated) repacked soil cores from 25 paddy fields in Bangladesh and was previously found to negatively related to soil N content on a relative basis. This suggests that other factors like soil organic matter (SOM) quality or abiotic factors instead control the anaerobic N mineralization process. We therefore assessed different physical and chemical fractions of SOM, management factors and various soil properties as predictors for the net anaerobic N mineralization. 1° First, we assessed routinely analyzed soil parameters (soil N and soil organic carbon, texture, pH, oxalate- and pyrophosphate-extractable Fe, Al, and Mn, fixed-NH4 content). We found no significant influences of neither soil mineralogy nor the annual length of inundation on soil N mineralization. The anaerobic N mineralization correlated positively with Na-pyrophosphate-extractable Fe and negatively with pH (both at P<0.01). At this stage it is, however, not known if these relations between net evolution of NH4 and pH and Fe content are causal or indirect. 2° Second, the 25 samples collected from farmers' fields were physically fractionated into particulate OM and silt and clay associated OM. The silt and clay sized OM was further chemically fractionated by oxidation with 6%NaOCl to isolate an oxidation-resistant OM fraction, followed by extraction of mineral bound OM with 10%HF thereby isolating the HF-resistant OM. None of the physicochemical SOM fractions were found useful predictors anaerobic N mineralization. The linkage between these chemical soil N fractions and N supplying processes actually occurring in the soil thus appears to be weak. Regardless, we hypothesize that variation in strength of N-mineral and N-OM linkages is likely to explain variation in bio-availability of organic N and proneness to mineralization. Yet, in order to separate kinetically different soil N fractions we then postulated that an alternative approach would be required

  12. Adhesion of Mineral and Soot Aerosols can Strongly Affect their Scattering and Absorption Properties

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Jana M.

    2012-01-01

    We use the numerically exact superposition T-matrix method to compute the optical cross sections and the Stokes scattering matrix for polydisperse mineral aerosols (modeled as homogeneous spheres) covered with a large number of much smaller soot particles. These results are compared with the Lorenz-Mie results for a uniform external mixture of mineral and soot aerosols. We show that the effect of soot particles adhering to large mineral particles can be to change the extinction and scattering cross sections and the asymmetry parameter quite substantially. The effect on the phase function and degree of linear polarization can be equally significant.

  13. The Survey of Sorption Ion-Exchange Properties of Paleozoic Natural Minerals in the Static Conditions

    NASA Astrophysics Data System (ADS)

    Germanova, T. V.; Nefedov, V. A.; Valieva, I. R.

    2017-05-01

    An experimental and exploring process’ results of iron’s ion, manganese and ammonium sodium extraction from aqueous solution by some Ural’s natural minerals in a static regime at certain physicochemical conditions: by the zeolite, montmorillonite and vermiculite in the static conditions. Values of maximum sorption capacity are estimated on a gram of natural sorbents for the present conditions. Comparison of the survey’s results shows that effective sorptions from exploring natural minerals can be used as a clinoptilolite and zeolite-mineral montmorillonite type.

  14. Influence of clay minerals on curcumin properties: Stability and singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Gonçalves, Joyce L. S.; Valandro, Silvano R.; Poli, Alessandra L.; Schmitt, Carla C.

    2017-09-01

    Curcumin (CUR) has showed promising photophysical properties regarding to biological and chemical sciences. However, the main barrier for those applications are their low solubility and stability in aqueous solution. The effects of two different clay minerals, the montmorillonite (SWy-2) and the Laponite RD (Lap) nanoclay, on the stabilization of Curcumin were investigated. Their effects were compared with two well-established environments (acidic and neutral aqueous media). CUR/clay hybrids were prepared using a simple and fast method, where CUR solution was added into clay suspensions, to obtain well dispersed hybrids in water. The degradation process of CUR and CUR/clays hybrids was investigated using UV-Vis spectroscopic. For both studied hybrids, the CUR degradation process was suppressed by the presence of the clay particles. Furthermore, the Lap showed a great stabilization effect than SWy-2. This behavior was due to the smaller particle size and higher exfoliation ability of Lap, providing a large surface for CUR adsorption compared to SWy-2. The degradation process of CUR solutions and CUR/clay hybrids was also studied in the presence of light. CUR photodegradation process was faster not only in the aqueous solution but also in the clay suspension compared to those studied in the dark. The presence of clay particles accelerated the photodegradation of CUR due to the products formation in the reactions between CUR and oxygen radicals. Our results showed that the singlet oxygen quantum yield (ΦΔ) of CUR were about 59% higher in the clay suspensions than CUR in aqueous solution. Therefore, the formation of CUR/clay hybrids, in particularly with Lap, suppressed the degradation in absence light of CUR and increased the singlet oxygen generation, which makes this hybrids of CUR/clay a promising material to enlarge the application of CUR in the biological sciences.

  15. Experimental Investigations on Fatigue Damage and Residual Properties of Interacting Notched Woven E-Glass/Epoxy Composite

    NASA Astrophysics Data System (ADS)

    Bhaskara Rao, Pathakokila; Rama Krishna, Avasarala; Ramji, Koona; Satya Devi, Ambadipudi

    2015-10-01

    The interacting notched laminates of plain weave E-glass fiber reinforced with epoxy were fatigued at predetermined frequency in tension-tension to investigate the fatigue damage and residual properties. The results from stress-life curves summarize that damage growing around the notches due to stress concentration is the underlying cause for the variation in fatigue strengths among the geometrically different specimens considered. The residual strength and modulus decay with respect to cycle number at 50 % of the ultimate tensile strength were investigated. It is evident from the experimental data that the residual strength decreases with cycle number and increases due to redistribution of stress around the notches. The detailed study of the damage development under cyclic loads also explains the causes of modulus reduction for all the laminate geometries.

  16. Effect of polymer residues on the electrical properties of large-area graphene–hexagonal boron nitride planar heterostructures

    DOE PAGES

    Stehle, Yijing Y.; Voylov, Dmitry; Vlassiouk, Ivan V.; ...

    2017-06-19

    Polymer residue plays an important role in the performance of 2D heterostructured materials. Herein, we study the effect of polymer residual impurities on the electrical properties of graphene–boron nitride planar heterostructures. Large-area graphene (Gr) and hexagonal boron nitride (h-BN) monolayers were synthesized using chemical vapor deposition techniques. Atomic van-der-Waals heterostructure layers based on varied configurations of Gr and h-BN layers were assembled. The average interlayer resistance of the heterojunctions over a 1 cm2 area for several planar heterostructure configurations was assessed by impedance spectroscopy and modeled by equivalent electrical circuits. As a result, conductive AFM measurements showed that the presencemore » of polymer residues on the surface of the Gr and h-BN monolayers resulted in significant resistance deviations over nanoscale regions.« less

  17. Effect of polymer residues on the electrical properties of large-area graphene-hexagonal boron nitride planar heterostructures

    NASA Astrophysics Data System (ADS)

    Stehle, Yijing Y.; Voylov, Dmitry; Vlassiouk, Ivan V.; Lassiter, Matthew G.; Park, Jaehyeung; Sharma, Jaswinder K.; Sokolov, Alexei P.; Polizos, Georgios

    2017-07-01

    Polymer residue plays an important role in the performance of 2D heterostructured materials. Herein, we study the effect of polymer residual impurities on the electrical properties of graphene-boron nitride planar heterostructures. Large-area graphene (Gr) and hexagonal boron nitride (h-BN) monolayers were synthesized using chemical vapor deposition techniques. Atomic van-der-Waals heterostructure layers based on varied configurations of Gr and h-BN layers were assembled. The average interlayer resistance of the heterojunctions over a 1 cm2 area for several planar heterostructure configurations was assessed by impedance spectroscopy and modeled by equivalent electrical circuits. Conductive AFM measurements showed that the presence of polymer residues on the surface of the Gr and h-BN monolayers resulted in significant resistance deviations over nanoscale regions.

  18. Ice residual properties in mixed-phase clouds at the high-alpine Jungfraujoch site

    NASA Astrophysics Data System (ADS)

    Kupiszewski, Piotr; Zanatta, Marco; Mertes, Stephan; Vochezer, Paul; Lloyd, Gary; Schneider, Johannes; Schenk, Ludwig; Schnaiter, Martin; Baltensperger, Urs; Weingartner, Ernest; Gysel, Martin

    2016-10-01

    Ice residual (IR) and total aerosol properties were measured in mixed-phase clouds (MPCs) at the high-alpine Jungfraujoch research station. Black carbon (BC) content and coating thickness of BC-containing particles were determined using single-particle soot photometers. The ice activated fraction (IAF), derived from a comparison of IR and total aerosol particle size distributions, showed an enrichment of large particles in the IR, with an increase in the IAF from values on the order of 10-4 to 10-3 for 100 nm (diameter) particles to 0.2 to 0.3 for 1 μm (diameter) particles. Nonetheless, due to the high number fraction of submicrometer particles with respect to total particle number, IR size distributions were still dominated by the submicrometer aerosol. A comparison of simultaneously measured number size distributions of BC-free and BC-containing IR and total aerosol particles showed depletion of BC by number in the IR, suggesting that BC does not play a significant role in ice nucleation in MPCs at the Jungfraujoch. The potential anthropogenic climate impact of BC via the glaciation effect in MPCs is therefore likely to be negligible at this site and in environments with similar meteorological conditions and a similar aerosol population. The IAF of the BC-containing particles also increased with total particle size, in a similar manner as for the BC-free particles, but on a level 1 order of magnitude lower. Furthermore, BC-containing IR were found to have a thicker coating than the BC-containing total aerosol, suggesting the importance of atmospheric aging for ice nucleation.

  19. Ice residual properties in mixed-phase clouds at the high-alpine Jungfraujoch site.

    PubMed

    Kupiszewski, Piotr; Zanatta, Marco; Mertes, Stephan; Vochezer, Paul; Lloyd, Gary; Schneider, Johannes; Schenk, Ludwig; Schnaiter, Martin; Baltensperger, Urs; Weingartner, Ernest; Gysel, Martin

    2016-10-27

    Ice residual (IR) and total aerosol properties were measured in mixed-phase clouds (MPCs) at the high-alpine Jungfraujoch research station. Black carbon (BC) content and coating thickness of BC-containing particles were determined using single-particle soot photometers. The ice activated fraction (IAF), derived from a comparison of IR and total aerosol particle size distributions, showed an enrichment of large particles in the IR, with an increase in the IAF from values on the order of 10(-4) to 10(-3) for 100 nm (diameter) particles to 0.2 to 0.3 for 1 μm (diameter) particles. Nonetheless, due to the high number fraction of submicrometer particles with respect to total particle number, IR size distributions were still dominated by the submicrometer aerosol. A comparison of simultaneously measured number size distributions of BC-free and BC-containing IR and total aerosol particles showed depletion of BC by number in the IR, suggesting that BC does not play a significant role in ice nucleation in MPCs at the Jungfraujoch. The potential anthropogenic climate impact of BC via the glaciation effect in MPCs is therefore likely to be negligible at this site and in environments with similar meteorological conditions and a similar aerosol population. The IAF of the BC-containing particles also increased with total particle size, in a similar manner as for the BC-free particles, but on a level 1 order of magnitude lower. Furthermore, BC-containing IR were found to have a thicker coating than the BC-containing total aerosol, suggesting the importance of atmospheric aging for ice nucleation.

  20. Solidification/stabilisation of air pollution control residues using Portland cement: Physical properties and chloride leaching.

    PubMed

    Lampris, C; Stegemann, J A; Cheeseman, C R

    2009-03-01

    Portland cement (CEMI) was used to solidify air pollution control (APC) residues from an energy-from-waste plant burning municipal solid waste. APC residue/CEMI mixes were prepared with CEMI additions ranging from 0 to 50 weight% (wt%) of total dry mass and water/solids ratios between 0.40 and 0.80. Isothermal conduction calorimetry was used to assess the effect of APC residues on the hydration of CEMI. Although up to 30wt% additions of APC residues accelerated CEMI hydration, the total heat of hydration during the initial 98h was significantly reduced. Higher levels of APC residues severely inhibited CEMI hydration. The consistence, setting time, compressive strength, porosity and chloride leaching characteristics of the solidified products were determined. As might be expected, increasing the CEMI addition and reducing the water content resulted in increased compressive strengths. All mixes achieved compressive strengths greater than 1MPa at 7 and 28days but only 50wt% samples did not show significant strength reduction when tested after immersion in water. Monolithic leaching tests indicated low physical immobilisation of chloride in the CEMI solidified APC residues, with chloride leaching in excess of relevant UK landfill waste acceptance criteria (WAC). The results of this study show that greater than 50% CEMI additions would be required to effectively treat APC residues to meet current WAC limits.

  1. The Effects of GATA-1 and NF-E2 Deficiency on Bone Biomechanical, Biochemical, and Mineral Properties

    PubMed Central

    Kacena, Melissa A.; Gundberg, Caren M.; Kacena, William J.; Landis, William J.; Boskey, Adele L.; Bouxsein, Mary L.; Horowitz, Mark C.

    2014-01-01

    Mice deficient in GATA-1 or NF-E2, transcription factors required for normal megakaryocyte (MK) development, have increased numbers of MKs, reduced numbers of platelets, and a striking high bone mass phenotype. Here, we show the bone geometry, microarchitecture, biomechanical, biochemical, and mineral properties from these mutant mice. We found that the outer geometry of the mutant bones was similar to controls, but that both mutants had a striking increase in total bone area (up to a 35% increase) and trabecular bone area (up to a 19% increase). Interestingly, only the NF-E2 deficient mice had a significant increase in cortical bone area (21%) and cortical thickness (27%), which is consistent with the increase in bone mineral density (BMD) seen only in the NF-E2 deficient femurs. Both mutant femurs exhibited significant increases in several biomechanical properties including peak load (up to a 32% increase) and stiffness (up to a 13% increase). Importantly, the data also demonstrate differences between the two mutant mice. GATA-1 deficient femurs break in a ductile manner, whereas NF-E2 deficient femurs are brittle in nature. To better understand these differences, we examined the mineral properties of these bones. Although none of the parameters measured were different between the NF-E2 deficient and control mice, an increase in calcium (21%) and an increase in the mineral/matrix ratio (32%) was observed in GATA-1 deficient mice. These findings appear to contradict biomechanical findings, suggesting the need for further research into the mechanisms by which GATA-1 and NF-E2 deficiency alter the material properties of bone. PMID:23359245

  2. A Novel Property of DNA – As a Bioflotation Reagent in Mineral Processing

    PubMed Central

    Vasanthakumar, Balasubramanian; Ravishankar, Honnavar; Subramanian, Sankaran

    2012-01-01

    Environmental concerns regarding the use of certain chemicals in the froth flotation of minerals have led investigators to explore biological entities as potential substitutes for the reagents in vogue. Despite the fact that several microorganisms have been used for the separation of a variety of mineral systems, a detailed characterization of the biochemical molecules involved therein has not been reported so far. In this investigation, the selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using the cellular components of Bacillus species. The key constituent primarily responsible for the flotation of sphalerite has been identified as DNA, which functions as a bio-collector. Furthermore, using reconstitution studies, the obligatory need for the presence of non-DNA components as bio-depressants for galena has been demonstrated. A probable model involving these entities in the selective flotation of sphalerite from the mineral mixture has been discussed. PMID:22768298

  3. A novel property of DNA - as a bioflotation reagent in mineral processing.

    PubMed

    Vasanthakumar, Balasubramanian; Ravishankar, Honnavar; Subramanian, Sankaran

    2012-01-01

    Environmental concerns regarding the use of certain chemicals in the froth flotation of minerals have led investigators to explore biological entities as potential substitutes for the reagents in vogue. Despite the fact that several microorganisms have been used for the separation of a variety of mineral systems, a detailed characterization of the biochemical molecules involved therein has not been reported so far. In this investigation, the selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using the cellular components of Bacillus species. The key constituent primarily responsible for the flotation of sphalerite has been identified as DNA, which functions as a bio-collector. Furthermore, using reconstitution studies, the obligatory need for the presence of non-DNA components as bio-depressants for galena has been demonstrated. A probable model involving these entities in the selective flotation of sphalerite from the mineral mixture has been discussed.

  4. Relationship between heavy metal contents and clay mineral properties in surface sediments: Implications for metal pollution assessment

    NASA Astrophysics Data System (ADS)

    Chen, Yueh-Min; Gao, Jin-bo; Yuan, Yong-Qiang; Ma, Jun; Yu, Shen

    2016-08-01

    Clay minerals in surface sediments can affect the adsorption of heavy metals. However, few historical studies have focused on the influence of fine clay mineral characteristics on metal sorption. Since the reactions between heavy metals and fine clay minerals in sediments remain obscure, this study investigates the influence of fine clay mineral characteristics on metal sorption in a typical urbanizing small watershed. Clay minerals, including nanoparticles with various size fractions ranging from 1000 to 2000 (clay), 450-1000 (fine clay), and 220-450 (very fine clay) nm were used to demonstrate their transformation from well crystalline to poorly crystalline. The nanoparticles were collected and evaluated by determination of their surface area, X-ray diffraction, scanning electron microscopy (SEM) and chemical analyses. The relationship between metal content and properties of the surface sediments was also revealed by canonical correlation analysis. With smaller particle sizes, nanoparticles (very fine clay) were observed to be poorly crystalline, possibly indicating few repetitions of unit cells as a result of preferential structural disruption of other crystal planes caused by pressure-induced phase transition in the fine-size fractions. The first canonical matrix (M) variables of metal contents can be predicted by both surface area and pore volume, followed by kaolinite and illite contents. On the other hand, the category of metal, i.e., Cu, Cr, Zn, or Pb, was significantly correlated with the first 'M' canonical variables. The data obtained in the present study are of fundamental significance in advancing our understanding of the reactions between heavy metals and fine clay minerals in the terrestrial ecosystem.

  5. Mechanical property and tissue mineral density differences among severely suppressed bone turnover (SSBT) patients, osteoporotic patients, and normal subjects

    PubMed Central

    Tjhia, Crystal; Odvina, Clarita V.; Rao, D. Sudhaker; Stover, Susan M.; Wang, Xiang; Fyhrie, David

    2011-01-01

    Pathogenesis of atypical fractures in patients on long term bisphosphonate therapy is poorly understood, and the type, the manner in which they occur and the fracture sites are quite different from the usual osteoporotic fractures. We hypothesized that the tissue-level mechanical properties and mean degree of mineralization of the iliac bone would differ among 1) patients with atypical fractures and severely suppressed bone turnover (SSBT) associated with long-term bisphosphonate therapy, 2) age-matched, treatment-naïve osteoporotic patients with vertebral fracture, 3) age-matched normals and 4) young normals. Large differences in tissue-level mechanical properties and/or mineralization among these groups could help explain the underlying mechanism(s) for the occurrence of typical osteoporotic and the atypical femoral shaft fractures. Elastic modulus, contact hardness, plastic deformation resistance, and tissue mineral densities of cortical and trabecular bone regions of 55 iliac bone biopsies—12 SSBT patients (SSBT; aged 49–77), 11 age-matched untreated osteoporotic patients with vertebral fracture (Osteoporotic), 12 age-matched subjects without bone fracture (Age-Matched Normal), and 20 younger subjects without bone fracture (Young Normal)—were measured using nanoindentation and quantitative backscattered electron microscopy. For cortical bone nanoindentation properties, only plastic deformation resistance was different among the groups (p<0.05), with greater resistance to plastic deformation in the SSBT group compared to all other groups. For trabecular bone, all nanoindentation properties and mineral density of the trabecular bone were different among the groups (p<0.05). The SSBT group had greater plastic deformation resistance and harder trabecular bone compared to the other three groups, stiffer bone compared to the Osteoporotic and Young Normal groups, and a trend of higher mineral density compared to the Age-Matched Normal and Osteoporotic groups

  6. Mechanical property and tissue mineral density differences among severely suppressed bone turnover (SSBT) patients, osteoporotic patients, and normal subjects.

    PubMed

    Tjhia, Crystal K; Odvina, Clarita V; Rao, D Sudhaker; Stover, Susan M; Wang, Xiang; Fyhrie, David P

    2011-12-01

    Pathogenesis of atypical fractures in patients on long term bisphosphonate therapy is poorly understood, and the type, the manner in which they occur and the fracture sites are quite different from the usual osteoporotic fractures. We hypothesized that the tissue-level mechanical properties and mean degree of mineralization of the iliac bone would differ among 1) patients with atypical fractures and severely suppressed bone turnover (SSBT) associated with long-term bisphosphonate therapy, 2) age-matched, treatment-naïve osteoporotic patients with vertebral fracture, 3) age-matched normals and 4) young normals. Large differences in tissue-level mechanical properties and/or mineralization among these groups could help explain the underlying mechanism(s) for the occurrence of typical osteoporotic and the atypical femoral shaft fractures. Elastic modulus, contact hardness, plastic deformation resistance, and tissue mineral densities of cortical and trabecular bone regions of 55 iliac bone biopsies--12 SSBT patients (SSBT; aged 49-77), 11 age-matched untreated osteoporotic patients with vertebral fracture (Osteoporotic), 12 age-matched subjects without bone fracture (Age-Matched Normal), and 20 younger subjects without bone fracture (Young Normal)--were measured using nanoindentation and quantitative backscattered electron microscopy. For cortical bone nanoindentation properties, only plastic deformation resistance was different among the groups (p<0.05), with greater resistance to plastic deformation in the SSBT group compared to all other groups. For trabecular bone, all nanoindentation properties and mineral density of the trabecular bone were different among the groups (p<0.05). The SSBT group had greater plastic deformation resistance and harder trabecular bone compared to the other three groups, stiffer bone compared to the Osteoporotic and Young Normal groups, and a trend of higher mineral density compared to the Age-Matched Normal and Osteoporotic groups. Lower

  7. Les minéraux techniques naturels : connaissance, typologie et propriétés d'usageNatural technical minerals: investigation, typology and utilisation properties

    NASA Astrophysics Data System (ADS)

    Yvon, Jacques; Cases, Jean-Maurice; Villiéras, Frédéric; Michot, Laurent; Thomas, Fabien

    By nature minerals are heterogeneous materials for many of their properties. These properties also vary according to composition and structure fluctuations, compared to definitions. Technical minerals are used in applications where their performances depend on intrinsic properties and processing conditions. It is possible to base rankings on simple criteria, allowing estimating the abilities of minerals for each utilisation. The research of the corresponding mechanisms concerns the molecular level. These questions are discussed for kaolins, raw materials for baked clays, talqueous materials and montmorillonites. To cite this article: J. Yvon et al., C. R. Geoscience 334 (2002) 717-730.

  8. Resources in the VLab Science Gateway: Online applications for thermodynamics and thermal elastic properties of mantle minerals

    NASA Astrophysics Data System (ADS)

    Wentzcovitch, R. M.; Da Silveira, P. R.; Wu, Z.; Yu, Y.

    2013-12-01

    Today first principles calculations in mineral physics play a fundamental role in understanding of the Earth. They complement experiments by expanding the pressure and temperature range for which properties can be obtained and provide access to atomic scale phenomena. Since the wealth of predictive first principles results can hardly be communicated in printed form, we have developed online applications where published results can be reproduced/verified online and extensive unpublished results can be generated in customized form. So far these applications have included thermodynamics properties of end-member phases and thermal elastic properties of end-member phases and few solid solutions. Extension of this software infrastructure to include other properties is in principle straightforward. This contribution will review the nature of results that can be generated (methods, thermodynamics domain, list of minerals, properties, etc) and nature of the software infrastructure. These applications are part of a more extensive cyber-infrastructure operating in the XSEDE - the VLab Science Gateway [1]. [1] https://www.xsede.org/web/guest/gateways-listing Research supported by NSF grants ATM-0428744 and EAR-1047629.

  9. Atomistic simulation of local structure and mixing properties of mineral solid solutions

    NASA Astrophysics Data System (ADS)

    Urusov, V. S.

    2009-04-01

    At present there are several ways to simulate solid solution structure and properties by using ab initio as well as semi-empirical (atomistic) approaches [1]. The main problem of each approach is a reasonable representation of random distribution of atoms substituting each other over common positions. A procedure in operation here used large supercells and generation of most disordered atomic configurations for some selected compositions of solid solution (1:1, 1:3, 3:1, 4:1, 1:4, etc.). The following binary systems were studied by such a way: NaCl - KCl [2, 3, 4], CaO - MgO, CaO - SrO, SrO - BaO (supercell 444, 512 atoms) [3], TiO2 - SnO2 (444, 384 atoms), Al2O3 - Cr2O3, Al2O3 - Fe2O3, Fe2O3 - Cr2O3 (441, 480 atoms) [5]. The calculation technique was based on the method of semi-empirical potentials using the GULP program [6]. Potential parameters of ionic (halides) or partially covalent (oxides) interatomic interactions were optimized by using of structural, thermodynamic and elastic properties of pure components. Calculated heat capacities and entropies as a function of temperature were in a good agreement with experimental data. Excess mixing properties (enthalpy, volume, bulk modulus, vibrational entropy) were calculated for different compositions of the solid solutions. This allowed to reproduce Gibbs energy as a function of temperature and composition and estimate critical temperature of decomposition and miscibility gap of a solid solution. Statistical analysis of bond lengths frequencies for the nearest and next-nearest neighbors in (Na0.5K0.5)Cl, (Ca0.5Mg0.5)O, (Ti0.5Sn0.5)O2, (Al1.0Cr1.0)O3 solid solutions revealed a detailed picture of the lattice relaxation. These results were compared with earlier predictions made by phenomenological crystal chemical models [7, 8] and available EXAFS data. References 1. V.S.Urusov. J.Solid State Chem. 2000. V.153. 357. 2. Urusov V.S., Petrova T.G., Leonenko E.V., Eremin N.N. Vestn. Mosc. Univ. 2008

  10. The effects of the biogeochemical properties of clay minerals on the Pb sorption and desorption in various redox condition

    NASA Astrophysics Data System (ADS)

    Koo, T. H.; Kim, J. Y.; Kim, J. W.

    2016-12-01

    The fate and transportation of hazardous trace metal in soil environment can be controlled by various factors including temperature, geological location, properties of bed rock or sediment, human behavior, and biogeochemical reactions. The sorption and desorption process is one of the major process for control the transportation of trace metal in soil-water system. Nonetheless, few studies were focused on the biological controlling parameters, particularly redox reaction of structural metal of clay minerals. Thus, the objective of the present study is to investigate the correlation between the sorption and desorption reaction of Pb and biogeochemical properties of clay minerals. The effects of redox state of structural Fe and layer charge of the minerals on the migration/speciation of Pb at the various geochemical environment will be elucidated. The Fe-rich smectite, nontronite (NAu-1), and bulk soil samples which were collected from abandoned mine areas were reduced by microbial respiration by Shewanella Oneidensis MR-1 and/or Na-dithionite to various oxidation state of structural Fe. Then the Pb-stock solution made with common lead and nitric acid were spiked into the mineral/soil slurry with various Pb concentration to test the sorption and desorption reaction upto 7 days. The reaction was stopped at each time point by freezing the pellet and supernatant separately after centrifugation. Then the concentration and stable isotope ratio of Pb in the supernatant were measured using Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and Multicollector (MC)-ICP-MS. The structural as well as chemical modification on nontronite and bulk soil sample were measured using x-ray diffraction (XRD), scanning electron microscopy (SEM) and wet chemistry analysis. The changes in Pb species in supernatant by sorption and desorption and its consequences on the clay structural/biogeochemical properties will be discussed.

  11. Mineral paragenesis, geochemistry and geochronology investigations of the Carlin-type gold deposits at the Goldstrike property, northern Nevada: Implications for ore genesis, igneous petrogenesis and mineral exploration

    NASA Astrophysics Data System (ADS)

    Almeida, Carolina Michelin De

    The Goldstrike property is located in northern Nevada and contains one of the largest and highest-grade Carlin-type gold deposits. The majority of the Eocene Au mineralization (e.g., Ore I) is hosted in intensely altered Paleozoic lower plate impure carbonate rocks, and is characterized by strong to moderate silicification, higher calculated pyrite and ore-related element concentrations (e.g., As, Cu, Hg, Ni, Tl, Sb, W, and Zn) than Ore II, which is weakly altered. However, both ore types contain similar Au concentration in whole rock and pyrite chemistry analyses. Lithogeochemical and microprobe data suggest that the Paleozoic sedimentary rocks may have been a major source of Cd, Mo, Ni, U, V, and Zn and minor As, Cu, Hg, and Se. The Jurassic lamprophyre dikes might have been a significant source of Ba, Co, and Se, and minor Au, and some of the Jurassic and Eocene intrusive rocks may have provided some Fe. Moreover, the Eocene magmas are interpreted to be the main source of auriferous mineralizing fluids. Trace element abundances and ratios of the Jurassic intrusive rocks suggest that they are shoshonitic and formed from a metasomatized mantle-derived magma, crystal fractionation, and crustal contamination. The Eocene dikes, also shoshonitic, are considerably more evolved and contaminated than the studied Jurassic rocks. Furthermore, Ar-Ar results show that the Jurassic rocks were negligibly affected by the Eocene thermal event, and that temperature of mineralizing fluids were below the closure temperature of biotite (< 350°C). A magmatic-related model is proposed to explain the formation of the Carlin-type gold deposits at the studied area. In this model, Au and the ore-related elements were exsolved along with volatiles by degassing of a deep and large plutonic complex during its early stage of crystallization. As these magmatic-hydrothermal fluids moved upward along major conduits (e.g., NNW-striking faults), they may have interacted with a Fe-rich fluid

  12. High pressure elastic properties of minerals from ab initio simulations: The case of pyrope, grossular and andradite silicate garnets

    NASA Astrophysics Data System (ADS)

    Erba, A.; Mahmoud, A.; Belmonte, D.; Dovesi, R.

    2014-03-01

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed.

  13. High pressure elastic properties of minerals from ab initio simulations: The case of pyrope, grossular and andradite silicate garnets

    SciTech Connect

    Erba, A. Mahmoud, A.; Dovesi, R.; Belmonte, D.

    2014-03-28

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed.

  14. High pressure elastic properties of minerals from ab initio simulations: the case of pyrope, grossular and andradite silicate garnets.

    PubMed

    Erba, A; Mahmoud, A; Belmonte, D; Dovesi, R

    2014-03-28

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed.

  15. 26 CFR 1.613-4 - Gross income from the property in the case of minerals other than oil and gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... or field price his delivered price (if otherwise representative) reduced by costs paid or incurred by... minerals other than oil and gas. 1.613-4 Section 1.613-4 Internal Revenue INTERNAL REVENUE SERVICE....613-4 Gross income from the property in the case of minerals other than oil and gas. (a) In general...

  16. 26 CFR 1.613-4 - Gross income from the property in the case of minerals other than oil and gas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... or field price his delivered price (if otherwise representative) reduced by costs paid or incurred by... minerals other than oil and gas. 1.613-4 Section 1.613-4 Internal Revenue INTERNAL REVENUE SERVICE....613-4 Gross income from the property in the case of minerals other than oil and gas. (a) In general...

  17. 26 CFR 1.613-4 - Gross income from the property in the case of minerals other than oil and gas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... or field price his delivered price (if otherwise representative) reduced by costs paid or incurred by... minerals other than oil and gas. 1.613-4 Section 1.613-4 Internal Revenue INTERNAL REVENUE SERVICE....613-4 Gross income from the property in the case of minerals other than oil and gas. (a) In general...

  18. Nonlinear elastic material property estimation of lower extremity residual limb tissues.

    PubMed

    Tönük, Ergin; Silver-Thorn, M Barbara

    2003-03-01

    The interface stresses between the residual limb and prosthetic socket have been studied to investigate prosthetic fit. Finite-element models of the residual limb-prosthetic socket interface facilitate investigation of the mechanical interface and may serve as a potential tool for future prosthetic socket design. However, the success of such residual limb models to date has been limited, in large part due to inadequate material formulations used to approximate the mechanical behavior of residual limb soft tissues. Nonlinear finite-element analysis was used to simulate force-displacement data obtained during in vivo rate-controlled (1, 5, and 10 mm/s) cyclic indentation of the residual limb soft tissues of seven individuals with transtibial amputation. The finite-element models facilitated determination of an appropriate set of nonlinear elastic material coefficients for bulk soft tissue at discrete clinically relevant test locations. Axisymmetric finite-element models of the residual limb bulk soft tissue in the vicinity of the test location, the socket wall and the indentor tip were developed incorporating contact analysis, large displacement, and large strain, and the James-Green-Simpson nonlinear elastic material formulation. Model dimensions were based on medical imaging studies of the residual limbs. The material coefficients were selected such that the normalized sum of square error (NSSE) between the experimental and finite-element model indentor tip reaction force was minimized. A total of 95% of the experimental data were simulated using the James-Green-Simpson material formulation with an NSSE less than 5%. The respective James-Green-Simpson material coefficients varied with subject, test location, and indentation rate. Therefore, these coefficients cannot be readily extrapolated to other sites or individuals, or to the same site and individual some time after testing.

  19. Physicochemical properties related to long-term phosphorus retention by drinking-water treatment residuals.

    PubMed

    Makris, Konstantinos C; Harris, Willie G; O'Connor, George A; Obreza, Thomas A; Elliott, Herschel A

    2005-06-01

    Drinking-water treatment residuals (WTRs) are nonhazardous materials that can be obtained free-of-charge from drinking-water treatment plants to reduce soluble phosphorus (P) concentrations in poorly P sorbing soils. Phosphorus sorption capacities of WTRs can vary 1-2 orders of magnitude, on the basis of short-term equilibration times (up to 7 d), but studies dealing with long-term (weeks to months) P retention by WTRs are lacking. Properties that most affect long-term P sorption capacities are pertinent to the efficacy of WTRs as amendments to stabilize P in soils. This research addressed the long-term (up to 80 d) P sorption/desorption characteristics and kinetics for seven WTRs, including the influence of specific surface area (SSA), porosity, and total C content on the overall magnitude of P sorption by seven WTRs. The data confirm a strong but variable affinity for P by WTRs. Aluminum-based WTRs tended to have higher P sorption capacity than Fe-based WTRs. Phosphorus sorption with time was biphasic in nature for most samples and best fit to a second-order rate model. The P sorption rate dependency was strongly correlated with a hysteretic P desorption, consistent with kinetic limitations on P desorption from micropores. Oxalate-extractable Al + Fe concentrations of the WTRs did not effectively explain long-term (80 d) P sorption capacities of the WTRs. Micropore (CO2-based) SSAs were greater than BET-N2 SSAs for most WTRs, except those with the lowest (<80 g kg(-1)) total C content. There was a significant negative linear correlation between the total C content and the CO2/N2 SSA ratio. The data suggest that C in WTRs increases microporosity, but reduces P sorption per unit pore volume or surface area. Hence, variability in C content confounds direct relations among SSA, porosity, and P sorption. Total C, N2-based SSA, and CO2-based SSAs explained 82% of the variability in the long-term P sorption capacities of the WTRs. Prediction of long-term P sorption

  20. Partial order optimum likelihood (POOL): maximum likelihood prediction of protein active site residues using 3D Structure and sequence properties.

    PubMed

    Tong, Wenxu; Wei, Ying; Murga, Leonel F; Ondrechen, Mary Jo; Williams, Ronald J

    2009-01-01

    A new monotonicity-constrained maximum likelihood approach, called Partial Order Optimum Likelihood (POOL), is presented and applied to the problem of functional site prediction in protein 3D structures, an important current challenge in genomics. The input consists of electrostatic and geometric properties derived from the 3D structure of the query protein alone. Sequence-based conservation information, where available, may also be incorporated. Electrostatics features from THEMATICS are combined with multidimensional isotonic regression to form maximum likelihood estimates of probabilities that specific residues belong to an active site. This allows likelihood ranking of all ionizable residues in a given protein based on THEMATICS features. The corresponding ROC curves and statistical significance tests demonstrate that this method outperforms prior THEMATICS-based methods, which in turn have been shown previously to outperform other 3D-structure-based methods for identifying active site residues. Then it is shown that the addition of one simple geometric property, the size rank of the cleft in which a given residue is contained, yields improved performance. Extension of the method to include predictions of non-ionizable residues is achieved through the introduction of environment variables. This extension results in even better performance than THEMATICS alone and constitutes to date the best functional site predictor based on 3D structure only, achieving nearly the same level of performance as methods that use both 3D structure and sequence alignment data. Finally, the method also easily incorporates such sequence alignment data, and when this information is included, the resulting method is shown to outperform the best current methods using any combination of sequence alignments and 3D structures. Included is an analysis demonstrating that when THEMATICS features, cleft size rank, and alignment-based conservation scores are used individually or in combination

  1. Residual phytotoxicity of parthenium: Impact on some winter crops, weeds and soil properties.

    PubMed

    Khaliq, Abdul; Aslam, Farhena; Matloob, Amar; Hussain, Saddam; Tanveer, Asif; Alsaadawi, Ibrahim; Geng, Mingjian

    2015-12-01

    Phytotoxic effects of parthenium residues incorporation and parthenium-infested rhizospheric soil on emergence and seedling growth of winter crops (wheat and canola) and weed species (wild oat and canary grass) were examined in different pot studies. In first experiment, parthenium whole plant residues were incorporated at 6 and 8 g kg(-1) soil five days prior to sowing. Pots without residues incorporation were maintained as control. In a second study, parthenium-infested rhizospheric soil collected from different depths (15 and 22.5 cm) and collar regions (horizontal distance away from plant trunk, 15 and 22.5 cm), was used as growing medium. Parthenium-free soil was used as control. Parthenium residues amendment as well as its rhizospheric soil was detrimental for emergence and seedling growth of all test species. Incorporation of parthenium residues reduced the final emergence of canola, wild oat and canary grass by 11-20%, 20-29% and 20-27%, respectively; however wheat emergence was unaffected. Moreover, seedling biomass of wheat, canola, wild oat and canary grass was reduced in the range of 41-48%, 53-61%, 31-45% and 30-45% by parthenium residues incorporation. In second study, soil collected from a rhizospheric depth of 15 cm and collar distance of 15 cm reduced the emergence and seedling growth by 15% and 40%, respectively averaged across different test species. Parthenium residues incorporation and infested rhizospheric soil increased the soil phenolics, electrical conductivity, organic carbon and nitrogen contents over control soils with the exception of pH that was declined. All test species manifested reduced chlorophyll and increased phenolic contents in response to parthenium residues incorporation and infested rhizospheric soil. The inhibition in emergence and seedling growth of all test species was associated with increase in phenolic contents. Parthenium residues incorporation at 8 g kg(-1) soil and upper parthenium-infested rhizospheric soil (15 cm

  2. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    PubMed

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.

  3. Paleomagnetic records and mineral-magnetic properties of deep-sea sediments in the NW pacific: Paleoenvironmental implication

    NASA Astrophysics Data System (ADS)

    Park, Cheong Kee; Kim, Wonnyon; Ko, Youngtak; Lee, Hyun-Bok; Moon, Jai-Woon; Doh, Seong-Jae

    2012-12-01

    The paleomagnetic records and mineral-magnetic properties of unconsolidated core sediment from the east Mariana Basin of the western Pacific have been analyzed to trace the time-dependent variations in sedimentary environments. Progressive alternating field demagnetization effectively extracts a stable remanent magnetization showing both normal and reverse polarities. Comparison of successive polarity changes, recorded in the sediment core, with reference magnetic polarity time-scale, reveals that the recovered sediment column was deposited since the late Pliocene. From the sediment age model, calculated sedimentation rate during the late Pliocene was 9.8 times higher than that during the Pleistocene. Considering the oceanic environments and geologic setting in the study area, the anomalous high sediment flux during the late Pliocene was probably caused by enhanced current flows, such as North Equatorial Current, associated with atmospheric circulation as well as by debris flows from adjacent sea mounts. In addition, the systematic variation of mineral-magnetic properties indicates periodical fluxes of coarse and magnetically stable particles, on the fine-grained dominant sedimentary environments. Such influxes, however, would not be related to syn-volcanic activities, because the summits of seamounts were totally blanketed by biogenic Pliocene-Pleistocene sediments. It is, hence, reasonable to interpret that paleomagnetic and mineral-magnetic data probably reflect drastic paleoenvironmental changes at the boundary between the Pliocene and Pleistocene, where strong current and atmospheric circulations decreased.

  4. Relationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis.

    PubMed

    Haba, Yvonne; Lindner, Tobias; Fritsche, Andreas; Schiebenhöfer, Ann-Kristin; Souffrant, Robert; Kluess, Daniel; Skripitz, Ralf; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The objective of this study was to analyse retrieved human femoral bone samples using three different test methods, to elucidate the relationship between bone mineral density and mechanical properties. Human femoral heads were retrieved from 22 donors undergoing primary total hip replacement due to hip osteoarthritis and stored for a maximum of 24 hours postoperatively at + 6 °C to 8 °C.Analysis revealed an average structural modulus of 232±130 N/mm(2) and ultimate compression strength of 6.1±3.3 N/mm(2) with high standard deviations. Bone mineral densities of 385±133 mg/cm(2) and 353±172 mg/cm(3) were measured using thedual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), respectively. Ashing resulted in a bone mineral density of 323±97 mg/cm(3). In particular, significant linear correlations were found between DXA and ashing with r = 0.89 (p < 0.01, n = 22) and between structural modulus and ashing with r = 0.76 (p < 0.01, n = 22).Thus, we demonstrated a significant relationship between mechanical properties and bone density. The correlations found can help to determine the mechanical load capacity of individual patients undergoing surgical treatments by means of noninvasive bone density measurements.

  5. Luminescence properties and compositions of contaminating inorganic minerals separated from gamma-irradiated fresh and white ginsengs from different areas

    PubMed Central

    Ahn, Jae-Jun; Akram, Kashif; Jeong, Mi-Seon; Kwak, Ji-Young; Park, Eun-Joo; Kwon, Joong-Ho

    2013-01-01

    Gamma-irradiation (0-7 kGy) of ginseng is permitted in Korea for the purpose of microbial decontamination; with strict labeling, traceability and monitoring requirements. An identification study was conducted to determine the photostimulated-luminescence (PSL) and thermoluminescence (TL) properties of gamma-irradiated fresh and white ginsengs cultivated in different areas. Dosedependent PSL-based screening was possible for white ginseng samples; however, inappropriate results from non-irradiated fresh ginseng samples were obtained, showing intermediate (700 to 5,000) or positive (T2 >5,000, irradiated) PSL counts due to the abundance of minerals on the surfaces of the samples. TL analysis of separated minerals from all non-irradiated samples gave TL glow curves of low intensity with a maximum peak after 300℃. However, well-defined irradiation-specific (high intensity with a maximum peak at about 200℃) glow curves were observed for all the irradiated samples, regardless of their type and origins. TL ratios (first glow curve /second glow curve) were also determined to confirm the irradiated (>0.1) and non-irradiated (<0.1) results. SEM-EDX (scanning electron microscope-energy dispersive X-ray) and XRD (X-ray diffraction) spectroscopic analyses showed that feldspar and quartz minerals were the main source for the typical radiation-specific luminescence properties. PMID:24235863

  6. Several properties offilament fibers made from recycled bottles of mineral water using melt spinning method

    NASA Astrophysics Data System (ADS)

    Muslim, Ikhwanul; Mardiyati; Basuki, Arif

    2016-01-01

    Waste mineral water bottles made of PET called post-consumer POSTC-PET packaging with recycling code no. 1 can be made into another material other than the bottle by using a mechanical recycling process. In this experiment carried waste recycling process bottled mineral water bottles of PET into filament fibres with the aid of a melt spinning. From the resulting experimental filament fibres diameter of 14-15 microns, obtained the draw ratio is 1/46, 573,5 - 699,8 MPa tensile strength, modulus of elasticity of 2,01 - 2,45GPa, moisture regain of 2,84. Keywords. PET; Bottle; Fiber; Melt; Spinning; Drawing.

  7. Application of quantitative computed tomography for assessment of trabecular bone mineral density, microarchitecture and mechanical property.

    PubMed

    Mao, Song Shou; Li, Dong; Luo, Yanting; Syed, Younus Saleem; Budoff, Matthew J

    2016-01-01

    Osteoporosis is a common metabolic bone disease, causing increased skeletal fragility characterized by a low bone mass and trabecular microarchitectural deterioration. Assessment of the bone mineral density (BMD) is the primary determinant of skeletal fragility. Computed tomography (CT)-based trabecular microarchitectural and mechanical assessments are important methods to evaluate the skeletal strength. In this review, we focus the feasibility of QCT BMD measurement using a calibration phantom or phantomless. The application of QCT could extend the bone mineral density assessment to all patients who underwent a heart, lung, whole-body, and as well as all routine clinical implications of CT scan. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Technical and environmental long-term properties of industrial residues--summary of field and laboratory investigations.

    PubMed

    Arm, Maria; Suer, Pascal; Arvidsson, Håkan; Lindqvist, Jan-Erik

    2011-01-01

    In Sweden, use of industrial residues is still hindered by concern for their long-term properties. A three-year research project was therefore initiated aiming to (1) identify the crucial processes of ageing related to the usefulness of residues in roads; (2) investigate the consequences of these processes for technical and environmental properties of the residues, and (3) propose a method for accelerated ageing to predict the long-term properties. This paper gives an overview of the project methodology, a summary of the test results and references to papers where further details are given. The project, running through 2006-2008, compared naturally aged samples of two residues used as sub-bases in existing asphalt paved roads with samples of fresh residues from producers' piles. Steel slag of electric arc furnace (EAF) type and municipal solid waste incinerator (MSWI) bottom ash were chosen. The samples were thoroughly characterised in order to identify which ageing processes had been crucial. The results showed that: - Bottom ash from the pavement edge was more aged than bottom ash from the road centre. However, no difference in pH was found, instead the differences were caused by differences in water exposure. - Steel slag from the pavement edge showed traces of carbonation and leaching processes, whereas slag from the road centre was identical to fresh slag. - Water exposure to the subbase materials after ten years in an asphalt paved road was calculated to less than 0.1–0.5 litres per kg. - Ageing reactions in steel slag and MSWI bottom ash, ready for use, were too small to be verified by laboratory measurement of deformation properties under loaded conditions. An accelerated ageing test for steel slag was set up to achieve the carbonation (decrease in pH) and leaching that was observed in the pavement edge material. An accelerated ageing test for bottom ash was set up to achieve the pozzolan reactions that were observed in SEM analyses of in situ specimens

  9. Effect of the TiO2 nanoparticles on the selected physical properties of mineral trioxide aggregate

    PubMed Central

    Samiei, Mohammad; Janani, Maryam; Asl-Aminabadi, Naser; Divband, Baharak; Shirazi, Sajjad; Kafili, Kayvan

    2017-01-01

    Background Some of the efforts to improve the properties of Mineral Trioxide Aggregate (MTA) include incorporation of some nanoparticles such as Titanium dioxide (TiO2). The aim of this study was to evaluate the effect of TiO2 nanoparticles on the setting time, working time, push-out bond strength and compressive strength of MTA. Material and Methods The physical properties to be evaluated were determined using the ISO 6786:2001 and 9917 specifications. Fifteen samples of each material (MTA or MTA with 1% weight ratio of TiO2 Nanoparticles) were prepared for any evaluated physical property. Data were analyzed using descriptive statistics and T-test. Statistical significance was set at P<0.05. Results There was the significant effect of the material type (presence and absence of TiO2 nanoparticles) on the push-out bond strength, compressive strength, working time and setting time, with significantly higher values achieved in the group with TiO2 nanoparticles than the group without these particles (P=0.01 for the setting time and compressive strength, P=0.03 for the working time and P=0.001 for the bond strength). Conclusions Based on the findings of this in vitro study, incorporation of the TiO2 nanoparticles with weight ratio of 1% increased the setting time, working time, compressive strength and push out bond strength of MTA. Key words:Mineral trioxide aggregate, nanoparticles, physical properties, titanium dioxide. PMID:28210434

  10. Properties of low residual stress silicon oxynitrides used as a sacrificial layer

    SciTech Connect

    Habermehl, S.D.; Glenzinski, A.K.; Halliburton, W.M.; Sniegowski, J.J.

    2000-01-04

    Low residual stress silicon oxynitride thin films are investigated for use as a replacement for silicon dioxide (SiO{sub 2}) as sacrificial layer in surface micromachined microelectrical-mechanical systems (MEMS). It is observed that the level of residual stress in oxynitrides is a function of the nitrogen content in the film. MEMS film stacks are prepared using both SiO{sub 2} and oxynitride sacrificial layers. Wafer bow measurements indicate that wafers processed with oxynitride release layers are significantly flatter. Polycrystalline Si (poly-Si) cantilevers fabricated under the same conditions are observed to be flatter when processed with oxynitride rather than SiO{sub 2} sacrificial layers. These results are attributed to the lower post-processing residual stress of oxynitride compared to SiO{sub 2} and reduced thermal mismatch to poly-Si.

  11. Surface Miners: Evaluation of the Production Rate and Cutting Performance Based on Rock Properties and Specific Energy

    NASA Astrophysics Data System (ADS)

    Origliasso, Chiara; Cardu, Marilena; Kecojevic, Vladislav

    2014-03-01

    The purpose of this research was to evaluate the production rate (PR) and cutting performance of surface miners (SM) based on rock properties and specific energy (SE). We use data from equipment manufacturers and experimental data in this study and propose a new method and equations to determine both the PR and the cutting speed of SM. The unconfined compressive strength (UCS) of the rock, its abrasivity, and the machine's engine power are the three most important factors influencing the PR. Moreover, the cutting depth, UCS, and engine power have a significant impact on the cutting speed. We propose a new method and equations to determine the energy required to cut a volume unit and a surface unit, i.e., specific energy, and establish the relationship between SE, UCS, and PR. The results of this study can be used by surface miner operators to evaluate the applicability of the machines to a specific mine site.

  12. Determination of Thermal Properties and Morphology of Eucalyptus Wood Residue Filled High Density Polyethylene Composites

    PubMed Central

    Mengeloglu, Fatih; Kabakci, Ayse

    2008-01-01

    Thermal behaviors of eucalyptus wood residue (EWR) filled recycled high density polyethylene (HDPE) composites have been measured applying the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Morphology of the materials was also studied using scanning electron microscope (SEM). Addition of the EWR into the recycled HDPE matrix reduced the starting of degradation temperature. EWR filled recycled HDPE had two main decomposition peaks, one for EWR around 350 °C and one for recycled HDPE around 460 °C. Addition of EWR did not affect the melting temperature of the recycled HDPE. Morphological study showed that addition of coupling agent improved the compatibility between wood residue and recycled HDPE. PMID:19325736

  13. Modeling of Residual Stresses and Property Distributions in Friction Stir Welds of Aluminum Alloy 6061-T6

    SciTech Connect

    Feng, Zhili; David, Stan A; Wang, Xun-Li; Sklad, Philip S

    2007-01-01

    An integrated thermal-metallurgical-mechanical model is used to analyze and provide insights into the formation of the residual stress and the changes in microstructure and property of Al6061-T6 friction stir welds. The simulations were conducted by means of a three-dimensional finite element model that accounts for the phenomena of frictional heating, weld microstructure and strength changes due to dissolution and reprecipitation of the hardening precipitate particles, and the mechanical workpiece/tool contact during the friction stir welding (FSW) process. The model predictions were confirmed by experimental measurement data from previous studies. For the friction stir welds investigated, it was found that the residual stress distribution is strongly dependent on the welding process parameters and the degree of material softening caused by welding. The recovery of material strength from natural aging does not increase the residual stress in the weld. The failure of friction stir weld under tensile load is controlled by the combination of the reduction in strength and the residual stresses in the heat affected zone (HAZ).

  14. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy

    NASA Astrophysics Data System (ADS)

    Lu, Yanjin; Wu, Songquan; Gan, Yiliang; Huang, Tingting; Yang, Chuanguang; Junjie, Lin; Lin, Jinxin

    2015-12-01

    Inconel-718 has received an extensive using in mold industry. The selective laser melting (SLM) is providing an ideal means for manufacturing mold insert with complex geometrical features and internal architecture. During the manufacturing of high quality mold inserts with conformal cooling channel, the parameters play a vital role in the SLM process. In the study, the Inconel-718 alloys were manufactured by SLM with 2×2 mm2, 3×3 mm2, 5×5 mm2, and 7×7 mm2 island scanning strategies. The microstructure, mechanical property, and residual stress were investigated by optical microscope, tensile test and Vickers micro-indentation, respectively. It can be found that the relative density increased with enlarging the island size; the results on the microstructure indicated that the cracks and more pores were detected in the 22-specimen; whilst the microstructures of all specimens were composed of fine dendritic grains, cellular, and columnar structures; the tensile testing suggested that the ultimate tensile strength and yield strength of all samples was similar; while the outcome of the residual stress showed that the value of residual stress was ranked in the following sequence: 22-specimen<55-specimen<77-specimen<33-specimen. Although the 22-specimen had lower residual stress compared with the other groups, the occurrence of cracks limited its processing application in SLM. Through integrated into account, the 55-scanning strategy is a promising candidate for manufacturing of mold inserts.

  15. Improvement of calcium mineral separation contrast using anionic reagents: electrokinetics properties and flotation

    NASA Astrophysics Data System (ADS)

    Lafhaj, Z.; Filippov, L. O.; Filippova, I. V.

    2017-07-01

    The flotation separation of salt type calcium minerals is problematic, due to the similarities in their same active Ca2+ related site for interaction with anionic collectors and similar physicochemical characteristics such as solubility, zero-point charge, surface speciation and Ca-site density. The work was performed to achieve effective and selective separation of the calcium-minerals using pure minerals samples: orange calcite with Mg impurities, optic calcite with impurities level and an apatite. The pure samples surface was examined using techniques sensitive near-surface like infrared spectroscopy (FTIR) and chemical composition was obtained by ICPMS. The isoelectric point (IEP) and point of zero charge (PZC) in electrolyte were recorded using electrophoresis method at different ionic strengths of the solution. Mechanisms of charge development at the mineral-water interface are discussed. The time of contact as important parameter for the charge equilibrium was deduced from kinetics study and fixed to 30 minutes. The difference in the values obtained between IEP and PZSE can be explained by the presence of a specific adsorption of cations and anions on the surface. The effect of pure anionic collectors such as oleic and linoleic acid were studied. At low pH, both collectors lead to a good recovery for the calcites. The flotation recovery of optic calcite at pH 9 with sodium oleate is higher than with sodium linoleate. At alkaline pH, apatite showed a better recovery with sodium linoleate.

  16. An Investigation of the Effects of Deposit Feeding Invertebrates on the Structural Properties of Clay Minerals.

    DTIC Science & Technology

    1981-07-01

    water for three weeks compared to montmorillonite ingested by the marine intertidal harpacticoid copepod , Ti riopus californicus . Although not...specimens of Tigriopus californicus when compared to their original illite. In all cases, illite appears more resistant to chemical or[structural change...400. Syvitski, J. P. M. and A. Lewis (1980) Sediment ingestion by Tigriopus californicus and other zooplankton: Mineral transfono and sedimentological

  17. Industrial Mineral Aggregate Amendment Affects Physical and Chemical Properties of Pine Bark Substrates

    USDA-ARS?s Scientific Manuscript database

    Nonpoint source effluent containing nitrate N (NO3-N) and phosphorus (P) from containerized nursery production has garnered local, regional, and national concern. Industrial minerals have long been used as absorbents, agrochemical carriers, and barriers to retain heavy metals. Our objective was to d...

  18. Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals

    SciTech Connect

    Tailby, Jonathan; MacKenzie, Kenneth J.D.

    2010-05-15

    The compressive strengths and structures of composites of aluminosilicate geopolymer with the synthetic cement minerals C{sub 3}S, beta-C{sub 2}S, C{sub 3}A and commercial OPC were investigated. All the composites showed lower strengths than the geopolymer and OPC paste alone. X-ray diffraction, {sup 29}Si and {sup 27}Al MAS NMR and SEM/EDS observations indicate that hydration of the cement minerals and OPC is hindered in the presence of geopolymer, even though sufficient water was present in the mix for hydration to occur. In the absence of SEM evidence for the formation of an impervious layer around the cement mineral grains, the poor strength development is suggested to be due to the retarded development of C-S-H because of the preferential removal from the system of available Si because geopolymer formation is more rapid than the hydration of the cement minerals. This possibility is supported by experiments in which the rate of geopolymer formation is retarded by the substitution of potassium for sodium, by the reduction of the alkali content of the geopolymer paste or by the addition of borate. In all these cases the strength of the OPC-geopolymer composite was increased, particularly by the combination of the borate additive with the potassium geopolymer, producing an OPC-geopolymer composite stronger than hydrated OPC paste alone.

  19. Effects of mineral additives on biochar formation: carbon retention, stability, and properties.

    PubMed

    Li, Feiyue; Cao, Xinde; Zhao, Ling; Wang, Jianfei; Ding, Zhenliang

    2014-10-07

    Biochar is being recognized as a promising tool for long-term carbon sequestration, and biochar with high carbon retention and strong stability is supposed to be explored for that purpose. In this study, three minerals, including kaolin, calcite (CaCO3), and calcium dihydrogen phosphate [Ca(H2PO4)2], were added to rice straw feedstock at the ratio of 20% (w/w) for biochar formation through pyrolysis treatment, aiming to improve carbon retention and stabilization in biochar. Kaolin and CaCO3 had little effect on the carbon retention, whereas Ca(H2PO4)2 increased the carbon retention by up to 29% compared to untreated biochar. Although the carbon loss from the kaolin-modified biochar with hydrogen peroxide oxidation was enhanced, CaCO3 and Ca(H2PO4)2 modification reduced the carbon loss by 18.6 and 58.5%, respectively. Moreover, all three minerals reduced carbon loss of biochar with potassium dichromate oxidation from 0.3 to 38.8%. The microbial mineralization as CO2 emission in all three modified biochars was reduced by 22.2-88.7% under aerobic incubation and 5-61% under anaerobic incubation. Enhanced carbon retention and stability of biochar with mineral treatment might be caused by the enhanced formation of aromatic C, which was evidenced by cross-polarization magic angle spinning (13)C nuclear magnetic resonance spectra and Fourier transform infrared spectroscopy analysis. Our results indicated that the three minerals, especially Ca(H2PO4)2, were effective in increasing carbon retention and strengthening biochar stabilization, which provided a novel idea that people could explore and produce the designated biochar with high carbon sequestration capacity and stability.

  20. An in vitro study reveals nutraceutical properties of Ananas comosus (L.) Merr. var. Mauritius fruit residue beneficial to diabetes.

    PubMed

    Riya, Mariam Philip; Antu, Kalathookunnel Antony; Vinu, Thankamony; Chandrakanth, Karuvakandy Chandrasekharan; Anilkumar, Karunakaran Sasikala; Raghu, Kozhiparambil Gopalan

    2014-03-30

    Rapid urbanisation and nutritional transition is fuelling the increased global incidence of type 2 diabetes. Pineapple fruit residue was explored for its nutraceutical properties as an alternative or adjunct to currently available treatment regime. Ethyl acetate and methanolic extracts of pineapple fruit residue were evaluated for anti-diabetic activity in cell free and cell based systems. Specifically, we assessed: (1) antioxidant potential, (2) anti-glycation potential, (3) carbohydrate digestive enzyme inhibition, and (4) lipid accumulation and glycerol-3-phosphate dehydrogenase activity in differentiating 3T3-L1 cells. The active components in the ethyl acetate and methanolic extracts were identified as sinapic acid, daucosterol, 2-methylpropanoate, 2,5-dimethyl-4-hydroxy-3(2H)-furanone, methyl 2-methylbutanoate and triterpenoid ergosterol using DART/HRMS and ESI/HRMS. Micronutrient analysis revealed the presence of magnesium, potassium and calcium. Adipogenic potential, anti-glycation property of the ethyl acetate extract, and DNA damage protection capacity of the methanolic extract are promising. Results from this study clearly indicate that pineapple fruit residue could be utilised as a nutraceutical against diabetes and related complications. © 2013 Society of Chemical Industry.

  1. Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to evaluate the suitability of using residual plant fibers from agricultural waste streams as reinforcement in thermoplastic composites. Three groups of plant fibers evaluated included cotton burrs, sticks, and linters from cotton gin waste (CGW), guayule whole plant, and gu...

  2. Biosorption properties of citrus peel derived oligogalacturonides, enzyme-modified pectin and peel hydrolysis residues

    USDA-ARS?s Scientific Manuscript database

    A citrus processing industry priority is obtaining added value from fruit peel. Approximately one-half of each processed fruit is added to the waste stream. Peel residue mainly is composed of water (~80%), the remaining 20% (solid fraction) consists of pectin, soluble sugars, cellulose, proteins, ph...

  3. Effects of Cryogenic Treatment on the Residual Stress and Mechanical Properties of an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Chen, P.; Malone, T.; Bond, R.; Torres, P.

    2001-01-01

    Investigators at Marshall Space Flight Center (MSFC) are studying the potential benefits of cryogenic treatment for aerospace Aluminum (Al) alloys. This paper reports the effects of cryogenic treatment on residual stress, tensile strength, hardness, fatigue life, and stress corrosion cracking (SCC) resistance.

  4. Effects of Cryogenic Treatment on the Residual Stress and Mechanical Properties of an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Chen, Po; Malone, Tina; Bod, Robert; Torres, Pablo

    2000-01-01

    Investigators at Marshall Space Flight Center (MSFC) are studying the potential benefits of cryogenic treatment for aerospace Aluminum (Al) alloys. This paper reports the effects of cryogenic treatment on residual stress, tensile strength, hardness, fatigue life, and stress corrosion cracking (SCC) resistance.

  5. Introduction of a Lysine Residue Promotes Aggregation of Temporin L in Lipopolysaccharides and Augmentation of Its Antiendotoxin Property

    PubMed Central

    Srivastava, Saurabh

    2013-01-01

    Temporin L (TempL) is a 13-residue frog antimicrobial peptide that shows moderate bactericidal activity and antiendotoxin properties in macrophages. We envisioned that, due to its very hydrophobic nature, the peptide might fail to show its desired biological properties. It was predicted by employing the available algorithms that the replacement of a glutamine by lysine at position 3 could appreciably reduce its aggregation propensity in an aqueous environment. In order to investigate the structural, functional, and biological consequences of replacement of glutamine by lysine at its third position, TempL and the corresponding analog, Q3K-TempL, was synthesized and characterized. Introduction of the lysine residue significantly promoted the self-assembly and oligomeric state of TempL in lipopolysaccharide (LPS). Q3K-TempL exhibited augmented binding to LPS and also dissociated LPS aggregates with greater efficacy than TempL. Further, Q3K-TempL inhibited the LPS-induced proinflammatory cytokines in rat primary macrophages in vitro and in vivo in BALB/c mice with greater efficacy than TempL. The results showed that a simple amino acid substitution in a short hydrophobic antimicrobial peptide, TempL, enhanced its antiendotoxin properties and illustrate a plausible correlation between its aggregation properties in LPS and LPS detoxification activity. PMID:23478966

  6. Introduction of a lysine residue promotes aggregation of temporin L in lipopolysaccharides and augmentation of its antiendotoxin property.

    PubMed

    Srivastava, Saurabh; Ghosh, Jimut Kanti

    2013-06-01

    Temporin L (TempL) is a 13-residue frog antimicrobial peptide that shows moderate bactericidal activity and antiendotoxin properties in macrophages. We envisioned that, due to its very hydrophobic nature, the peptide might fail to show its desired biological properties. It was predicted by employing the available algorithms that the replacement of a glutamine by lysine at position 3 could appreciably reduce its aggregation propensity in an aqueous environment. In order to investigate the structural, functional, and biological consequences of replacement of glutamine by lysine at its third position, TempL and the corresponding analog, Q3K-TempL, was synthesized and characterized. Introduction of the lysine residue significantly promoted the self-assembly and oligomeric state of TempL in lipopolysaccharide (LPS). Q3K-TempL exhibited augmented binding to LPS and also dissociated LPS aggregates with greater efficacy than TempL. Further, Q3K-TempL inhibited the LPS-induced proinflammatory cytokines in rat primary macrophages in vitro and in vivo in BALB/c mice with greater efficacy than TempL. The results showed that a simple amino acid substitution in a short hydrophobic antimicrobial peptide, TempL, enhanced its antiendotoxin properties and illustrate a plausible correlation between its aggregation properties in LPS and LPS detoxification activity.

  7. Optical and microphysical properties of mineral dust and biomass burning aerosol observed over Warsaw on 10th July 2013

    NASA Astrophysics Data System (ADS)

    Janicka, Lucja; Stachlewska, Iwona; Veselovskii, Igor; Baars, Holger

    2016-04-01

    Biomass burning aerosol originating from Canadian forest fires was widely observed over Europe in July 2013. Favorable weather conditions caused long-term westward flow of smoke from Canada to Western and Central Europe. During this period, PollyXT lidar of the University of Warsaw took wavelength dependent measurements in Warsaw. On July 10th short event of simultaneous advection of Canadian smoke and Saharan dust was observed at different altitudes over Warsaw. Different origination of both air masses was indicated by backward trajectories from HYSPLIT model. Lidar measurements performed with various wavelength (1064, 532, 355 nm), using also Raman and depolarization channels for VIS and UV allowed for distinguishing physical differences of this two types of aerosols. Optical properties acted as input for retrieval of microphysical properties. Comparisons of microphysical and optical properties of biomass burning aerosols and mineral dust observed will be presented.

  8. Influence of glutamic acid residues and pH on the properties of transmembrane helices.

    PubMed

    Rajagopalan, Venkatesan; Greathouse, Denise V; Koeppe, Roger E

    2017-03-01

    Negatively charged side chains are important for the function of particular ion channels and certain other membrane proteins. To investigate the influence of single glutamic acid side chains on helices that span lipid-bilayer membranes, we have employed GWALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-amide) as a favorable host peptide framework. We substituted individual Leu residues with Glu residues (L12E or L14E or L16E) and incorporated specific (2)H-labeled alanine residues within the core helical region or near the ends of the sequence. Solid-state (2)H NMR spectra reveal little change for the core labels in GWALP23-E12, -E14 and -E16 over a pH range of 4 to 12.5, with the spectra being broader for samples in DOPC compared to DLPC bilayers. The spectra for samples with deuterium labels near the helix ends on alanines 3 and 21 show modest pH-dependent changes in the extent of unwinding of the helix terminals in DLPC and DOPC bilayers. The combined results indicate minor overall responses of these transmembrane helices to changes in pH, with the most buried residue E12 showing no pH dependence. While the Glu residues E14 and E16 may have high pKa values in the lipid bilayer environment, it is also possible that a paucity of helix response is masking the pKa values. Interestingly, when E16 is present, spectral changes at high pH report significant local unwinding of the core helix. Our results are consistent with the expectation that buried carboxyl groups aggressively hold their protons and/or waters of hydration.

  9. Design of 11-Residue Peptides with Unusual Biophysical Properties: Induced Secondary Structure in the Absence of Water☆

    PubMed Central

    Mo, Xiaoqun; Hiromasa, Yasuaki; Warner, Matt; Al-Rawi, Ahlam N.; Iwamoto, Takeo; Rahman, Talat S.; Sun, Xiuzhi; Tomich, John M.

    2008-01-01

    A series of oligopeptides with β-forming and adhesive properties, were synthesized and analyzed for adhesion shear strength, secondary structure, and association properties. The sequences contained related hydrophobic core segments varying in length from 5 to 12 residues and flanked by di- or tri-lysine segments. Three remarkable peptides consisting of just 11 residues with hydrophobic core sequences of FLIVI, IGSII, and IVIGS flanked by three lysine residues gave the highest dry adhesion shear strength and displayed unusual biophysical properties in the presence and absence of water. KKKFLIVIKKK had its highest adhesion strength at 2% (w/v) at pH 12.0 and showed the highest adhesion strength after exposure to water (water resistance). Both KKKIGSIIKKK and KKKIVIGSKKK, at 4% (w/v) at pH 12.0, displayed nearly identical dry shear strength values to that with the FLIVI core sequence. The peptide with IGSII core, however, displayed a lower water resistance and the latter, IVIGS, showed no water resistance, completely delaminating upon soaking in water. These are the smallest peptides with adhesive properties reported to date and show remarkable adhesion strength even at lower concentrations of 0.2% (w/v), which corresponds to 1.6 mM. The FLIVI containing peptide adopted a β-sheet secondary structure in water while the IGSII- and IVIGS-containing sequences folded similarly only in the absence of water. Analytical ultracentrifugation studies showed that when the FLIVI sequence adopts β-structure in aqueous solution, it associates into a large molecular weight assembly. The random coils of IGSII and IVIGS showed no tendency to associate at any pH. PMID:18024497

  10. Design of 11-residue peptides with unusual biophysical properties: induced secondary structure in the absence of water.

    PubMed

    Mo, Xiaoqun; Hiromasa, Yasuaki; Warner, Matt; Al-Rawi, Ahlam N; Iwamoto, Takeo; Rahman, Talat S; Sun, Xiuzhi; Tomich, John M

    2008-03-01

    A series of oligopeptides with beta-forming and adhesive properties, were synthesized and analyzed for adhesion shear strength, secondary structure, and association properties. The sequences contained related hydrophobic core segments varying in length from 5 to 12 residues and flanked by di- or tri-lysine segments. Three remarkable peptides consisting of just 11 residues with hydrophobic core sequences of FLIVI, IGSII, and IVIGS flanked by three lysine residues gave the highest dry adhesion shear strength and displayed unusual biophysical properties in the presence and absence of water. KKKFLIVIKKK had its highest adhesion strength at 2% (w/v) at pH 12.0 and showed the highest adhesion strength after exposure to water (water resistance). Both KKKIGSIIKKK and KKKIVIGSKKK, at 4% (w/v) at pH 12.0, displayed nearly identical dry shear strength values to that with the FLIVI core sequence. The peptide with IGSII core, however, displayed a lower water resistance and the latter, IVIGS, showed no water resistance, completely delaminating upon soaking in water. These are the smallest peptides with adhesive properties reported to date and show remarkable adhesion strength even at lower concentrations of 0.2% (w/v), which corresponds to 1.6 mM. The FLIVI containing peptide adopted a beta-sheet secondary structure in water while the IGSII- and IVIGS-containing sequences folded similarly only in the absence of water. Analytical ultracentrifugation studies showed that when the FLIVI sequence adopts beta-structure in aqueous solution, it associates into a large molecular weight assembly. The random coils of IGSII and IVIGS showed no tendency to associate at any pH.

  11. Edge Delamination and Residual Properties of Drilled Carbon Fiber Composites with and without Short-Aramid-Fiber Interleaf

    NASA Astrophysics Data System (ADS)

    Sun, Zhi; Hu, Xiaozhi; Shi, Shanshan; Guo, Xu; Zhang, Yupeng; Chen, Haoran

    2016-10-01

    Edge delamination is frequently observed in carbon fiber reinforced plastic (CFRP) laminates after machining, due to the low fracture toughness of the resin interfaces between carbon fiber plies. In this study, the effects of incorporating tough aramid fibers into the brittle CFRP system are quantified by measuring the residual properties of bolted CFRP. By adding short-aramid-fiber interleaves in CFRP laminates, the residual tensile strength have been substantially increased by 14 % for twill-weave laminates and 45 % for unidirectional laminates respectively. Moreover, tensile failure was observed as the major mode of toughened laminates, in contrast to shear failure of plain laminates. The qualitative FEM results agreed well with the experimental results that edge delamination would cause relatively higher shear stress and therefore alter the failure mode from tensile failure to shear failure.

  12. A Combination of Biochar-Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties.

    PubMed

    Ye, Jun; Zhang, Rui; Nielsen, Shaun; Joseph, Stephen D; Huang, Danfeng; Thomas, Torsten

    2016-01-01

    Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC) carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e., a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and composted chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

  13. Fructus Ligustri Lucidi (FLL) ethanol extract increases bone mineral density and improves bone properties in growing female rats.

    PubMed

    Lyu, Ying; Feng, Xin; Zhao, Pengling; Wu, Zhenghao; Xu, Hao; Fang, Yuehui; Hou, Yangfeng; Denney, Liya; Xu, Yajun; Feng, Haotian

    2014-11-01

    Osteoporosis is a chronic disease affecting millions of people worldwide. It is generally accepted that acquisition of a high peak bone mass (PBM) early in life can reduce the risk of osteoporosis later in life. The aims of this study were to investigate the effects of Fructus Ligustri Lucidi (FLL) ethanol extract on bone mineral density and its mechanical properties in growing female rats and to explore the underlying mechanisms. The rats were given different doses of FLL extract mixed with AIN-93G formula (0.40, 0.65 and 0.90 %), and a group given AIN-93G diet treatment only was used as control. The intervention lasted for 16 weeks until the animals were about 5 months old, the time when the animals almost reach their PBM. Our results showed that FLL treatment increased bone mineral density and improved bone mechanical properties in the growing female rats in a dose-dependent manner. In addition, FLL treatment significantly decreased the serum bone-resorbing marker, CTX-I, while significantly increasing serum 25(OH)D3 and thereby increasing Ca absorption and Ca retention. Intriguingly, both in vivo and in vitro results demonstrated that FLL treatment could reduce the RANKL/OPG ratio. In conclusion, FLL ethanol extract exerted beneficial effects on peak bone mass acquisition and the improvement of bone mechanical properties by favoring Ca metabolism and decreasing the RANKL/OPG ratio.

  14. A Combination of Biochar–Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties

    PubMed Central

    Ye, Jun; Zhang, Rui; Nielsen, Shaun; Joseph, Stephen D.; Huang, Danfeng; Thomas, Torsten

    2016-01-01

    Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar–mineral complex (BMC) carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e., a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and composted chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming. PMID:27092104

  15. Dynamics of linker residues modulate the nucleic acid binding properties of the HIV-1 nucleocapsid protein zinc fingers.

    PubMed

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity.

  16. Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Mary

    Atmospheric mineral dust has a large impact on the earth's radiation balance and climate. The radiative effects of mineral dust depend on factors including, particle size, shape, and composition which can all be extremely complex. Mineral dust particles are typically irregular in shape and can include sharp edges, voids, and fine scale surface roughness. Particle shape can also depend on the type of mineral and can vary as a function of particle size. In addition, atmospheric mineral dust is a complex mixture of different minerals as well as other, possibly organic, components that have been mixed in while these particles are suspended in the atmosphere. Aerosol optical properties are investigated in this work, including studies of the effect of particle size, shape, and composition on the infrared (IR) extinction and visible scattering properties in order to achieve more accurate modeling methods. Studies of particle shape effects on dust optical properties for single component mineral samples of silicate clay and diatomaceous earth are carried out here first. Experimental measurements are modeled using T-matrix theory in a uniform spheroid approximation. Previous efforts to simulate the measured optical properties of silicate clay, using models that assumed particle shape was independent of particle size, have achieved only limited success. However, a model which accounts for a correlation between particle size and shape for the silicate clays offers a large improvement over earlier modeling approaches. Diatomaceous earth is also studied as an example of a single component mineral dust aerosol with extreme particle shapes. A particle shape distribution, determined by fitting the experimental IR extinction data, used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the scattering data, the fits are generally better than those obtained using more commonly invoked particle shape

  17. Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral.

    PubMed

    Paschalis, E P; Tatakis, D N; Robins, S; Fratzl, P; Manjubala, I; Zoehrer, R; Gamsjaeger, S; Buchinger, B; Roschger, A; Phipps, R; Boskey, A L; Dall'Ara, E; Varga, P; Zysset, P; Klaushofer, K; Roschger, P

    2011-12-01

    In the present study a rat animal model of lathyrism was employed to decipher whether anatomically confined alterations in collagen cross-links are sufficient to influence the mechanical properties of whole bone. Animal experiments were performed under an ethics committee approved protocol. Sixty-four female (47 day old) rats of equivalent weights were divided into four groups (16 per group): Controls were fed a semi-synthetic diet containing 0.6% calcium and 0.6% phosphorus for 2 or 4 weeks and β-APN treated animals were fed additionally with β-aminopropionitrile (0.1% dry weight). At the end of this period the rats in the four groups were sacrificed, and L2-L6 vertebra were collected. Collagen cross-links were determined by both biochemical and spectroscopic (Fourier transform infrared imaging (FTIRI)) analyses. Mineral content and distribution (BMDD) were determined by quantitative backscattered electron imaging (qBEI), and mineral maturity/crystallinity by FTIRI techniques. Micro-CT was used to describe the architectural properties. Mechanical performance of whole bone as well as of bone matrix material was tested by vertebral compression tests and by nano-indentation, respectively. The data of the present study indicate that β-APN treatment changed whole vertebra properties compared to non-treated rats, including collagen cross-links pattern, trabecular bone volume to tissue ratio and trabecular thickness, which were all decreased (p<0.05). Further, compression tests revealed a significant negative impact of β-APN treatment on maximal force to failure and energy to failure, while stiffness was not influenced. Bone mineral density distribution (BMDD) was not altered either. At the material level, β-APN treated rats exhibited increased Pyd/Divalent cross-link ratios in areas confined to a newly formed bone. Moreover, nano-indentation experiments showed that the E-modulus and hardness were reduced only in newly formed bone areas under the influence of

  18. Effect of six-month hypokinesia in dogs on mineral component, reconstruction and mechanical properties of bone tissue

    NASA Technical Reports Server (NTRS)

    Volozhin, A. I.; Pavlova, M. P.; Muradov, I. S.; Stupakov, G. P.; Korzhenyants, V. A.

    1980-01-01

    Ca45 incorporation into the bones of the limbs, particularly in the area of the muscle attachment increased in dogs as a result of 6 month hypokinesia. There were no phenomena of osteoporosis in the cortical layer of the diaphyses; however, changes in the form of osteons, an increase in the number of anastomoses between the channels and the thinning of the subperiosteal layer pointed to disturbances of the bone tissue reconstruction. Mineral saturation of the bone microstructures of the experimental dogs had a tendency to rise. No changes in the mechanical properties of the long bones occurred as a result of hypokinesia in dogs.

  19. Orientation and optical properties of methylene blue crystal for better understanding of interactions with clay mineral surface

    NASA Astrophysics Data System (ADS)

    Milošević, Maja; Logar, Mihovil

    2013-04-01

    The properties of cationic dye Methylene blue (MB) adsorbed on diferent surfaces have been investigated intensively over the years and various models for the orientation of its cations have been proposed (Hang and Brindley, 1970; Bujdak et al., 2003; Li and Zare, 2004; Marr III et al., 1973; Bujdak, 2006).The main objective of this work is to investigate and determine orientation and optical properties of metylene blue crystal upon its crystallization on a glass slate and to use those findings in better understanding of interactions with clay minerals. Cationic dyes have very high affinity for clay surfaces and those interactions are easily detected, therefore these dyes are used to determine several properties of clay surfaces (morphology, layer charge, CEC). For this study, we have selected a group of MB crystal and carried out XRD analysis, polarized absorption spectra measurement (400 - 900 nm) and determination of optical properties (pleochroism, determination of twining and extinction angle) using polarizing microscope. Methylene blue crystals are exhibiting mostly needle like habitus with huge difference in width - length ratio. According to X-ray diffraction it is quite obvious that the y (b) axis is perpendicular to the crystal surface. The x (a) and z (c) axis lie in the crystal plane (010). Crystals exhibit prominent dichroism: from blue (E || elong.) to colorless. In accordance with current interpretation of MB spectra peaks at 647 and 570 nm can be assigned as dimer aggregation and peaks at 475 and 406 nm as higher level of aggregation. All of them exhibit pronounced polarization dependence. The group of peaks at lower energy (700 to 900 nm) do not show significant polarization dependence and they correspond to the J - aggregates. Peak at around 800 nm have been noticed as fluorescence active. In dependence with thickness of the crystals and vibration direction we have observed presence of polysynthetic twinning which can be compared with polysynthetic

  20. Some compositional properties and mineral contents of carob (Ceratonia siliqua) fruit, flour and syrup.

    PubMed

    Ozcan, Mehmet Musa; Arslan, Derya; Gökçalik, Harun

    2007-12-01

    The approximate composition and mineral contents of carob fruit (Ceratonia siliqua), and the traditional foods produced from this fruit, carob flour and carob syrup, were studied. Protein, crude fiber and ash content and energy values of carob syrup were lower than the values of both carob fruit and carob flour. According to the results, the total sugar content, the most important constituents of carob products, were 48.35%, 41.55% and 63.88% for fruit, flour and syrup, respectively. These products contained high amounts of calcium, potassium, magnesium, sodium and phosphorus, which were the most abundant elements in carob fruits (P < 0.05). Among the samples, potassium, phosphorus and calcium had the highest values in carob syrup, respectively. Carob flour also contained these elements in high amounts, with the addition of sodium. We extended the notion that carob fruit, flour and syrup were rich sources of carbohydrates, proteins and minerals.

  1. Molecular analysis of hyperthermophilic endoglucanase Cel12B from Thermotoga maritima and the properties of its functional residues

    PubMed Central

    2014-01-01

    Background Although many hyperthermophilic endoglucanases have been reported from archaea and bacteria, a complete survey and classification of all sequences in these species from disparate evolutionary groups, and the relationship between their molecular structures and functions are lacking. The completion of several high-quality gene or genome sequencing projects provided us with the unique opportunity to make a complete assessment and thorough comparative analysis of the hyperthermophilic endoglucanases encoded in archaea and bacteria. Results Structure alignment of the 19 hyperthermophilic endoglucanases from archaea and bacteria which grow above 80°C revealed that Gly30, Pro63, Pro83, Trp115, Glu131, Met133, Trp135, Trp175, Gly227 and Glu229 are conserved amino acid residues. In addition, the average percentage composition of residues cysteine and histidine of 19 endoglucanases is only 0.28 and 0.74 while it is high in thermophilic or mesophilic one. It can be inferred from the nodes that there is a close relationship among the 19 protein from hyperthermophilic bacteria and archaea based on phylogenetic analysis. Among these conserved amino acid residues, as far as Cel12B concerned, two Glu residues might be the catalytic nucleophile and proton donor, Gly30, Pro63, Pro83 and Gly227 residues might be necessary to the thermostability of protein, and Trp115, Met133, Trp135, Trp175 residues is related to the binding of substrate. Site-directed mutagenesis results reveal that Pro63 and Pro83 contribute to the thermostability of Cel12B and Met133 is confirmed to have role in enhancing the binding of substrate. Conclusions The conserved acids have been shown great importance to maintain the structure, thermostability, as well as the similarity of the enzymatic properties of those proteins. We have made clear the function of these conserved amino acid residues in Cel12B protein, which is helpful in analyzing other undetailed molecular structure and transforming them

  2. Physicochemical properties of skim milk powders prepared with the addition of mineral chelators.

    PubMed

    Sikand, V; Tong, P S; Vink, Sean; Roy, Soma

    2016-06-01

    The objective of this study was to determine the effect of mineral chelator addition during skim milk powder (SMP) manufacture on the solubility, turbidity, soluble protein, and heat stability (HS). Three chelators (sodium citrate dihydrate, sodium polyphosphate, and disodium EDTA) at 3 different concentrations (5, 15, and 25mM) were added to skim milk concentrate (30% total solids), and the pH was adjusted to 6.65 before spray drying to produce SMP. Spray-dried SMP samples were tested for solubility index (SI). Additionally, samples were reconstituted to contain 9% total solids, adjusted to pH 7.0, and tested for turbidity, protein content from supernatants of ultracentrifuged samples, and HS. Lower SI values were observed for samples treated with 5mM disodium EDTA and sodium polyphosphate than control samples or samples with 5mM sodium citrate dihydrate. Furthermore, lower SI values were observed with an increased level of chelating agents regardless of chelator type. A decreased turbidity value was found with increasing levels of mineral chelating salt treatment. Low turbidity with increasing levels of added chelators may be associated with the dissociation of caseins from micelles. Furthermore, higher protein content was observed in supernatants of ultracentrifuged samples treated with increased level of chelators as compared with the control sample. Higher HS was observed in samples treated with 5mM compared with samples treated with 25mM mineral chelator. The results suggest improved solubility and HS upon addition of mineral chelators to SMP during its manufacture. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Structure and property of CdS thin films with different residual chlorine content

    NASA Astrophysics Data System (ADS)

    Feng, Kai; Wu, Weibing; Shan, Beibei; Nan, Huilin

    2016-10-01

    Two types of CdS thin films were synthesized via chemical bath deposition (CBD) method from solutions of acetate and chloride, respectively. The structural and photoelectric characteristics of both CdS thin films were characterized by XRD, SEM, PL, UV-vis and electrochemical measurements. The pristine films were hexagonal regardless of anion type in CBD solutions. Cl residual was confirmed in the CdS film from the Cl-containing solution. The residual Cl helps to reduce S vacancies and improve the crystallinity during annealing, which is proved by the left shift of peaks in XRD patterns, the increased band gap, and the lower carrier concentration. The present results are significant in choosing suitable anions during the CBD deposition of CdS thin film for improving the device performance of CdTe solar cell.

  4. Aerosol chemical and radiative properties in the tropical Atlantic trade winds: The importance of African mineral dust

    NASA Astrophysics Data System (ADS)

    Li-Jones, Xu

    This dissertation presents results relevant to aerosol radiative forcing. The focus of this dissertation is the role of mineral dust in atmospheric radiative processes over the tropical Atlantic Ocean. The aerosol mass and light scattering data concurrently measured over the tropical North Atlantic ocean yield a dust mass scattering efficiency of 0.77 m2/g, about a quarter of that measured for non-sea-salt sulfate (nss SO4=) in the North Atlantic marine boundary layer. Because of the high concentration of mineral dust relative to nss SO4= over the tropical North Atlantic, the total scattering by mineral dust is about four times that by nss SO4 = aerosol in this region. On an annual basis, aerosol optical depth is apportioned to: mineral dust 71%, nss- SO4 = 16% and sea salt 13%. The coarse-particle fraction (CPF) (aerodynamic diameter > 1 μm) of nss SO4= varied from about 21% to 73%, with the highest CPF values associated with African dust events. The CPF nss SO 4= was believed to be a result of the heterogeneous reactions of SO2 (presumably from European sources) with dust particles suspended in the air over North Africa. This study provides the first direct evidence that confirms the importance of dust in sulfate production and resulting the coarse particle sulfate in the tropical Atlantic Ocean region. An important implication is that dust particles may reduce the effectiveness of sulfate aerosol as a radiative forcing agent in many regions where dust events are frequent and where dust concentrations are high. The aerosol scattering coefficient (ASC) measured during this experiment increased by a factor of 1.13 to 1.69 when RH was increased from about 40% to 80%. Through chemical apportioning of ASC, the HGF for sea-salt was found to be 1.8 +/- 0.2, while that of mineral dust was close to unity. This study shows that climate studies must consider the effect of mineral dust not only because of its direct effects on the radiation balance but also because of its

  5. Viscoelastic properties and residual strain in a tensile creep test on bovine temporomandibular articular discs.

    PubMed

    Tanaka, E; Tanaka, M; Aoyama, J; Watanabe, M; Hattori, Y; Asai, D; Iwabe, T; Sasaki, A; Sugiyama, M; Tanne, K

    2002-02-01

    This study was designed to evaluate the creep characteristics and residual strain of bovine temporomandibular joint (TMJ) discs in tension. Twenty discs were divided into three specimens each: central, lateral and medial regions. Tension of 1.0 MPa was applied and sustained for 20 min to the specimens from 10 right-side discs, and tension of 1.5 MPa to specimens from 10 left-side discs. After the period of tension for creep, the specimens were removed from the tension devices and restoration observed for 20 min. Time-dependent creep curves showed a marked change in strain during the initial 5s. The essential time delay in strain ceased after 2 min, and strain reached an almost steady level after 3 min. At a tensile stress of 1.5 MPa, a strain of 14.5% on average was produced after 20 min creep in the central specimens; peripheral specimens showed strains of 12.4% on average. There were significant differences in strain between the central and peripheral specimens. The residual strain after 20 min restoration was 0.93% on average and there were no significant regional differences. This creep feature could be well represented by a generalized linear viscoelastic model. It was concluded that the regional differences in viscoelasticity might be caused by the complicated articulating functions of the TMJ, and that the residual strain caused by sustained stress could be an important factor in disc deformation.

  6. Accounting for particle non-sphericity in modeling of mineral dust radiative properties in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Legrand, M.; Dubovik, O.; Lapyonok, T.; Derimian, Y.

    2014-12-01

    Spectral radiative parameters (extinction optical depth, single scattering albedo, asymmetry factor) of spheroids of mineral dust composed of quartz and clays have been simulated at wavelengths between 7.0 and 10.2 μm using a T-matrix code. In spectral intervals with high values of complex index of refraction and for large particles, the parameters cannot be fully calculated with the code. Practically, the calculations are stopped at a truncation radius over which the particles contribution cannot thus be taken into account. To deal with this issue, we have developed and applied an accurate corrective technique of T-matrix Size Truncation Compensation (TSTC). For a mineral dust described by its AERONET standard aspect ratio (AR) distribution, the full error margin when applying the TSTC is within 0.3% (or ±0.15%), whatever the radiative parameter and the wavelength considered, for quartz (the most difficult case). Large AR values limit also the possibilities of calculation with the code. The TSTC has been able to complete the calculations of the T-matrix code for a modified AERONET AR distribution with a maximum AR of 4.7 instead of 3 for the standard distribution. Comparison between the simulated properties of spheroids and of spheres of same volume confirms, in agreement with the literature, that significant differences are observed in the vicinity of the mineral resonant peaks (λ ca. 8.3-8.7 μm for quartz, ca. 9.3-9.5 μm for clays) and that they are due to absorption by the small particles. This is a favorable circumstance for the TSTC, which is concerned with the contribution of the largest particles. This technique of numerical calculation improves the accuracy of the simulated radiative parameters of mineral dust, which must lead to a progress in view of applications such as remote sensing or determination of energy balance of dust in the thermal infrared (TIR), incompletely investigated so far.

  7. Not all feldspars are equal: a survey of ice nucleating properties across the feldspar group of minerals

    NASA Astrophysics Data System (ADS)

    Harrison, Alexander D.; Whale, Thomas F.; Carpenter, Michael A.; Holden, Mark A.; Neve, Lesley; O'Sullivan, Daniel; Vergara Temprado, Jesus; Murray, Benjamin J.

    2016-09-01

    Mineral dust particles from wind-blown soils are known to act as effective ice nucleating particles in the atmosphere and are thought to play an important role in the glaciation of mixed phase clouds. Recent work suggests that feldspars are the most efficient nucleators of the minerals commonly present in atmospheric mineral dust. However, the feldspar group of minerals is complex, encompassing a range of chemical compositions and crystal structures. To further investigate the ice-nucleating properties of the feldspar group we measured the ice nucleation activities of 15 characterized feldspar samples. We show that alkali feldspars, in particular the potassium feldspars, generally nucleate ice more efficiently than feldspars in the plagioclase series which contain significant amounts of calcium. We also find that there is variability in ice nucleating ability within these groups. While five out of six potassium-rich feldspars have a similar ice nucleating ability, one potassium rich feldspar sample and one sodium-rich feldspar sample were significantly more active. The hyper-active Na-feldspar was found to lose activity with time suspended in water with a decrease in mean freezing temperature of about 16 °C over 16 months; the mean freezing temperature of the hyper-active K-feldspar decreased by 2 °C over 16 months, whereas the "standard" K-feldspar did not change activity within the uncertainty of the experiment. These results, in combination with a review of the available literature data, are consistent with the previous findings that potassium feldspars are important components of arid or fertile soil dusts for ice nucleation. However, we also show that there is the possibility that some alkali feldspars may have enhanced ice nucleating abilities, which could have implications for prediction of ice nucleating particle concentrations in the atmosphere.

  8. Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites.

    PubMed

    Gorski, Christopher A; Aeschbacher, Michael; Soltermann, Daniela; Voegelin, Andreas; Baeyens, Bart; Marques Fernandes, Maria; Hofstetter, Thomas B; Sander, Michael

    2012-09-04

    Clay minerals often contain redox-active structural iron that participates in electron transfer reactions with environmental pollutants, bacteria, and biological nutrients. Measuring the redox properties of structural Fe in clay minerals using electrochemical approaches, however, has proven to be difficult due to a lack of reactivity between clay minerals and electrodes. Here, we overcome this limitation by using one-electron-transfer mediating compounds to facilitate electron transfer between structural Fe in clay minerals and a vitreous carbon working electrode in an electrochemical cell. Using this approach, the electron-accepting and -donating capacities (Q(EAC) and Q(EDC)) were quantified at applied potentials (E(H)) of -0.60 V and +0.61 V (vs SHE), respectively, for four natural Fe-bearing smectites (i.e., SWa-1, SWy-2, NAu-1, and NAu-2) having different total Fe contents (Fe(total) = 2.3 to 21.2 wt % Fe) and varied initial Fe(2+)/Fe(total) states. For every SWa-1 and SWy-2 sample, all the structural Fe was redox-active over the tested E(H) range, demonstrating reliable quantification of Fe content and redox state. Yet for NAu-1 and NAu-2, a significant fraction of the structural Fe was redox-inactive, which was attributed to Fe-rich smectites requiring more extreme E(H)-values to achieve complete Fe reduction and/or oxidation. The Q(EAC) and Q(EDC) values provided here can be used as benchmarks in future studies examining the extent of reduction and oxidation of Fe-bearing smectites.

  9. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  10. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  11. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  12. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  13. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  14. Prediction of Hydrodynamic and Other Solution Properties of Rigid Proteins from Atomic- and Residue-Level Models

    PubMed Central

    Ortega, A.; Amorós, D.; García de la Torre, J.

    2011-01-01

    Here we extend the ability to predict hydrodynamic coefficients and other solution properties of rigid macromolecular structures from atomic-level structures, implemented in the computer program HYDROPRO, to models with lower, residue-level resolution. Whereas in the former case there is one bead per nonhydrogen atom, the latter contains one bead per amino acid (or nucleotide) residue, thus allowing calculations when atomic resolution is not available or coarse-grained models are preferred. We parameterized the effective hydrodynamic radius of the elements in the atomic- and residue-level models using a very large set of experimental data for translational and rotational coefficients (intrinsic viscosity and radius of gyration) for >50 proteins. We also extended the calculations to very large proteins and macromolecular complexes, such as the whole 70S ribosome. We show that with proper parameterization, the two levels of resolution yield similar and rather good agreement with experimental data. The new version of HYDROPRO, in addition to considering various computational and modeling schemes, is far more efficient computationally and can be handled with the use of a graphical interface. PMID:21843480

  15. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability.

    PubMed

    Mäkelä, Mikko; Watkins, Gary; Pöykiö, Risto; Nurmesniemi, Hannu; Dahl, Olli

    2012-03-15

    Industrial residue application to soil was investigated by integrating granulated blast furnace or converter steel slag with residues from the pulp and paper industry in various formulations. Specimen analysis included relevant physicochemical properties, total element concentrations (HCl+HNO3 digestion, USEPA 3051) and chemical speciation of chosen heavy metals (CH3COOH, NH2OH·HCl and H2O2+H2O2+CH3COONH4, the BCR method). Produced matrices showed liming effects comparable to commercial ground limestone and included significant quantities of soluble vital nutrients. The use of converter steel slag, however, led to significant increases in the total concentrations of Cr and V. Subsequently, total Cr was attested to occur as Cr(III) by Na2CO3+NaOH digestion followed by IC UV/VIS-PCR (USEPA 3060A). Additionally, 80.6% of the total concentration of Cr (370 mg kg(-1), d.w.) occurred in the residual fraction. However, 46.0% of the total concentration of V (2470 mg kg(-1), d.w.) occurred in the easily reduced fraction indicating potential bioavailability.

  16. Correction methods of medicinal properties of mineral waters in Pyatigorsk resort

    NASA Astrophysics Data System (ADS)

    Reps, Valentina; Potapov, Evgeniy; Abramtsova, Anna; Kotova, Margarita

    2016-04-01

    Mineral Water (MW) of Pyatigorsk deposit (PD) is united in five genetic groups (operational stocks of 2809,8 m3/day): carbonic and hydrosulphuric, carbonic, carbonic chloride-hydrocarbonate sodium (salt and alkaline), radonic low carbonate, nitrogen-carbonic terms. A variety of MW types is explained by peculiarities of geological structure and hydrogeological conditions of PD. Here on the sites of the development of deep semi-ring splits there are overflows and a mixture of various complexes. Unloading of deep water strikes happens not only on the earth surface in the form of springs but also at the depth in its edging crumbling rocks of Palaeocene and quarternary deposits. As a result of mixture processes of water and its subsequent metamorphization, various types of mineral water of this deposit are formed. Pyatigorsk resort is in a special protected ecologo-resort region which mode allows to keep stability of structure and ecological purity of MW. Nevertheless, MW variability, compositional differences and MW mineralization determining the level of its biological effect demand studying of action mechanisms of both natural MW, and possibility of its modification for range expansion of rehabilitation action. There have been examined biological effects of the course drinking reception In experiment on 80 rats males of the Wistar line biological effects of the course drinking reception of two MW types: "Krasnoarmeyskaya new" (MW1) of sulphate-hydrocarbonate-chloride calcium-sodium structure with the raised contents of iron (3-5 mg/dm3), mineralization of 5,0-5,2 g/dm3, CO2 of 1,3-2,2 g/dm3, daily flow of 10-86 m3/day, temperature from 14 to 370C on the mouth of the well and spring №2 (MW2) low sulphate, low carbonate sulphate-hydrocarbonate-chloride calcium-sodium, mineralization of 5,0 g/l, CO2 of 0,7 g/dm3, H2 of S 0,01 g/dm3. There has been shown an ability of the drinking course MW1 to influence on endocrine and metabolic continium - cortisol level increased

  17. Anthocyanin profiles and biological properties of caneberry (Rubus spp.) press residues.

    PubMed

    Šaponjac, Vesna Tumbas; Gironés-Vilaplana, Amadeo; Djilas, Sonja; Mena, Pedro; Cetković, Gordana; Moreno, Diego A; Canadanović-Brunet, Jasna; Vulić, Jelena; Stajčić, Slađana; Krunić, Milica

    2014-09-01

    The global interest in natural food colours shows increasing attention towards new product development to replace synthetic colourants, because of the strengthening of legislative rules and consumer awareness of synthetic additives and chemicals in food. This study was designed to evaluate anthocyanin content and biological activities of press residues from four caneberries: two raspberry (Rubus idaeus, cv. 'Meeker' (RM) and 'Willamette' (RW)) and two blackberry (Rubus fruticosus, cv. 'Thornfree' (BT) and 'Čačanska bestrna' (BC)) cultivars. Analysis by high-performance liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry identified cyanidin glycosides in all press residues, cyanidin 3-glucoside being prevalent in BC (1360.6 mg kg(-1)) and BT (1397.7 mg kg(-1)), and cyanidin 3-sophoroside in RM (349.2 mg kg(-1) ) and RW (581.0 mg kg(-1)). Antioxidant capacity (AC), evaluated by ABTS (2,2'-azino-bis(3-ethyl benzothiazoline-6-sulfonic acid) assay, reducing power (RP) and α-glucosidase inhibitory potential (α-GIP) was higher in blackberry press residues. Total anthocyanin content was in good correlation with AC (r = 0.953; P < 0.05), RP (r = 0.993, P < 0.01) and α-GIP (r = 0.852, P < 0.15). This study has revealed the potential for valorization of juice production byproducts for further industrial use as a rich source of bioactive compounds and natural colourants (mainly anthocyanins). Also, they can provide health-promoting effects beyond their general organoleptic acceptance in food product development. © 2014 Society of Chemical Industry.

  18. Statistical properties of proportional residual energy intake as a new measure of energetic efficiency.

    PubMed

    Zamani, Pouya

    2017-08-01

    Traditional ratio measures of efficiency, including feed conversion ratio (FCR), gross milk efficiency (GME), gross energy efficiency (GEE) and net energy efficiency (NEE) may have some statistical problems including high correlations with milk yield. Residual energy intake (REI) or residual feed intake (RFI) is another criterion, proposed to overcome the problems attributed to the traditional ratio criteria, but it does not account for production or intake levels. For example, the same REI value could be considerable for low producing and negligible for high producing cows. The aim of this study was to propose a new measure of efficiency to overcome the problems attributed to the previous criteria. A total of 1478 monthly records of 268 lactating Holstein cows were used for this study. In addition to FCR, GME, GEE, NEE and REI, a new criterion called proportional residual energy intake (PREI) was calculated as REI to net energy intake ratio and defined as proportion of net energy intake lost as REI. The PREI had an average of -0·02 and range of -0·36 to 0·27, meaning that the least efficient cow lost 0·27 of her net energy intake as REI, while the most efficient animal saved 0·36 of her net energy intake as less REI. Traditional ratio criteria (FCR, GME, GEE and NEE) had high correlations with milk and fat corrected milk yields (absolute values from 0·469 to 0·816), while the REI and PREI had low correlations (0·000 to 0·069) with milk production. The results showed that the traditional ratio criteria (FCR, GME, GEE and NEE) are highly influenced by production traits, while the REI and PREI are independent of production level. Moreover, the PREI adjusts the REI magnitude for intake level. It seems that the PREI could be considered as a worthwhile measure of efficiency for future studies.

  19. Understanding the chemical properties of macerals and minerals in coal and its potential application for occupational lung disease prevention.

    PubMed

    Huang, Xi; Finkelman, Robert B

    2008-01-01

    Recent increases in oil price further strengthen the argument that coal and coal products will play an increasingly important role in fulfilling the energy needs of our society. Coal is an aggregate of heterogeneous substances composed of organic (macerals) and inorganic (minerals) materials. The objective of this review was to assess whether some chemical parameters in coal play a role in producing environmental health problems. Basic properties of coal--such as chemical forms of the organic materials, structure, compositions of minerals--vary from one coal mine region to another as well as from coals of different ranks. Most importantly, changes in chemical properties of coals due to exposure to air and humidity after mining--a dynamic process--significantly affect toxicity attributed to coal and environmental fate. Although coal is an extremely complex and heterogeneous material, the fundamental properties of coal responsible for environmental and adverse health problems are probably related to the same inducing components of coal. For instance, oxidation of pyrite (FeS2) in the coal forms iron sulfate and sulfuric acid, which produces occupational lung diseases (e.g., pneumoconiosis) and other environmental problems (e.g., acid mine drainage and acid rain). Calcite (CaCO3) contained in certain coals alters the end products of pyrite oxidation, which may make these coals less toxic to human inhalation and less hazardous to environmental pollution. Finally, knowledge gained on understanding of the chemical properties of coals is illustrated to apply for prediction of toxicity due to coal possibly before large-scale mining and prevention of occupational lung disease during mining.

  20. Influence of Surface Properties and Impact Conditions on Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Doss, Jereme R.; Shanahan, Michelle H.; Smith, Joseph G., Jr.; Penner, Ronald K.; Connell, John W.; Siochi, Emilie J.

    2015-01-01

    Airflow over airfoils used on current commercial aircraft transitions from laminar to turbulent at relatively low chord positions. As a result, drag increases, requiring more thrust to maintain flight. An airfoil with increased laminar flow would experience reduced drag and a lower fuel burn rate. One of the objectives of NASA's Environmentally Responsible Aviation project is to identify and demonstrate technologies that will enable more environmentally friendly commercial aircraft. While more aerodynamically efficient airfoil shapes can be designed, surface contamination from ice, dirt, pollen, runway debris, and insect residue can degrade performance.

  1. Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich shale systems

    USGS Publications Warehouse

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Lewan, Mike; Sun, Xun; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    A series of CH4 adsorption experiments on natural organic-rich shales, isolated kerogen, clay-rich rocks, and artificially matured Woodford Shale samples were conducted under dry conditions. Our results indicate that physisorption is a dominant process for CH4 sorption, both on organic-rich shales and clay minerals. The Brunauer–Emmett–Teller (BET) surface area of the investigated samples is linearly correlated with the CH4 sorption capacity in both organic-rich shales and clay-rich rocks. The presence of organic matter is a primary control on gas adsorption in shale-gas systems, and the gas-sorption capacity is determined by total organic carbon (TOC) content, organic-matter type, and thermal maturity. A large number of nanopores, in the 2–50 nm size range, were created during organic-matter thermal decomposition, and they significantly contributed to the surface area. Consequently, methane-sorption capacity increases with increasing thermal maturity due to the presence of nanopores produced during organic-matter decomposition. Furthermore, CH4 sorption on clay minerals is mainly controlled by the type of clay mineral present. In terms of relative CH4 sorption capacity: montmorillonite ≫ illite – smectite mixed layer > kaolinite > chlorite > illite. The effect of rock properties (organic matter content, type, maturity, and clay minerals) on CH4 adsorption can be quantified with the heat of adsorption and the standard entropy, which are determined from adsorption isotherms at different temperatures. For clay-mineral rich rocks, the heat of adsorption (q) ranges from 9.4 to 16.6 kJ/mol. These values are considerably smaller than those for CH4 adsorption on kerogen (21.9–28 kJ/mol) and organic-rich shales (15.1–18.4 kJ/mol). The standard entropy (Δs°) ranges from -64.8 to -79.5 J/mol/K for clay minerals, -68.1 to -111.3 J/mol/K for kerogen, and -76.0 to -84.6 J/mol/K for organic-rich shales. The affinity of CH4 molecules for sorption on organic matter

  2. The phosphomimetic mutation of an evolutionarily conserved serine residue affects the signaling properties of Rho of plants (ROPs).

    PubMed

    Fodor-Dunai, Csilla; Fricke, Inka; Potocký, Martin; Dorjgotov, Dulguun; Domoki, Mónika; Jurca, Manuela E; Otvös, Krisztina; Zárský, Viktor; Berken, Antje; Fehér, Attila

    2011-05-01

    Plant ROP (Rho of plants) proteins form a unique subgroup within the family of Rho-type small G-proteins of eukaryotes. In this paper we demonstrate that the phosphomimetic mutation of a serine residue conserved in all Rho proteins affects the signaling properties of plant ROPs. We found that the S74E mutation in Medicago ROP6 and Arabidopsis ROP4 prevented the binding of these proteins to their plant-specific upstream activator the plant-specific ROP nucleotide exchanger (PRONE)-domain-containing RopGEF (guanine nucleotide exchange factor) protein and abolished the PRONE-mediated nucleotide exchange reaction in vitro. Structural modeling supported the hypothesis that potential phosphorylation of the S74 residue interferes with the binding of the PRONE-domain to the adjacent plant-specific R76 residue which plays an important role in functional ROP-PRONE interaction. Moreover, we show that while the binding of constitutively active MsROP6 to the effector protein RIC (ROP-interactive CRIB-motif-containing protein) was not affected by the S74E mutation, the capability of this mutated protein to bind and activate the RRK1 kinase in vitro was reduced. These observations are in agreement with the morphology of tobacco pollen tubes expressing mutant forms of yellow fluorescent protein (YFP):MsROP6. The S74E mutation in MsROP6 had no influence on pollen tube morphology and attenuated the phenotype of a constitutively active form of MsROP6. The presented Medicago and Arabidopsis data support the notion that the phosphorylation of the serine residue in ROPs corresponding to S74 in Medicago ROP6 could be a general principle for regulating ROP activation and signaling in plants. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  3. Effect of the extrusion on functional properties and mineral dialyzability from Phaseolus vulgaris bean flour.

    PubMed

    Drago, S R; Velasco-González, O H; Torres, R L; González, R J; Valencia, M E

    2007-06-01

    The effects of extrusion conditions on cooking degree, flour dispersion viscosity and mineral potential availability of extruded bean flour were studied. Phaseolus vulgaris beans of the agronomic cultivar "Flor de mayo" were ground and dehulled to obtain grits and then extruded at different temperatures (140, 160 and 180 degrees C) and moisture contents (17, 20 and 23%), according to a bifactorial experimental design. Degree of cooking was estimated by water solubility (WS) and specific mechanical energy (SME). The effect of variables on WS and SME were analysed by surface response methodology. Flour dispersion viscosity and mineral availability (estimated by in vitro dialyzability), were also evaluated on selected samples. Results showed that, within the ranges of the variables used for this study, only the effect of temperature was significant on the degree of cooking. No direct correlation was observed between water solubility and SME, although a maximum value of WS corresponded to a range of SME values of 400-500 J/g was observed. Dispersion viscosity decreases as WS increases, so if high calorie density is desired, for instance in order to produce a cream soup formula, bean grits should be extruded at high temperature and as low moisture as possible, in our case 180 degrees C and 17% moisture. On the other hand, the effects of extrusion variables on iron and zinc dialyzability were not much affected.

  4. Processing, Microstructure, and Residual Stress Effects on Strength and Fatigue Crack Growth Properties in Friction Stir Welding: A Review

    NASA Astrophysics Data System (ADS)

    Biro, Andrew L.; Chenelle, Brendan F.; Lados, Diana A.

    2012-12-01

    The purpose of this review is to provide a comprehensive overview of friction stir welding (FSW), as well as to introduce current research and applications involving this relatively new process. FSW is a new, efficient way of joining metal alloys that are considered unsuitable for welding via conventional fusion joining methods, and is capable of welding dissimilar metals with ease. This process also has the benefit of being solid-state, which mitigates the need for liquid filler metals that are common with conventional fusion welding techniques. This review will examine different facets of the FSW process, exploring the resulting static and dynamic properties and factors that influence these properties including weld zone boundaries, grain refinement, residual stress, and addition of reinforcing particles. Highlights of current research in this area and applications of this process in various industries will also be presented and discussed.

  5. CO2 sequestration in feldspar-rich sandstone: Coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties

    NASA Astrophysics Data System (ADS)

    Tutolo, Benjamin M.; Luhmann, Andrew J.; Kong, Xiang-Zhao; Saar, Martin O.; Seyfried, William E.

    2015-07-01

    To investigate CO2 Capture, Utilization, and Storage (CCUS) in sandstones, we performed three 150 °C flow-through experiments on K-feldspar-rich cores from the Eau Claire formation. By characterizing fluid and solid samples from these experiments using a suite of analytical techniques, we explored the coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties during CO2 sequestration in feldspar-rich sandstone. Overall, our results confirm predictions that the heightened acidity resulting from supercritical CO2 injection into feldspar-rich sandstone will dissolve primary feldspars and precipitate secondary aluminum minerals. A core through which CO2-rich deionized water was recycled for 52 days decreased in bulk permeability, exhibited generally low porosity associated with high surface area in post-experiment core sub-samples, and produced an Al hydroxide secondary mineral, such as boehmite. However, two samples subjected to ∼3 day single-pass experiments run with CO2-rich, 0.94 mol/kg NaCl brines decreased in bulk permeability, showed generally elevated porosity associated with elevated surface area in post-experiment core sub-samples, and produced a phase with kaolinite-like stoichiometry. CO2-induced metal mobilization during the experiments was relatively minor and likely related to Ca mineral dissolution. Based on the relatively rapid approach to equilibrium, the relatively slow near-equilibrium reaction rates, and the minor magnitudes of permeability changes in these experiments, we conclude that CCUS systems with projected lifetimes of several decades are geochemically feasible in the feldspar-rich sandstone end-member examined here. Additionally, the observation that K-feldspar dissolution rates calculated from our whole-rock experiments are in good agreement with literature parameterizations suggests that the latter can be utilized to model CCUS in K-feldspar-rich sandstone. Finally, by performing a number of reactive

  6. Effect of Laser Shock Peening on surface properties and residual stress of Al6061-T6

    NASA Astrophysics Data System (ADS)

    Salimianrizi, A.; Foroozmehr, E.; Badrossamay, M.; Farrokhpour, H.

    2016-02-01

    The purpose of this study is to investigate the effects of Laser Shock Peening (LSP) on Al 6061-T6. The confined LSP regime using Nd: YAG laser with 1200 mJ of energy per pulse and 8 ns of pulse width were applied. The treated specimens were evaluated by means of surface integrity with optical microscopy, scanning electron microscope, microhardness, surface roughness and induced residual stress using an X-ray diffraction method. Results showed that by the use of LSP, compressive residual stress could effectively be induced on the surface of treated material. It was also revealed that the hardened depth of the material, up to a maximum depth of 1875 μm, could be achieved due to work hardening and grain refinement. In addition, surface roughness measurements showed that the LSP could deteriorate surface quality depending on the LSP parameters. The influences of beam overlap rates, number of laser shots and scanning pattern on microhardness as well as surface roughness are discussed.

  7. SPECTROSCOPIC PROPERTIES OF STAR-FORMING HOST GALAXIES AND TYPE Ia SUPERNOVA HUBBLE RESIDUALS IN A NEARLY UNBIASED SAMPLE

    SciTech Connect

    D'Andrea, Chris B.; Gupta, Ravi R.; Sako, Masao; Morris, Matt; Nichol, Robert C.; Campbell, Heather; Lampeitl, Hubert; Brown, Peter J.; Olmstead, Matthew D.; Frieman, Joshua A.; Kessler, Richard; Garnavich, Peter; Jha, Saurabh W.; Marriner, John; Schneider, Donald P.; Smith, Mathew

    2011-12-20

    We examine the correlation between supernova (SN) host-galaxy properties and their residuals in the Hubble diagram. We use SNe discovered during the Sloan Digital Sky Survey-II Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova (SN Ia) sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M{sub r} < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star formation rates (SFRs) from host galaxies with active star formation. From a final sample of {approx}40 emission-line galaxies, we find that light-curve-corrected SNe Ia are {approx}0.1 mag brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (>3{sigma}) correlation between the Hubble Residuals of SNe Ia and the specific SFR of the host galaxy. We comment on the importance of SN/host-galaxy correlations as a source of systematic bias in future deep SN surveys.

  8. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    SciTech Connect

    D'Andrea, Chris B.; et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  9. Composition and physicochemical properties of dietary fiber extracted from residues of 10 varieties of sweet potato by a sieving method.

    PubMed

    Mei, Xin; Mu, Tai-Hua; Han, Jun-Juan

    2010-06-23

    Dietary fiber (DF) was extracted from sweet potato residues after starch isolation of 10 varieties using a sieving method. The proximate composition of sweet potato residues, chemical composition, monosaccharide composition, and physicochemical properties of DF were investigated. The average yield and DF content of DF products from 10 sweet potato varieties were 9.97 and 75.19%, respectively. Average contents of cellulose, lignin, pectin, and hemicellulose were 31.19, 16.85, 15.65, and 11.38 g/100 g of dry matter in DF products, respectively. The relative monosaccharide contents of DF were in the order glucose > uronic acid > galactose > arabinose > xylose > rhamnose > mannose. Swelling capacity, water-holding capacity, oil-holding capacity, and glucose absorption capacity determinations of the DF of sweet potato varieties had respective ranges of 8.11-12.56 mL/g, 3.54-6.15 g/g, 1.43-2.48 g/g, and 0.54-1.27 mmol/g. DF of the 10 varieties had clear differences in characteristics and physicochemical properties.

  10. Iron Oxide Minerals in Atmospheric Dust and Source Sediments-Studies of Types and Properties to Assess Environmental Effects

    NASA Astrophysics Data System (ADS)

    Reynolds, R. L.; Goldstein, H. L.; Moskowitz, B. M.; Till, J. L.; Flagg, C.; Kokaly, R. F.; Munson, S.; Landry, C.; Lawrence, C. R.; Hiza, M. M.; D'Odorico, P.; Painter, T. H.

    2011-12-01

    Ferric oxide minerals in atmospheric dust can influence atmospheric temperatures, accelerate melting of snow and ice, stimulate marine phytoplankton productivity, and impact human health. Such effects vary depending on iron mineral type, size, surface area, and solubility. Generally, the presence of ferric oxides in dust is seen in the red, orange, or yellow hues of plumes that originate in North Africa, central and southwest Asia, South America, western North America, and Australia. Despite their global importance, these minerals in source sediments, atmospheric dust, and downwind aeolian deposits remain poorly described with respect to specific mineralogy, particle size and surface area, or presence in far-traveled aerosol compounds. The types and properties of iron minerals in atmospheric dust can be better understood using techniques of rock magnetism (measurements at 5-300 K), Mössbauer and high-resolution visible and near-infrared reflectance spectroscopy; chemical reactivity of iron oxide phases; and electron microscopy for observing directly the ferric oxide coatings and particles. These studies can elucidate the diverse environmental effects of iron oxides in dust and can help to identify dust-source areas. Dust-source sediments from the North American Great Basin and Colorado Plateau deserts and the Kalahari Desert, southern Africa, were used to compare average reflectance values with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance. Lower reflectance values correspond strongly with higher HIRM values, indicating that ferric oxides (hematite or goethite, or both) contribute to absorption of solar radiation in these sediments. Dust deposited to snow cover of the San Juan Mountains (Colorado) and Wasatch Mountains (Utah) was used to characterize dust composition compared with properties of sediments exposed in source-areas identified from satellite retrievals. Results from multiple methods indicate that

  11. Understanding the chemical properties of macerals and minerals in coal and its potential application for occupational lung disease prevention

    SciTech Connect

    Huang, X.; Finkelman, R.B.

    2008-07-01

    The objective of this review was to assess whether some chemical parameters in coal play a role in producing environmental health problems. Basic properties of coal - such as chemical forms of the organic materials, structure, compositions of minerals - vary from one coal mine region to another as well as from coals of different ranks. Most importantly, changes in chemical properties of coals due to exposure to air and humidity after mining - a dynamic process - significantly affect toxicity attributed to coal and environmental fate. Although coal is an extremely complex and heterogeneous material, the fundamental properties of coal responsible for environmental and adverse health problems are probably related to the same inducing components of coal. For instance, oxidation of pyrite (FeS{sub 2}) in the coal forms iron sulfate and sulfuric acid, which produces occupational lung diseases (e.g., pneumoconiosis) and other environmental problems (e.g., acid mine drainage and acid rain). Calcite (CaCO{sub 3}) contained in certain coals alters the end products of pyrite oxidation, which may make these coals less toxic to human inhalation and less hazardous to environmental pollution. Finally, knowledge gained on understanding of the chemical properties of coals is illustrated to apply for prediction of toxicity due to coal possibly before large-scale mining and prevention of occupational lung disease during mining.

  12. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    PubMed

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.

  13. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production.

  14. Microscopic structure and properties changes of cassava stillage residue pretreated by mechanical activation.

    PubMed

    Liao, Zhengda; Huang, Zuqiang; Hu, Huayu; Zhang, Yanjuan; Tan, Yunfang

    2011-09-01

    This study has focused on the pretreatment of cassava stillage residue (CSR) by mechanical activation (MA) using a self-designed stirring ball mill. The changes in surface morphology, functional groups and crystalline structure of pretreated CSR were examined by using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) under reasonable conditions. The results showed that MA could significantly damage the crystal structure of CSR, resulting in the variation of surface morphology, the increase of amorphous region ratio and hydrogen bond energy, and the decrease in crystallinity and crystalline size. But no new functional groups generated during milling, and the crystal type of cellulose in CSR still belonged to cellulose I after MA.

  15. Brief Report: HIV Infection Is Associated With Worse Bone Material Properties, Independently of Bone Mineral Density.

    PubMed

    Güerri-Fernández, Robert; Molina, Daniel; Villar-García, Judit; Prieto-Alhambra, Daniel; Mellibovsky, Leonardo; Nogués, Xavier; González-Mena, Alicia; Guelar, Ana; Trenchs-Rodríguez, Marta; Herrera-Fernández, Sabina; Horcajada, Juan Pablo; Díez-Pérez, Adolfo; Knobel, Hernando

    2016-07-01

    Low bone mineral density (BMD) in HIV-infected individuals has been documented in an increasing number of studies. However, it is not clear whether it is the infection itself or the treatment that causes bone impairment. Microindentation measures bone material strength (Bone Material Strength index) directly. We recruited 85 patients, 50 infected with HIV and 35 controls. Median Bone Material Strength index was 84.5 (interquartile range 83-87) in HIV-infected patients and 90 (88.5-93) in controls (P < 0.001). No significant differences in BMD between cases and controls at any of the sites examined (total hip, femoral neck, and lumbar spine). HIV infection is associated with bone damage, independently of BMD.

  16. How to improve fertility of African soils? Leguminous fallows (Cameroon), addition of farmyard manure and mineral fertilizer (Kenya), organic residues management and introduction of N2 fixing species in forest plantations (Congo).

    NASA Astrophysics Data System (ADS)

    Koutika, Lydie-Stella; Mareschal, Louis; Mouanda, Cadeau; Epron, Daniel

    2014-05-01

    Most of African soils are inherently infertile and poor in nutrients mainly nitrogen and phosphorus. Several practices are used to improve soil fertility, increase productivity and ensure their sustainability. Soil fertility in the leguminous fallows was evaluated through particulate organic matter (POM), the more active part of soil organic matter (SOM) in Cameroon. The combination of mineral and organic (manure) fertilizers increased microbial P biomass allowing the release of P along the plant growing period in the Kenyan soils. Organic residues management and introduction of nitrogen fixing species (Acacia) were used to improve soil fertility and sustain forest productivity on the coastal plains of Congo. SOM fractionation was made under Pueraria, Mucuna fallows and natural regrowth mainly Chromolaena and under 3 forest plantation treatments installed in previous savanna: 1) no input, 2) normal input, and 3) double input of organic residues. Microbial P biomass and sequential P fractionation were evaluated in high and low P fixing soils. N, C, available P and pH were determined on soil sampled in acacia (100A), eucalypt (100E) and mixed-species (50A:50E) stands. N and P were determined in aboveground litters and in leaves, bark and wood of trees. The two leguminous fallows increased N content in POM fractions i.e., N >1% for Pueraria and Mucuna against N<1% for natural regrowth in the 0-0.10m depth, probably through N input from N2 fixation from the atmosphere (Cameroon).The addition of mineral fertilizers and farmyard manure increases P biomass (4.8 after 2 weeks to 15.2 after 16 weeks), and then decreased to 9.7 mg P g-1 soil (week 32). It also changes the P Hedley fractions partition in the high P fixing Kenyan soil (0-0.10m). After two rotations (14 years), SOM mineralization was the highest in the double input of organic residues treatment (low coarse POM 5.6 g kg-1 of soil and high organo-mineral fraction (OMF) 115 g kg-1 of soil). The introduction of A

  17. Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1: Mechanical properties and residual stress levels.

    PubMed

    Tsui, Y C; Doyle, C; Clyne, T W

    1998-11-01

    Hydroxyapatite (HA) coatings have been sprayed on to substrates of Ti-6Al-4V, using a range of input power levels and plasma gas mixtures. Coatings have also been produced on substrates of mild steel and tungsten, in order to explore certain aspects of the mechanical behaviour of HA without the complication of yielding or creep in the substrate. Studies have been made of the phase constitution, porosity, degree of crystallinity, OH ion content, microstructure and surface roughness of the HA coatings. The Young's moduli in tension and in compression were evaluated by the cantilever beam bend test using a tungsten/HA composite beam. The flexural Young's modulus was determined using a free-standing deposit under the same test. Adhesion was characterised using the single-edge notch-bend test; this is considered superior to the tensile bond strength test in common use. Measured interfacial fracture energies were of the order 1-10 J m(-2). Stress levels were investigated using specimen curvature measurements in conjunction with a numerical process model. The quenching stress for HA was measured to be about 10-25 MPa and the residual stress level in HA coatings at room temperature are predicted to lie in the approximate range of 20-40 MPa (tensile). These residual stresses could be reduced in magnitude by maintaining the substrate at a low temperature (possibly below room temperature) during spraying and it may be worthwhile to explore this. Ideally, the HA coating should have low porosity, high cohesive strength, good adhesion to the substrate, a high degree of crystallinity and high chemical purity and phase stability. In practice, such combinations are rather difficult to achieve by just varying the spraying parameters.

  18. Evaluation of Antioxidant Properties and Mineral Composition of Purslane (Portulaca oleracea L.) at Different Growth Stages

    PubMed Central

    Uddin, Md. Kamal; Juraimi, Abdul Shukor; Ali, Md. Eaqub; Ismail, Mohd Razi

    2012-01-01

    The main objective of this research was to appraise the changes in mineral content and antioxidant attributes of Portulaca oleracea over different growth stages. The antioxidant activity was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP) assays. The iodine titration method was used to determine the ascorbic acid content (AAC). DPPH scavenging (IC50) capacity ranged from 1.30 ± 0.04 to 1.71 ± 0.04 mg/mL, while the ascorbic acid equivalent antioxidant activity (AEAC) values were 229.5 ± 7.9 to 319.3 ± 8.7 mg AA/100 g, total phenol content (TPC) varied from 174.5 ± 8.5 to 348.5 ± 7.9 mg GAE/100 g. AAC 60.5 ± 2.1 to 86.5 ± 3.9 mg/100 g and FRAP 1.8 ± 0.1 to 4.3 ± 0.1 mg GAE/g. There was good correlation between the results of TPC and AEAC, and between IC50 and FRAP assays (r2 > 0.9). The concentrations of Ca, Mg, K, Fe and Zn increased with plant maturity. Calcium (Ca) was negatively correlated with sodium (Na) and chloride (Cl), but positively correlated with magnesium (Mg), potassium (K), iron (Fe) and zinc (Zn). Portulaca olerecea cultivars could be used as a source of minerals and antioxidants, especially for functional food and nutraceutical applications. PMID:22949859

  19. Transport properties of interfacial Si-rich layers formed on silicate minerals during weathering: Implications for environmental concerns

    NASA Astrophysics Data System (ADS)

    Daval, Damien; Rémusat, Laurent; Bernard, Sylvain; Wild, Bastien; Micha, Jean-Sébastien; Rieutord, François; Fernandez-Martinez, Alejandro

    2015-04-01

    The dissolution of silicate minerals is of primary importance for various processes ranging from chemical weathering to CO2 sequestration. Whether it determines the rates of soil formation, CO2 uptake and its impact on climate change, channeling caused by hydrothermal circulation in reservoirs of geothermal power plants, durability of radioactive waste confinement glasses or geological sequestration of CO2, the same strategy is commonly applied for determining the long term evolution of fluid-rock interactions. This strategy relies on a bottom-up approach, where the kinetic rate laws governing silicate mineral dissolution are determined from laboratory experiments. However, a long-standing problem regarding this approach stems from the observation that laboratory-derived dissolution rates overestimate their field counterparts by orders of magnitude, casting doubt on the accuracy and relevance of predictions based on reactive-transport simulations. Recently [1], it has been suggested that taking into account the formation of amorphous Si-rich surface layers (ASSL) as a consequence of mineral dissolution may contribute to decrease the large gap existing between laboratory and natural rates. Our ongoing study is aimed at deciphering the extent to which ASSL may represent a protective entity which affects the dissolution rate of the underlying minerals, both physically (passivation) and chemically (by promoting the formation of a local chemical medium which significantly differs from that of the bulk solution). Our strategy relies on the nm-scale measurement of the physicochemical properties (diffusivity, thickness and density) of ASSL formed on cleavages of a model mineral (wollastonite) and their evolution as a function of reaction progress. Our preliminary results indicate that the diffusivity of nm-thick ASSL formed on wollastonite surface is ~1,000,000 times smaller than that reported for an aqueous medium, as estimated from the monitoring of the progression of a

  20. Mechanical and interfacial properties of poly(vinyl chloride) based composites reinforced by cassava stillage residue with different surface treatments

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjuan; Gan, Tao; Li, Qian; Su, Jianmei; Lin, Ye; Wei, Yongzuo; Huang, Zuqiang; Yang, Mei

    2014-09-01

    Cassava stillage residue (CSR), a kind of agro-industrial plant fiber, was modified by coupling agent (CA), mechanical activation (MA), and MA-assisted CA (MACA) surface treatments, respectively. The untreated and different surface treated CSRs were used to prepare plant fibers/polymer composites (PFPC) with poly(vinyl chloride) (PVC) as polymer matrix, and the properties of these CSR/PVC composites were compared. Surface treated CSR/PVC composites possessed better mechanical properties, water resistance and dimensional stability compared with the untreated CSR/PVC composite, attributing to the improvement of interfacial properties between CSR and PVC matrix. MACA-treated CSR was the best reinforcement among four types of CSRs (untreated, MA-treated, CA-treated, and MACA-treated CSRs) because MACA treatment led to the significant improvement of dispersion, interfacial adhesion and compatibility between CSR and PVC. MACA treatment could be considered as an effective and green method for enhancing reinforcement efficiency of plant fibers and the properties of PFPC.

  1. Tensile properties of rat femoral bone as functions of bone volume fraction, apparent density and volumetric bone mineral density.

    PubMed

    Nazarian, Ara; Araiza Arroyo, Francisco J; Rosso, Claudio; Aran, Shima; Snyder, Brian D

    2011-09-02

    Mechanical testing has been regarded as the gold standard to investigate the effects of pathologies on the structure-function properties of the skeleton. Tensile properties of cancellous and cortical bone have been reported previously; however, no relationships describing these properties for rat bone as a function of volumetric bone mineral density (ρ(MIN)), apparent density or bone volume fraction (BV/TV) have been reported in the literature. We have shown that at macro level, compression and torsion properties of rat cortical and cancellous bone can be well described as a function of BV/TV, apparent density or ρ(MIN) using non-destructive micro-computed tomographic imaging and mechanical testing to failure. Therefore, the aim of this study is to derive a relationship expressing the tensile properties of rat cortical bone as a function of BV/TV, apparent density or ρ(MIN) over a range of normal and pathologic bones. We used bones from normal, ovariectomized and osteomalacic animals. All specimens underwent micro-computed tomographic imaging to assess bone morphometric and densitometric indices and uniaxial tension to failure. We obtained univariate relationships describing 74-77% of the tensile properties of rat cortical bone as a function of BV/TV, apparent density or ρ(MIN) over a range of density and common skeletal pathologies. The relationships reported in this study can be used in the structural rigidity to provide a non-invasive method to assess the tensile behavior of bones affected by pathology and/or treatment options.

  2. Ice Nucleation of Bare and Sulfuric Acid-coated Mineral Dust Particles and Implication for Cloud Properties

    SciTech Connect

    Kulkarni, Gourihar R.; Sanders, Cassandra N.; Zhang, Kai; Liu, Xiaohong; Zhao, Chun

    2014-08-27

    Ice nucleation properties of different dust species coated with soluble material are not well understood. We determined the ice nucleation ability of bare and sulfuric acid coated mineral dust particles as a function of temperature (-25 to -35 deg C) and relative humidity with respect to water (RHw). Five different mineral dust species: Arizona test dust (ATD), illite, montmorillonite, quartz and kaolinite were dry dispersed and size-selected at 150 nm and exposed to sulfuric acid vapors in the coating apparatus. The condensed sulfuric acid soluble mass fraction per particle was estimated from the cloud condensation nuclei activated fraction measurements. The fraction of dust particles nucleating ice at various temperatures and RHw was determined using a compact ice chamber. In water-subsaturated conditions, compared to bare dust particles, we found that only coated ATD particles showed suppression of ice nucleation ability while other four dust species did not showed the effect of coating on the fraction of particles nucleating ice. The results suggest that interactions between the dust surface and sulfuric acid vapor are important, such that interactions may or may not modify the surface via chemical reactions with sulfuric acid. At water-supersaturated conditions we did not observed the effect of coating, i.e. the bare and coated dust particles had similar ice nucleation behavior.

  3. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    DOE PAGES

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; ...

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for amore » montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.« less

  4. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    SciTech Connect

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; Cygan, Randall Timothy

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for a montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.

  5. Tendon Mineralization Is Progressive and Associated with Deterioration of Tendon Biomechanical Properties, and Requires BMP-Smad Signaling in the Mouse Achilles Tendon Injury Model

    PubMed Central

    Zhang, Kairui; Asai, Shuji; Hast, Michael W.; Liu, Min; Usami, Yu; Iwamoto, Masahiro; Soslowsky, Louis J.; Enomoto-Iwamoto, Motomi

    2016-01-01

    Ectopic tendon mineralization can develop following tendon rupture or trauma surgery. The pathogenesis of ectopic tendon mineralization and its clinical impact have not been fully elucidated yet. In this study, we utilized a mouse Achilles tendon injury model to determine whether ectopic tendon mineralization alters the biomechanical properties of the tendon and whether BMP signaling is involved in this condition. A complete transverse incision was made at the midpoint of the right Achilles tendon in 8-week-old CD1 mice and the gap was left open. Ectopic cartilaginous mass formation was found in the injured tendon by 4 weeks post-surgery and ectopic mineralization was detected at 8–10 weeks post-surgery. Ectopic mineralization grew over time and volume of the mineralized materials of 25-weeks samples was about 2.5 fold bigger than that of 10-weeks samples, indicating that injury-induced ectopic tendon mineralization is progressive. In vitro mechanical testing showed that max force, max stress and mid-substance modulus in the 25-weeks samples were significantly lower than the 10-weeks samples. We observed substantial increases in expression of bone morphogenetic protein family genes in injured tendons 1 week post-surgery. Immunohistochemical analysis showed that phosphorylation of both Smad1 and Smad3 were highly increased in injured tendons as early as 1 week post-injury and remained high in ectopic chondrogenic lesions 4 weeks post-injury. Treatment with the BMP receptor kinase inhibitor (LDN193189) significantly inhibited injury-induced tendon mineralization. These findings indicate that injury-induced ectopic tendon mineralization is progressive, involves BMP signaling and associated with deterioration of tendon biomechanical properties. PMID:26825318

  6. Biosorption properties of citrus peel derived oligogalacturonides, enzyme-modified pectin and peel hydrolysis residues

    USDA-ARS?s Scientific Manuscript database

    Data is presented on the biosorption properties of modified pectins and pectin fragments using lead as a model cation. Samples tested for their sorption capacity are Narrow-Range Size-Classes of galacturonic acid oligomers, well characterized homogalacturonan demethylations series produced at pH 7....

  7. Enrichment of enzymatically mineralized gellan gum hydrogels with phlorotannin-rich Ecklonia cava extract Seanol(®) to endow antibacterial properties and promote mineralization.

    PubMed

    Douglas, Timothy E L; Dokupil, Agnieszka; Reczyńska, Katarzyna; Brackman, Gilles; Krok-Borkowicz, Malgorzata; Keppler, Julia K; Božič, Mojca; Van Der Voort, Pascal; Pietryga, Krzysztof; Samal, Sangram Keshari; Balcaen, Lieve; van den Bulcke, Jan; Van Acker, Joris; Vanhaecke, Frank; Schwarz, Karin; Coenye, Tom; Pamuła, Elżbieta

    2016-08-10

    Hydrogels offer several advantages as biomaterials for bone regeneration, including ease of incorporation of soluble substances such as mineralization-promoting enzymes and antibacterial agents. Mineralization with calcium phosphate (CaP) increases bioactivity, while antibacterial activity reduces the risk of infection. Here, gellan gum (GG) hydrogels were enriched with alkaline phosphatase (ALP) and/or Seanol(®), a seaweed extract rich in phlorotannins (brown algae-derived polyphenols), to induce mineralization with CaP and increase antibacterial activity, respectively. The sample groups were unmineralized hydrogels, denoted as GG, GG/ALP, GG/Seanol and GG/Seanol/ALP, and hydrogels incubated in mineralization medium (0.1 M calcium glycerophosphate), denoted as GG/ALP_min, GG/Seanol_min and GG/Seanol/ALP_min. Seanol(®) enhanced mineralization with CaP and also increased compressive modulus. Seanol(®) and ALP interacted in a non-covalent manner. Release of Seanol(®) occurred in a burst phase and was impeded by ALP-mediated mineralization. Groups GG/Seanol and GG/ALP/Seanol exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. GG/Seanol/ALP_min, but not GG/Seanol_min, retained some antibacterial activity. Eluates taken from groups GG/ALP_min, GG/Seanol_min and GG/ALP/Seanol_min displayed comparable cytotoxicity towards MG-63 osteoblast-like cells. These results suggest that enrichment of hydrogel biomaterials with phlorotannin-rich extracts is a promising strategy to increase mineralizability and antibacterial activity.

  8. The Evolution of Soil Hydrological and Physical Properties under the Impact of Mineral Weathering and Organic Matter Sequestration

    NASA Astrophysics Data System (ADS)

    Tan, F.; Lunn, E.; Fisher, B.; Yoo, K.; Imhoff, P. T.; Michael, H. A.

    2014-12-01

    Soil water characteristic (SWC) curve is important for modeling unsaturated flow and reactive transport. SWC also likely influences mineral weathering by affecting water-mineral interactions in the critical zone. The depth profiles of SWC could form as a result of long-term chemical weathering and physical erosion processes. We measured SWCs on samples collected from soil pit and drill cores which captured the weathering profiles from ground surface to slightly weathered bedrock (~7m depth) on a hillslope in Laurel Preserve in West Chester, PA. The weathering profile represents the co-evolution of hydrological and physical properties with varied degrees of weathering and organic matter (OM) content. A WP4C Dewpoint Potentiameter was used to obtain the SWCs (matric potential range: -300 ~ -1.5MPa) for original and OM-removed samples, where OM was removed by heating samples to 350℃ for 24 h. From the WP4C measurement, soil samples from shallower depths (≤44cm) retained more water at a given matric potential, with water contents at shallower depths generally ~2-3 times more than that for saprolite samples from deeper depths at similar matric potentials, indicating that soil water retention increased with degree of weathering. The SWCs measured by WP4C were used to estimate the specific surface area (SSA) using the Tuller and Or (TO) model (Tuller and Or, 2005) , which is based on the assumption that water forms a film on micropore surfaces at the dry end (matric potential ≤ -1.5MPa). The SSA estimation from the TO model followed the same trend as SSA measured with the N2-BET method. However, the estimated SSA was greater than BET-based SSA, indicating possible underestimation of SSA by the N2-BET method. The comparison of SWC and SSA between original and OM-removed samples indicated the presence of a threshold depth of ~40cm. At depths shallower than 40cm, especially at A horizon (OM ≥ 9.5Wt%), OM removal significantly decreased estimated SSA and water content

  9. The Maude Weir sediments. 1. Desorption and sorption of phosphorus, and related changes in mineral magnetic properties after desorption

    NASA Astrophysics Data System (ADS)

    Crockford, R. H.; Willett, I. R.

    2000-10-01

    Algal blooms frequently occur in the Maude Weir in the Murrumbidgee River of NSW, which are related to the availability of nutrients, particularly phosphorus. A clayey sediment from the bottom released P to the water when kept under reducing conditions, but did not release P when the supernatant water was aerated. The same material, with and without aeration, sorbed P when resuspended in water containing 1 mg P L-1. The resuspended anaerobic material adsorbed almost twice as much as the same material under aerobic conditions. Vigorous mixing, simulating transport breakage and abrasion, caused a substantial increase in sorption, with the effect being greater for the aerobic material. This was attributed to fragmentation of iron oxide aggregates formed during oxidation. Mineral magnetic properties, susceptibility and remanence ratios SIRM/, SIRM/ARM and IRMh%, of the material from the desorption experiment reflected changes in the chemical state of iron caused by oxidation and reduction.

  10. Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties.

    PubMed

    Sehaqui, Houssine; Mautner, Andreas; Perez de Larraya, Uxua; Pfenninger, Numa; Tingaut, Philippe; Zimmermann, Tanja

    2016-01-01

    Cationic cellulose nanofibers (CNF) having 3 different contents of positively charged quaternary ammonium groups have been prepared from waste pulp residues according to a water-based modification method involving first the etherification of the pulp with glycidyltrimethylammonium chloride followed by mechanical disintegration. The cationic nanofibers obtained were observed by scanning electron microscopy and the extent of the reaction was evaluated by conductometric titration, ζ-potential measurements, and thermogravimetric analyses. The cationic CNF had a maximum cationic charge content of 1.2mmolg(-1) and positive ζ-potential at various pH values. Sorption of negatively charged contaminants (fluoride, nitrate, phosphate and sulphate ions) and their selectivity onto cationic CNF have been evaluated. Maximum sorption of ∼0.6mmolg(-1) of these ions by CNF was achieved and selectivity adsorption studies showed that cationic CNF are more selective toward multivalent ions (PO4(3-) and SO4(2-)) than monovalent ions (F(-) and NO3(-)). In addition, we demonstrated that cationic CNF can be manufactured into permeable membranes capable of dynamic nitrate adsorption by utilizing a simple paper-making process.

  11. SucStruct: Prediction of succinylated lysine residues by using structural properties of amino acids.

    PubMed

    López, Yosvany; Dehzangi, Abdollah; Lal, Sunil Pranit; Taherzadeh, Ghazaleh; Michaelson, Jacob; Sattar, Abdul; Tsunoda, Tatsuhiko; Sharma, Alok

    2017-03-28

    Post-Translational Modification (PTM) is a biological reaction which contributes to diversify the proteome. Despite many modifications with important roles in the cellular activity, lysine succinylation has recently emerged as an important PTM mark. It alters the chemical structure of lysines, leading to remarkable changes in the structure and function of proteins. Given the huge amount of proteins being sequenced in the post-genome era, the experimental detection of succinylated residues remains expensive, inefficient and time-consuming. Therefore, the development of computational tools for accurately predicting succinylated lysines is an urgent necessity. To date, several approaches have been proposed but their sensitivity has been reportedly poor. In this paper, we propose an approach that utilizes structural features of amino acids to improve lysine succinylation prediction. Succinylated and non-succinylated lysines were first retrieved from 670 proteins and characteristics such as accessible surface area, backbone torsion angles, and local structure conformations were incorporated. We used the k-nearest neighbors cleaning for dealing with class imbalance and designed a pruned decision tree for classification. Our predictor, referred as SucStruct (Succinylation using Structural features), proved to significantly improve performance when compared to previous predictors, with sensitivity, accuracy and Mathew's correlation coefficient equal to 0.7334-0.7946, 0.7444-0.7608 and 0.4884-0.5240, respectively.

  12. Active subsite properties, subsite residues and targeting to lysosomes or midgut lumen of cathepsins L from the beetle Tenebrio molitor.

    PubMed

    Damasceno, Ticiane F; Dias, Renata O; de Oliveira, Juliana R; Salinas, Roberto K; Juliano, Maria A; Ferreira, Clelia; Terra, Walter R

    2017-10-01

    Cathepsins L are the major digestive peptidases in the beetle Tenebrio molitor. Two digestive cathepsins L (TmCAL2 and TmCAL3) from it had their 3D structures solved. The aim of this paper was to study in details TmCAL3 specificity and properties and relate them to its 3D structure. Recombinant TmCAL3 was assayed with 64 oligopeptides with different amino acid replacements in positions P2, P1, P1' and P2'. Results showed that TmCAL3 S2 specificity differs from the human enzyme and that its specificities also explain why on autoactivation two propeptide residues remain in the enzyme. Data on free energy of binding and of activation showed that S1 and S2' are mainly involved in substrate binding, S1' acts in substrate binding and catalysis, whereas S2 is implied mainly in catalysis. Enzyme subsite residues were identified by docking with the same oligopeptide used for kinetics. The subsite hydrophobicities were calculated from the efficiency of hydrolysis of different amino acid replacements in the peptide and from docking data. The results were closer for S1 and S2' than for S1' and S2, indicating that the residue subsites that were more involved in transition state binding are different from those binding the substrate seen in docking. Besides TmCAL1-3, there are nine other cathepsins L, most of them more expressed at midgut. They are supposed to be directed to lysosomes by a Drosophila-like Lerp receptor and/or motifs in their prodomains. The mannose 6-phosphate lysosomal sorting machinery is absent from T. molitor transcriptome. Cathepsin L direction to midgut contents seems to depend on overexpression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Impact damage resistance and residual property assessment of (0/+/-45/90)s SCS-6/Timetal 21S

    NASA Technical Reports Server (NTRS)

    Miller, Jennifer L.; Portanova, Marc A.; Johnson, W. Steven

    1995-01-01

    The impact damage resistance and residual mechanical properties of (0/ +/- 45/90)s SCS-6/Timetal 21S composites were evaluated. Both quasi-static indentation and drop-weight impact tests were used to investigate the impact behavior at two nominal energy levels (5.5 and 8.4 J) and determine the onset of internal damage. Through x-ray inspection, the extent of internal damage was characterized non-destructively. The composite strength and constant amplitude fatigue response were evaluated to assess the effects of the sustained damage. Scanning electron microscopy was used to characterize internal damage from impact in comparison to damage that occurs during mechanical loading alone. The effect of stacking sequence was examined by using specimens with the long dimension of the specimen both parallel (longitudinal) and perpendicular (transverse) to the 0 deg fiber direction. Damage in the form of longitudinal and transverse cracking occurred in all longitudinal specimens tested at energies greater than 6.3 J. Similar results occurred in the transverse specimens tested above 5.4 J. Initial load drop, characteristic of the onset of damage, occurred on average at 6.3 J in longitudinal specimens and at 5.0 J in transverse specimens. X-ray analysis showed broken fibers in the impacted region in specimens tested at the higher impact energies. At low impact energies, visible matrix cracking may occur, but broken fibers may not. Matrix cracking was noted along fiber swims and it appeared to depend on the surface quality of composite. At low impact energies, little damage has been incurred by the composite and the residual strength and residual life is not greatly reduced as compared to an undamaged composite. At higher impact energies, more damage occurred and a greater effect of the impact damage was observed.

  14. Short-term antimicrobial properties of mineral trioxide aggregate with incorporated silver-zeolite.

    PubMed

    Odabaş, Mesut E; Cinar, Cağdaş; Akça, Gülçin; Araz, Ibrahim; Ulusu, Tezer; Yücel, Hayrettin

    2011-06-01

    The purpose of this in vitro study was to determine whether adding silver-zeolite (SZ) to mineral trioxide aggregate (MTA) would enhance the antimicrobial activity of MTA against Staphylococcus aureus (ATCC #25923), Enterococcus faecalis (ATCC #29212), Escherichia coli (ATCC#25922), Pseudomonas aeruginosa (ATCC #27853), Candida albicans (ATCC #90028), Porphyromonas gingivalis (ATCC #33277), Actinomyces israelii (ATCC #12102), and Prevotella intermedia (ATCC# 15032). SZ was added at 0.2% and 2% mass fraction concentration to MTA powder. The control group was MTA powder with no SZ. The antimicrobial effect test was accomplished by placing freshly mixed MTA specimens on agar plates inoculated with microorganisms and comparing the zones of inhibition at 24, 48, and 72 h. The amounts of silver ion release from MTA specimens were measured with atomic absorption spectrophotometry at 10-min, 24-, 48-, and 72-h periods. The pH of MTA specimens was measured with a pH meter at 10-min, 24-, 48-, and 72-h periods. MTA with 2% and 0.2% SZ specimens showed inhibitory effects on some microorganisms at all time periods, whereas no antimicrobial activity showed for P. intermedia and A. israelii. MTA without SZ inhibited C. albicans, E. Coli, and P. intermedia. The highest silver release was detected in 2% SZ MTA at 24 h. The incorporation of SZ may enhance the antimicrobial activity of MTA.

  15. Thermoluminescence properties of natural zoisite mineral under γ-irradiations and high temperature annealing

    NASA Astrophysics Data System (ADS)

    Ccallata, H. Javier; Filho, L. Tomaz; Watanabe, S.

    2011-04-01

    Natural silicate mineral of zoisite, Ca 2Al 3(SiO 4)(Si 2O 7)O(OH), has been investigated concerning γ-radiation, UV-radiation and high temperature annealing effects on thermoluminescence (TL). X-ray diffraction (XRD) measurement confirmed zoisite structure and X-ray fluorescence (XRF) analysis revealed besides Si, Al and Ca that are the main crystal components, other oxides of Fe, Mg, Cr, Na, K, Sr, Ti, Ba and Mn which are present in more than 0.05 wt%. The TL glow curve of natural sample contains (130-150), (340-370) and (435-475) °C peaks. Their shapes indicated a possibility that they are result of composition of two or more peaks strongly superposed, a fact confirmed by deconvolution method. Once pre-annealed at 600 °C for 1 h, the shape of the glow curves change and the zoisite acquires high sensitivity. Several peaks between 100 and 400 °C appear superposed, and the high temperature peak around 435 °C cannot be seen. The ultraviolet radiation, on the other hand, produces one TL peak around 130 °C and the second one around 200 °C and no more.

  16. mineral magnetic properties of road dust from visakhapatnam (India) - relationship to industrial pollution and road traffic

    NASA Astrophysics Data System (ADS)

    Goddu, S.; Appel, E.; Jordanova, D.

    2003-04-01

    Application of magnetic methods is a fast tool for preliminary evaluation of the relative degree of an increased industrial pollution. Mineral magnetic studies of anthropogenic magnetic phases in road dust from the industrial zone of Visakhaptnam city (India) reveal the presence of large anthropogenic spherules with diameters up to ~300 mm. Wide variation in the size of the spherules including highly porous ones as well as the presence of irregular shaped and melt-like particles point to multiple sources of pollution. Magnetic mineralogy of the samples is dominated by a magnetite-like phase. Hysteresis parameters, measured on magnetic extracts and single grains, are typical for pseudo-single domain (PSD) magnetite. However, direct comparison with the SEM micrographs of the examined particles reveals that the real grain sizes are much larger than the ones expected for PSD particles of magnetite. Consequently, classical methods for magnetic granulometry are not directly applicable to anthropogenic phases due to their complex mineralogy and internal structures, probably represented by an agglomeration of smaller ferrimagnetic grains imbedded in a non-ferrimagnetic matrix. EDX analysis shows major contribution of other cations then Fe. However Curie temperatures indicate that no Fe substitution occurs in the lattice of magnetite. Single irregular grains showing typical ferri(o)magnetic behaviour are found to contain 50wt% chromium. Variations of the magnetic susceptibility along the three major roads in the industrial zone of Visakhaptnam are interpreted in terms of relative degree of pollution.

  17. Thermal IR radiative properties of mixed mineral dust and biomass aerosol during SAMUM-2

    NASA Astrophysics Data System (ADS)

    Köhler, Claas H.; Trautmann, Thomas; Lindermeir, Erwin; Vreeling, Willem; Lieke, Kirsten; Kandler, Konrad; Weinzierl, Bernadett; Groß, Silke; Tesche, Matthias; Wendisch, Manfred

    2011-09-01

    Ground-based high spectral resolution measurements of downwelling radiances from 800 to 1200 cm-1 were conducted between 20 January and 6 February 2008 within the scope of the SAMUM-2 field experiment. We infer the spectral signature of mixed biomass burning/mineral dust aerosols at the surface from these measurements and at top of the atmosphere from IASI observations. In a case study for a day characterized by the presence of high loads of both dust and biomass we attempt a closure with radiative transfer simulations assuming spherical particles. A detailed sensitivity analysis is performed to investigate the effect of uncertainties in the measurements ingested into the simulation on the simulated radiances. Distinct deviations between modelled and observed radiances are limited to a spectral region characterized by resonance bands in the refractive index. A comparison with results obtained during recent laboratory studies and field experiments reveals, that the deviations could be caused by the aerosol particles' non-sphericity, although an unequivocal discrimination from measurement uncertainties is not possible. Based on radiative transfer simulations we estimate the aerosol's direct radiative effect in the atmospheric window region to be 8 W m-2 at the surface and 1 W m-2 at top of the atmosphere.

  18. Influence of acidic environment on properties of biodentine and white mineral trioxide aggregate: a comparative study.

    PubMed

    Elnaghy, Amr M

    2014-07-01

    The purpose of this study was to evaluate the surface microhardness, compressive strength, bond strength, and morphologic microstructures of Biodentine (BD; Septodont, Saint Maur des Fossés, France) and white mineral trioxide aggregate (WMTA) after exposure to a range of acidic pH levels. For each test, 4 groups of each material were exposed to pH values of 7.4, 6.4, 5.4, and 4.4, respectively, for 7 days. The surface hardness was determined using Vickers microhardness. The compressive strength and micro-push-out bond strength were determined using the universal testing machine at a crosshead speed of 0.5 mm/min. The morphologic microstructures of specimens were evaluated using scanning electron microscopy. BD showed higher surface hardness, compressive strength, and bond strength to root dentin compared with WMTA after exposure to different pH values. A substantial change in the microstructure of BD and WMTA occurred after exposure to different pH values. WMTA appeared to be more sensitive to acidic pH environments than BD. BD material seems more appropriate for use when exposed to an acidic environment compared with WMTA. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Global Distributions of Mineral Dust Properties from SeaWiFS and MODIS: From Sources to Sinks

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Bettenhausen, C.; Sayer, A.

    2011-01-01

    The impact of natural and anthropogenic sources of mineral dust has gained increasing attention from scientific communities in recent years. Indeed, these airborne dust particles, once lifted over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the oceans resulting in important biogeochemical impacts on the ecosystem. Due to the relatively short lifetime (a few hours to about a week), the distributions of these mineral dust particles vary extensively in both space and time. Consequently, satellite observations are needed over both source and sink regions for continuous temporal and spatial sampling of aerosol properties. With the launch of SeaWiFS in 1997, Terra/MODIS in 1999, and Aqua/MODIS in 2002, high quality comprehensive aerosol climatology is becoming feasible for the first time. As a result of these unprecedented satellite data records, studies of the radiative and biogeochemical effects due to dust aerosols are now possible. In this study, we will show the comparisons of satellite retrieved aerosol optical thickness using Deep Blue algorithm with data from AERONET sunphotometers over desert and semi-desert regions as well as vegetated areas. Our results indicate reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from Sea WiFS and MODIS-like instruments. The multiyear satellite measurements since 1997 from Sea WiFS will be compared with those retrieved from MODIS and MISR, and will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with the dust outbreaks over the entire globe. Finally, the trends observed over the last decade based upon the SeaWiFS time series in the amounts of tropospheric aerosols due to natural and anthropogenic sources (such as changes in the frequency

  20. Relationships between dairy powder surface composition and wetting properties during storage: importance of residual lipids.

    PubMed

    Gaiani, Claire; Scher, Joel; Ehrhardt, Jean Jacques; Linder, Michel; Schuck, Pierre; Desobry, Stephane; Banon, Sylvie

    2007-08-08

    The relationships between powder surface composition and powder rehydration properties under variable conditions of storage are investigated in this paper. A rheological approach was used to evaluate the modifications induced by storage on the rehydration properties of native phosphocaseinate powder. Concurrently, the powder surface composition (i.e., lactose, proteins, and lipids) was evaluated by X-ray photoelectron spectroscopy (XPS). A strong correlation was found between the powder wetting time lengthening and the migration of lipids on the powder surface during storage. XPS studies indicated also an over-representation of lipids on the powder surface (6%) in comparison with total lipids (0.4%) even on fresh powder before storage. Detailed investigation of powder lipids revealed the presence of high levels of polar lipids (66% compared with <1% in milk lipids). Their amphiphilic nature and their melting points could explain the extensive enrichment of lipids observed at the powder surface during processing and storage.

  1. Modeling Optical Properties of Mineral Aerosol Particles by Using Nonsymmetric Hexahedra

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Kahn, Ralph

    2010-01-01

    We explore the use of nonsymmetric geometries to simulate the single-scattering properties of airborne dust particles with complicated morphologies. Specifically, the shapes of irregular dust particles are assumed to be nonsymmetric hexahedra defined by using the Monte Carlo method. A combination of the discrete dipole approximation method and an improved geometric optics method is employed to compute the single-scattering properties of dust particles for size parameters ranging from 0.5 to 3000. The primary optical effect of eliminating the geometric symmetry of regular hexahedra is to smooth the scattering features in the phase function and to decrease the backscatter. The optical properties of the nonsymmetric hexahedra are used to mimic the laboratory measurements. It is demonstrated that a relatively close agreement can be achieved by using only one shape of nonsymmetric hexahedra. The agreement between the theoretical results and their measurement counterparts can be further improved by using a mixture of nonsymmetric hexahedra. It is also shown that the hexahedron model is much more appropriate than the "equivalent sphere" model for simulating the optical properties of dust particles, particularly, in the case of the elements of the phase matrix that associated with the polarization state of scattered light.

  2. Modeling Optical Properties of Mineral Aerosol Particles by Using Nonsymmetric Hexahedra

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Kahn, Ralph

    2010-01-01

    We explore the use of nonsymmetric geometries to simulate the single-scattering properties of airborne dust particles with complicated morphologies. Specifically, the shapes of irregular dust particles are assumed to be nonsymmetric hexahedra defined by using the Monte Carlo method. A combination of the discrete dipole approximation method and an improved geometric optics method is employed to compute the single-scattering properties of dust particles for size parameters ranging from 0.5 to 3000. The primary optical effect of eliminating the geometric symmetry of regular hexahedra is to smooth the scattering features in the phase function and to decrease the backscatter. The optical properties of the nonsymmetric hexahedra are used to mimic the laboratory measurements. It is demonstrated that a relatively close agreement can be achieved by using only one shape of nonsymmetric hexahedra. The agreement between the theoretical results and their measurement counterparts can be further improved by using a mixture of nonsymmetric hexahedra. It is also shown that the hexahedron model is much more appropriate than the "equivalent sphere" model for simulating the optical properties of dust particles, particularly, in the case of the elements of the phase matrix that associated with the polarization state of scattered light.

  3. The Other Iron Minerals: Magnetic Properties at Room and Low Temperature

    NASA Astrophysics Data System (ADS)

    Hirt, A. M.

    2003-12-01

    The magnetic properties of iron oxides and iron sulfides that are carriers of paleomagnetic fields have been well studied. Less is known about the magnetic properties of iron phases that are not common carriers of remanent magnetization, or those that are paramagnetic at room temperature. They include iron (oxy-)hydroxides, iron carbonates, iron phosphates and iron sulfates. Many of these phases are not easily identifiable with traditional X ray diffraction or spectroscopic methods, due to their poor crystallinity or low concentration in soils and sediments. Since they are important indicators of the environmental conditions under which they form and are preserved, alternative methods for their identification are of interest. AC and DC magnetometry are very sensitive in detecting low concentrations of magnetic phases. A short overview will be given on the magnetic properties of less-considered iron phases, including the iron (oxy-)hydroxides goethite, lepidocrocite and ferrihydrite; siderite, an iron carbonate; the iron phosphate vivianite; and iron sulfate, schwertmannite. Factors that influence the magnetic properties, such as cation substitution, grain size and particle interaction will be discussed, as well as the environmental conditions under which they form and are preserved.

  4. Comprehensive Study of Mediterranean (Croatian) Propolis Peculiarity: Headspace, Volatiles, Anti-Varroa-Treatment Residue, Phenolics, and Antioxidant Properties.

    PubMed

    Jerković, Igor; Marijanović, Zvonimir; Kuś, Piotr M; Tuberoso, Carlo I G

    2016-02-01

    Eight propolis samples from Croatia were analyzed in detail, to study the headspace, volatiles, anti-Varroa-treatment residue, phenolics, and antioxidant properties. The samples exhibited high qualitative/quantitative variability of the chemical profiles, total phenolic content (1,589.3-14,398.3 mg GAE (gallic acid equivalent)/l EtOH extract), and antioxidant activity (11.1-133.5 mmol Fe(2+) /l extract and 6.2-65.3 mmol TEAC (Trolox® equivalent antioxidant capacity)/l extract). The main phenolics quantified by HPLC-DAD at 280 and 360 nm were vanillin, p-coumaric acid, ferulic acid, chrysin, galangin, and caffeic acid phenethyl ester. The major compounds identified by headspace solid-phase microextraction (HS-SPME), simultaneous distillation extraction (SDE), and subsequent GC-FID and GC/MS analyses were α-eudesmol (up to 19.9%), β-eudesmol (up to 12.6%), γ-eudesmol (up to 10.5%), benzyl benzoate (up to 28.5%), and 4-vinyl-2-methoxyphenol (up to 18.1%). Vanillin was determined as minor constituent by SDE/GC-FID/MS and HPLC-DAD. The identified acaricide residue thymol was ca. three times more abundant by HS-SPME/GC-FID/MS than by SDE/GC-FID/MS and was not detected by HPLC-DAD. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  5. Hydrographic properties of separate residual basins of the Aral Sea: in situ observations and intercomparison

    NASA Astrophysics Data System (ADS)

    Izhitskiy, Alexander; Zavialov, Peter; Kurbaniyazov, Abilgazi

    2015-04-01

    Desiccation of the Aral Sea continued intensively throughout the last decade. As reported by NASA and widely commented in mass media, the eastern lobe of the Southern Sea (i.e., the Large Aral Sea) dried up completely in the summer of 2014. Only the western basin of the Large Sea remains there, and the separation of its northernmost portion called Chernyshev Bay is imminent. The northern part of the former Aral Sea known as the Small Aral Sea has separated decades ago and eventually stabilized thanks to a man-made dam trapping all of the Syr Daria discharges in the Small Sea. In addition, the Tschebas Bay, formerly a large bay of the Aral Sea, has evolved into a separate lake with relatively stable boundaries. In this way, the present-day Aral Sea should be considered as a system of separated water bodies with a common origin but different fates and very different physical, chemical, and biological features. In the presented study, we focus on hydrophysical state of the newly individual parts of the former Aral Sea. The comparative investigation is based on field data collected during two surveys of Shirshov Institute of Oceanology to the Aral Sea which took place in the fall season of 2014. In situ measurements including CTD profiling and water sampling were carried in the central western basin of the Large Aral (Aktumsuk area), in the northern extremity of the western Large Aral (Chernyshev bay), in Tschebas Lake, and the western part of the Small Sea (Shevchenko Bay). The analysis of direct observations together with the satellite data allows clarifying main processes and factors determining the physical state of the residual water bodies. According to the results of the in situ observations, three different types of hydrographic structure were documented in the lakes of the former Aral Sea. Salinity of Tschebas Lake water was around 92 g/kg, with the water column fully mixed from surface to bottom. The CTD measurements conducted in the Shevchenko bay of the

  6. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid) Green Composites during Thermal Cycling

    PubMed Central

    Katogi, Hideaki; Takemura, Kenichi; Akiyama, Motoki

    2016-01-01

    This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid) (PLA) during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin. PMID:28773694

  7. Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation.

    PubMed

    Hou, Furong; Ding, Wenhui; Qu, Wenjuan; Oladejo, Ayobami Olayemi; Xiong, Feng; Zhang, Weiwei; He, Ronghai; Ma, Haile

    2017-03-01

    This study evaluated the nutrient property and safety of the rice residue protein isolates (RRPI) product (extracted by different alkali concentrations) by exploring the protein functional, structural properties and lysinoalanine (LAL) formation. The results showed that with the rising of alkali concentration from 0.03M to 0.15M, the solubility, emulsifying and foaming properties of RRPI increased at first and then descended. When the alkali concentration was greater than 0.03M, the RRPI surface hydrophobicity decreased and the content of thiol and disulfide bond, Lys and Cys significantly reduced. By the analysis of HPLC, the content of LAL rose up from 276.08 to 15,198.07mg/kg and decreased to 1340.98mg/kg crude protein when the alkali concentration increased from 0.03 to 0.09M and until to 0.15M. These results indicated that RRPI alkaline extraction concentration above 0.03M may cause severe nutrient or safety problems of protein.

  8. Effect of feeding-tube properties on residual volume measurements in tube-fed patients.

    PubMed

    Metheny, Norma A; Stewart, Jena; Nuetzel, Gretel; Oliver, Dana; Clouse, Ray E

    2005-01-01

    The effect of feeding tube size and port configuration on the ability to measure gastric residual volume (GRV) is poorly understood. In addition, there is confusion about the need to measure GRVs during feedings into the small bowel. This study sought to (1) compare the volume of gastric contents obtained from small-diameter feeding tubes and large-diameter sump tubes concurrently positioned in the stomach and (2) describe the distribution of GRVs during small-bowel feedings. For the first objective, GRV measurements were made from 10-Fr tubes (n = 645) and 14-Fr or 18-Fr sump tubes (n = 645) concurrently present in 62 critically ill patients. Sixty-milliliter syringes were used to measure GRVs from the 10-Fr tubes; the fluid was returned to the stomach and measurements were repeated from the large-diameter sump tubes. To address the second research objective, 890 GRV measurements were made from 14-Fr or 18-Fr gastric sump tubes (not connected to suction) in 75 critically ill patients who were receiving small-bowel feedings. When GRVs were >50 mL, a linear regression equation indicated that volumes obtained from the large-diameter sump tubes were about 1.5 times greater than those obtained from the small-diameter tubes concurrently present in the stomach, p < .001. Gastric volumes > or =100 mL were found in 11.6% of the 890 measurements made in patients receiving small-bowel feedings; volumes > or =150 mL were found in 5.4% of the measurements. The findings suggest that GRVs obtained from large-diameter sump tubes are about 1.5 times greater than those obtained from 10-Fr tubes. Large GRVs occur in at least 5% of patients receiving postpyloric feedings.

  9. Effects of heavy metals on the electrokinetic properties of bacteria, yeast, and clay minerals

    SciTech Connect

    Collins, Y.E.

    1987-01-01

    The electrokinetic patterns of four bacteria (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae, Canida albicans), and two clay minerals (montmorillonite, kaolinite) in the presence of the chloride salts of heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) and of Na and Mg were determined by microelectrophoresis. The cells and clays were net negatively charged at pH values above their isoelectric point (pI) in solutions of Na, Mg, Hg, and Pb with an ionic strength (..mu..) of 3 x 10/sup -4/. However, at pH values above pH 5.0, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn. The charge of the bacteria and S. cerevisiae also reversed in solution of Ni and Cu with a ..mu.. > 3 x 10/sup -4/, whereas there was no reversal in solutions with a ..mu.. < 3 x 10/sup -4/. The clays became net positively charged when the ..mu.. of Cu was > 3 x 10/sup -4/ and that of Ni was > 1.5 x 10/sup -4/. The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite) (..mu.. = 3 x 10/sup -4/). The pI of the cells in the presence of some heavy metals, especially Ni and Cr, was at higher pH values than in the presence of Na and Mg.

  10. Effect of acid-etching procedure on selected physical properties of mineral trioxide aggregate.

    PubMed

    Kayahan, M B; Nekoofar, M H; Kazandağ, M; Canpolat, C; Malkondu, O; Kaptan, F; Dummer, P M H

    2009-11-01

    To evaluate the effect of acid-etch procedures on the compressive strength and surface microhardness of tooth-coloured mineral trioxide aggregate (MTA). White ProRoot MTA (Dentsply Tulsa Dental) was mixed and packed into cylindrical tubes of 4 mm in diameter and 6 mm in height. Three groups, each of 15 specimens were subjected to an acid-etch procedure either 4, 24 or 96 h after mixing. The compressive strength was measured and compared with unetched control groups. Differences between groups were analysed using the Kruskall-Wallis test. A further batch of cylindrical specimens of 6 mm in diameter and 12 mm in height were prepared for testing surface microhardness. Three groups of 15 specimens were subjected to the acid-etch procedure at either 4, 24 or 96 h following mixing. Data were subjected to one-way anova. Changes in the surface microstructure before and after the acid-etch procedures were analysed using a scanning electron microscope (SEM). There was a general trend for the compressive strength and surface microhardness of specimens to increase with time. In terms of compressive strength, the increase was significant between 4 h and the other time periods for both experimental and control groups (P < 0.0001); however, there was no significant difference between 24 and 96 h. The increase in surface microhardness was significant between 4, 24 and 96 h (P < 0.0001). In addition, there was a significant difference between experimental and control groups at all time periods (P < 0.0001). SEM examination revealed morphological differences between the intact and the etched MTA surfaces. Acid-etch procedures affected the compressive strength and surface microhardness of ProRoot MTA. This indicates that it may be better to postpone restorative procedures for at least 96 h after mixing MTA. Etching created surface changes that might have the potential to enhance bonding of resinous materials.

  11. Modeling and experimental evaluation of the thermal insulation properties of mineral wool products at high temperature

    SciTech Connect

    Dianous, P. de; Pincemin, F.; Boulet, P.; Jeandel, G.

    1997-11-01

    The authors have studied radiative transfer through insulating materials made of fibers and slugs (modeled respectively as infinite cylinders and spheres) at elevated temperatures. The same theoretical analysis is used for both fibers and spheres. Kerker-Mie theory is applied to determine the radiative coefficients of each type of particle, from the bulk glass complex refractive index and the fiber and slug diameter spectrum. Average radiative coefficients are determined for both fibers and slugs. The independent scattering hypothesis enables the authors to derive the total radiative coefficients of the whole material using a mass weighted average. The radiative transfer equation is solved for a one-dimensional problem, using the multiflux approximation. The conductive part is determined using a semi-empirical formula. The coupling between conduction and radiation is accounted for. This radiative model is applied to mineral wool products at room and elevated temperatures (400 C). Materials made of glass or rock fibers are considered. Special attention is given to fibrous materials with slugs. The authors show that radiative heat transfer reaches a minimum for given fiber and slug diameters. They study the respective contribution of fibers and slugs to radiative transfer as a function of the mean diameter and the amount of slugs present in the fibrous material. Calculated fluxes are compared to experimental ones measured on industrial rock and glass wool products for temperatures ranging from 24 to 400 C. The calculations are performed using the diameter spectra of fibers and slugs measured for these products. The influence of fiber orientation is also studied to better fit experimental data.

  12. Effect of the Paper Industry Residue on Properties in the Fresh Mortar

    NASA Astrophysics Data System (ADS)

    Azevedo, A. R. G.; Alexandre, J.; Vieira, C. M. F.; Xavier, C. G.; Zanelato, E. B.; Oliveira, L. I. V.

    The problem of solid was te gene rati on not only restricts construction, the industrial sector in general is a major contributor in this regard. Sol id waste can be of domestic or industrial origin, hence arises a major problem, which are the quantitative generated. The objective of this study is the evaluation and characterization of the incorporation of waste from paper industry in mortars at different levels (0% 5%, 10%, 15% , 20%, 25% and 30%), according properties in the fresh state as consistency index, entrained air content and water retention. It can be said that levels from 20% incorporation in lime, mortar produce very workability.

  13. Dosimetric property of mineral extracted from calamari and exposed to gamma rays

    NASA Astrophysics Data System (ADS)

    Cruz-Zaragoza, E.; Roman-Lopez, J.; Cruz, L. Pérez; Furetta, C.; Chiaravalle, E.; Mangiacotti, M.; Marchesani, G.

    2013-07-01

    Dosimetric property of polymineral fraction, quartz mainly, obtained from calamari was investigated. The commercial calamari samples from China and Sud Africa were collected in the markets of Italy. All polymineral debris were extracted and isolated from the whole body of calamari. The surface of the polymineral samples was analyzed by using the Scanning Electron Microscopy (SEM) and their chemical composition was determined using Energy Dispersive Spectroscopy (EDS). The polymineral was exposed to gamma rays (60Co) at different doses (0.5-80 Gy) to determine dosimetric property. Thermoluminescent (TL) glow curves showed two peaks centered at around 98-100 °C and 128-138 °C temperature range. The glow curves have been analyzed by using a deconvolution program. A linear dose response between 0.5 to 20 Gy was observed. The TL response of the samples as a function of the time storage, fading, presented a reduction of about 36-40 % at the end of 24 h. The reproducibility of the TL response after ten cycles of irradiation-readout showed an acceptable standard deviation in dosimetry. The polimineral fraction obtained from calamari shows an interesting dosimetric property and it may be useful for dosimetry in gamma radiation field.

  14. Dosimetric property of mineral extracted from calamari and exposed to gamma rays

    SciTech Connect

    Cruz-Zaragoza, E.; Roman-Lopez, J.; Cruz, L. Perez; Furetta, C.; Chiaravalle, E.; Mangiacotti, M.; Marchesani, G.

    2013-07-03

    Dosimetric property of polymineral fraction, quartz mainly, obtained from calamari was investigated. The commercial calamari samples from China and Sud Africa were collected in the markets of Italy. All polymineral debris were extracted and isolated from the whole body of calamari. The surface of the polymineral samples was analyzed by using the Scanning Electron Microscopy (SEM) and their chemical composition was determined using Energy Dispersive Spectroscopy (EDS). The polymineral was exposed to gamma rays ({sup 60}Co) at different doses (0.5-80 Gy) to determine dosimetric property. Thermoluminescent (TL) glow curves showed two peaks centered at around 98-100 Degree-Sign C and 128-138 Degree-Sign C temperature range. The glow curves have been analyzed by using a deconvolution program. A linear dose response between 0.5 to 20 Gy was observed. The TL response of the samples as a function of the time storage, fading, presented a reduction of about 36-40 % at the end of 24 h. The reproducibility of the TL response after ten cycles of irradiation-readout showed an acceptable standard deviation in dosimetry. The polimineral fraction obtained from calamari shows an interesting dosimetric property and it may be useful for dosimetry in gamma radiation field.

  15. Optical Properties Of Mineral Dust Particles Mixed With Black Carbon In Indo-Ganges Basin, Northern India

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Tripathi, S. N.

    2008-12-01

    non spherical shapes such as concentric spheres, spheroids, ellipsoids and layered rectangular bar, and various combinations of spheres and spheroids attached externally (maximum up to three). References Clarke, A. D., et al. (2004), Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties, J. Geophys. Res., 109, D15S09. Dey, S., et al. (2008), On the mixing state of aerosols in the Indo-Gangetic basin, northern India, Geophys. Res. Lett., 35, L03808. Draine, B. T., and P. J. Flatau (2004), User Guide for the Discrete Dipole Approximation Code DDSCAT 6.1, http://arxiv.org/abs/astro-ph/0409262v2. Lau, K. M., et al. (2006), Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau., J. Climate, 26, 855-864. Mishra, S. K., and S. N. Tripathi (2008), Modeling optical properties of mineral dust over the Indian Desert, J. Geophys. Res., accepted. Sokolik, I. N., and O. B. Toon (1999), Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths, J. Geophys. Res., 104, 9423- 9444. Tripathi S. N., et al. (2005), Aerosol black carbon radiative forcing at an industrial city in Northern India, Geophys. Res. Lett., 32(8), L08802. class="ab'>

  16. Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals

    SciTech Connect

    Collins, Y.E.; Stotzky, G. )

    1992-05-01

    The electrokinetic patterns of four bacterial species (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, and Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae and Candida albicans), and two clay minerals (montmorillonite and kaolinite) in the presence of the chloride salts of the heavy metals, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, and of Na and Mg were determined by microelectrophoresis. The cells and kaolinite were net negatively charged at pH values above their isoelectric points (pI) in the presence of Na, Mg, Hg, and Pb at an ionic strength ([mu]) of 3 [times] 10[sup [minus]4]; montmorillonite has no pI and was net negatively charged at all pH values in the presence of these metals. However, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn at pH values above 5.0 and then at higher pH values, again became negative. The charge of the bacteria and S. cerevisiae also reversed in solutions of Cu and Ni with a [mu] of >3 [times] 10[sup [minus]4], whereas there was no reversal in solutions with a [mu] of <3 [times] 10[sup [minus]4]. The clays became net positively charged when the [mu] of Cu was >3 [times] 10[sup [minus]4] and that of Ni was >1.5 [times] 10[sup [minus]4]. The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite). The pIs of the cells in the presence of the heavy metals were at either higher or lower pH values than in the presence of Na and Mg. Exposure of the cells to the various metals at pH values from 2 to 9 for the short times (ca. 10 min) required to measured the electrophoretic mobility did not affect their viability.

  17. Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals.

    PubMed Central

    Collins, Y E; Stotzky, G

    1992-01-01

    The electrokinetic patterns of four bacterial species (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, and Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae and Candida albicans), and two clay minerals (montmorillonite and kaolinite) in the presence of the chloride salts of the heavy metals, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, and of Na and Mg were determined by microelectrophoresis. The cells and kaolinite were net negatively charged at pH values above their isoelectric points (pI) in the presence of Na, Mg, Hg, and Pb at an ionic strength (mu) of 3 x 10(-4); montmorillonite has no pI and was net negatively charged at all pH values in the presence of these metals. However, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn at pH values above 5.0 (the pH at which charge reversal occurred differed with the metal) and then, at higher pH values, again became negative. The charge of the bacteria and S. cerevisiae also reversed in solutions of Cu and Ni with a mu of greater than 3 x 10(-4), whereas there was no reversal in solutions with a mu of less than 3 x 10(-4). The clays became net positively charged when the mu of Cu was greater than 3 x 10(-4) and that of Ni was greater than 1.5 x 10(-4). The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite) (mu = 3 x 10(-4)). The pIs of the cells in the presence of the heavy metals were at either higher or lower pH values than in the presence of Na and Mg. Exposure of the cells to the various metals at pH values from 2 to 9 for the short times (ca. 10 min) required to measure the electrophoretic mobility did not affect their viability. The specific adsorption on the cells and clays of the hydrolyzed species of some of the heavy metals that formed at higher p

  18. Anomalous magnetic properties in rocks containing the mineral siderite: Paleomagnetic implications

    NASA Astrophysics Data System (ADS)

    Ellwood, Brooks B.; Balsam, William; Burkart, Burke; Long, Gary J.; Buhl, Margaret L.

    1986-11-01

    Sampling and magnetic measurement of a 1-m bed in a new road cut of the Upper Cretaceous Austin Chalk (northeastern Texas) has yielded anomalous magnetic results. Initial measurement of the anisotropy of magnetic susceptibility (AMS) indicated unusually high anisotropies and low bulk susceptibilities characteristic of a magnetocrystalline anisotropy which might be expected for siderite (FeCO3). Natural remanent moments (NRM) for these samples were low (<1 × 10-4 A m2), and directions were typical for samples which had acquired a normal geomagnetic field overprint at the site. Periodic remeasurement of the NRM yielded an increase in moment for some samples and periodic reversals of RM in a direction parallel or antiparallel to the ambient field in the laboratory. Isothermal remanent moments of these samples saturates at low induction values (˜200 mT). AMS remeasurement over a period of weeks to months revealed a general decrease in the anisotropy magnitudes, an increase in susceptibility, and a change in principal axis orientations. These data were compared with heating (oxidation) experiments on Austin Chalk, siderite ore, and clastic sediments with siderite cements. All of these results are consistent with the X-ray diffraction and Mössbauer data, which indicate the presence of siderite in the Austin Chalk samples. The Mössbauer spectra of the samples obtained at room temperature and 78°K indicate the presence of approximately 80% pyrite, 10% siderite, and 10% of a clay component (possibly chlorite) when only the iron-bearing mineral components are considered. After sampling, exposure to the air, and subsequent oxidation in the laboratory, the siderite in Austin Chalk samples appears to have altered to γFe2O3 (maghemite) or Fe3O4 (magnetite), increasing the magnetic moment and changing the NRM and AMS directions in the samples. The continuing changes appear to reflect a conversion from the less stable γFe2O3 to αFe2O3 (hematite) or oxidation of Fe3O4 to

  19. Proximate composition, functional properties, amino acid, mineral and vitamin contents of a novel food: Alhydwan (Boerhavia elegana Choisy) seed flour.

    PubMed

    Al-Farga, Ammar; Zhang, Hui; Siddeeg, Azhari; Shamoon, Muhammad; V M Chamba, Moses; Al-Hajj, Nabil

    2016-11-15

    Alhydwan (Boerhavia elegana Choisy) seed flour was evaluated for chemical and nutritional composition, and functional properties in a pursuit to identify an innovative plant with high nutraceuticals value which could be exploited in other food applications. The flour was found to be rich in dietary fiber (30.13%), protein (14.60%), crude fat (11.49%), carbohydrates (30.77%), and ash (6.88%) and encompassed adequate amounts of essential amino acids and minerals, whereas, sucrose constituted 71.3% of total sugar contents. Vitamins analysis revealed that flour is rich in water-soluble vitamins such as Thiamin (B1), Riboflavin (B2) and Niacin (B3), to the amounts of 19.3, 8.2 and 2.3mg/100g, respectively. Results on functional properties demonstrated high water and oil absorption capacities of 6.31 and 2.43g/g, respectively. Foaming capacity, foam stability and emulsion capacity were 9.35%, 6.90%, and 29.60%, respectively. It can be concluded that alhydwan is an excellent food material with a high nutritional value.

  20. In Vitro Sealing Properties of Calcium-Enriched Mixture and Mineral Trioxide Aggregate Orifice Barriers during Intra-Coronal Bleaching

    PubMed Central

    Moghadam, Negar; Abdollahi, Amir Ardalan; Aghabalayi Fakhim, Hoda; Borna, Zahra

    2017-01-01

    Introduction: This study aimed at evaluating the sealing properties of calcium-enriched mixture (CEM) compared to mineral trioxide aggregate (MTA) as a cervical barriers in intra-coronal bleaching. Methods and Materials: In this in vitro study, endodontic treatment was performed on 60 extracted human incisors and canines without canal calcification, caries, restorations, resorption or cracks. The teeth were then randomly divided into two experimental groups and two control groups (n=15). Then, CEM cement and MTA were applied as 3-mm intra-orifice barriers in the test groups; a mixture of sodium perborate and 30% hydrogen peroxide bleaching agents were placed within the pulp chamber for one week. Dye penetration method was used to evaluate the sealing ability of agents. Statistical analysis was performed using SPSS software. The Kendall coefficient was used to evaluate inter-observer agreement. The chi-squared test was used for statistical analysis. Results: The results showed that the penetration rates of CEM and MTA were the same as positive control group, with no significant differences (P=0.673 and P=0.408, respectively). However, there was a significant difference between the negative control group and CEM and MTA groups (P=0.001 for both groups). In addition, the sealing ability of MTA and CEM cement were not significantly different (P=0.682). Conclusion: During intra-coronal bleaching procedures CEM cement can be used as a cervical barrier with sealing properties comparable to that of MTA. PMID:28512492

  1. MISR Decadal Observations of Mineral Dust: Property Characterization and Climate Applications

    NASA Technical Reports Server (NTRS)

    Kalashnikova, Olga V.; Garay, Michael J.; Sokolik, Irina; Kahn, Ralph A.; Lyapustin, A.; Diner, David J.; Lee, Jae N.; Torres, Omar; Leptoukh, Gregory G.; Sabbah, Ismail

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) provides a unique, independent source of data for studying dust emission and transport. MISR's multiple view angles allow the retrieval of aerosol properties over bright surfaces, and such retrievals have been shown to be sensitive to the non-sphericity of dust aerosols over both land and water. MISR stereographic views of thick aerosol plumes allow height and instantaneous wind derivations at spatial resolutions of better than 1.1 km horizontally and 200m vertically. We will discuss the radiometric and stereo-retrieval capabilities of MISR specifically for dust, and demonstrate the use of MISR data in conjunction with other available satellite observations for dust property characterization and climate studies.First, we will discuss MISR non-spherical (dust) fraction product over the global oceans. We will show that over the Atlantic Ocean, changes in the MISR-derived non-spherical AOD fraction illustrate the evolution of dust during transport. Next, we will present a MISR satellite perspective on dust climatology in major dust source regions with a particular emphasis on the West Africa and Middle East and discuss MISR's unique strengths as well as current product biases. Finally, we will discuss MISR dust plume product and climatological applications.

  2. Magnetic properties of dissolving minerals in the Ria Arousa (western Spain)

    NASA Astrophysics Data System (ADS)

    Emiroglu, S.; Petersen, N.; Rey, D.

    2003-04-01

    The Ría Arousa (estuarine-like environment located in western Spain) is becoming contaminated by heavy metals from industrialization nearby, which also affects marine organisms like mussels, which are cultivated inside the ría. In the framework of continuous monitoring of the water quality and sediment chemistry, magnetic measurements on sediment cores (reaching 5~m depth) from different locations in the Ría Arousa have been carried out in order to better characterize the sedimentary environment. All magnetic properties (e.g. low-field susceptibility, saturation remanence, coercivity) change significantly with depth. The differences in SIRM and ARM acquisition reflect grain-size and mineralogy dependent changes of magnetic phases. Since the thermomagnetic curves show the same magnetic phases in all depths, the observed behaviors of coercivity and susceptibility are due to a corresponding change in grain sizes, rather than to big shifts in magneto-mineralogy. Along with the depth trend of susceptibility and remanence, these findings lead to the suggestion that iron-oxides dissolve with increasing time and depth and at different rates, so that their relative proportions change. The magnetic properties of the sediments indicate dissolution of magnetite and other iron-oxides in a strongly reducing environment; the reducing milieu could mobilize heavy metals, which were accumulated in organic matter.

  3. MISR Decadal Observations of Mineral Dust: Property Characterization and Climate Applications

    NASA Technical Reports Server (NTRS)

    Kalashnikova, Olga V.; Garay, Michael J.; Sokolik, Irina; Kahn, Ralph A.; Lyapustin, A.; Diner, David J.; Lee, Jae N.; Torres, Omar; Leptoukh, Gregory G.; Sabbah, Ismail

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) provides a unique, independent source of data for studying dust emission and transport. MISR's multiple view angles allow the retrieval of aerosol properties over bright surfaces, and such retrievals have been shown to be sensitive to the non-sphericity of dust aerosols over both land and water. MISR stereographic views of thick aerosol plumes allow height and instantaneous wind derivations at spatial resolutions of better than 1.1 km horizontally and 200m vertically. We will discuss the radiometric and stereo-retrieval capabilities of MISR specifically for dust, and demonstrate the use of MISR data in conjunction with other available satellite observations for dust property characterization and climate studies.First, we will discuss MISR non-spherical (dust) fraction product over the global oceans. We will show that over the Atlantic Ocean, changes in the MISR-derived non-spherical AOD fraction illustrate the evolution of dust during transport. Next, we will present a MISR satellite perspective on dust climatology in major dust source regions with a particular emphasis on the West Africa and Middle East and discuss MISR's unique strengths as well as current product biases. Finally, we will discuss MISR dust plume product and climatological applications.

  4. Bone Dielectric Property Variation as a Function of Mineralization at Microwave Frequencies

    PubMed Central

    Meaney, Paul M.; Zhou, Tian; Goodwin, Douglas; Golnabi, Amir; Attardo, Elia A.; Paulsen, Keith D.

    2012-01-01

    A critical need exists for new imaging tools to more accurately characterize bone quality beyond the conventional modalities of dual energy X-ray absorptiometry (DXA), ultrasound speed of sound, and broadband attenuation measurements. In this paper we investigate the microwave dielectric properties of ex vivo trabecular bone with respect to bulk density measures. We exploit a variation in our tomographic imaging system in conjunction with a new soft prior regularization scheme that allows us to accurately recover the dielectric properties of small, regularly shaped and previously spatially defined volumes. We studied six excised porcine bone samples from which we extracted cylindrically shaped trabecular specimens from the femoral heads and carefully demarrowed each preparation. The samples were subsequently treated in an acid bath to incrementally remove volumes of hydroxyapatite, and we tested them with both the microwave measurement system and a micro-CT scanner. The measurements were performed at five density levels for each sample. The results show a strong correlation between both the permittivity and conductivity and bone volume fraction and suggest that microwave imaging may be a good candidate for evaluating overall bone health. PMID:22577365

  5. Size dependence of the magnetic properties of cobalt oxide nanoparticles mineralized in protein cages

    NASA Astrophysics Data System (ADS)

    Resnick, Damon Aaron

    2005-11-01

    A major question in the physics of magnetic nanoparticles is how the size affects the magnetic properties in magnetic nanoparticle systems. In particular, the magnetic properties can be affected by finite-size effects or surface effects. It is this author's belief that surface effects and not finite-size effects play the dominate role. This study is a specific example of how to try to answer this question by looking at different sizes of Co 3O4 nanoparticles. In order to answer this question as well as better understand this system, different antiferromagnetic Co3O4 nanoparticles of 4.35 nm and 6.3 nm in diameter were synthesized. These particles were determined to be relatively uniform and monodispersed. In this study, Transmission Electron Microscopy (TEM), electron diffraction (ED) and X-ray Absorption Spectroscopy (XAS) were used to study the physical and electronic structure of the nanoparticles. Alternating Current Magnetic Susceptibility (ACMS) was used to measure the magnetic anisotropy energy density of the different size nanoparticles. It was found that the anisotropy energy density increases with decreasing size, from 1.09 x 104 J/m3 for the 6.3 nm particles to 7.53 x 104 J/m3 for the 4.35 nm particles, consistent with the importance of surface anisotropy with decreasing particle size. Vibrating Sample Magnetometry (VSM) was used to measure the Neel temperature and coercive field of the different particles. It was found that the Neel temperature decreases with decreasing size, from 40 K to 15 K, consistent with a simple surface approximation of the finite-size scaling theory, while the coercive field increased with decreasing particle size consistent with a surface model. The main conclusion of this work is that surface effects and not finite-size effects play a major role in the change of the magnetic properties with size in Co3O4 nanoparticles. The evidence also suggests that the increase in the anisotropy energy density is due to the creation of a

  6. Some Mineral Physics Observations Pertinent to the Rheological Properties of Super-Earths

    NASA Astrophysics Data System (ADS)

    Karato, S.

    2010-12-01

    Both orbital and thermal evolution of recently discovered super-Earths (terrestrial planets whit mass exceeding that of Earth) depends critically on the rheological properties of their mantle. Although direct experimental studies on rheological properties are unavailable under the conditions equivalent to the deep mantles of these planets (~1 TPa and ~5000 K), a review of key materials science observations suggests that the deep mantle of these planets have much lower viscosity than most of the shallower regions of these planets. The key observations are: (i) phase transformations likely occur under these conditions including the B1 to B2 transition in MgO (1) and the dissociation of MgSiO3 into two oxides (MgO and SiO2) (2), (ii) the systematics in high-temperature creep show that materials with NaCl (B1) structures have much smaller viscosity than other oxides compared at the same normalized conditions (3), and (iii) diffusion coefficients in most of materials have a minimum at certain pressure and above that pressure it increases with pressure (due to mechanism transition) (4). In addition, a review of existing studies also shows that the ionic solids with B2 (CsCl) structure have larger diffusion coefficients than their B1 counter parts. Furthermore, if metallization transition occurs in any of these materials, delocalized electrons will further weaken the material. All of these observations or concepts suggest that even though the viscosity of a planet (below the asthenosphere) increases with depth in the relatively shallow regions, viscosity likely starts to decrease with depth below some critical depth (>~2000 km). The inferred low viscosity of super-Earths implies a large tidal dissipation and relatively rapid orbital evolution. Also such a rheological properties likely promote a layered mantle convection that enhances a weak deep mantle and retards the thermal evolution. 1. A. R. Oganov, M. J. Gillan, G. D. Price, Journal of Chemical Physics 118, 10174

  7. Effects of retorting factors on combustion properties of shale char. 3. Distribution of residual organic matters.

    PubMed

    Han, Xiangxin; Jiang, Xiumin; Cui, Zhigang; Liu, Jianguo; Yan, Junwei

    2010-03-15

    Shale char, formed in retort furnaces of oil shale, is classified as a dangerous waste containing several toxic compounds. In order to retort oil shale to produce shale oil as well as treat shale char efficiently and in an environmentally friendly way, a novel kind of comprehensive utilization system was developed to use oil shale for shale oil production, electricity generation (shale char fired) and the extensive application of oil shale ash. For exploring the combustion properties of shale char further, in this paper organic matters within shale chars obtained under different retorting conditions were extracted and identified using a gas chromatography-mass spectrometry (GC-MS) method. Subsequently, the effects of retorting factors, including retorting temperature, residence time, particle size and heating rate, were analyzed in detail. As a result, a retorting condition with a retorting temperature of 460-490 degrees C, residence time of <40 min and a middle particle size was recommended for both keeping nitrogenous organic matters and aromatic hydrocarbons in shale char and improving the yield and quality of shale oil. In addition, shale char obtained under such retorting condition can also be treated efficiently using a circulating fluidized bed technology with fractional combustion.

  8. Nutraceutical properties of cumin residue generated from Ayurvedic industries using cell line models.

    PubMed

    Arun, K B; Aswathi, U; Venugopal, V V; Madhavankutty, T S; Nisha, P

    2016-10-01

    Spent cumin (SC), generated from Ayurvedic industry, was evaluated for its nutraceutical potential in terms of antioxidant, antidiabetic and anticancer properties, and compared with that of the raw cumin (RC). SC and RC seeds were extracted with ethyl acetate (E) and methanol (M). SCM (methanol extract) were rich in p-coumaric acid, ferulic acid, ellagic acid and cinnamic acid (6.4445, 5.8286, 2.1519, 4.3085 mg/g dry extract). SCM reduced Fe(2+) ion (89.68 µM AA/g dry weight), scavenged DPPH radical (IC50-238.6 µg/mL), better α-amylase inhibition (IC50-337.22 µg/mL) and glucose uptake activity in 30.7% of L6 cells. SCM inhibited viability, retarded migration area up to 41.02%, arrested cell cycle at S phase and induced apoptosis in 2.45% of HT29 colon cancer cells. The results indicated that dietary interventions using nutraceutical food formulation made out of SC can play a significant role in the prevention and management of degenerative diseases.

  9. Cellulose reinforced nylon-6 nanofibrous membrane: Fabrication strategies, physicochemical characterizations, wicking properties and biomimetic mineralization.

    PubMed

    Joshi, Mahesh Kumar; Tiwari, Arjun Prasad; Maharjan, Bikendra; Won, Ko Sung; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-08-20

    The aim of the present study is to develop a facile, efficient approach to reinforce nylon 6 (N6) nanofibers with cellulose chains as well as to study the effect that cellulose regeneration has on the physicochemical properties of the composite fibers. Here, a cellulose acetate (CA) solution (17wt%) was prepared in formic acid and was blended with N6 solution (20%, prepared in formic acid and acetic acid) in various proportions, and the blended solutions were then electrospun to produce hybrid N6/CA nanofibers. Cellulose was regenerated in-situ in the fiber via alkaline saponification of the CA content of the hybrid fiber, leading to cellulose-reinforced N6 (N6/CL) nanofibers. Electron microscopy studies suggest that the fiber diameter and hence pore size gradually decreases as the mass composition of CA increases in the electrospinning solution. Cellulose regeneration showed noticeable change in the polymorphic behavior of N6, as observed in the XRD and IR spectra. The strong interaction of the hydroxyl group of cellulose with amide group of N6, mainly via hydrogen bonding, has a pronounced effect on the polymorphic behavior of N6. The γ-phase was dominant in pristine N6 and N6/CA fibers while α- phase was dominant in the N6/CL fibers. The surface wettability, wicking properties, and the tensile stress were greatly improved for N6/CL fibers compared to the corresponding N6/CA hybrid fibers. Results of DSC/TGA revealed that N6/CL fibers were more thermally stable than pristine N6 and N6/CA nanofibers. Furthermore, regeneration of cellulose chain improved the ability to nucleate bioactive calcium phosphate crystals in a simulated body fluid solution.

  10. Injectable calcium sulfate/mineralized collagen-based bone repair materials with regulable self-setting properties.

    PubMed

    Chen, Zonggang; Liu, Huanye; Liu, Xi; Cui, Fu-Zhai

    2011-12-15

    An injectable and self-setting bone repair materials (nano-hydroxyapatite/collagen/calcium sulfate hemihydrate, nHAC/CSH) was developed in this study. The nano-hydroxyapatite/collagen (nHAC) composite, which is the mineralized fibril by self-assembly of nano-hydrocyapatite and collagen, has the same features as natural bone in both main hierarchical microstructure and composition. It is a bioactive osteoconductor due to its high level of biocompatibility and appropriate degradation rate. However, this material lacks handling characteristics because of its particle or solid-preformed block shape. Herein, calcium sulfate hemihydrate (CSH) was introduced into nHAC to prepare an injectable and self-setting in situ bone repair materials. The morphology of materials was observed using SEM. Most important and interesting of all, calcium sulfate dihydrate (CSD), which is not only the reactant of preparing CSH but also the final solidified product of CSH, was introduced into nHAC as setting accelerator to regulate self-setting properties of injectable nHAC/CSH composite, and thus the self-setting time of nHAC/CSH composite can be regulated from more than 100 min to about 30 min and even less than 20 min by adding various amount of setting accelerator. The compressive properties of bone graft substitute after final setting are similar to those of cancellous bone. CSD as an excellent setting accelerator has no significant effect on the mechanical property and degradability of bone repair materials. In vitro biocompatibility and in vivo histology studies demonstrated that the nHAC/CSH composite could provide more adequate stimulus for cell adhesion and proliferation, embodying favorable cell biocompatibility and a strong ability to accelerate bone formation. It can offer a satisfactory biological environment for growing new bone in the implants and for stimulating bone formation. Copyright © 2011 Wiley Periodicals, Inc.

  11. Polyester nanoparticles presenting mannose residues: toward the development of new vaccine delivery systems combining biodegradability and targeting properties.

    PubMed

    Rieger, Jutta; Freichels, Hélène; Imberty, Anne; Putaux, Jean-Luc; Delair, Thierry; Jérôme, Christine; Auzély-Velty, Rachel

    2009-03-09

    We report the synthesis of fully biodegradable polymeric nanoparticles presenting mannose residues at their surface and their interaction with lectins. A simple and versatile method was used to reach the surface functionalization of poly(D,L-lactic acid) (PLA) nanoparticles by mannose moieties: It consists in using an amphiphilic mannosylated poly(ethylene oxide)-b-poly(E-caprolactone) (PEO-b-PCL) diblock copolymer as a bioresorbable surface modifier in a simple nanoprecipitation-evaporation procedure. The size and zeta potential of the nanoparticles were found to depend on the molar copolymer/PLA ratio, demonstrating the influence of the copolymer on the formation of the nanoparticles. The bioavailability of the mannose residues as specific recognition sites on the nanoparticle surface could be demonstrated by a modified enzyme-linked lectin assay (ELLA) using biotin-labeled lectins which interact specifically with alpha-D-mannopyrannoside derivatives. Besides specific interaction by lectin-mannose complex formation, nonspecific adsorption of the proteins on the nanoparticle surface was observed. These results were fully supported by isothermal titration calorimetry experiments which suggested that the balance between specific and nonspecific interactions can be controlled by the amount of glycosylated polymer used for the preparation of the nanoparticles. Such nanoparticles are expected to be specifically recognized by mannose receptors, which are highly expressed in cells of the immune system. The targeting properties of these carrier systems combined with their potential adjuvant effects due to their size in the range of 200-300 nm make them attractive candidates as vaccine delivery systems.

  12. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth.

    PubMed

    Gong, Zongqiang; Li, Peijun; Wilke, B M; Alef, Kassem

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soil for a remediation purpose, with some of the oil remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soil was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soil, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth of A. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oil addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oil in the soils was proved by the soil organic carbon content.

  13. Nuclear resonant inelastic x-ray scattering: Methodology and extraction of vibrational properties of minerals

    NASA Astrophysics Data System (ADS)

    Hu, M. Y.; Alp, E. E.; Bi, W.; Sturhahn, W.; Toellner, T. S.; Zhao, J.

    2013-12-01

    Nuclear resonant inelastic x-ray scattering (NRIXS) is a synchrotron radiation based experimental method [1]. Since its introduction almost 20 years ago [2], NRIXS has found an expanding range of applications of studying lattice dynamics in condensed matter physics, materials science, high-pressure research, geosciences, and biophysics. After the first high pressure application in geophysics of measuring sound velocity of iron up to 153 GPa [3], it has become a widely used method to investigate deep earth compositions through sound velocity measurements [4,5]. Thermodynamic properties are also explored, in particular Grueneisen parameters [6]. Later, it was realized that isotope fractionaton factors can be derived from NRIXS measurements [7,8]. Sum rules and moments of NRIXS is a critical part of this methodology [9,10]. We will discuss this and in general the data analysis of NRIXS which enables the above mentioned applications. [1] Alp et al. Hyperfine Interactions 144/145, 3 (2002) [2] Sturhahn et al., PRL 74, 3832 (1995) [3] Mao et al., Science 292, 914 (2001) [4] Hu et al., PRB 67, 094304 (2003) [5] Sturhahn & Jackson, GSA special paper 421 (2007) [6] Murphy et al., Geophys. Res. Lett. 38, L24306 (2011) [7] Polyakov, Science 323, 912 (2009) [8] Dauphas et al., Geochimica et Cosmochimica Acta 94, 254 (2012) [9] Lipkin, PRB 52, 10073 (1995) [10] Hu et al., PRB 87, 064301 (2013)

  14. Study of Glazes and Their Effects on Properties of Triaxial Electrical Porcelains from Ugandan Minerals

    NASA Astrophysics Data System (ADS)

    Olupot, Peter W.; Jonsson, Stefan; Byaruhanga, Joseph K.

    2010-11-01

    Kaolin, ball clay, feldspar, and sand were collected from deposits in Uganda, milled and sieved to particle sizes of 45, 45, 53, and 25 μm, respectively. Three porcelain bodies and five glazes were formulated from them. The glazes were applied on porcelain specimens and subsequently evaluated for their effects on properties of porcelain samples. The formulated specimens were investigated using dilatometry, Steger test, FEG-SEM, XRD, 4-point bending, dielectric strength, and fracture toughness tests. A porcelain specimen consisting of 68% SiO2, 19% Al2O3, 4.7% K2O, and a glaze RO:0.57Al2O3:4.86SiO2 exhibited MOR of 105 MPa with Weibull modulus of 5.6 and a dielectric strength of 18 kV/mm upon firing at a heating rate of 6 °C/min to 1250 °C and holding for 2 h. The microstructure of the high-strength specimen exhibited round mullite needles, quartz, and glass. Holding samples for 2 h at peak temperature resulted in a 22% increase in MOR compared to 1 h holding. Glazing further improved strength by 67% for the best sample. Compressive stresses in glaze contributed to the strengthening effect. The dielectric and mechanical strength values obtained qualify the formulated sample for application in electrical insulation.

  15. Bone Mineral Properties in Growing Col1a2+/G610C Mice, an animal model of Osteogenesis Imperfecta

    PubMed Central

    Masci, Marco; Wang, Min; Imbert, Laurianne; Barnes, Aileen M; Spevak, Lyudmila; Lukashova, Lyudmila; Yihe, Huang; Yan, Ma; Marini, Joan C; Jacobsen, Christina M; Warman, Matthew L; Boskey, Adele L

    2016-01-01

    The Col1a2+/G610C knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2+/G610C and their wild-type controls (Col1a2+/+), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2+/G610C with an LRP+/A214V high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2+/G610C tibias had 13% fewer secondary trabeculae than Col1a2+/+, these were thinner (11%) and more widely spaced (20%) than those of Col1a2+/+ mice. Vertebrae of Col1a2+/G610C mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1a2+/+. The cortical bone of Col1a2+/G610C tibias at 2-months had 3% higher tissue mineral density compared to Col1a2+/+; Col1a2+/G610C vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2+/+. FTIRI analysis, which provides information on bone chemical composition at ~ 7 µm-spatial resolution, showed tibias at 10-days, did not differ between genotypes. Comparing identical bone types in Col1a2+/G610C to Col1a2+/+ at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2+/G610C vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution was noted in 10-day

  16. Chemical-physical Properties and Apatite-forming Ability of Mineral Trioxide Aggregate Flow.

    PubMed

    Guimarães, Bruno Martini; Vivan, Rodrigo Ricci; Piazza, Bruno; Alcalde, Murilo Priori; Bramante, Clovis Monteiro; Duarte, Marco Antonio Hungaro

    2017-10-01

    This study aimed to analyze the chemical-physical properties, including pH, volumetric change, radiopacity, and apatite-forming ability in simulated body fluid, of a new tricalcium silicate material (MTA Flow; Ultradent Products Inc, South Jordan, UT). MTA Flow was tested in comparison with MTA Angelus (Angelus, Londrina, PR, Brazil). The pH of soaking water was tested up to 168 hours in deionized water. In the solubility test, the root-end fillings of 20 acrylic teeth were scanned twice by micro-computed tomographic imaging before and after immersion in ultrapure water for 168 hours. In addition, using an aluminum step wedge, the radiopacity of each material was evaluated as recommended by international standards. The mean gray values of the test materials were measured using ImageJ software (National Institutes of Health, Bethesda, MD). The morphologic and chemical analyses of the material surface were performed using scanning electron microscopic energy-dispersive X-ray spectroscopic analysis after 28 days in Hank's balanced salt solution (HBSS). The data were analyzed using 2-way analysis of variance with the Student-Newman-Keuls test (P < .05). MTA Flow showed similar alkalizing activity to that of MTA Angelus. In the solubility test, both materials presented lower values without statistical differences. Both materials showed a marked alkalinizing activity within 3 hours, which continued for 168 hours. MTA Angelus showed statistically higher radiopacity values (P < .05). All materials showed the ability to nucleate calcium phosphate on their surface after 28 days in HBSS. MTA Flow showed remarkable alkalinizing capability, low solubility, good radiopacity, and the ability to form calcium phosphate deposits after being soaked in simulated body fluid, showing values similar to those of MTA Angelus. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Kumar, S.; Sharma, D.; Singh, R. P.; Kharol, S. K.; Sharma, M.; Singh, A. K.; Singh, S.; Singh, Atinderpal; Singh, D.

    2014-05-01

    Aerosol emissions from biomass burning are of specific interest over the globe due to their strong radiative impacts and climate implications. The present study examines the impact of paddy crop residue burning over northern India during the postmonsoon (October-November) season of 2012 on modification of aerosol properties, as well as the long-range transport of smoke plumes, altitude characteristics, and affected areas via the synergy of ground-based measurements and satellite observations. During this period, Moderate Resolution Imaging Spectroradiometer (MODIS) images show a thick smoke/hazy aerosol layer below 2-2.5 km in the atmosphere covering nearly the whole Indo-Gangetic Plains (IGP). The air mass trajectories originating from the biomass-burning source region over Punjab at 500 m reveal a potential aerosol transport pathway along the Ganges valley from west to east, resulting in a strong aerosol optical depth (AOD) gradient. Sometimes, depending upon the wind direction and meteorological conditions, the plumes also influence central India, the Arabian Sea, and the Bay of Bengal, thus contributing to Asian pollution outflow. The increased number of fire counts (Terra and Aqua MODIS data) is associated with severe aerosol-laden atmospheres (AOD500 nm > 1.0) over six IGP locations, high values of Ångström exponent (>1.2), high particulate mass 2.5 (PM2.5) concentrations (>100-150 µgm-3), and enhanced Ozone Monitoring Instrument Aerosol Index gradient (~2.5) and NO2 concentrations (~6 × 1015 mol/cm2), indicating the dominance of smoke aerosols from agricultural crop residue burning. The aerosol size distribution is shifted toward the fine-mode fraction, also exhibiting an increase in the radius of fine aerosols due to coagulation processes in a highly turbid environment. The spectral variation of the single-scattering albedo reveals enhanced dominance of moderately absorbing aerosols, while the aerosol properties, modification, and mixing atmospheric

  18. Effects of Aqueous Mineral Carbonation on Deformation and Transport Properties in Dunite

    NASA Astrophysics Data System (ADS)

    Lisabeth, H. P.; Zhu, W.; Kelemen, P. B.

    2012-12-01

    Carbon dioxide is one of the most common geologic fluids resulting from volcanic as well as diagenetic activity. Proposed carbon sequestration initiatives may result in locally high concentrations of carbon dioxide in various reservoirs; however, the effect of dissolved carbon dioxide in pore water on the mechanical behavior and transport property evolution of earth materials at upper crustal conditions is poorly constrained. These effects can take the form of complex chemical and mechanical feedbacks. To begin exploring these processes we have performed hydrostatic compaction, constant strain rate deformation and constant stress creep experiments on thermally cracked dunite saturated with either distilled water or carbon dioxide-rich brine and measured the mechanical strain and concomitant permeability changes throughout the experiments. The suite of experiments was carried out at 150°C with 15 MPa confining pressure and pore pressure held constant at 10 MPa. Deformations were performed at a constant strain rate of 10-5s-1. At all conditions, experiments with carbon dioxide-rich brine as pore fluid exhibited enhanced compaction and permeability reduction compared to those with distilled water. In hydrostatic tests, carbon dioxide-rich brine increased the rate of compaction by half an order of magnitude and reduced permeability by an order of magnitude. During deformation all samples showed stress induced dilatancy due to microcracking, although samples saturated with carbon dioxide-rich brine exhibited enhanced compaction compared to samples saturated with distilled water. After loaded beyond the onset of dilatancy, C', samples were held at a constant differential stress of ~110 MPa (~85% of peak load) and time-dependent creep behavior was observed. During the time-dependent portion of the tests, samples saturated with carbon dioxide-rich fluids exhibited modest dilatancy and enhanced permeability reduction when compared to samples saturated with distilled water

  19. Strontium-loaded mineral bone cements as sustained release systems: Compositions, release properties, and effects on human osteoprogenitor cells.

    PubMed

    Tadier, Solène; Bareille, Reine; Siadous, Robin; Marsan, Olivier; Charvillat, Cédric; Cazalbou, Sophie; Amédée, Joelle; Rey, Christian; Combes, Christèle

    2012-02-01

    This study aims to evaluate in vitro the release properties and biological behavior of original compositions of strontium (Sr)-loaded bone mineral cements. Strontium was introduced into vaterite CaCO3 -dicalcium phosphate dihydrate cement via two routes: as SrCO3 in the solid phase (SrS cements), and as SrCl2 dissolved in the liquid phase (SrL cements), leading to different cement compositions after setting. Complementary analytical techniques implemented to thoroughly investigate the release/dissolution mechanism of Sr-loaded cements at pH 7.4 and 37°C during 3 weeks revealed a sustained release of Sr and a centripetal dissolution of the more soluble phase (vaterite) limited by a diffusion process. In all cases, the initial burst of the Ca and Sr release (highest for the SrL cements) that occurred over 48 h did not have a significant effect on the expression of bone markers (alkaline phosphatase, osteocalcin), the levels of which remained overexpressed after 15 days of culture with human osteoprogenitor (HOP) cells. At the same time, proliferation of HOP cells was significantly higher on SrS cements. Interestingly, this study shows that we can optimize the sustained release of Sr(2+) , the cement biodegradation and biological activity by controlling the route of introduction of strontium in the cement paste.

  20. Multiple regression modelling of mineral base oil biodegradability based on their physical properties and overall chemical composition.

    PubMed

    Haus, Frédérique; Boissel, Olivier; Junter, Guy Alain

    2003-02-01

    A set of 38 mineral base oils was characterized by a number of chemical (i.e., overall chemical composition) and physical parameters used routinely in industry. Their primary biodegradability was evaluated using the CEC L-33-A-93 test. Multiple (stepwise) linear regression (MLR) analyses were performed to describe the relationships between the biodegradability values and the chemical or physical properties of oils. Chemical, physical, and both types of parameters were successively used as independent variables. Using chemical descriptors as variables, a four-variable model equation was obtained that explained only 68.2% (adjusted R-squared statistic=68.2%) of the variability in biodegradability. The fitting was improved by using either the physical or the whole parameters as variables. MLR analyses led to three-descriptor model equations involving kinematic viscosity (as log), Noack volatility (as log) and either the viscosity index (pure physical model) or the paraffinic carbon percentage (mixed chemical-physical model). These two models displayed very similar adjusted R-squared statistics, of approximately 91%. Their predicting ability was verified using 25 additional base oils or oil blends. For 80% of oils on a total of 63, the absolute percentage error on biodegradability predicted by either model was lower than 20%. Kinematic viscosity was by far the most influential parameter in the two models.

  1. Spectral properties of mixtures of montmorillonite and dark grains - Implications for remote sensing minerals containing chemically and physically adsorbed water

    NASA Technical Reports Server (NTRS)

    Clark, R. N.

    1983-01-01

    The spectral properties from 0.4 to 3 microns of montmorillonite plus dark carbon grains (called opaques) of various sizes are studied as a function of the weight fraction of opaques present. The reflectance level and band depths of the 1.4-, 1.9-, 2.2-, and 2.8-micron water and/or OH absorption features are analyzed using derived empirical relationships and scattering theory. It is found that the absorption band depths and reflectance level are a very nonlinear function of the weigh